1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2017, 2018 by Delphix. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/txg.h> 27 #include <sys/dmu_objset.h> 28 #include <sys/dmu_traverse.h> 29 #include <sys/dmu_redact.h> 30 #include <sys/bqueue.h> 31 #include <sys/objlist.h> 32 #include <sys/dmu_tx.h> 33 #ifdef _KERNEL 34 #include <sys/zfs_vfsops.h> 35 #include <sys/zap.h> 36 #include <sys/zfs_znode.h> 37 #endif 38 39 /* 40 * This controls the number of entries in the buffer the redaction_list_update 41 * synctask uses to buffer writes to the redaction list. 42 */ 43 int redact_sync_bufsize = 1024; 44 45 /* 46 * Controls how often to update the redaction list when creating a redaction 47 * list. 48 */ 49 uint64_t redaction_list_update_interval_ns = 1000 * 1000 * 1000ULL; /* NS */ 50 51 /* 52 * This tunable controls the length of the queues that zfs redact worker threads 53 * use to communicate. If the dmu_redact_snap thread is blocking on these 54 * queues, this variable may need to be increased. If there is a significant 55 * slowdown at the start of a redact operation as these threads consume all the 56 * available IO resources, or the queues are consuming too much memory, this 57 * variable may need to be decreased. 58 */ 59 int zfs_redact_queue_length = 1024 * 1024; 60 61 /* 62 * These tunables control the fill fraction of the queues by zfs redact. The 63 * fill fraction controls the frequency with which threads have to be 64 * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these 65 * should be tuned down. If the queues empty before the signalled thread can 66 * catch up, then these should be tuned up. 67 */ 68 uint64_t zfs_redact_queue_ff = 20; 69 70 struct redact_record { 71 bqueue_node_t ln; 72 boolean_t eos_marker; /* Marks the end of the stream */ 73 uint64_t start_object; 74 uint64_t start_blkid; 75 uint64_t end_object; 76 uint64_t end_blkid; 77 uint8_t indblkshift; 78 uint32_t datablksz; 79 }; 80 81 struct redact_thread_arg { 82 bqueue_t q; 83 objset_t *os; /* Objset to traverse */ 84 dsl_dataset_t *ds; /* Dataset to traverse */ 85 struct redact_record *current_record; 86 int error_code; 87 boolean_t cancel; 88 zbookmark_phys_t resume; 89 objlist_t *deleted_objs; 90 uint64_t *num_blocks_visited; 91 uint64_t ignore_object; /* ignore further callbacks on this */ 92 uint64_t txg; /* txg to traverse since */ 93 }; 94 95 /* 96 * The redaction node is a wrapper around the redaction record that is used 97 * by the redaction merging thread to sort the records and determine overlaps. 98 * 99 * It contains two nodes; one sorts the records by their start_zb, and the other 100 * sorts the records by their end_zb. 101 */ 102 struct redact_node { 103 avl_node_t avl_node_start; 104 avl_node_t avl_node_end; 105 struct redact_record *record; 106 struct redact_thread_arg *rt_arg; 107 uint32_t thread_num; 108 }; 109 110 struct merge_data { 111 list_t md_redact_block_pending; 112 redact_block_phys_t md_coalesce_block; 113 uint64_t md_last_time; 114 redact_block_phys_t md_furthest[TXG_SIZE]; 115 /* Lists of struct redact_block_list_node. */ 116 list_t md_blocks[TXG_SIZE]; 117 boolean_t md_synctask_txg[TXG_SIZE]; 118 uint64_t md_latest_synctask_txg; 119 redaction_list_t *md_redaction_list; 120 }; 121 122 /* 123 * A wrapper around struct redact_block so it can be stored in a list_t. 124 */ 125 struct redact_block_list_node { 126 redact_block_phys_t block; 127 list_node_t node; 128 }; 129 130 /* 131 * We've found a new redaction candidate. In order to improve performance, we 132 * coalesce these blocks when they're adjacent to each other. This function 133 * handles that. If the new candidate block range is immediately after the 134 * range we're building, coalesce it into the range we're building. Otherwise, 135 * put the record we're building on the queue, and update the build pointer to 136 * point to the new record. 137 */ 138 static void 139 record_merge_enqueue(bqueue_t *q, struct redact_record **build, 140 struct redact_record *new) 141 { 142 if (new->eos_marker) { 143 if (*build != NULL) 144 bqueue_enqueue(q, *build, sizeof (*build)); 145 bqueue_enqueue_flush(q, new, sizeof (*new)); 146 return; 147 } 148 if (*build == NULL) { 149 *build = new; 150 return; 151 } 152 struct redact_record *curbuild = *build; 153 if ((curbuild->end_object == new->start_object && 154 curbuild->end_blkid + 1 == new->start_blkid && 155 curbuild->end_blkid != UINT64_MAX) || 156 (curbuild->end_object + 1 == new->start_object && 157 curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) { 158 curbuild->end_object = new->end_object; 159 curbuild->end_blkid = new->end_blkid; 160 kmem_free(new, sizeof (*new)); 161 } else { 162 bqueue_enqueue(q, curbuild, sizeof (*curbuild)); 163 *build = new; 164 } 165 } 166 #ifdef _KERNEL 167 struct objnode { 168 avl_node_t node; 169 uint64_t obj; 170 }; 171 172 static int 173 objnode_compare(const void *o1, const void *o2) 174 { 175 const struct objnode *obj1 = o1; 176 const struct objnode *obj2 = o2; 177 if (obj1->obj < obj2->obj) 178 return (-1); 179 if (obj1->obj > obj2->obj) 180 return (1); 181 return (0); 182 } 183 184 185 static objlist_t * 186 zfs_get_deleteq(objset_t *os) 187 { 188 objlist_t *deleteq_objlist = objlist_create(); 189 uint64_t deleteq_obj; 190 zap_cursor_t zc; 191 zap_attribute_t za; 192 dmu_object_info_t doi; 193 194 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 195 VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi)); 196 ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE); 197 198 VERIFY0(zap_lookup(os, MASTER_NODE_OBJ, 199 ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj)); 200 201 /* 202 * In order to insert objects into the objlist, they must be in sorted 203 * order. We don't know what order we'll get them out of the ZAP in, so 204 * we insert them into and remove them from an avl_tree_t to sort them. 205 */ 206 avl_tree_t at; 207 avl_create(&at, objnode_compare, sizeof (struct objnode), 208 offsetof(struct objnode, node)); 209 210 for (zap_cursor_init(&zc, os, deleteq_obj); 211 zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { 212 struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP); 213 obj->obj = za.za_first_integer; 214 avl_add(&at, obj); 215 } 216 zap_cursor_fini(&zc); 217 218 struct objnode *next, *found = avl_first(&at); 219 while (found != NULL) { 220 next = AVL_NEXT(&at, found); 221 objlist_insert(deleteq_objlist, found->obj); 222 found = next; 223 } 224 225 void *cookie = NULL; 226 while ((found = avl_destroy_nodes(&at, &cookie)) != NULL) 227 kmem_free(found, sizeof (*found)); 228 avl_destroy(&at); 229 return (deleteq_objlist); 230 } 231 #endif 232 233 /* 234 * This is the callback function to traverse_dataset for the redaction threads 235 * for dmu_redact_snap. This thread is responsible for creating redaction 236 * records for all the data that is modified by the snapshots we're redacting 237 * with respect to. Redaction records represent ranges of data that have been 238 * modified by one of the redaction snapshots, and are stored in the 239 * redact_record struct. We need to create redaction records for three 240 * cases: 241 * 242 * First, if there's a normal write, we need to create a redaction record for 243 * that block. 244 * 245 * Second, if there's a hole, we need to create a redaction record that covers 246 * the whole range of the hole. If the hole is in the meta-dnode, it must cover 247 * every block in all of the objects in the hole. 248 * 249 * Third, if there is a deleted object, we need to create a redaction record for 250 * all of the blocks in that object. 251 */ 252 /*ARGSUSED*/ 253 static int 254 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 255 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 256 { 257 struct redact_thread_arg *rta = arg; 258 struct redact_record *record; 259 260 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 261 zb->zb_object >= rta->resume.zb_object); 262 263 if (rta->cancel) 264 return (SET_ERROR(EINTR)); 265 266 if (rta->ignore_object == zb->zb_object) 267 return (0); 268 269 /* 270 * If we're visiting a dnode, we need to handle the case where the 271 * object has been deleted. 272 */ 273 if (zb->zb_level == ZB_DNODE_LEVEL) { 274 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 275 276 if (zb->zb_object == 0) 277 return (0); 278 279 /* 280 * If the object has been deleted, redact all of the blocks in 281 * it. 282 */ 283 if (dnp->dn_type == DMU_OT_NONE || 284 objlist_exists(rta->deleted_objs, zb->zb_object)) { 285 rta->ignore_object = zb->zb_object; 286 record = kmem_zalloc(sizeof (struct redact_record), 287 KM_SLEEP); 288 289 record->eos_marker = B_FALSE; 290 record->start_object = record->end_object = 291 zb->zb_object; 292 record->start_blkid = 0; 293 record->end_blkid = UINT64_MAX; 294 record_merge_enqueue(&rta->q, 295 &rta->current_record, record); 296 } 297 return (0); 298 } else if (zb->zb_level < 0) { 299 return (0); 300 } else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) { 301 /* 302 * If this is an indirect block, but not a hole, it doesn't 303 * provide any useful information for redaction, so ignore it. 304 */ 305 return (0); 306 } 307 308 /* 309 * At this point, there are two options left for the type of block we're 310 * looking at. Either this is a hole (which could be in the dnode or 311 * the meta-dnode), or it's a level 0 block of some sort. If it's a 312 * hole, we create a redaction record that covers the whole range. If 313 * the hole is in a dnode, we need to redact all the blocks in that 314 * hole. If the hole is in the meta-dnode, we instead need to redact 315 * all blocks in every object covered by that hole. If it's a level 0 316 * block, we only need to redact that single block. 317 */ 318 record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP); 319 record->eos_marker = B_FALSE; 320 321 record->start_object = record->end_object = zb->zb_object; 322 if (BP_IS_HOLE(bp)) { 323 record->start_blkid = zb->zb_blkid * 324 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level); 325 326 record->end_blkid = ((zb->zb_blkid + 1) * 327 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1; 328 329 if (zb->zb_object == DMU_META_DNODE_OBJECT) { 330 record->start_object = record->start_blkid * 331 ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) / 332 sizeof (dnode_phys_t)); 333 record->start_blkid = 0; 334 record->end_object = ((record->end_blkid + 335 1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) / 336 sizeof (dnode_phys_t))) - 1; 337 record->end_blkid = UINT64_MAX; 338 } 339 } else if (zb->zb_level != 0 || 340 zb->zb_object == DMU_META_DNODE_OBJECT) { 341 kmem_free(record, sizeof (*record)); 342 return (0); 343 } else { 344 record->start_blkid = record->end_blkid = zb->zb_blkid; 345 } 346 record->indblkshift = dnp->dn_indblkshift; 347 record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 348 record_merge_enqueue(&rta->q, &rta->current_record, record); 349 350 return (0); 351 } 352 353 static void 354 redact_traverse_thread(void *arg) 355 { 356 struct redact_thread_arg *rt_arg = arg; 357 int err; 358 struct redact_record *data; 359 #ifdef _KERNEL 360 if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS) 361 rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os); 362 else 363 rt_arg->deleted_objs = objlist_create(); 364 #else 365 rt_arg->deleted_objs = objlist_create(); 366 #endif 367 368 err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg, 369 &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 370 redact_cb, rt_arg); 371 372 if (err != EINTR) 373 rt_arg->error_code = err; 374 objlist_destroy(rt_arg->deleted_objs); 375 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 376 data->eos_marker = B_TRUE; 377 record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data); 378 thread_exit(); 379 } 380 381 static inline void 382 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object, 383 uint64_t blkid) 384 { 385 zb->zb_object = object; 386 zb->zb_level = 0; 387 zb->zb_blkid = blkid; 388 } 389 390 /* 391 * This is a utility function that can do the comparison for the start or ends 392 * of the ranges in a redact_record. 393 */ 394 static int 395 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1, 396 uint64_t obj2, uint64_t off2, uint32_t dbss2) 397 { 398 zbookmark_phys_t z1, z2; 399 create_zbookmark_from_obj_off(&z1, obj1, off1); 400 create_zbookmark_from_obj_off(&z2, obj2, off2); 401 402 return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0, 403 dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2)); 404 } 405 406 /* 407 * Compare two redaction records by their range's start location. Also makes 408 * eos records always compare last. We use the thread number in the redact_node 409 * to ensure that records do not compare equal (which is not allowed in our avl 410 * trees). 411 */ 412 static int 413 redact_node_compare_start(const void *arg1, const void *arg2) 414 { 415 const struct redact_node *rn1 = arg1; 416 const struct redact_node *rn2 = arg2; 417 const struct redact_record *rr1 = rn1->record; 418 const struct redact_record *rr2 = rn2->record; 419 if (rr1->eos_marker) 420 return (1); 421 if (rr2->eos_marker) 422 return (-1); 423 424 int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid, 425 rr1->datablksz, rr2->start_object, rr2->start_blkid, 426 rr2->datablksz); 427 if (cmp == 0) 428 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1); 429 return (cmp); 430 } 431 432 /* 433 * Compare two redaction records by their range's end location. Also makes 434 * eos records always compare last. We use the thread number in the redact_node 435 * to ensure that records do not compare equal (which is not allowed in our avl 436 * trees). 437 */ 438 static int 439 redact_node_compare_end(const void *arg1, const void *arg2) 440 { 441 const struct redact_node *rn1 = arg1; 442 const struct redact_node *rn2 = arg2; 443 const struct redact_record *srr1 = rn1->record; 444 const struct redact_record *srr2 = rn2->record; 445 if (srr1->eos_marker) 446 return (1); 447 if (srr2->eos_marker) 448 return (-1); 449 450 int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid, 451 srr1->datablksz, srr2->end_object, srr2->end_blkid, 452 srr2->datablksz); 453 if (cmp == 0) 454 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1); 455 return (cmp); 456 } 457 458 /* 459 * Utility function that compares two redaction records to determine if any part 460 * of the "from" record is before any part of the "to" record. Also causes End 461 * of Stream redaction records to compare after all others, so that the 462 * redaction merging logic can stay simple. 463 */ 464 static boolean_t 465 redact_record_before(const struct redact_record *from, 466 const struct redact_record *to) 467 { 468 if (from->eos_marker == B_TRUE) 469 return (B_FALSE); 470 else if (to->eos_marker == B_TRUE) 471 return (B_TRUE); 472 return (redact_range_compare(from->start_object, from->start_blkid, 473 from->datablksz, to->end_object, to->end_blkid, 474 to->datablksz) <= 0); 475 } 476 477 /* 478 * Pop a new redaction record off the queue, check that the records are in the 479 * right order, and free the old data. 480 */ 481 static struct redact_record * 482 get_next_redact_record(bqueue_t *bq, struct redact_record *prev) 483 { 484 struct redact_record *next = bqueue_dequeue(bq); 485 ASSERT(redact_record_before(prev, next)); 486 kmem_free(prev, sizeof (*prev)); 487 return (next); 488 } 489 490 /* 491 * Remove the given redaction node from both trees, pull a new redaction record 492 * off the queue, free the old redaction record, update the redaction node, and 493 * reinsert the node into the trees. 494 */ 495 static int 496 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree, 497 struct redact_node *redact_node) 498 { 499 avl_remove(start_tree, redact_node); 500 avl_remove(end_tree, redact_node); 501 redact_node->record = get_next_redact_record(&redact_node->rt_arg->q, 502 redact_node->record); 503 avl_add(end_tree, redact_node); 504 avl_add(start_tree, redact_node); 505 return (redact_node->rt_arg->error_code); 506 } 507 508 /* 509 * Synctask for updating redaction lists. We first take this txg's list of 510 * redacted blocks and append those to the redaction list. We then update the 511 * redaction list's bonus buffer. We store the furthest blocks we visited and 512 * the list of snapshots that we're redacting with respect to. We need these so 513 * that redacted sends and receives can be correctly resumed. 514 */ 515 static void 516 redaction_list_update_sync(void *arg, dmu_tx_t *tx) 517 { 518 struct merge_data *md = arg; 519 uint64_t txg = dmu_tx_get_txg(tx); 520 list_t *list = &md->md_blocks[txg & TXG_MASK]; 521 redact_block_phys_t *furthest_visited = 522 &md->md_furthest[txg & TXG_MASK]; 523 objset_t *mos = tx->tx_pool->dp_meta_objset; 524 redaction_list_t *rl = md->md_redaction_list; 525 int bufsize = redact_sync_bufsize; 526 redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf), 527 KM_SLEEP); 528 int index = 0; 529 530 dmu_buf_will_dirty(rl->rl_dbuf, tx); 531 532 for (struct redact_block_list_node *rbln = list_remove_head(list); 533 rbln != NULL; rbln = list_remove_head(list)) { 534 ASSERT3U(rbln->block.rbp_object, <=, 535 furthest_visited->rbp_object); 536 ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object || 537 rbln->block.rbp_blkid <= furthest_visited->rbp_blkid); 538 buf[index] = rbln->block; 539 index++; 540 if (index == bufsize) { 541 dmu_write(mos, rl->rl_object, 542 rl->rl_phys->rlp_num_entries * sizeof (*buf), 543 bufsize * sizeof (*buf), buf, tx); 544 rl->rl_phys->rlp_num_entries += bufsize; 545 index = 0; 546 } 547 kmem_free(rbln, sizeof (*rbln)); 548 } 549 if (index > 0) { 550 dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries * 551 sizeof (*buf), index * sizeof (*buf), buf, tx); 552 rl->rl_phys->rlp_num_entries += index; 553 } 554 kmem_free(buf, bufsize * sizeof (*buf)); 555 556 md->md_synctask_txg[txg & TXG_MASK] = B_FALSE; 557 rl->rl_phys->rlp_last_object = furthest_visited->rbp_object; 558 rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid; 559 } 560 561 static void 562 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object, 563 uint64_t blkid) 564 { 565 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir); 566 dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node)); 567 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 568 uint64_t txg = dmu_tx_get_txg(tx); 569 if (!md->md_synctask_txg[txg & TXG_MASK]) { 570 dsl_sync_task_nowait(dmu_tx_pool(tx), 571 redaction_list_update_sync, md, 5, ZFS_SPACE_CHECK_NONE, 572 tx); 573 md->md_synctask_txg[txg & TXG_MASK] = B_TRUE; 574 md->md_latest_synctask_txg = txg; 575 } 576 md->md_furthest[txg & TXG_MASK].rbp_object = object; 577 md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid; 578 list_move_tail(&md->md_blocks[txg & TXG_MASK], 579 &md->md_redact_block_pending); 580 dmu_tx_commit(tx); 581 md->md_last_time = gethrtime(); 582 } 583 584 /* 585 * We want to store the list of blocks that we're redacting in the bookmark's 586 * redaction list. However, this list is stored in the MOS, which means it can 587 * only be written to in syncing context. To get around this, we create a 588 * synctask that will write to the mos for us. We tell it what to write by 589 * a linked list for each current transaction group; every time we decide to 590 * redact a block, we append it to the transaction group that is currently in 591 * open context. We also update some progress information that the synctask 592 * will store to enable resumable redacted sends. 593 */ 594 static void 595 update_redaction_list(struct merge_data *md, objset_t *os, 596 uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz) 597 { 598 boolean_t enqueue = B_FALSE; 599 redact_block_phys_t cur = {0}; 600 uint64_t count = endblkid - blkid + 1; 601 while (count > REDACT_BLOCK_MAX_COUNT) { 602 update_redaction_list(md, os, object, blkid, 603 blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz); 604 blkid += REDACT_BLOCK_MAX_COUNT; 605 count -= REDACT_BLOCK_MAX_COUNT; 606 } 607 redact_block_phys_t *coalesce = &md->md_coalesce_block; 608 boolean_t new; 609 if (coalesce->rbp_size_count == 0) { 610 new = B_TRUE; 611 enqueue = B_FALSE; 612 } else { 613 uint64_t old_count = redact_block_get_count(coalesce); 614 if (coalesce->rbp_object == object && 615 coalesce->rbp_blkid + old_count == blkid && 616 old_count + count <= REDACT_BLOCK_MAX_COUNT) { 617 ASSERT3U(redact_block_get_size(coalesce), ==, blksz); 618 redact_block_set_count(coalesce, old_count + count); 619 new = B_FALSE; 620 enqueue = B_FALSE; 621 } else { 622 new = B_TRUE; 623 enqueue = B_TRUE; 624 } 625 } 626 627 if (new) { 628 cur = *coalesce; 629 coalesce->rbp_blkid = blkid; 630 coalesce->rbp_object = object; 631 632 redact_block_set_count(coalesce, count); 633 redact_block_set_size(coalesce, blksz); 634 } 635 636 if (enqueue && redact_block_get_size(&cur) != 0) { 637 struct redact_block_list_node *rbln = 638 kmem_alloc(sizeof (struct redact_block_list_node), 639 KM_SLEEP); 640 rbln->block = cur; 641 list_insert_tail(&md->md_redact_block_pending, rbln); 642 } 643 644 if (gethrtime() > md->md_last_time + 645 redaction_list_update_interval_ns) { 646 commit_rl_updates(os, md, object, blkid); 647 } 648 } 649 650 /* 651 * This thread merges all the redaction records provided by the worker threads, 652 * and determines which blocks are redacted by all the snapshots. The algorithm 653 * for doing so is similar to performing a merge in mergesort with n sub-lists 654 * instead of 2, with some added complexity due to the fact that the entries are 655 * ranges, not just single blocks. This algorithm relies on the fact that the 656 * queues are sorted, which is ensured by the fact that traverse_dataset 657 * traverses the dataset in a consistent order. We pull one entry off the front 658 * of the queues of each secure dataset traversal thread. Then we repeat the 659 * following: each record represents a range of blocks modified by one of the 660 * redaction snapshots, and each block in that range may need to be redacted in 661 * the send stream. Find the record with the latest start of its range, and the 662 * record with the earliest end of its range. If the last start is before the 663 * first end, then we know that the blocks in the range [last_start, first_end] 664 * are covered by all of the ranges at the front of the queues, which means 665 * every thread redacts that whole range. For example, let's say the ranges on 666 * each queue look like this: 667 * 668 * Block Id 1 2 3 4 5 6 7 8 9 10 11 669 * Thread 1 | [====================] 670 * Thread 2 | [========] 671 * Thread 3 | [=================] 672 * 673 * Thread 3 has the last start (5), and the thread 2 has the last end (6). All 674 * three threads modified the range [5,6], so that data should not be sent over 675 * the wire. After we've determined whether or not to redact anything, we take 676 * the record with the first end. We discard that record, and pull a new one 677 * off the front of the queue it came from. In the above example, we would 678 * discard Thread 2's record, and pull a new one. Let's say the next record we 679 * pulled from Thread 2 covered range [10,11]. The new layout would look like 680 * this: 681 * 682 * Block Id 1 2 3 4 5 6 7 8 9 10 11 683 * Thread 1 | [====================] 684 * Thread 2 | [==] 685 * Thread 3 | [=================] 686 * 687 * When we compare the last start (10, from Thread 2) and the first end (9, from 688 * Thread 1), we see that the last start is greater than the first end. 689 * Therefore, we do not redact anything from these records. We'll iterate by 690 * replacing the record from Thread 1. 691 * 692 * We iterate by replacing the record with the lowest end because we know 693 * that the record with the lowest end has helped us as much as it can. All the 694 * ranges before it that we will ever redact have been redacted. In addition, 695 * by replacing the one with the lowest end, we guarantee we catch all ranges 696 * that need to be redacted. For example, if in the case above we had replaced 697 * the record from Thread 1 instead, we might have ended up with the following: 698 * 699 * Block Id 1 2 3 4 5 6 7 8 9 10 11 12 700 * Thread 1 | [==] 701 * Thread 2 | [========] 702 * Thread 3 | [=================] 703 * 704 * If the next record from Thread 2 had been [8,10], for example, we should have 705 * redacted part of that range, but because we updated Thread 1's record, we 706 * missed it. 707 * 708 * We implement this algorithm by using two trees. The first sorts the 709 * redaction records by their start_zb, and the second sorts them by their 710 * end_zb. We use these to find the record with the last start and the record 711 * with the first end. We create a record with that start and end, and send it 712 * on. The overall runtime of this implementation is O(n log m), where n is the 713 * total number of redaction records from all the different redaction snapshots, 714 * and m is the number of redaction snapshots. 715 * 716 * If we redact with respect to zero snapshots, we create a redaction 717 * record with the start object and blkid to 0, and the end object and blkid to 718 * UINT64_MAX. This will result in us redacting every block. 719 */ 720 static int 721 perform_thread_merge(bqueue_t *q, uint32_t num_threads, 722 struct redact_thread_arg *thread_args, boolean_t *cancel) 723 { 724 struct redact_node *redact_nodes = NULL; 725 avl_tree_t start_tree, end_tree; 726 struct redact_record *record; 727 struct redact_record *current_record = NULL; 728 int err = 0; 729 struct merge_data md = { {0} }; 730 list_create(&md.md_redact_block_pending, 731 sizeof (struct redact_block_list_node), 732 offsetof(struct redact_block_list_node, node)); 733 734 /* 735 * If we're redacting with respect to zero snapshots, then no data is 736 * permitted to be sent. We enqueue a record that redacts all blocks, 737 * and an eos marker. 738 */ 739 if (num_threads == 0) { 740 record = kmem_zalloc(sizeof (struct redact_record), 741 KM_SLEEP); 742 // We can't redact object 0, so don't try. 743 record->start_object = 1; 744 record->start_blkid = 0; 745 record->end_object = record->end_blkid = UINT64_MAX; 746 bqueue_enqueue(q, record, sizeof (*record)); 747 return (0); 748 } 749 if (num_threads > 0) { 750 redact_nodes = kmem_zalloc(num_threads * 751 sizeof (*redact_nodes), KM_SLEEP); 752 } 753 754 avl_create(&start_tree, redact_node_compare_start, 755 sizeof (struct redact_node), 756 offsetof(struct redact_node, avl_node_start)); 757 avl_create(&end_tree, redact_node_compare_end, 758 sizeof (struct redact_node), 759 offsetof(struct redact_node, avl_node_end)); 760 761 for (int i = 0; i < num_threads; i++) { 762 struct redact_node *node = &redact_nodes[i]; 763 struct redact_thread_arg *targ = &thread_args[i]; 764 node->record = bqueue_dequeue(&targ->q); 765 node->rt_arg = targ; 766 node->thread_num = i; 767 avl_add(&start_tree, node); 768 avl_add(&end_tree, node); 769 } 770 771 /* 772 * Once the first record in the end tree has returned EOS, every record 773 * must be an EOS record, so we should stop. 774 */ 775 while (err == 0 && !((struct redact_node *)avl_first(&end_tree))-> 776 record->eos_marker) { 777 if (*cancel) { 778 err = EINTR; 779 break; 780 } 781 struct redact_node *last_start = avl_last(&start_tree); 782 struct redact_node *first_end = avl_first(&end_tree); 783 784 /* 785 * If the last start record is before the first end record, 786 * then we have blocks that are redacted by all threads. 787 * Therefore, we should redact them. Copy the record, and send 788 * it to the main thread. 789 */ 790 if (redact_record_before(last_start->record, 791 first_end->record)) { 792 record = kmem_zalloc(sizeof (struct redact_record), 793 KM_SLEEP); 794 *record = *first_end->record; 795 record->start_object = last_start->record->start_object; 796 record->start_blkid = last_start->record->start_blkid; 797 record_merge_enqueue(q, ¤t_record, 798 record); 799 } 800 err = update_avl_trees(&start_tree, &end_tree, first_end); 801 } 802 803 /* 804 * We're done; if we were cancelled, we need to cancel our workers and 805 * clear out their queues. Either way, we need to remove every thread's 806 * redact_node struct from the avl trees. 807 */ 808 for (int i = 0; i < num_threads; i++) { 809 if (err != 0) { 810 thread_args[i].cancel = B_TRUE; 811 while (!redact_nodes[i].record->eos_marker) { 812 (void) update_avl_trees(&start_tree, &end_tree, 813 &redact_nodes[i]); 814 } 815 } 816 avl_remove(&start_tree, &redact_nodes[i]); 817 avl_remove(&end_tree, &redact_nodes[i]); 818 kmem_free(redact_nodes[i].record, 819 sizeof (struct redact_record)); 820 } 821 822 avl_destroy(&start_tree); 823 avl_destroy(&end_tree); 824 kmem_free(redact_nodes, num_threads * sizeof (*redact_nodes)); 825 if (current_record != NULL) 826 bqueue_enqueue(q, current_record, sizeof (current_record)); 827 return (err); 828 } 829 830 struct redact_merge_thread_arg { 831 bqueue_t q; 832 spa_t *spa; 833 int numsnaps; 834 struct redact_thread_arg *thr_args; 835 boolean_t cancel; 836 int error_code; 837 }; 838 839 static void 840 redact_merge_thread(void *arg) 841 { 842 struct redact_merge_thread_arg *rmta = arg; 843 rmta->error_code = perform_thread_merge(&rmta->q, 844 rmta->numsnaps, rmta->thr_args, &rmta->cancel); 845 struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP); 846 rec->eos_marker = B_TRUE; 847 bqueue_enqueue_flush(&rmta->q, rec, 1); 848 thread_exit(); 849 } 850 851 /* 852 * Find the next object in or after the redaction range passed in, and hold 853 * its dnode with the provided tag. Also update *object to contain the new 854 * object number. 855 */ 856 static int 857 hold_next_object(objset_t *os, struct redact_record *rec, void *tag, 858 uint64_t *object, dnode_t **dn) 859 { 860 int err = 0; 861 if (*dn != NULL) 862 dnode_rele(*dn, FTAG); 863 *dn = NULL; 864 if (*object < rec->start_object) { 865 *object = rec->start_object - 1; 866 } 867 err = dmu_object_next(os, object, B_FALSE, 0); 868 if (err != 0) 869 return (err); 870 871 err = dnode_hold(os, *object, tag, dn); 872 while (err == 0 && (*object < rec->start_object || 873 DMU_OT_IS_METADATA((*dn)->dn_type))) { 874 dnode_rele(*dn, tag); 875 *dn = NULL; 876 err = dmu_object_next(os, object, B_FALSE, 0); 877 if (err != 0) 878 break; 879 err = dnode_hold(os, *object, tag, dn); 880 } 881 return (err); 882 } 883 884 static int 885 perform_redaction(objset_t *os, redaction_list_t *rl, 886 struct redact_merge_thread_arg *rmta) 887 { 888 int err = 0; 889 bqueue_t *q = &rmta->q; 890 struct redact_record *rec = NULL; 891 struct merge_data md = { {0} }; 892 893 list_create(&md.md_redact_block_pending, 894 sizeof (struct redact_block_list_node), 895 offsetof(struct redact_block_list_node, node)); 896 md.md_redaction_list = rl; 897 898 for (int i = 0; i < TXG_SIZE; i++) { 899 list_create(&md.md_blocks[i], 900 sizeof (struct redact_block_list_node), 901 offsetof(struct redact_block_list_node, node)); 902 } 903 dnode_t *dn = NULL; 904 uint64_t prev_obj = 0; 905 for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0; 906 rec = get_next_redact_record(q, rec)) { 907 ASSERT3U(rec->start_object, !=, 0); 908 uint64_t object; 909 if (prev_obj != rec->start_object) { 910 object = rec->start_object - 1; 911 err = hold_next_object(os, rec, FTAG, &object, &dn); 912 } else { 913 object = prev_obj; 914 } 915 while (err == 0 && object <= rec->end_object) { 916 if (issig(JUSTLOOKING) && issig(FORREAL)) { 917 err = EINTR; 918 break; 919 } 920 /* 921 * Part of the current object is contained somewhere in 922 * the range covered by rec. 923 */ 924 uint64_t startblkid; 925 uint64_t endblkid; 926 uint64_t maxblkid = dn->dn_phys->dn_maxblkid; 927 928 if (rec->start_object < object) 929 startblkid = 0; 930 else if (rec->start_blkid > maxblkid) 931 break; 932 else 933 startblkid = rec->start_blkid; 934 935 if (rec->end_object > object || rec->end_blkid > 936 maxblkid) { 937 endblkid = maxblkid; 938 } else { 939 endblkid = rec->end_blkid; 940 } 941 update_redaction_list(&md, os, object, startblkid, 942 endblkid, dn->dn_datablksz); 943 944 if (object == rec->end_object) 945 break; 946 err = hold_next_object(os, rec, FTAG, &object, &dn); 947 } 948 if (err == ESRCH) 949 err = 0; 950 if (dn != NULL) 951 prev_obj = object; 952 } 953 if (err == 0 && dn != NULL) 954 dnode_rele(dn, FTAG); 955 956 if (err == ESRCH) 957 err = 0; 958 rmta->cancel = B_TRUE; 959 while (!rec->eos_marker) 960 rec = get_next_redact_record(q, rec); 961 kmem_free(rec, sizeof (*rec)); 962 963 /* 964 * There may be a block that's being coalesced, sync that out before we 965 * return. 966 */ 967 if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) { 968 struct redact_block_list_node *rbln = 969 kmem_alloc(sizeof (struct redact_block_list_node), 970 KM_SLEEP); 971 rbln->block = md.md_coalesce_block; 972 list_insert_tail(&md.md_redact_block_pending, rbln); 973 } 974 commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX); 975 976 /* 977 * Wait for all the redaction info to sync out before we return, so that 978 * anyone who attempts to resume this redaction will have all the data 979 * they need. 980 */ 981 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 982 if (md.md_latest_synctask_txg != 0) 983 txg_wait_synced(dp, md.md_latest_synctask_txg); 984 for (int i = 0; i < TXG_SIZE; i++) 985 list_destroy(&md.md_blocks[i]); 986 return (err); 987 } 988 989 static boolean_t 990 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 991 { 992 for (int i = 0; i < num_snaps; i++) { 993 if (snaps[i] == guid) 994 return (B_TRUE); 995 } 996 return (B_FALSE); 997 } 998 999 int 1000 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl, 1001 const char *redactbook) 1002 { 1003 int err = 0; 1004 dsl_pool_t *dp = NULL; 1005 dsl_dataset_t *ds = NULL; 1006 int numsnaps = 0; 1007 objset_t *os; 1008 struct redact_thread_arg *args = NULL; 1009 redaction_list_t *new_rl = NULL; 1010 1011 if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0) 1012 return (err); 1013 1014 if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT, 1015 FTAG, &ds)) != 0) { 1016 goto out; 1017 } 1018 dsl_dataset_long_hold(ds, FTAG); 1019 if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) { 1020 err = EINVAL; 1021 goto out; 1022 } 1023 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) { 1024 err = EALREADY; 1025 goto out; 1026 } 1027 1028 numsnaps = fnvlist_num_pairs(redactnvl); 1029 if (numsnaps > 0) 1030 args = kmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP); 1031 1032 nvpair_t *pair = NULL; 1033 for (int i = 0; i < numsnaps; i++) { 1034 pair = nvlist_next_nvpair(redactnvl, pair); 1035 const char *name = nvpair_name(pair); 1036 struct redact_thread_arg *rta = &args[i]; 1037 err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT, 1038 FTAG, &rta->ds); 1039 if (err != 0) 1040 break; 1041 /* 1042 * We want to do the long hold before we can get any other 1043 * errors, because the cleanup code will release the long 1044 * hold if rta->ds is filled in. 1045 */ 1046 dsl_dataset_long_hold(rta->ds, FTAG); 1047 1048 err = dmu_objset_from_ds(rta->ds, &rta->os); 1049 if (err != 0) 1050 break; 1051 if (!dsl_dataset_is_before(rta->ds, ds, 0)) { 1052 err = EINVAL; 1053 break; 1054 } 1055 if (dsl_dataset_feature_is_active(rta->ds, 1056 SPA_FEATURE_REDACTED_DATASETS)) { 1057 err = EALREADY; 1058 break; 1059 1060 } 1061 } 1062 VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL); 1063 if (err != 0) 1064 goto out; 1065 1066 boolean_t resuming = B_FALSE; 1067 char newredactbook[ZFS_MAX_DATASET_NAME_LEN]; 1068 zfs_bookmark_phys_t bookmark; 1069 1070 (void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN); 1071 char *c = strchr(newredactbook, '@'); 1072 ASSERT3P(c, !=, NULL); 1073 int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook), 1074 "#%s", redactbook); 1075 if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) { 1076 dsl_pool_rele(dp, FTAG); 1077 return (SET_ERROR(ENAMETOOLONG)); 1078 } 1079 err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark); 1080 if (err == 0) { 1081 resuming = B_TRUE; 1082 if (bookmark.zbm_redaction_obj == 0) { 1083 err = EEXIST; 1084 goto out; 1085 } 1086 err = dsl_redaction_list_hold_obj(dp, 1087 bookmark.zbm_redaction_obj, FTAG, &new_rl); 1088 if (err != 0) { 1089 err = EIO; 1090 goto out; 1091 } 1092 dsl_redaction_list_long_hold(dp, new_rl, FTAG); 1093 if (new_rl->rl_phys->rlp_num_snaps != numsnaps) { 1094 err = ESRCH; 1095 goto out; 1096 } 1097 for (int i = 0; i < numsnaps; i++) { 1098 struct redact_thread_arg *rta = &args[i]; 1099 if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps, 1100 new_rl->rl_phys->rlp_num_snaps, 1101 dsl_dataset_phys(rta->ds)->ds_guid)) { 1102 err = ESRCH; 1103 goto out; 1104 } 1105 } 1106 if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX && 1107 new_rl->rl_phys->rlp_last_object == UINT64_MAX) { 1108 err = EEXIST; 1109 goto out; 1110 } 1111 dsl_pool_rele(dp, FTAG); 1112 dp = NULL; 1113 } else { 1114 uint64_t *guids = NULL; 1115 if (numsnaps > 0) { 1116 guids = kmem_zalloc(numsnaps * sizeof (uint64_t), 1117 KM_SLEEP); 1118 } 1119 for (int i = 0; i < numsnaps; i++) { 1120 struct redact_thread_arg *rta = &args[i]; 1121 guids[i] = dsl_dataset_phys(rta->ds)->ds_guid; 1122 } 1123 1124 dsl_pool_rele(dp, FTAG); 1125 dp = NULL; 1126 err = dsl_bookmark_create_redacted(newredactbook, snapname, 1127 numsnaps, guids, FTAG, &new_rl); 1128 kmem_free(guids, numsnaps * sizeof (uint64_t)); 1129 if (err != 0) { 1130 goto out; 1131 } 1132 } 1133 1134 for (int i = 0; i < numsnaps; i++) { 1135 struct redact_thread_arg *rta = &args[i]; 1136 (void) bqueue_init(&rta->q, zfs_redact_queue_ff, 1137 zfs_redact_queue_length, 1138 offsetof(struct redact_record, ln)); 1139 if (resuming) { 1140 rta->resume.zb_blkid = 1141 new_rl->rl_phys->rlp_last_blkid; 1142 rta->resume.zb_object = 1143 new_rl->rl_phys->rlp_last_object; 1144 } 1145 rta->txg = dsl_dataset_phys(ds)->ds_creation_txg; 1146 (void) thread_create(NULL, 0, redact_traverse_thread, rta, 1147 0, curproc, TS_RUN, minclsyspri); 1148 } 1149 struct redact_merge_thread_arg rmta = { { {0} } }; 1150 (void) bqueue_init(&rmta.q, zfs_redact_queue_ff, 1151 zfs_redact_queue_length, offsetof(struct redact_record, ln)); 1152 rmta.numsnaps = numsnaps; 1153 rmta.spa = os->os_spa; 1154 rmta.thr_args = args; 1155 (void) thread_create(NULL, 0, redact_merge_thread, &rmta, 0, curproc, 1156 TS_RUN, minclsyspri); 1157 err = perform_redaction(os, new_rl, &rmta); 1158 out: 1159 if (new_rl != NULL) { 1160 dsl_redaction_list_long_rele(new_rl, FTAG); 1161 dsl_redaction_list_rele(new_rl, FTAG); 1162 } 1163 for (int i = 0; i < numsnaps; i++) { 1164 struct redact_thread_arg *rta = &args[i]; 1165 /* 1166 * rta->ds may be NULL if we got an error while filling 1167 * it in. 1168 */ 1169 if (rta->ds != NULL) { 1170 dsl_dataset_long_rele(rta->ds, FTAG); 1171 dsl_dataset_rele_flags(rta->ds, 1172 DS_HOLD_FLAG_DECRYPT, FTAG); 1173 } 1174 } 1175 1176 if (args != NULL) 1177 kmem_free(args, numsnaps * sizeof (*args)); 1178 if (dp != NULL) 1179 dsl_pool_rele(dp, FTAG); 1180 if (ds != NULL) { 1181 dsl_dataset_long_rele(ds, FTAG); 1182 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1183 } 1184 return (SET_ERROR(err)); 1185 1186 } 1187