1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2017, 2018 by Delphix. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/txg.h> 27 #include <sys/dmu_objset.h> 28 #include <sys/dmu_traverse.h> 29 #include <sys/dmu_redact.h> 30 #include <sys/bqueue.h> 31 #include <sys/objlist.h> 32 #include <sys/dmu_tx.h> 33 #ifdef _KERNEL 34 #include <sys/zfs_vfsops.h> 35 #include <sys/zap.h> 36 #include <sys/zfs_znode.h> 37 #endif 38 39 /* 40 * This controls the number of entries in the buffer the redaction_list_update 41 * synctask uses to buffer writes to the redaction list. 42 */ 43 static const int redact_sync_bufsize = 1024; 44 45 /* 46 * Controls how often to update the redaction list when creating a redaction 47 * list. 48 */ 49 static const uint64_t redaction_list_update_interval_ns = 50 1000 * 1000 * 1000ULL; /* 1s */ 51 52 /* 53 * This tunable controls the length of the queues that zfs redact worker threads 54 * use to communicate. If the dmu_redact_snap thread is blocking on these 55 * queues, this variable may need to be increased. If there is a significant 56 * slowdown at the start of a redact operation as these threads consume all the 57 * available IO resources, or the queues are consuming too much memory, this 58 * variable may need to be decreased. 59 */ 60 static const int zfs_redact_queue_length = 1024 * 1024; 61 62 /* 63 * These tunables control the fill fraction of the queues by zfs redact. The 64 * fill fraction controls the frequency with which threads have to be 65 * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these 66 * should be tuned down. If the queues empty before the signalled thread can 67 * catch up, then these should be tuned up. 68 */ 69 static const uint64_t zfs_redact_queue_ff = 20; 70 71 struct redact_record { 72 bqueue_node_t ln; 73 boolean_t eos_marker; /* Marks the end of the stream */ 74 uint64_t start_object; 75 uint64_t start_blkid; 76 uint64_t end_object; 77 uint64_t end_blkid; 78 uint8_t indblkshift; 79 uint32_t datablksz; 80 }; 81 82 struct redact_thread_arg { 83 bqueue_t q; 84 objset_t *os; /* Objset to traverse */ 85 dsl_dataset_t *ds; /* Dataset to traverse */ 86 struct redact_record *current_record; 87 int error_code; 88 boolean_t cancel; 89 zbookmark_phys_t resume; 90 objlist_t *deleted_objs; 91 uint64_t *num_blocks_visited; 92 uint64_t ignore_object; /* ignore further callbacks on this */ 93 uint64_t txg; /* txg to traverse since */ 94 }; 95 96 /* 97 * The redaction node is a wrapper around the redaction record that is used 98 * by the redaction merging thread to sort the records and determine overlaps. 99 * 100 * It contains two nodes; one sorts the records by their start_zb, and the other 101 * sorts the records by their end_zb. 102 */ 103 struct redact_node { 104 avl_node_t avl_node_start; 105 avl_node_t avl_node_end; 106 struct redact_record *record; 107 struct redact_thread_arg *rt_arg; 108 uint32_t thread_num; 109 }; 110 111 struct merge_data { 112 list_t md_redact_block_pending; 113 redact_block_phys_t md_coalesce_block; 114 uint64_t md_last_time; 115 redact_block_phys_t md_furthest[TXG_SIZE]; 116 /* Lists of struct redact_block_list_node. */ 117 list_t md_blocks[TXG_SIZE]; 118 boolean_t md_synctask_txg[TXG_SIZE]; 119 uint64_t md_latest_synctask_txg; 120 redaction_list_t *md_redaction_list; 121 }; 122 123 /* 124 * A wrapper around struct redact_block so it can be stored in a list_t. 125 */ 126 struct redact_block_list_node { 127 redact_block_phys_t block; 128 list_node_t node; 129 }; 130 131 /* 132 * We've found a new redaction candidate. In order to improve performance, we 133 * coalesce these blocks when they're adjacent to each other. This function 134 * handles that. If the new candidate block range is immediately after the 135 * range we're building, coalesce it into the range we're building. Otherwise, 136 * put the record we're building on the queue, and update the build pointer to 137 * point to the new record. 138 */ 139 static void 140 record_merge_enqueue(bqueue_t *q, struct redact_record **build, 141 struct redact_record *new) 142 { 143 if (new->eos_marker) { 144 if (*build != NULL) 145 bqueue_enqueue(q, *build, sizeof (**build)); 146 bqueue_enqueue_flush(q, new, sizeof (*new)); 147 return; 148 } 149 if (*build == NULL) { 150 *build = new; 151 return; 152 } 153 struct redact_record *curbuild = *build; 154 if ((curbuild->end_object == new->start_object && 155 curbuild->end_blkid + 1 == new->start_blkid && 156 curbuild->end_blkid != UINT64_MAX) || 157 (curbuild->end_object + 1 == new->start_object && 158 curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) { 159 curbuild->end_object = new->end_object; 160 curbuild->end_blkid = new->end_blkid; 161 kmem_free(new, sizeof (*new)); 162 } else { 163 bqueue_enqueue(q, curbuild, sizeof (*curbuild)); 164 *build = new; 165 } 166 } 167 #ifdef _KERNEL 168 struct objnode { 169 avl_node_t node; 170 uint64_t obj; 171 }; 172 173 static int 174 objnode_compare(const void *o1, const void *o2) 175 { 176 const struct objnode *obj1 = o1; 177 const struct objnode *obj2 = o2; 178 if (obj1->obj < obj2->obj) 179 return (-1); 180 if (obj1->obj > obj2->obj) 181 return (1); 182 return (0); 183 } 184 185 186 static objlist_t * 187 zfs_get_deleteq(objset_t *os) 188 { 189 objlist_t *deleteq_objlist = objlist_create(); 190 uint64_t deleteq_obj; 191 zap_cursor_t zc; 192 zap_attribute_t *za; 193 dmu_object_info_t doi; 194 195 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 196 VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi)); 197 ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE); 198 199 VERIFY0(zap_lookup(os, MASTER_NODE_OBJ, 200 ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj)); 201 202 /* 203 * In order to insert objects into the objlist, they must be in sorted 204 * order. We don't know what order we'll get them out of the ZAP in, so 205 * we insert them into and remove them from an avl_tree_t to sort them. 206 */ 207 avl_tree_t at; 208 avl_create(&at, objnode_compare, sizeof (struct objnode), 209 offsetof(struct objnode, node)); 210 211 za = zap_attribute_alloc(); 212 for (zap_cursor_init(&zc, os, deleteq_obj); 213 zap_cursor_retrieve(&zc, za) == 0; zap_cursor_advance(&zc)) { 214 struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP); 215 obj->obj = za->za_first_integer; 216 avl_add(&at, obj); 217 } 218 zap_cursor_fini(&zc); 219 zap_attribute_free(za); 220 221 struct objnode *next, *found = avl_first(&at); 222 while (found != NULL) { 223 next = AVL_NEXT(&at, found); 224 objlist_insert(deleteq_objlist, found->obj); 225 found = next; 226 } 227 228 void *cookie = NULL; 229 while ((found = avl_destroy_nodes(&at, &cookie)) != NULL) 230 kmem_free(found, sizeof (*found)); 231 avl_destroy(&at); 232 return (deleteq_objlist); 233 } 234 #endif 235 236 /* 237 * This is the callback function to traverse_dataset for the redaction threads 238 * for dmu_redact_snap. This thread is responsible for creating redaction 239 * records for all the data that is modified by the snapshots we're redacting 240 * with respect to. Redaction records represent ranges of data that have been 241 * modified by one of the redaction snapshots, and are stored in the 242 * redact_record struct. We need to create redaction records for three 243 * cases: 244 * 245 * First, if there's a normal write, we need to create a redaction record for 246 * that block. 247 * 248 * Second, if there's a hole, we need to create a redaction record that covers 249 * the whole range of the hole. If the hole is in the meta-dnode, it must cover 250 * every block in all of the objects in the hole. 251 * 252 * Third, if there is a deleted object, we need to create a redaction record for 253 * all of the blocks in that object. 254 */ 255 static int 256 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 257 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 258 { 259 (void) spa, (void) zilog; 260 struct redact_thread_arg *rta = arg; 261 struct redact_record *record; 262 263 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 264 zb->zb_object >= rta->resume.zb_object); 265 266 if (rta->cancel) 267 return (SET_ERROR(EINTR)); 268 269 if (rta->ignore_object == zb->zb_object) 270 return (0); 271 272 /* 273 * If we're visiting a dnode, we need to handle the case where the 274 * object has been deleted. 275 */ 276 if (zb->zb_level == ZB_DNODE_LEVEL) { 277 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 278 279 if (zb->zb_object == 0) 280 return (0); 281 282 /* 283 * If the object has been deleted, redact all of the blocks in 284 * it. 285 */ 286 if (dnp->dn_type == DMU_OT_NONE || 287 objlist_exists(rta->deleted_objs, zb->zb_object)) { 288 rta->ignore_object = zb->zb_object; 289 record = kmem_zalloc(sizeof (struct redact_record), 290 KM_SLEEP); 291 292 record->eos_marker = B_FALSE; 293 record->start_object = record->end_object = 294 zb->zb_object; 295 record->start_blkid = 0; 296 record->end_blkid = UINT64_MAX; 297 record_merge_enqueue(&rta->q, 298 &rta->current_record, record); 299 } 300 return (0); 301 } else if (zb->zb_level < 0) { 302 return (0); 303 } else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) { 304 /* 305 * If this is an indirect block, but not a hole, it doesn't 306 * provide any useful information for redaction, so ignore it. 307 */ 308 return (0); 309 } 310 311 /* 312 * At this point, there are two options left for the type of block we're 313 * looking at. Either this is a hole (which could be in the dnode or 314 * the meta-dnode), or it's a level 0 block of some sort. If it's a 315 * hole, we create a redaction record that covers the whole range. If 316 * the hole is in a dnode, we need to redact all the blocks in that 317 * hole. If the hole is in the meta-dnode, we instead need to redact 318 * all blocks in every object covered by that hole. If it's a level 0 319 * block, we only need to redact that single block. 320 */ 321 record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP); 322 record->eos_marker = B_FALSE; 323 324 record->start_object = record->end_object = zb->zb_object; 325 if (BP_IS_HOLE(bp)) { 326 record->start_blkid = zb->zb_blkid * 327 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level); 328 329 record->end_blkid = ((zb->zb_blkid + 1) * 330 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1; 331 332 if (zb->zb_object == DMU_META_DNODE_OBJECT) { 333 record->start_object = record->start_blkid * 334 ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) / 335 sizeof (dnode_phys_t)); 336 record->start_blkid = 0; 337 record->end_object = ((record->end_blkid + 338 1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) / 339 sizeof (dnode_phys_t))) - 1; 340 record->end_blkid = UINT64_MAX; 341 } 342 } else if (zb->zb_level != 0 || 343 zb->zb_object == DMU_META_DNODE_OBJECT) { 344 kmem_free(record, sizeof (*record)); 345 return (0); 346 } else { 347 record->start_blkid = record->end_blkid = zb->zb_blkid; 348 } 349 record->indblkshift = dnp->dn_indblkshift; 350 record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 351 record_merge_enqueue(&rta->q, &rta->current_record, record); 352 353 return (0); 354 } 355 356 static __attribute__((noreturn)) void 357 redact_traverse_thread(void *arg) 358 { 359 struct redact_thread_arg *rt_arg = arg; 360 int err; 361 struct redact_record *data; 362 #ifdef _KERNEL 363 if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS) 364 rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os); 365 else 366 rt_arg->deleted_objs = objlist_create(); 367 #else 368 rt_arg->deleted_objs = objlist_create(); 369 #endif 370 371 err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg, 372 &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 373 redact_cb, rt_arg); 374 375 if (err != EINTR) 376 rt_arg->error_code = err; 377 objlist_destroy(rt_arg->deleted_objs); 378 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 379 data->eos_marker = B_TRUE; 380 record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data); 381 thread_exit(); 382 } 383 384 static inline void 385 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object, 386 uint64_t blkid) 387 { 388 zb->zb_object = object; 389 zb->zb_level = 0; 390 zb->zb_blkid = blkid; 391 } 392 393 /* 394 * This is a utility function that can do the comparison for the start or ends 395 * of the ranges in a redact_record. 396 */ 397 static int 398 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1, 399 uint64_t obj2, uint64_t off2, uint32_t dbss2) 400 { 401 zbookmark_phys_t z1, z2; 402 create_zbookmark_from_obj_off(&z1, obj1, off1); 403 create_zbookmark_from_obj_off(&z2, obj2, off2); 404 405 return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0, 406 dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2)); 407 } 408 409 /* 410 * Compare two redaction records by their range's start location. Also makes 411 * eos records always compare last. We use the thread number in the redact_node 412 * to ensure that records do not compare equal (which is not allowed in our avl 413 * trees). 414 */ 415 static int 416 redact_node_compare_start(const void *arg1, const void *arg2) 417 { 418 const struct redact_node *rn1 = arg1; 419 const struct redact_node *rn2 = arg2; 420 const struct redact_record *rr1 = rn1->record; 421 const struct redact_record *rr2 = rn2->record; 422 if (rr1->eos_marker) 423 return (1); 424 if (rr2->eos_marker) 425 return (-1); 426 427 int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid, 428 rr1->datablksz, rr2->start_object, rr2->start_blkid, 429 rr2->datablksz); 430 if (cmp == 0) 431 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1); 432 return (cmp); 433 } 434 435 /* 436 * Compare two redaction records by their range's end location. Also makes 437 * eos records always compare last. We use the thread number in the redact_node 438 * to ensure that records do not compare equal (which is not allowed in our avl 439 * trees). 440 */ 441 static int 442 redact_node_compare_end(const void *arg1, const void *arg2) 443 { 444 const struct redact_node *rn1 = arg1; 445 const struct redact_node *rn2 = arg2; 446 const struct redact_record *srr1 = rn1->record; 447 const struct redact_record *srr2 = rn2->record; 448 if (srr1->eos_marker) 449 return (1); 450 if (srr2->eos_marker) 451 return (-1); 452 453 int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid, 454 srr1->datablksz, srr2->end_object, srr2->end_blkid, 455 srr2->datablksz); 456 if (cmp == 0) 457 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1); 458 return (cmp); 459 } 460 461 /* 462 * Utility function that compares two redaction records to determine if any part 463 * of the "from" record is before any part of the "to" record. Also causes End 464 * of Stream redaction records to compare after all others, so that the 465 * redaction merging logic can stay simple. 466 */ 467 static boolean_t 468 redact_record_before(const struct redact_record *from, 469 const struct redact_record *to) 470 { 471 if (from->eos_marker == B_TRUE) 472 return (B_FALSE); 473 else if (to->eos_marker == B_TRUE) 474 return (B_TRUE); 475 return (redact_range_compare(from->start_object, from->start_blkid, 476 from->datablksz, to->end_object, to->end_blkid, 477 to->datablksz) <= 0); 478 } 479 480 /* 481 * Pop a new redaction record off the queue, check that the records are in the 482 * right order, and free the old data. 483 */ 484 static struct redact_record * 485 get_next_redact_record(bqueue_t *bq, struct redact_record *prev) 486 { 487 struct redact_record *next = bqueue_dequeue(bq); 488 ASSERT(redact_record_before(prev, next)); 489 kmem_free(prev, sizeof (*prev)); 490 return (next); 491 } 492 493 /* 494 * Remove the given redaction node from both trees, pull a new redaction record 495 * off the queue, free the old redaction record, update the redaction node, and 496 * reinsert the node into the trees. 497 */ 498 static int 499 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree, 500 struct redact_node *redact_node) 501 { 502 avl_remove(start_tree, redact_node); 503 avl_remove(end_tree, redact_node); 504 redact_node->record = get_next_redact_record(&redact_node->rt_arg->q, 505 redact_node->record); 506 avl_add(end_tree, redact_node); 507 avl_add(start_tree, redact_node); 508 return (redact_node->rt_arg->error_code); 509 } 510 511 /* 512 * Synctask for updating redaction lists. We first take this txg's list of 513 * redacted blocks and append those to the redaction list. We then update the 514 * redaction list's bonus buffer. We store the furthest blocks we visited and 515 * the list of snapshots that we're redacting with respect to. We need these so 516 * that redacted sends and receives can be correctly resumed. 517 */ 518 static void 519 redaction_list_update_sync(void *arg, dmu_tx_t *tx) 520 { 521 struct merge_data *md = arg; 522 uint64_t txg = dmu_tx_get_txg(tx); 523 list_t *list = &md->md_blocks[txg & TXG_MASK]; 524 redact_block_phys_t *furthest_visited = 525 &md->md_furthest[txg & TXG_MASK]; 526 objset_t *mos = tx->tx_pool->dp_meta_objset; 527 redaction_list_t *rl = md->md_redaction_list; 528 int bufsize = redact_sync_bufsize; 529 redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf), 530 KM_SLEEP); 531 int index = 0; 532 533 dmu_buf_will_dirty(rl->rl_dbuf, tx); 534 535 for (struct redact_block_list_node *rbln = list_remove_head(list); 536 rbln != NULL; rbln = list_remove_head(list)) { 537 ASSERT3U(rbln->block.rbp_object, <=, 538 furthest_visited->rbp_object); 539 ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object || 540 rbln->block.rbp_blkid <= furthest_visited->rbp_blkid); 541 buf[index] = rbln->block; 542 index++; 543 if (index == bufsize) { 544 dmu_write(mos, rl->rl_object, 545 rl->rl_phys->rlp_num_entries * sizeof (*buf), 546 bufsize * sizeof (*buf), buf, tx); 547 rl->rl_phys->rlp_num_entries += bufsize; 548 index = 0; 549 } 550 kmem_free(rbln, sizeof (*rbln)); 551 } 552 if (index > 0) { 553 dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries * 554 sizeof (*buf), index * sizeof (*buf), buf, tx); 555 rl->rl_phys->rlp_num_entries += index; 556 } 557 kmem_free(buf, bufsize * sizeof (*buf)); 558 559 md->md_synctask_txg[txg & TXG_MASK] = B_FALSE; 560 rl->rl_phys->rlp_last_object = furthest_visited->rbp_object; 561 rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid; 562 } 563 564 static void 565 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object, 566 uint64_t blkid) 567 { 568 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir); 569 dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node)); 570 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 571 uint64_t txg = dmu_tx_get_txg(tx); 572 if (!md->md_synctask_txg[txg & TXG_MASK]) { 573 dsl_sync_task_nowait(dmu_tx_pool(tx), 574 redaction_list_update_sync, md, tx); 575 md->md_synctask_txg[txg & TXG_MASK] = B_TRUE; 576 md->md_latest_synctask_txg = txg; 577 } 578 md->md_furthest[txg & TXG_MASK].rbp_object = object; 579 md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid; 580 list_move_tail(&md->md_blocks[txg & TXG_MASK], 581 &md->md_redact_block_pending); 582 dmu_tx_commit(tx); 583 md->md_last_time = gethrtime(); 584 } 585 586 /* 587 * We want to store the list of blocks that we're redacting in the bookmark's 588 * redaction list. However, this list is stored in the MOS, which means it can 589 * only be written to in syncing context. To get around this, we create a 590 * synctask that will write to the mos for us. We tell it what to write by 591 * a linked list for each current transaction group; every time we decide to 592 * redact a block, we append it to the transaction group that is currently in 593 * open context. We also update some progress information that the synctask 594 * will store to enable resumable redacted sends. 595 */ 596 static void 597 update_redaction_list(struct merge_data *md, objset_t *os, 598 uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz) 599 { 600 boolean_t enqueue = B_FALSE; 601 redact_block_phys_t cur = {0}; 602 uint64_t count = endblkid - blkid + 1; 603 while (count > REDACT_BLOCK_MAX_COUNT) { 604 update_redaction_list(md, os, object, blkid, 605 blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz); 606 blkid += REDACT_BLOCK_MAX_COUNT; 607 count -= REDACT_BLOCK_MAX_COUNT; 608 } 609 redact_block_phys_t *coalesce = &md->md_coalesce_block; 610 boolean_t new; 611 if (coalesce->rbp_size_count == 0) { 612 new = B_TRUE; 613 enqueue = B_FALSE; 614 } else { 615 uint64_t old_count = redact_block_get_count(coalesce); 616 if (coalesce->rbp_object == object && 617 coalesce->rbp_blkid + old_count == blkid && 618 old_count + count <= REDACT_BLOCK_MAX_COUNT) { 619 ASSERT3U(redact_block_get_size(coalesce), ==, blksz); 620 redact_block_set_count(coalesce, old_count + count); 621 new = B_FALSE; 622 enqueue = B_FALSE; 623 } else { 624 new = B_TRUE; 625 enqueue = B_TRUE; 626 } 627 } 628 629 if (new) { 630 cur = *coalesce; 631 coalesce->rbp_blkid = blkid; 632 coalesce->rbp_object = object; 633 634 redact_block_set_count(coalesce, count); 635 redact_block_set_size(coalesce, blksz); 636 } 637 638 if (enqueue && redact_block_get_size(&cur) != 0) { 639 struct redact_block_list_node *rbln = 640 kmem_alloc(sizeof (struct redact_block_list_node), 641 KM_SLEEP); 642 rbln->block = cur; 643 list_insert_tail(&md->md_redact_block_pending, rbln); 644 } 645 646 if (gethrtime() > md->md_last_time + 647 redaction_list_update_interval_ns) { 648 commit_rl_updates(os, md, object, blkid); 649 } 650 } 651 652 /* 653 * This thread merges all the redaction records provided by the worker threads, 654 * and determines which blocks are redacted by all the snapshots. The algorithm 655 * for doing so is similar to performing a merge in mergesort with n sub-lists 656 * instead of 2, with some added complexity due to the fact that the entries are 657 * ranges, not just single blocks. This algorithm relies on the fact that the 658 * queues are sorted, which is ensured by the fact that traverse_dataset 659 * traverses the dataset in a consistent order. We pull one entry off the front 660 * of the queues of each secure dataset traversal thread. Then we repeat the 661 * following: each record represents a range of blocks modified by one of the 662 * redaction snapshots, and each block in that range may need to be redacted in 663 * the send stream. Find the record with the latest start of its range, and the 664 * record with the earliest end of its range. If the last start is before the 665 * first end, then we know that the blocks in the range [last_start, first_end] 666 * are covered by all of the ranges at the front of the queues, which means 667 * every thread redacts that whole range. For example, let's say the ranges on 668 * each queue look like this: 669 * 670 * Block Id 1 2 3 4 5 6 7 8 9 10 11 671 * Thread 1 | [====================] 672 * Thread 2 | [========] 673 * Thread 3 | [=================] 674 * 675 * Thread 3 has the last start (5), and the thread 2 has the last end (6). All 676 * three threads modified the range [5,6], so that data should not be sent over 677 * the wire. After we've determined whether or not to redact anything, we take 678 * the record with the first end. We discard that record, and pull a new one 679 * off the front of the queue it came from. In the above example, we would 680 * discard Thread 2's record, and pull a new one. Let's say the next record we 681 * pulled from Thread 2 covered range [10,11]. The new layout would look like 682 * this: 683 * 684 * Block Id 1 2 3 4 5 6 7 8 9 10 11 685 * Thread 1 | [====================] 686 * Thread 2 | [==] 687 * Thread 3 | [=================] 688 * 689 * When we compare the last start (10, from Thread 2) and the first end (9, from 690 * Thread 1), we see that the last start is greater than the first end. 691 * Therefore, we do not redact anything from these records. We'll iterate by 692 * replacing the record from Thread 1. 693 * 694 * We iterate by replacing the record with the lowest end because we know 695 * that the record with the lowest end has helped us as much as it can. All the 696 * ranges before it that we will ever redact have been redacted. In addition, 697 * by replacing the one with the lowest end, we guarantee we catch all ranges 698 * that need to be redacted. For example, if in the case above we had replaced 699 * the record from Thread 1 instead, we might have ended up with the following: 700 * 701 * Block Id 1 2 3 4 5 6 7 8 9 10 11 12 702 * Thread 1 | [==] 703 * Thread 2 | [========] 704 * Thread 3 | [=================] 705 * 706 * If the next record from Thread 2 had been [8,10], for example, we should have 707 * redacted part of that range, but because we updated Thread 1's record, we 708 * missed it. 709 * 710 * We implement this algorithm by using two trees. The first sorts the 711 * redaction records by their start_zb, and the second sorts them by their 712 * end_zb. We use these to find the record with the last start and the record 713 * with the first end. We create a record with that start and end, and send it 714 * on. The overall runtime of this implementation is O(n log m), where n is the 715 * total number of redaction records from all the different redaction snapshots, 716 * and m is the number of redaction snapshots. 717 * 718 * If we redact with respect to zero snapshots, we create a redaction 719 * record with the start object and blkid to 0, and the end object and blkid to 720 * UINT64_MAX. This will result in us redacting every block. 721 */ 722 static int 723 perform_thread_merge(bqueue_t *q, uint32_t num_threads, 724 struct redact_thread_arg *thread_args, boolean_t *cancel) 725 { 726 struct redact_node *redact_nodes = NULL; 727 avl_tree_t start_tree, end_tree; 728 struct redact_record *record; 729 struct redact_record *current_record = NULL; 730 int err = 0; 731 struct merge_data md = { {0} }; 732 list_create(&md.md_redact_block_pending, 733 sizeof (struct redact_block_list_node), 734 offsetof(struct redact_block_list_node, node)); 735 736 /* 737 * If we're redacting with respect to zero snapshots, then no data is 738 * permitted to be sent. We enqueue a record that redacts all blocks, 739 * and an eos marker. 740 */ 741 if (num_threads == 0) { 742 record = kmem_zalloc(sizeof (struct redact_record), 743 KM_SLEEP); 744 // We can't redact object 0, so don't try. 745 record->start_object = 1; 746 record->start_blkid = 0; 747 record->end_object = record->end_blkid = UINT64_MAX; 748 bqueue_enqueue(q, record, sizeof (*record)); 749 return (0); 750 } 751 redact_nodes = vmem_zalloc(num_threads * 752 sizeof (*redact_nodes), KM_SLEEP); 753 754 avl_create(&start_tree, redact_node_compare_start, 755 sizeof (struct redact_node), 756 offsetof(struct redact_node, avl_node_start)); 757 avl_create(&end_tree, redact_node_compare_end, 758 sizeof (struct redact_node), 759 offsetof(struct redact_node, avl_node_end)); 760 761 for (int i = 0; i < num_threads; i++) { 762 struct redact_node *node = &redact_nodes[i]; 763 struct redact_thread_arg *targ = &thread_args[i]; 764 node->record = bqueue_dequeue(&targ->q); 765 node->rt_arg = targ; 766 node->thread_num = i; 767 avl_add(&start_tree, node); 768 avl_add(&end_tree, node); 769 } 770 771 /* 772 * Once the first record in the end tree has returned EOS, every record 773 * must be an EOS record, so we should stop. 774 */ 775 while (err == 0 && !((struct redact_node *)avl_first(&end_tree))-> 776 record->eos_marker) { 777 if (*cancel) { 778 err = EINTR; 779 break; 780 } 781 struct redact_node *last_start = avl_last(&start_tree); 782 struct redact_node *first_end = avl_first(&end_tree); 783 784 /* 785 * If the last start record is before the first end record, 786 * then we have blocks that are redacted by all threads. 787 * Therefore, we should redact them. Copy the record, and send 788 * it to the main thread. 789 */ 790 if (redact_record_before(last_start->record, 791 first_end->record)) { 792 record = kmem_zalloc(sizeof (struct redact_record), 793 KM_SLEEP); 794 *record = *first_end->record; 795 record->start_object = last_start->record->start_object; 796 record->start_blkid = last_start->record->start_blkid; 797 record_merge_enqueue(q, ¤t_record, 798 record); 799 } 800 err = update_avl_trees(&start_tree, &end_tree, first_end); 801 } 802 803 /* 804 * We're done; if we were cancelled, we need to cancel our workers and 805 * clear out their queues. Either way, we need to remove every thread's 806 * redact_node struct from the avl trees. 807 */ 808 for (int i = 0; i < num_threads; i++) { 809 if (err != 0) { 810 thread_args[i].cancel = B_TRUE; 811 while (!redact_nodes[i].record->eos_marker) { 812 (void) update_avl_trees(&start_tree, &end_tree, 813 &redact_nodes[i]); 814 } 815 } 816 avl_remove(&start_tree, &redact_nodes[i]); 817 avl_remove(&end_tree, &redact_nodes[i]); 818 kmem_free(redact_nodes[i].record, 819 sizeof (struct redact_record)); 820 bqueue_destroy(&thread_args[i].q); 821 } 822 823 avl_destroy(&start_tree); 824 avl_destroy(&end_tree); 825 vmem_free(redact_nodes, num_threads * sizeof (*redact_nodes)); 826 if (current_record != NULL) 827 bqueue_enqueue(q, current_record, sizeof (*current_record)); 828 return (err); 829 } 830 831 struct redact_merge_thread_arg { 832 bqueue_t q; 833 spa_t *spa; 834 int numsnaps; 835 struct redact_thread_arg *thr_args; 836 boolean_t cancel; 837 int error_code; 838 }; 839 840 static __attribute__((noreturn)) void 841 redact_merge_thread(void *arg) 842 { 843 struct redact_merge_thread_arg *rmta = arg; 844 rmta->error_code = perform_thread_merge(&rmta->q, 845 rmta->numsnaps, rmta->thr_args, &rmta->cancel); 846 struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP); 847 rec->eos_marker = B_TRUE; 848 bqueue_enqueue_flush(&rmta->q, rec, 1); 849 thread_exit(); 850 } 851 852 /* 853 * Find the next object in or after the redaction range passed in, and hold 854 * its dnode with the provided tag. Also update *object to contain the new 855 * object number. 856 */ 857 static int 858 hold_next_object(objset_t *os, struct redact_record *rec, const void *tag, 859 uint64_t *object, dnode_t **dn) 860 { 861 int err = 0; 862 if (*dn != NULL) 863 dnode_rele(*dn, tag); 864 *dn = NULL; 865 if (*object < rec->start_object) { 866 *object = rec->start_object - 1; 867 } 868 err = dmu_object_next(os, object, B_FALSE, 0); 869 if (err != 0) 870 return (err); 871 872 err = dnode_hold(os, *object, tag, dn); 873 while (err == 0 && (*object < rec->start_object || 874 DMU_OT_IS_METADATA((*dn)->dn_type))) { 875 dnode_rele(*dn, tag); 876 *dn = NULL; 877 err = dmu_object_next(os, object, B_FALSE, 0); 878 if (err != 0) 879 break; 880 err = dnode_hold(os, *object, tag, dn); 881 } 882 return (err); 883 } 884 885 static int 886 perform_redaction(objset_t *os, redaction_list_t *rl, 887 struct redact_merge_thread_arg *rmta) 888 { 889 int err = 0; 890 bqueue_t *q = &rmta->q; 891 struct redact_record *rec = NULL; 892 struct merge_data md = { {0} }; 893 894 list_create(&md.md_redact_block_pending, 895 sizeof (struct redact_block_list_node), 896 offsetof(struct redact_block_list_node, node)); 897 md.md_redaction_list = rl; 898 899 for (int i = 0; i < TXG_SIZE; i++) { 900 list_create(&md.md_blocks[i], 901 sizeof (struct redact_block_list_node), 902 offsetof(struct redact_block_list_node, node)); 903 } 904 dnode_t *dn = NULL; 905 uint64_t prev_obj = 0; 906 for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0; 907 rec = get_next_redact_record(q, rec)) { 908 ASSERT3U(rec->start_object, !=, 0); 909 uint64_t object; 910 if (prev_obj != rec->start_object) { 911 object = rec->start_object - 1; 912 err = hold_next_object(os, rec, FTAG, &object, &dn); 913 } else { 914 object = prev_obj; 915 } 916 while (err == 0 && object <= rec->end_object) { 917 if (issig()) { 918 err = EINTR; 919 break; 920 } 921 /* 922 * Part of the current object is contained somewhere in 923 * the range covered by rec. 924 */ 925 uint64_t startblkid; 926 uint64_t endblkid; 927 uint64_t maxblkid = dn->dn_phys->dn_maxblkid; 928 929 if (rec->start_object < object) 930 startblkid = 0; 931 else if (rec->start_blkid > maxblkid) 932 break; 933 else 934 startblkid = rec->start_blkid; 935 936 if (rec->end_object > object || rec->end_blkid > 937 maxblkid) { 938 endblkid = maxblkid; 939 } else { 940 endblkid = rec->end_blkid; 941 } 942 update_redaction_list(&md, os, object, startblkid, 943 endblkid, dn->dn_datablksz); 944 945 if (object == rec->end_object) 946 break; 947 err = hold_next_object(os, rec, FTAG, &object, &dn); 948 } 949 if (err == ESRCH) 950 err = 0; 951 if (dn != NULL) 952 prev_obj = object; 953 } 954 if (err == 0 && dn != NULL) 955 dnode_rele(dn, FTAG); 956 957 if (err == ESRCH) 958 err = 0; 959 rmta->cancel = B_TRUE; 960 while (!rec->eos_marker) 961 rec = get_next_redact_record(q, rec); 962 kmem_free(rec, sizeof (*rec)); 963 964 /* 965 * There may be a block that's being coalesced, sync that out before we 966 * return. 967 */ 968 if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) { 969 struct redact_block_list_node *rbln = 970 kmem_alloc(sizeof (struct redact_block_list_node), 971 KM_SLEEP); 972 rbln->block = md.md_coalesce_block; 973 list_insert_tail(&md.md_redact_block_pending, rbln); 974 } 975 commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX); 976 977 /* 978 * Wait for all the redaction info to sync out before we return, so that 979 * anyone who attempts to resume this redaction will have all the data 980 * they need. 981 */ 982 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 983 if (md.md_latest_synctask_txg != 0) 984 txg_wait_synced(dp, md.md_latest_synctask_txg); 985 for (int i = 0; i < TXG_SIZE; i++) 986 list_destroy(&md.md_blocks[i]); 987 return (err); 988 } 989 990 static boolean_t 991 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 992 { 993 for (int i = 0; i < num_snaps; i++) { 994 if (snaps[i] == guid) 995 return (B_TRUE); 996 } 997 return (B_FALSE); 998 } 999 1000 int 1001 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl, 1002 const char *redactbook) 1003 { 1004 int err = 0; 1005 dsl_pool_t *dp = NULL; 1006 dsl_dataset_t *ds = NULL; 1007 int numsnaps = 0; 1008 objset_t *os; 1009 struct redact_thread_arg *args = NULL; 1010 redaction_list_t *new_rl = NULL; 1011 char *newredactbook; 1012 1013 if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0) 1014 return (err); 1015 1016 newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN, 1017 KM_SLEEP); 1018 1019 if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT, 1020 FTAG, &ds)) != 0) { 1021 goto out; 1022 } 1023 dsl_dataset_long_hold(ds, FTAG); 1024 if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) { 1025 err = EINVAL; 1026 goto out; 1027 } 1028 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) { 1029 err = EALREADY; 1030 goto out; 1031 } 1032 1033 numsnaps = fnvlist_num_pairs(redactnvl); 1034 if (numsnaps > 0) 1035 args = vmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP); 1036 1037 nvpair_t *pair = NULL; 1038 for (int i = 0; i < numsnaps; i++) { 1039 pair = nvlist_next_nvpair(redactnvl, pair); 1040 const char *name = nvpair_name(pair); 1041 struct redact_thread_arg *rta = &args[i]; 1042 err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT, 1043 FTAG, &rta->ds); 1044 if (err != 0) 1045 break; 1046 /* 1047 * We want to do the long hold before we can get any other 1048 * errors, because the cleanup code will release the long 1049 * hold if rta->ds is filled in. 1050 */ 1051 dsl_dataset_long_hold(rta->ds, FTAG); 1052 1053 err = dmu_objset_from_ds(rta->ds, &rta->os); 1054 if (err != 0) 1055 break; 1056 if (!dsl_dataset_is_before(rta->ds, ds, 0)) { 1057 err = EINVAL; 1058 break; 1059 } 1060 if (dsl_dataset_feature_is_active(rta->ds, 1061 SPA_FEATURE_REDACTED_DATASETS)) { 1062 err = EALREADY; 1063 break; 1064 1065 } 1066 } 1067 if (err != 0) 1068 goto out; 1069 VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL); 1070 1071 boolean_t resuming = B_FALSE; 1072 zfs_bookmark_phys_t bookmark; 1073 1074 (void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN); 1075 char *c = strchr(newredactbook, '@'); 1076 ASSERT3P(c, !=, NULL); 1077 int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook), 1078 "#%s", redactbook); 1079 if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) { 1080 dsl_pool_rele(dp, FTAG); 1081 kmem_free(newredactbook, 1082 sizeof (char) * ZFS_MAX_DATASET_NAME_LEN); 1083 if (args != NULL) 1084 vmem_free(args, numsnaps * sizeof (*args)); 1085 return (SET_ERROR(ENAMETOOLONG)); 1086 } 1087 err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark); 1088 if (err == 0) { 1089 resuming = B_TRUE; 1090 if (bookmark.zbm_redaction_obj == 0) { 1091 err = EEXIST; 1092 goto out; 1093 } 1094 err = dsl_redaction_list_hold_obj(dp, 1095 bookmark.zbm_redaction_obj, FTAG, &new_rl); 1096 if (err != 0) { 1097 err = EIO; 1098 goto out; 1099 } 1100 dsl_redaction_list_long_hold(dp, new_rl, FTAG); 1101 if (new_rl->rl_phys->rlp_num_snaps != numsnaps) { 1102 err = ESRCH; 1103 goto out; 1104 } 1105 for (int i = 0; i < numsnaps; i++) { 1106 struct redact_thread_arg *rta = &args[i]; 1107 if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps, 1108 new_rl->rl_phys->rlp_num_snaps, 1109 dsl_dataset_phys(rta->ds)->ds_guid)) { 1110 err = ESRCH; 1111 goto out; 1112 } 1113 } 1114 if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX && 1115 new_rl->rl_phys->rlp_last_object == UINT64_MAX) { 1116 err = EEXIST; 1117 goto out; 1118 } 1119 dsl_pool_rele(dp, FTAG); 1120 dp = NULL; 1121 } else { 1122 uint64_t *guids = NULL; 1123 if (numsnaps > 0) { 1124 guids = vmem_zalloc(numsnaps * sizeof (uint64_t), 1125 KM_SLEEP); 1126 } 1127 for (int i = 0; i < numsnaps; i++) { 1128 struct redact_thread_arg *rta = &args[i]; 1129 guids[i] = dsl_dataset_phys(rta->ds)->ds_guid; 1130 } 1131 1132 dsl_pool_rele(dp, FTAG); 1133 dp = NULL; 1134 err = dsl_bookmark_create_redacted(newredactbook, snapname, 1135 numsnaps, guids, FTAG, &new_rl); 1136 vmem_free(guids, numsnaps * sizeof (uint64_t)); 1137 if (err != 0) 1138 goto out; 1139 } 1140 1141 for (int i = 0; i < numsnaps; i++) { 1142 struct redact_thread_arg *rta = &args[i]; 1143 (void) bqueue_init(&rta->q, zfs_redact_queue_ff, 1144 zfs_redact_queue_length, 1145 offsetof(struct redact_record, ln)); 1146 if (resuming) { 1147 rta->resume.zb_blkid = 1148 new_rl->rl_phys->rlp_last_blkid; 1149 rta->resume.zb_object = 1150 new_rl->rl_phys->rlp_last_object; 1151 } 1152 rta->txg = dsl_dataset_phys(ds)->ds_creation_txg; 1153 (void) thread_create(NULL, 0, redact_traverse_thread, rta, 1154 0, curproc, TS_RUN, minclsyspri); 1155 } 1156 1157 struct redact_merge_thread_arg *rmta; 1158 rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP); 1159 1160 (void) bqueue_init(&rmta->q, zfs_redact_queue_ff, 1161 zfs_redact_queue_length, offsetof(struct redact_record, ln)); 1162 rmta->numsnaps = numsnaps; 1163 rmta->spa = os->os_spa; 1164 rmta->thr_args = args; 1165 (void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc, 1166 TS_RUN, minclsyspri); 1167 err = perform_redaction(os, new_rl, rmta); 1168 bqueue_destroy(&rmta->q); 1169 kmem_free(rmta, sizeof (struct redact_merge_thread_arg)); 1170 1171 out: 1172 kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN); 1173 1174 if (new_rl != NULL) { 1175 dsl_redaction_list_long_rele(new_rl, FTAG); 1176 dsl_redaction_list_rele(new_rl, FTAG); 1177 } 1178 for (int i = 0; i < numsnaps; i++) { 1179 struct redact_thread_arg *rta = &args[i]; 1180 /* 1181 * rta->ds may be NULL if we got an error while filling 1182 * it in. 1183 */ 1184 if (rta->ds != NULL) { 1185 dsl_dataset_long_rele(rta->ds, FTAG); 1186 dsl_dataset_rele_flags(rta->ds, 1187 DS_HOLD_FLAG_DECRYPT, FTAG); 1188 } 1189 } 1190 1191 if (args != NULL) 1192 vmem_free(args, numsnaps * sizeof (*args)); 1193 if (dp != NULL) 1194 dsl_pool_rele(dp, FTAG); 1195 if (ds != NULL) { 1196 dsl_dataset_long_rele(ds, FTAG); 1197 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1198 } 1199 return (SET_ERROR(err)); 1200 1201 } 1202