1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2017, 2018 by Delphix. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/txg.h> 27 #include <sys/dmu_objset.h> 28 #include <sys/dmu_traverse.h> 29 #include <sys/dmu_redact.h> 30 #include <sys/bqueue.h> 31 #include <sys/objlist.h> 32 #include <sys/dmu_tx.h> 33 #ifdef _KERNEL 34 #include <sys/zfs_vfsops.h> 35 #include <sys/zap.h> 36 #include <sys/zfs_znode.h> 37 #endif 38 39 /* 40 * This controls the number of entries in the buffer the redaction_list_update 41 * synctask uses to buffer writes to the redaction list. 42 */ 43 static const int redact_sync_bufsize = 1024; 44 45 /* 46 * Controls how often to update the redaction list when creating a redaction 47 * list. 48 */ 49 static const uint64_t redaction_list_update_interval_ns = 50 1000 * 1000 * 1000ULL; /* 1s */ 51 52 /* 53 * This tunable controls the length of the queues that zfs redact worker threads 54 * use to communicate. If the dmu_redact_snap thread is blocking on these 55 * queues, this variable may need to be increased. If there is a significant 56 * slowdown at the start of a redact operation as these threads consume all the 57 * available IO resources, or the queues are consuming too much memory, this 58 * variable may need to be decreased. 59 */ 60 static const int zfs_redact_queue_length = 1024 * 1024; 61 62 /* 63 * These tunables control the fill fraction of the queues by zfs redact. The 64 * fill fraction controls the frequency with which threads have to be 65 * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these 66 * should be tuned down. If the queues empty before the signalled thread can 67 * catch up, then these should be tuned up. 68 */ 69 static const uint64_t zfs_redact_queue_ff = 20; 70 71 struct redact_record { 72 bqueue_node_t ln; 73 boolean_t eos_marker; /* Marks the end of the stream */ 74 uint64_t start_object; 75 uint64_t start_blkid; 76 uint64_t end_object; 77 uint64_t end_blkid; 78 uint8_t indblkshift; 79 uint32_t datablksz; 80 }; 81 82 struct redact_thread_arg { 83 bqueue_t q; 84 objset_t *os; /* Objset to traverse */ 85 dsl_dataset_t *ds; /* Dataset to traverse */ 86 struct redact_record *current_record; 87 int error_code; 88 boolean_t cancel; 89 zbookmark_phys_t resume; 90 objlist_t *deleted_objs; 91 uint64_t *num_blocks_visited; 92 uint64_t ignore_object; /* ignore further callbacks on this */ 93 uint64_t txg; /* txg to traverse since */ 94 }; 95 96 /* 97 * The redaction node is a wrapper around the redaction record that is used 98 * by the redaction merging thread to sort the records and determine overlaps. 99 * 100 * It contains two nodes; one sorts the records by their start_zb, and the other 101 * sorts the records by their end_zb. 102 */ 103 struct redact_node { 104 avl_node_t avl_node_start; 105 avl_node_t avl_node_end; 106 struct redact_record *record; 107 struct redact_thread_arg *rt_arg; 108 uint32_t thread_num; 109 }; 110 111 struct merge_data { 112 list_t md_redact_block_pending; 113 redact_block_phys_t md_coalesce_block; 114 uint64_t md_last_time; 115 redact_block_phys_t md_furthest[TXG_SIZE]; 116 /* Lists of struct redact_block_list_node. */ 117 list_t md_blocks[TXG_SIZE]; 118 boolean_t md_synctask_txg[TXG_SIZE]; 119 uint64_t md_latest_synctask_txg; 120 redaction_list_t *md_redaction_list; 121 }; 122 123 /* 124 * A wrapper around struct redact_block so it can be stored in a list_t. 125 */ 126 struct redact_block_list_node { 127 redact_block_phys_t block; 128 list_node_t node; 129 }; 130 131 /* 132 * We've found a new redaction candidate. In order to improve performance, we 133 * coalesce these blocks when they're adjacent to each other. This function 134 * handles that. If the new candidate block range is immediately after the 135 * range we're building, coalesce it into the range we're building. Otherwise, 136 * put the record we're building on the queue, and update the build pointer to 137 * point to the new record. 138 */ 139 static void 140 record_merge_enqueue(bqueue_t *q, struct redact_record **build, 141 struct redact_record *new) 142 { 143 if (new->eos_marker) { 144 if (*build != NULL) 145 bqueue_enqueue(q, *build, sizeof (**build)); 146 bqueue_enqueue_flush(q, new, sizeof (*new)); 147 return; 148 } 149 if (*build == NULL) { 150 *build = new; 151 return; 152 } 153 struct redact_record *curbuild = *build; 154 if ((curbuild->end_object == new->start_object && 155 curbuild->end_blkid + 1 == new->start_blkid && 156 curbuild->end_blkid != UINT64_MAX) || 157 (curbuild->end_object + 1 == new->start_object && 158 curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) { 159 curbuild->end_object = new->end_object; 160 curbuild->end_blkid = new->end_blkid; 161 kmem_free(new, sizeof (*new)); 162 } else { 163 bqueue_enqueue(q, curbuild, sizeof (*curbuild)); 164 *build = new; 165 } 166 } 167 #ifdef _KERNEL 168 struct objnode { 169 avl_node_t node; 170 uint64_t obj; 171 }; 172 173 static int 174 objnode_compare(const void *o1, const void *o2) 175 { 176 const struct objnode *obj1 = o1; 177 const struct objnode *obj2 = o2; 178 if (obj1->obj < obj2->obj) 179 return (-1); 180 if (obj1->obj > obj2->obj) 181 return (1); 182 return (0); 183 } 184 185 186 static objlist_t * 187 zfs_get_deleteq(objset_t *os) 188 { 189 objlist_t *deleteq_objlist = objlist_create(); 190 uint64_t deleteq_obj; 191 zap_cursor_t zc; 192 zap_attribute_t za; 193 dmu_object_info_t doi; 194 195 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 196 VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi)); 197 ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE); 198 199 VERIFY0(zap_lookup(os, MASTER_NODE_OBJ, 200 ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj)); 201 202 /* 203 * In order to insert objects into the objlist, they must be in sorted 204 * order. We don't know what order we'll get them out of the ZAP in, so 205 * we insert them into and remove them from an avl_tree_t to sort them. 206 */ 207 avl_tree_t at; 208 avl_create(&at, objnode_compare, sizeof (struct objnode), 209 offsetof(struct objnode, node)); 210 211 for (zap_cursor_init(&zc, os, deleteq_obj); 212 zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) { 213 struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP); 214 obj->obj = za.za_first_integer; 215 avl_add(&at, obj); 216 } 217 zap_cursor_fini(&zc); 218 219 struct objnode *next, *found = avl_first(&at); 220 while (found != NULL) { 221 next = AVL_NEXT(&at, found); 222 objlist_insert(deleteq_objlist, found->obj); 223 found = next; 224 } 225 226 void *cookie = NULL; 227 while ((found = avl_destroy_nodes(&at, &cookie)) != NULL) 228 kmem_free(found, sizeof (*found)); 229 avl_destroy(&at); 230 return (deleteq_objlist); 231 } 232 #endif 233 234 /* 235 * This is the callback function to traverse_dataset for the redaction threads 236 * for dmu_redact_snap. This thread is responsible for creating redaction 237 * records for all the data that is modified by the snapshots we're redacting 238 * with respect to. Redaction records represent ranges of data that have been 239 * modified by one of the redaction snapshots, and are stored in the 240 * redact_record struct. We need to create redaction records for three 241 * cases: 242 * 243 * First, if there's a normal write, we need to create a redaction record for 244 * that block. 245 * 246 * Second, if there's a hole, we need to create a redaction record that covers 247 * the whole range of the hole. If the hole is in the meta-dnode, it must cover 248 * every block in all of the objects in the hole. 249 * 250 * Third, if there is a deleted object, we need to create a redaction record for 251 * all of the blocks in that object. 252 */ 253 static int 254 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 255 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 256 { 257 (void) spa, (void) zilog; 258 struct redact_thread_arg *rta = arg; 259 struct redact_record *record; 260 261 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 262 zb->zb_object >= rta->resume.zb_object); 263 264 if (rta->cancel) 265 return (SET_ERROR(EINTR)); 266 267 if (rta->ignore_object == zb->zb_object) 268 return (0); 269 270 /* 271 * If we're visiting a dnode, we need to handle the case where the 272 * object has been deleted. 273 */ 274 if (zb->zb_level == ZB_DNODE_LEVEL) { 275 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 276 277 if (zb->zb_object == 0) 278 return (0); 279 280 /* 281 * If the object has been deleted, redact all of the blocks in 282 * it. 283 */ 284 if (dnp->dn_type == DMU_OT_NONE || 285 objlist_exists(rta->deleted_objs, zb->zb_object)) { 286 rta->ignore_object = zb->zb_object; 287 record = kmem_zalloc(sizeof (struct redact_record), 288 KM_SLEEP); 289 290 record->eos_marker = B_FALSE; 291 record->start_object = record->end_object = 292 zb->zb_object; 293 record->start_blkid = 0; 294 record->end_blkid = UINT64_MAX; 295 record_merge_enqueue(&rta->q, 296 &rta->current_record, record); 297 } 298 return (0); 299 } else if (zb->zb_level < 0) { 300 return (0); 301 } else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) { 302 /* 303 * If this is an indirect block, but not a hole, it doesn't 304 * provide any useful information for redaction, so ignore it. 305 */ 306 return (0); 307 } 308 309 /* 310 * At this point, there are two options left for the type of block we're 311 * looking at. Either this is a hole (which could be in the dnode or 312 * the meta-dnode), or it's a level 0 block of some sort. If it's a 313 * hole, we create a redaction record that covers the whole range. If 314 * the hole is in a dnode, we need to redact all the blocks in that 315 * hole. If the hole is in the meta-dnode, we instead need to redact 316 * all blocks in every object covered by that hole. If it's a level 0 317 * block, we only need to redact that single block. 318 */ 319 record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP); 320 record->eos_marker = B_FALSE; 321 322 record->start_object = record->end_object = zb->zb_object; 323 if (BP_IS_HOLE(bp)) { 324 record->start_blkid = zb->zb_blkid * 325 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level); 326 327 record->end_blkid = ((zb->zb_blkid + 1) * 328 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1; 329 330 if (zb->zb_object == DMU_META_DNODE_OBJECT) { 331 record->start_object = record->start_blkid * 332 ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) / 333 sizeof (dnode_phys_t)); 334 record->start_blkid = 0; 335 record->end_object = ((record->end_blkid + 336 1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) / 337 sizeof (dnode_phys_t))) - 1; 338 record->end_blkid = UINT64_MAX; 339 } 340 } else if (zb->zb_level != 0 || 341 zb->zb_object == DMU_META_DNODE_OBJECT) { 342 kmem_free(record, sizeof (*record)); 343 return (0); 344 } else { 345 record->start_blkid = record->end_blkid = zb->zb_blkid; 346 } 347 record->indblkshift = dnp->dn_indblkshift; 348 record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 349 record_merge_enqueue(&rta->q, &rta->current_record, record); 350 351 return (0); 352 } 353 354 static __attribute__((noreturn)) void 355 redact_traverse_thread(void *arg) 356 { 357 struct redact_thread_arg *rt_arg = arg; 358 int err; 359 struct redact_record *data; 360 #ifdef _KERNEL 361 if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS) 362 rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os); 363 else 364 rt_arg->deleted_objs = objlist_create(); 365 #else 366 rt_arg->deleted_objs = objlist_create(); 367 #endif 368 369 err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg, 370 &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 371 redact_cb, rt_arg); 372 373 if (err != EINTR) 374 rt_arg->error_code = err; 375 objlist_destroy(rt_arg->deleted_objs); 376 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 377 data->eos_marker = B_TRUE; 378 record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data); 379 thread_exit(); 380 } 381 382 static inline void 383 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object, 384 uint64_t blkid) 385 { 386 zb->zb_object = object; 387 zb->zb_level = 0; 388 zb->zb_blkid = blkid; 389 } 390 391 /* 392 * This is a utility function that can do the comparison for the start or ends 393 * of the ranges in a redact_record. 394 */ 395 static int 396 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1, 397 uint64_t obj2, uint64_t off2, uint32_t dbss2) 398 { 399 zbookmark_phys_t z1, z2; 400 create_zbookmark_from_obj_off(&z1, obj1, off1); 401 create_zbookmark_from_obj_off(&z2, obj2, off2); 402 403 return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0, 404 dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2)); 405 } 406 407 /* 408 * Compare two redaction records by their range's start location. Also makes 409 * eos records always compare last. We use the thread number in the redact_node 410 * to ensure that records do not compare equal (which is not allowed in our avl 411 * trees). 412 */ 413 static int 414 redact_node_compare_start(const void *arg1, const void *arg2) 415 { 416 const struct redact_node *rn1 = arg1; 417 const struct redact_node *rn2 = arg2; 418 const struct redact_record *rr1 = rn1->record; 419 const struct redact_record *rr2 = rn2->record; 420 if (rr1->eos_marker) 421 return (1); 422 if (rr2->eos_marker) 423 return (-1); 424 425 int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid, 426 rr1->datablksz, rr2->start_object, rr2->start_blkid, 427 rr2->datablksz); 428 if (cmp == 0) 429 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1); 430 return (cmp); 431 } 432 433 /* 434 * Compare two redaction records by their range's end location. Also makes 435 * eos records always compare last. We use the thread number in the redact_node 436 * to ensure that records do not compare equal (which is not allowed in our avl 437 * trees). 438 */ 439 static int 440 redact_node_compare_end(const void *arg1, const void *arg2) 441 { 442 const struct redact_node *rn1 = arg1; 443 const struct redact_node *rn2 = arg2; 444 const struct redact_record *srr1 = rn1->record; 445 const struct redact_record *srr2 = rn2->record; 446 if (srr1->eos_marker) 447 return (1); 448 if (srr2->eos_marker) 449 return (-1); 450 451 int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid, 452 srr1->datablksz, srr2->end_object, srr2->end_blkid, 453 srr2->datablksz); 454 if (cmp == 0) 455 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1); 456 return (cmp); 457 } 458 459 /* 460 * Utility function that compares two redaction records to determine if any part 461 * of the "from" record is before any part of the "to" record. Also causes End 462 * of Stream redaction records to compare after all others, so that the 463 * redaction merging logic can stay simple. 464 */ 465 static boolean_t 466 redact_record_before(const struct redact_record *from, 467 const struct redact_record *to) 468 { 469 if (from->eos_marker == B_TRUE) 470 return (B_FALSE); 471 else if (to->eos_marker == B_TRUE) 472 return (B_TRUE); 473 return (redact_range_compare(from->start_object, from->start_blkid, 474 from->datablksz, to->end_object, to->end_blkid, 475 to->datablksz) <= 0); 476 } 477 478 /* 479 * Pop a new redaction record off the queue, check that the records are in the 480 * right order, and free the old data. 481 */ 482 static struct redact_record * 483 get_next_redact_record(bqueue_t *bq, struct redact_record *prev) 484 { 485 struct redact_record *next = bqueue_dequeue(bq); 486 ASSERT(redact_record_before(prev, next)); 487 kmem_free(prev, sizeof (*prev)); 488 return (next); 489 } 490 491 /* 492 * Remove the given redaction node from both trees, pull a new redaction record 493 * off the queue, free the old redaction record, update the redaction node, and 494 * reinsert the node into the trees. 495 */ 496 static int 497 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree, 498 struct redact_node *redact_node) 499 { 500 avl_remove(start_tree, redact_node); 501 avl_remove(end_tree, redact_node); 502 redact_node->record = get_next_redact_record(&redact_node->rt_arg->q, 503 redact_node->record); 504 avl_add(end_tree, redact_node); 505 avl_add(start_tree, redact_node); 506 return (redact_node->rt_arg->error_code); 507 } 508 509 /* 510 * Synctask for updating redaction lists. We first take this txg's list of 511 * redacted blocks and append those to the redaction list. We then update the 512 * redaction list's bonus buffer. We store the furthest blocks we visited and 513 * the list of snapshots that we're redacting with respect to. We need these so 514 * that redacted sends and receives can be correctly resumed. 515 */ 516 static void 517 redaction_list_update_sync(void *arg, dmu_tx_t *tx) 518 { 519 struct merge_data *md = arg; 520 uint64_t txg = dmu_tx_get_txg(tx); 521 list_t *list = &md->md_blocks[txg & TXG_MASK]; 522 redact_block_phys_t *furthest_visited = 523 &md->md_furthest[txg & TXG_MASK]; 524 objset_t *mos = tx->tx_pool->dp_meta_objset; 525 redaction_list_t *rl = md->md_redaction_list; 526 int bufsize = redact_sync_bufsize; 527 redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf), 528 KM_SLEEP); 529 int index = 0; 530 531 dmu_buf_will_dirty(rl->rl_dbuf, tx); 532 533 for (struct redact_block_list_node *rbln = list_remove_head(list); 534 rbln != NULL; rbln = list_remove_head(list)) { 535 ASSERT3U(rbln->block.rbp_object, <=, 536 furthest_visited->rbp_object); 537 ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object || 538 rbln->block.rbp_blkid <= furthest_visited->rbp_blkid); 539 buf[index] = rbln->block; 540 index++; 541 if (index == bufsize) { 542 dmu_write(mos, rl->rl_object, 543 rl->rl_phys->rlp_num_entries * sizeof (*buf), 544 bufsize * sizeof (*buf), buf, tx); 545 rl->rl_phys->rlp_num_entries += bufsize; 546 index = 0; 547 } 548 kmem_free(rbln, sizeof (*rbln)); 549 } 550 if (index > 0) { 551 dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries * 552 sizeof (*buf), index * sizeof (*buf), buf, tx); 553 rl->rl_phys->rlp_num_entries += index; 554 } 555 kmem_free(buf, bufsize * sizeof (*buf)); 556 557 md->md_synctask_txg[txg & TXG_MASK] = B_FALSE; 558 rl->rl_phys->rlp_last_object = furthest_visited->rbp_object; 559 rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid; 560 } 561 562 static void 563 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object, 564 uint64_t blkid) 565 { 566 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir); 567 dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node)); 568 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 569 uint64_t txg = dmu_tx_get_txg(tx); 570 if (!md->md_synctask_txg[txg & TXG_MASK]) { 571 dsl_sync_task_nowait(dmu_tx_pool(tx), 572 redaction_list_update_sync, md, tx); 573 md->md_synctask_txg[txg & TXG_MASK] = B_TRUE; 574 md->md_latest_synctask_txg = txg; 575 } 576 md->md_furthest[txg & TXG_MASK].rbp_object = object; 577 md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid; 578 list_move_tail(&md->md_blocks[txg & TXG_MASK], 579 &md->md_redact_block_pending); 580 dmu_tx_commit(tx); 581 md->md_last_time = gethrtime(); 582 } 583 584 /* 585 * We want to store the list of blocks that we're redacting in the bookmark's 586 * redaction list. However, this list is stored in the MOS, which means it can 587 * only be written to in syncing context. To get around this, we create a 588 * synctask that will write to the mos for us. We tell it what to write by 589 * a linked list for each current transaction group; every time we decide to 590 * redact a block, we append it to the transaction group that is currently in 591 * open context. We also update some progress information that the synctask 592 * will store to enable resumable redacted sends. 593 */ 594 static void 595 update_redaction_list(struct merge_data *md, objset_t *os, 596 uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz) 597 { 598 boolean_t enqueue = B_FALSE; 599 redact_block_phys_t cur = {0}; 600 uint64_t count = endblkid - blkid + 1; 601 while (count > REDACT_BLOCK_MAX_COUNT) { 602 update_redaction_list(md, os, object, blkid, 603 blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz); 604 blkid += REDACT_BLOCK_MAX_COUNT; 605 count -= REDACT_BLOCK_MAX_COUNT; 606 } 607 redact_block_phys_t *coalesce = &md->md_coalesce_block; 608 boolean_t new; 609 if (coalesce->rbp_size_count == 0) { 610 new = B_TRUE; 611 enqueue = B_FALSE; 612 } else { 613 uint64_t old_count = redact_block_get_count(coalesce); 614 if (coalesce->rbp_object == object && 615 coalesce->rbp_blkid + old_count == blkid && 616 old_count + count <= REDACT_BLOCK_MAX_COUNT) { 617 ASSERT3U(redact_block_get_size(coalesce), ==, blksz); 618 redact_block_set_count(coalesce, old_count + count); 619 new = B_FALSE; 620 enqueue = B_FALSE; 621 } else { 622 new = B_TRUE; 623 enqueue = B_TRUE; 624 } 625 } 626 627 if (new) { 628 cur = *coalesce; 629 coalesce->rbp_blkid = blkid; 630 coalesce->rbp_object = object; 631 632 redact_block_set_count(coalesce, count); 633 redact_block_set_size(coalesce, blksz); 634 } 635 636 if (enqueue && redact_block_get_size(&cur) != 0) { 637 struct redact_block_list_node *rbln = 638 kmem_alloc(sizeof (struct redact_block_list_node), 639 KM_SLEEP); 640 rbln->block = cur; 641 list_insert_tail(&md->md_redact_block_pending, rbln); 642 } 643 644 if (gethrtime() > md->md_last_time + 645 redaction_list_update_interval_ns) { 646 commit_rl_updates(os, md, object, blkid); 647 } 648 } 649 650 /* 651 * This thread merges all the redaction records provided by the worker threads, 652 * and determines which blocks are redacted by all the snapshots. The algorithm 653 * for doing so is similar to performing a merge in mergesort with n sub-lists 654 * instead of 2, with some added complexity due to the fact that the entries are 655 * ranges, not just single blocks. This algorithm relies on the fact that the 656 * queues are sorted, which is ensured by the fact that traverse_dataset 657 * traverses the dataset in a consistent order. We pull one entry off the front 658 * of the queues of each secure dataset traversal thread. Then we repeat the 659 * following: each record represents a range of blocks modified by one of the 660 * redaction snapshots, and each block in that range may need to be redacted in 661 * the send stream. Find the record with the latest start of its range, and the 662 * record with the earliest end of its range. If the last start is before the 663 * first end, then we know that the blocks in the range [last_start, first_end] 664 * are covered by all of the ranges at the front of the queues, which means 665 * every thread redacts that whole range. For example, let's say the ranges on 666 * each queue look like this: 667 * 668 * Block Id 1 2 3 4 5 6 7 8 9 10 11 669 * Thread 1 | [====================] 670 * Thread 2 | [========] 671 * Thread 3 | [=================] 672 * 673 * Thread 3 has the last start (5), and the thread 2 has the last end (6). All 674 * three threads modified the range [5,6], so that data should not be sent over 675 * the wire. After we've determined whether or not to redact anything, we take 676 * the record with the first end. We discard that record, and pull a new one 677 * off the front of the queue it came from. In the above example, we would 678 * discard Thread 2's record, and pull a new one. Let's say the next record we 679 * pulled from Thread 2 covered range [10,11]. The new layout would look like 680 * this: 681 * 682 * Block Id 1 2 3 4 5 6 7 8 9 10 11 683 * Thread 1 | [====================] 684 * Thread 2 | [==] 685 * Thread 3 | [=================] 686 * 687 * When we compare the last start (10, from Thread 2) and the first end (9, from 688 * Thread 1), we see that the last start is greater than the first end. 689 * Therefore, we do not redact anything from these records. We'll iterate by 690 * replacing the record from Thread 1. 691 * 692 * We iterate by replacing the record with the lowest end because we know 693 * that the record with the lowest end has helped us as much as it can. All the 694 * ranges before it that we will ever redact have been redacted. In addition, 695 * by replacing the one with the lowest end, we guarantee we catch all ranges 696 * that need to be redacted. For example, if in the case above we had replaced 697 * the record from Thread 1 instead, we might have ended up with the following: 698 * 699 * Block Id 1 2 3 4 5 6 7 8 9 10 11 12 700 * Thread 1 | [==] 701 * Thread 2 | [========] 702 * Thread 3 | [=================] 703 * 704 * If the next record from Thread 2 had been [8,10], for example, we should have 705 * redacted part of that range, but because we updated Thread 1's record, we 706 * missed it. 707 * 708 * We implement this algorithm by using two trees. The first sorts the 709 * redaction records by their start_zb, and the second sorts them by their 710 * end_zb. We use these to find the record with the last start and the record 711 * with the first end. We create a record with that start and end, and send it 712 * on. The overall runtime of this implementation is O(n log m), where n is the 713 * total number of redaction records from all the different redaction snapshots, 714 * and m is the number of redaction snapshots. 715 * 716 * If we redact with respect to zero snapshots, we create a redaction 717 * record with the start object and blkid to 0, and the end object and blkid to 718 * UINT64_MAX. This will result in us redacting every block. 719 */ 720 static int 721 perform_thread_merge(bqueue_t *q, uint32_t num_threads, 722 struct redact_thread_arg *thread_args, boolean_t *cancel) 723 { 724 struct redact_node *redact_nodes = NULL; 725 avl_tree_t start_tree, end_tree; 726 struct redact_record *record; 727 struct redact_record *current_record = NULL; 728 int err = 0; 729 struct merge_data md = { {0} }; 730 list_create(&md.md_redact_block_pending, 731 sizeof (struct redact_block_list_node), 732 offsetof(struct redact_block_list_node, node)); 733 734 /* 735 * If we're redacting with respect to zero snapshots, then no data is 736 * permitted to be sent. We enqueue a record that redacts all blocks, 737 * and an eos marker. 738 */ 739 if (num_threads == 0) { 740 record = kmem_zalloc(sizeof (struct redact_record), 741 KM_SLEEP); 742 // We can't redact object 0, so don't try. 743 record->start_object = 1; 744 record->start_blkid = 0; 745 record->end_object = record->end_blkid = UINT64_MAX; 746 bqueue_enqueue(q, record, sizeof (*record)); 747 return (0); 748 } 749 redact_nodes = kmem_zalloc(num_threads * 750 sizeof (*redact_nodes), KM_SLEEP); 751 752 avl_create(&start_tree, redact_node_compare_start, 753 sizeof (struct redact_node), 754 offsetof(struct redact_node, avl_node_start)); 755 avl_create(&end_tree, redact_node_compare_end, 756 sizeof (struct redact_node), 757 offsetof(struct redact_node, avl_node_end)); 758 759 for (int i = 0; i < num_threads; i++) { 760 struct redact_node *node = &redact_nodes[i]; 761 struct redact_thread_arg *targ = &thread_args[i]; 762 node->record = bqueue_dequeue(&targ->q); 763 node->rt_arg = targ; 764 node->thread_num = i; 765 avl_add(&start_tree, node); 766 avl_add(&end_tree, node); 767 } 768 769 /* 770 * Once the first record in the end tree has returned EOS, every record 771 * must be an EOS record, so we should stop. 772 */ 773 while (err == 0 && !((struct redact_node *)avl_first(&end_tree))-> 774 record->eos_marker) { 775 if (*cancel) { 776 err = EINTR; 777 break; 778 } 779 struct redact_node *last_start = avl_last(&start_tree); 780 struct redact_node *first_end = avl_first(&end_tree); 781 782 /* 783 * If the last start record is before the first end record, 784 * then we have blocks that are redacted by all threads. 785 * Therefore, we should redact them. Copy the record, and send 786 * it to the main thread. 787 */ 788 if (redact_record_before(last_start->record, 789 first_end->record)) { 790 record = kmem_zalloc(sizeof (struct redact_record), 791 KM_SLEEP); 792 *record = *first_end->record; 793 record->start_object = last_start->record->start_object; 794 record->start_blkid = last_start->record->start_blkid; 795 record_merge_enqueue(q, ¤t_record, 796 record); 797 } 798 err = update_avl_trees(&start_tree, &end_tree, first_end); 799 } 800 801 /* 802 * We're done; if we were cancelled, we need to cancel our workers and 803 * clear out their queues. Either way, we need to remove every thread's 804 * redact_node struct from the avl trees. 805 */ 806 for (int i = 0; i < num_threads; i++) { 807 if (err != 0) { 808 thread_args[i].cancel = B_TRUE; 809 while (!redact_nodes[i].record->eos_marker) { 810 (void) update_avl_trees(&start_tree, &end_tree, 811 &redact_nodes[i]); 812 } 813 } 814 avl_remove(&start_tree, &redact_nodes[i]); 815 avl_remove(&end_tree, &redact_nodes[i]); 816 kmem_free(redact_nodes[i].record, 817 sizeof (struct redact_record)); 818 bqueue_destroy(&thread_args[i].q); 819 } 820 821 avl_destroy(&start_tree); 822 avl_destroy(&end_tree); 823 kmem_free(redact_nodes, num_threads * sizeof (*redact_nodes)); 824 if (current_record != NULL) 825 bqueue_enqueue(q, current_record, sizeof (*current_record)); 826 return (err); 827 } 828 829 struct redact_merge_thread_arg { 830 bqueue_t q; 831 spa_t *spa; 832 int numsnaps; 833 struct redact_thread_arg *thr_args; 834 boolean_t cancel; 835 int error_code; 836 }; 837 838 static __attribute__((noreturn)) void 839 redact_merge_thread(void *arg) 840 { 841 struct redact_merge_thread_arg *rmta = arg; 842 rmta->error_code = perform_thread_merge(&rmta->q, 843 rmta->numsnaps, rmta->thr_args, &rmta->cancel); 844 struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP); 845 rec->eos_marker = B_TRUE; 846 bqueue_enqueue_flush(&rmta->q, rec, 1); 847 thread_exit(); 848 } 849 850 /* 851 * Find the next object in or after the redaction range passed in, and hold 852 * its dnode with the provided tag. Also update *object to contain the new 853 * object number. 854 */ 855 static int 856 hold_next_object(objset_t *os, struct redact_record *rec, const void *tag, 857 uint64_t *object, dnode_t **dn) 858 { 859 int err = 0; 860 if (*dn != NULL) 861 dnode_rele(*dn, tag); 862 *dn = NULL; 863 if (*object < rec->start_object) { 864 *object = rec->start_object - 1; 865 } 866 err = dmu_object_next(os, object, B_FALSE, 0); 867 if (err != 0) 868 return (err); 869 870 err = dnode_hold(os, *object, tag, dn); 871 while (err == 0 && (*object < rec->start_object || 872 DMU_OT_IS_METADATA((*dn)->dn_type))) { 873 dnode_rele(*dn, tag); 874 *dn = NULL; 875 err = dmu_object_next(os, object, B_FALSE, 0); 876 if (err != 0) 877 break; 878 err = dnode_hold(os, *object, tag, dn); 879 } 880 return (err); 881 } 882 883 static int 884 perform_redaction(objset_t *os, redaction_list_t *rl, 885 struct redact_merge_thread_arg *rmta) 886 { 887 int err = 0; 888 bqueue_t *q = &rmta->q; 889 struct redact_record *rec = NULL; 890 struct merge_data md = { {0} }; 891 892 list_create(&md.md_redact_block_pending, 893 sizeof (struct redact_block_list_node), 894 offsetof(struct redact_block_list_node, node)); 895 md.md_redaction_list = rl; 896 897 for (int i = 0; i < TXG_SIZE; i++) { 898 list_create(&md.md_blocks[i], 899 sizeof (struct redact_block_list_node), 900 offsetof(struct redact_block_list_node, node)); 901 } 902 dnode_t *dn = NULL; 903 uint64_t prev_obj = 0; 904 for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0; 905 rec = get_next_redact_record(q, rec)) { 906 ASSERT3U(rec->start_object, !=, 0); 907 uint64_t object; 908 if (prev_obj != rec->start_object) { 909 object = rec->start_object - 1; 910 err = hold_next_object(os, rec, FTAG, &object, &dn); 911 } else { 912 object = prev_obj; 913 } 914 while (err == 0 && object <= rec->end_object) { 915 if (issig(JUSTLOOKING) && issig(FORREAL)) { 916 err = EINTR; 917 break; 918 } 919 /* 920 * Part of the current object is contained somewhere in 921 * the range covered by rec. 922 */ 923 uint64_t startblkid; 924 uint64_t endblkid; 925 uint64_t maxblkid = dn->dn_phys->dn_maxblkid; 926 927 if (rec->start_object < object) 928 startblkid = 0; 929 else if (rec->start_blkid > maxblkid) 930 break; 931 else 932 startblkid = rec->start_blkid; 933 934 if (rec->end_object > object || rec->end_blkid > 935 maxblkid) { 936 endblkid = maxblkid; 937 } else { 938 endblkid = rec->end_blkid; 939 } 940 update_redaction_list(&md, os, object, startblkid, 941 endblkid, dn->dn_datablksz); 942 943 if (object == rec->end_object) 944 break; 945 err = hold_next_object(os, rec, FTAG, &object, &dn); 946 } 947 if (err == ESRCH) 948 err = 0; 949 if (dn != NULL) 950 prev_obj = object; 951 } 952 if (err == 0 && dn != NULL) 953 dnode_rele(dn, FTAG); 954 955 if (err == ESRCH) 956 err = 0; 957 rmta->cancel = B_TRUE; 958 while (!rec->eos_marker) 959 rec = get_next_redact_record(q, rec); 960 kmem_free(rec, sizeof (*rec)); 961 962 /* 963 * There may be a block that's being coalesced, sync that out before we 964 * return. 965 */ 966 if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) { 967 struct redact_block_list_node *rbln = 968 kmem_alloc(sizeof (struct redact_block_list_node), 969 KM_SLEEP); 970 rbln->block = md.md_coalesce_block; 971 list_insert_tail(&md.md_redact_block_pending, rbln); 972 } 973 commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX); 974 975 /* 976 * Wait for all the redaction info to sync out before we return, so that 977 * anyone who attempts to resume this redaction will have all the data 978 * they need. 979 */ 980 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 981 if (md.md_latest_synctask_txg != 0) 982 txg_wait_synced(dp, md.md_latest_synctask_txg); 983 for (int i = 0; i < TXG_SIZE; i++) 984 list_destroy(&md.md_blocks[i]); 985 return (err); 986 } 987 988 static boolean_t 989 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 990 { 991 for (int i = 0; i < num_snaps; i++) { 992 if (snaps[i] == guid) 993 return (B_TRUE); 994 } 995 return (B_FALSE); 996 } 997 998 int 999 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl, 1000 const char *redactbook) 1001 { 1002 int err = 0; 1003 dsl_pool_t *dp = NULL; 1004 dsl_dataset_t *ds = NULL; 1005 int numsnaps = 0; 1006 objset_t *os; 1007 struct redact_thread_arg *args = NULL; 1008 redaction_list_t *new_rl = NULL; 1009 char *newredactbook; 1010 1011 if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0) 1012 return (err); 1013 1014 newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN, 1015 KM_SLEEP); 1016 1017 if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT, 1018 FTAG, &ds)) != 0) { 1019 goto out; 1020 } 1021 dsl_dataset_long_hold(ds, FTAG); 1022 if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) { 1023 err = EINVAL; 1024 goto out; 1025 } 1026 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) { 1027 err = EALREADY; 1028 goto out; 1029 } 1030 1031 numsnaps = fnvlist_num_pairs(redactnvl); 1032 if (numsnaps > 0) 1033 args = kmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP); 1034 1035 nvpair_t *pair = NULL; 1036 for (int i = 0; i < numsnaps; i++) { 1037 pair = nvlist_next_nvpair(redactnvl, pair); 1038 const char *name = nvpair_name(pair); 1039 struct redact_thread_arg *rta = &args[i]; 1040 err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT, 1041 FTAG, &rta->ds); 1042 if (err != 0) 1043 break; 1044 /* 1045 * We want to do the long hold before we can get any other 1046 * errors, because the cleanup code will release the long 1047 * hold if rta->ds is filled in. 1048 */ 1049 dsl_dataset_long_hold(rta->ds, FTAG); 1050 1051 err = dmu_objset_from_ds(rta->ds, &rta->os); 1052 if (err != 0) 1053 break; 1054 if (!dsl_dataset_is_before(rta->ds, ds, 0)) { 1055 err = EINVAL; 1056 break; 1057 } 1058 if (dsl_dataset_feature_is_active(rta->ds, 1059 SPA_FEATURE_REDACTED_DATASETS)) { 1060 err = EALREADY; 1061 break; 1062 1063 } 1064 } 1065 if (err != 0) 1066 goto out; 1067 VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL); 1068 1069 boolean_t resuming = B_FALSE; 1070 zfs_bookmark_phys_t bookmark; 1071 1072 (void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN); 1073 char *c = strchr(newredactbook, '@'); 1074 ASSERT3P(c, !=, NULL); 1075 int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook), 1076 "#%s", redactbook); 1077 if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) { 1078 dsl_pool_rele(dp, FTAG); 1079 kmem_free(newredactbook, 1080 sizeof (char) * ZFS_MAX_DATASET_NAME_LEN); 1081 if (args != NULL) 1082 kmem_free(args, numsnaps * sizeof (*args)); 1083 return (SET_ERROR(ENAMETOOLONG)); 1084 } 1085 err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark); 1086 if (err == 0) { 1087 resuming = B_TRUE; 1088 if (bookmark.zbm_redaction_obj == 0) { 1089 err = EEXIST; 1090 goto out; 1091 } 1092 err = dsl_redaction_list_hold_obj(dp, 1093 bookmark.zbm_redaction_obj, FTAG, &new_rl); 1094 if (err != 0) { 1095 err = EIO; 1096 goto out; 1097 } 1098 dsl_redaction_list_long_hold(dp, new_rl, FTAG); 1099 if (new_rl->rl_phys->rlp_num_snaps != numsnaps) { 1100 err = ESRCH; 1101 goto out; 1102 } 1103 for (int i = 0; i < numsnaps; i++) { 1104 struct redact_thread_arg *rta = &args[i]; 1105 if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps, 1106 new_rl->rl_phys->rlp_num_snaps, 1107 dsl_dataset_phys(rta->ds)->ds_guid)) { 1108 err = ESRCH; 1109 goto out; 1110 } 1111 } 1112 if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX && 1113 new_rl->rl_phys->rlp_last_object == UINT64_MAX) { 1114 err = EEXIST; 1115 goto out; 1116 } 1117 dsl_pool_rele(dp, FTAG); 1118 dp = NULL; 1119 } else { 1120 uint64_t *guids = NULL; 1121 if (numsnaps > 0) { 1122 guids = kmem_zalloc(numsnaps * sizeof (uint64_t), 1123 KM_SLEEP); 1124 } 1125 for (int i = 0; i < numsnaps; i++) { 1126 struct redact_thread_arg *rta = &args[i]; 1127 guids[i] = dsl_dataset_phys(rta->ds)->ds_guid; 1128 } 1129 1130 dsl_pool_rele(dp, FTAG); 1131 dp = NULL; 1132 err = dsl_bookmark_create_redacted(newredactbook, snapname, 1133 numsnaps, guids, FTAG, &new_rl); 1134 kmem_free(guids, numsnaps * sizeof (uint64_t)); 1135 if (err != 0) { 1136 goto out; 1137 } 1138 } 1139 1140 for (int i = 0; i < numsnaps; i++) { 1141 struct redact_thread_arg *rta = &args[i]; 1142 (void) bqueue_init(&rta->q, zfs_redact_queue_ff, 1143 zfs_redact_queue_length, 1144 offsetof(struct redact_record, ln)); 1145 if (resuming) { 1146 rta->resume.zb_blkid = 1147 new_rl->rl_phys->rlp_last_blkid; 1148 rta->resume.zb_object = 1149 new_rl->rl_phys->rlp_last_object; 1150 } 1151 rta->txg = dsl_dataset_phys(ds)->ds_creation_txg; 1152 (void) thread_create(NULL, 0, redact_traverse_thread, rta, 1153 0, curproc, TS_RUN, minclsyspri); 1154 } 1155 1156 struct redact_merge_thread_arg *rmta; 1157 rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP); 1158 1159 (void) bqueue_init(&rmta->q, zfs_redact_queue_ff, 1160 zfs_redact_queue_length, offsetof(struct redact_record, ln)); 1161 rmta->numsnaps = numsnaps; 1162 rmta->spa = os->os_spa; 1163 rmta->thr_args = args; 1164 (void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc, 1165 TS_RUN, minclsyspri); 1166 err = perform_redaction(os, new_rl, rmta); 1167 bqueue_destroy(&rmta->q); 1168 kmem_free(rmta, sizeof (struct redact_merge_thread_arg)); 1169 1170 out: 1171 kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN); 1172 1173 if (new_rl != NULL) { 1174 dsl_redaction_list_long_rele(new_rl, FTAG); 1175 dsl_redaction_list_rele(new_rl, FTAG); 1176 } 1177 for (int i = 0; i < numsnaps; i++) { 1178 struct redact_thread_arg *rta = &args[i]; 1179 /* 1180 * rta->ds may be NULL if we got an error while filling 1181 * it in. 1182 */ 1183 if (rta->ds != NULL) { 1184 dsl_dataset_long_rele(rta->ds, FTAG); 1185 dsl_dataset_rele_flags(rta->ds, 1186 DS_HOLD_FLAG_DECRYPT, FTAG); 1187 } 1188 } 1189 1190 if (args != NULL) 1191 kmem_free(args, numsnaps * sizeof (*args)); 1192 if (dp != NULL) 1193 dsl_pool_rele(dp, FTAG); 1194 if (ds != NULL) { 1195 dsl_dataset_long_rele(ds, FTAG); 1196 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1197 } 1198 return (SET_ERROR(err)); 1199 1200 } 1201