1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_recv.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dbuf.h> 38 #include <sys/dnode.h> 39 #include <sys/zfs_context.h> 40 #include <sys/dmu_objset.h> 41 #include <sys/dmu_traverse.h> 42 #include <sys/dsl_dataset.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_pool.h> 46 #include <sys/dsl_synctask.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zvol.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/zfs_znode.h> 52 #include <zfs_fletcher.h> 53 #include <sys/avl.h> 54 #include <sys/ddt.h> 55 #include <sys/zfs_onexit.h> 56 #include <sys/dmu_send.h> 57 #include <sys/dsl_destroy.h> 58 #include <sys/blkptr.h> 59 #include <sys/dsl_bookmark.h> 60 #include <sys/zfeature.h> 61 #include <sys/bqueue.h> 62 #include <sys/objlist.h> 63 #ifdef _KERNEL 64 #include <sys/zfs_vfsops.h> 65 #endif 66 #include <sys/zfs_file.h> 67 68 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 69 int zfs_recv_queue_ff = 20; 70 int zfs_recv_write_batch_size = 1024 * 1024; 71 72 static char *dmu_recv_tag = "dmu_recv_tag"; 73 const char *recv_clone_name = "%recv"; 74 75 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 76 void *buf); 77 78 struct receive_record_arg { 79 dmu_replay_record_t header; 80 void *payload; /* Pointer to a buffer containing the payload */ 81 /* 82 * If the record is a write, pointer to the arc_buf_t containing the 83 * payload. 84 */ 85 arc_buf_t *arc_buf; 86 int payload_size; 87 uint64_t bytes_read; /* bytes read from stream when record created */ 88 boolean_t eos_marker; /* Marks the end of the stream */ 89 bqueue_node_t node; 90 }; 91 92 struct receive_writer_arg { 93 objset_t *os; 94 boolean_t byteswap; 95 bqueue_t q; 96 97 /* 98 * These three args are used to signal to the main thread that we're 99 * done. 100 */ 101 kmutex_t mutex; 102 kcondvar_t cv; 103 boolean_t done; 104 105 int err; 106 boolean_t resumable; 107 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 108 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 109 boolean_t full; /* this is a full send stream */ 110 uint64_t last_object; 111 uint64_t last_offset; 112 uint64_t max_object; /* highest object ID referenced in stream */ 113 uint64_t bytes_read; /* bytes read when current record created */ 114 115 list_t write_batch; 116 117 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 118 boolean_t or_crypt_params_present; 119 uint64_t or_firstobj; 120 uint64_t or_numslots; 121 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 122 uint8_t or_iv[ZIO_DATA_IV_LEN]; 123 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 124 boolean_t or_byteorder; 125 }; 126 127 typedef struct dmu_recv_begin_arg { 128 const char *drba_origin; 129 dmu_recv_cookie_t *drba_cookie; 130 cred_t *drba_cred; 131 proc_t *drba_proc; 132 dsl_crypto_params_t *drba_dcp; 133 } dmu_recv_begin_arg_t; 134 135 static void 136 byteswap_record(dmu_replay_record_t *drr) 137 { 138 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 139 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 140 drr->drr_type = BSWAP_32(drr->drr_type); 141 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 142 143 switch (drr->drr_type) { 144 case DRR_BEGIN: 145 DO64(drr_begin.drr_magic); 146 DO64(drr_begin.drr_versioninfo); 147 DO64(drr_begin.drr_creation_time); 148 DO32(drr_begin.drr_type); 149 DO32(drr_begin.drr_flags); 150 DO64(drr_begin.drr_toguid); 151 DO64(drr_begin.drr_fromguid); 152 break; 153 case DRR_OBJECT: 154 DO64(drr_object.drr_object); 155 DO32(drr_object.drr_type); 156 DO32(drr_object.drr_bonustype); 157 DO32(drr_object.drr_blksz); 158 DO32(drr_object.drr_bonuslen); 159 DO32(drr_object.drr_raw_bonuslen); 160 DO64(drr_object.drr_toguid); 161 DO64(drr_object.drr_maxblkid); 162 break; 163 case DRR_FREEOBJECTS: 164 DO64(drr_freeobjects.drr_firstobj); 165 DO64(drr_freeobjects.drr_numobjs); 166 DO64(drr_freeobjects.drr_toguid); 167 break; 168 case DRR_WRITE: 169 DO64(drr_write.drr_object); 170 DO32(drr_write.drr_type); 171 DO64(drr_write.drr_offset); 172 DO64(drr_write.drr_logical_size); 173 DO64(drr_write.drr_toguid); 174 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 175 DO64(drr_write.drr_key.ddk_prop); 176 DO64(drr_write.drr_compressed_size); 177 break; 178 case DRR_WRITE_BYREF: 179 DO64(drr_write_byref.drr_object); 180 DO64(drr_write_byref.drr_offset); 181 DO64(drr_write_byref.drr_length); 182 DO64(drr_write_byref.drr_toguid); 183 DO64(drr_write_byref.drr_refguid); 184 DO64(drr_write_byref.drr_refobject); 185 DO64(drr_write_byref.drr_refoffset); 186 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 187 drr_key.ddk_cksum); 188 DO64(drr_write_byref.drr_key.ddk_prop); 189 break; 190 case DRR_WRITE_EMBEDDED: 191 DO64(drr_write_embedded.drr_object); 192 DO64(drr_write_embedded.drr_offset); 193 DO64(drr_write_embedded.drr_length); 194 DO64(drr_write_embedded.drr_toguid); 195 DO32(drr_write_embedded.drr_lsize); 196 DO32(drr_write_embedded.drr_psize); 197 break; 198 case DRR_FREE: 199 DO64(drr_free.drr_object); 200 DO64(drr_free.drr_offset); 201 DO64(drr_free.drr_length); 202 DO64(drr_free.drr_toguid); 203 break; 204 case DRR_SPILL: 205 DO64(drr_spill.drr_object); 206 DO64(drr_spill.drr_length); 207 DO64(drr_spill.drr_toguid); 208 DO64(drr_spill.drr_compressed_size); 209 DO32(drr_spill.drr_type); 210 break; 211 case DRR_OBJECT_RANGE: 212 DO64(drr_object_range.drr_firstobj); 213 DO64(drr_object_range.drr_numslots); 214 DO64(drr_object_range.drr_toguid); 215 break; 216 case DRR_REDACT: 217 DO64(drr_redact.drr_object); 218 DO64(drr_redact.drr_offset); 219 DO64(drr_redact.drr_length); 220 DO64(drr_redact.drr_toguid); 221 break; 222 case DRR_END: 223 DO64(drr_end.drr_toguid); 224 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 225 break; 226 default: 227 break; 228 } 229 230 if (drr->drr_type != DRR_BEGIN) { 231 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 232 } 233 234 #undef DO64 235 #undef DO32 236 } 237 238 static boolean_t 239 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 240 { 241 for (int i = 0; i < num_snaps; i++) { 242 if (snaps[i] == guid) 243 return (B_TRUE); 244 } 245 return (B_FALSE); 246 } 247 248 /* 249 * Check that the new stream we're trying to receive is redacted with respect to 250 * a subset of the snapshots that the origin was redacted with respect to. For 251 * the reasons behind this, see the man page on redacted zfs sends and receives. 252 */ 253 static boolean_t 254 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 255 uint64_t *redact_snaps, uint64_t num_redact_snaps) 256 { 257 /* 258 * Short circuit the comparison; if we are redacted with respect to 259 * more snapshots than the origin, we can't be redacted with respect 260 * to a subset. 261 */ 262 if (num_redact_snaps > origin_num_snaps) { 263 return (B_FALSE); 264 } 265 266 for (int i = 0; i < num_redact_snaps; i++) { 267 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 268 redact_snaps[i])) { 269 return (B_FALSE); 270 } 271 } 272 return (B_TRUE); 273 } 274 275 static boolean_t 276 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 277 { 278 uint64_t *origin_snaps; 279 uint64_t origin_num_snaps; 280 dmu_recv_cookie_t *drc = drba->drba_cookie; 281 struct drr_begin *drrb = drc->drc_drrb; 282 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 283 int err = 0; 284 boolean_t ret = B_TRUE; 285 uint64_t *redact_snaps; 286 uint_t numredactsnaps; 287 288 /* 289 * If this is a full send stream, we're safe no matter what. 290 */ 291 if (drrb->drr_fromguid == 0) 292 return (ret); 293 294 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 295 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 296 297 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 298 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 299 0) { 300 /* 301 * If the send stream was sent from the redaction bookmark or 302 * the redacted version of the dataset, then we're safe. Verify 303 * that this is from the a compatible redaction bookmark or 304 * redacted dataset. 305 */ 306 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 307 redact_snaps, numredactsnaps)) { 308 err = EINVAL; 309 } 310 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 311 /* 312 * If the stream is redacted, it must be redacted with respect 313 * to a subset of what the origin is redacted with respect to. 314 * See case number 2 in the zfs man page section on redacted zfs 315 * send. 316 */ 317 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 318 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 319 320 if (err != 0 || !compatible_redact_snaps(origin_snaps, 321 origin_num_snaps, redact_snaps, numredactsnaps)) { 322 err = EINVAL; 323 } 324 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 325 drrb->drr_toguid)) { 326 /* 327 * If the stream isn't redacted but the origin is, this must be 328 * one of the snapshots the origin is redacted with respect to. 329 * See case number 1 in the zfs man page section on redacted zfs 330 * send. 331 */ 332 err = EINVAL; 333 } 334 335 if (err != 0) 336 ret = B_FALSE; 337 return (ret); 338 } 339 340 /* 341 * If we previously received a stream with --large-block, we don't support 342 * receiving an incremental on top of it without --large-block. This avoids 343 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 344 * records. 345 */ 346 static int 347 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 348 { 349 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 350 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 351 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 352 return (0); 353 } 354 355 static int 356 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 357 uint64_t fromguid, uint64_t featureflags) 358 { 359 uint64_t val; 360 uint64_t children; 361 int error; 362 dsl_pool_t *dp = ds->ds_dir->dd_pool; 363 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 364 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 365 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 366 367 /* Temporary clone name must not exist. */ 368 error = zap_lookup(dp->dp_meta_objset, 369 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 370 8, 1, &val); 371 if (error != ENOENT) 372 return (error == 0 ? SET_ERROR(EBUSY) : error); 373 374 /* Resume state must not be set. */ 375 if (dsl_dataset_has_resume_receive_state(ds)) 376 return (SET_ERROR(EBUSY)); 377 378 /* New snapshot name must not exist. */ 379 error = zap_lookup(dp->dp_meta_objset, 380 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 381 drba->drba_cookie->drc_tosnap, 8, 1, &val); 382 if (error != ENOENT) 383 return (error == 0 ? SET_ERROR(EEXIST) : error); 384 385 /* Must not have children if receiving a ZVOL. */ 386 error = zap_count(dp->dp_meta_objset, 387 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 388 if (error != 0) 389 return (error); 390 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 391 children > 0) 392 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 393 394 /* 395 * Check snapshot limit before receiving. We'll recheck again at the 396 * end, but might as well abort before receiving if we're already over 397 * the limit. 398 * 399 * Note that we do not check the file system limit with 400 * dsl_dir_fscount_check because the temporary %clones don't count 401 * against that limit. 402 */ 403 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 404 NULL, drba->drba_cred, drba->drba_proc); 405 if (error != 0) 406 return (error); 407 408 if (fromguid != 0) { 409 dsl_dataset_t *snap; 410 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 411 412 /* Can't perform a raw receive on top of a non-raw receive */ 413 if (!encrypted && raw) 414 return (SET_ERROR(EINVAL)); 415 416 /* Encryption is incompatible with embedded data */ 417 if (encrypted && embed) 418 return (SET_ERROR(EINVAL)); 419 420 /* Find snapshot in this dir that matches fromguid. */ 421 while (obj != 0) { 422 error = dsl_dataset_hold_obj(dp, obj, FTAG, 423 &snap); 424 if (error != 0) 425 return (SET_ERROR(ENODEV)); 426 if (snap->ds_dir != ds->ds_dir) { 427 dsl_dataset_rele(snap, FTAG); 428 return (SET_ERROR(ENODEV)); 429 } 430 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 431 break; 432 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 433 dsl_dataset_rele(snap, FTAG); 434 } 435 if (obj == 0) 436 return (SET_ERROR(ENODEV)); 437 438 if (drba->drba_cookie->drc_force) { 439 drba->drba_cookie->drc_fromsnapobj = obj; 440 } else { 441 /* 442 * If we are not forcing, there must be no 443 * changes since fromsnap. Raw sends have an 444 * additional constraint that requires that 445 * no "noop" snapshots exist between fromsnap 446 * and tosnap for the IVset checking code to 447 * work properly. 448 */ 449 if (dsl_dataset_modified_since_snap(ds, snap) || 450 (raw && 451 dsl_dataset_phys(ds)->ds_prev_snap_obj != 452 snap->ds_object)) { 453 dsl_dataset_rele(snap, FTAG); 454 return (SET_ERROR(ETXTBSY)); 455 } 456 drba->drba_cookie->drc_fromsnapobj = 457 ds->ds_prev->ds_object; 458 } 459 460 if (dsl_dataset_feature_is_active(snap, 461 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 462 snap)) { 463 dsl_dataset_rele(snap, FTAG); 464 return (SET_ERROR(EINVAL)); 465 } 466 467 error = recv_check_large_blocks(snap, featureflags); 468 if (error != 0) { 469 dsl_dataset_rele(snap, FTAG); 470 return (error); 471 } 472 473 dsl_dataset_rele(snap, FTAG); 474 } else { 475 /* if full, then must be forced */ 476 if (!drba->drba_cookie->drc_force) 477 return (SET_ERROR(EEXIST)); 478 479 /* 480 * We don't support using zfs recv -F to blow away 481 * encrypted filesystems. This would require the 482 * dsl dir to point to the old encryption key and 483 * the new one at the same time during the receive. 484 */ 485 if ((!encrypted && raw) || encrypted) 486 return (SET_ERROR(EINVAL)); 487 488 /* 489 * Perform the same encryption checks we would if 490 * we were creating a new dataset from scratch. 491 */ 492 if (!raw) { 493 boolean_t will_encrypt; 494 495 error = dmu_objset_create_crypt_check( 496 ds->ds_dir->dd_parent, drba->drba_dcp, 497 &will_encrypt); 498 if (error != 0) 499 return (error); 500 501 if (will_encrypt && embed) 502 return (SET_ERROR(EINVAL)); 503 } 504 } 505 506 return (0); 507 } 508 509 /* 510 * Check that any feature flags used in the data stream we're receiving are 511 * supported by the pool we are receiving into. 512 * 513 * Note that some of the features we explicitly check here have additional 514 * (implicit) features they depend on, but those dependencies are enforced 515 * through the zfeature_register() calls declaring the features that we 516 * explicitly check. 517 */ 518 static int 519 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 520 { 521 /* 522 * Check if there are any unsupported feature flags. 523 */ 524 if (!DMU_STREAM_SUPPORTED(featureflags)) { 525 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 526 } 527 528 /* Verify pool version supports SA if SA_SPILL feature set */ 529 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 530 spa_version(spa) < SPA_VERSION_SA) 531 return (SET_ERROR(ENOTSUP)); 532 533 /* 534 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 535 * and large_dnodes in the stream can only be used if those pool 536 * features are enabled because we don't attempt to decompress / 537 * un-embed / un-mooch / split up the blocks / dnodes during the 538 * receive process. 539 */ 540 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 541 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 542 return (SET_ERROR(ENOTSUP)); 543 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 544 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 545 return (SET_ERROR(ENOTSUP)); 546 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 547 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 548 return (SET_ERROR(ENOTSUP)); 549 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 550 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 551 return (SET_ERROR(ENOTSUP)); 552 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 553 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 554 return (SET_ERROR(ENOTSUP)); 555 556 /* 557 * Receiving redacted streams requires that redacted datasets are 558 * enabled. 559 */ 560 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 561 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 562 return (SET_ERROR(ENOTSUP)); 563 564 return (0); 565 } 566 567 static int 568 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 569 { 570 dmu_recv_begin_arg_t *drba = arg; 571 dsl_pool_t *dp = dmu_tx_pool(tx); 572 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 573 uint64_t fromguid = drrb->drr_fromguid; 574 int flags = drrb->drr_flags; 575 ds_hold_flags_t dsflags = 0; 576 int error; 577 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 578 dsl_dataset_t *ds; 579 const char *tofs = drba->drba_cookie->drc_tofs; 580 581 /* already checked */ 582 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 583 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 584 585 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 586 DMU_COMPOUNDSTREAM || 587 drrb->drr_type >= DMU_OST_NUMTYPES || 588 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 589 return (SET_ERROR(EINVAL)); 590 591 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 592 if (error != 0) 593 return (error); 594 595 /* Resumable receives require extensible datasets */ 596 if (drba->drba_cookie->drc_resumable && 597 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 598 return (SET_ERROR(ENOTSUP)); 599 600 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 601 /* raw receives require the encryption feature */ 602 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 603 return (SET_ERROR(ENOTSUP)); 604 605 /* embedded data is incompatible with encryption and raw recv */ 606 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 607 return (SET_ERROR(EINVAL)); 608 609 /* raw receives require spill block allocation flag */ 610 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 611 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 612 } else { 613 dsflags |= DS_HOLD_FLAG_DECRYPT; 614 } 615 616 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 617 if (error == 0) { 618 /* target fs already exists; recv into temp clone */ 619 620 /* Can't recv a clone into an existing fs */ 621 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 622 dsl_dataset_rele_flags(ds, dsflags, FTAG); 623 return (SET_ERROR(EINVAL)); 624 } 625 626 error = recv_begin_check_existing_impl(drba, ds, fromguid, 627 featureflags); 628 dsl_dataset_rele_flags(ds, dsflags, FTAG); 629 } else if (error == ENOENT) { 630 /* target fs does not exist; must be a full backup or clone */ 631 char buf[ZFS_MAX_DATASET_NAME_LEN]; 632 objset_t *os; 633 634 /* 635 * If it's a non-clone incremental, we are missing the 636 * target fs, so fail the recv. 637 */ 638 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 639 drba->drba_origin)) 640 return (SET_ERROR(ENOENT)); 641 642 /* 643 * If we're receiving a full send as a clone, and it doesn't 644 * contain all the necessary free records and freeobject 645 * records, reject it. 646 */ 647 if (fromguid == 0 && drba->drba_origin != NULL && 648 !(flags & DRR_FLAG_FREERECORDS)) 649 return (SET_ERROR(EINVAL)); 650 651 /* Open the parent of tofs */ 652 ASSERT3U(strlen(tofs), <, sizeof (buf)); 653 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 654 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 655 if (error != 0) 656 return (error); 657 658 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 659 drba->drba_origin == NULL) { 660 boolean_t will_encrypt; 661 662 /* 663 * Check that we aren't breaking any encryption rules 664 * and that we have all the parameters we need to 665 * create an encrypted dataset if necessary. If we are 666 * making an encrypted dataset the stream can't have 667 * embedded data. 668 */ 669 error = dmu_objset_create_crypt_check(ds->ds_dir, 670 drba->drba_dcp, &will_encrypt); 671 if (error != 0) { 672 dsl_dataset_rele(ds, FTAG); 673 return (error); 674 } 675 676 if (will_encrypt && 677 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 678 dsl_dataset_rele(ds, FTAG); 679 return (SET_ERROR(EINVAL)); 680 } 681 } 682 683 /* 684 * Check filesystem and snapshot limits before receiving. We'll 685 * recheck snapshot limits again at the end (we create the 686 * filesystems and increment those counts during begin_sync). 687 */ 688 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 689 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 690 drba->drba_cred, drba->drba_proc); 691 if (error != 0) { 692 dsl_dataset_rele(ds, FTAG); 693 return (error); 694 } 695 696 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 697 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 698 drba->drba_cred, drba->drba_proc); 699 if (error != 0) { 700 dsl_dataset_rele(ds, FTAG); 701 return (error); 702 } 703 704 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 705 error = dmu_objset_from_ds(ds, &os); 706 if (error != 0) { 707 dsl_dataset_rele(ds, FTAG); 708 return (error); 709 } 710 if (dmu_objset_type(os) != DMU_OST_ZFS) { 711 dsl_dataset_rele(ds, FTAG); 712 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 713 } 714 715 if (drba->drba_origin != NULL) { 716 dsl_dataset_t *origin; 717 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 718 dsflags, FTAG, &origin); 719 if (error != 0) { 720 dsl_dataset_rele(ds, FTAG); 721 return (error); 722 } 723 if (!origin->ds_is_snapshot) { 724 dsl_dataset_rele_flags(origin, dsflags, FTAG); 725 dsl_dataset_rele(ds, FTAG); 726 return (SET_ERROR(EINVAL)); 727 } 728 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 729 fromguid != 0) { 730 dsl_dataset_rele_flags(origin, dsflags, FTAG); 731 dsl_dataset_rele(ds, FTAG); 732 return (SET_ERROR(ENODEV)); 733 } 734 735 if (origin->ds_dir->dd_crypto_obj != 0 && 736 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 737 dsl_dataset_rele_flags(origin, dsflags, FTAG); 738 dsl_dataset_rele(ds, FTAG); 739 return (SET_ERROR(EINVAL)); 740 } 741 742 /* 743 * If the origin is redacted we need to verify that this 744 * send stream can safely be received on top of the 745 * origin. 746 */ 747 if (dsl_dataset_feature_is_active(origin, 748 SPA_FEATURE_REDACTED_DATASETS)) { 749 if (!redact_check(drba, origin)) { 750 dsl_dataset_rele_flags(origin, dsflags, 751 FTAG); 752 dsl_dataset_rele_flags(ds, dsflags, 753 FTAG); 754 return (SET_ERROR(EINVAL)); 755 } 756 } 757 758 error = recv_check_large_blocks(ds, featureflags); 759 if (error != 0) { 760 dsl_dataset_rele_flags(origin, dsflags, FTAG); 761 dsl_dataset_rele_flags(ds, dsflags, FTAG); 762 return (error); 763 } 764 765 dsl_dataset_rele_flags(origin, dsflags, FTAG); 766 } 767 768 dsl_dataset_rele(ds, FTAG); 769 error = 0; 770 } 771 return (error); 772 } 773 774 static void 775 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 776 { 777 dmu_recv_begin_arg_t *drba = arg; 778 dsl_pool_t *dp = dmu_tx_pool(tx); 779 objset_t *mos = dp->dp_meta_objset; 780 dmu_recv_cookie_t *drc = drba->drba_cookie; 781 struct drr_begin *drrb = drc->drc_drrb; 782 const char *tofs = drc->drc_tofs; 783 uint64_t featureflags = drc->drc_featureflags; 784 dsl_dataset_t *ds, *newds; 785 objset_t *os; 786 uint64_t dsobj; 787 ds_hold_flags_t dsflags = 0; 788 int error; 789 uint64_t crflags = 0; 790 dsl_crypto_params_t dummy_dcp = { 0 }; 791 dsl_crypto_params_t *dcp = drba->drba_dcp; 792 793 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 794 crflags |= DS_FLAG_CI_DATASET; 795 796 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 797 dsflags |= DS_HOLD_FLAG_DECRYPT; 798 799 /* 800 * Raw, non-incremental recvs always use a dummy dcp with 801 * the raw cmd set. Raw incremental recvs do not use a dcp 802 * since the encryption parameters are already set in stone. 803 */ 804 if (dcp == NULL && drrb->drr_fromguid == 0 && 805 drba->drba_origin == NULL) { 806 ASSERT3P(dcp, ==, NULL); 807 dcp = &dummy_dcp; 808 809 if (featureflags & DMU_BACKUP_FEATURE_RAW) 810 dcp->cp_cmd = DCP_CMD_RAW_RECV; 811 } 812 813 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 814 if (error == 0) { 815 /* create temporary clone */ 816 dsl_dataset_t *snap = NULL; 817 818 if (drba->drba_cookie->drc_fromsnapobj != 0) { 819 VERIFY0(dsl_dataset_hold_obj(dp, 820 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 821 ASSERT3P(dcp, ==, NULL); 822 } 823 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 824 snap, crflags, drba->drba_cred, dcp, tx); 825 if (drba->drba_cookie->drc_fromsnapobj != 0) 826 dsl_dataset_rele(snap, FTAG); 827 dsl_dataset_rele_flags(ds, dsflags, FTAG); 828 } else { 829 dsl_dir_t *dd; 830 const char *tail; 831 dsl_dataset_t *origin = NULL; 832 833 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 834 835 if (drba->drba_origin != NULL) { 836 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 837 FTAG, &origin)); 838 ASSERT3P(dcp, ==, NULL); 839 } 840 841 /* Create new dataset. */ 842 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 843 origin, crflags, drba->drba_cred, dcp, tx); 844 if (origin != NULL) 845 dsl_dataset_rele(origin, FTAG); 846 dsl_dir_rele(dd, FTAG); 847 drc->drc_newfs = B_TRUE; 848 } 849 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 850 &newds)); 851 if (dsl_dataset_feature_is_active(newds, 852 SPA_FEATURE_REDACTED_DATASETS)) { 853 /* 854 * If the origin dataset is redacted, the child will be redacted 855 * when we create it. We clear the new dataset's 856 * redaction info; if it should be redacted, we'll fill 857 * in its information later. 858 */ 859 dsl_dataset_deactivate_feature(newds, 860 SPA_FEATURE_REDACTED_DATASETS, tx); 861 } 862 VERIFY0(dmu_objset_from_ds(newds, &os)); 863 864 if (drc->drc_resumable) { 865 dsl_dataset_zapify(newds, tx); 866 if (drrb->drr_fromguid != 0) { 867 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 868 8, 1, &drrb->drr_fromguid, tx)); 869 } 870 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 871 8, 1, &drrb->drr_toguid, tx)); 872 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 873 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 874 uint64_t one = 1; 875 uint64_t zero = 0; 876 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 877 8, 1, &one, tx)); 878 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 879 8, 1, &zero, tx)); 880 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 881 8, 1, &zero, tx)); 882 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 883 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 884 8, 1, &one, tx)); 885 } 886 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 887 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 888 8, 1, &one, tx)); 889 } 890 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 891 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 892 8, 1, &one, tx)); 893 } 894 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 895 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 896 8, 1, &one, tx)); 897 } 898 899 uint64_t *redact_snaps; 900 uint_t numredactsnaps; 901 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 902 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 903 &numredactsnaps) == 0) { 904 VERIFY0(zap_add(mos, dsobj, 905 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 906 sizeof (*redact_snaps), numredactsnaps, 907 redact_snaps, tx)); 908 } 909 } 910 911 /* 912 * Usually the os->os_encrypted value is tied to the presence of a 913 * DSL Crypto Key object in the dd. However, that will not be received 914 * until dmu_recv_stream(), so we set the value manually for now. 915 */ 916 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 917 os->os_encrypted = B_TRUE; 918 drba->drba_cookie->drc_raw = B_TRUE; 919 } 920 921 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 922 uint64_t *redact_snaps; 923 uint_t numredactsnaps; 924 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 925 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 926 dsl_dataset_activate_redaction(newds, redact_snaps, 927 numredactsnaps, tx); 928 } 929 930 dmu_buf_will_dirty(newds->ds_dbuf, tx); 931 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 932 933 /* 934 * If we actually created a non-clone, we need to create the objset 935 * in our new dataset. If this is a raw send we postpone this until 936 * dmu_recv_stream() so that we can allocate the metadnode with the 937 * properties from the DRR_BEGIN payload. 938 */ 939 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 940 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 941 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 942 (void) dmu_objset_create_impl(dp->dp_spa, 943 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 944 } 945 rrw_exit(&newds->ds_bp_rwlock, FTAG); 946 947 drba->drba_cookie->drc_ds = newds; 948 drba->drba_cookie->drc_os = os; 949 950 spa_history_log_internal_ds(newds, "receive", tx, " "); 951 } 952 953 static int 954 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 955 { 956 dmu_recv_begin_arg_t *drba = arg; 957 dmu_recv_cookie_t *drc = drba->drba_cookie; 958 dsl_pool_t *dp = dmu_tx_pool(tx); 959 struct drr_begin *drrb = drc->drc_drrb; 960 int error; 961 ds_hold_flags_t dsflags = 0; 962 dsl_dataset_t *ds; 963 const char *tofs = drc->drc_tofs; 964 965 /* already checked */ 966 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 967 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 968 969 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 970 DMU_COMPOUNDSTREAM || 971 drrb->drr_type >= DMU_OST_NUMTYPES) 972 return (SET_ERROR(EINVAL)); 973 974 /* 975 * This is mostly a sanity check since we should have already done these 976 * checks during a previous attempt to receive the data. 977 */ 978 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 979 dp->dp_spa); 980 if (error != 0) 981 return (error); 982 983 /* 6 extra bytes for /%recv */ 984 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 985 986 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 987 tofs, recv_clone_name); 988 989 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 990 /* raw receives require spill block allocation flag */ 991 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 992 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 993 } else { 994 dsflags |= DS_HOLD_FLAG_DECRYPT; 995 } 996 997 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 998 /* %recv does not exist; continue in tofs */ 999 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 1000 if (error != 0) 1001 return (error); 1002 } 1003 1004 /* check that ds is marked inconsistent */ 1005 if (!DS_IS_INCONSISTENT(ds)) { 1006 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1007 return (SET_ERROR(EINVAL)); 1008 } 1009 1010 /* check that there is resuming data, and that the toguid matches */ 1011 if (!dsl_dataset_is_zapified(ds)) { 1012 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1013 return (SET_ERROR(EINVAL)); 1014 } 1015 uint64_t val; 1016 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1017 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1018 if (error != 0 || drrb->drr_toguid != val) { 1019 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1020 return (SET_ERROR(EINVAL)); 1021 } 1022 1023 /* 1024 * Check if the receive is still running. If so, it will be owned. 1025 * Note that nothing else can own the dataset (e.g. after the receive 1026 * fails) because it will be marked inconsistent. 1027 */ 1028 if (dsl_dataset_has_owner(ds)) { 1029 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1030 return (SET_ERROR(EBUSY)); 1031 } 1032 1033 /* There should not be any snapshots of this fs yet. */ 1034 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1035 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1036 return (SET_ERROR(EINVAL)); 1037 } 1038 1039 /* 1040 * Note: resume point will be checked when we process the first WRITE 1041 * record. 1042 */ 1043 1044 /* check that the origin matches */ 1045 val = 0; 1046 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1047 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1048 if (drrb->drr_fromguid != val) { 1049 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1050 return (SET_ERROR(EINVAL)); 1051 } 1052 1053 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1054 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1055 1056 /* 1057 * If we're resuming, and the send is redacted, then the original send 1058 * must have been redacted, and must have been redacted with respect to 1059 * the same snapshots. 1060 */ 1061 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1062 uint64_t num_ds_redact_snaps; 1063 uint64_t *ds_redact_snaps; 1064 1065 uint_t num_stream_redact_snaps; 1066 uint64_t *stream_redact_snaps; 1067 1068 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1069 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1070 &num_stream_redact_snaps) != 0) { 1071 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1072 return (SET_ERROR(EINVAL)); 1073 } 1074 1075 if (!dsl_dataset_get_uint64_array_feature(ds, 1076 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1077 &ds_redact_snaps)) { 1078 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1079 return (SET_ERROR(EINVAL)); 1080 } 1081 1082 for (int i = 0; i < num_ds_redact_snaps; i++) { 1083 if (!redact_snaps_contains(ds_redact_snaps, 1084 num_ds_redact_snaps, stream_redact_snaps[i])) { 1085 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1086 return (SET_ERROR(EINVAL)); 1087 } 1088 } 1089 } 1090 1091 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1092 if (error != 0) { 1093 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1094 return (error); 1095 } 1096 1097 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1098 return (0); 1099 } 1100 1101 static void 1102 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1103 { 1104 dmu_recv_begin_arg_t *drba = arg; 1105 dsl_pool_t *dp = dmu_tx_pool(tx); 1106 const char *tofs = drba->drba_cookie->drc_tofs; 1107 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1108 dsl_dataset_t *ds; 1109 ds_hold_flags_t dsflags = 0; 1110 /* 6 extra bytes for /%recv */ 1111 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1112 1113 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1114 recv_clone_name); 1115 1116 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1117 drba->drba_cookie->drc_raw = B_TRUE; 1118 } else { 1119 dsflags |= DS_HOLD_FLAG_DECRYPT; 1120 } 1121 1122 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1123 != 0) { 1124 /* %recv does not exist; continue in tofs */ 1125 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1126 &ds)); 1127 drba->drba_cookie->drc_newfs = B_TRUE; 1128 } 1129 1130 ASSERT(DS_IS_INCONSISTENT(ds)); 1131 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1132 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1133 drba->drba_cookie->drc_raw); 1134 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1135 1136 drba->drba_cookie->drc_ds = ds; 1137 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1138 drba->drba_cookie->drc_should_save = B_TRUE; 1139 1140 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1141 } 1142 1143 /* 1144 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1145 * succeeds; otherwise we will leak the holds on the datasets. 1146 */ 1147 int 1148 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1149 boolean_t force, boolean_t resumable, nvlist_t *localprops, 1150 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, 1151 zfs_file_t *fp, offset_t *voffp) 1152 { 1153 dmu_recv_begin_arg_t drba = { 0 }; 1154 int err; 1155 1156 bzero(drc, sizeof (dmu_recv_cookie_t)); 1157 drc->drc_drr_begin = drr_begin; 1158 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1159 drc->drc_tosnap = tosnap; 1160 drc->drc_tofs = tofs; 1161 drc->drc_force = force; 1162 drc->drc_resumable = resumable; 1163 drc->drc_cred = CRED(); 1164 drc->drc_proc = curproc; 1165 drc->drc_clone = (origin != NULL); 1166 1167 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1168 drc->drc_byteswap = B_TRUE; 1169 (void) fletcher_4_incremental_byteswap(drr_begin, 1170 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1171 byteswap_record(drr_begin); 1172 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1173 (void) fletcher_4_incremental_native(drr_begin, 1174 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1175 } else { 1176 return (SET_ERROR(EINVAL)); 1177 } 1178 1179 drc->drc_fp = fp; 1180 drc->drc_voff = *voffp; 1181 drc->drc_featureflags = 1182 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1183 1184 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1185 void *payload = NULL; 1186 if (payloadlen != 0) 1187 payload = kmem_alloc(payloadlen, KM_SLEEP); 1188 1189 err = receive_read_payload_and_next_header(drc, payloadlen, 1190 payload); 1191 if (err != 0) { 1192 kmem_free(payload, payloadlen); 1193 return (err); 1194 } 1195 if (payloadlen != 0) { 1196 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1197 KM_SLEEP); 1198 kmem_free(payload, payloadlen); 1199 if (err != 0) { 1200 kmem_free(drc->drc_next_rrd, 1201 sizeof (*drc->drc_next_rrd)); 1202 return (err); 1203 } 1204 } 1205 1206 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1207 drc->drc_spill = B_TRUE; 1208 1209 drba.drba_origin = origin; 1210 drba.drba_cookie = drc; 1211 drba.drba_cred = CRED(); 1212 drba.drba_proc = curproc; 1213 1214 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1215 err = dsl_sync_task(tofs, 1216 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1217 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1218 } else { 1219 1220 /* 1221 * For non-raw, non-incremental, non-resuming receives the 1222 * user can specify encryption parameters on the command line 1223 * with "zfs recv -o". For these receives we create a dcp and 1224 * pass it to the sync task. Creating the dcp will implicitly 1225 * remove the encryption params from the localprops nvlist, 1226 * which avoids errors when trying to set these normally 1227 * read-only properties. Any other kind of receive that 1228 * attempts to set these properties will fail as a result. 1229 */ 1230 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1231 DMU_BACKUP_FEATURE_RAW) == 0 && 1232 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1233 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1234 localprops, hidden_args, &drba.drba_dcp); 1235 } 1236 1237 if (err == 0) { 1238 err = dsl_sync_task(tofs, 1239 dmu_recv_begin_check, dmu_recv_begin_sync, 1240 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1241 dsl_crypto_params_free(drba.drba_dcp, !!err); 1242 } 1243 } 1244 1245 if (err != 0) { 1246 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1247 nvlist_free(drc->drc_begin_nvl); 1248 } 1249 return (err); 1250 } 1251 1252 static int 1253 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1254 { 1255 int done = 0; 1256 1257 /* 1258 * The code doesn't rely on this (lengths being multiples of 8). See 1259 * comment in dump_bytes. 1260 */ 1261 ASSERT(len % 8 == 0 || 1262 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1263 1264 while (done < len) { 1265 ssize_t resid; 1266 zfs_file_t *fp = drc->drc_fp; 1267 int err = zfs_file_read(fp, (char *)buf + done, 1268 len - done, &resid); 1269 if (resid == len - done) { 1270 /* 1271 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1272 * that the receive was interrupted and can 1273 * potentially be resumed. 1274 */ 1275 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1276 } 1277 drc->drc_voff += len - done - resid; 1278 done = len - resid; 1279 if (err != 0) 1280 return (err); 1281 } 1282 1283 drc->drc_bytes_read += len; 1284 1285 ASSERT3U(done, ==, len); 1286 return (0); 1287 } 1288 1289 static inline uint8_t 1290 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1291 { 1292 if (bonus_type == DMU_OT_SA) { 1293 return (1); 1294 } else { 1295 return (1 + 1296 ((DN_OLD_MAX_BONUSLEN - 1297 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1298 } 1299 } 1300 1301 static void 1302 save_resume_state(struct receive_writer_arg *rwa, 1303 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1304 { 1305 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1306 1307 if (!rwa->resumable) 1308 return; 1309 1310 /* 1311 * We use ds_resume_bytes[] != 0 to indicate that we need to 1312 * update this on disk, so it must not be 0. 1313 */ 1314 ASSERT(rwa->bytes_read != 0); 1315 1316 /* 1317 * We only resume from write records, which have a valid 1318 * (non-meta-dnode) object number. 1319 */ 1320 ASSERT(object != 0); 1321 1322 /* 1323 * For resuming to work correctly, we must receive records in order, 1324 * sorted by object,offset. This is checked by the callers, but 1325 * assert it here for good measure. 1326 */ 1327 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1328 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1329 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1330 ASSERT3U(rwa->bytes_read, >=, 1331 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1332 1333 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1334 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1335 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1336 } 1337 1338 static int 1339 receive_object_is_same_generation(objset_t *os, uint64_t object, 1340 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1341 const void *new_bonus, boolean_t *samegenp) 1342 { 1343 zfs_file_info_t zoi; 1344 int err; 1345 1346 dmu_buf_t *old_bonus_dbuf; 1347 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1348 if (err != 0) 1349 return (err); 1350 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1351 &zoi); 1352 dmu_buf_rele(old_bonus_dbuf, FTAG); 1353 if (err != 0) 1354 return (err); 1355 uint64_t old_gen = zoi.zfi_generation; 1356 1357 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1358 if (err != 0) 1359 return (err); 1360 uint64_t new_gen = zoi.zfi_generation; 1361 1362 *samegenp = (old_gen == new_gen); 1363 return (0); 1364 } 1365 1366 static int 1367 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1368 const struct drr_object *drro, const dmu_object_info_t *doi, 1369 const void *bonus_data, 1370 uint64_t *object_to_hold, uint32_t *new_blksz) 1371 { 1372 uint32_t indblksz = drro->drr_indblkshift ? 1373 1ULL << drro->drr_indblkshift : 0; 1374 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1375 drro->drr_bonuslen); 1376 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1377 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1378 boolean_t do_free_range = B_FALSE; 1379 int err; 1380 1381 *object_to_hold = drro->drr_object; 1382 1383 /* nblkptr should be bounded by the bonus size and type */ 1384 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1385 return (SET_ERROR(EINVAL)); 1386 1387 /* 1388 * After the previous send stream, the sending system may 1389 * have freed this object, and then happened to re-allocate 1390 * this object number in a later txg. In this case, we are 1391 * receiving a different logical file, and the block size may 1392 * appear to be different. i.e. we may have a different 1393 * block size for this object than what the send stream says. 1394 * In this case we need to remove the object's contents, 1395 * so that its structure can be changed and then its contents 1396 * entirely replaced by subsequent WRITE records. 1397 * 1398 * If this is a -L (--large-block) incremental stream, and 1399 * the previous stream was not -L, the block size may appear 1400 * to increase. i.e. we may have a smaller block size for 1401 * this object than what the send stream says. In this case 1402 * we need to keep the object's contents and block size 1403 * intact, so that we don't lose parts of the object's 1404 * contents that are not changed by this incremental send 1405 * stream. 1406 * 1407 * We can distinguish between the two above cases by using 1408 * the ZPL's generation number (see 1409 * receive_object_is_same_generation()). However, we only 1410 * want to rely on the generation number when absolutely 1411 * necessary, because with raw receives, the generation is 1412 * encrypted. We also want to minimize dependence on the 1413 * ZPL, so that other types of datasets can also be received 1414 * (e.g. ZVOLs, although note that ZVOLS currently do not 1415 * reallocate their objects or change their structure). 1416 * Therefore, we check a number of different cases where we 1417 * know it is safe to discard the object's contents, before 1418 * using the ZPL's generation number to make the above 1419 * distinction. 1420 */ 1421 if (drro->drr_blksz != doi->doi_data_block_size) { 1422 if (rwa->raw) { 1423 /* 1424 * RAW streams always have large blocks, so 1425 * we are sure that the data is not needed 1426 * due to changing --large-block to be on. 1427 * Which is fortunate since the bonus buffer 1428 * (which contains the ZPL generation) is 1429 * encrypted, and the key might not be 1430 * loaded. 1431 */ 1432 do_free_range = B_TRUE; 1433 } else if (rwa->full) { 1434 /* 1435 * This is a full send stream, so it always 1436 * replaces what we have. Even if the 1437 * generation numbers happen to match, this 1438 * can not actually be the same logical file. 1439 * This is relevant when receiving a full 1440 * send as a clone. 1441 */ 1442 do_free_range = B_TRUE; 1443 } else if (drro->drr_type != 1444 DMU_OT_PLAIN_FILE_CONTENTS || 1445 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1446 /* 1447 * PLAIN_FILE_CONTENTS are the only type of 1448 * objects that have ever been stored with 1449 * large blocks, so we don't need the special 1450 * logic below. ZAP blocks can shrink (when 1451 * there's only one block), so we don't want 1452 * to hit the error below about block size 1453 * only increasing. 1454 */ 1455 do_free_range = B_TRUE; 1456 } else if (doi->doi_max_offset <= 1457 doi->doi_data_block_size) { 1458 /* 1459 * There is only one block. We can free it, 1460 * because its contents will be replaced by a 1461 * WRITE record. This can not be the no-L -> 1462 * -L case, because the no-L case would have 1463 * resulted in multiple blocks. If we 1464 * supported -L -> no-L, it would not be safe 1465 * to free the file's contents. Fortunately, 1466 * that is not allowed (see 1467 * recv_check_large_blocks()). 1468 */ 1469 do_free_range = B_TRUE; 1470 } else { 1471 boolean_t is_same_gen; 1472 err = receive_object_is_same_generation(rwa->os, 1473 drro->drr_object, doi->doi_bonus_type, 1474 drro->drr_bonustype, bonus_data, &is_same_gen); 1475 if (err != 0) 1476 return (SET_ERROR(EINVAL)); 1477 1478 if (is_same_gen) { 1479 /* 1480 * This is the same logical file, and 1481 * the block size must be increasing. 1482 * It could only decrease if 1483 * --large-block was changed to be 1484 * off, which is checked in 1485 * recv_check_large_blocks(). 1486 */ 1487 if (drro->drr_blksz <= 1488 doi->doi_data_block_size) 1489 return (SET_ERROR(EINVAL)); 1490 /* 1491 * We keep the existing blocksize and 1492 * contents. 1493 */ 1494 *new_blksz = 1495 doi->doi_data_block_size; 1496 } else { 1497 do_free_range = B_TRUE; 1498 } 1499 } 1500 } 1501 1502 /* nblkptr can only decrease if the object was reallocated */ 1503 if (nblkptr < doi->doi_nblkptr) 1504 do_free_range = B_TRUE; 1505 1506 /* number of slots can only change on reallocation */ 1507 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1508 do_free_range = B_TRUE; 1509 1510 /* 1511 * For raw sends we also check a few other fields to 1512 * ensure we are preserving the objset structure exactly 1513 * as it was on the receive side: 1514 * - A changed indirect block size 1515 * - A smaller nlevels 1516 */ 1517 if (rwa->raw) { 1518 if (indblksz != doi->doi_metadata_block_size) 1519 do_free_range = B_TRUE; 1520 if (drro->drr_nlevels < doi->doi_indirection) 1521 do_free_range = B_TRUE; 1522 } 1523 1524 if (do_free_range) { 1525 err = dmu_free_long_range(rwa->os, drro->drr_object, 1526 0, DMU_OBJECT_END); 1527 if (err != 0) 1528 return (SET_ERROR(EINVAL)); 1529 } 1530 1531 /* 1532 * The dmu does not currently support decreasing nlevels 1533 * or changing the number of dnode slots on an object. For 1534 * non-raw sends, this does not matter and the new object 1535 * can just use the previous one's nlevels. For raw sends, 1536 * however, the structure of the received dnode (including 1537 * nlevels and dnode slots) must match that of the send 1538 * side. Therefore, instead of using dmu_object_reclaim(), 1539 * we must free the object completely and call 1540 * dmu_object_claim_dnsize() instead. 1541 */ 1542 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || 1543 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1544 err = dmu_free_long_object(rwa->os, drro->drr_object); 1545 if (err != 0) 1546 return (SET_ERROR(EINVAL)); 1547 1548 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1549 *object_to_hold = DMU_NEW_OBJECT; 1550 } 1551 1552 /* 1553 * For raw receives, free everything beyond the new incoming 1554 * maxblkid. Normally this would be done with a DRR_FREE 1555 * record that would come after this DRR_OBJECT record is 1556 * processed. However, for raw receives we manually set the 1557 * maxblkid from the drr_maxblkid and so we must first free 1558 * everything above that blkid to ensure the DMU is always 1559 * consistent with itself. We will never free the first block 1560 * of the object here because a maxblkid of 0 could indicate 1561 * an object with a single block or one with no blocks. This 1562 * free may be skipped when dmu_free_long_range() was called 1563 * above since it covers the entire object's contents. 1564 */ 1565 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1566 err = dmu_free_long_range(rwa->os, drro->drr_object, 1567 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1568 DMU_OBJECT_END); 1569 if (err != 0) 1570 return (SET_ERROR(EINVAL)); 1571 } 1572 return (0); 1573 } 1574 1575 noinline static int 1576 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1577 void *data) 1578 { 1579 dmu_object_info_t doi; 1580 dmu_tx_t *tx; 1581 int err; 1582 uint32_t new_blksz = drro->drr_blksz; 1583 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1584 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1585 1586 if (drro->drr_type == DMU_OT_NONE || 1587 !DMU_OT_IS_VALID(drro->drr_type) || 1588 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1589 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1590 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1591 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1592 drro->drr_blksz < SPA_MINBLOCKSIZE || 1593 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1594 drro->drr_bonuslen > 1595 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1596 dn_slots > 1597 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1598 return (SET_ERROR(EINVAL)); 1599 } 1600 1601 if (rwa->raw) { 1602 /* 1603 * We should have received a DRR_OBJECT_RANGE record 1604 * containing this block and stored it in rwa. 1605 */ 1606 if (drro->drr_object < rwa->or_firstobj || 1607 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1608 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1609 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1610 drro->drr_nlevels > DN_MAX_LEVELS || 1611 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1612 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1613 drro->drr_raw_bonuslen) 1614 return (SET_ERROR(EINVAL)); 1615 } else { 1616 /* 1617 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1618 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1619 */ 1620 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1621 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1622 return (SET_ERROR(EINVAL)); 1623 } 1624 1625 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1626 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1627 return (SET_ERROR(EINVAL)); 1628 } 1629 } 1630 1631 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1632 1633 if (err != 0 && err != ENOENT && err != EEXIST) 1634 return (SET_ERROR(EINVAL)); 1635 1636 if (drro->drr_object > rwa->max_object) 1637 rwa->max_object = drro->drr_object; 1638 1639 /* 1640 * If we are losing blkptrs or changing the block size this must 1641 * be a new file instance. We must clear out the previous file 1642 * contents before we can change this type of metadata in the dnode. 1643 * Raw receives will also check that the indirect structure of the 1644 * dnode hasn't changed. 1645 */ 1646 uint64_t object_to_hold; 1647 if (err == 0) { 1648 err = receive_handle_existing_object(rwa, drro, &doi, data, 1649 &object_to_hold, &new_blksz); 1650 } else if (err == EEXIST) { 1651 /* 1652 * The object requested is currently an interior slot of a 1653 * multi-slot dnode. This will be resolved when the next txg 1654 * is synced out, since the send stream will have told us 1655 * to free this slot when we freed the associated dnode 1656 * earlier in the stream. 1657 */ 1658 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1659 1660 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1661 return (SET_ERROR(EINVAL)); 1662 1663 /* object was freed and we are about to allocate a new one */ 1664 object_to_hold = DMU_NEW_OBJECT; 1665 } else { 1666 /* object is free and we are about to allocate a new one */ 1667 object_to_hold = DMU_NEW_OBJECT; 1668 } 1669 1670 /* 1671 * If this is a multi-slot dnode there is a chance that this 1672 * object will expand into a slot that is already used by 1673 * another object from the previous snapshot. We must free 1674 * these objects before we attempt to allocate the new dnode. 1675 */ 1676 if (dn_slots > 1) { 1677 boolean_t need_sync = B_FALSE; 1678 1679 for (uint64_t slot = drro->drr_object + 1; 1680 slot < drro->drr_object + dn_slots; 1681 slot++) { 1682 dmu_object_info_t slot_doi; 1683 1684 err = dmu_object_info(rwa->os, slot, &slot_doi); 1685 if (err == ENOENT || err == EEXIST) 1686 continue; 1687 else if (err != 0) 1688 return (err); 1689 1690 err = dmu_free_long_object(rwa->os, slot); 1691 if (err != 0) 1692 return (err); 1693 1694 need_sync = B_TRUE; 1695 } 1696 1697 if (need_sync) 1698 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1699 } 1700 1701 tx = dmu_tx_create(rwa->os); 1702 dmu_tx_hold_bonus(tx, object_to_hold); 1703 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1704 err = dmu_tx_assign(tx, TXG_WAIT); 1705 if (err != 0) { 1706 dmu_tx_abort(tx); 1707 return (err); 1708 } 1709 1710 if (object_to_hold == DMU_NEW_OBJECT) { 1711 /* Currently free, wants to be allocated */ 1712 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1713 drro->drr_type, new_blksz, 1714 drro->drr_bonustype, drro->drr_bonuslen, 1715 dn_slots << DNODE_SHIFT, tx); 1716 } else if (drro->drr_type != doi.doi_type || 1717 new_blksz != doi.doi_data_block_size || 1718 drro->drr_bonustype != doi.doi_bonus_type || 1719 drro->drr_bonuslen != doi.doi_bonus_size) { 1720 /* Currently allocated, but with different properties */ 1721 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1722 drro->drr_type, new_blksz, 1723 drro->drr_bonustype, drro->drr_bonuslen, 1724 dn_slots << DNODE_SHIFT, rwa->spill ? 1725 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1726 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1727 /* 1728 * Currently allocated, the existing version of this object 1729 * may reference a spill block that is no longer allocated 1730 * at the source and needs to be freed. 1731 */ 1732 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1733 } 1734 1735 if (err != 0) { 1736 dmu_tx_commit(tx); 1737 return (SET_ERROR(EINVAL)); 1738 } 1739 1740 if (rwa->or_crypt_params_present) { 1741 /* 1742 * Set the crypt params for the buffer associated with this 1743 * range of dnodes. This causes the blkptr_t to have the 1744 * same crypt params (byteorder, salt, iv, mac) as on the 1745 * sending side. 1746 * 1747 * Since we are committing this tx now, it is possible for 1748 * the dnode block to end up on-disk with the incorrect MAC, 1749 * if subsequent objects in this block are received in a 1750 * different txg. However, since the dataset is marked as 1751 * inconsistent, no code paths will do a non-raw read (or 1752 * decrypt the block / verify the MAC). The receive code and 1753 * scrub code can safely do raw reads and verify the 1754 * checksum. They don't need to verify the MAC. 1755 */ 1756 dmu_buf_t *db = NULL; 1757 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1758 1759 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1760 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1761 if (err != 0) { 1762 dmu_tx_commit(tx); 1763 return (SET_ERROR(EINVAL)); 1764 } 1765 1766 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1767 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1768 1769 dmu_buf_rele(db, FTAG); 1770 1771 rwa->or_crypt_params_present = B_FALSE; 1772 } 1773 1774 dmu_object_set_checksum(rwa->os, drro->drr_object, 1775 drro->drr_checksumtype, tx); 1776 dmu_object_set_compress(rwa->os, drro->drr_object, 1777 drro->drr_compress, tx); 1778 1779 /* handle more restrictive dnode structuring for raw recvs */ 1780 if (rwa->raw) { 1781 /* 1782 * Set the indirect block size, block shift, nlevels. 1783 * This will not fail because we ensured all of the 1784 * blocks were freed earlier if this is a new object. 1785 * For non-new objects block size and indirect block 1786 * shift cannot change and nlevels can only increase. 1787 */ 1788 ASSERT3U(new_blksz, ==, drro->drr_blksz); 1789 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1790 drro->drr_blksz, drro->drr_indblkshift, tx)); 1791 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1792 drro->drr_nlevels, tx)); 1793 1794 /* 1795 * Set the maxblkid. This will always succeed because 1796 * we freed all blocks beyond the new maxblkid above. 1797 */ 1798 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1799 drro->drr_maxblkid, tx)); 1800 } 1801 1802 if (data != NULL) { 1803 dmu_buf_t *db; 1804 dnode_t *dn; 1805 uint32_t flags = DMU_READ_NO_PREFETCH; 1806 1807 if (rwa->raw) 1808 flags |= DMU_READ_NO_DECRYPT; 1809 1810 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1811 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1812 1813 dmu_buf_will_dirty(db, tx); 1814 1815 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1816 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1817 1818 /* 1819 * Raw bonus buffers have their byteorder determined by the 1820 * DRR_OBJECT_RANGE record. 1821 */ 1822 if (rwa->byteswap && !rwa->raw) { 1823 dmu_object_byteswap_t byteswap = 1824 DMU_OT_BYTESWAP(drro->drr_bonustype); 1825 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1826 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1827 } 1828 dmu_buf_rele(db, FTAG); 1829 dnode_rele(dn, FTAG); 1830 } 1831 dmu_tx_commit(tx); 1832 1833 return (0); 1834 } 1835 1836 /* ARGSUSED */ 1837 noinline static int 1838 receive_freeobjects(struct receive_writer_arg *rwa, 1839 struct drr_freeobjects *drrfo) 1840 { 1841 uint64_t obj; 1842 int next_err = 0; 1843 1844 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1845 return (SET_ERROR(EINVAL)); 1846 1847 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1848 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 1849 obj < DN_MAX_OBJECT && next_err == 0; 1850 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1851 dmu_object_info_t doi; 1852 int err; 1853 1854 err = dmu_object_info(rwa->os, obj, &doi); 1855 if (err == ENOENT) 1856 continue; 1857 else if (err != 0) 1858 return (err); 1859 1860 err = dmu_free_long_object(rwa->os, obj); 1861 1862 if (err != 0) 1863 return (err); 1864 } 1865 if (next_err != ESRCH) 1866 return (next_err); 1867 return (0); 1868 } 1869 1870 /* 1871 * Note: if this fails, the caller will clean up any records left on the 1872 * rwa->write_batch list. 1873 */ 1874 static int 1875 flush_write_batch_impl(struct receive_writer_arg *rwa) 1876 { 1877 dnode_t *dn; 1878 int err; 1879 1880 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 1881 return (SET_ERROR(EINVAL)); 1882 1883 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 1884 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 1885 1886 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 1887 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 1888 1889 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 1890 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 1891 1892 dmu_tx_t *tx = dmu_tx_create(rwa->os); 1893 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 1894 last_drrw->drr_offset - first_drrw->drr_offset + 1895 last_drrw->drr_logical_size); 1896 err = dmu_tx_assign(tx, TXG_WAIT); 1897 if (err != 0) { 1898 dmu_tx_abort(tx); 1899 dnode_rele(dn, FTAG); 1900 return (err); 1901 } 1902 1903 struct receive_record_arg *rrd; 1904 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 1905 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 1906 arc_buf_t *abuf = rrd->arc_buf; 1907 1908 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 1909 1910 if (rwa->byteswap && !arc_is_encrypted(abuf) && 1911 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 1912 dmu_object_byteswap_t byteswap = 1913 DMU_OT_BYTESWAP(drrw->drr_type); 1914 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 1915 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1916 } 1917 1918 /* 1919 * If we are receiving an incremental large-block stream into 1920 * a dataset that previously did a non-large-block receive, 1921 * the WRITE record may be larger than the object's block 1922 * size. dmu_assign_arcbuf_by_dnode() handles this as long 1923 * as the arcbuf is not compressed, so decompress it here if 1924 * necessary. 1925 */ 1926 if (drrw->drr_logical_size != dn->dn_datablksz && 1927 arc_get_compression(abuf) != ZIO_COMPRESS_OFF) { 1928 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 1929 zbookmark_phys_t zb = { 1930 .zb_objset = dmu_objset_id(rwa->os), 1931 .zb_object = rwa->last_object, 1932 .zb_level = 0, 1933 .zb_blkid = 1934 drrw->drr_offset >> dn->dn_datablkshift, 1935 }; 1936 1937 /* 1938 * The size of loaned arc bufs is counted in 1939 * arc_loaned_bytes. When we untransform 1940 * (decompress) the buf, its size increases. To 1941 * ensure that arc_loaned_bytes remains accurate, we 1942 * need to return (un-loan) the buf (with its 1943 * compressed size) and then re-loan it (with its 1944 * new, uncompressed size). 1945 */ 1946 arc_return_buf(abuf, FTAG); 1947 VERIFY0(arc_untransform(abuf, dmu_objset_spa(rwa->os), 1948 &zb, B_FALSE)); 1949 arc_loan_inuse_buf(abuf, FTAG); 1950 } 1951 1952 err = dmu_assign_arcbuf_by_dnode(dn, 1953 drrw->drr_offset, abuf, tx); 1954 if (err != 0) { 1955 /* 1956 * This rrd is left on the list, so the caller will 1957 * free it (and the arc_buf). 1958 */ 1959 break; 1960 } 1961 1962 /* 1963 * Note: If the receive fails, we want the resume stream to 1964 * start with the same record that we last successfully 1965 * received (as opposed to the next record), so that we can 1966 * verify that we are resuming from the correct location. 1967 */ 1968 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 1969 1970 list_remove(&rwa->write_batch, rrd); 1971 kmem_free(rrd, sizeof (*rrd)); 1972 } 1973 1974 dmu_tx_commit(tx); 1975 dnode_rele(dn, FTAG); 1976 return (err); 1977 } 1978 1979 noinline static int 1980 flush_write_batch(struct receive_writer_arg *rwa) 1981 { 1982 if (list_is_empty(&rwa->write_batch)) 1983 return (0); 1984 int err = rwa->err; 1985 if (err == 0) 1986 err = flush_write_batch_impl(rwa); 1987 if (err != 0) { 1988 struct receive_record_arg *rrd; 1989 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 1990 dmu_return_arcbuf(rrd->arc_buf); 1991 kmem_free(rrd, sizeof (*rrd)); 1992 } 1993 } 1994 ASSERT(list_is_empty(&rwa->write_batch)); 1995 return (err); 1996 } 1997 1998 noinline static int 1999 receive_process_write_record(struct receive_writer_arg *rwa, 2000 struct receive_record_arg *rrd) 2001 { 2002 int err = 0; 2003 2004 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2005 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2006 2007 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2008 !DMU_OT_IS_VALID(drrw->drr_type)) 2009 return (SET_ERROR(EINVAL)); 2010 2011 /* 2012 * For resuming to work, records must be in increasing order 2013 * by (object, offset). 2014 */ 2015 if (drrw->drr_object < rwa->last_object || 2016 (drrw->drr_object == rwa->last_object && 2017 drrw->drr_offset < rwa->last_offset)) { 2018 return (SET_ERROR(EINVAL)); 2019 } 2020 2021 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2022 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2023 uint64_t batch_size = 2024 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2025 if (first_rrd != NULL && 2026 (drrw->drr_object != first_drrw->drr_object || 2027 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2028 err = flush_write_batch(rwa); 2029 if (err != 0) 2030 return (err); 2031 } 2032 2033 rwa->last_object = drrw->drr_object; 2034 rwa->last_offset = drrw->drr_offset; 2035 2036 if (rwa->last_object > rwa->max_object) 2037 rwa->max_object = rwa->last_object; 2038 2039 list_insert_tail(&rwa->write_batch, rrd); 2040 /* 2041 * Return EAGAIN to indicate that we will use this rrd again, 2042 * so the caller should not free it 2043 */ 2044 return (EAGAIN); 2045 } 2046 2047 static int 2048 receive_write_embedded(struct receive_writer_arg *rwa, 2049 struct drr_write_embedded *drrwe, void *data) 2050 { 2051 dmu_tx_t *tx; 2052 int err; 2053 2054 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2055 return (SET_ERROR(EINVAL)); 2056 2057 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2058 return (SET_ERROR(EINVAL)); 2059 2060 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2061 return (SET_ERROR(EINVAL)); 2062 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2063 return (SET_ERROR(EINVAL)); 2064 if (rwa->raw) 2065 return (SET_ERROR(EINVAL)); 2066 2067 if (drrwe->drr_object > rwa->max_object) 2068 rwa->max_object = drrwe->drr_object; 2069 2070 tx = dmu_tx_create(rwa->os); 2071 2072 dmu_tx_hold_write(tx, drrwe->drr_object, 2073 drrwe->drr_offset, drrwe->drr_length); 2074 err = dmu_tx_assign(tx, TXG_WAIT); 2075 if (err != 0) { 2076 dmu_tx_abort(tx); 2077 return (err); 2078 } 2079 2080 dmu_write_embedded(rwa->os, drrwe->drr_object, 2081 drrwe->drr_offset, data, drrwe->drr_etype, 2082 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2083 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2084 2085 /* See comment in restore_write. */ 2086 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2087 dmu_tx_commit(tx); 2088 return (0); 2089 } 2090 2091 static int 2092 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2093 arc_buf_t *abuf) 2094 { 2095 dmu_tx_t *tx; 2096 dmu_buf_t *db, *db_spill; 2097 int err; 2098 2099 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2100 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2101 return (SET_ERROR(EINVAL)); 2102 2103 /* 2104 * This is an unmodified spill block which was added to the stream 2105 * to resolve an issue with incorrectly removing spill blocks. It 2106 * should be ignored by current versions of the code which support 2107 * the DRR_FLAG_SPILL_BLOCK flag. 2108 */ 2109 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2110 dmu_return_arcbuf(abuf); 2111 return (0); 2112 } 2113 2114 if (rwa->raw) { 2115 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2116 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2117 drrs->drr_compressed_size == 0) 2118 return (SET_ERROR(EINVAL)); 2119 } 2120 2121 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2122 return (SET_ERROR(EINVAL)); 2123 2124 if (drrs->drr_object > rwa->max_object) 2125 rwa->max_object = drrs->drr_object; 2126 2127 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2128 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2129 &db_spill)) != 0) { 2130 dmu_buf_rele(db, FTAG); 2131 return (err); 2132 } 2133 2134 tx = dmu_tx_create(rwa->os); 2135 2136 dmu_tx_hold_spill(tx, db->db_object); 2137 2138 err = dmu_tx_assign(tx, TXG_WAIT); 2139 if (err != 0) { 2140 dmu_buf_rele(db, FTAG); 2141 dmu_buf_rele(db_spill, FTAG); 2142 dmu_tx_abort(tx); 2143 return (err); 2144 } 2145 2146 /* 2147 * Spill blocks may both grow and shrink. When a change in size 2148 * occurs any existing dbuf must be updated to match the logical 2149 * size of the provided arc_buf_t. 2150 */ 2151 if (db_spill->db_size != drrs->drr_length) { 2152 dmu_buf_will_fill(db_spill, tx); 2153 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2154 drrs->drr_length, tx)); 2155 } 2156 2157 if (rwa->byteswap && !arc_is_encrypted(abuf) && 2158 arc_get_compression(abuf) == ZIO_COMPRESS_OFF) { 2159 dmu_object_byteswap_t byteswap = 2160 DMU_OT_BYTESWAP(drrs->drr_type); 2161 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2162 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2163 } 2164 2165 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2166 2167 dmu_buf_rele(db, FTAG); 2168 dmu_buf_rele(db_spill, FTAG); 2169 2170 dmu_tx_commit(tx); 2171 return (0); 2172 } 2173 2174 /* ARGSUSED */ 2175 noinline static int 2176 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2177 { 2178 int err; 2179 2180 if (drrf->drr_length != -1ULL && 2181 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2182 return (SET_ERROR(EINVAL)); 2183 2184 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2185 return (SET_ERROR(EINVAL)); 2186 2187 if (drrf->drr_object > rwa->max_object) 2188 rwa->max_object = drrf->drr_object; 2189 2190 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2191 drrf->drr_offset, drrf->drr_length); 2192 2193 return (err); 2194 } 2195 2196 static int 2197 receive_object_range(struct receive_writer_arg *rwa, 2198 struct drr_object_range *drror) 2199 { 2200 /* 2201 * By default, we assume this block is in our native format 2202 * (ZFS_HOST_BYTEORDER). We then take into account whether 2203 * the send stream is byteswapped (rwa->byteswap). Finally, 2204 * we need to byteswap again if this particular block was 2205 * in non-native format on the send side. 2206 */ 2207 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2208 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2209 2210 /* 2211 * Since dnode block sizes are constant, we should not need to worry 2212 * about making sure that the dnode block size is the same on the 2213 * sending and receiving sides for the time being. For non-raw sends, 2214 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2215 * record at all). Raw sends require this record type because the 2216 * encryption parameters are used to protect an entire block of bonus 2217 * buffers. If the size of dnode blocks ever becomes variable, 2218 * handling will need to be added to ensure that dnode block sizes 2219 * match on the sending and receiving side. 2220 */ 2221 if (drror->drr_numslots != DNODES_PER_BLOCK || 2222 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2223 !rwa->raw) 2224 return (SET_ERROR(EINVAL)); 2225 2226 if (drror->drr_firstobj > rwa->max_object) 2227 rwa->max_object = drror->drr_firstobj; 2228 2229 /* 2230 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2231 * so that the block of dnodes is not written out when it's empty, 2232 * and converted to a HOLE BP. 2233 */ 2234 rwa->or_crypt_params_present = B_TRUE; 2235 rwa->or_firstobj = drror->drr_firstobj; 2236 rwa->or_numslots = drror->drr_numslots; 2237 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); 2238 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); 2239 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); 2240 rwa->or_byteorder = byteorder; 2241 2242 return (0); 2243 } 2244 2245 /* 2246 * Until we have the ability to redact large ranges of data efficiently, we 2247 * process these records as frees. 2248 */ 2249 /* ARGSUSED */ 2250 noinline static int 2251 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2252 { 2253 struct drr_free drrf = {0}; 2254 drrf.drr_length = drrr->drr_length; 2255 drrf.drr_object = drrr->drr_object; 2256 drrf.drr_offset = drrr->drr_offset; 2257 drrf.drr_toguid = drrr->drr_toguid; 2258 return (receive_free(rwa, &drrf)); 2259 } 2260 2261 /* used to destroy the drc_ds on error */ 2262 static void 2263 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2264 { 2265 dsl_dataset_t *ds = drc->drc_ds; 2266 ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT; 2267 2268 /* 2269 * Wait for the txg sync before cleaning up the receive. For 2270 * resumable receives, this ensures that our resume state has 2271 * been written out to disk. For raw receives, this ensures 2272 * that the user accounting code will not attempt to do anything 2273 * after we stopped receiving the dataset. 2274 */ 2275 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2276 ds->ds_objset->os_raw_receive = B_FALSE; 2277 2278 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2279 if (drc->drc_resumable && drc->drc_should_save && 2280 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2281 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2282 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2283 } else { 2284 char name[ZFS_MAX_DATASET_NAME_LEN]; 2285 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2286 dsl_dataset_name(ds, name); 2287 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2288 (void) dsl_destroy_head(name); 2289 } 2290 } 2291 2292 static void 2293 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2294 { 2295 if (drc->drc_byteswap) { 2296 (void) fletcher_4_incremental_byteswap(buf, len, 2297 &drc->drc_cksum); 2298 } else { 2299 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2300 } 2301 } 2302 2303 /* 2304 * Read the payload into a buffer of size len, and update the current record's 2305 * payload field. 2306 * Allocate drc->drc_next_rrd and read the next record's header into 2307 * drc->drc_next_rrd->header. 2308 * Verify checksum of payload and next record. 2309 */ 2310 static int 2311 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2312 { 2313 int err; 2314 2315 if (len != 0) { 2316 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2317 err = receive_read(drc, len, buf); 2318 if (err != 0) 2319 return (err); 2320 receive_cksum(drc, len, buf); 2321 2322 /* note: rrd is NULL when reading the begin record's payload */ 2323 if (drc->drc_rrd != NULL) { 2324 drc->drc_rrd->payload = buf; 2325 drc->drc_rrd->payload_size = len; 2326 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2327 } 2328 } else { 2329 ASSERT3P(buf, ==, NULL); 2330 } 2331 2332 drc->drc_prev_cksum = drc->drc_cksum; 2333 2334 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2335 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2336 &drc->drc_next_rrd->header); 2337 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2338 2339 if (err != 0) { 2340 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2341 drc->drc_next_rrd = NULL; 2342 return (err); 2343 } 2344 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2345 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2346 drc->drc_next_rrd = NULL; 2347 return (SET_ERROR(EINVAL)); 2348 } 2349 2350 /* 2351 * Note: checksum is of everything up to but not including the 2352 * checksum itself. 2353 */ 2354 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2355 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2356 receive_cksum(drc, 2357 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2358 &drc->drc_next_rrd->header); 2359 2360 zio_cksum_t cksum_orig = 2361 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2362 zio_cksum_t *cksump = 2363 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2364 2365 if (drc->drc_byteswap) 2366 byteswap_record(&drc->drc_next_rrd->header); 2367 2368 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2369 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2370 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2371 drc->drc_next_rrd = NULL; 2372 return (SET_ERROR(ECKSUM)); 2373 } 2374 2375 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2376 2377 return (0); 2378 } 2379 2380 /* 2381 * Issue the prefetch reads for any necessary indirect blocks. 2382 * 2383 * We use the object ignore list to tell us whether or not to issue prefetches 2384 * for a given object. We do this for both correctness (in case the blocksize 2385 * of an object has changed) and performance (if the object doesn't exist, don't 2386 * needlessly try to issue prefetches). We also trim the list as we go through 2387 * the stream to prevent it from growing to an unbounded size. 2388 * 2389 * The object numbers within will always be in sorted order, and any write 2390 * records we see will also be in sorted order, but they're not sorted with 2391 * respect to each other (i.e. we can get several object records before 2392 * receiving each object's write records). As a result, once we've reached a 2393 * given object number, we can safely remove any reference to lower object 2394 * numbers in the ignore list. In practice, we receive up to 32 object records 2395 * before receiving write records, so the list can have up to 32 nodes in it. 2396 */ 2397 /* ARGSUSED */ 2398 static void 2399 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2400 uint64_t length) 2401 { 2402 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2403 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2404 ZIO_PRIORITY_SYNC_READ); 2405 } 2406 } 2407 2408 /* 2409 * Read records off the stream, issuing any necessary prefetches. 2410 */ 2411 static int 2412 receive_read_record(dmu_recv_cookie_t *drc) 2413 { 2414 int err; 2415 2416 switch (drc->drc_rrd->header.drr_type) { 2417 case DRR_OBJECT: 2418 { 2419 struct drr_object *drro = 2420 &drc->drc_rrd->header.drr_u.drr_object; 2421 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2422 void *buf = NULL; 2423 dmu_object_info_t doi; 2424 2425 if (size != 0) 2426 buf = kmem_zalloc(size, KM_SLEEP); 2427 2428 err = receive_read_payload_and_next_header(drc, size, buf); 2429 if (err != 0) { 2430 kmem_free(buf, size); 2431 return (err); 2432 } 2433 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2434 /* 2435 * See receive_read_prefetch for an explanation why we're 2436 * storing this object in the ignore_obj_list. 2437 */ 2438 if (err == ENOENT || err == EEXIST || 2439 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2440 objlist_insert(drc->drc_ignore_objlist, 2441 drro->drr_object); 2442 err = 0; 2443 } 2444 return (err); 2445 } 2446 case DRR_FREEOBJECTS: 2447 { 2448 err = receive_read_payload_and_next_header(drc, 0, NULL); 2449 return (err); 2450 } 2451 case DRR_WRITE: 2452 { 2453 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2454 arc_buf_t *abuf; 2455 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type); 2456 2457 if (drc->drc_raw) { 2458 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2459 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2460 drc->drc_byteswap; 2461 2462 abuf = arc_loan_raw_buf(dmu_objset_spa(drc->drc_os), 2463 drrw->drr_object, byteorder, drrw->drr_salt, 2464 drrw->drr_iv, drrw->drr_mac, drrw->drr_type, 2465 drrw->drr_compressed_size, drrw->drr_logical_size, 2466 drrw->drr_compressiontype, 0); 2467 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2468 ASSERT3U(drrw->drr_compressed_size, >, 0); 2469 ASSERT3U(drrw->drr_logical_size, >=, 2470 drrw->drr_compressed_size); 2471 ASSERT(!is_meta); 2472 abuf = arc_loan_compressed_buf( 2473 dmu_objset_spa(drc->drc_os), 2474 drrw->drr_compressed_size, drrw->drr_logical_size, 2475 drrw->drr_compressiontype, 0); 2476 } else { 2477 abuf = arc_loan_buf(dmu_objset_spa(drc->drc_os), 2478 is_meta, drrw->drr_logical_size); 2479 } 2480 2481 err = receive_read_payload_and_next_header(drc, 2482 DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data); 2483 if (err != 0) { 2484 dmu_return_arcbuf(abuf); 2485 return (err); 2486 } 2487 drc->drc_rrd->arc_buf = abuf; 2488 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2489 drrw->drr_logical_size); 2490 return (err); 2491 } 2492 case DRR_WRITE_BYREF: 2493 { 2494 struct drr_write_byref *drrwb = 2495 &drc->drc_rrd->header.drr_u.drr_write_byref; 2496 err = receive_read_payload_and_next_header(drc, 0, NULL); 2497 receive_read_prefetch(drc, drrwb->drr_object, drrwb->drr_offset, 2498 drrwb->drr_length); 2499 return (err); 2500 } 2501 case DRR_WRITE_EMBEDDED: 2502 { 2503 struct drr_write_embedded *drrwe = 2504 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2505 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2506 void *buf = kmem_zalloc(size, KM_SLEEP); 2507 2508 err = receive_read_payload_and_next_header(drc, size, buf); 2509 if (err != 0) { 2510 kmem_free(buf, size); 2511 return (err); 2512 } 2513 2514 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2515 drrwe->drr_length); 2516 return (err); 2517 } 2518 case DRR_FREE: 2519 case DRR_REDACT: 2520 { 2521 /* 2522 * It might be beneficial to prefetch indirect blocks here, but 2523 * we don't really have the data to decide for sure. 2524 */ 2525 err = receive_read_payload_and_next_header(drc, 0, NULL); 2526 return (err); 2527 } 2528 case DRR_END: 2529 { 2530 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2531 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2532 drre->drr_checksum)) 2533 return (SET_ERROR(ECKSUM)); 2534 return (0); 2535 } 2536 case DRR_SPILL: 2537 { 2538 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2539 arc_buf_t *abuf; 2540 /* DRR_SPILL records are either raw or uncompressed */ 2541 if (drc->drc_raw) { 2542 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2543 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2544 drc->drc_byteswap; 2545 2546 abuf = arc_loan_raw_buf(dmu_objset_spa(drc->drc_os), 2547 drrs->drr_object, byteorder, drrs->drr_salt, 2548 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2549 drrs->drr_compressed_size, drrs->drr_length, 2550 drrs->drr_compressiontype, 0); 2551 } else { 2552 abuf = arc_loan_buf(dmu_objset_spa(drc->drc_os), 2553 DMU_OT_IS_METADATA(drrs->drr_type), 2554 drrs->drr_length); 2555 } 2556 err = receive_read_payload_and_next_header(drc, 2557 DRR_SPILL_PAYLOAD_SIZE(drrs), abuf->b_data); 2558 if (err != 0) 2559 dmu_return_arcbuf(abuf); 2560 else 2561 drc->drc_rrd->arc_buf = abuf; 2562 return (err); 2563 } 2564 case DRR_OBJECT_RANGE: 2565 { 2566 err = receive_read_payload_and_next_header(drc, 0, NULL); 2567 return (err); 2568 2569 } 2570 default: 2571 return (SET_ERROR(EINVAL)); 2572 } 2573 } 2574 2575 2576 2577 static void 2578 dprintf_drr(struct receive_record_arg *rrd, int err) 2579 { 2580 #ifdef ZFS_DEBUG 2581 switch (rrd->header.drr_type) { 2582 case DRR_OBJECT: 2583 { 2584 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2585 dprintf("drr_type = OBJECT obj = %llu type = %u " 2586 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2587 "compress = %u dn_slots = %u err = %d\n", 2588 drro->drr_object, drro->drr_type, drro->drr_bonustype, 2589 drro->drr_blksz, drro->drr_bonuslen, 2590 drro->drr_checksumtype, drro->drr_compress, 2591 drro->drr_dn_slots, err); 2592 break; 2593 } 2594 case DRR_FREEOBJECTS: 2595 { 2596 struct drr_freeobjects *drrfo = 2597 &rrd->header.drr_u.drr_freeobjects; 2598 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2599 "numobjs = %llu err = %d\n", 2600 drrfo->drr_firstobj, drrfo->drr_numobjs, err); 2601 break; 2602 } 2603 case DRR_WRITE: 2604 { 2605 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2606 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2607 "lsize = %llu cksumtype = %u flags = %u " 2608 "compress = %u psize = %llu err = %d\n", 2609 drrw->drr_object, drrw->drr_type, drrw->drr_offset, 2610 drrw->drr_logical_size, drrw->drr_checksumtype, 2611 drrw->drr_flags, drrw->drr_compressiontype, 2612 drrw->drr_compressed_size, err); 2613 break; 2614 } 2615 case DRR_WRITE_BYREF: 2616 { 2617 struct drr_write_byref *drrwbr = 2618 &rrd->header.drr_u.drr_write_byref; 2619 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2620 "length = %llu toguid = %llx refguid = %llx " 2621 "refobject = %llu refoffset = %llu cksumtype = %u " 2622 "flags = %u err = %d\n", 2623 drrwbr->drr_object, drrwbr->drr_offset, 2624 drrwbr->drr_length, drrwbr->drr_toguid, 2625 drrwbr->drr_refguid, drrwbr->drr_refobject, 2626 drrwbr->drr_refoffset, drrwbr->drr_checksumtype, 2627 drrwbr->drr_flags, err); 2628 break; 2629 } 2630 case DRR_WRITE_EMBEDDED: 2631 { 2632 struct drr_write_embedded *drrwe = 2633 &rrd->header.drr_u.drr_write_embedded; 2634 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 2635 "length = %llu compress = %u etype = %u lsize = %u " 2636 "psize = %u err = %d\n", 2637 drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length, 2638 drrwe->drr_compression, drrwe->drr_etype, 2639 drrwe->drr_lsize, drrwe->drr_psize, err); 2640 break; 2641 } 2642 case DRR_FREE: 2643 { 2644 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2645 dprintf("drr_type = FREE obj = %llu offset = %llu " 2646 "length = %lld err = %d\n", 2647 drrf->drr_object, drrf->drr_offset, drrf->drr_length, 2648 err); 2649 break; 2650 } 2651 case DRR_SPILL: 2652 { 2653 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2654 dprintf("drr_type = SPILL obj = %llu length = %llu " 2655 "err = %d\n", drrs->drr_object, drrs->drr_length, err); 2656 break; 2657 } 2658 case DRR_OBJECT_RANGE: 2659 { 2660 struct drr_object_range *drror = 2661 &rrd->header.drr_u.drr_object_range; 2662 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 2663 "numslots = %llu flags = %u err = %d\n", 2664 drror->drr_firstobj, drror->drr_numslots, 2665 drror->drr_flags, err); 2666 break; 2667 } 2668 default: 2669 return; 2670 } 2671 #endif 2672 } 2673 2674 /* 2675 * Commit the records to the pool. 2676 */ 2677 static int 2678 receive_process_record(struct receive_writer_arg *rwa, 2679 struct receive_record_arg *rrd) 2680 { 2681 int err; 2682 2683 /* Processing in order, therefore bytes_read should be increasing. */ 2684 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2685 rwa->bytes_read = rrd->bytes_read; 2686 2687 if (rrd->header.drr_type != DRR_WRITE) { 2688 err = flush_write_batch(rwa); 2689 if (err != 0) { 2690 if (rrd->arc_buf != NULL) { 2691 dmu_return_arcbuf(rrd->arc_buf); 2692 rrd->arc_buf = NULL; 2693 rrd->payload = NULL; 2694 } else if (rrd->payload != NULL) { 2695 kmem_free(rrd->payload, rrd->payload_size); 2696 rrd->payload = NULL; 2697 } 2698 2699 return (err); 2700 } 2701 } 2702 2703 switch (rrd->header.drr_type) { 2704 case DRR_OBJECT: 2705 { 2706 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2707 err = receive_object(rwa, drro, rrd->payload); 2708 kmem_free(rrd->payload, rrd->payload_size); 2709 rrd->payload = NULL; 2710 break; 2711 } 2712 case DRR_FREEOBJECTS: 2713 { 2714 struct drr_freeobjects *drrfo = 2715 &rrd->header.drr_u.drr_freeobjects; 2716 err = receive_freeobjects(rwa, drrfo); 2717 break; 2718 } 2719 case DRR_WRITE: 2720 { 2721 err = receive_process_write_record(rwa, rrd); 2722 if (err != EAGAIN) { 2723 /* 2724 * On success, receive_process_write_record() returns 2725 * EAGAIN to indicate that we do not want to free 2726 * the rrd or arc_buf. 2727 */ 2728 ASSERT(err != 0); 2729 dmu_return_arcbuf(rrd->arc_buf); 2730 rrd->arc_buf = NULL; 2731 } 2732 break; 2733 } 2734 case DRR_WRITE_EMBEDDED: 2735 { 2736 struct drr_write_embedded *drrwe = 2737 &rrd->header.drr_u.drr_write_embedded; 2738 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2739 kmem_free(rrd->payload, rrd->payload_size); 2740 rrd->payload = NULL; 2741 break; 2742 } 2743 case DRR_FREE: 2744 { 2745 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2746 err = receive_free(rwa, drrf); 2747 break; 2748 } 2749 case DRR_SPILL: 2750 { 2751 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2752 err = receive_spill(rwa, drrs, rrd->arc_buf); 2753 if (err != 0) 2754 dmu_return_arcbuf(rrd->arc_buf); 2755 rrd->arc_buf = NULL; 2756 rrd->payload = NULL; 2757 break; 2758 } 2759 case DRR_OBJECT_RANGE: 2760 { 2761 struct drr_object_range *drror = 2762 &rrd->header.drr_u.drr_object_range; 2763 err = receive_object_range(rwa, drror); 2764 break; 2765 } 2766 case DRR_REDACT: 2767 { 2768 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 2769 err = receive_redact(rwa, drrr); 2770 break; 2771 } 2772 default: 2773 err = (SET_ERROR(EINVAL)); 2774 } 2775 2776 if (err != 0) 2777 dprintf_drr(rrd, err); 2778 2779 return (err); 2780 } 2781 2782 /* 2783 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2784 * receive_process_record When we're done, signal the main thread and exit. 2785 */ 2786 static void 2787 receive_writer_thread(void *arg) 2788 { 2789 struct receive_writer_arg *rwa = arg; 2790 struct receive_record_arg *rrd; 2791 fstrans_cookie_t cookie = spl_fstrans_mark(); 2792 2793 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2794 rrd = bqueue_dequeue(&rwa->q)) { 2795 /* 2796 * If there's an error, the main thread will stop putting things 2797 * on the queue, but we need to clear everything in it before we 2798 * can exit. 2799 */ 2800 int err = 0; 2801 if (rwa->err == 0) { 2802 err = receive_process_record(rwa, rrd); 2803 } else if (rrd->arc_buf != NULL) { 2804 dmu_return_arcbuf(rrd->arc_buf); 2805 rrd->arc_buf = NULL; 2806 rrd->payload = NULL; 2807 } else if (rrd->payload != NULL) { 2808 kmem_free(rrd->payload, rrd->payload_size); 2809 rrd->payload = NULL; 2810 } 2811 /* 2812 * EAGAIN indicates that this record has been saved (on 2813 * raw->write_batch), and will be used again, so we don't 2814 * free it. 2815 */ 2816 if (err != EAGAIN) { 2817 if (rwa->err == 0) 2818 rwa->err = err; 2819 kmem_free(rrd, sizeof (*rrd)); 2820 } 2821 } 2822 kmem_free(rrd, sizeof (*rrd)); 2823 2824 int err = flush_write_batch(rwa); 2825 if (rwa->err == 0) 2826 rwa->err = err; 2827 2828 mutex_enter(&rwa->mutex); 2829 rwa->done = B_TRUE; 2830 cv_signal(&rwa->cv); 2831 mutex_exit(&rwa->mutex); 2832 spl_fstrans_unmark(cookie); 2833 thread_exit(); 2834 } 2835 2836 static int 2837 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 2838 { 2839 uint64_t val; 2840 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 2841 uint64_t dsobj = dmu_objset_id(drc->drc_os); 2842 uint64_t resume_obj, resume_off; 2843 2844 if (nvlist_lookup_uint64(begin_nvl, 2845 "resume_object", &resume_obj) != 0 || 2846 nvlist_lookup_uint64(begin_nvl, 2847 "resume_offset", &resume_off) != 0) { 2848 return (SET_ERROR(EINVAL)); 2849 } 2850 VERIFY0(zap_lookup(mos, dsobj, 2851 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2852 if (resume_obj != val) 2853 return (SET_ERROR(EINVAL)); 2854 VERIFY0(zap_lookup(mos, dsobj, 2855 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2856 if (resume_off != val) 2857 return (SET_ERROR(EINVAL)); 2858 2859 return (0); 2860 } 2861 2862 /* 2863 * Read in the stream's records, one by one, and apply them to the pool. There 2864 * are two threads involved; the thread that calls this function will spin up a 2865 * worker thread, read the records off the stream one by one, and issue 2866 * prefetches for any necessary indirect blocks. It will then push the records 2867 * onto an internal blocking queue. The worker thread will pull the records off 2868 * the queue, and actually write the data into the DMU. This way, the worker 2869 * thread doesn't have to wait for reads to complete, since everything it needs 2870 * (the indirect blocks) will be prefetched. 2871 * 2872 * NB: callers *must* call dmu_recv_end() if this succeeds. 2873 */ 2874 int 2875 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 2876 { 2877 int err = 0; 2878 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 2879 2880 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2881 uint64_t bytes; 2882 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2883 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2884 sizeof (bytes), 1, &bytes); 2885 drc->drc_bytes_read += bytes; 2886 } 2887 2888 drc->drc_ignore_objlist = objlist_create(); 2889 2890 /* these were verified in dmu_recv_begin */ 2891 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2892 DMU_SUBSTREAM); 2893 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2894 2895 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2896 ASSERT0(drc->drc_os->os_encrypted && 2897 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2898 2899 /* handle DSL encryption key payload */ 2900 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 2901 nvlist_t *keynvl = NULL; 2902 2903 ASSERT(drc->drc_os->os_encrypted); 2904 ASSERT(drc->drc_raw); 2905 2906 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 2907 &keynvl); 2908 if (err != 0) 2909 goto out; 2910 2911 /* 2912 * If this is a new dataset we set the key immediately. 2913 * Otherwise we don't want to change the key until we 2914 * are sure the rest of the receive succeeded so we stash 2915 * the keynvl away until then. 2916 */ 2917 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 2918 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2919 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2920 if (err != 0) 2921 goto out; 2922 2923 /* see comment in dmu_recv_end_sync() */ 2924 drc->drc_ivset_guid = 0; 2925 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2926 &drc->drc_ivset_guid); 2927 2928 if (!drc->drc_newfs) 2929 drc->drc_keynvl = fnvlist_dup(keynvl); 2930 } 2931 2932 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2933 err = resume_check(drc, drc->drc_begin_nvl); 2934 if (err != 0) 2935 goto out; 2936 } 2937 2938 /* 2939 * If we failed before this point we will clean up any new resume 2940 * state that was created. Now that we've gotten past the initial 2941 * checks we are ok to retain that resume state. 2942 */ 2943 drc->drc_should_save = B_TRUE; 2944 2945 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 2946 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 2947 offsetof(struct receive_record_arg, node)); 2948 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 2949 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 2950 rwa->os = drc->drc_os; 2951 rwa->byteswap = drc->drc_byteswap; 2952 rwa->resumable = drc->drc_resumable; 2953 rwa->raw = drc->drc_raw; 2954 rwa->spill = drc->drc_spill; 2955 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 2956 rwa->os->os_raw_receive = drc->drc_raw; 2957 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 2958 offsetof(struct receive_record_arg, node.bqn_node)); 2959 2960 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 2961 TS_RUN, minclsyspri); 2962 /* 2963 * We're reading rwa->err without locks, which is safe since we are the 2964 * only reader, and the worker thread is the only writer. It's ok if we 2965 * miss a write for an iteration or two of the loop, since the writer 2966 * thread will keep freeing records we send it until we send it an eos 2967 * marker. 2968 * 2969 * We can leave this loop in 3 ways: First, if rwa->err is 2970 * non-zero. In that case, the writer thread will free the rrd we just 2971 * pushed. Second, if we're interrupted; in that case, either it's the 2972 * first loop and drc->drc_rrd was never allocated, or it's later, and 2973 * drc->drc_rrd has been handed off to the writer thread who will free 2974 * it. Finally, if receive_read_record fails or we're at the end of the 2975 * stream, then we free drc->drc_rrd and exit. 2976 */ 2977 while (rwa->err == 0) { 2978 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2979 err = SET_ERROR(EINTR); 2980 break; 2981 } 2982 2983 ASSERT3P(drc->drc_rrd, ==, NULL); 2984 drc->drc_rrd = drc->drc_next_rrd; 2985 drc->drc_next_rrd = NULL; 2986 /* Allocates and loads header into drc->drc_next_rrd */ 2987 err = receive_read_record(drc); 2988 2989 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 2990 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 2991 drc->drc_rrd = NULL; 2992 break; 2993 } 2994 2995 bqueue_enqueue(&rwa->q, drc->drc_rrd, 2996 sizeof (struct receive_record_arg) + 2997 drc->drc_rrd->payload_size); 2998 drc->drc_rrd = NULL; 2999 } 3000 3001 ASSERT3P(drc->drc_rrd, ==, NULL); 3002 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3003 drc->drc_rrd->eos_marker = B_TRUE; 3004 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3005 3006 mutex_enter(&rwa->mutex); 3007 while (!rwa->done) { 3008 /* 3009 * We need to use cv_wait_sig() so that any process that may 3010 * be sleeping here can still fork. 3011 */ 3012 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3013 } 3014 mutex_exit(&rwa->mutex); 3015 3016 /* 3017 * If we are receiving a full stream as a clone, all object IDs which 3018 * are greater than the maximum ID referenced in the stream are 3019 * by definition unused and must be freed. 3020 */ 3021 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3022 uint64_t obj = rwa->max_object + 1; 3023 int free_err = 0; 3024 int next_err = 0; 3025 3026 while (next_err == 0) { 3027 free_err = dmu_free_long_object(rwa->os, obj); 3028 if (free_err != 0 && free_err != ENOENT) 3029 break; 3030 3031 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3032 } 3033 3034 if (err == 0) { 3035 if (free_err != 0 && free_err != ENOENT) 3036 err = free_err; 3037 else if (next_err != ESRCH) 3038 err = next_err; 3039 } 3040 } 3041 3042 cv_destroy(&rwa->cv); 3043 mutex_destroy(&rwa->mutex); 3044 bqueue_destroy(&rwa->q); 3045 list_destroy(&rwa->write_batch); 3046 if (err == 0) 3047 err = rwa->err; 3048 3049 out: 3050 /* 3051 * If we hit an error before we started the receive_writer_thread 3052 * we need to clean up the next_rrd we create by processing the 3053 * DRR_BEGIN record. 3054 */ 3055 if (drc->drc_next_rrd != NULL) 3056 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3057 3058 /* 3059 * The objset will be invalidated by dmu_recv_end() when we do 3060 * dsl_dataset_clone_swap_sync_impl(). 3061 */ 3062 drc->drc_os = NULL; 3063 3064 kmem_free(rwa, sizeof (*rwa)); 3065 nvlist_free(drc->drc_begin_nvl); 3066 3067 if (err != 0) { 3068 /* 3069 * Clean up references. If receive is not resumable, 3070 * destroy what we created, so we don't leave it in 3071 * the inconsistent state. 3072 */ 3073 dmu_recv_cleanup_ds(drc); 3074 nvlist_free(drc->drc_keynvl); 3075 } 3076 3077 objlist_destroy(drc->drc_ignore_objlist); 3078 drc->drc_ignore_objlist = NULL; 3079 *voffp = drc->drc_voff; 3080 return (err); 3081 } 3082 3083 static int 3084 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3085 { 3086 dmu_recv_cookie_t *drc = arg; 3087 dsl_pool_t *dp = dmu_tx_pool(tx); 3088 int error; 3089 3090 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3091 3092 if (!drc->drc_newfs) { 3093 dsl_dataset_t *origin_head; 3094 3095 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3096 if (error != 0) 3097 return (error); 3098 if (drc->drc_force) { 3099 /* 3100 * We will destroy any snapshots in tofs (i.e. before 3101 * origin_head) that are after the origin (which is 3102 * the snap before drc_ds, because drc_ds can not 3103 * have any snaps of its own). 3104 */ 3105 uint64_t obj; 3106 3107 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3108 while (obj != 3109 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3110 dsl_dataset_t *snap; 3111 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3112 &snap); 3113 if (error != 0) 3114 break; 3115 if (snap->ds_dir != origin_head->ds_dir) 3116 error = SET_ERROR(EINVAL); 3117 if (error == 0) { 3118 error = dsl_destroy_snapshot_check_impl( 3119 snap, B_FALSE); 3120 } 3121 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3122 dsl_dataset_rele(snap, FTAG); 3123 if (error != 0) 3124 break; 3125 } 3126 if (error != 0) { 3127 dsl_dataset_rele(origin_head, FTAG); 3128 return (error); 3129 } 3130 } 3131 if (drc->drc_keynvl != NULL) { 3132 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3133 drc->drc_keynvl, tx); 3134 if (error != 0) { 3135 dsl_dataset_rele(origin_head, FTAG); 3136 return (error); 3137 } 3138 } 3139 3140 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3141 origin_head, drc->drc_force, drc->drc_owner, tx); 3142 if (error != 0) { 3143 dsl_dataset_rele(origin_head, FTAG); 3144 return (error); 3145 } 3146 error = dsl_dataset_snapshot_check_impl(origin_head, 3147 drc->drc_tosnap, tx, B_TRUE, 1, 3148 drc->drc_cred, drc->drc_proc); 3149 dsl_dataset_rele(origin_head, FTAG); 3150 if (error != 0) 3151 return (error); 3152 3153 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3154 } else { 3155 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3156 drc->drc_tosnap, tx, B_TRUE, 1, 3157 drc->drc_cred, drc->drc_proc); 3158 } 3159 return (error); 3160 } 3161 3162 static void 3163 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3164 { 3165 dmu_recv_cookie_t *drc = arg; 3166 dsl_pool_t *dp = dmu_tx_pool(tx); 3167 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3168 uint64_t newsnapobj; 3169 3170 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3171 tx, "snap=%s", drc->drc_tosnap); 3172 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3173 3174 if (!drc->drc_newfs) { 3175 dsl_dataset_t *origin_head; 3176 3177 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3178 &origin_head)); 3179 3180 if (drc->drc_force) { 3181 /* 3182 * Destroy any snapshots of drc_tofs (origin_head) 3183 * after the origin (the snap before drc_ds). 3184 */ 3185 uint64_t obj; 3186 3187 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3188 while (obj != 3189 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3190 dsl_dataset_t *snap; 3191 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3192 &snap)); 3193 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3194 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3195 dsl_destroy_snapshot_sync_impl(snap, 3196 B_FALSE, tx); 3197 dsl_dataset_rele(snap, FTAG); 3198 } 3199 } 3200 if (drc->drc_keynvl != NULL) { 3201 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3202 drc->drc_keynvl, tx); 3203 nvlist_free(drc->drc_keynvl); 3204 drc->drc_keynvl = NULL; 3205 } 3206 3207 VERIFY3P(drc->drc_ds->ds_prev, ==, 3208 origin_head->ds_prev); 3209 3210 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3211 origin_head, tx); 3212 /* 3213 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3214 * so drc_os is no longer valid. 3215 */ 3216 drc->drc_os = NULL; 3217 3218 dsl_dataset_snapshot_sync_impl(origin_head, 3219 drc->drc_tosnap, tx); 3220 3221 /* set snapshot's creation time and guid */ 3222 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3223 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3224 drc->drc_drrb->drr_creation_time; 3225 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3226 drc->drc_drrb->drr_toguid; 3227 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3228 ~DS_FLAG_INCONSISTENT; 3229 3230 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3231 dsl_dataset_phys(origin_head)->ds_flags &= 3232 ~DS_FLAG_INCONSISTENT; 3233 3234 newsnapobj = 3235 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3236 3237 dsl_dataset_rele(origin_head, FTAG); 3238 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3239 3240 if (drc->drc_owner != NULL) 3241 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3242 } else { 3243 dsl_dataset_t *ds = drc->drc_ds; 3244 3245 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3246 3247 /* set snapshot's creation time and guid */ 3248 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3249 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3250 drc->drc_drrb->drr_creation_time; 3251 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3252 drc->drc_drrb->drr_toguid; 3253 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3254 ~DS_FLAG_INCONSISTENT; 3255 3256 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3257 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3258 if (dsl_dataset_has_resume_receive_state(ds)) { 3259 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3260 DS_FIELD_RESUME_FROMGUID, tx); 3261 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3262 DS_FIELD_RESUME_OBJECT, tx); 3263 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3264 DS_FIELD_RESUME_OFFSET, tx); 3265 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3266 DS_FIELD_RESUME_BYTES, tx); 3267 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3268 DS_FIELD_RESUME_TOGUID, tx); 3269 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3270 DS_FIELD_RESUME_TONAME, tx); 3271 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3272 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3273 } 3274 newsnapobj = 3275 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3276 } 3277 3278 /* 3279 * If this is a raw receive, the crypt_keydata nvlist will include 3280 * a to_ivset_guid for us to set on the new snapshot. This value 3281 * will override the value generated by the snapshot code. However, 3282 * this value may not be present, because older implementations of 3283 * the raw send code did not include this value, and we are still 3284 * allowed to receive them if the zfs_disable_ivset_guid_check 3285 * tunable is set, in which case we will leave the newly-generated 3286 * value. 3287 */ 3288 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 3289 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3290 DMU_OT_DSL_DATASET, tx); 3291 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3292 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3293 &drc->drc_ivset_guid, tx)); 3294 } 3295 3296 /* 3297 * Release the hold from dmu_recv_begin. This must be done before 3298 * we return to open context, so that when we free the dataset's dnode 3299 * we can evict its bonus buffer. Since the dataset may be destroyed 3300 * at this point (and therefore won't have a valid pointer to the spa) 3301 * we release the key mapping manually here while we do have a valid 3302 * pointer, if it exists. 3303 */ 3304 if (!drc->drc_raw && encrypted) { 3305 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3306 drc->drc_ds->ds_object, drc->drc_ds); 3307 } 3308 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3309 drc->drc_ds = NULL; 3310 } 3311 3312 static int dmu_recv_end_modified_blocks = 3; 3313 3314 static int 3315 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3316 { 3317 #ifdef _KERNEL 3318 /* 3319 * We will be destroying the ds; make sure its origin is unmounted if 3320 * necessary. 3321 */ 3322 char name[ZFS_MAX_DATASET_NAME_LEN]; 3323 dsl_dataset_name(drc->drc_ds, name); 3324 zfs_destroy_unmount_origin(name); 3325 #endif 3326 3327 return (dsl_sync_task(drc->drc_tofs, 3328 dmu_recv_end_check, dmu_recv_end_sync, drc, 3329 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3330 } 3331 3332 static int 3333 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3334 { 3335 return (dsl_sync_task(drc->drc_tofs, 3336 dmu_recv_end_check, dmu_recv_end_sync, drc, 3337 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3338 } 3339 3340 int 3341 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3342 { 3343 int error; 3344 3345 drc->drc_owner = owner; 3346 3347 if (drc->drc_newfs) 3348 error = dmu_recv_new_end(drc); 3349 else 3350 error = dmu_recv_existing_end(drc); 3351 3352 if (error != 0) { 3353 dmu_recv_cleanup_ds(drc); 3354 nvlist_free(drc->drc_keynvl); 3355 } else { 3356 if (drc->drc_newfs) { 3357 zvol_create_minor(drc->drc_tofs); 3358 } 3359 char *snapname = kmem_asprintf("%s@%s", 3360 drc->drc_tofs, drc->drc_tosnap); 3361 zvol_create_minor(snapname); 3362 kmem_strfree(snapname); 3363 } 3364 return (error); 3365 } 3366 3367 /* 3368 * Return TRUE if this objset is currently being received into. 3369 */ 3370 boolean_t 3371 dmu_objset_is_receiving(objset_t *os) 3372 { 3373 return (os->os_dsl_dataset != NULL && 3374 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3375 } 3376 3377 /* BEGIN CSTYLED */ 3378 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW, 3379 "Maximum receive queue length"); 3380 3381 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW, 3382 "Receive queue fill fraction"); 3383 3384 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW, 3385 "Maximum amount of writes to batch into one transaction"); 3386 /* END CSTYLED */ 3387