1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 27 * Copyright 2014 HybridCluster. All rights reserved. 28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 29 * Copyright (c) 2019, 2024, Klara, Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2019 Datto Inc. 32 * Copyright (c) 2022 Axcient. 33 */ 34 35 #include <sys/arc.h> 36 #include <sys/spa_impl.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_impl.h> 39 #include <sys/dmu_send.h> 40 #include <sys/dmu_recv.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dbuf.h> 43 #include <sys/dnode.h> 44 #include <sys/zfs_context.h> 45 #include <sys/dmu_objset.h> 46 #include <sys/dmu_traverse.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_dir.h> 49 #include <sys/dsl_prop.h> 50 #include <sys/dsl_pool.h> 51 #include <sys/dsl_synctask.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zap.h> 54 #include <sys/zvol.h> 55 #include <sys/zio_checksum.h> 56 #include <sys/zfs_znode.h> 57 #include <zfs_fletcher.h> 58 #include <sys/avl.h> 59 #include <sys/ddt.h> 60 #include <sys/zfs_onexit.h> 61 #include <sys/dsl_destroy.h> 62 #include <sys/blkptr.h> 63 #include <sys/dsl_bookmark.h> 64 #include <sys/zfeature.h> 65 #include <sys/bqueue.h> 66 #include <sys/objlist.h> 67 #ifdef _KERNEL 68 #include <sys/zfs_vfsops.h> 69 #endif 70 #include <sys/zfs_file.h> 71 72 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 73 static uint_t zfs_recv_queue_ff = 20; 74 static uint_t zfs_recv_write_batch_size = 1024 * 1024; 75 static int zfs_recv_best_effort_corrective = 0; 76 77 static const void *const dmu_recv_tag = "dmu_recv_tag"; 78 const char *const recv_clone_name = "%recv"; 79 80 typedef enum { 81 ORNS_NO, 82 ORNS_YES, 83 ORNS_MAYBE 84 } or_need_sync_t; 85 86 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 87 void *buf); 88 89 struct receive_record_arg { 90 dmu_replay_record_t header; 91 void *payload; /* Pointer to a buffer containing the payload */ 92 /* 93 * If the record is a WRITE or SPILL, pointer to the abd containing the 94 * payload. 95 */ 96 abd_t *abd; 97 int payload_size; 98 uint64_t bytes_read; /* bytes read from stream when record created */ 99 boolean_t eos_marker; /* Marks the end of the stream */ 100 bqueue_node_t node; 101 }; 102 103 struct receive_writer_arg { 104 objset_t *os; 105 boolean_t byteswap; 106 bqueue_t q; 107 108 /* 109 * These three members are used to signal to the main thread when 110 * we're done. 111 */ 112 kmutex_t mutex; 113 kcondvar_t cv; 114 boolean_t done; 115 116 int err; 117 const char *tofs; 118 boolean_t heal; 119 boolean_t resumable; 120 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 121 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 122 boolean_t full; /* this is a full send stream */ 123 uint64_t last_object; 124 uint64_t last_offset; 125 uint64_t max_object; /* highest object ID referenced in stream */ 126 uint64_t bytes_read; /* bytes read when current record created */ 127 128 list_t write_batch; 129 130 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 131 boolean_t or_crypt_params_present; 132 uint64_t or_firstobj; 133 uint64_t or_numslots; 134 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 135 uint8_t or_iv[ZIO_DATA_IV_LEN]; 136 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 137 boolean_t or_byteorder; 138 zio_t *heal_pio; 139 140 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */ 141 or_need_sync_t or_need_sync; 142 }; 143 144 typedef struct dmu_recv_begin_arg { 145 const char *drba_origin; 146 dmu_recv_cookie_t *drba_cookie; 147 cred_t *drba_cred; 148 proc_t *drba_proc; 149 dsl_crypto_params_t *drba_dcp; 150 } dmu_recv_begin_arg_t; 151 152 static void 153 byteswap_record(dmu_replay_record_t *drr) 154 { 155 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 156 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 157 drr->drr_type = BSWAP_32(drr->drr_type); 158 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 159 160 switch (drr->drr_type) { 161 case DRR_BEGIN: 162 DO64(drr_begin.drr_magic); 163 DO64(drr_begin.drr_versioninfo); 164 DO64(drr_begin.drr_creation_time); 165 DO32(drr_begin.drr_type); 166 DO32(drr_begin.drr_flags); 167 DO64(drr_begin.drr_toguid); 168 DO64(drr_begin.drr_fromguid); 169 break; 170 case DRR_OBJECT: 171 DO64(drr_object.drr_object); 172 DO32(drr_object.drr_type); 173 DO32(drr_object.drr_bonustype); 174 DO32(drr_object.drr_blksz); 175 DO32(drr_object.drr_bonuslen); 176 DO32(drr_object.drr_raw_bonuslen); 177 DO64(drr_object.drr_toguid); 178 DO64(drr_object.drr_maxblkid); 179 break; 180 case DRR_FREEOBJECTS: 181 DO64(drr_freeobjects.drr_firstobj); 182 DO64(drr_freeobjects.drr_numobjs); 183 DO64(drr_freeobjects.drr_toguid); 184 break; 185 case DRR_WRITE: 186 DO64(drr_write.drr_object); 187 DO32(drr_write.drr_type); 188 DO64(drr_write.drr_offset); 189 DO64(drr_write.drr_logical_size); 190 DO64(drr_write.drr_toguid); 191 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 192 DO64(drr_write.drr_key.ddk_prop); 193 DO64(drr_write.drr_compressed_size); 194 break; 195 case DRR_WRITE_EMBEDDED: 196 DO64(drr_write_embedded.drr_object); 197 DO64(drr_write_embedded.drr_offset); 198 DO64(drr_write_embedded.drr_length); 199 DO64(drr_write_embedded.drr_toguid); 200 DO32(drr_write_embedded.drr_lsize); 201 DO32(drr_write_embedded.drr_psize); 202 break; 203 case DRR_FREE: 204 DO64(drr_free.drr_object); 205 DO64(drr_free.drr_offset); 206 DO64(drr_free.drr_length); 207 DO64(drr_free.drr_toguid); 208 break; 209 case DRR_SPILL: 210 DO64(drr_spill.drr_object); 211 DO64(drr_spill.drr_length); 212 DO64(drr_spill.drr_toguid); 213 DO64(drr_spill.drr_compressed_size); 214 DO32(drr_spill.drr_type); 215 break; 216 case DRR_OBJECT_RANGE: 217 DO64(drr_object_range.drr_firstobj); 218 DO64(drr_object_range.drr_numslots); 219 DO64(drr_object_range.drr_toguid); 220 break; 221 case DRR_REDACT: 222 DO64(drr_redact.drr_object); 223 DO64(drr_redact.drr_offset); 224 DO64(drr_redact.drr_length); 225 DO64(drr_redact.drr_toguid); 226 break; 227 case DRR_END: 228 DO64(drr_end.drr_toguid); 229 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 230 break; 231 default: 232 break; 233 } 234 235 if (drr->drr_type != DRR_BEGIN) { 236 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 237 } 238 239 #undef DO64 240 #undef DO32 241 } 242 243 static boolean_t 244 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 245 { 246 for (int i = 0; i < num_snaps; i++) { 247 if (snaps[i] == guid) 248 return (B_TRUE); 249 } 250 return (B_FALSE); 251 } 252 253 /* 254 * Check that the new stream we're trying to receive is redacted with respect to 255 * a subset of the snapshots that the origin was redacted with respect to. For 256 * the reasons behind this, see the man page on redacted zfs sends and receives. 257 */ 258 static boolean_t 259 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 260 uint64_t *redact_snaps, uint64_t num_redact_snaps) 261 { 262 /* 263 * Short circuit the comparison; if we are redacted with respect to 264 * more snapshots than the origin, we can't be redacted with respect 265 * to a subset. 266 */ 267 if (num_redact_snaps > origin_num_snaps) { 268 return (B_FALSE); 269 } 270 271 for (int i = 0; i < num_redact_snaps; i++) { 272 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 273 redact_snaps[i])) { 274 return (B_FALSE); 275 } 276 } 277 return (B_TRUE); 278 } 279 280 static boolean_t 281 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 282 { 283 uint64_t *origin_snaps; 284 uint64_t origin_num_snaps; 285 dmu_recv_cookie_t *drc = drba->drba_cookie; 286 struct drr_begin *drrb = drc->drc_drrb; 287 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 288 int err = 0; 289 boolean_t ret = B_TRUE; 290 uint64_t *redact_snaps; 291 uint_t numredactsnaps; 292 293 /* 294 * If this is a full send stream, we're safe no matter what. 295 */ 296 if (drrb->drr_fromguid == 0) 297 return (ret); 298 299 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 300 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 301 302 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 303 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 304 0) { 305 /* 306 * If the send stream was sent from the redaction bookmark or 307 * the redacted version of the dataset, then we're safe. Verify 308 * that this is from the a compatible redaction bookmark or 309 * redacted dataset. 310 */ 311 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 312 redact_snaps, numredactsnaps)) { 313 err = EINVAL; 314 } 315 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 316 /* 317 * If the stream is redacted, it must be redacted with respect 318 * to a subset of what the origin is redacted with respect to. 319 * See case number 2 in the zfs man page section on redacted zfs 320 * send. 321 */ 322 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 323 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 324 325 if (err != 0 || !compatible_redact_snaps(origin_snaps, 326 origin_num_snaps, redact_snaps, numredactsnaps)) { 327 err = EINVAL; 328 } 329 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 330 drrb->drr_toguid)) { 331 /* 332 * If the stream isn't redacted but the origin is, this must be 333 * one of the snapshots the origin is redacted with respect to. 334 * See case number 1 in the zfs man page section on redacted zfs 335 * send. 336 */ 337 err = EINVAL; 338 } 339 340 if (err != 0) 341 ret = B_FALSE; 342 return (ret); 343 } 344 345 /* 346 * If we previously received a stream with --large-block, we don't support 347 * receiving an incremental on top of it without --large-block. This avoids 348 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 349 * records. 350 */ 351 static int 352 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 353 { 354 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 355 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 356 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 357 return (0); 358 } 359 360 static int 361 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 362 uint64_t fromguid, uint64_t featureflags) 363 { 364 uint64_t obj; 365 uint64_t children; 366 int error; 367 dsl_dataset_t *snap; 368 dsl_pool_t *dp = ds->ds_dir->dd_pool; 369 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 370 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 371 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 372 373 /* Temporary clone name must not exist. */ 374 error = zap_lookup(dp->dp_meta_objset, 375 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 376 8, 1, &obj); 377 if (error != ENOENT) 378 return (error == 0 ? SET_ERROR(EBUSY) : error); 379 380 /* Resume state must not be set. */ 381 if (dsl_dataset_has_resume_receive_state(ds)) 382 return (SET_ERROR(EBUSY)); 383 384 /* New snapshot name must not exist if we're not healing it. */ 385 error = zap_lookup(dp->dp_meta_objset, 386 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 387 drba->drba_cookie->drc_tosnap, 8, 1, &obj); 388 if (drba->drba_cookie->drc_heal) { 389 if (error != 0) 390 return (error); 391 } else if (error != ENOENT) { 392 return (error == 0 ? SET_ERROR(EEXIST) : error); 393 } 394 395 /* Must not have children if receiving a ZVOL. */ 396 error = zap_count(dp->dp_meta_objset, 397 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 398 if (error != 0) 399 return (error); 400 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 401 children > 0) 402 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 403 404 /* 405 * Check snapshot limit before receiving. We'll recheck again at the 406 * end, but might as well abort before receiving if we're already over 407 * the limit. 408 * 409 * Note that we do not check the file system limit with 410 * dsl_dir_fscount_check because the temporary %clones don't count 411 * against that limit. 412 */ 413 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 414 NULL, drba->drba_cred, drba->drba_proc); 415 if (error != 0) 416 return (error); 417 418 if (drba->drba_cookie->drc_heal) { 419 /* Encryption is incompatible with embedded data. */ 420 if (encrypted && embed) 421 return (SET_ERROR(EINVAL)); 422 423 /* Healing is not supported when in 'force' mode. */ 424 if (drba->drba_cookie->drc_force) 425 return (SET_ERROR(EINVAL)); 426 427 /* Must have keys loaded if doing encrypted non-raw recv. */ 428 if (encrypted && !raw) { 429 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object, 430 NULL, NULL) != 0) 431 return (SET_ERROR(EACCES)); 432 } 433 434 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); 435 if (error != 0) 436 return (error); 437 438 /* 439 * When not doing best effort corrective recv healing can only 440 * be done if the send stream is for the same snapshot as the 441 * one we are trying to heal. 442 */ 443 if (zfs_recv_best_effort_corrective == 0 && 444 drba->drba_cookie->drc_drrb->drr_toguid != 445 dsl_dataset_phys(snap)->ds_guid) { 446 dsl_dataset_rele(snap, FTAG); 447 return (SET_ERROR(ENOTSUP)); 448 } 449 dsl_dataset_rele(snap, FTAG); 450 } else if (fromguid != 0) { 451 /* Sanity check the incremental recv */ 452 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 453 454 /* Can't perform a raw receive on top of a non-raw receive */ 455 if (!encrypted && raw) 456 return (SET_ERROR(EINVAL)); 457 458 /* Encryption is incompatible with embedded data */ 459 if (encrypted && embed) 460 return (SET_ERROR(EINVAL)); 461 462 /* Find snapshot in this dir that matches fromguid. */ 463 while (obj != 0) { 464 error = dsl_dataset_hold_obj(dp, obj, FTAG, 465 &snap); 466 if (error != 0) 467 return (SET_ERROR(ENODEV)); 468 if (snap->ds_dir != ds->ds_dir) { 469 dsl_dataset_rele(snap, FTAG); 470 return (SET_ERROR(ENODEV)); 471 } 472 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 473 break; 474 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 475 dsl_dataset_rele(snap, FTAG); 476 } 477 if (obj == 0) 478 return (SET_ERROR(ENODEV)); 479 480 if (drba->drba_cookie->drc_force) { 481 drba->drba_cookie->drc_fromsnapobj = obj; 482 } else { 483 /* 484 * If we are not forcing, there must be no 485 * changes since fromsnap. Raw sends have an 486 * additional constraint that requires that 487 * no "noop" snapshots exist between fromsnap 488 * and tosnap for the IVset checking code to 489 * work properly. 490 */ 491 if (dsl_dataset_modified_since_snap(ds, snap) || 492 (raw && 493 dsl_dataset_phys(ds)->ds_prev_snap_obj != 494 snap->ds_object)) { 495 dsl_dataset_rele(snap, FTAG); 496 return (SET_ERROR(ETXTBSY)); 497 } 498 drba->drba_cookie->drc_fromsnapobj = 499 ds->ds_prev->ds_object; 500 } 501 502 if (dsl_dataset_feature_is_active(snap, 503 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 504 snap)) { 505 dsl_dataset_rele(snap, FTAG); 506 return (SET_ERROR(EINVAL)); 507 } 508 509 error = recv_check_large_blocks(snap, featureflags); 510 if (error != 0) { 511 dsl_dataset_rele(snap, FTAG); 512 return (error); 513 } 514 515 dsl_dataset_rele(snap, FTAG); 516 } else { 517 /* If full and not healing then must be forced. */ 518 if (!drba->drba_cookie->drc_force) 519 return (SET_ERROR(EEXIST)); 520 521 /* 522 * We don't support using zfs recv -F to blow away 523 * encrypted filesystems. This would require the 524 * dsl dir to point to the old encryption key and 525 * the new one at the same time during the receive. 526 */ 527 if ((!encrypted && raw) || encrypted) 528 return (SET_ERROR(EINVAL)); 529 530 /* 531 * Perform the same encryption checks we would if 532 * we were creating a new dataset from scratch. 533 */ 534 if (!raw) { 535 boolean_t will_encrypt; 536 537 error = dmu_objset_create_crypt_check( 538 ds->ds_dir->dd_parent, drba->drba_dcp, 539 &will_encrypt); 540 if (error != 0) 541 return (error); 542 543 if (will_encrypt && embed) 544 return (SET_ERROR(EINVAL)); 545 } 546 } 547 548 return (0); 549 } 550 551 /* 552 * Check that any feature flags used in the data stream we're receiving are 553 * supported by the pool we are receiving into. 554 * 555 * Note that some of the features we explicitly check here have additional 556 * (implicit) features they depend on, but those dependencies are enforced 557 * through the zfeature_register() calls declaring the features that we 558 * explicitly check. 559 */ 560 static int 561 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 562 { 563 /* 564 * Check if there are any unsupported feature flags. 565 */ 566 if (!DMU_STREAM_SUPPORTED(featureflags)) { 567 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 568 } 569 570 /* Verify pool version supports SA if SA_SPILL feature set */ 571 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 572 spa_version(spa) < SPA_VERSION_SA) 573 return (SET_ERROR(ENOTSUP)); 574 575 /* 576 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 577 * and large_dnodes in the stream can only be used if those pool 578 * features are enabled because we don't attempt to decompress / 579 * un-embed / un-mooch / split up the blocks / dnodes during the 580 * receive process. 581 */ 582 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 583 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 584 return (SET_ERROR(ENOTSUP)); 585 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 586 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 587 return (SET_ERROR(ENOTSUP)); 588 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 589 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 590 return (SET_ERROR(ENOTSUP)); 591 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 592 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 593 return (SET_ERROR(ENOTSUP)); 594 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 595 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 596 return (SET_ERROR(ENOTSUP)); 597 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) && 598 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_MICROZAP)) 599 return (SET_ERROR(ENOTSUP)); 600 601 /* 602 * Receiving redacted streams requires that redacted datasets are 603 * enabled. 604 */ 605 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 606 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 607 return (SET_ERROR(ENOTSUP)); 608 609 /* 610 * If the LONGNAME is not enabled on the target, fail that request. 611 */ 612 if ((featureflags & DMU_BACKUP_FEATURE_LONGNAME) && 613 !spa_feature_is_enabled(spa, SPA_FEATURE_LONGNAME)) 614 return (SET_ERROR(ENOTSUP)); 615 616 return (0); 617 } 618 619 static int 620 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 621 { 622 dmu_recv_begin_arg_t *drba = arg; 623 dsl_pool_t *dp = dmu_tx_pool(tx); 624 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 625 uint64_t fromguid = drrb->drr_fromguid; 626 int flags = drrb->drr_flags; 627 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 628 int error; 629 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 630 dsl_dataset_t *ds; 631 const char *tofs = drba->drba_cookie->drc_tofs; 632 633 /* already checked */ 634 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 635 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 636 637 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 638 DMU_COMPOUNDSTREAM || 639 drrb->drr_type >= DMU_OST_NUMTYPES || 640 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 641 return (SET_ERROR(EINVAL)); 642 643 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 644 if (error != 0) 645 return (error); 646 647 /* Resumable receives require extensible datasets */ 648 if (drba->drba_cookie->drc_resumable && 649 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 650 return (SET_ERROR(ENOTSUP)); 651 652 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 653 /* raw receives require the encryption feature */ 654 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 655 return (SET_ERROR(ENOTSUP)); 656 657 /* embedded data is incompatible with encryption and raw recv */ 658 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 659 return (SET_ERROR(EINVAL)); 660 661 /* raw receives require spill block allocation flag */ 662 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 663 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 664 } else { 665 /* 666 * We support unencrypted datasets below encrypted ones now, 667 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing 668 * with a dataset we may encrypt. 669 */ 670 if (drba->drba_dcp == NULL || 671 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { 672 dsflags |= DS_HOLD_FLAG_DECRYPT; 673 } 674 } 675 676 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 677 if (error == 0) { 678 /* target fs already exists; recv into temp clone */ 679 680 /* Can't recv a clone into an existing fs */ 681 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 682 dsl_dataset_rele_flags(ds, dsflags, FTAG); 683 return (SET_ERROR(EINVAL)); 684 } 685 686 error = recv_begin_check_existing_impl(drba, ds, fromguid, 687 featureflags); 688 dsl_dataset_rele_flags(ds, dsflags, FTAG); 689 } else if (error == ENOENT) { 690 /* target fs does not exist; must be a full backup or clone */ 691 char buf[ZFS_MAX_DATASET_NAME_LEN]; 692 objset_t *os; 693 694 /* healing recv must be done "into" an existing snapshot */ 695 if (drba->drba_cookie->drc_heal == B_TRUE) 696 return (SET_ERROR(ENOTSUP)); 697 698 /* 699 * If it's a non-clone incremental, we are missing the 700 * target fs, so fail the recv. 701 */ 702 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 703 drba->drba_origin)) 704 return (SET_ERROR(ENOENT)); 705 706 /* 707 * If we're receiving a full send as a clone, and it doesn't 708 * contain all the necessary free records and freeobject 709 * records, reject it. 710 */ 711 if (fromguid == 0 && drba->drba_origin != NULL && 712 !(flags & DRR_FLAG_FREERECORDS)) 713 return (SET_ERROR(EINVAL)); 714 715 /* Open the parent of tofs */ 716 ASSERT3U(strlen(tofs), <, sizeof (buf)); 717 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 718 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 719 if (error != 0) 720 return (error); 721 722 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 723 drba->drba_origin == NULL) { 724 boolean_t will_encrypt; 725 726 /* 727 * Check that we aren't breaking any encryption rules 728 * and that we have all the parameters we need to 729 * create an encrypted dataset if necessary. If we are 730 * making an encrypted dataset the stream can't have 731 * embedded data. 732 */ 733 error = dmu_objset_create_crypt_check(ds->ds_dir, 734 drba->drba_dcp, &will_encrypt); 735 if (error != 0) { 736 dsl_dataset_rele(ds, FTAG); 737 return (error); 738 } 739 740 if (will_encrypt && 741 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 742 dsl_dataset_rele(ds, FTAG); 743 return (SET_ERROR(EINVAL)); 744 } 745 } 746 747 /* 748 * Check filesystem and snapshot limits before receiving. We'll 749 * recheck snapshot limits again at the end (we create the 750 * filesystems and increment those counts during begin_sync). 751 */ 752 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 753 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 754 drba->drba_cred, drba->drba_proc); 755 if (error != 0) { 756 dsl_dataset_rele(ds, FTAG); 757 return (error); 758 } 759 760 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 761 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 762 drba->drba_cred, drba->drba_proc); 763 if (error != 0) { 764 dsl_dataset_rele(ds, FTAG); 765 return (error); 766 } 767 768 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 769 error = dmu_objset_from_ds(ds, &os); 770 if (error != 0) { 771 dsl_dataset_rele(ds, FTAG); 772 return (error); 773 } 774 if (dmu_objset_type(os) != DMU_OST_ZFS) { 775 dsl_dataset_rele(ds, FTAG); 776 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 777 } 778 779 if (drba->drba_origin != NULL) { 780 dsl_dataset_t *origin; 781 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 782 dsflags, FTAG, &origin); 783 if (error != 0) { 784 dsl_dataset_rele(ds, FTAG); 785 return (error); 786 } 787 if (!origin->ds_is_snapshot) { 788 dsl_dataset_rele_flags(origin, dsflags, FTAG); 789 dsl_dataset_rele(ds, FTAG); 790 return (SET_ERROR(EINVAL)); 791 } 792 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 793 fromguid != 0) { 794 dsl_dataset_rele_flags(origin, dsflags, FTAG); 795 dsl_dataset_rele(ds, FTAG); 796 return (SET_ERROR(ENODEV)); 797 } 798 799 if (origin->ds_dir->dd_crypto_obj != 0 && 800 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 801 dsl_dataset_rele_flags(origin, dsflags, FTAG); 802 dsl_dataset_rele(ds, FTAG); 803 return (SET_ERROR(EINVAL)); 804 } 805 806 /* 807 * If the origin is redacted we need to verify that this 808 * send stream can safely be received on top of the 809 * origin. 810 */ 811 if (dsl_dataset_feature_is_active(origin, 812 SPA_FEATURE_REDACTED_DATASETS)) { 813 if (!redact_check(drba, origin)) { 814 dsl_dataset_rele_flags(origin, dsflags, 815 FTAG); 816 dsl_dataset_rele_flags(ds, dsflags, 817 FTAG); 818 return (SET_ERROR(EINVAL)); 819 } 820 } 821 822 error = recv_check_large_blocks(ds, featureflags); 823 if (error != 0) { 824 dsl_dataset_rele_flags(origin, dsflags, FTAG); 825 dsl_dataset_rele_flags(ds, dsflags, FTAG); 826 return (error); 827 } 828 829 dsl_dataset_rele_flags(origin, dsflags, FTAG); 830 } 831 832 dsl_dataset_rele(ds, FTAG); 833 error = 0; 834 } 835 return (error); 836 } 837 838 static void 839 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 840 { 841 dmu_recv_begin_arg_t *drba = arg; 842 dsl_pool_t *dp = dmu_tx_pool(tx); 843 objset_t *mos = dp->dp_meta_objset; 844 dmu_recv_cookie_t *drc = drba->drba_cookie; 845 struct drr_begin *drrb = drc->drc_drrb; 846 const char *tofs = drc->drc_tofs; 847 uint64_t featureflags = drc->drc_featureflags; 848 dsl_dataset_t *ds, *newds; 849 objset_t *os; 850 uint64_t dsobj; 851 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 852 int error; 853 uint64_t crflags = 0; 854 dsl_crypto_params_t dummy_dcp = { 0 }; 855 dsl_crypto_params_t *dcp = drba->drba_dcp; 856 857 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 858 crflags |= DS_FLAG_CI_DATASET; 859 860 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 861 dsflags |= DS_HOLD_FLAG_DECRYPT; 862 863 /* 864 * Raw, non-incremental recvs always use a dummy dcp with 865 * the raw cmd set. Raw incremental recvs do not use a dcp 866 * since the encryption parameters are already set in stone. 867 */ 868 if (dcp == NULL && drrb->drr_fromguid == 0 && 869 drba->drba_origin == NULL) { 870 ASSERT3P(dcp, ==, NULL); 871 dcp = &dummy_dcp; 872 873 if (featureflags & DMU_BACKUP_FEATURE_RAW) 874 dcp->cp_cmd = DCP_CMD_RAW_RECV; 875 } 876 877 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 878 if (error == 0) { 879 /* Create temporary clone unless we're doing corrective recv */ 880 dsl_dataset_t *snap = NULL; 881 882 if (drba->drba_cookie->drc_fromsnapobj != 0) { 883 VERIFY0(dsl_dataset_hold_obj(dp, 884 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 885 ASSERT3P(dcp, ==, NULL); 886 } 887 if (drc->drc_heal) { 888 /* When healing we want to use the provided snapshot */ 889 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap, 890 &dsobj)); 891 } else { 892 dsobj = dsl_dataset_create_sync(ds->ds_dir, 893 recv_clone_name, snap, crflags, drba->drba_cred, 894 dcp, tx); 895 } 896 if (drba->drba_cookie->drc_fromsnapobj != 0) 897 dsl_dataset_rele(snap, FTAG); 898 dsl_dataset_rele_flags(ds, dsflags, FTAG); 899 } else { 900 dsl_dir_t *dd; 901 const char *tail; 902 dsl_dataset_t *origin = NULL; 903 904 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 905 906 if (drba->drba_origin != NULL) { 907 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 908 FTAG, &origin)); 909 ASSERT3P(dcp, ==, NULL); 910 } 911 912 /* Create new dataset. */ 913 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 914 origin, crflags, drba->drba_cred, dcp, tx); 915 if (origin != NULL) 916 dsl_dataset_rele(origin, FTAG); 917 dsl_dir_rele(dd, FTAG); 918 drc->drc_newfs = B_TRUE; 919 } 920 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 921 &newds)); 922 if (dsl_dataset_feature_is_active(newds, 923 SPA_FEATURE_REDACTED_DATASETS)) { 924 /* 925 * If the origin dataset is redacted, the child will be redacted 926 * when we create it. We clear the new dataset's 927 * redaction info; if it should be redacted, we'll fill 928 * in its information later. 929 */ 930 dsl_dataset_deactivate_feature(newds, 931 SPA_FEATURE_REDACTED_DATASETS, tx); 932 } 933 VERIFY0(dmu_objset_from_ds(newds, &os)); 934 935 if (drc->drc_resumable) { 936 dsl_dataset_zapify(newds, tx); 937 if (drrb->drr_fromguid != 0) { 938 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 939 8, 1, &drrb->drr_fromguid, tx)); 940 } 941 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 942 8, 1, &drrb->drr_toguid, tx)); 943 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 944 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 945 uint64_t one = 1; 946 uint64_t zero = 0; 947 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 948 8, 1, &one, tx)); 949 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 950 8, 1, &zero, tx)); 951 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 952 8, 1, &zero, tx)); 953 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 954 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 955 8, 1, &one, tx)); 956 } 957 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 958 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 959 8, 1, &one, tx)); 960 } 961 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 962 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 963 8, 1, &one, tx)); 964 } 965 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 966 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 967 8, 1, &one, tx)); 968 } 969 970 uint64_t *redact_snaps; 971 uint_t numredactsnaps; 972 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 973 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 974 &numredactsnaps) == 0) { 975 VERIFY0(zap_add(mos, dsobj, 976 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 977 sizeof (*redact_snaps), numredactsnaps, 978 redact_snaps, tx)); 979 } 980 } 981 982 /* 983 * Usually the os->os_encrypted value is tied to the presence of a 984 * DSL Crypto Key object in the dd. However, that will not be received 985 * until dmu_recv_stream(), so we set the value manually for now. 986 */ 987 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 988 os->os_encrypted = B_TRUE; 989 drba->drba_cookie->drc_raw = B_TRUE; 990 } 991 992 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 993 uint64_t *redact_snaps; 994 uint_t numredactsnaps; 995 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 996 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 997 dsl_dataset_activate_redaction(newds, redact_snaps, 998 numredactsnaps, tx); 999 } 1000 1001 if (featureflags & DMU_BACKUP_FEATURE_LARGE_MICROZAP) { 1002 /* 1003 * The source has seen a large microzap at least once in its 1004 * life, so we activate the feature here to match. It's not 1005 * strictly necessary since a large microzap is usable without 1006 * the feature active, but if that object is sent on from here, 1007 * we need this info to know to add the stream feature. 1008 * 1009 * There may be no large microzap in the incoming stream, or 1010 * ever again, but this is a very niche feature and its very 1011 * difficult to spot a large microzap in the stream, so its 1012 * not worth the effort of trying harder to activate the 1013 * feature at first use. 1014 */ 1015 dsl_dataset_activate_feature(dsobj, SPA_FEATURE_LARGE_MICROZAP, 1016 (void *)B_TRUE, tx); 1017 } 1018 1019 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1020 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1021 1022 /* 1023 * Activate longname feature if received 1024 */ 1025 if (featureflags & DMU_BACKUP_FEATURE_LONGNAME && 1026 !dsl_dataset_feature_is_active(newds, SPA_FEATURE_LONGNAME)) { 1027 dsl_dataset_activate_feature(newds->ds_object, 1028 SPA_FEATURE_LONGNAME, (void *)B_TRUE, tx); 1029 newds->ds_feature[SPA_FEATURE_LONGNAME] = (void *)B_TRUE; 1030 } 1031 1032 /* 1033 * If we actually created a non-clone, we need to create the objset 1034 * in our new dataset. If this is a raw send we postpone this until 1035 * dmu_recv_stream() so that we can allocate the metadnode with the 1036 * properties from the DRR_BEGIN payload. 1037 */ 1038 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1039 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 1040 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 1041 !drc->drc_heal) { 1042 (void) dmu_objset_create_impl(dp->dp_spa, 1043 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1044 } 1045 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1046 1047 drba->drba_cookie->drc_ds = newds; 1048 drba->drba_cookie->drc_os = os; 1049 1050 spa_history_log_internal_ds(newds, "receive", tx, " "); 1051 } 1052 1053 static int 1054 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1055 { 1056 dmu_recv_begin_arg_t *drba = arg; 1057 dmu_recv_cookie_t *drc = drba->drba_cookie; 1058 dsl_pool_t *dp = dmu_tx_pool(tx); 1059 struct drr_begin *drrb = drc->drc_drrb; 1060 int error; 1061 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1062 dsl_dataset_t *ds; 1063 const char *tofs = drc->drc_tofs; 1064 1065 /* already checked */ 1066 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1067 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 1068 1069 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1070 DMU_COMPOUNDSTREAM || 1071 drrb->drr_type >= DMU_OST_NUMTYPES) 1072 return (SET_ERROR(EINVAL)); 1073 1074 /* 1075 * This is mostly a sanity check since we should have already done these 1076 * checks during a previous attempt to receive the data. 1077 */ 1078 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 1079 dp->dp_spa); 1080 if (error != 0) 1081 return (error); 1082 1083 /* 6 extra bytes for /%recv */ 1084 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1085 1086 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1087 tofs, recv_clone_name); 1088 1089 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 1090 /* raw receives require spill block allocation flag */ 1091 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 1092 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 1093 } else { 1094 dsflags |= DS_HOLD_FLAG_DECRYPT; 1095 } 1096 1097 boolean_t recvexist = B_TRUE; 1098 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 1099 /* %recv does not exist; continue in tofs */ 1100 recvexist = B_FALSE; 1101 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 1102 if (error != 0) 1103 return (error); 1104 } 1105 1106 /* 1107 * Resume of full/newfs recv on existing dataset should be done with 1108 * force flag 1109 */ 1110 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) { 1111 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1112 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS)); 1113 } 1114 1115 /* check that ds is marked inconsistent */ 1116 if (!DS_IS_INCONSISTENT(ds)) { 1117 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1118 return (SET_ERROR(EINVAL)); 1119 } 1120 1121 /* check that there is resuming data, and that the toguid matches */ 1122 if (!dsl_dataset_is_zapified(ds)) { 1123 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1124 return (SET_ERROR(EINVAL)); 1125 } 1126 uint64_t val; 1127 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1128 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1129 if (error != 0 || drrb->drr_toguid != val) { 1130 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1131 return (SET_ERROR(EINVAL)); 1132 } 1133 1134 /* 1135 * Check if the receive is still running. If so, it will be owned. 1136 * Note that nothing else can own the dataset (e.g. after the receive 1137 * fails) because it will be marked inconsistent. 1138 */ 1139 if (dsl_dataset_has_owner(ds)) { 1140 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1141 return (SET_ERROR(EBUSY)); 1142 } 1143 1144 /* There should not be any snapshots of this fs yet. */ 1145 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1146 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1147 return (SET_ERROR(EINVAL)); 1148 } 1149 1150 /* 1151 * Note: resume point will be checked when we process the first WRITE 1152 * record. 1153 */ 1154 1155 /* check that the origin matches */ 1156 val = 0; 1157 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1158 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1159 if (drrb->drr_fromguid != val) { 1160 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1161 return (SET_ERROR(EINVAL)); 1162 } 1163 1164 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1165 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1166 1167 /* 1168 * If we're resuming, and the send is redacted, then the original send 1169 * must have been redacted, and must have been redacted with respect to 1170 * the same snapshots. 1171 */ 1172 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1173 uint64_t num_ds_redact_snaps; 1174 uint64_t *ds_redact_snaps; 1175 1176 uint_t num_stream_redact_snaps; 1177 uint64_t *stream_redact_snaps; 1178 1179 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1180 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1181 &num_stream_redact_snaps) != 0) { 1182 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1183 return (SET_ERROR(EINVAL)); 1184 } 1185 1186 if (!dsl_dataset_get_uint64_array_feature(ds, 1187 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1188 &ds_redact_snaps)) { 1189 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1190 return (SET_ERROR(EINVAL)); 1191 } 1192 1193 for (int i = 0; i < num_ds_redact_snaps; i++) { 1194 if (!redact_snaps_contains(ds_redact_snaps, 1195 num_ds_redact_snaps, stream_redact_snaps[i])) { 1196 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1197 return (SET_ERROR(EINVAL)); 1198 } 1199 } 1200 } 1201 1202 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1203 if (error != 0) { 1204 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1205 return (error); 1206 } 1207 1208 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1209 return (0); 1210 } 1211 1212 static void 1213 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1214 { 1215 dmu_recv_begin_arg_t *drba = arg; 1216 dsl_pool_t *dp = dmu_tx_pool(tx); 1217 const char *tofs = drba->drba_cookie->drc_tofs; 1218 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1219 dsl_dataset_t *ds; 1220 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1221 /* 6 extra bytes for /%recv */ 1222 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1223 1224 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1225 recv_clone_name); 1226 1227 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1228 drba->drba_cookie->drc_raw = B_TRUE; 1229 } else { 1230 dsflags |= DS_HOLD_FLAG_DECRYPT; 1231 } 1232 1233 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1234 != 0) { 1235 /* %recv does not exist; continue in tofs */ 1236 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1237 &ds)); 1238 drba->drba_cookie->drc_newfs = B_TRUE; 1239 } 1240 1241 ASSERT(DS_IS_INCONSISTENT(ds)); 1242 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1243 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1244 drba->drba_cookie->drc_raw); 1245 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1246 1247 drba->drba_cookie->drc_ds = ds; 1248 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1249 drba->drba_cookie->drc_should_save = B_TRUE; 1250 1251 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1252 } 1253 1254 /* 1255 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1256 * succeeds; otherwise we will leak the holds on the datasets. 1257 */ 1258 int 1259 dmu_recv_begin(const char *tofs, const char *tosnap, 1260 dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal, 1261 boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args, 1262 const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp, 1263 offset_t *voffp) 1264 { 1265 dmu_recv_begin_arg_t drba = { 0 }; 1266 int err = 0; 1267 1268 memset(drc, 0, sizeof (dmu_recv_cookie_t)); 1269 drc->drc_drr_begin = drr_begin; 1270 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1271 drc->drc_tosnap = tosnap; 1272 drc->drc_tofs = tofs; 1273 drc->drc_force = force; 1274 drc->drc_heal = heal; 1275 drc->drc_resumable = resumable; 1276 drc->drc_cred = CRED(); 1277 drc->drc_proc = curproc; 1278 drc->drc_clone = (origin != NULL); 1279 1280 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1281 drc->drc_byteswap = B_TRUE; 1282 (void) fletcher_4_incremental_byteswap(drr_begin, 1283 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1284 byteswap_record(drr_begin); 1285 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1286 (void) fletcher_4_incremental_native(drr_begin, 1287 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1288 } else { 1289 return (SET_ERROR(EINVAL)); 1290 } 1291 1292 drc->drc_fp = fp; 1293 drc->drc_voff = *voffp; 1294 drc->drc_featureflags = 1295 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1296 1297 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1298 1299 /* 1300 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace 1301 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard 1302 * upper limit. Systems with less than 1GB of RAM will see a lower 1303 * limit from `arc_all_memory() / 4`. 1304 */ 1305 if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4))) 1306 return (E2BIG); 1307 1308 1309 if (payloadlen != 0) { 1310 void *payload = vmem_alloc(payloadlen, KM_SLEEP); 1311 /* 1312 * For compatibility with recursive send streams, we don't do 1313 * this here if the stream could be part of a package. Instead, 1314 * we'll do it in dmu_recv_stream. If we pull the next header 1315 * too early, and it's the END record, we break the `recv_skip` 1316 * logic. 1317 */ 1318 1319 err = receive_read_payload_and_next_header(drc, payloadlen, 1320 payload); 1321 if (err != 0) { 1322 vmem_free(payload, payloadlen); 1323 return (err); 1324 } 1325 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1326 KM_SLEEP); 1327 vmem_free(payload, payloadlen); 1328 if (err != 0) { 1329 kmem_free(drc->drc_next_rrd, 1330 sizeof (*drc->drc_next_rrd)); 1331 return (err); 1332 } 1333 } 1334 1335 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1336 drc->drc_spill = B_TRUE; 1337 1338 drba.drba_origin = origin; 1339 drba.drba_cookie = drc; 1340 drba.drba_cred = CRED(); 1341 drba.drba_proc = curproc; 1342 1343 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1344 err = dsl_sync_task(tofs, 1345 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1346 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1347 } else { 1348 /* 1349 * For non-raw, non-incremental, non-resuming receives the 1350 * user can specify encryption parameters on the command line 1351 * with "zfs recv -o". For these receives we create a dcp and 1352 * pass it to the sync task. Creating the dcp will implicitly 1353 * remove the encryption params from the localprops nvlist, 1354 * which avoids errors when trying to set these normally 1355 * read-only properties. Any other kind of receive that 1356 * attempts to set these properties will fail as a result. 1357 */ 1358 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1359 DMU_BACKUP_FEATURE_RAW) == 0 && 1360 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1361 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1362 localprops, hidden_args, &drba.drba_dcp); 1363 } 1364 1365 if (err == 0) { 1366 err = dsl_sync_task(tofs, 1367 dmu_recv_begin_check, dmu_recv_begin_sync, 1368 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1369 dsl_crypto_params_free(drba.drba_dcp, !!err); 1370 } 1371 } 1372 1373 if (err != 0) { 1374 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1375 nvlist_free(drc->drc_begin_nvl); 1376 } 1377 return (err); 1378 } 1379 1380 /* 1381 * Holds data need for corrective recv callback 1382 */ 1383 typedef struct cr_cb_data { 1384 uint64_t size; 1385 zbookmark_phys_t zb; 1386 spa_t *spa; 1387 } cr_cb_data_t; 1388 1389 static void 1390 corrective_read_done(zio_t *zio) 1391 { 1392 cr_cb_data_t *data = zio->io_private; 1393 /* Corruption corrected; update error log if needed */ 1394 if (zio->io_error == 0) { 1395 spa_remove_error(data->spa, &data->zb, 1396 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 1397 } 1398 kmem_free(data, sizeof (cr_cb_data_t)); 1399 abd_free(zio->io_abd); 1400 } 1401 1402 /* 1403 * zio_rewrite the data pointed to by bp with the data from the rrd's abd. 1404 */ 1405 static int 1406 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw, 1407 struct receive_record_arg *rrd, blkptr_t *bp) 1408 { 1409 int err; 1410 zio_t *io; 1411 zbookmark_phys_t zb; 1412 dnode_t *dn; 1413 abd_t *abd = rrd->abd; 1414 zio_cksum_t bp_cksum = bp->blk_cksum; 1415 zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY | 1416 ZIO_FLAG_CANFAIL; 1417 1418 if (rwa->raw) 1419 flags |= ZIO_FLAG_RAW; 1420 1421 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn); 1422 if (err != 0) 1423 return (err); 1424 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0, 1425 dbuf_whichblock(dn, 0, drrw->drr_offset)); 1426 dnode_rele(dn, FTAG); 1427 1428 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) { 1429 /* Decompress the stream data */ 1430 abd_t *dabd = abd_alloc_linear( 1431 drrw->drr_logical_size, B_FALSE); 1432 err = zio_decompress_data(drrw->drr_compressiontype, 1433 abd, dabd, abd_get_size(abd), 1434 abd_get_size(dabd), NULL); 1435 1436 if (err != 0) { 1437 abd_free(dabd); 1438 return (err); 1439 } 1440 /* Swap in the newly decompressed data into the abd */ 1441 abd_free(abd); 1442 abd = dabd; 1443 } 1444 1445 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 1446 /* Recompress the data */ 1447 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp), 1448 B_FALSE); 1449 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp), 1450 abd, &cabd, abd_get_size(abd), BP_GET_PSIZE(bp), 1451 rwa->os->os_complevel); 1452 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize); 1453 /* Swap in newly compressed data into the abd */ 1454 abd_free(abd); 1455 abd = cabd; 1456 flags |= ZIO_FLAG_RAW_COMPRESS; 1457 } 1458 1459 /* 1460 * The stream is not encrypted but the data on-disk is. 1461 * We need to re-encrypt the buf using the same 1462 * encryption type, salt, iv, and mac that was used to encrypt 1463 * the block previosly. 1464 */ 1465 if (!rwa->raw && BP_USES_CRYPT(bp)) { 1466 dsl_dataset_t *ds; 1467 dsl_crypto_key_t *dck = NULL; 1468 uint8_t salt[ZIO_DATA_SALT_LEN]; 1469 uint8_t iv[ZIO_DATA_IV_LEN]; 1470 uint8_t mac[ZIO_DATA_MAC_LEN]; 1471 boolean_t no_crypt = B_FALSE; 1472 dsl_pool_t *dp = dmu_objset_pool(rwa->os); 1473 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE); 1474 1475 zio_crypt_decode_params_bp(bp, salt, iv); 1476 zio_crypt_decode_mac_bp(bp, mac); 1477 1478 dsl_pool_config_enter(dp, FTAG); 1479 err = dsl_dataset_hold_flags(dp, rwa->tofs, 1480 DS_HOLD_FLAG_DECRYPT, FTAG, &ds); 1481 if (err != 0) { 1482 dsl_pool_config_exit(dp, FTAG); 1483 abd_free(eabd); 1484 return (SET_ERROR(EACCES)); 1485 } 1486 1487 /* Look up the key from the spa's keystore */ 1488 err = spa_keystore_lookup_key(rwa->os->os_spa, 1489 zb.zb_objset, FTAG, &dck); 1490 if (err != 0) { 1491 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, 1492 FTAG); 1493 dsl_pool_config_exit(dp, FTAG); 1494 abd_free(eabd); 1495 return (SET_ERROR(EACCES)); 1496 } 1497 1498 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 1499 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, 1500 mac, abd_get_size(abd), abd, eabd, &no_crypt); 1501 1502 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG); 1503 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1504 dsl_pool_config_exit(dp, FTAG); 1505 1506 ASSERT0(no_crypt); 1507 if (err != 0) { 1508 abd_free(eabd); 1509 return (err); 1510 } 1511 /* Swap in the newly encrypted data into the abd */ 1512 abd_free(abd); 1513 abd = eabd; 1514 1515 /* 1516 * We want to prevent zio_rewrite() from trying to 1517 * encrypt the data again 1518 */ 1519 flags |= ZIO_FLAG_RAW_ENCRYPT; 1520 } 1521 rrd->abd = abd; 1522 1523 io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp, 1524 abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, 1525 &zb); 1526 1527 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) || 1528 abd_get_size(abd) == BP_GET_PSIZE(bp)); 1529 1530 /* compute new bp checksum value and make sure it matches the old one */ 1531 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd)); 1532 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) { 1533 zio_destroy(io); 1534 if (zfs_recv_best_effort_corrective != 0) 1535 return (0); 1536 return (SET_ERROR(ECKSUM)); 1537 } 1538 1539 /* Correct the corruption in place */ 1540 err = zio_wait(io); 1541 if (err == 0) { 1542 cr_cb_data_t *cb_data = 1543 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP); 1544 cb_data->spa = rwa->os->os_spa; 1545 cb_data->size = drrw->drr_logical_size; 1546 cb_data->zb = zb; 1547 /* Test if healing worked by re-reading the bp */ 1548 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp, 1549 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE), 1550 drrw->drr_logical_size, corrective_read_done, 1551 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL)); 1552 } 1553 if (err != 0 && zfs_recv_best_effort_corrective != 0) 1554 err = 0; 1555 1556 return (err); 1557 } 1558 1559 static int 1560 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1561 { 1562 int done = 0; 1563 1564 /* 1565 * The code doesn't rely on this (lengths being multiples of 8). See 1566 * comment in dump_bytes. 1567 */ 1568 ASSERT(len % 8 == 0 || 1569 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1570 1571 while (done < len) { 1572 ssize_t resid = len - done; 1573 zfs_file_t *fp = drc->drc_fp; 1574 int err = zfs_file_read(fp, (char *)buf + done, 1575 len - done, &resid); 1576 if (err == 0 && resid == len - done) { 1577 /* 1578 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1579 * that the receive was interrupted and can 1580 * potentially be resumed. 1581 */ 1582 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1583 } 1584 drc->drc_voff += len - done - resid; 1585 done = len - resid; 1586 if (err != 0) 1587 return (err); 1588 } 1589 1590 drc->drc_bytes_read += len; 1591 1592 ASSERT3U(done, ==, len); 1593 return (0); 1594 } 1595 1596 static inline uint8_t 1597 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1598 { 1599 if (bonus_type == DMU_OT_SA) { 1600 return (1); 1601 } else { 1602 return (1 + 1603 ((DN_OLD_MAX_BONUSLEN - 1604 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1605 } 1606 } 1607 1608 static void 1609 save_resume_state(struct receive_writer_arg *rwa, 1610 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1611 { 1612 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1613 1614 if (!rwa->resumable) 1615 return; 1616 1617 /* 1618 * We use ds_resume_bytes[] != 0 to indicate that we need to 1619 * update this on disk, so it must not be 0. 1620 */ 1621 ASSERT(rwa->bytes_read != 0); 1622 1623 /* 1624 * We only resume from write records, which have a valid 1625 * (non-meta-dnode) object number. 1626 */ 1627 ASSERT(object != 0); 1628 1629 /* 1630 * For resuming to work correctly, we must receive records in order, 1631 * sorted by object,offset. This is checked by the callers, but 1632 * assert it here for good measure. 1633 */ 1634 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1635 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1636 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1637 ASSERT3U(rwa->bytes_read, >=, 1638 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1639 1640 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1641 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1642 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1643 } 1644 1645 static int 1646 receive_object_is_same_generation(objset_t *os, uint64_t object, 1647 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1648 const void *new_bonus, boolean_t *samegenp) 1649 { 1650 zfs_file_info_t zoi; 1651 int err; 1652 1653 dmu_buf_t *old_bonus_dbuf; 1654 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1655 if (err != 0) 1656 return (err); 1657 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1658 &zoi); 1659 dmu_buf_rele(old_bonus_dbuf, FTAG); 1660 if (err != 0) 1661 return (err); 1662 uint64_t old_gen = zoi.zfi_generation; 1663 1664 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1665 if (err != 0) 1666 return (err); 1667 uint64_t new_gen = zoi.zfi_generation; 1668 1669 *samegenp = (old_gen == new_gen); 1670 return (0); 1671 } 1672 1673 static int 1674 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1675 const struct drr_object *drro, const dmu_object_info_t *doi, 1676 const void *bonus_data, 1677 uint64_t *object_to_hold, uint32_t *new_blksz) 1678 { 1679 uint32_t indblksz = drro->drr_indblkshift ? 1680 1ULL << drro->drr_indblkshift : 0; 1681 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1682 drro->drr_bonuslen); 1683 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1684 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1685 boolean_t do_free_range = B_FALSE; 1686 int err; 1687 1688 *object_to_hold = drro->drr_object; 1689 1690 /* nblkptr should be bounded by the bonus size and type */ 1691 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1692 return (SET_ERROR(EINVAL)); 1693 1694 /* 1695 * After the previous send stream, the sending system may 1696 * have freed this object, and then happened to re-allocate 1697 * this object number in a later txg. In this case, we are 1698 * receiving a different logical file, and the block size may 1699 * appear to be different. i.e. we may have a different 1700 * block size for this object than what the send stream says. 1701 * In this case we need to remove the object's contents, 1702 * so that its structure can be changed and then its contents 1703 * entirely replaced by subsequent WRITE records. 1704 * 1705 * If this is a -L (--large-block) incremental stream, and 1706 * the previous stream was not -L, the block size may appear 1707 * to increase. i.e. we may have a smaller block size for 1708 * this object than what the send stream says. In this case 1709 * we need to keep the object's contents and block size 1710 * intact, so that we don't lose parts of the object's 1711 * contents that are not changed by this incremental send 1712 * stream. 1713 * 1714 * We can distinguish between the two above cases by using 1715 * the ZPL's generation number (see 1716 * receive_object_is_same_generation()). However, we only 1717 * want to rely on the generation number when absolutely 1718 * necessary, because with raw receives, the generation is 1719 * encrypted. We also want to minimize dependence on the 1720 * ZPL, so that other types of datasets can also be received 1721 * (e.g. ZVOLs, although note that ZVOLS currently do not 1722 * reallocate their objects or change their structure). 1723 * Therefore, we check a number of different cases where we 1724 * know it is safe to discard the object's contents, before 1725 * using the ZPL's generation number to make the above 1726 * distinction. 1727 */ 1728 if (drro->drr_blksz != doi->doi_data_block_size) { 1729 if (rwa->raw) { 1730 /* 1731 * RAW streams always have large blocks, so 1732 * we are sure that the data is not needed 1733 * due to changing --large-block to be on. 1734 * Which is fortunate since the bonus buffer 1735 * (which contains the ZPL generation) is 1736 * encrypted, and the key might not be 1737 * loaded. 1738 */ 1739 do_free_range = B_TRUE; 1740 } else if (rwa->full) { 1741 /* 1742 * This is a full send stream, so it always 1743 * replaces what we have. Even if the 1744 * generation numbers happen to match, this 1745 * can not actually be the same logical file. 1746 * This is relevant when receiving a full 1747 * send as a clone. 1748 */ 1749 do_free_range = B_TRUE; 1750 } else if (drro->drr_type != 1751 DMU_OT_PLAIN_FILE_CONTENTS || 1752 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1753 /* 1754 * PLAIN_FILE_CONTENTS are the only type of 1755 * objects that have ever been stored with 1756 * large blocks, so we don't need the special 1757 * logic below. ZAP blocks can shrink (when 1758 * there's only one block), so we don't want 1759 * to hit the error below about block size 1760 * only increasing. 1761 */ 1762 do_free_range = B_TRUE; 1763 } else if (doi->doi_max_offset <= 1764 doi->doi_data_block_size) { 1765 /* 1766 * There is only one block. We can free it, 1767 * because its contents will be replaced by a 1768 * WRITE record. This can not be the no-L -> 1769 * -L case, because the no-L case would have 1770 * resulted in multiple blocks. If we 1771 * supported -L -> no-L, it would not be safe 1772 * to free the file's contents. Fortunately, 1773 * that is not allowed (see 1774 * recv_check_large_blocks()). 1775 */ 1776 do_free_range = B_TRUE; 1777 } else { 1778 boolean_t is_same_gen; 1779 err = receive_object_is_same_generation(rwa->os, 1780 drro->drr_object, doi->doi_bonus_type, 1781 drro->drr_bonustype, bonus_data, &is_same_gen); 1782 if (err != 0) 1783 return (SET_ERROR(EINVAL)); 1784 1785 if (is_same_gen) { 1786 /* 1787 * This is the same logical file, and 1788 * the block size must be increasing. 1789 * It could only decrease if 1790 * --large-block was changed to be 1791 * off, which is checked in 1792 * recv_check_large_blocks(). 1793 */ 1794 if (drro->drr_blksz <= 1795 doi->doi_data_block_size) 1796 return (SET_ERROR(EINVAL)); 1797 /* 1798 * We keep the existing blocksize and 1799 * contents. 1800 */ 1801 *new_blksz = 1802 doi->doi_data_block_size; 1803 } else { 1804 do_free_range = B_TRUE; 1805 } 1806 } 1807 } 1808 1809 /* nblkptr can only decrease if the object was reallocated */ 1810 if (nblkptr < doi->doi_nblkptr) 1811 do_free_range = B_TRUE; 1812 1813 /* number of slots can only change on reallocation */ 1814 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1815 do_free_range = B_TRUE; 1816 1817 /* 1818 * For raw sends we also check a few other fields to 1819 * ensure we are preserving the objset structure exactly 1820 * as it was on the receive side: 1821 * - A changed indirect block size 1822 * - A smaller nlevels 1823 */ 1824 if (rwa->raw) { 1825 if (indblksz != doi->doi_metadata_block_size) 1826 do_free_range = B_TRUE; 1827 if (drro->drr_nlevels < doi->doi_indirection) 1828 do_free_range = B_TRUE; 1829 } 1830 1831 if (do_free_range) { 1832 err = dmu_free_long_range(rwa->os, drro->drr_object, 1833 0, DMU_OBJECT_END); 1834 if (err != 0) 1835 return (SET_ERROR(EINVAL)); 1836 } 1837 1838 /* 1839 * The dmu does not currently support decreasing nlevels or changing 1840 * indirect block size if there is already one, same as changing the 1841 * number of of dnode slots on an object. For non-raw sends this 1842 * does not matter and the new object can just use the previous one's 1843 * parameters. For raw sends, however, the structure of the received 1844 * dnode (including indirects and dnode slots) must match that of the 1845 * send side. Therefore, instead of using dmu_object_reclaim(), we 1846 * must free the object completely and call dmu_object_claim_dnsize() 1847 * instead. 1848 */ 1849 if ((rwa->raw && ((doi->doi_indirection > 1 && 1850 indblksz != doi->doi_metadata_block_size) || 1851 drro->drr_nlevels < doi->doi_indirection)) || 1852 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1853 err = dmu_free_long_object(rwa->os, drro->drr_object); 1854 if (err != 0) 1855 return (SET_ERROR(EINVAL)); 1856 1857 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1858 *object_to_hold = DMU_NEW_OBJECT; 1859 } 1860 1861 /* 1862 * For raw receives, free everything beyond the new incoming 1863 * maxblkid. Normally this would be done with a DRR_FREE 1864 * record that would come after this DRR_OBJECT record is 1865 * processed. However, for raw receives we manually set the 1866 * maxblkid from the drr_maxblkid and so we must first free 1867 * everything above that blkid to ensure the DMU is always 1868 * consistent with itself. We will never free the first block 1869 * of the object here because a maxblkid of 0 could indicate 1870 * an object with a single block or one with no blocks. This 1871 * free may be skipped when dmu_free_long_range() was called 1872 * above since it covers the entire object's contents. 1873 */ 1874 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1875 err = dmu_free_long_range(rwa->os, drro->drr_object, 1876 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1877 DMU_OBJECT_END); 1878 if (err != 0) 1879 return (SET_ERROR(EINVAL)); 1880 } 1881 return (0); 1882 } 1883 1884 noinline static int 1885 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1886 void *data) 1887 { 1888 dmu_object_info_t doi; 1889 dmu_tx_t *tx; 1890 int err; 1891 uint32_t new_blksz = drro->drr_blksz; 1892 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1893 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1894 1895 if (drro->drr_type == DMU_OT_NONE || 1896 !DMU_OT_IS_VALID(drro->drr_type) || 1897 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1898 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1899 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1900 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1901 drro->drr_blksz < SPA_MINBLOCKSIZE || 1902 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1903 drro->drr_bonuslen > 1904 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1905 dn_slots > 1906 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1907 return (SET_ERROR(EINVAL)); 1908 } 1909 1910 if (rwa->raw) { 1911 /* 1912 * We should have received a DRR_OBJECT_RANGE record 1913 * containing this block and stored it in rwa. 1914 */ 1915 if (drro->drr_object < rwa->or_firstobj || 1916 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1917 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1918 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1919 drro->drr_nlevels > DN_MAX_LEVELS || 1920 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1921 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1922 drro->drr_raw_bonuslen) 1923 return (SET_ERROR(EINVAL)); 1924 } else { 1925 /* 1926 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1927 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1928 */ 1929 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1930 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1931 return (SET_ERROR(EINVAL)); 1932 } 1933 1934 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1935 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1936 return (SET_ERROR(EINVAL)); 1937 } 1938 } 1939 1940 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1941 1942 if (err != 0 && err != ENOENT && err != EEXIST) 1943 return (SET_ERROR(EINVAL)); 1944 1945 if (drro->drr_object > rwa->max_object) 1946 rwa->max_object = drro->drr_object; 1947 1948 /* 1949 * If we are losing blkptrs or changing the block size this must 1950 * be a new file instance. We must clear out the previous file 1951 * contents before we can change this type of metadata in the dnode. 1952 * Raw receives will also check that the indirect structure of the 1953 * dnode hasn't changed. 1954 */ 1955 uint64_t object_to_hold; 1956 if (err == 0) { 1957 err = receive_handle_existing_object(rwa, drro, &doi, data, 1958 &object_to_hold, &new_blksz); 1959 if (err != 0) 1960 return (err); 1961 } else if (err == EEXIST) { 1962 /* 1963 * The object requested is currently an interior slot of a 1964 * multi-slot dnode. This will be resolved when the next txg 1965 * is synced out, since the send stream will have told us 1966 * to free this slot when we freed the associated dnode 1967 * earlier in the stream. 1968 */ 1969 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1970 1971 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1972 return (SET_ERROR(EINVAL)); 1973 1974 /* object was freed and we are about to allocate a new one */ 1975 object_to_hold = DMU_NEW_OBJECT; 1976 } else { 1977 /* 1978 * If the only record in this range so far was DRR_FREEOBJECTS 1979 * with at least one actually freed object, it's possible that 1980 * the block will now be converted to a hole. We need to wait 1981 * for the txg to sync to prevent races. 1982 */ 1983 if (rwa->or_need_sync == ORNS_YES) 1984 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1985 1986 /* object is free and we are about to allocate a new one */ 1987 object_to_hold = DMU_NEW_OBJECT; 1988 } 1989 1990 /* Only relevant for the first object in the range */ 1991 rwa->or_need_sync = ORNS_NO; 1992 1993 /* 1994 * If this is a multi-slot dnode there is a chance that this 1995 * object will expand into a slot that is already used by 1996 * another object from the previous snapshot. We must free 1997 * these objects before we attempt to allocate the new dnode. 1998 */ 1999 if (dn_slots > 1) { 2000 boolean_t need_sync = B_FALSE; 2001 2002 for (uint64_t slot = drro->drr_object + 1; 2003 slot < drro->drr_object + dn_slots; 2004 slot++) { 2005 dmu_object_info_t slot_doi; 2006 2007 err = dmu_object_info(rwa->os, slot, &slot_doi); 2008 if (err == ENOENT || err == EEXIST) 2009 continue; 2010 else if (err != 0) 2011 return (err); 2012 2013 err = dmu_free_long_object(rwa->os, slot); 2014 if (err != 0) 2015 return (err); 2016 2017 need_sync = B_TRUE; 2018 } 2019 2020 if (need_sync) 2021 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 2022 } 2023 2024 tx = dmu_tx_create(rwa->os); 2025 dmu_tx_hold_bonus(tx, object_to_hold); 2026 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 2027 err = dmu_tx_assign(tx, DMU_TX_WAIT); 2028 if (err != 0) { 2029 dmu_tx_abort(tx); 2030 return (err); 2031 } 2032 2033 if (object_to_hold == DMU_NEW_OBJECT) { 2034 /* Currently free, wants to be allocated */ 2035 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 2036 drro->drr_type, new_blksz, 2037 drro->drr_bonustype, drro->drr_bonuslen, 2038 dn_slots << DNODE_SHIFT, tx); 2039 } else if (drro->drr_type != doi.doi_type || 2040 new_blksz != doi.doi_data_block_size || 2041 drro->drr_bonustype != doi.doi_bonus_type || 2042 drro->drr_bonuslen != doi.doi_bonus_size) { 2043 /* Currently allocated, but with different properties */ 2044 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 2045 drro->drr_type, new_blksz, 2046 drro->drr_bonustype, drro->drr_bonuslen, 2047 dn_slots << DNODE_SHIFT, rwa->spill ? 2048 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 2049 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 2050 /* 2051 * Currently allocated, the existing version of this object 2052 * may reference a spill block that is no longer allocated 2053 * at the source and needs to be freed. 2054 */ 2055 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 2056 } 2057 2058 if (err != 0) { 2059 dmu_tx_commit(tx); 2060 return (SET_ERROR(EINVAL)); 2061 } 2062 2063 if (rwa->or_crypt_params_present) { 2064 /* 2065 * Set the crypt params for the buffer associated with this 2066 * range of dnodes. This causes the blkptr_t to have the 2067 * same crypt params (byteorder, salt, iv, mac) as on the 2068 * sending side. 2069 * 2070 * Since we are committing this tx now, it is possible for 2071 * the dnode block to end up on-disk with the incorrect MAC, 2072 * if subsequent objects in this block are received in a 2073 * different txg. However, since the dataset is marked as 2074 * inconsistent, no code paths will do a non-raw read (or 2075 * decrypt the block / verify the MAC). The receive code and 2076 * scrub code can safely do raw reads and verify the 2077 * checksum. They don't need to verify the MAC. 2078 */ 2079 dmu_buf_t *db = NULL; 2080 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 2081 2082 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 2083 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 2084 if (err != 0) { 2085 dmu_tx_commit(tx); 2086 return (SET_ERROR(EINVAL)); 2087 } 2088 2089 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 2090 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 2091 2092 dmu_buf_rele(db, FTAG); 2093 2094 rwa->or_crypt_params_present = B_FALSE; 2095 } 2096 2097 dmu_object_set_checksum(rwa->os, drro->drr_object, 2098 drro->drr_checksumtype, tx); 2099 dmu_object_set_compress(rwa->os, drro->drr_object, 2100 drro->drr_compress, tx); 2101 2102 /* handle more restrictive dnode structuring for raw recvs */ 2103 if (rwa->raw) { 2104 /* 2105 * Set the indirect block size, block shift, nlevels. 2106 * This will not fail because we ensured all of the 2107 * blocks were freed earlier if this is a new object. 2108 * For non-new objects block size and indirect block 2109 * shift cannot change and nlevels can only increase. 2110 */ 2111 ASSERT3U(new_blksz, ==, drro->drr_blksz); 2112 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 2113 drro->drr_blksz, drro->drr_indblkshift, tx)); 2114 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 2115 drro->drr_nlevels, tx)); 2116 2117 /* 2118 * Set the maxblkid. This will always succeed because 2119 * we freed all blocks beyond the new maxblkid above. 2120 */ 2121 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 2122 drro->drr_maxblkid, tx)); 2123 } 2124 2125 if (data != NULL) { 2126 dmu_buf_t *db; 2127 dnode_t *dn; 2128 uint32_t flags = DMU_READ_NO_PREFETCH; 2129 2130 if (rwa->raw) 2131 flags |= DMU_READ_NO_DECRYPT; 2132 2133 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 2134 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 2135 2136 dmu_buf_will_dirty(db, tx); 2137 2138 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2139 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 2140 2141 /* 2142 * Raw bonus buffers have their byteorder determined by the 2143 * DRR_OBJECT_RANGE record. 2144 */ 2145 if (rwa->byteswap && !rwa->raw) { 2146 dmu_object_byteswap_t byteswap = 2147 DMU_OT_BYTESWAP(drro->drr_bonustype); 2148 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2149 DRR_OBJECT_PAYLOAD_SIZE(drro)); 2150 } 2151 dmu_buf_rele(db, FTAG); 2152 dnode_rele(dn, FTAG); 2153 } 2154 2155 /* 2156 * If the receive fails, we want the resume stream to start with the 2157 * same record that we last successfully received. There is no way to 2158 * request resume from the object record, but we can benefit from the 2159 * fact that sender always sends object record before anything else, 2160 * after which it will "resend" data at offset 0 and resume normally. 2161 */ 2162 save_resume_state(rwa, drro->drr_object, 0, tx); 2163 2164 dmu_tx_commit(tx); 2165 2166 return (0); 2167 } 2168 2169 noinline static int 2170 receive_freeobjects(struct receive_writer_arg *rwa, 2171 struct drr_freeobjects *drrfo) 2172 { 2173 uint64_t obj; 2174 int next_err = 0; 2175 2176 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2177 return (SET_ERROR(EINVAL)); 2178 2179 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 2180 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 2181 obj < DN_MAX_OBJECT && next_err == 0; 2182 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2183 dmu_object_info_t doi; 2184 int err; 2185 2186 err = dmu_object_info(rwa->os, obj, &doi); 2187 if (err == ENOENT) 2188 continue; 2189 else if (err != 0) 2190 return (err); 2191 2192 err = dmu_free_long_object(rwa->os, obj); 2193 2194 if (err != 0) 2195 return (err); 2196 2197 if (rwa->or_need_sync == ORNS_MAYBE) 2198 rwa->or_need_sync = ORNS_YES; 2199 } 2200 if (next_err != ESRCH) 2201 return (next_err); 2202 return (0); 2203 } 2204 2205 /* 2206 * Note: if this fails, the caller will clean up any records left on the 2207 * rwa->write_batch list. 2208 */ 2209 static int 2210 flush_write_batch_impl(struct receive_writer_arg *rwa) 2211 { 2212 dnode_t *dn; 2213 int err; 2214 2215 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 2216 return (SET_ERROR(EINVAL)); 2217 2218 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 2219 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 2220 2221 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2222 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2223 2224 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 2225 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 2226 2227 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2228 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 2229 last_drrw->drr_offset - first_drrw->drr_offset + 2230 last_drrw->drr_logical_size); 2231 err = dmu_tx_assign(tx, DMU_TX_WAIT); 2232 if (err != 0) { 2233 dmu_tx_abort(tx); 2234 dnode_rele(dn, FTAG); 2235 return (err); 2236 } 2237 2238 struct receive_record_arg *rrd; 2239 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 2240 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2241 abd_t *abd = rrd->abd; 2242 2243 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 2244 2245 if (drrw->drr_logical_size != dn->dn_datablksz) { 2246 /* 2247 * The WRITE record is larger than the object's block 2248 * size. We must be receiving an incremental 2249 * large-block stream into a dataset that previously did 2250 * a non-large-block receive. Lightweight writes must 2251 * be exactly one block, so we need to decompress the 2252 * data (if compressed) and do a normal dmu_write(). 2253 */ 2254 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 2255 if (DRR_WRITE_COMPRESSED(drrw)) { 2256 abd_t *decomp_abd = 2257 abd_alloc_linear(drrw->drr_logical_size, 2258 B_FALSE); 2259 2260 err = zio_decompress_data( 2261 drrw->drr_compressiontype, 2262 abd, decomp_abd, 2263 abd_get_size(abd), 2264 abd_get_size(decomp_abd), NULL); 2265 2266 if (err == 0) { 2267 dmu_write_by_dnode(dn, 2268 drrw->drr_offset, 2269 drrw->drr_logical_size, 2270 abd_to_buf(decomp_abd), tx); 2271 } 2272 abd_free(decomp_abd); 2273 } else { 2274 dmu_write_by_dnode(dn, 2275 drrw->drr_offset, 2276 drrw->drr_logical_size, 2277 abd_to_buf(abd), tx); 2278 } 2279 if (err == 0) 2280 abd_free(abd); 2281 } else { 2282 zio_prop_t zp = {0}; 2283 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 2284 2285 zio_flag_t zio_flags = 0; 2286 2287 if (rwa->raw) { 2288 zp.zp_encrypt = B_TRUE; 2289 zp.zp_compress = drrw->drr_compressiontype; 2290 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 2291 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2292 rwa->byteswap; 2293 memcpy(zp.zp_salt, drrw->drr_salt, 2294 ZIO_DATA_SALT_LEN); 2295 memcpy(zp.zp_iv, drrw->drr_iv, 2296 ZIO_DATA_IV_LEN); 2297 memcpy(zp.zp_mac, drrw->drr_mac, 2298 ZIO_DATA_MAC_LEN); 2299 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 2300 zp.zp_nopwrite = B_FALSE; 2301 zp.zp_copies = MIN(zp.zp_copies, 2302 SPA_DVAS_PER_BP - 1); 2303 zp.zp_gang_copies = 2304 MIN(zp.zp_gang_copies, 2305 SPA_DVAS_PER_BP - 1); 2306 } 2307 zio_flags |= ZIO_FLAG_RAW; 2308 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2309 ASSERT3U(drrw->drr_compressed_size, >, 0); 2310 ASSERT3U(drrw->drr_logical_size, >=, 2311 drrw->drr_compressed_size); 2312 zp.zp_compress = drrw->drr_compressiontype; 2313 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 2314 } else if (rwa->byteswap) { 2315 /* 2316 * Note: compressed blocks never need to be 2317 * byteswapped, because WRITE records for 2318 * metadata blocks are never compressed. The 2319 * exception is raw streams, which are written 2320 * in the original byteorder, and the byteorder 2321 * bit is preserved in the BP by setting 2322 * zp_byteorder above. 2323 */ 2324 dmu_object_byteswap_t byteswap = 2325 DMU_OT_BYTESWAP(drrw->drr_type); 2326 dmu_ot_byteswap[byteswap].ob_func( 2327 abd_to_buf(abd), 2328 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2329 } 2330 2331 /* 2332 * Since this data can't be read until the receive 2333 * completes, we can do a "lightweight" write for 2334 * improved performance. 2335 */ 2336 err = dmu_lightweight_write_by_dnode(dn, 2337 drrw->drr_offset, abd, &zp, zio_flags, tx); 2338 } 2339 2340 if (err != 0) { 2341 /* 2342 * This rrd is left on the list, so the caller will 2343 * free it (and the abd). 2344 */ 2345 break; 2346 } 2347 2348 /* 2349 * Note: If the receive fails, we want the resume stream to 2350 * start with the same record that we last successfully 2351 * received (as opposed to the next record), so that we can 2352 * verify that we are resuming from the correct location. 2353 */ 2354 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2355 2356 list_remove(&rwa->write_batch, rrd); 2357 kmem_free(rrd, sizeof (*rrd)); 2358 } 2359 2360 dmu_tx_commit(tx); 2361 dnode_rele(dn, FTAG); 2362 return (err); 2363 } 2364 2365 noinline static int 2366 flush_write_batch(struct receive_writer_arg *rwa) 2367 { 2368 if (list_is_empty(&rwa->write_batch)) 2369 return (0); 2370 int err = rwa->err; 2371 if (err == 0) 2372 err = flush_write_batch_impl(rwa); 2373 if (err != 0) { 2374 struct receive_record_arg *rrd; 2375 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2376 abd_free(rrd->abd); 2377 kmem_free(rrd, sizeof (*rrd)); 2378 } 2379 } 2380 ASSERT(list_is_empty(&rwa->write_batch)); 2381 return (err); 2382 } 2383 2384 noinline static int 2385 receive_process_write_record(struct receive_writer_arg *rwa, 2386 struct receive_record_arg *rrd) 2387 { 2388 int err = 0; 2389 2390 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2391 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2392 2393 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2394 !DMU_OT_IS_VALID(drrw->drr_type)) 2395 return (SET_ERROR(EINVAL)); 2396 2397 if (rwa->heal) { 2398 blkptr_t *bp; 2399 dmu_buf_t *dbp; 2400 int flags = DB_RF_CANFAIL; 2401 2402 if (rwa->raw) 2403 flags |= DB_RF_NO_DECRYPT; 2404 2405 if (rwa->byteswap) { 2406 dmu_object_byteswap_t byteswap = 2407 DMU_OT_BYTESWAP(drrw->drr_type); 2408 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd), 2409 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2410 } 2411 2412 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object, 2413 drrw->drr_offset, FTAG, &dbp); 2414 if (err != 0) 2415 return (err); 2416 2417 /* Try to read the object to see if it needs healing */ 2418 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags); 2419 /* 2420 * We only try to heal when dbuf_read() returns a ECKSUMs. 2421 * Other errors (even EIO) get returned to caller. 2422 * EIO indicates that the device is not present/accessible, 2423 * so writing to it will likely fail. 2424 * If the block is healthy, we don't want to overwrite it 2425 * unnecessarily. 2426 */ 2427 if (err != ECKSUM) { 2428 dmu_buf_rele(dbp, FTAG); 2429 return (err); 2430 } 2431 /* Make sure the on-disk block and recv record sizes match */ 2432 if (drrw->drr_logical_size != dbp->db_size) { 2433 err = ENOTSUP; 2434 dmu_buf_rele(dbp, FTAG); 2435 return (err); 2436 } 2437 /* Get the block pointer for the corrupted block */ 2438 bp = dmu_buf_get_blkptr(dbp); 2439 err = do_corrective_recv(rwa, drrw, rrd, bp); 2440 dmu_buf_rele(dbp, FTAG); 2441 return (err); 2442 } 2443 2444 /* 2445 * For resuming to work, records must be in increasing order 2446 * by (object, offset). 2447 */ 2448 if (drrw->drr_object < rwa->last_object || 2449 (drrw->drr_object == rwa->last_object && 2450 drrw->drr_offset < rwa->last_offset)) { 2451 return (SET_ERROR(EINVAL)); 2452 } 2453 2454 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2455 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2456 uint64_t batch_size = 2457 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2458 if (first_rrd != NULL && 2459 (drrw->drr_object != first_drrw->drr_object || 2460 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2461 err = flush_write_batch(rwa); 2462 if (err != 0) 2463 return (err); 2464 } 2465 2466 rwa->last_object = drrw->drr_object; 2467 rwa->last_offset = drrw->drr_offset; 2468 2469 if (rwa->last_object > rwa->max_object) 2470 rwa->max_object = rwa->last_object; 2471 2472 list_insert_tail(&rwa->write_batch, rrd); 2473 /* 2474 * Return EAGAIN to indicate that we will use this rrd again, 2475 * so the caller should not free it 2476 */ 2477 return (EAGAIN); 2478 } 2479 2480 static int 2481 receive_write_embedded(struct receive_writer_arg *rwa, 2482 struct drr_write_embedded *drrwe, void *data) 2483 { 2484 dmu_tx_t *tx; 2485 int err; 2486 2487 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2488 return (SET_ERROR(EINVAL)); 2489 2490 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2491 return (SET_ERROR(EINVAL)); 2492 2493 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2494 return (SET_ERROR(EINVAL)); 2495 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2496 return (SET_ERROR(EINVAL)); 2497 if (rwa->raw) 2498 return (SET_ERROR(EINVAL)); 2499 2500 if (drrwe->drr_object > rwa->max_object) 2501 rwa->max_object = drrwe->drr_object; 2502 2503 tx = dmu_tx_create(rwa->os); 2504 2505 dmu_tx_hold_write(tx, drrwe->drr_object, 2506 drrwe->drr_offset, drrwe->drr_length); 2507 err = dmu_tx_assign(tx, DMU_TX_WAIT); 2508 if (err != 0) { 2509 dmu_tx_abort(tx); 2510 return (err); 2511 } 2512 2513 dmu_write_embedded(rwa->os, drrwe->drr_object, 2514 drrwe->drr_offset, data, drrwe->drr_etype, 2515 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2516 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2517 2518 /* See comment in restore_write. */ 2519 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2520 dmu_tx_commit(tx); 2521 return (0); 2522 } 2523 2524 static int 2525 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2526 abd_t *abd) 2527 { 2528 dmu_buf_t *db, *db_spill; 2529 int err; 2530 2531 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2532 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2533 return (SET_ERROR(EINVAL)); 2534 2535 /* 2536 * This is an unmodified spill block which was added to the stream 2537 * to resolve an issue with incorrectly removing spill blocks. It 2538 * should be ignored by current versions of the code which support 2539 * the DRR_FLAG_SPILL_BLOCK flag. 2540 */ 2541 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2542 abd_free(abd); 2543 return (0); 2544 } 2545 2546 if (rwa->raw) { 2547 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2548 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2549 drrs->drr_compressed_size == 0) 2550 return (SET_ERROR(EINVAL)); 2551 } 2552 2553 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2554 return (SET_ERROR(EINVAL)); 2555 2556 if (drrs->drr_object > rwa->max_object) 2557 rwa->max_object = drrs->drr_object; 2558 2559 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2560 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2561 &db_spill)) != 0) { 2562 dmu_buf_rele(db, FTAG); 2563 return (err); 2564 } 2565 2566 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2567 2568 dmu_tx_hold_spill(tx, db->db_object); 2569 2570 err = dmu_tx_assign(tx, DMU_TX_WAIT); 2571 if (err != 0) { 2572 dmu_buf_rele(db, FTAG); 2573 dmu_buf_rele(db_spill, FTAG); 2574 dmu_tx_abort(tx); 2575 return (err); 2576 } 2577 2578 /* 2579 * Spill blocks may both grow and shrink. When a change in size 2580 * occurs any existing dbuf must be updated to match the logical 2581 * size of the provided arc_buf_t. 2582 */ 2583 if (db_spill->db_size != drrs->drr_length) { 2584 dmu_buf_will_fill(db_spill, tx, B_FALSE); 2585 VERIFY0(dbuf_spill_set_blksz(db_spill, 2586 drrs->drr_length, tx)); 2587 } 2588 2589 arc_buf_t *abuf; 2590 if (rwa->raw) { 2591 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2592 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2593 rwa->byteswap; 2594 2595 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2596 drrs->drr_object, byteorder, drrs->drr_salt, 2597 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2598 drrs->drr_compressed_size, drrs->drr_length, 2599 drrs->drr_compressiontype, 0); 2600 } else { 2601 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2602 DMU_OT_IS_METADATA(drrs->drr_type), 2603 drrs->drr_length); 2604 if (rwa->byteswap) { 2605 dmu_object_byteswap_t byteswap = 2606 DMU_OT_BYTESWAP(drrs->drr_type); 2607 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2608 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2609 } 2610 } 2611 2612 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); 2613 abd_free(abd); 2614 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2615 2616 dmu_buf_rele(db, FTAG); 2617 dmu_buf_rele(db_spill, FTAG); 2618 2619 dmu_tx_commit(tx); 2620 return (0); 2621 } 2622 2623 noinline static int 2624 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2625 { 2626 int err; 2627 2628 if (drrf->drr_length != -1ULL && 2629 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2630 return (SET_ERROR(EINVAL)); 2631 2632 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2633 return (SET_ERROR(EINVAL)); 2634 2635 if (drrf->drr_object > rwa->max_object) 2636 rwa->max_object = drrf->drr_object; 2637 2638 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2639 drrf->drr_offset, drrf->drr_length); 2640 2641 return (err); 2642 } 2643 2644 static int 2645 receive_object_range(struct receive_writer_arg *rwa, 2646 struct drr_object_range *drror) 2647 { 2648 /* 2649 * By default, we assume this block is in our native format 2650 * (ZFS_HOST_BYTEORDER). We then take into account whether 2651 * the send stream is byteswapped (rwa->byteswap). Finally, 2652 * we need to byteswap again if this particular block was 2653 * in non-native format on the send side. 2654 */ 2655 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2656 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2657 2658 /* 2659 * Since dnode block sizes are constant, we should not need to worry 2660 * about making sure that the dnode block size is the same on the 2661 * sending and receiving sides for the time being. For non-raw sends, 2662 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2663 * record at all). Raw sends require this record type because the 2664 * encryption parameters are used to protect an entire block of bonus 2665 * buffers. If the size of dnode blocks ever becomes variable, 2666 * handling will need to be added to ensure that dnode block sizes 2667 * match on the sending and receiving side. 2668 */ 2669 if (drror->drr_numslots != DNODES_PER_BLOCK || 2670 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2671 !rwa->raw) 2672 return (SET_ERROR(EINVAL)); 2673 2674 if (drror->drr_firstobj > rwa->max_object) 2675 rwa->max_object = drror->drr_firstobj; 2676 2677 /* 2678 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2679 * so that the block of dnodes is not written out when it's empty, 2680 * and converted to a HOLE BP. 2681 */ 2682 rwa->or_crypt_params_present = B_TRUE; 2683 rwa->or_firstobj = drror->drr_firstobj; 2684 rwa->or_numslots = drror->drr_numslots; 2685 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN); 2686 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN); 2687 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN); 2688 rwa->or_byteorder = byteorder; 2689 2690 rwa->or_need_sync = ORNS_MAYBE; 2691 2692 return (0); 2693 } 2694 2695 /* 2696 * Until we have the ability to redact large ranges of data efficiently, we 2697 * process these records as frees. 2698 */ 2699 noinline static int 2700 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2701 { 2702 struct drr_free drrf = {0}; 2703 drrf.drr_length = drrr->drr_length; 2704 drrf.drr_object = drrr->drr_object; 2705 drrf.drr_offset = drrr->drr_offset; 2706 drrf.drr_toguid = drrr->drr_toguid; 2707 return (receive_free(rwa, &drrf)); 2708 } 2709 2710 /* used to destroy the drc_ds on error */ 2711 static void 2712 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2713 { 2714 dsl_dataset_t *ds = drc->drc_ds; 2715 ds_hold_flags_t dsflags; 2716 2717 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2718 /* 2719 * Wait for the txg sync before cleaning up the receive. For 2720 * resumable receives, this ensures that our resume state has 2721 * been written out to disk. For raw receives, this ensures 2722 * that the user accounting code will not attempt to do anything 2723 * after we stopped receiving the dataset. 2724 */ 2725 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2726 ds->ds_objset->os_raw_receive = B_FALSE; 2727 2728 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2729 if (drc->drc_resumable && drc->drc_should_save && 2730 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2731 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2732 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2733 } else { 2734 char name[ZFS_MAX_DATASET_NAME_LEN]; 2735 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2736 dsl_dataset_name(ds, name); 2737 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2738 if (!drc->drc_heal) 2739 (void) dsl_destroy_head(name); 2740 } 2741 } 2742 2743 static void 2744 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2745 { 2746 if (drc->drc_byteswap) { 2747 (void) fletcher_4_incremental_byteswap(buf, len, 2748 &drc->drc_cksum); 2749 } else { 2750 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2751 } 2752 } 2753 2754 /* 2755 * Read the payload into a buffer of size len, and update the current record's 2756 * payload field. 2757 * Allocate drc->drc_next_rrd and read the next record's header into 2758 * drc->drc_next_rrd->header. 2759 * Verify checksum of payload and next record. 2760 */ 2761 static int 2762 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2763 { 2764 int err; 2765 2766 if (len != 0) { 2767 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2768 err = receive_read(drc, len, buf); 2769 if (err != 0) 2770 return (err); 2771 receive_cksum(drc, len, buf); 2772 2773 /* note: rrd is NULL when reading the begin record's payload */ 2774 if (drc->drc_rrd != NULL) { 2775 drc->drc_rrd->payload = buf; 2776 drc->drc_rrd->payload_size = len; 2777 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2778 } 2779 } else { 2780 ASSERT3P(buf, ==, NULL); 2781 } 2782 2783 drc->drc_prev_cksum = drc->drc_cksum; 2784 2785 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2786 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2787 &drc->drc_next_rrd->header); 2788 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2789 2790 if (err != 0) { 2791 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2792 drc->drc_next_rrd = NULL; 2793 return (err); 2794 } 2795 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2796 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2797 drc->drc_next_rrd = NULL; 2798 return (SET_ERROR(EINVAL)); 2799 } 2800 2801 /* 2802 * Note: checksum is of everything up to but not including the 2803 * checksum itself. 2804 */ 2805 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2806 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2807 receive_cksum(drc, 2808 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2809 &drc->drc_next_rrd->header); 2810 2811 zio_cksum_t cksum_orig = 2812 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2813 zio_cksum_t *cksump = 2814 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2815 2816 if (drc->drc_byteswap) 2817 byteswap_record(&drc->drc_next_rrd->header); 2818 2819 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2820 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2821 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2822 drc->drc_next_rrd = NULL; 2823 return (SET_ERROR(ECKSUM)); 2824 } 2825 2826 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2827 2828 return (0); 2829 } 2830 2831 /* 2832 * Issue the prefetch reads for any necessary indirect blocks. 2833 * 2834 * We use the object ignore list to tell us whether or not to issue prefetches 2835 * for a given object. We do this for both correctness (in case the blocksize 2836 * of an object has changed) and performance (if the object doesn't exist, don't 2837 * needlessly try to issue prefetches). We also trim the list as we go through 2838 * the stream to prevent it from growing to an unbounded size. 2839 * 2840 * The object numbers within will always be in sorted order, and any write 2841 * records we see will also be in sorted order, but they're not sorted with 2842 * respect to each other (i.e. we can get several object records before 2843 * receiving each object's write records). As a result, once we've reached a 2844 * given object number, we can safely remove any reference to lower object 2845 * numbers in the ignore list. In practice, we receive up to 32 object records 2846 * before receiving write records, so the list can have up to 32 nodes in it. 2847 */ 2848 static void 2849 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2850 uint64_t length) 2851 { 2852 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2853 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2854 ZIO_PRIORITY_SYNC_READ); 2855 } 2856 } 2857 2858 /* 2859 * Read records off the stream, issuing any necessary prefetches. 2860 */ 2861 static int 2862 receive_read_record(dmu_recv_cookie_t *drc) 2863 { 2864 int err; 2865 2866 switch (drc->drc_rrd->header.drr_type) { 2867 case DRR_OBJECT: 2868 { 2869 struct drr_object *drro = 2870 &drc->drc_rrd->header.drr_u.drr_object; 2871 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2872 void *buf = NULL; 2873 dmu_object_info_t doi; 2874 2875 if (size != 0) 2876 buf = kmem_zalloc(size, KM_SLEEP); 2877 2878 err = receive_read_payload_and_next_header(drc, size, buf); 2879 if (err != 0) { 2880 kmem_free(buf, size); 2881 return (err); 2882 } 2883 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2884 /* 2885 * See receive_read_prefetch for an explanation why we're 2886 * storing this object in the ignore_obj_list. 2887 */ 2888 if (err == ENOENT || err == EEXIST || 2889 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2890 objlist_insert(drc->drc_ignore_objlist, 2891 drro->drr_object); 2892 err = 0; 2893 } 2894 return (err); 2895 } 2896 case DRR_FREEOBJECTS: 2897 { 2898 err = receive_read_payload_and_next_header(drc, 0, NULL); 2899 return (err); 2900 } 2901 case DRR_WRITE: 2902 { 2903 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2904 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2905 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2906 err = receive_read_payload_and_next_header(drc, size, 2907 abd_to_buf(abd)); 2908 if (err != 0) { 2909 abd_free(abd); 2910 return (err); 2911 } 2912 drc->drc_rrd->abd = abd; 2913 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2914 drrw->drr_logical_size); 2915 return (err); 2916 } 2917 case DRR_WRITE_EMBEDDED: 2918 { 2919 struct drr_write_embedded *drrwe = 2920 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2921 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2922 void *buf = kmem_zalloc(size, KM_SLEEP); 2923 2924 err = receive_read_payload_and_next_header(drc, size, buf); 2925 if (err != 0) { 2926 kmem_free(buf, size); 2927 return (err); 2928 } 2929 2930 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2931 drrwe->drr_length); 2932 return (err); 2933 } 2934 case DRR_FREE: 2935 case DRR_REDACT: 2936 { 2937 /* 2938 * It might be beneficial to prefetch indirect blocks here, but 2939 * we don't really have the data to decide for sure. 2940 */ 2941 err = receive_read_payload_and_next_header(drc, 0, NULL); 2942 return (err); 2943 } 2944 case DRR_END: 2945 { 2946 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2947 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2948 drre->drr_checksum)) 2949 return (SET_ERROR(ECKSUM)); 2950 return (0); 2951 } 2952 case DRR_SPILL: 2953 { 2954 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2955 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2956 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2957 err = receive_read_payload_and_next_header(drc, size, 2958 abd_to_buf(abd)); 2959 if (err != 0) 2960 abd_free(abd); 2961 else 2962 drc->drc_rrd->abd = abd; 2963 return (err); 2964 } 2965 case DRR_OBJECT_RANGE: 2966 { 2967 err = receive_read_payload_and_next_header(drc, 0, NULL); 2968 return (err); 2969 2970 } 2971 default: 2972 return (SET_ERROR(EINVAL)); 2973 } 2974 } 2975 2976 2977 2978 static void 2979 dprintf_drr(struct receive_record_arg *rrd, int err) 2980 { 2981 #ifdef ZFS_DEBUG 2982 switch (rrd->header.drr_type) { 2983 case DRR_OBJECT: 2984 { 2985 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2986 dprintf("drr_type = OBJECT obj = %llu type = %u " 2987 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2988 "compress = %u dn_slots = %u err = %d\n", 2989 (u_longlong_t)drro->drr_object, drro->drr_type, 2990 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, 2991 drro->drr_checksumtype, drro->drr_compress, 2992 drro->drr_dn_slots, err); 2993 break; 2994 } 2995 case DRR_FREEOBJECTS: 2996 { 2997 struct drr_freeobjects *drrfo = 2998 &rrd->header.drr_u.drr_freeobjects; 2999 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 3000 "numobjs = %llu err = %d\n", 3001 (u_longlong_t)drrfo->drr_firstobj, 3002 (u_longlong_t)drrfo->drr_numobjs, err); 3003 break; 3004 } 3005 case DRR_WRITE: 3006 { 3007 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 3008 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 3009 "lsize = %llu cksumtype = %u flags = %u " 3010 "compress = %u psize = %llu err = %d\n", 3011 (u_longlong_t)drrw->drr_object, drrw->drr_type, 3012 (u_longlong_t)drrw->drr_offset, 3013 (u_longlong_t)drrw->drr_logical_size, 3014 drrw->drr_checksumtype, drrw->drr_flags, 3015 drrw->drr_compressiontype, 3016 (u_longlong_t)drrw->drr_compressed_size, err); 3017 break; 3018 } 3019 case DRR_WRITE_BYREF: 3020 { 3021 struct drr_write_byref *drrwbr = 3022 &rrd->header.drr_u.drr_write_byref; 3023 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 3024 "length = %llu toguid = %llx refguid = %llx " 3025 "refobject = %llu refoffset = %llu cksumtype = %u " 3026 "flags = %u err = %d\n", 3027 (u_longlong_t)drrwbr->drr_object, 3028 (u_longlong_t)drrwbr->drr_offset, 3029 (u_longlong_t)drrwbr->drr_length, 3030 (u_longlong_t)drrwbr->drr_toguid, 3031 (u_longlong_t)drrwbr->drr_refguid, 3032 (u_longlong_t)drrwbr->drr_refobject, 3033 (u_longlong_t)drrwbr->drr_refoffset, 3034 drrwbr->drr_checksumtype, drrwbr->drr_flags, err); 3035 break; 3036 } 3037 case DRR_WRITE_EMBEDDED: 3038 { 3039 struct drr_write_embedded *drrwe = 3040 &rrd->header.drr_u.drr_write_embedded; 3041 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 3042 "length = %llu compress = %u etype = %u lsize = %u " 3043 "psize = %u err = %d\n", 3044 (u_longlong_t)drrwe->drr_object, 3045 (u_longlong_t)drrwe->drr_offset, 3046 (u_longlong_t)drrwe->drr_length, 3047 drrwe->drr_compression, drrwe->drr_etype, 3048 drrwe->drr_lsize, drrwe->drr_psize, err); 3049 break; 3050 } 3051 case DRR_FREE: 3052 { 3053 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 3054 dprintf("drr_type = FREE obj = %llu offset = %llu " 3055 "length = %lld err = %d\n", 3056 (u_longlong_t)drrf->drr_object, 3057 (u_longlong_t)drrf->drr_offset, 3058 (longlong_t)drrf->drr_length, 3059 err); 3060 break; 3061 } 3062 case DRR_SPILL: 3063 { 3064 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3065 dprintf("drr_type = SPILL obj = %llu length = %llu " 3066 "err = %d\n", (u_longlong_t)drrs->drr_object, 3067 (u_longlong_t)drrs->drr_length, err); 3068 break; 3069 } 3070 case DRR_OBJECT_RANGE: 3071 { 3072 struct drr_object_range *drror = 3073 &rrd->header.drr_u.drr_object_range; 3074 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 3075 "numslots = %llu flags = %u err = %d\n", 3076 (u_longlong_t)drror->drr_firstobj, 3077 (u_longlong_t)drror->drr_numslots, 3078 drror->drr_flags, err); 3079 break; 3080 } 3081 default: 3082 return; 3083 } 3084 #endif 3085 } 3086 3087 /* 3088 * Commit the records to the pool. 3089 */ 3090 static int 3091 receive_process_record(struct receive_writer_arg *rwa, 3092 struct receive_record_arg *rrd) 3093 { 3094 int err; 3095 3096 /* Processing in order, therefore bytes_read should be increasing. */ 3097 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 3098 rwa->bytes_read = rrd->bytes_read; 3099 3100 /* We can only heal write records; other ones get ignored */ 3101 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3102 if (rrd->abd != NULL) { 3103 abd_free(rrd->abd); 3104 rrd->abd = NULL; 3105 } else if (rrd->payload != NULL) { 3106 kmem_free(rrd->payload, rrd->payload_size); 3107 rrd->payload = NULL; 3108 } 3109 return (0); 3110 } 3111 3112 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3113 err = flush_write_batch(rwa); 3114 if (err != 0) { 3115 if (rrd->abd != NULL) { 3116 abd_free(rrd->abd); 3117 rrd->abd = NULL; 3118 rrd->payload = NULL; 3119 } else if (rrd->payload != NULL) { 3120 kmem_free(rrd->payload, rrd->payload_size); 3121 rrd->payload = NULL; 3122 } 3123 3124 return (err); 3125 } 3126 } 3127 3128 switch (rrd->header.drr_type) { 3129 case DRR_OBJECT: 3130 { 3131 struct drr_object *drro = &rrd->header.drr_u.drr_object; 3132 err = receive_object(rwa, drro, rrd->payload); 3133 kmem_free(rrd->payload, rrd->payload_size); 3134 rrd->payload = NULL; 3135 break; 3136 } 3137 case DRR_FREEOBJECTS: 3138 { 3139 struct drr_freeobjects *drrfo = 3140 &rrd->header.drr_u.drr_freeobjects; 3141 err = receive_freeobjects(rwa, drrfo); 3142 break; 3143 } 3144 case DRR_WRITE: 3145 { 3146 err = receive_process_write_record(rwa, rrd); 3147 if (rwa->heal) { 3148 /* 3149 * If healing - always free the abd after processing 3150 */ 3151 abd_free(rrd->abd); 3152 rrd->abd = NULL; 3153 } else if (err != EAGAIN) { 3154 /* 3155 * On success, a non-healing 3156 * receive_process_write_record() returns 3157 * EAGAIN to indicate that we do not want to free 3158 * the rrd or arc_buf. 3159 */ 3160 ASSERT(err != 0); 3161 abd_free(rrd->abd); 3162 rrd->abd = NULL; 3163 } 3164 break; 3165 } 3166 case DRR_WRITE_EMBEDDED: 3167 { 3168 struct drr_write_embedded *drrwe = 3169 &rrd->header.drr_u.drr_write_embedded; 3170 err = receive_write_embedded(rwa, drrwe, rrd->payload); 3171 kmem_free(rrd->payload, rrd->payload_size); 3172 rrd->payload = NULL; 3173 break; 3174 } 3175 case DRR_FREE: 3176 { 3177 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 3178 err = receive_free(rwa, drrf); 3179 break; 3180 } 3181 case DRR_SPILL: 3182 { 3183 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3184 err = receive_spill(rwa, drrs, rrd->abd); 3185 if (err != 0) 3186 abd_free(rrd->abd); 3187 rrd->abd = NULL; 3188 rrd->payload = NULL; 3189 break; 3190 } 3191 case DRR_OBJECT_RANGE: 3192 { 3193 struct drr_object_range *drror = 3194 &rrd->header.drr_u.drr_object_range; 3195 err = receive_object_range(rwa, drror); 3196 break; 3197 } 3198 case DRR_REDACT: 3199 { 3200 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 3201 err = receive_redact(rwa, drrr); 3202 break; 3203 } 3204 default: 3205 err = (SET_ERROR(EINVAL)); 3206 } 3207 3208 if (err != 0) 3209 dprintf_drr(rrd, err); 3210 3211 return (err); 3212 } 3213 3214 /* 3215 * dmu_recv_stream's worker thread; pull records off the queue, and then call 3216 * receive_process_record When we're done, signal the main thread and exit. 3217 */ 3218 static __attribute__((noreturn)) void 3219 receive_writer_thread(void *arg) 3220 { 3221 struct receive_writer_arg *rwa = arg; 3222 struct receive_record_arg *rrd; 3223 fstrans_cookie_t cookie = spl_fstrans_mark(); 3224 3225 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 3226 rrd = bqueue_dequeue(&rwa->q)) { 3227 /* 3228 * If there's an error, the main thread will stop putting things 3229 * on the queue, but we need to clear everything in it before we 3230 * can exit. 3231 */ 3232 int err = 0; 3233 if (rwa->err == 0) { 3234 err = receive_process_record(rwa, rrd); 3235 } else if (rrd->abd != NULL) { 3236 abd_free(rrd->abd); 3237 rrd->abd = NULL; 3238 rrd->payload = NULL; 3239 } else if (rrd->payload != NULL) { 3240 kmem_free(rrd->payload, rrd->payload_size); 3241 rrd->payload = NULL; 3242 } 3243 /* 3244 * EAGAIN indicates that this record has been saved (on 3245 * raw->write_batch), and will be used again, so we don't 3246 * free it. 3247 * When healing data we always need to free the record. 3248 */ 3249 if (err != EAGAIN || rwa->heal) { 3250 if (rwa->err == 0) 3251 rwa->err = err; 3252 kmem_free(rrd, sizeof (*rrd)); 3253 } 3254 } 3255 kmem_free(rrd, sizeof (*rrd)); 3256 3257 if (rwa->heal) { 3258 zio_wait(rwa->heal_pio); 3259 } else { 3260 int err = flush_write_batch(rwa); 3261 if (rwa->err == 0) 3262 rwa->err = err; 3263 } 3264 mutex_enter(&rwa->mutex); 3265 rwa->done = B_TRUE; 3266 cv_signal(&rwa->cv); 3267 mutex_exit(&rwa->mutex); 3268 spl_fstrans_unmark(cookie); 3269 thread_exit(); 3270 } 3271 3272 static int 3273 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 3274 { 3275 uint64_t val; 3276 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 3277 uint64_t dsobj = dmu_objset_id(drc->drc_os); 3278 uint64_t resume_obj, resume_off; 3279 3280 if (nvlist_lookup_uint64(begin_nvl, 3281 "resume_object", &resume_obj) != 0 || 3282 nvlist_lookup_uint64(begin_nvl, 3283 "resume_offset", &resume_off) != 0) { 3284 return (SET_ERROR(EINVAL)); 3285 } 3286 VERIFY0(zap_lookup(mos, dsobj, 3287 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 3288 if (resume_obj != val) 3289 return (SET_ERROR(EINVAL)); 3290 VERIFY0(zap_lookup(mos, dsobj, 3291 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 3292 if (resume_off != val) 3293 return (SET_ERROR(EINVAL)); 3294 3295 return (0); 3296 } 3297 3298 /* 3299 * Read in the stream's records, one by one, and apply them to the pool. There 3300 * are two threads involved; the thread that calls this function will spin up a 3301 * worker thread, read the records off the stream one by one, and issue 3302 * prefetches for any necessary indirect blocks. It will then push the records 3303 * onto an internal blocking queue. The worker thread will pull the records off 3304 * the queue, and actually write the data into the DMU. This way, the worker 3305 * thread doesn't have to wait for reads to complete, since everything it needs 3306 * (the indirect blocks) will be prefetched. 3307 * 3308 * NB: callers *must* call dmu_recv_end() if this succeeds. 3309 */ 3310 int 3311 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 3312 { 3313 int err = 0; 3314 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 3315 3316 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { 3317 uint64_t bytes = 0; 3318 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 3319 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 3320 sizeof (bytes), 1, &bytes); 3321 drc->drc_bytes_read += bytes; 3322 } 3323 3324 drc->drc_ignore_objlist = objlist_create(); 3325 3326 /* these were verified in dmu_recv_begin */ 3327 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 3328 DMU_SUBSTREAM); 3329 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 3330 3331 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 3332 ASSERT0(drc->drc_os->os_encrypted && 3333 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 3334 3335 /* handle DSL encryption key payload */ 3336 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 3337 nvlist_t *keynvl = NULL; 3338 3339 ASSERT(drc->drc_os->os_encrypted); 3340 ASSERT(drc->drc_raw); 3341 3342 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 3343 &keynvl); 3344 if (err != 0) 3345 goto out; 3346 3347 if (!drc->drc_heal) { 3348 /* 3349 * If this is a new dataset we set the key immediately. 3350 * Otherwise we don't want to change the key until we 3351 * are sure the rest of the receive succeeded so we 3352 * stash the keynvl away until then. 3353 */ 3354 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 3355 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 3356 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 3357 if (err != 0) 3358 goto out; 3359 } 3360 3361 /* see comment in dmu_recv_end_sync() */ 3362 drc->drc_ivset_guid = 0; 3363 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 3364 &drc->drc_ivset_guid); 3365 3366 if (!drc->drc_newfs) 3367 drc->drc_keynvl = fnvlist_dup(keynvl); 3368 } 3369 3370 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 3371 err = resume_check(drc, drc->drc_begin_nvl); 3372 if (err != 0) 3373 goto out; 3374 } 3375 3376 /* 3377 * For compatibility with recursive send streams, we do this here, 3378 * rather than in dmu_recv_begin. If we pull the next header too 3379 * early, and it's the END record, we break the `recv_skip` logic. 3380 */ 3381 if (drc->drc_drr_begin->drr_payloadlen == 0) { 3382 err = receive_read_payload_and_next_header(drc, 0, NULL); 3383 if (err != 0) 3384 goto out; 3385 } 3386 3387 /* 3388 * If we failed before this point we will clean up any new resume 3389 * state that was created. Now that we've gotten past the initial 3390 * checks we are ok to retain that resume state. 3391 */ 3392 drc->drc_should_save = B_TRUE; 3393 3394 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 3395 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 3396 offsetof(struct receive_record_arg, node)); 3397 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 3398 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 3399 rwa->os = drc->drc_os; 3400 rwa->byteswap = drc->drc_byteswap; 3401 rwa->heal = drc->drc_heal; 3402 rwa->tofs = drc->drc_tofs; 3403 rwa->resumable = drc->drc_resumable; 3404 rwa->raw = drc->drc_raw; 3405 rwa->spill = drc->drc_spill; 3406 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 3407 rwa->os->os_raw_receive = drc->drc_raw; 3408 if (drc->drc_heal) { 3409 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL, 3410 ZIO_FLAG_GODFATHER); 3411 } 3412 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 3413 offsetof(struct receive_record_arg, node.bqn_node)); 3414 3415 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 3416 TS_RUN, minclsyspri); 3417 /* 3418 * We're reading rwa->err without locks, which is safe since we are the 3419 * only reader, and the worker thread is the only writer. It's ok if we 3420 * miss a write for an iteration or two of the loop, since the writer 3421 * thread will keep freeing records we send it until we send it an eos 3422 * marker. 3423 * 3424 * We can leave this loop in 3 ways: First, if rwa->err is 3425 * non-zero. In that case, the writer thread will free the rrd we just 3426 * pushed. Second, if we're interrupted; in that case, either it's the 3427 * first loop and drc->drc_rrd was never allocated, or it's later, and 3428 * drc->drc_rrd has been handed off to the writer thread who will free 3429 * it. Finally, if receive_read_record fails or we're at the end of the 3430 * stream, then we free drc->drc_rrd and exit. 3431 */ 3432 while (rwa->err == 0) { 3433 if (issig()) { 3434 err = SET_ERROR(EINTR); 3435 break; 3436 } 3437 3438 ASSERT3P(drc->drc_rrd, ==, NULL); 3439 drc->drc_rrd = drc->drc_next_rrd; 3440 drc->drc_next_rrd = NULL; 3441 /* Allocates and loads header into drc->drc_next_rrd */ 3442 err = receive_read_record(drc); 3443 3444 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 3445 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 3446 drc->drc_rrd = NULL; 3447 break; 3448 } 3449 3450 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3451 sizeof (struct receive_record_arg) + 3452 drc->drc_rrd->payload_size); 3453 drc->drc_rrd = NULL; 3454 } 3455 3456 ASSERT3P(drc->drc_rrd, ==, NULL); 3457 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3458 drc->drc_rrd->eos_marker = B_TRUE; 3459 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3460 3461 mutex_enter(&rwa->mutex); 3462 while (!rwa->done) { 3463 /* 3464 * We need to use cv_wait_sig() so that any process that may 3465 * be sleeping here can still fork. 3466 */ 3467 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3468 } 3469 mutex_exit(&rwa->mutex); 3470 3471 /* 3472 * If we are receiving a full stream as a clone, all object IDs which 3473 * are greater than the maximum ID referenced in the stream are 3474 * by definition unused and must be freed. 3475 */ 3476 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3477 uint64_t obj = rwa->max_object + 1; 3478 int free_err = 0; 3479 int next_err = 0; 3480 3481 while (next_err == 0) { 3482 free_err = dmu_free_long_object(rwa->os, obj); 3483 if (free_err != 0 && free_err != ENOENT) 3484 break; 3485 3486 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3487 } 3488 3489 if (err == 0) { 3490 if (free_err != 0 && free_err != ENOENT) 3491 err = free_err; 3492 else if (next_err != ESRCH) 3493 err = next_err; 3494 } 3495 } 3496 3497 cv_destroy(&rwa->cv); 3498 mutex_destroy(&rwa->mutex); 3499 bqueue_destroy(&rwa->q); 3500 list_destroy(&rwa->write_batch); 3501 if (err == 0) 3502 err = rwa->err; 3503 3504 out: 3505 /* 3506 * If we hit an error before we started the receive_writer_thread 3507 * we need to clean up the next_rrd we create by processing the 3508 * DRR_BEGIN record. 3509 */ 3510 if (drc->drc_next_rrd != NULL) 3511 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3512 3513 /* 3514 * The objset will be invalidated by dmu_recv_end() when we do 3515 * dsl_dataset_clone_swap_sync_impl(). 3516 */ 3517 drc->drc_os = NULL; 3518 3519 kmem_free(rwa, sizeof (*rwa)); 3520 nvlist_free(drc->drc_begin_nvl); 3521 3522 if (err != 0) { 3523 /* 3524 * Clean up references. If receive is not resumable, 3525 * destroy what we created, so we don't leave it in 3526 * the inconsistent state. 3527 */ 3528 dmu_recv_cleanup_ds(drc); 3529 nvlist_free(drc->drc_keynvl); 3530 } 3531 3532 objlist_destroy(drc->drc_ignore_objlist); 3533 drc->drc_ignore_objlist = NULL; 3534 *voffp = drc->drc_voff; 3535 return (err); 3536 } 3537 3538 static int 3539 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3540 { 3541 dmu_recv_cookie_t *drc = arg; 3542 dsl_pool_t *dp = dmu_tx_pool(tx); 3543 int error; 3544 3545 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3546 3547 if (drc->drc_heal) { 3548 error = 0; 3549 } else if (!drc->drc_newfs) { 3550 dsl_dataset_t *origin_head; 3551 3552 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3553 if (error != 0) 3554 return (error); 3555 if (drc->drc_force) { 3556 /* 3557 * We will destroy any snapshots in tofs (i.e. before 3558 * origin_head) that are after the origin (which is 3559 * the snap before drc_ds, because drc_ds can not 3560 * have any snaps of its own). 3561 */ 3562 uint64_t obj; 3563 3564 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3565 while (obj != 3566 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3567 dsl_dataset_t *snap; 3568 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3569 &snap); 3570 if (error != 0) 3571 break; 3572 if (snap->ds_dir != origin_head->ds_dir) 3573 error = SET_ERROR(EINVAL); 3574 if (error == 0) { 3575 error = dsl_destroy_snapshot_check_impl( 3576 snap, B_FALSE); 3577 } 3578 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3579 dsl_dataset_rele(snap, FTAG); 3580 if (error != 0) 3581 break; 3582 } 3583 if (error != 0) { 3584 dsl_dataset_rele(origin_head, FTAG); 3585 return (error); 3586 } 3587 } 3588 if (drc->drc_keynvl != NULL) { 3589 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3590 drc->drc_keynvl, tx); 3591 if (error != 0) { 3592 dsl_dataset_rele(origin_head, FTAG); 3593 return (error); 3594 } 3595 } 3596 3597 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3598 origin_head, drc->drc_force, drc->drc_owner, tx); 3599 if (error != 0) { 3600 dsl_dataset_rele(origin_head, FTAG); 3601 return (error); 3602 } 3603 error = dsl_dataset_snapshot_check_impl(origin_head, 3604 drc->drc_tosnap, tx, B_TRUE, 1, 3605 drc->drc_cred, drc->drc_proc); 3606 dsl_dataset_rele(origin_head, FTAG); 3607 if (error != 0) 3608 return (error); 3609 3610 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3611 } else { 3612 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3613 drc->drc_tosnap, tx, B_TRUE, 1, 3614 drc->drc_cred, drc->drc_proc); 3615 } 3616 return (error); 3617 } 3618 3619 static void 3620 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3621 { 3622 dmu_recv_cookie_t *drc = arg; 3623 dsl_pool_t *dp = dmu_tx_pool(tx); 3624 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3625 uint64_t newsnapobj = 0; 3626 3627 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3628 tx, "snap=%s", drc->drc_tosnap); 3629 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3630 3631 if (drc->drc_heal) { 3632 if (drc->drc_keynvl != NULL) { 3633 nvlist_free(drc->drc_keynvl); 3634 drc->drc_keynvl = NULL; 3635 } 3636 } else if (!drc->drc_newfs) { 3637 dsl_dataset_t *origin_head; 3638 3639 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3640 &origin_head)); 3641 3642 if (drc->drc_force) { 3643 /* 3644 * Destroy any snapshots of drc_tofs (origin_head) 3645 * after the origin (the snap before drc_ds). 3646 */ 3647 uint64_t obj; 3648 3649 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3650 while (obj != 3651 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3652 dsl_dataset_t *snap; 3653 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3654 &snap)); 3655 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3656 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3657 dsl_destroy_snapshot_sync_impl(snap, 3658 B_FALSE, tx); 3659 dsl_dataset_rele(snap, FTAG); 3660 } 3661 } 3662 if (drc->drc_keynvl != NULL) { 3663 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3664 drc->drc_keynvl, tx); 3665 nvlist_free(drc->drc_keynvl); 3666 drc->drc_keynvl = NULL; 3667 } 3668 3669 VERIFY3P(drc->drc_ds->ds_prev, ==, 3670 origin_head->ds_prev); 3671 3672 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3673 origin_head, tx); 3674 /* 3675 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3676 * so drc_os is no longer valid. 3677 */ 3678 drc->drc_os = NULL; 3679 3680 dsl_dataset_snapshot_sync_impl(origin_head, 3681 drc->drc_tosnap, tx); 3682 3683 /* set snapshot's creation time and guid */ 3684 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3685 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3686 drc->drc_drrb->drr_creation_time; 3687 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3688 drc->drc_drrb->drr_toguid; 3689 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3690 ~DS_FLAG_INCONSISTENT; 3691 3692 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3693 dsl_dataset_phys(origin_head)->ds_flags &= 3694 ~DS_FLAG_INCONSISTENT; 3695 3696 newsnapobj = 3697 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3698 3699 dsl_dataset_rele(origin_head, FTAG); 3700 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3701 3702 if (drc->drc_owner != NULL) 3703 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3704 } else { 3705 dsl_dataset_t *ds = drc->drc_ds; 3706 3707 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3708 3709 /* set snapshot's creation time and guid */ 3710 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3711 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3712 drc->drc_drrb->drr_creation_time; 3713 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3714 drc->drc_drrb->drr_toguid; 3715 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3716 ~DS_FLAG_INCONSISTENT; 3717 3718 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3719 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3720 if (dsl_dataset_has_resume_receive_state(ds)) { 3721 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3722 DS_FIELD_RESUME_FROMGUID, tx); 3723 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3724 DS_FIELD_RESUME_OBJECT, tx); 3725 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3726 DS_FIELD_RESUME_OFFSET, tx); 3727 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3728 DS_FIELD_RESUME_BYTES, tx); 3729 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3730 DS_FIELD_RESUME_TOGUID, tx); 3731 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3732 DS_FIELD_RESUME_TONAME, tx); 3733 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3734 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3735 } 3736 newsnapobj = 3737 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3738 } 3739 3740 /* 3741 * If this is a raw receive, the crypt_keydata nvlist will include 3742 * a to_ivset_guid for us to set on the new snapshot. This value 3743 * will override the value generated by the snapshot code. However, 3744 * this value may not be present, because older implementations of 3745 * the raw send code did not include this value, and we are still 3746 * allowed to receive them if the zfs_disable_ivset_guid_check 3747 * tunable is set, in which case we will leave the newly-generated 3748 * value. 3749 */ 3750 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) { 3751 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3752 DMU_OT_DSL_DATASET, tx); 3753 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3754 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3755 &drc->drc_ivset_guid, tx)); 3756 } 3757 3758 /* 3759 * Release the hold from dmu_recv_begin. This must be done before 3760 * we return to open context, so that when we free the dataset's dnode 3761 * we can evict its bonus buffer. Since the dataset may be destroyed 3762 * at this point (and therefore won't have a valid pointer to the spa) 3763 * we release the key mapping manually here while we do have a valid 3764 * pointer, if it exists. 3765 */ 3766 if (!drc->drc_raw && encrypted) { 3767 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3768 drc->drc_ds->ds_object, drc->drc_ds); 3769 } 3770 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3771 drc->drc_ds = NULL; 3772 } 3773 3774 static int dmu_recv_end_modified_blocks = 3; 3775 3776 static int 3777 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3778 { 3779 #ifdef _KERNEL 3780 /* 3781 * We will be destroying the ds; make sure its origin is unmounted if 3782 * necessary. 3783 */ 3784 char name[ZFS_MAX_DATASET_NAME_LEN]; 3785 dsl_dataset_name(drc->drc_ds, name); 3786 zfs_destroy_unmount_origin(name); 3787 #endif 3788 3789 return (dsl_sync_task(drc->drc_tofs, 3790 dmu_recv_end_check, dmu_recv_end_sync, drc, 3791 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3792 } 3793 3794 static int 3795 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3796 { 3797 return (dsl_sync_task(drc->drc_tofs, 3798 dmu_recv_end_check, dmu_recv_end_sync, drc, 3799 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3800 } 3801 3802 int 3803 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3804 { 3805 int error; 3806 3807 drc->drc_owner = owner; 3808 3809 if (drc->drc_newfs) 3810 error = dmu_recv_new_end(drc); 3811 else 3812 error = dmu_recv_existing_end(drc); 3813 3814 if (error != 0) { 3815 dmu_recv_cleanup_ds(drc); 3816 nvlist_free(drc->drc_keynvl); 3817 } else if (!drc->drc_heal) { 3818 if (drc->drc_newfs) { 3819 zvol_create_minor(drc->drc_tofs); 3820 } 3821 char *snapname = kmem_asprintf("%s@%s", 3822 drc->drc_tofs, drc->drc_tosnap); 3823 zvol_create_minor(snapname); 3824 kmem_strfree(snapname); 3825 } 3826 return (error); 3827 } 3828 3829 /* 3830 * Return TRUE if this objset is currently being received into. 3831 */ 3832 boolean_t 3833 dmu_objset_is_receiving(objset_t *os) 3834 { 3835 return (os->os_dsl_dataset != NULL && 3836 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3837 } 3838 3839 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW, 3840 "Maximum receive queue length"); 3841 3842 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW, 3843 "Receive queue fill fraction"); 3844 3845 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW, 3846 "Maximum amount of writes to batch into one transaction"); 3847 3848 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW, 3849 "Ignore errors during corrective receive"); 3850