xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2019 Datto Inc.
31  * Copyright (c) 2022 Axcient.
32  */
33 
34 #include <sys/arc.h>
35 #include <sys/spa_impl.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_send.h>
39 #include <sys/dmu_recv.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dbuf.h>
42 #include <sys/dnode.h>
43 #include <sys/zfs_context.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/dmu_traverse.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_pool.h>
50 #include <sys/dsl_synctask.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zap.h>
53 #include <sys/zvol.h>
54 #include <sys/zio_checksum.h>
55 #include <sys/zfs_znode.h>
56 #include <zfs_fletcher.h>
57 #include <sys/avl.h>
58 #include <sys/ddt.h>
59 #include <sys/zfs_onexit.h>
60 #include <sys/dsl_destroy.h>
61 #include <sys/blkptr.h>
62 #include <sys/dsl_bookmark.h>
63 #include <sys/zfeature.h>
64 #include <sys/bqueue.h>
65 #include <sys/objlist.h>
66 #ifdef _KERNEL
67 #include <sys/zfs_vfsops.h>
68 #endif
69 #include <sys/zfs_file.h>
70 
71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72 static uint_t zfs_recv_queue_ff = 20;
73 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
74 static int zfs_recv_best_effort_corrective = 0;
75 
76 static const void *const dmu_recv_tag = "dmu_recv_tag";
77 const char *const recv_clone_name = "%recv";
78 
79 typedef enum {
80 	ORNS_NO,
81 	ORNS_YES,
82 	ORNS_MAYBE
83 } or_need_sync_t;
84 
85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86     void *buf);
87 
88 struct receive_record_arg {
89 	dmu_replay_record_t header;
90 	void *payload; /* Pointer to a buffer containing the payload */
91 	/*
92 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
93 	 * payload.
94 	 */
95 	abd_t *abd;
96 	int payload_size;
97 	uint64_t bytes_read; /* bytes read from stream when record created */
98 	boolean_t eos_marker; /* Marks the end of the stream */
99 	bqueue_node_t node;
100 };
101 
102 struct receive_writer_arg {
103 	objset_t *os;
104 	boolean_t byteswap;
105 	bqueue_t q;
106 
107 	/*
108 	 * These three members are used to signal to the main thread when
109 	 * we're done.
110 	 */
111 	kmutex_t mutex;
112 	kcondvar_t cv;
113 	boolean_t done;
114 
115 	int err;
116 	const char *tofs;
117 	boolean_t heal;
118 	boolean_t resumable;
119 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
120 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
121 	boolean_t full;  /* this is a full send stream */
122 	uint64_t last_object;
123 	uint64_t last_offset;
124 	uint64_t max_object; /* highest object ID referenced in stream */
125 	uint64_t bytes_read; /* bytes read when current record created */
126 
127 	list_t write_batch;
128 
129 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
130 	boolean_t or_crypt_params_present;
131 	uint64_t or_firstobj;
132 	uint64_t or_numslots;
133 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
134 	uint8_t or_iv[ZIO_DATA_IV_LEN];
135 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
136 	boolean_t or_byteorder;
137 	zio_t *heal_pio;
138 
139 	/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140 	or_need_sync_t or_need_sync;
141 };
142 
143 typedef struct dmu_recv_begin_arg {
144 	const char *drba_origin;
145 	dmu_recv_cookie_t *drba_cookie;
146 	cred_t *drba_cred;
147 	proc_t *drba_proc;
148 	dsl_crypto_params_t *drba_dcp;
149 } dmu_recv_begin_arg_t;
150 
151 static void
152 byteswap_record(dmu_replay_record_t *drr)
153 {
154 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156 	drr->drr_type = BSWAP_32(drr->drr_type);
157 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158 
159 	switch (drr->drr_type) {
160 	case DRR_BEGIN:
161 		DO64(drr_begin.drr_magic);
162 		DO64(drr_begin.drr_versioninfo);
163 		DO64(drr_begin.drr_creation_time);
164 		DO32(drr_begin.drr_type);
165 		DO32(drr_begin.drr_flags);
166 		DO64(drr_begin.drr_toguid);
167 		DO64(drr_begin.drr_fromguid);
168 		break;
169 	case DRR_OBJECT:
170 		DO64(drr_object.drr_object);
171 		DO32(drr_object.drr_type);
172 		DO32(drr_object.drr_bonustype);
173 		DO32(drr_object.drr_blksz);
174 		DO32(drr_object.drr_bonuslen);
175 		DO32(drr_object.drr_raw_bonuslen);
176 		DO64(drr_object.drr_toguid);
177 		DO64(drr_object.drr_maxblkid);
178 		break;
179 	case DRR_FREEOBJECTS:
180 		DO64(drr_freeobjects.drr_firstobj);
181 		DO64(drr_freeobjects.drr_numobjs);
182 		DO64(drr_freeobjects.drr_toguid);
183 		break;
184 	case DRR_WRITE:
185 		DO64(drr_write.drr_object);
186 		DO32(drr_write.drr_type);
187 		DO64(drr_write.drr_offset);
188 		DO64(drr_write.drr_logical_size);
189 		DO64(drr_write.drr_toguid);
190 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191 		DO64(drr_write.drr_key.ddk_prop);
192 		DO64(drr_write.drr_compressed_size);
193 		break;
194 	case DRR_WRITE_EMBEDDED:
195 		DO64(drr_write_embedded.drr_object);
196 		DO64(drr_write_embedded.drr_offset);
197 		DO64(drr_write_embedded.drr_length);
198 		DO64(drr_write_embedded.drr_toguid);
199 		DO32(drr_write_embedded.drr_lsize);
200 		DO32(drr_write_embedded.drr_psize);
201 		break;
202 	case DRR_FREE:
203 		DO64(drr_free.drr_object);
204 		DO64(drr_free.drr_offset);
205 		DO64(drr_free.drr_length);
206 		DO64(drr_free.drr_toguid);
207 		break;
208 	case DRR_SPILL:
209 		DO64(drr_spill.drr_object);
210 		DO64(drr_spill.drr_length);
211 		DO64(drr_spill.drr_toguid);
212 		DO64(drr_spill.drr_compressed_size);
213 		DO32(drr_spill.drr_type);
214 		break;
215 	case DRR_OBJECT_RANGE:
216 		DO64(drr_object_range.drr_firstobj);
217 		DO64(drr_object_range.drr_numslots);
218 		DO64(drr_object_range.drr_toguid);
219 		break;
220 	case DRR_REDACT:
221 		DO64(drr_redact.drr_object);
222 		DO64(drr_redact.drr_offset);
223 		DO64(drr_redact.drr_length);
224 		DO64(drr_redact.drr_toguid);
225 		break;
226 	case DRR_END:
227 		DO64(drr_end.drr_toguid);
228 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229 		break;
230 	default:
231 		break;
232 	}
233 
234 	if (drr->drr_type != DRR_BEGIN) {
235 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236 	}
237 
238 #undef DO64
239 #undef DO32
240 }
241 
242 static boolean_t
243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244 {
245 	for (int i = 0; i < num_snaps; i++) {
246 		if (snaps[i] == guid)
247 			return (B_TRUE);
248 	}
249 	return (B_FALSE);
250 }
251 
252 /*
253  * Check that the new stream we're trying to receive is redacted with respect to
254  * a subset of the snapshots that the origin was redacted with respect to.  For
255  * the reasons behind this, see the man page on redacted zfs sends and receives.
256  */
257 static boolean_t
258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259     uint64_t *redact_snaps, uint64_t num_redact_snaps)
260 {
261 	/*
262 	 * Short circuit the comparison; if we are redacted with respect to
263 	 * more snapshots than the origin, we can't be redacted with respect
264 	 * to a subset.
265 	 */
266 	if (num_redact_snaps > origin_num_snaps) {
267 		return (B_FALSE);
268 	}
269 
270 	for (int i = 0; i < num_redact_snaps; i++) {
271 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272 		    redact_snaps[i])) {
273 			return (B_FALSE);
274 		}
275 	}
276 	return (B_TRUE);
277 }
278 
279 static boolean_t
280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281 {
282 	uint64_t *origin_snaps;
283 	uint64_t origin_num_snaps;
284 	dmu_recv_cookie_t *drc = drba->drba_cookie;
285 	struct drr_begin *drrb = drc->drc_drrb;
286 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287 	int err = 0;
288 	boolean_t ret = B_TRUE;
289 	uint64_t *redact_snaps;
290 	uint_t numredactsnaps;
291 
292 	/*
293 	 * If this is a full send stream, we're safe no matter what.
294 	 */
295 	if (drrb->drr_fromguid == 0)
296 		return (ret);
297 
298 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300 
301 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303 	    0) {
304 		/*
305 		 * If the send stream was sent from the redaction bookmark or
306 		 * the redacted version of the dataset, then we're safe.  Verify
307 		 * that this is from the a compatible redaction bookmark or
308 		 * redacted dataset.
309 		 */
310 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311 		    redact_snaps, numredactsnaps)) {
312 			err = EINVAL;
313 		}
314 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315 		/*
316 		 * If the stream is redacted, it must be redacted with respect
317 		 * to a subset of what the origin is redacted with respect to.
318 		 * See case number 2 in the zfs man page section on redacted zfs
319 		 * send.
320 		 */
321 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323 
324 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
325 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
326 			err = EINVAL;
327 		}
328 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329 	    drrb->drr_toguid)) {
330 		/*
331 		 * If the stream isn't redacted but the origin is, this must be
332 		 * one of the snapshots the origin is redacted with respect to.
333 		 * See case number 1 in the zfs man page section on redacted zfs
334 		 * send.
335 		 */
336 		err = EINVAL;
337 	}
338 
339 	if (err != 0)
340 		ret = B_FALSE;
341 	return (ret);
342 }
343 
344 /*
345  * If we previously received a stream with --large-block, we don't support
346  * receiving an incremental on top of it without --large-block.  This avoids
347  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348  * records.
349  */
350 static int
351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352 {
353 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356 	return (0);
357 }
358 
359 static int
360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361     uint64_t fromguid, uint64_t featureflags)
362 {
363 	uint64_t obj;
364 	uint64_t children;
365 	int error;
366 	dsl_dataset_t *snap;
367 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
368 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371 
372 	/* Temporary clone name must not exist. */
373 	error = zap_lookup(dp->dp_meta_objset,
374 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
375 	    8, 1, &obj);
376 	if (error != ENOENT)
377 		return (error == 0 ? SET_ERROR(EBUSY) : error);
378 
379 	/* Resume state must not be set. */
380 	if (dsl_dataset_has_resume_receive_state(ds))
381 		return (SET_ERROR(EBUSY));
382 
383 	/* New snapshot name must not exist if we're not healing it. */
384 	error = zap_lookup(dp->dp_meta_objset,
385 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
386 	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387 	if (drba->drba_cookie->drc_heal) {
388 		if (error != 0)
389 			return (error);
390 	} else if (error != ENOENT) {
391 		return (error == 0 ? SET_ERROR(EEXIST) : error);
392 	}
393 
394 	/* Must not have children if receiving a ZVOL. */
395 	error = zap_count(dp->dp_meta_objset,
396 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397 	if (error != 0)
398 		return (error);
399 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400 	    children > 0)
401 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402 
403 	/*
404 	 * Check snapshot limit before receiving. We'll recheck again at the
405 	 * end, but might as well abort before receiving if we're already over
406 	 * the limit.
407 	 *
408 	 * Note that we do not check the file system limit with
409 	 * dsl_dir_fscount_check because the temporary %clones don't count
410 	 * against that limit.
411 	 */
412 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
413 	    NULL, drba->drba_cred, drba->drba_proc);
414 	if (error != 0)
415 		return (error);
416 
417 	if (drba->drba_cookie->drc_heal) {
418 		/* Encryption is incompatible with embedded data. */
419 		if (encrypted && embed)
420 			return (SET_ERROR(EINVAL));
421 
422 		/* Healing is not supported when in 'force' mode. */
423 		if (drba->drba_cookie->drc_force)
424 			return (SET_ERROR(EINVAL));
425 
426 		/* Must have keys loaded if doing encrypted non-raw recv. */
427 		if (encrypted && !raw) {
428 			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429 			    NULL, NULL) != 0)
430 				return (SET_ERROR(EACCES));
431 		}
432 
433 		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434 		if (error != 0)
435 			return (error);
436 
437 		/*
438 		 * When not doing best effort corrective recv healing can only
439 		 * be done if the send stream is for the same snapshot as the
440 		 * one we are trying to heal.
441 		 */
442 		if (zfs_recv_best_effort_corrective == 0 &&
443 		    drba->drba_cookie->drc_drrb->drr_toguid !=
444 		    dsl_dataset_phys(snap)->ds_guid) {
445 			dsl_dataset_rele(snap, FTAG);
446 			return (SET_ERROR(ENOTSUP));
447 		}
448 		dsl_dataset_rele(snap, FTAG);
449 	} else if (fromguid != 0) {
450 		/* Sanity check the incremental recv */
451 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452 
453 		/* Can't perform a raw receive on top of a non-raw receive */
454 		if (!encrypted && raw)
455 			return (SET_ERROR(EINVAL));
456 
457 		/* Encryption is incompatible with embedded data */
458 		if (encrypted && embed)
459 			return (SET_ERROR(EINVAL));
460 
461 		/* Find snapshot in this dir that matches fromguid. */
462 		while (obj != 0) {
463 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
464 			    &snap);
465 			if (error != 0)
466 				return (SET_ERROR(ENODEV));
467 			if (snap->ds_dir != ds->ds_dir) {
468 				dsl_dataset_rele(snap, FTAG);
469 				return (SET_ERROR(ENODEV));
470 			}
471 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472 				break;
473 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474 			dsl_dataset_rele(snap, FTAG);
475 		}
476 		if (obj == 0)
477 			return (SET_ERROR(ENODEV));
478 
479 		if (drba->drba_cookie->drc_force) {
480 			drba->drba_cookie->drc_fromsnapobj = obj;
481 		} else {
482 			/*
483 			 * If we are not forcing, there must be no
484 			 * changes since fromsnap. Raw sends have an
485 			 * additional constraint that requires that
486 			 * no "noop" snapshots exist between fromsnap
487 			 * and tosnap for the IVset checking code to
488 			 * work properly.
489 			 */
490 			if (dsl_dataset_modified_since_snap(ds, snap) ||
491 			    (raw &&
492 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493 			    snap->ds_object)) {
494 				dsl_dataset_rele(snap, FTAG);
495 				return (SET_ERROR(ETXTBSY));
496 			}
497 			drba->drba_cookie->drc_fromsnapobj =
498 			    ds->ds_prev->ds_object;
499 		}
500 
501 		if (dsl_dataset_feature_is_active(snap,
502 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503 		    snap)) {
504 			dsl_dataset_rele(snap, FTAG);
505 			return (SET_ERROR(EINVAL));
506 		}
507 
508 		error = recv_check_large_blocks(snap, featureflags);
509 		if (error != 0) {
510 			dsl_dataset_rele(snap, FTAG);
511 			return (error);
512 		}
513 
514 		dsl_dataset_rele(snap, FTAG);
515 	} else {
516 		/* If full and not healing then must be forced. */
517 		if (!drba->drba_cookie->drc_force)
518 			return (SET_ERROR(EEXIST));
519 
520 		/*
521 		 * We don't support using zfs recv -F to blow away
522 		 * encrypted filesystems. This would require the
523 		 * dsl dir to point to the old encryption key and
524 		 * the new one at the same time during the receive.
525 		 */
526 		if ((!encrypted && raw) || encrypted)
527 			return (SET_ERROR(EINVAL));
528 
529 		/*
530 		 * Perform the same encryption checks we would if
531 		 * we were creating a new dataset from scratch.
532 		 */
533 		if (!raw) {
534 			boolean_t will_encrypt;
535 
536 			error = dmu_objset_create_crypt_check(
537 			    ds->ds_dir->dd_parent, drba->drba_dcp,
538 			    &will_encrypt);
539 			if (error != 0)
540 				return (error);
541 
542 			if (will_encrypt && embed)
543 				return (SET_ERROR(EINVAL));
544 		}
545 	}
546 
547 	return (0);
548 }
549 
550 /*
551  * Check that any feature flags used in the data stream we're receiving are
552  * supported by the pool we are receiving into.
553  *
554  * Note that some of the features we explicitly check here have additional
555  * (implicit) features they depend on, but those dependencies are enforced
556  * through the zfeature_register() calls declaring the features that we
557  * explicitly check.
558  */
559 static int
560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561 {
562 	/*
563 	 * Check if there are any unsupported feature flags.
564 	 */
565 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
566 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567 	}
568 
569 	/* Verify pool version supports SA if SA_SPILL feature set */
570 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571 	    spa_version(spa) < SPA_VERSION_SA)
572 		return (SET_ERROR(ENOTSUP));
573 
574 	/*
575 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576 	 * and large_dnodes in the stream can only be used if those pool
577 	 * features are enabled because we don't attempt to decompress /
578 	 * un-embed / un-mooch / split up the blocks / dnodes during the
579 	 * receive process.
580 	 */
581 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583 		return (SET_ERROR(ENOTSUP));
584 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586 		return (SET_ERROR(ENOTSUP));
587 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589 		return (SET_ERROR(ENOTSUP));
590 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592 		return (SET_ERROR(ENOTSUP));
593 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595 		return (SET_ERROR(ENOTSUP));
596 
597 	/*
598 	 * Receiving redacted streams requires that redacted datasets are
599 	 * enabled.
600 	 */
601 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
602 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
603 		return (SET_ERROR(ENOTSUP));
604 
605 	return (0);
606 }
607 
608 static int
609 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
610 {
611 	dmu_recv_begin_arg_t *drba = arg;
612 	dsl_pool_t *dp = dmu_tx_pool(tx);
613 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
614 	uint64_t fromguid = drrb->drr_fromguid;
615 	int flags = drrb->drr_flags;
616 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
617 	int error;
618 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
619 	dsl_dataset_t *ds;
620 	const char *tofs = drba->drba_cookie->drc_tofs;
621 
622 	/* already checked */
623 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
624 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
625 
626 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
627 	    DMU_COMPOUNDSTREAM ||
628 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
629 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
630 		return (SET_ERROR(EINVAL));
631 
632 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
633 	if (error != 0)
634 		return (error);
635 
636 	/* Resumable receives require extensible datasets */
637 	if (drba->drba_cookie->drc_resumable &&
638 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
639 		return (SET_ERROR(ENOTSUP));
640 
641 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
642 		/* raw receives require the encryption feature */
643 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
644 			return (SET_ERROR(ENOTSUP));
645 
646 		/* embedded data is incompatible with encryption and raw recv */
647 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
648 			return (SET_ERROR(EINVAL));
649 
650 		/* raw receives require spill block allocation flag */
651 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
652 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
653 	} else {
654 		/*
655 		 * We support unencrypted datasets below encrypted ones now,
656 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
657 		 * with a dataset we may encrypt.
658 		 */
659 		if (drba->drba_dcp == NULL ||
660 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
661 			dsflags |= DS_HOLD_FLAG_DECRYPT;
662 		}
663 	}
664 
665 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
666 	if (error == 0) {
667 		/* target fs already exists; recv into temp clone */
668 
669 		/* Can't recv a clone into an existing fs */
670 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
671 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
672 			return (SET_ERROR(EINVAL));
673 		}
674 
675 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
676 		    featureflags);
677 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
678 	} else if (error == ENOENT) {
679 		/* target fs does not exist; must be a full backup or clone */
680 		char buf[ZFS_MAX_DATASET_NAME_LEN];
681 		objset_t *os;
682 
683 		/* healing recv must be done "into" an existing snapshot */
684 		if (drba->drba_cookie->drc_heal == B_TRUE)
685 			return (SET_ERROR(ENOTSUP));
686 
687 		/*
688 		 * If it's a non-clone incremental, we are missing the
689 		 * target fs, so fail the recv.
690 		 */
691 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
692 		    drba->drba_origin))
693 			return (SET_ERROR(ENOENT));
694 
695 		/*
696 		 * If we're receiving a full send as a clone, and it doesn't
697 		 * contain all the necessary free records and freeobject
698 		 * records, reject it.
699 		 */
700 		if (fromguid == 0 && drba->drba_origin != NULL &&
701 		    !(flags & DRR_FLAG_FREERECORDS))
702 			return (SET_ERROR(EINVAL));
703 
704 		/* Open the parent of tofs */
705 		ASSERT3U(strlen(tofs), <, sizeof (buf));
706 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
707 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
708 		if (error != 0)
709 			return (error);
710 
711 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
712 		    drba->drba_origin == NULL) {
713 			boolean_t will_encrypt;
714 
715 			/*
716 			 * Check that we aren't breaking any encryption rules
717 			 * and that we have all the parameters we need to
718 			 * create an encrypted dataset if necessary. If we are
719 			 * making an encrypted dataset the stream can't have
720 			 * embedded data.
721 			 */
722 			error = dmu_objset_create_crypt_check(ds->ds_dir,
723 			    drba->drba_dcp, &will_encrypt);
724 			if (error != 0) {
725 				dsl_dataset_rele(ds, FTAG);
726 				return (error);
727 			}
728 
729 			if (will_encrypt &&
730 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
731 				dsl_dataset_rele(ds, FTAG);
732 				return (SET_ERROR(EINVAL));
733 			}
734 		}
735 
736 		/*
737 		 * Check filesystem and snapshot limits before receiving. We'll
738 		 * recheck snapshot limits again at the end (we create the
739 		 * filesystems and increment those counts during begin_sync).
740 		 */
741 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
742 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
743 		    drba->drba_cred, drba->drba_proc);
744 		if (error != 0) {
745 			dsl_dataset_rele(ds, FTAG);
746 			return (error);
747 		}
748 
749 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
750 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
751 		    drba->drba_cred, drba->drba_proc);
752 		if (error != 0) {
753 			dsl_dataset_rele(ds, FTAG);
754 			return (error);
755 		}
756 
757 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
758 		error = dmu_objset_from_ds(ds, &os);
759 		if (error != 0) {
760 			dsl_dataset_rele(ds, FTAG);
761 			return (error);
762 		}
763 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
764 			dsl_dataset_rele(ds, FTAG);
765 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
766 		}
767 
768 		if (drba->drba_origin != NULL) {
769 			dsl_dataset_t *origin;
770 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
771 			    dsflags, FTAG, &origin);
772 			if (error != 0) {
773 				dsl_dataset_rele(ds, FTAG);
774 				return (error);
775 			}
776 			if (!origin->ds_is_snapshot) {
777 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
778 				dsl_dataset_rele(ds, FTAG);
779 				return (SET_ERROR(EINVAL));
780 			}
781 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
782 			    fromguid != 0) {
783 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
784 				dsl_dataset_rele(ds, FTAG);
785 				return (SET_ERROR(ENODEV));
786 			}
787 
788 			if (origin->ds_dir->dd_crypto_obj != 0 &&
789 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
790 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
791 				dsl_dataset_rele(ds, FTAG);
792 				return (SET_ERROR(EINVAL));
793 			}
794 
795 			/*
796 			 * If the origin is redacted we need to verify that this
797 			 * send stream can safely be received on top of the
798 			 * origin.
799 			 */
800 			if (dsl_dataset_feature_is_active(origin,
801 			    SPA_FEATURE_REDACTED_DATASETS)) {
802 				if (!redact_check(drba, origin)) {
803 					dsl_dataset_rele_flags(origin, dsflags,
804 					    FTAG);
805 					dsl_dataset_rele_flags(ds, dsflags,
806 					    FTAG);
807 					return (SET_ERROR(EINVAL));
808 				}
809 			}
810 
811 			error = recv_check_large_blocks(ds, featureflags);
812 			if (error != 0) {
813 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
814 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
815 				return (error);
816 			}
817 
818 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
819 		}
820 
821 		dsl_dataset_rele(ds, FTAG);
822 		error = 0;
823 	}
824 	return (error);
825 }
826 
827 static void
828 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
829 {
830 	dmu_recv_begin_arg_t *drba = arg;
831 	dsl_pool_t *dp = dmu_tx_pool(tx);
832 	objset_t *mos = dp->dp_meta_objset;
833 	dmu_recv_cookie_t *drc = drba->drba_cookie;
834 	struct drr_begin *drrb = drc->drc_drrb;
835 	const char *tofs = drc->drc_tofs;
836 	uint64_t featureflags = drc->drc_featureflags;
837 	dsl_dataset_t *ds, *newds;
838 	objset_t *os;
839 	uint64_t dsobj;
840 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
841 	int error;
842 	uint64_t crflags = 0;
843 	dsl_crypto_params_t dummy_dcp = { 0 };
844 	dsl_crypto_params_t *dcp = drba->drba_dcp;
845 
846 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
847 		crflags |= DS_FLAG_CI_DATASET;
848 
849 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
850 		dsflags |= DS_HOLD_FLAG_DECRYPT;
851 
852 	/*
853 	 * Raw, non-incremental recvs always use a dummy dcp with
854 	 * the raw cmd set. Raw incremental recvs do not use a dcp
855 	 * since the encryption parameters are already set in stone.
856 	 */
857 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
858 	    drba->drba_origin == NULL) {
859 		ASSERT3P(dcp, ==, NULL);
860 		dcp = &dummy_dcp;
861 
862 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
863 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
864 	}
865 
866 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
867 	if (error == 0) {
868 		/* Create temporary clone unless we're doing corrective recv */
869 		dsl_dataset_t *snap = NULL;
870 
871 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
872 			VERIFY0(dsl_dataset_hold_obj(dp,
873 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
874 			ASSERT3P(dcp, ==, NULL);
875 		}
876 		if (drc->drc_heal) {
877 			/* When healing we want to use the provided snapshot */
878 			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
879 			    &dsobj));
880 		} else {
881 			dsobj = dsl_dataset_create_sync(ds->ds_dir,
882 			    recv_clone_name, snap, crflags, drba->drba_cred,
883 			    dcp, tx);
884 		}
885 		if (drba->drba_cookie->drc_fromsnapobj != 0)
886 			dsl_dataset_rele(snap, FTAG);
887 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
888 	} else {
889 		dsl_dir_t *dd;
890 		const char *tail;
891 		dsl_dataset_t *origin = NULL;
892 
893 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
894 
895 		if (drba->drba_origin != NULL) {
896 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
897 			    FTAG, &origin));
898 			ASSERT3P(dcp, ==, NULL);
899 		}
900 
901 		/* Create new dataset. */
902 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
903 		    origin, crflags, drba->drba_cred, dcp, tx);
904 		if (origin != NULL)
905 			dsl_dataset_rele(origin, FTAG);
906 		dsl_dir_rele(dd, FTAG);
907 		drc->drc_newfs = B_TRUE;
908 	}
909 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
910 	    &newds));
911 	if (dsl_dataset_feature_is_active(newds,
912 	    SPA_FEATURE_REDACTED_DATASETS)) {
913 		/*
914 		 * If the origin dataset is redacted, the child will be redacted
915 		 * when we create it.  We clear the new dataset's
916 		 * redaction info; if it should be redacted, we'll fill
917 		 * in its information later.
918 		 */
919 		dsl_dataset_deactivate_feature(newds,
920 		    SPA_FEATURE_REDACTED_DATASETS, tx);
921 	}
922 	VERIFY0(dmu_objset_from_ds(newds, &os));
923 
924 	if (drc->drc_resumable) {
925 		dsl_dataset_zapify(newds, tx);
926 		if (drrb->drr_fromguid != 0) {
927 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
928 			    8, 1, &drrb->drr_fromguid, tx));
929 		}
930 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
931 		    8, 1, &drrb->drr_toguid, tx));
932 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
933 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
934 		uint64_t one = 1;
935 		uint64_t zero = 0;
936 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
937 		    8, 1, &one, tx));
938 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
939 		    8, 1, &zero, tx));
940 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
941 		    8, 1, &zero, tx));
942 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
943 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
944 			    8, 1, &one, tx));
945 		}
946 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
947 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
948 			    8, 1, &one, tx));
949 		}
950 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
951 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
952 			    8, 1, &one, tx));
953 		}
954 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
955 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
956 			    8, 1, &one, tx));
957 		}
958 
959 		uint64_t *redact_snaps;
960 		uint_t numredactsnaps;
961 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
962 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
963 		    &numredactsnaps) == 0) {
964 			VERIFY0(zap_add(mos, dsobj,
965 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
966 			    sizeof (*redact_snaps), numredactsnaps,
967 			    redact_snaps, tx));
968 		}
969 	}
970 
971 	/*
972 	 * Usually the os->os_encrypted value is tied to the presence of a
973 	 * DSL Crypto Key object in the dd. However, that will not be received
974 	 * until dmu_recv_stream(), so we set the value manually for now.
975 	 */
976 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
977 		os->os_encrypted = B_TRUE;
978 		drba->drba_cookie->drc_raw = B_TRUE;
979 	}
980 
981 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
982 		uint64_t *redact_snaps;
983 		uint_t numredactsnaps;
984 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
985 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
986 		dsl_dataset_activate_redaction(newds, redact_snaps,
987 		    numredactsnaps, tx);
988 	}
989 
990 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
991 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
992 
993 	/*
994 	 * If we actually created a non-clone, we need to create the objset
995 	 * in our new dataset. If this is a raw send we postpone this until
996 	 * dmu_recv_stream() so that we can allocate the metadnode with the
997 	 * properties from the DRR_BEGIN payload.
998 	 */
999 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1000 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1001 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1002 	    !drc->drc_heal) {
1003 		(void) dmu_objset_create_impl(dp->dp_spa,
1004 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1005 	}
1006 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1007 
1008 	drba->drba_cookie->drc_ds = newds;
1009 	drba->drba_cookie->drc_os = os;
1010 
1011 	spa_history_log_internal_ds(newds, "receive", tx, " ");
1012 }
1013 
1014 static int
1015 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1016 {
1017 	dmu_recv_begin_arg_t *drba = arg;
1018 	dmu_recv_cookie_t *drc = drba->drba_cookie;
1019 	dsl_pool_t *dp = dmu_tx_pool(tx);
1020 	struct drr_begin *drrb = drc->drc_drrb;
1021 	int error;
1022 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1023 	dsl_dataset_t *ds;
1024 	const char *tofs = drc->drc_tofs;
1025 
1026 	/* already checked */
1027 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1028 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1029 
1030 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1031 	    DMU_COMPOUNDSTREAM ||
1032 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1033 		return (SET_ERROR(EINVAL));
1034 
1035 	/*
1036 	 * This is mostly a sanity check since we should have already done these
1037 	 * checks during a previous attempt to receive the data.
1038 	 */
1039 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1040 	    dp->dp_spa);
1041 	if (error != 0)
1042 		return (error);
1043 
1044 	/* 6 extra bytes for /%recv */
1045 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1046 
1047 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1048 	    tofs, recv_clone_name);
1049 
1050 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1051 		/* raw receives require spill block allocation flag */
1052 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1053 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1054 	} else {
1055 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1056 	}
1057 
1058 	boolean_t recvexist = B_TRUE;
1059 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1060 		/* %recv does not exist; continue in tofs */
1061 		recvexist = B_FALSE;
1062 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1063 		if (error != 0)
1064 			return (error);
1065 	}
1066 
1067 	/*
1068 	 * Resume of full/newfs recv on existing dataset should be done with
1069 	 * force flag
1070 	 */
1071 	if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1072 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073 		return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1074 	}
1075 
1076 	/* check that ds is marked inconsistent */
1077 	if (!DS_IS_INCONSISTENT(ds)) {
1078 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079 		return (SET_ERROR(EINVAL));
1080 	}
1081 
1082 	/* check that there is resuming data, and that the toguid matches */
1083 	if (!dsl_dataset_is_zapified(ds)) {
1084 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085 		return (SET_ERROR(EINVAL));
1086 	}
1087 	uint64_t val;
1088 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1089 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1090 	if (error != 0 || drrb->drr_toguid != val) {
1091 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092 		return (SET_ERROR(EINVAL));
1093 	}
1094 
1095 	/*
1096 	 * Check if the receive is still running.  If so, it will be owned.
1097 	 * Note that nothing else can own the dataset (e.g. after the receive
1098 	 * fails) because it will be marked inconsistent.
1099 	 */
1100 	if (dsl_dataset_has_owner(ds)) {
1101 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1102 		return (SET_ERROR(EBUSY));
1103 	}
1104 
1105 	/* There should not be any snapshots of this fs yet. */
1106 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1107 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1108 		return (SET_ERROR(EINVAL));
1109 	}
1110 
1111 	/*
1112 	 * Note: resume point will be checked when we process the first WRITE
1113 	 * record.
1114 	 */
1115 
1116 	/* check that the origin matches */
1117 	val = 0;
1118 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1119 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1120 	if (drrb->drr_fromguid != val) {
1121 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1122 		return (SET_ERROR(EINVAL));
1123 	}
1124 
1125 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1126 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1127 
1128 	/*
1129 	 * If we're resuming, and the send is redacted, then the original send
1130 	 * must have been redacted, and must have been redacted with respect to
1131 	 * the same snapshots.
1132 	 */
1133 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1134 		uint64_t num_ds_redact_snaps;
1135 		uint64_t *ds_redact_snaps;
1136 
1137 		uint_t num_stream_redact_snaps;
1138 		uint64_t *stream_redact_snaps;
1139 
1140 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1141 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1142 		    &num_stream_redact_snaps) != 0) {
1143 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1144 			return (SET_ERROR(EINVAL));
1145 		}
1146 
1147 		if (!dsl_dataset_get_uint64_array_feature(ds,
1148 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1149 		    &ds_redact_snaps)) {
1150 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1151 			return (SET_ERROR(EINVAL));
1152 		}
1153 
1154 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1155 			if (!redact_snaps_contains(ds_redact_snaps,
1156 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1157 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1158 				return (SET_ERROR(EINVAL));
1159 			}
1160 		}
1161 	}
1162 
1163 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1164 	if (error != 0) {
1165 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1166 		return (error);
1167 	}
1168 
1169 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1170 	return (0);
1171 }
1172 
1173 static void
1174 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1175 {
1176 	dmu_recv_begin_arg_t *drba = arg;
1177 	dsl_pool_t *dp = dmu_tx_pool(tx);
1178 	const char *tofs = drba->drba_cookie->drc_tofs;
1179 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1180 	dsl_dataset_t *ds;
1181 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1182 	/* 6 extra bytes for /%recv */
1183 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1184 
1185 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1186 	    recv_clone_name);
1187 
1188 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1189 		drba->drba_cookie->drc_raw = B_TRUE;
1190 	} else {
1191 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1192 	}
1193 
1194 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1195 	    != 0) {
1196 		/* %recv does not exist; continue in tofs */
1197 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1198 		    &ds));
1199 		drba->drba_cookie->drc_newfs = B_TRUE;
1200 	}
1201 
1202 	ASSERT(DS_IS_INCONSISTENT(ds));
1203 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1204 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1205 	    drba->drba_cookie->drc_raw);
1206 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1207 
1208 	drba->drba_cookie->drc_ds = ds;
1209 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1210 	drba->drba_cookie->drc_should_save = B_TRUE;
1211 
1212 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1213 }
1214 
1215 /*
1216  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1217  * succeeds; otherwise we will leak the holds on the datasets.
1218  */
1219 int
1220 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1221     boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops,
1222     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1223     zfs_file_t *fp, offset_t *voffp)
1224 {
1225 	dmu_recv_begin_arg_t drba = { 0 };
1226 	int err;
1227 
1228 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1229 	drc->drc_drr_begin = drr_begin;
1230 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1231 	drc->drc_tosnap = tosnap;
1232 	drc->drc_tofs = tofs;
1233 	drc->drc_force = force;
1234 	drc->drc_heal = heal;
1235 	drc->drc_resumable = resumable;
1236 	drc->drc_cred = CRED();
1237 	drc->drc_proc = curproc;
1238 	drc->drc_clone = (origin != NULL);
1239 
1240 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1241 		drc->drc_byteswap = B_TRUE;
1242 		(void) fletcher_4_incremental_byteswap(drr_begin,
1243 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1244 		byteswap_record(drr_begin);
1245 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1246 		(void) fletcher_4_incremental_native(drr_begin,
1247 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1248 	} else {
1249 		return (SET_ERROR(EINVAL));
1250 	}
1251 
1252 	drc->drc_fp = fp;
1253 	drc->drc_voff = *voffp;
1254 	drc->drc_featureflags =
1255 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1256 
1257 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1258 	void *payload = NULL;
1259 
1260 	/*
1261 	 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1262 	 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1263 	 * upper limit. Systems with less than 1GB of RAM will see a lower
1264 	 * limit from `arc_all_memory() / 4`.
1265 	 */
1266 	if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1267 		return (E2BIG);
1268 
1269 	if (payloadlen != 0)
1270 		payload = vmem_alloc(payloadlen, KM_SLEEP);
1271 
1272 	err = receive_read_payload_and_next_header(drc, payloadlen,
1273 	    payload);
1274 	if (err != 0) {
1275 		vmem_free(payload, payloadlen);
1276 		return (err);
1277 	}
1278 	if (payloadlen != 0) {
1279 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1280 		    KM_SLEEP);
1281 		vmem_free(payload, payloadlen);
1282 		if (err != 0) {
1283 			kmem_free(drc->drc_next_rrd,
1284 			    sizeof (*drc->drc_next_rrd));
1285 			return (err);
1286 		}
1287 	}
1288 
1289 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1290 		drc->drc_spill = B_TRUE;
1291 
1292 	drba.drba_origin = origin;
1293 	drba.drba_cookie = drc;
1294 	drba.drba_cred = CRED();
1295 	drba.drba_proc = curproc;
1296 
1297 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1298 		err = dsl_sync_task(tofs,
1299 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1300 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1301 	} else {
1302 		/*
1303 		 * For non-raw, non-incremental, non-resuming receives the
1304 		 * user can specify encryption parameters on the command line
1305 		 * with "zfs recv -o". For these receives we create a dcp and
1306 		 * pass it to the sync task. Creating the dcp will implicitly
1307 		 * remove the encryption params from the localprops nvlist,
1308 		 * which avoids errors when trying to set these normally
1309 		 * read-only properties. Any other kind of receive that
1310 		 * attempts to set these properties will fail as a result.
1311 		 */
1312 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1313 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1314 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1315 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1316 			    localprops, hidden_args, &drba.drba_dcp);
1317 		}
1318 
1319 		if (err == 0) {
1320 			err = dsl_sync_task(tofs,
1321 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1322 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1323 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1324 		}
1325 	}
1326 
1327 	if (err != 0) {
1328 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1329 		nvlist_free(drc->drc_begin_nvl);
1330 	}
1331 	return (err);
1332 }
1333 
1334 /*
1335  * Holds data need for corrective recv callback
1336  */
1337 typedef struct cr_cb_data {
1338 	uint64_t size;
1339 	zbookmark_phys_t zb;
1340 	spa_t *spa;
1341 } cr_cb_data_t;
1342 
1343 static void
1344 corrective_read_done(zio_t *zio)
1345 {
1346 	cr_cb_data_t *data = zio->io_private;
1347 	/* Corruption corrected; update error log if needed */
1348 	if (zio->io_error == 0)
1349 		spa_remove_error(data->spa, &data->zb);
1350 	kmem_free(data, sizeof (cr_cb_data_t));
1351 	abd_free(zio->io_abd);
1352 }
1353 
1354 /*
1355  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1356  */
1357 static int
1358 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1359     struct receive_record_arg *rrd, blkptr_t *bp)
1360 {
1361 	int err;
1362 	zio_t *io;
1363 	zbookmark_phys_t zb;
1364 	dnode_t *dn;
1365 	abd_t *abd = rrd->abd;
1366 	zio_cksum_t bp_cksum = bp->blk_cksum;
1367 	zio_flag_t flags = ZIO_FLAG_SPECULATIVE |
1368 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
1369 
1370 	if (rwa->raw)
1371 		flags |= ZIO_FLAG_RAW;
1372 
1373 	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1374 	if (err != 0)
1375 		return (err);
1376 	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1377 	    dbuf_whichblock(dn, 0, drrw->drr_offset));
1378 	dnode_rele(dn, FTAG);
1379 
1380 	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1381 		/* Decompress the stream data */
1382 		abd_t *dabd = abd_alloc_linear(
1383 		    drrw->drr_logical_size, B_FALSE);
1384 		err = zio_decompress_data(drrw->drr_compressiontype,
1385 		    abd, abd_to_buf(dabd), abd_get_size(abd),
1386 		    abd_get_size(dabd), NULL);
1387 
1388 		if (err != 0) {
1389 			abd_free(dabd);
1390 			return (err);
1391 		}
1392 		/* Swap in the newly decompressed data into the abd */
1393 		abd_free(abd);
1394 		abd = dabd;
1395 	}
1396 
1397 	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1398 		/* Recompress the data */
1399 		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1400 		    B_FALSE);
1401 		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1402 		    abd, abd_to_buf(cabd), abd_get_size(abd),
1403 		    rwa->os->os_complevel);
1404 		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1405 		/* Swap in newly compressed data into the abd */
1406 		abd_free(abd);
1407 		abd = cabd;
1408 		flags |= ZIO_FLAG_RAW_COMPRESS;
1409 	}
1410 
1411 	/*
1412 	 * The stream is not encrypted but the data on-disk is.
1413 	 * We need to re-encrypt the buf using the same
1414 	 * encryption type, salt, iv, and mac that was used to encrypt
1415 	 * the block previosly.
1416 	 */
1417 	if (!rwa->raw && BP_USES_CRYPT(bp)) {
1418 		dsl_dataset_t *ds;
1419 		dsl_crypto_key_t *dck = NULL;
1420 		uint8_t salt[ZIO_DATA_SALT_LEN];
1421 		uint8_t iv[ZIO_DATA_IV_LEN];
1422 		uint8_t mac[ZIO_DATA_MAC_LEN];
1423 		boolean_t no_crypt = B_FALSE;
1424 		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1425 		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1426 
1427 		zio_crypt_decode_params_bp(bp, salt, iv);
1428 		zio_crypt_decode_mac_bp(bp, mac);
1429 
1430 		dsl_pool_config_enter(dp, FTAG);
1431 		err = dsl_dataset_hold_flags(dp, rwa->tofs,
1432 		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1433 		if (err != 0) {
1434 			dsl_pool_config_exit(dp, FTAG);
1435 			abd_free(eabd);
1436 			return (SET_ERROR(EACCES));
1437 		}
1438 
1439 		/* Look up the key from the spa's keystore */
1440 		err = spa_keystore_lookup_key(rwa->os->os_spa,
1441 		    zb.zb_objset, FTAG, &dck);
1442 		if (err != 0) {
1443 			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1444 			    FTAG);
1445 			dsl_pool_config_exit(dp, FTAG);
1446 			abd_free(eabd);
1447 			return (SET_ERROR(EACCES));
1448 		}
1449 
1450 		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1451 		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1452 		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
1453 
1454 		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1455 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1456 		dsl_pool_config_exit(dp, FTAG);
1457 
1458 		ASSERT0(no_crypt);
1459 		if (err != 0) {
1460 			abd_free(eabd);
1461 			return (err);
1462 		}
1463 		/* Swap in the newly encrypted data into the abd */
1464 		abd_free(abd);
1465 		abd = eabd;
1466 
1467 		/*
1468 		 * We want to prevent zio_rewrite() from trying to
1469 		 * encrypt the data again
1470 		 */
1471 		flags |= ZIO_FLAG_RAW_ENCRYPT;
1472 	}
1473 	rrd->abd = abd;
1474 
1475 	io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
1476 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
1477 
1478 	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1479 	    abd_get_size(abd) == BP_GET_PSIZE(bp));
1480 
1481 	/* compute new bp checksum value and make sure it matches the old one */
1482 	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1483 	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1484 		zio_destroy(io);
1485 		if (zfs_recv_best_effort_corrective != 0)
1486 			return (0);
1487 		return (SET_ERROR(ECKSUM));
1488 	}
1489 
1490 	/* Correct the corruption in place */
1491 	err = zio_wait(io);
1492 	if (err == 0) {
1493 		cr_cb_data_t *cb_data =
1494 		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1495 		cb_data->spa = rwa->os->os_spa;
1496 		cb_data->size = drrw->drr_logical_size;
1497 		cb_data->zb = zb;
1498 		/* Test if healing worked by re-reading the bp */
1499 		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1500 		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1501 		    drrw->drr_logical_size, corrective_read_done,
1502 		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1503 	}
1504 	if (err != 0 && zfs_recv_best_effort_corrective != 0)
1505 		err = 0;
1506 
1507 	return (err);
1508 }
1509 
1510 static int
1511 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1512 {
1513 	int done = 0;
1514 
1515 	/*
1516 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1517 	 * comment in dump_bytes.
1518 	 */
1519 	ASSERT(len % 8 == 0 ||
1520 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1521 
1522 	while (done < len) {
1523 		ssize_t resid = len - done;
1524 		zfs_file_t *fp = drc->drc_fp;
1525 		int err = zfs_file_read(fp, (char *)buf + done,
1526 		    len - done, &resid);
1527 		if (err == 0 && resid == len - done) {
1528 			/*
1529 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1530 			 * that the receive was interrupted and can
1531 			 * potentially be resumed.
1532 			 */
1533 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1534 		}
1535 		drc->drc_voff += len - done - resid;
1536 		done = len - resid;
1537 		if (err != 0)
1538 			return (err);
1539 	}
1540 
1541 	drc->drc_bytes_read += len;
1542 
1543 	ASSERT3U(done, ==, len);
1544 	return (0);
1545 }
1546 
1547 static inline uint8_t
1548 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1549 {
1550 	if (bonus_type == DMU_OT_SA) {
1551 		return (1);
1552 	} else {
1553 		return (1 +
1554 		    ((DN_OLD_MAX_BONUSLEN -
1555 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1556 	}
1557 }
1558 
1559 static void
1560 save_resume_state(struct receive_writer_arg *rwa,
1561     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1562 {
1563 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1564 
1565 	if (!rwa->resumable)
1566 		return;
1567 
1568 	/*
1569 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1570 	 * update this on disk, so it must not be 0.
1571 	 */
1572 	ASSERT(rwa->bytes_read != 0);
1573 
1574 	/*
1575 	 * We only resume from write records, which have a valid
1576 	 * (non-meta-dnode) object number.
1577 	 */
1578 	ASSERT(object != 0);
1579 
1580 	/*
1581 	 * For resuming to work correctly, we must receive records in order,
1582 	 * sorted by object,offset.  This is checked by the callers, but
1583 	 * assert it here for good measure.
1584 	 */
1585 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1586 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1587 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1588 	ASSERT3U(rwa->bytes_read, >=,
1589 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1590 
1591 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1592 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1593 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1594 }
1595 
1596 static int
1597 receive_object_is_same_generation(objset_t *os, uint64_t object,
1598     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1599     const void *new_bonus, boolean_t *samegenp)
1600 {
1601 	zfs_file_info_t zoi;
1602 	int err;
1603 
1604 	dmu_buf_t *old_bonus_dbuf;
1605 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1606 	if (err != 0)
1607 		return (err);
1608 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1609 	    &zoi);
1610 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1611 	if (err != 0)
1612 		return (err);
1613 	uint64_t old_gen = zoi.zfi_generation;
1614 
1615 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1616 	if (err != 0)
1617 		return (err);
1618 	uint64_t new_gen = zoi.zfi_generation;
1619 
1620 	*samegenp = (old_gen == new_gen);
1621 	return (0);
1622 }
1623 
1624 static int
1625 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1626     const struct drr_object *drro, const dmu_object_info_t *doi,
1627     const void *bonus_data,
1628     uint64_t *object_to_hold, uint32_t *new_blksz)
1629 {
1630 	uint32_t indblksz = drro->drr_indblkshift ?
1631 	    1ULL << drro->drr_indblkshift : 0;
1632 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1633 	    drro->drr_bonuslen);
1634 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1635 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1636 	boolean_t do_free_range = B_FALSE;
1637 	int err;
1638 
1639 	*object_to_hold = drro->drr_object;
1640 
1641 	/* nblkptr should be bounded by the bonus size and type */
1642 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1643 		return (SET_ERROR(EINVAL));
1644 
1645 	/*
1646 	 * After the previous send stream, the sending system may
1647 	 * have freed this object, and then happened to re-allocate
1648 	 * this object number in a later txg. In this case, we are
1649 	 * receiving a different logical file, and the block size may
1650 	 * appear to be different.  i.e. we may have a different
1651 	 * block size for this object than what the send stream says.
1652 	 * In this case we need to remove the object's contents,
1653 	 * so that its structure can be changed and then its contents
1654 	 * entirely replaced by subsequent WRITE records.
1655 	 *
1656 	 * If this is a -L (--large-block) incremental stream, and
1657 	 * the previous stream was not -L, the block size may appear
1658 	 * to increase.  i.e. we may have a smaller block size for
1659 	 * this object than what the send stream says.  In this case
1660 	 * we need to keep the object's contents and block size
1661 	 * intact, so that we don't lose parts of the object's
1662 	 * contents that are not changed by this incremental send
1663 	 * stream.
1664 	 *
1665 	 * We can distinguish between the two above cases by using
1666 	 * the ZPL's generation number (see
1667 	 * receive_object_is_same_generation()).  However, we only
1668 	 * want to rely on the generation number when absolutely
1669 	 * necessary, because with raw receives, the generation is
1670 	 * encrypted.  We also want to minimize dependence on the
1671 	 * ZPL, so that other types of datasets can also be received
1672 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1673 	 * reallocate their objects or change their structure).
1674 	 * Therefore, we check a number of different cases where we
1675 	 * know it is safe to discard the object's contents, before
1676 	 * using the ZPL's generation number to make the above
1677 	 * distinction.
1678 	 */
1679 	if (drro->drr_blksz != doi->doi_data_block_size) {
1680 		if (rwa->raw) {
1681 			/*
1682 			 * RAW streams always have large blocks, so
1683 			 * we are sure that the data is not needed
1684 			 * due to changing --large-block to be on.
1685 			 * Which is fortunate since the bonus buffer
1686 			 * (which contains the ZPL generation) is
1687 			 * encrypted, and the key might not be
1688 			 * loaded.
1689 			 */
1690 			do_free_range = B_TRUE;
1691 		} else if (rwa->full) {
1692 			/*
1693 			 * This is a full send stream, so it always
1694 			 * replaces what we have.  Even if the
1695 			 * generation numbers happen to match, this
1696 			 * can not actually be the same logical file.
1697 			 * This is relevant when receiving a full
1698 			 * send as a clone.
1699 			 */
1700 			do_free_range = B_TRUE;
1701 		} else if (drro->drr_type !=
1702 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1703 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1704 			/*
1705 			 * PLAIN_FILE_CONTENTS are the only type of
1706 			 * objects that have ever been stored with
1707 			 * large blocks, so we don't need the special
1708 			 * logic below.  ZAP blocks can shrink (when
1709 			 * there's only one block), so we don't want
1710 			 * to hit the error below about block size
1711 			 * only increasing.
1712 			 */
1713 			do_free_range = B_TRUE;
1714 		} else if (doi->doi_max_offset <=
1715 		    doi->doi_data_block_size) {
1716 			/*
1717 			 * There is only one block.  We can free it,
1718 			 * because its contents will be replaced by a
1719 			 * WRITE record.  This can not be the no-L ->
1720 			 * -L case, because the no-L case would have
1721 			 * resulted in multiple blocks.  If we
1722 			 * supported -L -> no-L, it would not be safe
1723 			 * to free the file's contents.  Fortunately,
1724 			 * that is not allowed (see
1725 			 * recv_check_large_blocks()).
1726 			 */
1727 			do_free_range = B_TRUE;
1728 		} else {
1729 			boolean_t is_same_gen;
1730 			err = receive_object_is_same_generation(rwa->os,
1731 			    drro->drr_object, doi->doi_bonus_type,
1732 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1733 			if (err != 0)
1734 				return (SET_ERROR(EINVAL));
1735 
1736 			if (is_same_gen) {
1737 				/*
1738 				 * This is the same logical file, and
1739 				 * the block size must be increasing.
1740 				 * It could only decrease if
1741 				 * --large-block was changed to be
1742 				 * off, which is checked in
1743 				 * recv_check_large_blocks().
1744 				 */
1745 				if (drro->drr_blksz <=
1746 				    doi->doi_data_block_size)
1747 					return (SET_ERROR(EINVAL));
1748 				/*
1749 				 * We keep the existing blocksize and
1750 				 * contents.
1751 				 */
1752 				*new_blksz =
1753 				    doi->doi_data_block_size;
1754 			} else {
1755 				do_free_range = B_TRUE;
1756 			}
1757 		}
1758 	}
1759 
1760 	/* nblkptr can only decrease if the object was reallocated */
1761 	if (nblkptr < doi->doi_nblkptr)
1762 		do_free_range = B_TRUE;
1763 
1764 	/* number of slots can only change on reallocation */
1765 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1766 		do_free_range = B_TRUE;
1767 
1768 	/*
1769 	 * For raw sends we also check a few other fields to
1770 	 * ensure we are preserving the objset structure exactly
1771 	 * as it was on the receive side:
1772 	 *     - A changed indirect block size
1773 	 *     - A smaller nlevels
1774 	 */
1775 	if (rwa->raw) {
1776 		if (indblksz != doi->doi_metadata_block_size)
1777 			do_free_range = B_TRUE;
1778 		if (drro->drr_nlevels < doi->doi_indirection)
1779 			do_free_range = B_TRUE;
1780 	}
1781 
1782 	if (do_free_range) {
1783 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1784 		    0, DMU_OBJECT_END);
1785 		if (err != 0)
1786 			return (SET_ERROR(EINVAL));
1787 	}
1788 
1789 	/*
1790 	 * The dmu does not currently support decreasing nlevels
1791 	 * or changing the number of dnode slots on an object. For
1792 	 * non-raw sends, this does not matter and the new object
1793 	 * can just use the previous one's nlevels. For raw sends,
1794 	 * however, the structure of the received dnode (including
1795 	 * nlevels and dnode slots) must match that of the send
1796 	 * side. Therefore, instead of using dmu_object_reclaim(),
1797 	 * we must free the object completely and call
1798 	 * dmu_object_claim_dnsize() instead.
1799 	 */
1800 	if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1801 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1802 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1803 		if (err != 0)
1804 			return (SET_ERROR(EINVAL));
1805 
1806 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1807 		*object_to_hold = DMU_NEW_OBJECT;
1808 	}
1809 
1810 	/*
1811 	 * For raw receives, free everything beyond the new incoming
1812 	 * maxblkid. Normally this would be done with a DRR_FREE
1813 	 * record that would come after this DRR_OBJECT record is
1814 	 * processed. However, for raw receives we manually set the
1815 	 * maxblkid from the drr_maxblkid and so we must first free
1816 	 * everything above that blkid to ensure the DMU is always
1817 	 * consistent with itself. We will never free the first block
1818 	 * of the object here because a maxblkid of 0 could indicate
1819 	 * an object with a single block or one with no blocks. This
1820 	 * free may be skipped when dmu_free_long_range() was called
1821 	 * above since it covers the entire object's contents.
1822 	 */
1823 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1824 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1825 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1826 		    DMU_OBJECT_END);
1827 		if (err != 0)
1828 			return (SET_ERROR(EINVAL));
1829 	}
1830 	return (0);
1831 }
1832 
1833 noinline static int
1834 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1835     void *data)
1836 {
1837 	dmu_object_info_t doi;
1838 	dmu_tx_t *tx;
1839 	int err;
1840 	uint32_t new_blksz = drro->drr_blksz;
1841 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1842 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1843 
1844 	if (drro->drr_type == DMU_OT_NONE ||
1845 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1846 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1847 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1848 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1849 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1850 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1851 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1852 	    drro->drr_bonuslen >
1853 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1854 	    dn_slots >
1855 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1856 		return (SET_ERROR(EINVAL));
1857 	}
1858 
1859 	if (rwa->raw) {
1860 		/*
1861 		 * We should have received a DRR_OBJECT_RANGE record
1862 		 * containing this block and stored it in rwa.
1863 		 */
1864 		if (drro->drr_object < rwa->or_firstobj ||
1865 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1866 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1867 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1868 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1869 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1870 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1871 		    drro->drr_raw_bonuslen)
1872 			return (SET_ERROR(EINVAL));
1873 	} else {
1874 		/*
1875 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1876 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1877 		 */
1878 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1879 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1880 			return (SET_ERROR(EINVAL));
1881 		}
1882 
1883 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1884 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1885 			return (SET_ERROR(EINVAL));
1886 		}
1887 	}
1888 
1889 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1890 
1891 	if (err != 0 && err != ENOENT && err != EEXIST)
1892 		return (SET_ERROR(EINVAL));
1893 
1894 	if (drro->drr_object > rwa->max_object)
1895 		rwa->max_object = drro->drr_object;
1896 
1897 	/*
1898 	 * If we are losing blkptrs or changing the block size this must
1899 	 * be a new file instance.  We must clear out the previous file
1900 	 * contents before we can change this type of metadata in the dnode.
1901 	 * Raw receives will also check that the indirect structure of the
1902 	 * dnode hasn't changed.
1903 	 */
1904 	uint64_t object_to_hold;
1905 	if (err == 0) {
1906 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1907 		    &object_to_hold, &new_blksz);
1908 		if (err != 0)
1909 			return (err);
1910 	} else if (err == EEXIST) {
1911 		/*
1912 		 * The object requested is currently an interior slot of a
1913 		 * multi-slot dnode. This will be resolved when the next txg
1914 		 * is synced out, since the send stream will have told us
1915 		 * to free this slot when we freed the associated dnode
1916 		 * earlier in the stream.
1917 		 */
1918 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1919 
1920 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1921 			return (SET_ERROR(EINVAL));
1922 
1923 		/* object was freed and we are about to allocate a new one */
1924 		object_to_hold = DMU_NEW_OBJECT;
1925 	} else {
1926 		/*
1927 		 * If the only record in this range so far was DRR_FREEOBJECTS
1928 		 * with at least one actually freed object, it's possible that
1929 		 * the block will now be converted to a hole. We need to wait
1930 		 * for the txg to sync to prevent races.
1931 		 */
1932 		if (rwa->or_need_sync == ORNS_YES)
1933 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1934 
1935 		/* object is free and we are about to allocate a new one */
1936 		object_to_hold = DMU_NEW_OBJECT;
1937 	}
1938 
1939 	/* Only relevant for the first object in the range */
1940 	rwa->or_need_sync = ORNS_NO;
1941 
1942 	/*
1943 	 * If this is a multi-slot dnode there is a chance that this
1944 	 * object will expand into a slot that is already used by
1945 	 * another object from the previous snapshot. We must free
1946 	 * these objects before we attempt to allocate the new dnode.
1947 	 */
1948 	if (dn_slots > 1) {
1949 		boolean_t need_sync = B_FALSE;
1950 
1951 		for (uint64_t slot = drro->drr_object + 1;
1952 		    slot < drro->drr_object + dn_slots;
1953 		    slot++) {
1954 			dmu_object_info_t slot_doi;
1955 
1956 			err = dmu_object_info(rwa->os, slot, &slot_doi);
1957 			if (err == ENOENT || err == EEXIST)
1958 				continue;
1959 			else if (err != 0)
1960 				return (err);
1961 
1962 			err = dmu_free_long_object(rwa->os, slot);
1963 			if (err != 0)
1964 				return (err);
1965 
1966 			need_sync = B_TRUE;
1967 		}
1968 
1969 		if (need_sync)
1970 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1971 	}
1972 
1973 	tx = dmu_tx_create(rwa->os);
1974 	dmu_tx_hold_bonus(tx, object_to_hold);
1975 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1976 	err = dmu_tx_assign(tx, TXG_WAIT);
1977 	if (err != 0) {
1978 		dmu_tx_abort(tx);
1979 		return (err);
1980 	}
1981 
1982 	if (object_to_hold == DMU_NEW_OBJECT) {
1983 		/* Currently free, wants to be allocated */
1984 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1985 		    drro->drr_type, new_blksz,
1986 		    drro->drr_bonustype, drro->drr_bonuslen,
1987 		    dn_slots << DNODE_SHIFT, tx);
1988 	} else if (drro->drr_type != doi.doi_type ||
1989 	    new_blksz != doi.doi_data_block_size ||
1990 	    drro->drr_bonustype != doi.doi_bonus_type ||
1991 	    drro->drr_bonuslen != doi.doi_bonus_size) {
1992 		/* Currently allocated, but with different properties */
1993 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1994 		    drro->drr_type, new_blksz,
1995 		    drro->drr_bonustype, drro->drr_bonuslen,
1996 		    dn_slots << DNODE_SHIFT, rwa->spill ?
1997 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1998 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1999 		/*
2000 		 * Currently allocated, the existing version of this object
2001 		 * may reference a spill block that is no longer allocated
2002 		 * at the source and needs to be freed.
2003 		 */
2004 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2005 	}
2006 
2007 	if (err != 0) {
2008 		dmu_tx_commit(tx);
2009 		return (SET_ERROR(EINVAL));
2010 	}
2011 
2012 	if (rwa->or_crypt_params_present) {
2013 		/*
2014 		 * Set the crypt params for the buffer associated with this
2015 		 * range of dnodes.  This causes the blkptr_t to have the
2016 		 * same crypt params (byteorder, salt, iv, mac) as on the
2017 		 * sending side.
2018 		 *
2019 		 * Since we are committing this tx now, it is possible for
2020 		 * the dnode block to end up on-disk with the incorrect MAC,
2021 		 * if subsequent objects in this block are received in a
2022 		 * different txg.  However, since the dataset is marked as
2023 		 * inconsistent, no code paths will do a non-raw read (or
2024 		 * decrypt the block / verify the MAC). The receive code and
2025 		 * scrub code can safely do raw reads and verify the
2026 		 * checksum.  They don't need to verify the MAC.
2027 		 */
2028 		dmu_buf_t *db = NULL;
2029 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2030 
2031 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2032 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2033 		if (err != 0) {
2034 			dmu_tx_commit(tx);
2035 			return (SET_ERROR(EINVAL));
2036 		}
2037 
2038 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2039 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2040 
2041 		dmu_buf_rele(db, FTAG);
2042 
2043 		rwa->or_crypt_params_present = B_FALSE;
2044 	}
2045 
2046 	dmu_object_set_checksum(rwa->os, drro->drr_object,
2047 	    drro->drr_checksumtype, tx);
2048 	dmu_object_set_compress(rwa->os, drro->drr_object,
2049 	    drro->drr_compress, tx);
2050 
2051 	/* handle more restrictive dnode structuring for raw recvs */
2052 	if (rwa->raw) {
2053 		/*
2054 		 * Set the indirect block size, block shift, nlevels.
2055 		 * This will not fail because we ensured all of the
2056 		 * blocks were freed earlier if this is a new object.
2057 		 * For non-new objects block size and indirect block
2058 		 * shift cannot change and nlevels can only increase.
2059 		 */
2060 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
2061 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2062 		    drro->drr_blksz, drro->drr_indblkshift, tx));
2063 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2064 		    drro->drr_nlevels, tx));
2065 
2066 		/*
2067 		 * Set the maxblkid. This will always succeed because
2068 		 * we freed all blocks beyond the new maxblkid above.
2069 		 */
2070 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2071 		    drro->drr_maxblkid, tx));
2072 	}
2073 
2074 	if (data != NULL) {
2075 		dmu_buf_t *db;
2076 		dnode_t *dn;
2077 		uint32_t flags = DMU_READ_NO_PREFETCH;
2078 
2079 		if (rwa->raw)
2080 			flags |= DMU_READ_NO_DECRYPT;
2081 
2082 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2083 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2084 
2085 		dmu_buf_will_dirty(db, tx);
2086 
2087 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2088 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2089 
2090 		/*
2091 		 * Raw bonus buffers have their byteorder determined by the
2092 		 * DRR_OBJECT_RANGE record.
2093 		 */
2094 		if (rwa->byteswap && !rwa->raw) {
2095 			dmu_object_byteswap_t byteswap =
2096 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2097 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2098 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
2099 		}
2100 		dmu_buf_rele(db, FTAG);
2101 		dnode_rele(dn, FTAG);
2102 	}
2103 	dmu_tx_commit(tx);
2104 
2105 	return (0);
2106 }
2107 
2108 noinline static int
2109 receive_freeobjects(struct receive_writer_arg *rwa,
2110     struct drr_freeobjects *drrfo)
2111 {
2112 	uint64_t obj;
2113 	int next_err = 0;
2114 
2115 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2116 		return (SET_ERROR(EINVAL));
2117 
2118 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2119 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2120 	    obj < DN_MAX_OBJECT && next_err == 0;
2121 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2122 		dmu_object_info_t doi;
2123 		int err;
2124 
2125 		err = dmu_object_info(rwa->os, obj, &doi);
2126 		if (err == ENOENT)
2127 			continue;
2128 		else if (err != 0)
2129 			return (err);
2130 
2131 		err = dmu_free_long_object(rwa->os, obj);
2132 
2133 		if (err != 0)
2134 			return (err);
2135 
2136 		if (rwa->or_need_sync == ORNS_MAYBE)
2137 			rwa->or_need_sync = ORNS_YES;
2138 	}
2139 	if (next_err != ESRCH)
2140 		return (next_err);
2141 	return (0);
2142 }
2143 
2144 /*
2145  * Note: if this fails, the caller will clean up any records left on the
2146  * rwa->write_batch list.
2147  */
2148 static int
2149 flush_write_batch_impl(struct receive_writer_arg *rwa)
2150 {
2151 	dnode_t *dn;
2152 	int err;
2153 
2154 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2155 		return (SET_ERROR(EINVAL));
2156 
2157 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2158 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2159 
2160 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2161 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2162 
2163 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2164 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2165 
2166 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2167 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2168 	    last_drrw->drr_offset - first_drrw->drr_offset +
2169 	    last_drrw->drr_logical_size);
2170 	err = dmu_tx_assign(tx, TXG_WAIT);
2171 	if (err != 0) {
2172 		dmu_tx_abort(tx);
2173 		dnode_rele(dn, FTAG);
2174 		return (err);
2175 	}
2176 
2177 	struct receive_record_arg *rrd;
2178 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2179 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2180 		abd_t *abd = rrd->abd;
2181 
2182 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2183 
2184 		if (drrw->drr_logical_size != dn->dn_datablksz) {
2185 			/*
2186 			 * The WRITE record is larger than the object's block
2187 			 * size.  We must be receiving an incremental
2188 			 * large-block stream into a dataset that previously did
2189 			 * a non-large-block receive.  Lightweight writes must
2190 			 * be exactly one block, so we need to decompress the
2191 			 * data (if compressed) and do a normal dmu_write().
2192 			 */
2193 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2194 			if (DRR_WRITE_COMPRESSED(drrw)) {
2195 				abd_t *decomp_abd =
2196 				    abd_alloc_linear(drrw->drr_logical_size,
2197 				    B_FALSE);
2198 
2199 				err = zio_decompress_data(
2200 				    drrw->drr_compressiontype,
2201 				    abd, abd_to_buf(decomp_abd),
2202 				    abd_get_size(abd),
2203 				    abd_get_size(decomp_abd), NULL);
2204 
2205 				if (err == 0) {
2206 					dmu_write_by_dnode(dn,
2207 					    drrw->drr_offset,
2208 					    drrw->drr_logical_size,
2209 					    abd_to_buf(decomp_abd), tx);
2210 				}
2211 				abd_free(decomp_abd);
2212 			} else {
2213 				dmu_write_by_dnode(dn,
2214 				    drrw->drr_offset,
2215 				    drrw->drr_logical_size,
2216 				    abd_to_buf(abd), tx);
2217 			}
2218 			if (err == 0)
2219 				abd_free(abd);
2220 		} else {
2221 			zio_prop_t zp;
2222 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2223 
2224 			zio_flag_t zio_flags = 0;
2225 
2226 			if (rwa->raw) {
2227 				zp.zp_encrypt = B_TRUE;
2228 				zp.zp_compress = drrw->drr_compressiontype;
2229 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2230 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2231 				    rwa->byteswap;
2232 				memcpy(zp.zp_salt, drrw->drr_salt,
2233 				    ZIO_DATA_SALT_LEN);
2234 				memcpy(zp.zp_iv, drrw->drr_iv,
2235 				    ZIO_DATA_IV_LEN);
2236 				memcpy(zp.zp_mac, drrw->drr_mac,
2237 				    ZIO_DATA_MAC_LEN);
2238 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2239 					zp.zp_nopwrite = B_FALSE;
2240 					zp.zp_copies = MIN(zp.zp_copies,
2241 					    SPA_DVAS_PER_BP - 1);
2242 				}
2243 				zio_flags |= ZIO_FLAG_RAW;
2244 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
2245 				ASSERT3U(drrw->drr_compressed_size, >, 0);
2246 				ASSERT3U(drrw->drr_logical_size, >=,
2247 				    drrw->drr_compressed_size);
2248 				zp.zp_compress = drrw->drr_compressiontype;
2249 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2250 			} else if (rwa->byteswap) {
2251 				/*
2252 				 * Note: compressed blocks never need to be
2253 				 * byteswapped, because WRITE records for
2254 				 * metadata blocks are never compressed. The
2255 				 * exception is raw streams, which are written
2256 				 * in the original byteorder, and the byteorder
2257 				 * bit is preserved in the BP by setting
2258 				 * zp_byteorder above.
2259 				 */
2260 				dmu_object_byteswap_t byteswap =
2261 				    DMU_OT_BYTESWAP(drrw->drr_type);
2262 				dmu_ot_byteswap[byteswap].ob_func(
2263 				    abd_to_buf(abd),
2264 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
2265 			}
2266 
2267 			/*
2268 			 * Since this data can't be read until the receive
2269 			 * completes, we can do a "lightweight" write for
2270 			 * improved performance.
2271 			 */
2272 			err = dmu_lightweight_write_by_dnode(dn,
2273 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
2274 		}
2275 
2276 		if (err != 0) {
2277 			/*
2278 			 * This rrd is left on the list, so the caller will
2279 			 * free it (and the abd).
2280 			 */
2281 			break;
2282 		}
2283 
2284 		/*
2285 		 * Note: If the receive fails, we want the resume stream to
2286 		 * start with the same record that we last successfully
2287 		 * received (as opposed to the next record), so that we can
2288 		 * verify that we are resuming from the correct location.
2289 		 */
2290 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2291 
2292 		list_remove(&rwa->write_batch, rrd);
2293 		kmem_free(rrd, sizeof (*rrd));
2294 	}
2295 
2296 	dmu_tx_commit(tx);
2297 	dnode_rele(dn, FTAG);
2298 	return (err);
2299 }
2300 
2301 noinline static int
2302 flush_write_batch(struct receive_writer_arg *rwa)
2303 {
2304 	if (list_is_empty(&rwa->write_batch))
2305 		return (0);
2306 	int err = rwa->err;
2307 	if (err == 0)
2308 		err = flush_write_batch_impl(rwa);
2309 	if (err != 0) {
2310 		struct receive_record_arg *rrd;
2311 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2312 			abd_free(rrd->abd);
2313 			kmem_free(rrd, sizeof (*rrd));
2314 		}
2315 	}
2316 	ASSERT(list_is_empty(&rwa->write_batch));
2317 	return (err);
2318 }
2319 
2320 noinline static int
2321 receive_process_write_record(struct receive_writer_arg *rwa,
2322     struct receive_record_arg *rrd)
2323 {
2324 	int err = 0;
2325 
2326 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2327 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2328 
2329 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2330 	    !DMU_OT_IS_VALID(drrw->drr_type))
2331 		return (SET_ERROR(EINVAL));
2332 
2333 	if (rwa->heal) {
2334 		blkptr_t *bp;
2335 		dmu_buf_t *dbp;
2336 		dnode_t *dn;
2337 		int flags = DB_RF_CANFAIL;
2338 
2339 		if (rwa->raw)
2340 			flags |= DB_RF_NO_DECRYPT;
2341 
2342 		if (rwa->byteswap) {
2343 			dmu_object_byteswap_t byteswap =
2344 			    DMU_OT_BYTESWAP(drrw->drr_type);
2345 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2346 			    DRR_WRITE_PAYLOAD_SIZE(drrw));
2347 		}
2348 
2349 		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2350 		    drrw->drr_offset, FTAG, &dbp);
2351 		if (err != 0)
2352 			return (err);
2353 
2354 		/* Try to read the object to see if it needs healing */
2355 		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2356 		/*
2357 		 * We only try to heal when dbuf_read() returns a ECKSUMs.
2358 		 * Other errors (even EIO) get returned to caller.
2359 		 * EIO indicates that the device is not present/accessible,
2360 		 * so writing to it will likely fail.
2361 		 * If the block is healthy, we don't want to overwrite it
2362 		 * unnecessarily.
2363 		 */
2364 		if (err != ECKSUM) {
2365 			dmu_buf_rele(dbp, FTAG);
2366 			return (err);
2367 		}
2368 		dn = dmu_buf_dnode_enter(dbp);
2369 		/* Make sure the on-disk block and recv record sizes match */
2370 		if (drrw->drr_logical_size !=
2371 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
2372 			err = ENOTSUP;
2373 			dmu_buf_dnode_exit(dbp);
2374 			dmu_buf_rele(dbp, FTAG);
2375 			return (err);
2376 		}
2377 		/* Get the block pointer for the corrupted block */
2378 		bp = dmu_buf_get_blkptr(dbp);
2379 		err = do_corrective_recv(rwa, drrw, rrd, bp);
2380 		dmu_buf_dnode_exit(dbp);
2381 		dmu_buf_rele(dbp, FTAG);
2382 		return (err);
2383 	}
2384 
2385 	/*
2386 	 * For resuming to work, records must be in increasing order
2387 	 * by (object, offset).
2388 	 */
2389 	if (drrw->drr_object < rwa->last_object ||
2390 	    (drrw->drr_object == rwa->last_object &&
2391 	    drrw->drr_offset < rwa->last_offset)) {
2392 		return (SET_ERROR(EINVAL));
2393 	}
2394 
2395 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2396 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2397 	uint64_t batch_size =
2398 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2399 	if (first_rrd != NULL &&
2400 	    (drrw->drr_object != first_drrw->drr_object ||
2401 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2402 		err = flush_write_batch(rwa);
2403 		if (err != 0)
2404 			return (err);
2405 	}
2406 
2407 	rwa->last_object = drrw->drr_object;
2408 	rwa->last_offset = drrw->drr_offset;
2409 
2410 	if (rwa->last_object > rwa->max_object)
2411 		rwa->max_object = rwa->last_object;
2412 
2413 	list_insert_tail(&rwa->write_batch, rrd);
2414 	/*
2415 	 * Return EAGAIN to indicate that we will use this rrd again,
2416 	 * so the caller should not free it
2417 	 */
2418 	return (EAGAIN);
2419 }
2420 
2421 static int
2422 receive_write_embedded(struct receive_writer_arg *rwa,
2423     struct drr_write_embedded *drrwe, void *data)
2424 {
2425 	dmu_tx_t *tx;
2426 	int err;
2427 
2428 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2429 		return (SET_ERROR(EINVAL));
2430 
2431 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2432 		return (SET_ERROR(EINVAL));
2433 
2434 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2435 		return (SET_ERROR(EINVAL));
2436 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2437 		return (SET_ERROR(EINVAL));
2438 	if (rwa->raw)
2439 		return (SET_ERROR(EINVAL));
2440 
2441 	if (drrwe->drr_object > rwa->max_object)
2442 		rwa->max_object = drrwe->drr_object;
2443 
2444 	tx = dmu_tx_create(rwa->os);
2445 
2446 	dmu_tx_hold_write(tx, drrwe->drr_object,
2447 	    drrwe->drr_offset, drrwe->drr_length);
2448 	err = dmu_tx_assign(tx, TXG_WAIT);
2449 	if (err != 0) {
2450 		dmu_tx_abort(tx);
2451 		return (err);
2452 	}
2453 
2454 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2455 	    drrwe->drr_offset, data, drrwe->drr_etype,
2456 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2457 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2458 
2459 	/* See comment in restore_write. */
2460 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2461 	dmu_tx_commit(tx);
2462 	return (0);
2463 }
2464 
2465 static int
2466 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2467     abd_t *abd)
2468 {
2469 	dmu_buf_t *db, *db_spill;
2470 	int err;
2471 
2472 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2473 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2474 		return (SET_ERROR(EINVAL));
2475 
2476 	/*
2477 	 * This is an unmodified spill block which was added to the stream
2478 	 * to resolve an issue with incorrectly removing spill blocks.  It
2479 	 * should be ignored by current versions of the code which support
2480 	 * the DRR_FLAG_SPILL_BLOCK flag.
2481 	 */
2482 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2483 		abd_free(abd);
2484 		return (0);
2485 	}
2486 
2487 	if (rwa->raw) {
2488 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2489 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2490 		    drrs->drr_compressed_size == 0)
2491 			return (SET_ERROR(EINVAL));
2492 	}
2493 
2494 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2495 		return (SET_ERROR(EINVAL));
2496 
2497 	if (drrs->drr_object > rwa->max_object)
2498 		rwa->max_object = drrs->drr_object;
2499 
2500 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2501 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2502 	    &db_spill)) != 0) {
2503 		dmu_buf_rele(db, FTAG);
2504 		return (err);
2505 	}
2506 
2507 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2508 
2509 	dmu_tx_hold_spill(tx, db->db_object);
2510 
2511 	err = dmu_tx_assign(tx, TXG_WAIT);
2512 	if (err != 0) {
2513 		dmu_buf_rele(db, FTAG);
2514 		dmu_buf_rele(db_spill, FTAG);
2515 		dmu_tx_abort(tx);
2516 		return (err);
2517 	}
2518 
2519 	/*
2520 	 * Spill blocks may both grow and shrink.  When a change in size
2521 	 * occurs any existing dbuf must be updated to match the logical
2522 	 * size of the provided arc_buf_t.
2523 	 */
2524 	if (db_spill->db_size != drrs->drr_length) {
2525 		dmu_buf_will_fill(db_spill, tx);
2526 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2527 		    drrs->drr_length, tx));
2528 	}
2529 
2530 	arc_buf_t *abuf;
2531 	if (rwa->raw) {
2532 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2533 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2534 		    rwa->byteswap;
2535 
2536 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2537 		    drrs->drr_object, byteorder, drrs->drr_salt,
2538 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2539 		    drrs->drr_compressed_size, drrs->drr_length,
2540 		    drrs->drr_compressiontype, 0);
2541 	} else {
2542 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2543 		    DMU_OT_IS_METADATA(drrs->drr_type),
2544 		    drrs->drr_length);
2545 		if (rwa->byteswap) {
2546 			dmu_object_byteswap_t byteswap =
2547 			    DMU_OT_BYTESWAP(drrs->drr_type);
2548 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2549 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2550 		}
2551 	}
2552 
2553 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2554 	abd_free(abd);
2555 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2556 
2557 	dmu_buf_rele(db, FTAG);
2558 	dmu_buf_rele(db_spill, FTAG);
2559 
2560 	dmu_tx_commit(tx);
2561 	return (0);
2562 }
2563 
2564 noinline static int
2565 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2566 {
2567 	int err;
2568 
2569 	if (drrf->drr_length != -1ULL &&
2570 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2571 		return (SET_ERROR(EINVAL));
2572 
2573 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2574 		return (SET_ERROR(EINVAL));
2575 
2576 	if (drrf->drr_object > rwa->max_object)
2577 		rwa->max_object = drrf->drr_object;
2578 
2579 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2580 	    drrf->drr_offset, drrf->drr_length);
2581 
2582 	return (err);
2583 }
2584 
2585 static int
2586 receive_object_range(struct receive_writer_arg *rwa,
2587     struct drr_object_range *drror)
2588 {
2589 	/*
2590 	 * By default, we assume this block is in our native format
2591 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2592 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2593 	 * we need to byteswap again if this particular block was
2594 	 * in non-native format on the send side.
2595 	 */
2596 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2597 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2598 
2599 	/*
2600 	 * Since dnode block sizes are constant, we should not need to worry
2601 	 * about making sure that the dnode block size is the same on the
2602 	 * sending and receiving sides for the time being. For non-raw sends,
2603 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2604 	 * record at all). Raw sends require this record type because the
2605 	 * encryption parameters are used to protect an entire block of bonus
2606 	 * buffers. If the size of dnode blocks ever becomes variable,
2607 	 * handling will need to be added to ensure that dnode block sizes
2608 	 * match on the sending and receiving side.
2609 	 */
2610 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2611 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2612 	    !rwa->raw)
2613 		return (SET_ERROR(EINVAL));
2614 
2615 	if (drror->drr_firstobj > rwa->max_object)
2616 		rwa->max_object = drror->drr_firstobj;
2617 
2618 	/*
2619 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2620 	 * so that the block of dnodes is not written out when it's empty,
2621 	 * and converted to a HOLE BP.
2622 	 */
2623 	rwa->or_crypt_params_present = B_TRUE;
2624 	rwa->or_firstobj = drror->drr_firstobj;
2625 	rwa->or_numslots = drror->drr_numslots;
2626 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2627 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2628 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2629 	rwa->or_byteorder = byteorder;
2630 
2631 	rwa->or_need_sync = ORNS_MAYBE;
2632 
2633 	return (0);
2634 }
2635 
2636 /*
2637  * Until we have the ability to redact large ranges of data efficiently, we
2638  * process these records as frees.
2639  */
2640 noinline static int
2641 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2642 {
2643 	struct drr_free drrf = {0};
2644 	drrf.drr_length = drrr->drr_length;
2645 	drrf.drr_object = drrr->drr_object;
2646 	drrf.drr_offset = drrr->drr_offset;
2647 	drrf.drr_toguid = drrr->drr_toguid;
2648 	return (receive_free(rwa, &drrf));
2649 }
2650 
2651 /* used to destroy the drc_ds on error */
2652 static void
2653 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2654 {
2655 	dsl_dataset_t *ds = drc->drc_ds;
2656 	ds_hold_flags_t dsflags;
2657 
2658 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2659 	/*
2660 	 * Wait for the txg sync before cleaning up the receive. For
2661 	 * resumable receives, this ensures that our resume state has
2662 	 * been written out to disk. For raw receives, this ensures
2663 	 * that the user accounting code will not attempt to do anything
2664 	 * after we stopped receiving the dataset.
2665 	 */
2666 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2667 	ds->ds_objset->os_raw_receive = B_FALSE;
2668 
2669 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2670 	if (drc->drc_resumable && drc->drc_should_save &&
2671 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2672 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2673 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2674 	} else {
2675 		char name[ZFS_MAX_DATASET_NAME_LEN];
2676 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2677 		dsl_dataset_name(ds, name);
2678 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2679 		if (!drc->drc_heal)
2680 			(void) dsl_destroy_head(name);
2681 	}
2682 }
2683 
2684 static void
2685 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2686 {
2687 	if (drc->drc_byteswap) {
2688 		(void) fletcher_4_incremental_byteswap(buf, len,
2689 		    &drc->drc_cksum);
2690 	} else {
2691 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2692 	}
2693 }
2694 
2695 /*
2696  * Read the payload into a buffer of size len, and update the current record's
2697  * payload field.
2698  * Allocate drc->drc_next_rrd and read the next record's header into
2699  * drc->drc_next_rrd->header.
2700  * Verify checksum of payload and next record.
2701  */
2702 static int
2703 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2704 {
2705 	int err;
2706 
2707 	if (len != 0) {
2708 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2709 		err = receive_read(drc, len, buf);
2710 		if (err != 0)
2711 			return (err);
2712 		receive_cksum(drc, len, buf);
2713 
2714 		/* note: rrd is NULL when reading the begin record's payload */
2715 		if (drc->drc_rrd != NULL) {
2716 			drc->drc_rrd->payload = buf;
2717 			drc->drc_rrd->payload_size = len;
2718 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2719 		}
2720 	} else {
2721 		ASSERT3P(buf, ==, NULL);
2722 	}
2723 
2724 	drc->drc_prev_cksum = drc->drc_cksum;
2725 
2726 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2727 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2728 	    &drc->drc_next_rrd->header);
2729 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2730 
2731 	if (err != 0) {
2732 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2733 		drc->drc_next_rrd = NULL;
2734 		return (err);
2735 	}
2736 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2737 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2738 		drc->drc_next_rrd = NULL;
2739 		return (SET_ERROR(EINVAL));
2740 	}
2741 
2742 	/*
2743 	 * Note: checksum is of everything up to but not including the
2744 	 * checksum itself.
2745 	 */
2746 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2747 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2748 	receive_cksum(drc,
2749 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2750 	    &drc->drc_next_rrd->header);
2751 
2752 	zio_cksum_t cksum_orig =
2753 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2754 	zio_cksum_t *cksump =
2755 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2756 
2757 	if (drc->drc_byteswap)
2758 		byteswap_record(&drc->drc_next_rrd->header);
2759 
2760 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2761 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2762 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2763 		drc->drc_next_rrd = NULL;
2764 		return (SET_ERROR(ECKSUM));
2765 	}
2766 
2767 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2768 
2769 	return (0);
2770 }
2771 
2772 /*
2773  * Issue the prefetch reads for any necessary indirect blocks.
2774  *
2775  * We use the object ignore list to tell us whether or not to issue prefetches
2776  * for a given object.  We do this for both correctness (in case the blocksize
2777  * of an object has changed) and performance (if the object doesn't exist, don't
2778  * needlessly try to issue prefetches).  We also trim the list as we go through
2779  * the stream to prevent it from growing to an unbounded size.
2780  *
2781  * The object numbers within will always be in sorted order, and any write
2782  * records we see will also be in sorted order, but they're not sorted with
2783  * respect to each other (i.e. we can get several object records before
2784  * receiving each object's write records).  As a result, once we've reached a
2785  * given object number, we can safely remove any reference to lower object
2786  * numbers in the ignore list. In practice, we receive up to 32 object records
2787  * before receiving write records, so the list can have up to 32 nodes in it.
2788  */
2789 static void
2790 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2791     uint64_t length)
2792 {
2793 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2794 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2795 		    ZIO_PRIORITY_SYNC_READ);
2796 	}
2797 }
2798 
2799 /*
2800  * Read records off the stream, issuing any necessary prefetches.
2801  */
2802 static int
2803 receive_read_record(dmu_recv_cookie_t *drc)
2804 {
2805 	int err;
2806 
2807 	switch (drc->drc_rrd->header.drr_type) {
2808 	case DRR_OBJECT:
2809 	{
2810 		struct drr_object *drro =
2811 		    &drc->drc_rrd->header.drr_u.drr_object;
2812 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2813 		void *buf = NULL;
2814 		dmu_object_info_t doi;
2815 
2816 		if (size != 0)
2817 			buf = kmem_zalloc(size, KM_SLEEP);
2818 
2819 		err = receive_read_payload_and_next_header(drc, size, buf);
2820 		if (err != 0) {
2821 			kmem_free(buf, size);
2822 			return (err);
2823 		}
2824 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2825 		/*
2826 		 * See receive_read_prefetch for an explanation why we're
2827 		 * storing this object in the ignore_obj_list.
2828 		 */
2829 		if (err == ENOENT || err == EEXIST ||
2830 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2831 			objlist_insert(drc->drc_ignore_objlist,
2832 			    drro->drr_object);
2833 			err = 0;
2834 		}
2835 		return (err);
2836 	}
2837 	case DRR_FREEOBJECTS:
2838 	{
2839 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2840 		return (err);
2841 	}
2842 	case DRR_WRITE:
2843 	{
2844 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2845 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2846 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2847 		err = receive_read_payload_and_next_header(drc, size,
2848 		    abd_to_buf(abd));
2849 		if (err != 0) {
2850 			abd_free(abd);
2851 			return (err);
2852 		}
2853 		drc->drc_rrd->abd = abd;
2854 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2855 		    drrw->drr_logical_size);
2856 		return (err);
2857 	}
2858 	case DRR_WRITE_EMBEDDED:
2859 	{
2860 		struct drr_write_embedded *drrwe =
2861 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2862 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2863 		void *buf = kmem_zalloc(size, KM_SLEEP);
2864 
2865 		err = receive_read_payload_and_next_header(drc, size, buf);
2866 		if (err != 0) {
2867 			kmem_free(buf, size);
2868 			return (err);
2869 		}
2870 
2871 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2872 		    drrwe->drr_length);
2873 		return (err);
2874 	}
2875 	case DRR_FREE:
2876 	case DRR_REDACT:
2877 	{
2878 		/*
2879 		 * It might be beneficial to prefetch indirect blocks here, but
2880 		 * we don't really have the data to decide for sure.
2881 		 */
2882 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2883 		return (err);
2884 	}
2885 	case DRR_END:
2886 	{
2887 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2888 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2889 		    drre->drr_checksum))
2890 			return (SET_ERROR(ECKSUM));
2891 		return (0);
2892 	}
2893 	case DRR_SPILL:
2894 	{
2895 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2896 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2897 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2898 		err = receive_read_payload_and_next_header(drc, size,
2899 		    abd_to_buf(abd));
2900 		if (err != 0)
2901 			abd_free(abd);
2902 		else
2903 			drc->drc_rrd->abd = abd;
2904 		return (err);
2905 	}
2906 	case DRR_OBJECT_RANGE:
2907 	{
2908 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2909 		return (err);
2910 
2911 	}
2912 	default:
2913 		return (SET_ERROR(EINVAL));
2914 	}
2915 }
2916 
2917 
2918 
2919 static void
2920 dprintf_drr(struct receive_record_arg *rrd, int err)
2921 {
2922 #ifdef ZFS_DEBUG
2923 	switch (rrd->header.drr_type) {
2924 	case DRR_OBJECT:
2925 	{
2926 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2927 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2928 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2929 		    "compress = %u dn_slots = %u err = %d\n",
2930 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2931 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2932 		    drro->drr_checksumtype, drro->drr_compress,
2933 		    drro->drr_dn_slots, err);
2934 		break;
2935 	}
2936 	case DRR_FREEOBJECTS:
2937 	{
2938 		struct drr_freeobjects *drrfo =
2939 		    &rrd->header.drr_u.drr_freeobjects;
2940 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2941 		    "numobjs = %llu err = %d\n",
2942 		    (u_longlong_t)drrfo->drr_firstobj,
2943 		    (u_longlong_t)drrfo->drr_numobjs, err);
2944 		break;
2945 	}
2946 	case DRR_WRITE:
2947 	{
2948 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2949 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2950 		    "lsize = %llu cksumtype = %u flags = %u "
2951 		    "compress = %u psize = %llu err = %d\n",
2952 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
2953 		    (u_longlong_t)drrw->drr_offset,
2954 		    (u_longlong_t)drrw->drr_logical_size,
2955 		    drrw->drr_checksumtype, drrw->drr_flags,
2956 		    drrw->drr_compressiontype,
2957 		    (u_longlong_t)drrw->drr_compressed_size, err);
2958 		break;
2959 	}
2960 	case DRR_WRITE_BYREF:
2961 	{
2962 		struct drr_write_byref *drrwbr =
2963 		    &rrd->header.drr_u.drr_write_byref;
2964 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2965 		    "length = %llu toguid = %llx refguid = %llx "
2966 		    "refobject = %llu refoffset = %llu cksumtype = %u "
2967 		    "flags = %u err = %d\n",
2968 		    (u_longlong_t)drrwbr->drr_object,
2969 		    (u_longlong_t)drrwbr->drr_offset,
2970 		    (u_longlong_t)drrwbr->drr_length,
2971 		    (u_longlong_t)drrwbr->drr_toguid,
2972 		    (u_longlong_t)drrwbr->drr_refguid,
2973 		    (u_longlong_t)drrwbr->drr_refobject,
2974 		    (u_longlong_t)drrwbr->drr_refoffset,
2975 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2976 		break;
2977 	}
2978 	case DRR_WRITE_EMBEDDED:
2979 	{
2980 		struct drr_write_embedded *drrwe =
2981 		    &rrd->header.drr_u.drr_write_embedded;
2982 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2983 		    "length = %llu compress = %u etype = %u lsize = %u "
2984 		    "psize = %u err = %d\n",
2985 		    (u_longlong_t)drrwe->drr_object,
2986 		    (u_longlong_t)drrwe->drr_offset,
2987 		    (u_longlong_t)drrwe->drr_length,
2988 		    drrwe->drr_compression, drrwe->drr_etype,
2989 		    drrwe->drr_lsize, drrwe->drr_psize, err);
2990 		break;
2991 	}
2992 	case DRR_FREE:
2993 	{
2994 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2995 		dprintf("drr_type = FREE obj = %llu offset = %llu "
2996 		    "length = %lld err = %d\n",
2997 		    (u_longlong_t)drrf->drr_object,
2998 		    (u_longlong_t)drrf->drr_offset,
2999 		    (longlong_t)drrf->drr_length,
3000 		    err);
3001 		break;
3002 	}
3003 	case DRR_SPILL:
3004 	{
3005 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3006 		dprintf("drr_type = SPILL obj = %llu length = %llu "
3007 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
3008 		    (u_longlong_t)drrs->drr_length, err);
3009 		break;
3010 	}
3011 	case DRR_OBJECT_RANGE:
3012 	{
3013 		struct drr_object_range *drror =
3014 		    &rrd->header.drr_u.drr_object_range;
3015 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3016 		    "numslots = %llu flags = %u err = %d\n",
3017 		    (u_longlong_t)drror->drr_firstobj,
3018 		    (u_longlong_t)drror->drr_numslots,
3019 		    drror->drr_flags, err);
3020 		break;
3021 	}
3022 	default:
3023 		return;
3024 	}
3025 #endif
3026 }
3027 
3028 /*
3029  * Commit the records to the pool.
3030  */
3031 static int
3032 receive_process_record(struct receive_writer_arg *rwa,
3033     struct receive_record_arg *rrd)
3034 {
3035 	int err;
3036 
3037 	/* Processing in order, therefore bytes_read should be increasing. */
3038 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3039 	rwa->bytes_read = rrd->bytes_read;
3040 
3041 	/* We can only heal write records; other ones get ignored */
3042 	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3043 		if (rrd->abd != NULL) {
3044 			abd_free(rrd->abd);
3045 			rrd->abd = NULL;
3046 		} else if (rrd->payload != NULL) {
3047 			kmem_free(rrd->payload, rrd->payload_size);
3048 			rrd->payload = NULL;
3049 		}
3050 		return (0);
3051 	}
3052 
3053 	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3054 		err = flush_write_batch(rwa);
3055 		if (err != 0) {
3056 			if (rrd->abd != NULL) {
3057 				abd_free(rrd->abd);
3058 				rrd->abd = NULL;
3059 				rrd->payload = NULL;
3060 			} else if (rrd->payload != NULL) {
3061 				kmem_free(rrd->payload, rrd->payload_size);
3062 				rrd->payload = NULL;
3063 			}
3064 
3065 			return (err);
3066 		}
3067 	}
3068 
3069 	switch (rrd->header.drr_type) {
3070 	case DRR_OBJECT:
3071 	{
3072 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
3073 		err = receive_object(rwa, drro, rrd->payload);
3074 		kmem_free(rrd->payload, rrd->payload_size);
3075 		rrd->payload = NULL;
3076 		break;
3077 	}
3078 	case DRR_FREEOBJECTS:
3079 	{
3080 		struct drr_freeobjects *drrfo =
3081 		    &rrd->header.drr_u.drr_freeobjects;
3082 		err = receive_freeobjects(rwa, drrfo);
3083 		break;
3084 	}
3085 	case DRR_WRITE:
3086 	{
3087 		err = receive_process_write_record(rwa, rrd);
3088 		if (rwa->heal) {
3089 			/*
3090 			 * If healing - always free the abd after processing
3091 			 */
3092 			abd_free(rrd->abd);
3093 			rrd->abd = NULL;
3094 		} else if (err != EAGAIN) {
3095 			/*
3096 			 * On success, a non-healing
3097 			 * receive_process_write_record() returns
3098 			 * EAGAIN to indicate that we do not want to free
3099 			 * the rrd or arc_buf.
3100 			 */
3101 			ASSERT(err != 0);
3102 			abd_free(rrd->abd);
3103 			rrd->abd = NULL;
3104 		}
3105 		break;
3106 	}
3107 	case DRR_WRITE_EMBEDDED:
3108 	{
3109 		struct drr_write_embedded *drrwe =
3110 		    &rrd->header.drr_u.drr_write_embedded;
3111 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
3112 		kmem_free(rrd->payload, rrd->payload_size);
3113 		rrd->payload = NULL;
3114 		break;
3115 	}
3116 	case DRR_FREE:
3117 	{
3118 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3119 		err = receive_free(rwa, drrf);
3120 		break;
3121 	}
3122 	case DRR_SPILL:
3123 	{
3124 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3125 		err = receive_spill(rwa, drrs, rrd->abd);
3126 		if (err != 0)
3127 			abd_free(rrd->abd);
3128 		rrd->abd = NULL;
3129 		rrd->payload = NULL;
3130 		break;
3131 	}
3132 	case DRR_OBJECT_RANGE:
3133 	{
3134 		struct drr_object_range *drror =
3135 		    &rrd->header.drr_u.drr_object_range;
3136 		err = receive_object_range(rwa, drror);
3137 		break;
3138 	}
3139 	case DRR_REDACT:
3140 	{
3141 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3142 		err = receive_redact(rwa, drrr);
3143 		break;
3144 	}
3145 	default:
3146 		err = (SET_ERROR(EINVAL));
3147 	}
3148 
3149 	if (err != 0)
3150 		dprintf_drr(rrd, err);
3151 
3152 	return (err);
3153 }
3154 
3155 /*
3156  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3157  * receive_process_record  When we're done, signal the main thread and exit.
3158  */
3159 static __attribute__((noreturn)) void
3160 receive_writer_thread(void *arg)
3161 {
3162 	struct receive_writer_arg *rwa = arg;
3163 	struct receive_record_arg *rrd;
3164 	fstrans_cookie_t cookie = spl_fstrans_mark();
3165 
3166 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3167 	    rrd = bqueue_dequeue(&rwa->q)) {
3168 		/*
3169 		 * If there's an error, the main thread will stop putting things
3170 		 * on the queue, but we need to clear everything in it before we
3171 		 * can exit.
3172 		 */
3173 		int err = 0;
3174 		if (rwa->err == 0) {
3175 			err = receive_process_record(rwa, rrd);
3176 		} else if (rrd->abd != NULL) {
3177 			abd_free(rrd->abd);
3178 			rrd->abd = NULL;
3179 			rrd->payload = NULL;
3180 		} else if (rrd->payload != NULL) {
3181 			kmem_free(rrd->payload, rrd->payload_size);
3182 			rrd->payload = NULL;
3183 		}
3184 		/*
3185 		 * EAGAIN indicates that this record has been saved (on
3186 		 * raw->write_batch), and will be used again, so we don't
3187 		 * free it.
3188 		 * When healing data we always need to free the record.
3189 		 */
3190 		if (err != EAGAIN || rwa->heal) {
3191 			if (rwa->err == 0)
3192 				rwa->err = err;
3193 			kmem_free(rrd, sizeof (*rrd));
3194 		}
3195 	}
3196 	kmem_free(rrd, sizeof (*rrd));
3197 
3198 	if (rwa->heal) {
3199 		zio_wait(rwa->heal_pio);
3200 	} else {
3201 		int err = flush_write_batch(rwa);
3202 		if (rwa->err == 0)
3203 			rwa->err = err;
3204 	}
3205 	mutex_enter(&rwa->mutex);
3206 	rwa->done = B_TRUE;
3207 	cv_signal(&rwa->cv);
3208 	mutex_exit(&rwa->mutex);
3209 	spl_fstrans_unmark(cookie);
3210 	thread_exit();
3211 }
3212 
3213 static int
3214 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3215 {
3216 	uint64_t val;
3217 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3218 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
3219 	uint64_t resume_obj, resume_off;
3220 
3221 	if (nvlist_lookup_uint64(begin_nvl,
3222 	    "resume_object", &resume_obj) != 0 ||
3223 	    nvlist_lookup_uint64(begin_nvl,
3224 	    "resume_offset", &resume_off) != 0) {
3225 		return (SET_ERROR(EINVAL));
3226 	}
3227 	VERIFY0(zap_lookup(mos, dsobj,
3228 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3229 	if (resume_obj != val)
3230 		return (SET_ERROR(EINVAL));
3231 	VERIFY0(zap_lookup(mos, dsobj,
3232 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3233 	if (resume_off != val)
3234 		return (SET_ERROR(EINVAL));
3235 
3236 	return (0);
3237 }
3238 
3239 /*
3240  * Read in the stream's records, one by one, and apply them to the pool.  There
3241  * are two threads involved; the thread that calls this function will spin up a
3242  * worker thread, read the records off the stream one by one, and issue
3243  * prefetches for any necessary indirect blocks.  It will then push the records
3244  * onto an internal blocking queue.  The worker thread will pull the records off
3245  * the queue, and actually write the data into the DMU.  This way, the worker
3246  * thread doesn't have to wait for reads to complete, since everything it needs
3247  * (the indirect blocks) will be prefetched.
3248  *
3249  * NB: callers *must* call dmu_recv_end() if this succeeds.
3250  */
3251 int
3252 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3253 {
3254 	int err = 0;
3255 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3256 
3257 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3258 		uint64_t bytes = 0;
3259 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3260 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3261 		    sizeof (bytes), 1, &bytes);
3262 		drc->drc_bytes_read += bytes;
3263 	}
3264 
3265 	drc->drc_ignore_objlist = objlist_create();
3266 
3267 	/* these were verified in dmu_recv_begin */
3268 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3269 	    DMU_SUBSTREAM);
3270 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3271 
3272 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3273 	ASSERT0(drc->drc_os->os_encrypted &&
3274 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3275 
3276 	/* handle DSL encryption key payload */
3277 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3278 		nvlist_t *keynvl = NULL;
3279 
3280 		ASSERT(drc->drc_os->os_encrypted);
3281 		ASSERT(drc->drc_raw);
3282 
3283 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3284 		    &keynvl);
3285 		if (err != 0)
3286 			goto out;
3287 
3288 		if (!drc->drc_heal) {
3289 			/*
3290 			 * If this is a new dataset we set the key immediately.
3291 			 * Otherwise we don't want to change the key until we
3292 			 * are sure the rest of the receive succeeded so we
3293 			 * stash the keynvl away until then.
3294 			 */
3295 			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3296 			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3297 			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3298 			if (err != 0)
3299 				goto out;
3300 		}
3301 
3302 		/* see comment in dmu_recv_end_sync() */
3303 		drc->drc_ivset_guid = 0;
3304 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3305 		    &drc->drc_ivset_guid);
3306 
3307 		if (!drc->drc_newfs)
3308 			drc->drc_keynvl = fnvlist_dup(keynvl);
3309 	}
3310 
3311 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3312 		err = resume_check(drc, drc->drc_begin_nvl);
3313 		if (err != 0)
3314 			goto out;
3315 	}
3316 
3317 	/*
3318 	 * If we failed before this point we will clean up any new resume
3319 	 * state that was created. Now that we've gotten past the initial
3320 	 * checks we are ok to retain that resume state.
3321 	 */
3322 	drc->drc_should_save = B_TRUE;
3323 
3324 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3325 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3326 	    offsetof(struct receive_record_arg, node));
3327 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3328 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3329 	rwa->os = drc->drc_os;
3330 	rwa->byteswap = drc->drc_byteswap;
3331 	rwa->heal = drc->drc_heal;
3332 	rwa->tofs = drc->drc_tofs;
3333 	rwa->resumable = drc->drc_resumable;
3334 	rwa->raw = drc->drc_raw;
3335 	rwa->spill = drc->drc_spill;
3336 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3337 	rwa->os->os_raw_receive = drc->drc_raw;
3338 	if (drc->drc_heal) {
3339 		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3340 		    ZIO_FLAG_GODFATHER);
3341 	}
3342 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3343 	    offsetof(struct receive_record_arg, node.bqn_node));
3344 
3345 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3346 	    TS_RUN, minclsyspri);
3347 	/*
3348 	 * We're reading rwa->err without locks, which is safe since we are the
3349 	 * only reader, and the worker thread is the only writer.  It's ok if we
3350 	 * miss a write for an iteration or two of the loop, since the writer
3351 	 * thread will keep freeing records we send it until we send it an eos
3352 	 * marker.
3353 	 *
3354 	 * We can leave this loop in 3 ways:  First, if rwa->err is
3355 	 * non-zero.  In that case, the writer thread will free the rrd we just
3356 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3357 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
3358 	 * drc->drc_rrd has been handed off to the writer thread who will free
3359 	 * it.  Finally, if receive_read_record fails or we're at the end of the
3360 	 * stream, then we free drc->drc_rrd and exit.
3361 	 */
3362 	while (rwa->err == 0) {
3363 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
3364 			err = SET_ERROR(EINTR);
3365 			break;
3366 		}
3367 
3368 		ASSERT3P(drc->drc_rrd, ==, NULL);
3369 		drc->drc_rrd = drc->drc_next_rrd;
3370 		drc->drc_next_rrd = NULL;
3371 		/* Allocates and loads header into drc->drc_next_rrd */
3372 		err = receive_read_record(drc);
3373 
3374 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3375 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3376 			drc->drc_rrd = NULL;
3377 			break;
3378 		}
3379 
3380 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3381 		    sizeof (struct receive_record_arg) +
3382 		    drc->drc_rrd->payload_size);
3383 		drc->drc_rrd = NULL;
3384 	}
3385 
3386 	ASSERT3P(drc->drc_rrd, ==, NULL);
3387 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3388 	drc->drc_rrd->eos_marker = B_TRUE;
3389 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3390 
3391 	mutex_enter(&rwa->mutex);
3392 	while (!rwa->done) {
3393 		/*
3394 		 * We need to use cv_wait_sig() so that any process that may
3395 		 * be sleeping here can still fork.
3396 		 */
3397 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3398 	}
3399 	mutex_exit(&rwa->mutex);
3400 
3401 	/*
3402 	 * If we are receiving a full stream as a clone, all object IDs which
3403 	 * are greater than the maximum ID referenced in the stream are
3404 	 * by definition unused and must be freed.
3405 	 */
3406 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3407 		uint64_t obj = rwa->max_object + 1;
3408 		int free_err = 0;
3409 		int next_err = 0;
3410 
3411 		while (next_err == 0) {
3412 			free_err = dmu_free_long_object(rwa->os, obj);
3413 			if (free_err != 0 && free_err != ENOENT)
3414 				break;
3415 
3416 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3417 		}
3418 
3419 		if (err == 0) {
3420 			if (free_err != 0 && free_err != ENOENT)
3421 				err = free_err;
3422 			else if (next_err != ESRCH)
3423 				err = next_err;
3424 		}
3425 	}
3426 
3427 	cv_destroy(&rwa->cv);
3428 	mutex_destroy(&rwa->mutex);
3429 	bqueue_destroy(&rwa->q);
3430 	list_destroy(&rwa->write_batch);
3431 	if (err == 0)
3432 		err = rwa->err;
3433 
3434 out:
3435 	/*
3436 	 * If we hit an error before we started the receive_writer_thread
3437 	 * we need to clean up the next_rrd we create by processing the
3438 	 * DRR_BEGIN record.
3439 	 */
3440 	if (drc->drc_next_rrd != NULL)
3441 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3442 
3443 	/*
3444 	 * The objset will be invalidated by dmu_recv_end() when we do
3445 	 * dsl_dataset_clone_swap_sync_impl().
3446 	 */
3447 	drc->drc_os = NULL;
3448 
3449 	kmem_free(rwa, sizeof (*rwa));
3450 	nvlist_free(drc->drc_begin_nvl);
3451 
3452 	if (err != 0) {
3453 		/*
3454 		 * Clean up references. If receive is not resumable,
3455 		 * destroy what we created, so we don't leave it in
3456 		 * the inconsistent state.
3457 		 */
3458 		dmu_recv_cleanup_ds(drc);
3459 		nvlist_free(drc->drc_keynvl);
3460 	}
3461 
3462 	objlist_destroy(drc->drc_ignore_objlist);
3463 	drc->drc_ignore_objlist = NULL;
3464 	*voffp = drc->drc_voff;
3465 	return (err);
3466 }
3467 
3468 static int
3469 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3470 {
3471 	dmu_recv_cookie_t *drc = arg;
3472 	dsl_pool_t *dp = dmu_tx_pool(tx);
3473 	int error;
3474 
3475 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3476 
3477 	if (drc->drc_heal) {
3478 		error = 0;
3479 	} else if (!drc->drc_newfs) {
3480 		dsl_dataset_t *origin_head;
3481 
3482 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3483 		if (error != 0)
3484 			return (error);
3485 		if (drc->drc_force) {
3486 			/*
3487 			 * We will destroy any snapshots in tofs (i.e. before
3488 			 * origin_head) that are after the origin (which is
3489 			 * the snap before drc_ds, because drc_ds can not
3490 			 * have any snaps of its own).
3491 			 */
3492 			uint64_t obj;
3493 
3494 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3495 			while (obj !=
3496 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3497 				dsl_dataset_t *snap;
3498 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3499 				    &snap);
3500 				if (error != 0)
3501 					break;
3502 				if (snap->ds_dir != origin_head->ds_dir)
3503 					error = SET_ERROR(EINVAL);
3504 				if (error == 0)  {
3505 					error = dsl_destroy_snapshot_check_impl(
3506 					    snap, B_FALSE);
3507 				}
3508 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3509 				dsl_dataset_rele(snap, FTAG);
3510 				if (error != 0)
3511 					break;
3512 			}
3513 			if (error != 0) {
3514 				dsl_dataset_rele(origin_head, FTAG);
3515 				return (error);
3516 			}
3517 		}
3518 		if (drc->drc_keynvl != NULL) {
3519 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3520 			    drc->drc_keynvl, tx);
3521 			if (error != 0) {
3522 				dsl_dataset_rele(origin_head, FTAG);
3523 				return (error);
3524 			}
3525 		}
3526 
3527 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3528 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3529 		if (error != 0) {
3530 			dsl_dataset_rele(origin_head, FTAG);
3531 			return (error);
3532 		}
3533 		error = dsl_dataset_snapshot_check_impl(origin_head,
3534 		    drc->drc_tosnap, tx, B_TRUE, 1,
3535 		    drc->drc_cred, drc->drc_proc);
3536 		dsl_dataset_rele(origin_head, FTAG);
3537 		if (error != 0)
3538 			return (error);
3539 
3540 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3541 	} else {
3542 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3543 		    drc->drc_tosnap, tx, B_TRUE, 1,
3544 		    drc->drc_cred, drc->drc_proc);
3545 	}
3546 	return (error);
3547 }
3548 
3549 static void
3550 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3551 {
3552 	dmu_recv_cookie_t *drc = arg;
3553 	dsl_pool_t *dp = dmu_tx_pool(tx);
3554 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3555 	uint64_t newsnapobj = 0;
3556 
3557 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3558 	    tx, "snap=%s", drc->drc_tosnap);
3559 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3560 
3561 	if (drc->drc_heal) {
3562 		if (drc->drc_keynvl != NULL) {
3563 			nvlist_free(drc->drc_keynvl);
3564 			drc->drc_keynvl = NULL;
3565 		}
3566 	} else if (!drc->drc_newfs) {
3567 		dsl_dataset_t *origin_head;
3568 
3569 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3570 		    &origin_head));
3571 
3572 		if (drc->drc_force) {
3573 			/*
3574 			 * Destroy any snapshots of drc_tofs (origin_head)
3575 			 * after the origin (the snap before drc_ds).
3576 			 */
3577 			uint64_t obj;
3578 
3579 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3580 			while (obj !=
3581 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3582 				dsl_dataset_t *snap;
3583 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3584 				    &snap));
3585 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3586 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3587 				dsl_destroy_snapshot_sync_impl(snap,
3588 				    B_FALSE, tx);
3589 				dsl_dataset_rele(snap, FTAG);
3590 			}
3591 		}
3592 		if (drc->drc_keynvl != NULL) {
3593 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3594 			    drc->drc_keynvl, tx);
3595 			nvlist_free(drc->drc_keynvl);
3596 			drc->drc_keynvl = NULL;
3597 		}
3598 
3599 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3600 		    origin_head->ds_prev);
3601 
3602 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3603 		    origin_head, tx);
3604 		/*
3605 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3606 		 * so drc_os is no longer valid.
3607 		 */
3608 		drc->drc_os = NULL;
3609 
3610 		dsl_dataset_snapshot_sync_impl(origin_head,
3611 		    drc->drc_tosnap, tx);
3612 
3613 		/* set snapshot's creation time and guid */
3614 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3615 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3616 		    drc->drc_drrb->drr_creation_time;
3617 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3618 		    drc->drc_drrb->drr_toguid;
3619 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3620 		    ~DS_FLAG_INCONSISTENT;
3621 
3622 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3623 		dsl_dataset_phys(origin_head)->ds_flags &=
3624 		    ~DS_FLAG_INCONSISTENT;
3625 
3626 		newsnapobj =
3627 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3628 
3629 		dsl_dataset_rele(origin_head, FTAG);
3630 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3631 
3632 		if (drc->drc_owner != NULL)
3633 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3634 	} else {
3635 		dsl_dataset_t *ds = drc->drc_ds;
3636 
3637 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3638 
3639 		/* set snapshot's creation time and guid */
3640 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3641 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3642 		    drc->drc_drrb->drr_creation_time;
3643 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3644 		    drc->drc_drrb->drr_toguid;
3645 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3646 		    ~DS_FLAG_INCONSISTENT;
3647 
3648 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3649 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3650 		if (dsl_dataset_has_resume_receive_state(ds)) {
3651 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3652 			    DS_FIELD_RESUME_FROMGUID, tx);
3653 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3654 			    DS_FIELD_RESUME_OBJECT, tx);
3655 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3656 			    DS_FIELD_RESUME_OFFSET, tx);
3657 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3658 			    DS_FIELD_RESUME_BYTES, tx);
3659 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3660 			    DS_FIELD_RESUME_TOGUID, tx);
3661 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3662 			    DS_FIELD_RESUME_TONAME, tx);
3663 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3664 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3665 		}
3666 		newsnapobj =
3667 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3668 	}
3669 
3670 	/*
3671 	 * If this is a raw receive, the crypt_keydata nvlist will include
3672 	 * a to_ivset_guid for us to set on the new snapshot. This value
3673 	 * will override the value generated by the snapshot code. However,
3674 	 * this value may not be present, because older implementations of
3675 	 * the raw send code did not include this value, and we are still
3676 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3677 	 * tunable is set, in which case we will leave the newly-generated
3678 	 * value.
3679 	 */
3680 	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3681 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3682 		    DMU_OT_DSL_DATASET, tx);
3683 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3684 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3685 		    &drc->drc_ivset_guid, tx));
3686 	}
3687 
3688 	/*
3689 	 * Release the hold from dmu_recv_begin.  This must be done before
3690 	 * we return to open context, so that when we free the dataset's dnode
3691 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3692 	 * at this point (and therefore won't have a valid pointer to the spa)
3693 	 * we release the key mapping manually here while we do have a valid
3694 	 * pointer, if it exists.
3695 	 */
3696 	if (!drc->drc_raw && encrypted) {
3697 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3698 		    drc->drc_ds->ds_object, drc->drc_ds);
3699 	}
3700 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3701 	drc->drc_ds = NULL;
3702 }
3703 
3704 static int dmu_recv_end_modified_blocks = 3;
3705 
3706 static int
3707 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3708 {
3709 #ifdef _KERNEL
3710 	/*
3711 	 * We will be destroying the ds; make sure its origin is unmounted if
3712 	 * necessary.
3713 	 */
3714 	char name[ZFS_MAX_DATASET_NAME_LEN];
3715 	dsl_dataset_name(drc->drc_ds, name);
3716 	zfs_destroy_unmount_origin(name);
3717 #endif
3718 
3719 	return (dsl_sync_task(drc->drc_tofs,
3720 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3721 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3722 }
3723 
3724 static int
3725 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3726 {
3727 	return (dsl_sync_task(drc->drc_tofs,
3728 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3729 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3730 }
3731 
3732 int
3733 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3734 {
3735 	int error;
3736 
3737 	drc->drc_owner = owner;
3738 
3739 	if (drc->drc_newfs)
3740 		error = dmu_recv_new_end(drc);
3741 	else
3742 		error = dmu_recv_existing_end(drc);
3743 
3744 	if (error != 0) {
3745 		dmu_recv_cleanup_ds(drc);
3746 		nvlist_free(drc->drc_keynvl);
3747 	} else if (!drc->drc_heal) {
3748 		if (drc->drc_newfs) {
3749 			zvol_create_minor(drc->drc_tofs);
3750 		}
3751 		char *snapname = kmem_asprintf("%s@%s",
3752 		    drc->drc_tofs, drc->drc_tosnap);
3753 		zvol_create_minor(snapname);
3754 		kmem_strfree(snapname);
3755 	}
3756 	return (error);
3757 }
3758 
3759 /*
3760  * Return TRUE if this objset is currently being received into.
3761  */
3762 boolean_t
3763 dmu_objset_is_receiving(objset_t *os)
3764 {
3765 	return (os->os_dsl_dataset != NULL &&
3766 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3767 }
3768 
3769 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3770 	"Maximum receive queue length");
3771 
3772 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3773 	"Receive queue fill fraction");
3774 
3775 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3776 	"Maximum amount of writes to batch into one transaction");
3777 
3778 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3779 	"Ignore errors during corrective receive");
3780 /* END CSTYLED */
3781