1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2019 Datto Inc. 31 * Copyright (c) 2022 Axcient. 32 */ 33 34 #include <sys/spa_impl.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dmu_send.h> 38 #include <sys/dmu_recv.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dbuf.h> 41 #include <sys/dnode.h> 42 #include <sys/zfs_context.h> 43 #include <sys/dmu_objset.h> 44 #include <sys/dmu_traverse.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_dir.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_pool.h> 49 #include <sys/dsl_synctask.h> 50 #include <sys/zfs_ioctl.h> 51 #include <sys/zap.h> 52 #include <sys/zvol.h> 53 #include <sys/zio_checksum.h> 54 #include <sys/zfs_znode.h> 55 #include <zfs_fletcher.h> 56 #include <sys/avl.h> 57 #include <sys/ddt.h> 58 #include <sys/zfs_onexit.h> 59 #include <sys/dsl_destroy.h> 60 #include <sys/blkptr.h> 61 #include <sys/dsl_bookmark.h> 62 #include <sys/zfeature.h> 63 #include <sys/bqueue.h> 64 #include <sys/objlist.h> 65 #ifdef _KERNEL 66 #include <sys/zfs_vfsops.h> 67 #endif 68 #include <sys/zfs_file.h> 69 70 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 71 static uint_t zfs_recv_queue_ff = 20; 72 static uint_t zfs_recv_write_batch_size = 1024 * 1024; 73 static int zfs_recv_best_effort_corrective = 0; 74 75 static const void *const dmu_recv_tag = "dmu_recv_tag"; 76 const char *const recv_clone_name = "%recv"; 77 78 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 79 void *buf); 80 81 struct receive_record_arg { 82 dmu_replay_record_t header; 83 void *payload; /* Pointer to a buffer containing the payload */ 84 /* 85 * If the record is a WRITE or SPILL, pointer to the abd containing the 86 * payload. 87 */ 88 abd_t *abd; 89 int payload_size; 90 uint64_t bytes_read; /* bytes read from stream when record created */ 91 boolean_t eos_marker; /* Marks the end of the stream */ 92 bqueue_node_t node; 93 }; 94 95 struct receive_writer_arg { 96 objset_t *os; 97 boolean_t byteswap; 98 bqueue_t q; 99 100 /* 101 * These three members are used to signal to the main thread when 102 * we're done. 103 */ 104 kmutex_t mutex; 105 kcondvar_t cv; 106 boolean_t done; 107 108 int err; 109 const char *tofs; 110 boolean_t heal; 111 boolean_t resumable; 112 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 113 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 114 boolean_t full; /* this is a full send stream */ 115 uint64_t last_object; 116 uint64_t last_offset; 117 uint64_t max_object; /* highest object ID referenced in stream */ 118 uint64_t bytes_read; /* bytes read when current record created */ 119 120 list_t write_batch; 121 122 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 123 boolean_t or_crypt_params_present; 124 uint64_t or_firstobj; 125 uint64_t or_numslots; 126 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 127 uint8_t or_iv[ZIO_DATA_IV_LEN]; 128 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 129 boolean_t or_byteorder; 130 zio_t *heal_pio; 131 }; 132 133 typedef struct dmu_recv_begin_arg { 134 const char *drba_origin; 135 dmu_recv_cookie_t *drba_cookie; 136 cred_t *drba_cred; 137 proc_t *drba_proc; 138 dsl_crypto_params_t *drba_dcp; 139 } dmu_recv_begin_arg_t; 140 141 static void 142 byteswap_record(dmu_replay_record_t *drr) 143 { 144 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 145 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 146 drr->drr_type = BSWAP_32(drr->drr_type); 147 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 148 149 switch (drr->drr_type) { 150 case DRR_BEGIN: 151 DO64(drr_begin.drr_magic); 152 DO64(drr_begin.drr_versioninfo); 153 DO64(drr_begin.drr_creation_time); 154 DO32(drr_begin.drr_type); 155 DO32(drr_begin.drr_flags); 156 DO64(drr_begin.drr_toguid); 157 DO64(drr_begin.drr_fromguid); 158 break; 159 case DRR_OBJECT: 160 DO64(drr_object.drr_object); 161 DO32(drr_object.drr_type); 162 DO32(drr_object.drr_bonustype); 163 DO32(drr_object.drr_blksz); 164 DO32(drr_object.drr_bonuslen); 165 DO32(drr_object.drr_raw_bonuslen); 166 DO64(drr_object.drr_toguid); 167 DO64(drr_object.drr_maxblkid); 168 break; 169 case DRR_FREEOBJECTS: 170 DO64(drr_freeobjects.drr_firstobj); 171 DO64(drr_freeobjects.drr_numobjs); 172 DO64(drr_freeobjects.drr_toguid); 173 break; 174 case DRR_WRITE: 175 DO64(drr_write.drr_object); 176 DO32(drr_write.drr_type); 177 DO64(drr_write.drr_offset); 178 DO64(drr_write.drr_logical_size); 179 DO64(drr_write.drr_toguid); 180 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 181 DO64(drr_write.drr_key.ddk_prop); 182 DO64(drr_write.drr_compressed_size); 183 break; 184 case DRR_WRITE_EMBEDDED: 185 DO64(drr_write_embedded.drr_object); 186 DO64(drr_write_embedded.drr_offset); 187 DO64(drr_write_embedded.drr_length); 188 DO64(drr_write_embedded.drr_toguid); 189 DO32(drr_write_embedded.drr_lsize); 190 DO32(drr_write_embedded.drr_psize); 191 break; 192 case DRR_FREE: 193 DO64(drr_free.drr_object); 194 DO64(drr_free.drr_offset); 195 DO64(drr_free.drr_length); 196 DO64(drr_free.drr_toguid); 197 break; 198 case DRR_SPILL: 199 DO64(drr_spill.drr_object); 200 DO64(drr_spill.drr_length); 201 DO64(drr_spill.drr_toguid); 202 DO64(drr_spill.drr_compressed_size); 203 DO32(drr_spill.drr_type); 204 break; 205 case DRR_OBJECT_RANGE: 206 DO64(drr_object_range.drr_firstobj); 207 DO64(drr_object_range.drr_numslots); 208 DO64(drr_object_range.drr_toguid); 209 break; 210 case DRR_REDACT: 211 DO64(drr_redact.drr_object); 212 DO64(drr_redact.drr_offset); 213 DO64(drr_redact.drr_length); 214 DO64(drr_redact.drr_toguid); 215 break; 216 case DRR_END: 217 DO64(drr_end.drr_toguid); 218 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 219 break; 220 default: 221 break; 222 } 223 224 if (drr->drr_type != DRR_BEGIN) { 225 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 226 } 227 228 #undef DO64 229 #undef DO32 230 } 231 232 static boolean_t 233 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 234 { 235 for (int i = 0; i < num_snaps; i++) { 236 if (snaps[i] == guid) 237 return (B_TRUE); 238 } 239 return (B_FALSE); 240 } 241 242 /* 243 * Check that the new stream we're trying to receive is redacted with respect to 244 * a subset of the snapshots that the origin was redacted with respect to. For 245 * the reasons behind this, see the man page on redacted zfs sends and receives. 246 */ 247 static boolean_t 248 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 249 uint64_t *redact_snaps, uint64_t num_redact_snaps) 250 { 251 /* 252 * Short circuit the comparison; if we are redacted with respect to 253 * more snapshots than the origin, we can't be redacted with respect 254 * to a subset. 255 */ 256 if (num_redact_snaps > origin_num_snaps) { 257 return (B_FALSE); 258 } 259 260 for (int i = 0; i < num_redact_snaps; i++) { 261 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 262 redact_snaps[i])) { 263 return (B_FALSE); 264 } 265 } 266 return (B_TRUE); 267 } 268 269 static boolean_t 270 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 271 { 272 uint64_t *origin_snaps; 273 uint64_t origin_num_snaps; 274 dmu_recv_cookie_t *drc = drba->drba_cookie; 275 struct drr_begin *drrb = drc->drc_drrb; 276 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 277 int err = 0; 278 boolean_t ret = B_TRUE; 279 uint64_t *redact_snaps; 280 uint_t numredactsnaps; 281 282 /* 283 * If this is a full send stream, we're safe no matter what. 284 */ 285 if (drrb->drr_fromguid == 0) 286 return (ret); 287 288 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 289 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 290 291 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 292 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 293 0) { 294 /* 295 * If the send stream was sent from the redaction bookmark or 296 * the redacted version of the dataset, then we're safe. Verify 297 * that this is from the a compatible redaction bookmark or 298 * redacted dataset. 299 */ 300 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 301 redact_snaps, numredactsnaps)) { 302 err = EINVAL; 303 } 304 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 305 /* 306 * If the stream is redacted, it must be redacted with respect 307 * to a subset of what the origin is redacted with respect to. 308 * See case number 2 in the zfs man page section on redacted zfs 309 * send. 310 */ 311 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 312 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 313 314 if (err != 0 || !compatible_redact_snaps(origin_snaps, 315 origin_num_snaps, redact_snaps, numredactsnaps)) { 316 err = EINVAL; 317 } 318 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 319 drrb->drr_toguid)) { 320 /* 321 * If the stream isn't redacted but the origin is, this must be 322 * one of the snapshots the origin is redacted with respect to. 323 * See case number 1 in the zfs man page section on redacted zfs 324 * send. 325 */ 326 err = EINVAL; 327 } 328 329 if (err != 0) 330 ret = B_FALSE; 331 return (ret); 332 } 333 334 /* 335 * If we previously received a stream with --large-block, we don't support 336 * receiving an incremental on top of it without --large-block. This avoids 337 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 338 * records. 339 */ 340 static int 341 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 342 { 343 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 344 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 345 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 346 return (0); 347 } 348 349 static int 350 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 351 uint64_t fromguid, uint64_t featureflags) 352 { 353 uint64_t obj; 354 uint64_t children; 355 int error; 356 dsl_dataset_t *snap; 357 dsl_pool_t *dp = ds->ds_dir->dd_pool; 358 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 359 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 360 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 361 362 /* Temporary clone name must not exist. */ 363 error = zap_lookup(dp->dp_meta_objset, 364 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 365 8, 1, &obj); 366 if (error != ENOENT) 367 return (error == 0 ? SET_ERROR(EBUSY) : error); 368 369 /* Resume state must not be set. */ 370 if (dsl_dataset_has_resume_receive_state(ds)) 371 return (SET_ERROR(EBUSY)); 372 373 /* New snapshot name must not exist if we're not healing it. */ 374 error = zap_lookup(dp->dp_meta_objset, 375 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 376 drba->drba_cookie->drc_tosnap, 8, 1, &obj); 377 if (drba->drba_cookie->drc_heal) { 378 if (error != 0) 379 return (error); 380 } else if (error != ENOENT) { 381 return (error == 0 ? SET_ERROR(EEXIST) : error); 382 } 383 384 /* Must not have children if receiving a ZVOL. */ 385 error = zap_count(dp->dp_meta_objset, 386 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 387 if (error != 0) 388 return (error); 389 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 390 children > 0) 391 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 392 393 /* 394 * Check snapshot limit before receiving. We'll recheck again at the 395 * end, but might as well abort before receiving if we're already over 396 * the limit. 397 * 398 * Note that we do not check the file system limit with 399 * dsl_dir_fscount_check because the temporary %clones don't count 400 * against that limit. 401 */ 402 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 403 NULL, drba->drba_cred, drba->drba_proc); 404 if (error != 0) 405 return (error); 406 407 if (drba->drba_cookie->drc_heal) { 408 /* Encryption is incompatible with embedded data. */ 409 if (encrypted && embed) 410 return (SET_ERROR(EINVAL)); 411 412 /* Healing is not supported when in 'force' mode. */ 413 if (drba->drba_cookie->drc_force) 414 return (SET_ERROR(EINVAL)); 415 416 /* Must have keys loaded if doing encrypted non-raw recv. */ 417 if (encrypted && !raw) { 418 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object, 419 NULL, NULL) != 0) 420 return (SET_ERROR(EACCES)); 421 } 422 423 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); 424 if (error != 0) 425 return (error); 426 427 /* 428 * When not doing best effort corrective recv healing can only 429 * be done if the send stream is for the same snapshot as the 430 * one we are trying to heal. 431 */ 432 if (zfs_recv_best_effort_corrective == 0 && 433 drba->drba_cookie->drc_drrb->drr_toguid != 434 dsl_dataset_phys(snap)->ds_guid) { 435 dsl_dataset_rele(snap, FTAG); 436 return (SET_ERROR(ENOTSUP)); 437 } 438 dsl_dataset_rele(snap, FTAG); 439 } else if (fromguid != 0) { 440 /* Sanity check the incremental recv */ 441 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 442 443 /* Can't perform a raw receive on top of a non-raw receive */ 444 if (!encrypted && raw) 445 return (SET_ERROR(EINVAL)); 446 447 /* Encryption is incompatible with embedded data */ 448 if (encrypted && embed) 449 return (SET_ERROR(EINVAL)); 450 451 /* Find snapshot in this dir that matches fromguid. */ 452 while (obj != 0) { 453 error = dsl_dataset_hold_obj(dp, obj, FTAG, 454 &snap); 455 if (error != 0) 456 return (SET_ERROR(ENODEV)); 457 if (snap->ds_dir != ds->ds_dir) { 458 dsl_dataset_rele(snap, FTAG); 459 return (SET_ERROR(ENODEV)); 460 } 461 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 462 break; 463 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 464 dsl_dataset_rele(snap, FTAG); 465 } 466 if (obj == 0) 467 return (SET_ERROR(ENODEV)); 468 469 if (drba->drba_cookie->drc_force) { 470 drba->drba_cookie->drc_fromsnapobj = obj; 471 } else { 472 /* 473 * If we are not forcing, there must be no 474 * changes since fromsnap. Raw sends have an 475 * additional constraint that requires that 476 * no "noop" snapshots exist between fromsnap 477 * and tosnap for the IVset checking code to 478 * work properly. 479 */ 480 if (dsl_dataset_modified_since_snap(ds, snap) || 481 (raw && 482 dsl_dataset_phys(ds)->ds_prev_snap_obj != 483 snap->ds_object)) { 484 dsl_dataset_rele(snap, FTAG); 485 return (SET_ERROR(ETXTBSY)); 486 } 487 drba->drba_cookie->drc_fromsnapobj = 488 ds->ds_prev->ds_object; 489 } 490 491 if (dsl_dataset_feature_is_active(snap, 492 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 493 snap)) { 494 dsl_dataset_rele(snap, FTAG); 495 return (SET_ERROR(EINVAL)); 496 } 497 498 error = recv_check_large_blocks(snap, featureflags); 499 if (error != 0) { 500 dsl_dataset_rele(snap, FTAG); 501 return (error); 502 } 503 504 dsl_dataset_rele(snap, FTAG); 505 } else { 506 /* If full and not healing then must be forced. */ 507 if (!drba->drba_cookie->drc_force) 508 return (SET_ERROR(EEXIST)); 509 510 /* 511 * We don't support using zfs recv -F to blow away 512 * encrypted filesystems. This would require the 513 * dsl dir to point to the old encryption key and 514 * the new one at the same time during the receive. 515 */ 516 if ((!encrypted && raw) || encrypted) 517 return (SET_ERROR(EINVAL)); 518 519 /* 520 * Perform the same encryption checks we would if 521 * we were creating a new dataset from scratch. 522 */ 523 if (!raw) { 524 boolean_t will_encrypt; 525 526 error = dmu_objset_create_crypt_check( 527 ds->ds_dir->dd_parent, drba->drba_dcp, 528 &will_encrypt); 529 if (error != 0) 530 return (error); 531 532 if (will_encrypt && embed) 533 return (SET_ERROR(EINVAL)); 534 } 535 } 536 537 return (0); 538 } 539 540 /* 541 * Check that any feature flags used in the data stream we're receiving are 542 * supported by the pool we are receiving into. 543 * 544 * Note that some of the features we explicitly check here have additional 545 * (implicit) features they depend on, but those dependencies are enforced 546 * through the zfeature_register() calls declaring the features that we 547 * explicitly check. 548 */ 549 static int 550 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 551 { 552 /* 553 * Check if there are any unsupported feature flags. 554 */ 555 if (!DMU_STREAM_SUPPORTED(featureflags)) { 556 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 557 } 558 559 /* Verify pool version supports SA if SA_SPILL feature set */ 560 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 561 spa_version(spa) < SPA_VERSION_SA) 562 return (SET_ERROR(ENOTSUP)); 563 564 /* 565 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 566 * and large_dnodes in the stream can only be used if those pool 567 * features are enabled because we don't attempt to decompress / 568 * un-embed / un-mooch / split up the blocks / dnodes during the 569 * receive process. 570 */ 571 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 572 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 573 return (SET_ERROR(ENOTSUP)); 574 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 575 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 576 return (SET_ERROR(ENOTSUP)); 577 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 578 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 579 return (SET_ERROR(ENOTSUP)); 580 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 581 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 582 return (SET_ERROR(ENOTSUP)); 583 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 584 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 585 return (SET_ERROR(ENOTSUP)); 586 587 /* 588 * Receiving redacted streams requires that redacted datasets are 589 * enabled. 590 */ 591 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 592 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 593 return (SET_ERROR(ENOTSUP)); 594 595 return (0); 596 } 597 598 static int 599 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 600 { 601 dmu_recv_begin_arg_t *drba = arg; 602 dsl_pool_t *dp = dmu_tx_pool(tx); 603 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 604 uint64_t fromguid = drrb->drr_fromguid; 605 int flags = drrb->drr_flags; 606 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 607 int error; 608 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 609 dsl_dataset_t *ds; 610 const char *tofs = drba->drba_cookie->drc_tofs; 611 612 /* already checked */ 613 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 614 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 615 616 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 617 DMU_COMPOUNDSTREAM || 618 drrb->drr_type >= DMU_OST_NUMTYPES || 619 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 620 return (SET_ERROR(EINVAL)); 621 622 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 623 if (error != 0) 624 return (error); 625 626 /* Resumable receives require extensible datasets */ 627 if (drba->drba_cookie->drc_resumable && 628 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 629 return (SET_ERROR(ENOTSUP)); 630 631 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 632 /* raw receives require the encryption feature */ 633 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 634 return (SET_ERROR(ENOTSUP)); 635 636 /* embedded data is incompatible with encryption and raw recv */ 637 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 638 return (SET_ERROR(EINVAL)); 639 640 /* raw receives require spill block allocation flag */ 641 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 642 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 643 } else { 644 /* 645 * We support unencrypted datasets below encrypted ones now, 646 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing 647 * with a dataset we may encrypt. 648 */ 649 if (drba->drba_dcp == NULL || 650 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { 651 dsflags |= DS_HOLD_FLAG_DECRYPT; 652 } 653 } 654 655 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 656 if (error == 0) { 657 /* target fs already exists; recv into temp clone */ 658 659 /* Can't recv a clone into an existing fs */ 660 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 661 dsl_dataset_rele_flags(ds, dsflags, FTAG); 662 return (SET_ERROR(EINVAL)); 663 } 664 665 error = recv_begin_check_existing_impl(drba, ds, fromguid, 666 featureflags); 667 dsl_dataset_rele_flags(ds, dsflags, FTAG); 668 } else if (error == ENOENT) { 669 /* target fs does not exist; must be a full backup or clone */ 670 char buf[ZFS_MAX_DATASET_NAME_LEN]; 671 objset_t *os; 672 673 /* healing recv must be done "into" an existing snapshot */ 674 if (drba->drba_cookie->drc_heal == B_TRUE) 675 return (SET_ERROR(ENOTSUP)); 676 677 /* 678 * If it's a non-clone incremental, we are missing the 679 * target fs, so fail the recv. 680 */ 681 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 682 drba->drba_origin)) 683 return (SET_ERROR(ENOENT)); 684 685 /* 686 * If we're receiving a full send as a clone, and it doesn't 687 * contain all the necessary free records and freeobject 688 * records, reject it. 689 */ 690 if (fromguid == 0 && drba->drba_origin != NULL && 691 !(flags & DRR_FLAG_FREERECORDS)) 692 return (SET_ERROR(EINVAL)); 693 694 /* Open the parent of tofs */ 695 ASSERT3U(strlen(tofs), <, sizeof (buf)); 696 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 697 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 698 if (error != 0) 699 return (error); 700 701 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 702 drba->drba_origin == NULL) { 703 boolean_t will_encrypt; 704 705 /* 706 * Check that we aren't breaking any encryption rules 707 * and that we have all the parameters we need to 708 * create an encrypted dataset if necessary. If we are 709 * making an encrypted dataset the stream can't have 710 * embedded data. 711 */ 712 error = dmu_objset_create_crypt_check(ds->ds_dir, 713 drba->drba_dcp, &will_encrypt); 714 if (error != 0) { 715 dsl_dataset_rele(ds, FTAG); 716 return (error); 717 } 718 719 if (will_encrypt && 720 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 721 dsl_dataset_rele(ds, FTAG); 722 return (SET_ERROR(EINVAL)); 723 } 724 } 725 726 /* 727 * Check filesystem and snapshot limits before receiving. We'll 728 * recheck snapshot limits again at the end (we create the 729 * filesystems and increment those counts during begin_sync). 730 */ 731 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 732 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 733 drba->drba_cred, drba->drba_proc); 734 if (error != 0) { 735 dsl_dataset_rele(ds, FTAG); 736 return (error); 737 } 738 739 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 740 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 741 drba->drba_cred, drba->drba_proc); 742 if (error != 0) { 743 dsl_dataset_rele(ds, FTAG); 744 return (error); 745 } 746 747 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 748 error = dmu_objset_from_ds(ds, &os); 749 if (error != 0) { 750 dsl_dataset_rele(ds, FTAG); 751 return (error); 752 } 753 if (dmu_objset_type(os) != DMU_OST_ZFS) { 754 dsl_dataset_rele(ds, FTAG); 755 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 756 } 757 758 if (drba->drba_origin != NULL) { 759 dsl_dataset_t *origin; 760 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 761 dsflags, FTAG, &origin); 762 if (error != 0) { 763 dsl_dataset_rele(ds, FTAG); 764 return (error); 765 } 766 if (!origin->ds_is_snapshot) { 767 dsl_dataset_rele_flags(origin, dsflags, FTAG); 768 dsl_dataset_rele(ds, FTAG); 769 return (SET_ERROR(EINVAL)); 770 } 771 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 772 fromguid != 0) { 773 dsl_dataset_rele_flags(origin, dsflags, FTAG); 774 dsl_dataset_rele(ds, FTAG); 775 return (SET_ERROR(ENODEV)); 776 } 777 778 if (origin->ds_dir->dd_crypto_obj != 0 && 779 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 780 dsl_dataset_rele_flags(origin, dsflags, FTAG); 781 dsl_dataset_rele(ds, FTAG); 782 return (SET_ERROR(EINVAL)); 783 } 784 785 /* 786 * If the origin is redacted we need to verify that this 787 * send stream can safely be received on top of the 788 * origin. 789 */ 790 if (dsl_dataset_feature_is_active(origin, 791 SPA_FEATURE_REDACTED_DATASETS)) { 792 if (!redact_check(drba, origin)) { 793 dsl_dataset_rele_flags(origin, dsflags, 794 FTAG); 795 dsl_dataset_rele_flags(ds, dsflags, 796 FTAG); 797 return (SET_ERROR(EINVAL)); 798 } 799 } 800 801 error = recv_check_large_blocks(ds, featureflags); 802 if (error != 0) { 803 dsl_dataset_rele_flags(origin, dsflags, FTAG); 804 dsl_dataset_rele_flags(ds, dsflags, FTAG); 805 return (error); 806 } 807 808 dsl_dataset_rele_flags(origin, dsflags, FTAG); 809 } 810 811 dsl_dataset_rele(ds, FTAG); 812 error = 0; 813 } 814 return (error); 815 } 816 817 static void 818 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 819 { 820 dmu_recv_begin_arg_t *drba = arg; 821 dsl_pool_t *dp = dmu_tx_pool(tx); 822 objset_t *mos = dp->dp_meta_objset; 823 dmu_recv_cookie_t *drc = drba->drba_cookie; 824 struct drr_begin *drrb = drc->drc_drrb; 825 const char *tofs = drc->drc_tofs; 826 uint64_t featureflags = drc->drc_featureflags; 827 dsl_dataset_t *ds, *newds; 828 objset_t *os; 829 uint64_t dsobj; 830 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 831 int error; 832 uint64_t crflags = 0; 833 dsl_crypto_params_t dummy_dcp = { 0 }; 834 dsl_crypto_params_t *dcp = drba->drba_dcp; 835 836 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 837 crflags |= DS_FLAG_CI_DATASET; 838 839 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 840 dsflags |= DS_HOLD_FLAG_DECRYPT; 841 842 /* 843 * Raw, non-incremental recvs always use a dummy dcp with 844 * the raw cmd set. Raw incremental recvs do not use a dcp 845 * since the encryption parameters are already set in stone. 846 */ 847 if (dcp == NULL && drrb->drr_fromguid == 0 && 848 drba->drba_origin == NULL) { 849 ASSERT3P(dcp, ==, NULL); 850 dcp = &dummy_dcp; 851 852 if (featureflags & DMU_BACKUP_FEATURE_RAW) 853 dcp->cp_cmd = DCP_CMD_RAW_RECV; 854 } 855 856 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 857 if (error == 0) { 858 /* Create temporary clone unless we're doing corrective recv */ 859 dsl_dataset_t *snap = NULL; 860 861 if (drba->drba_cookie->drc_fromsnapobj != 0) { 862 VERIFY0(dsl_dataset_hold_obj(dp, 863 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 864 ASSERT3P(dcp, ==, NULL); 865 } 866 if (drc->drc_heal) { 867 /* When healing we want to use the provided snapshot */ 868 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap, 869 &dsobj)); 870 } else { 871 dsobj = dsl_dataset_create_sync(ds->ds_dir, 872 recv_clone_name, snap, crflags, drba->drba_cred, 873 dcp, tx); 874 } 875 if (drba->drba_cookie->drc_fromsnapobj != 0) 876 dsl_dataset_rele(snap, FTAG); 877 dsl_dataset_rele_flags(ds, dsflags, FTAG); 878 } else { 879 dsl_dir_t *dd; 880 const char *tail; 881 dsl_dataset_t *origin = NULL; 882 883 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 884 885 if (drba->drba_origin != NULL) { 886 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 887 FTAG, &origin)); 888 ASSERT3P(dcp, ==, NULL); 889 } 890 891 /* Create new dataset. */ 892 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 893 origin, crflags, drba->drba_cred, dcp, tx); 894 if (origin != NULL) 895 dsl_dataset_rele(origin, FTAG); 896 dsl_dir_rele(dd, FTAG); 897 drc->drc_newfs = B_TRUE; 898 } 899 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 900 &newds)); 901 if (dsl_dataset_feature_is_active(newds, 902 SPA_FEATURE_REDACTED_DATASETS)) { 903 /* 904 * If the origin dataset is redacted, the child will be redacted 905 * when we create it. We clear the new dataset's 906 * redaction info; if it should be redacted, we'll fill 907 * in its information later. 908 */ 909 dsl_dataset_deactivate_feature(newds, 910 SPA_FEATURE_REDACTED_DATASETS, tx); 911 } 912 VERIFY0(dmu_objset_from_ds(newds, &os)); 913 914 if (drc->drc_resumable) { 915 dsl_dataset_zapify(newds, tx); 916 if (drrb->drr_fromguid != 0) { 917 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 918 8, 1, &drrb->drr_fromguid, tx)); 919 } 920 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 921 8, 1, &drrb->drr_toguid, tx)); 922 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 923 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 924 uint64_t one = 1; 925 uint64_t zero = 0; 926 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 927 8, 1, &one, tx)); 928 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 929 8, 1, &zero, tx)); 930 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 931 8, 1, &zero, tx)); 932 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 933 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 934 8, 1, &one, tx)); 935 } 936 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 937 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 938 8, 1, &one, tx)); 939 } 940 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 941 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 942 8, 1, &one, tx)); 943 } 944 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 945 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 946 8, 1, &one, tx)); 947 } 948 949 uint64_t *redact_snaps; 950 uint_t numredactsnaps; 951 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 952 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 953 &numredactsnaps) == 0) { 954 VERIFY0(zap_add(mos, dsobj, 955 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 956 sizeof (*redact_snaps), numredactsnaps, 957 redact_snaps, tx)); 958 } 959 } 960 961 /* 962 * Usually the os->os_encrypted value is tied to the presence of a 963 * DSL Crypto Key object in the dd. However, that will not be received 964 * until dmu_recv_stream(), so we set the value manually for now. 965 */ 966 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 967 os->os_encrypted = B_TRUE; 968 drba->drba_cookie->drc_raw = B_TRUE; 969 } 970 971 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 972 uint64_t *redact_snaps; 973 uint_t numredactsnaps; 974 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 975 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 976 dsl_dataset_activate_redaction(newds, redact_snaps, 977 numredactsnaps, tx); 978 } 979 980 dmu_buf_will_dirty(newds->ds_dbuf, tx); 981 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 982 983 /* 984 * If we actually created a non-clone, we need to create the objset 985 * in our new dataset. If this is a raw send we postpone this until 986 * dmu_recv_stream() so that we can allocate the metadnode with the 987 * properties from the DRR_BEGIN payload. 988 */ 989 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 990 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 991 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 992 !drc->drc_heal) { 993 (void) dmu_objset_create_impl(dp->dp_spa, 994 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 995 } 996 rrw_exit(&newds->ds_bp_rwlock, FTAG); 997 998 drba->drba_cookie->drc_ds = newds; 999 drba->drba_cookie->drc_os = os; 1000 1001 spa_history_log_internal_ds(newds, "receive", tx, " "); 1002 } 1003 1004 static int 1005 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1006 { 1007 dmu_recv_begin_arg_t *drba = arg; 1008 dmu_recv_cookie_t *drc = drba->drba_cookie; 1009 dsl_pool_t *dp = dmu_tx_pool(tx); 1010 struct drr_begin *drrb = drc->drc_drrb; 1011 int error; 1012 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1013 dsl_dataset_t *ds; 1014 const char *tofs = drc->drc_tofs; 1015 1016 /* already checked */ 1017 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1018 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 1019 1020 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1021 DMU_COMPOUNDSTREAM || 1022 drrb->drr_type >= DMU_OST_NUMTYPES) 1023 return (SET_ERROR(EINVAL)); 1024 1025 /* 1026 * This is mostly a sanity check since we should have already done these 1027 * checks during a previous attempt to receive the data. 1028 */ 1029 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 1030 dp->dp_spa); 1031 if (error != 0) 1032 return (error); 1033 1034 /* 6 extra bytes for /%recv */ 1035 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1036 1037 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1038 tofs, recv_clone_name); 1039 1040 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 1041 /* raw receives require spill block allocation flag */ 1042 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 1043 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 1044 } else { 1045 dsflags |= DS_HOLD_FLAG_DECRYPT; 1046 } 1047 1048 boolean_t recvexist = B_TRUE; 1049 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 1050 /* %recv does not exist; continue in tofs */ 1051 recvexist = B_FALSE; 1052 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 1053 if (error != 0) 1054 return (error); 1055 } 1056 1057 /* 1058 * Resume of full/newfs recv on existing dataset should be done with 1059 * force flag 1060 */ 1061 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) { 1062 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1063 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS)); 1064 } 1065 1066 /* check that ds is marked inconsistent */ 1067 if (!DS_IS_INCONSISTENT(ds)) { 1068 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1069 return (SET_ERROR(EINVAL)); 1070 } 1071 1072 /* check that there is resuming data, and that the toguid matches */ 1073 if (!dsl_dataset_is_zapified(ds)) { 1074 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1075 return (SET_ERROR(EINVAL)); 1076 } 1077 uint64_t val; 1078 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1079 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1080 if (error != 0 || drrb->drr_toguid != val) { 1081 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1082 return (SET_ERROR(EINVAL)); 1083 } 1084 1085 /* 1086 * Check if the receive is still running. If so, it will be owned. 1087 * Note that nothing else can own the dataset (e.g. after the receive 1088 * fails) because it will be marked inconsistent. 1089 */ 1090 if (dsl_dataset_has_owner(ds)) { 1091 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1092 return (SET_ERROR(EBUSY)); 1093 } 1094 1095 /* There should not be any snapshots of this fs yet. */ 1096 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1097 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1098 return (SET_ERROR(EINVAL)); 1099 } 1100 1101 /* 1102 * Note: resume point will be checked when we process the first WRITE 1103 * record. 1104 */ 1105 1106 /* check that the origin matches */ 1107 val = 0; 1108 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1109 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1110 if (drrb->drr_fromguid != val) { 1111 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1112 return (SET_ERROR(EINVAL)); 1113 } 1114 1115 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1116 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1117 1118 /* 1119 * If we're resuming, and the send is redacted, then the original send 1120 * must have been redacted, and must have been redacted with respect to 1121 * the same snapshots. 1122 */ 1123 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1124 uint64_t num_ds_redact_snaps; 1125 uint64_t *ds_redact_snaps; 1126 1127 uint_t num_stream_redact_snaps; 1128 uint64_t *stream_redact_snaps; 1129 1130 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1131 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1132 &num_stream_redact_snaps) != 0) { 1133 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1134 return (SET_ERROR(EINVAL)); 1135 } 1136 1137 if (!dsl_dataset_get_uint64_array_feature(ds, 1138 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1139 &ds_redact_snaps)) { 1140 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1141 return (SET_ERROR(EINVAL)); 1142 } 1143 1144 for (int i = 0; i < num_ds_redact_snaps; i++) { 1145 if (!redact_snaps_contains(ds_redact_snaps, 1146 num_ds_redact_snaps, stream_redact_snaps[i])) { 1147 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1148 return (SET_ERROR(EINVAL)); 1149 } 1150 } 1151 } 1152 1153 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1154 if (error != 0) { 1155 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1156 return (error); 1157 } 1158 1159 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1160 return (0); 1161 } 1162 1163 static void 1164 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1165 { 1166 dmu_recv_begin_arg_t *drba = arg; 1167 dsl_pool_t *dp = dmu_tx_pool(tx); 1168 const char *tofs = drba->drba_cookie->drc_tofs; 1169 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1170 dsl_dataset_t *ds; 1171 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1172 /* 6 extra bytes for /%recv */ 1173 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1174 1175 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1176 recv_clone_name); 1177 1178 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1179 drba->drba_cookie->drc_raw = B_TRUE; 1180 } else { 1181 dsflags |= DS_HOLD_FLAG_DECRYPT; 1182 } 1183 1184 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1185 != 0) { 1186 /* %recv does not exist; continue in tofs */ 1187 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1188 &ds)); 1189 drba->drba_cookie->drc_newfs = B_TRUE; 1190 } 1191 1192 ASSERT(DS_IS_INCONSISTENT(ds)); 1193 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1194 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1195 drba->drba_cookie->drc_raw); 1196 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1197 1198 drba->drba_cookie->drc_ds = ds; 1199 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1200 drba->drba_cookie->drc_should_save = B_TRUE; 1201 1202 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1203 } 1204 1205 /* 1206 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1207 * succeeds; otherwise we will leak the holds on the datasets. 1208 */ 1209 int 1210 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1211 boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops, 1212 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, 1213 zfs_file_t *fp, offset_t *voffp) 1214 { 1215 dmu_recv_begin_arg_t drba = { 0 }; 1216 int err; 1217 1218 memset(drc, 0, sizeof (dmu_recv_cookie_t)); 1219 drc->drc_drr_begin = drr_begin; 1220 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1221 drc->drc_tosnap = tosnap; 1222 drc->drc_tofs = tofs; 1223 drc->drc_force = force; 1224 drc->drc_heal = heal; 1225 drc->drc_resumable = resumable; 1226 drc->drc_cred = CRED(); 1227 drc->drc_proc = curproc; 1228 drc->drc_clone = (origin != NULL); 1229 1230 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1231 drc->drc_byteswap = B_TRUE; 1232 (void) fletcher_4_incremental_byteswap(drr_begin, 1233 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1234 byteswap_record(drr_begin); 1235 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1236 (void) fletcher_4_incremental_native(drr_begin, 1237 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1238 } else { 1239 return (SET_ERROR(EINVAL)); 1240 } 1241 1242 drc->drc_fp = fp; 1243 drc->drc_voff = *voffp; 1244 drc->drc_featureflags = 1245 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1246 1247 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1248 void *payload = NULL; 1249 if (payloadlen != 0) 1250 payload = kmem_alloc(payloadlen, KM_SLEEP); 1251 1252 err = receive_read_payload_and_next_header(drc, payloadlen, 1253 payload); 1254 if (err != 0) { 1255 kmem_free(payload, payloadlen); 1256 return (err); 1257 } 1258 if (payloadlen != 0) { 1259 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1260 KM_SLEEP); 1261 kmem_free(payload, payloadlen); 1262 if (err != 0) { 1263 kmem_free(drc->drc_next_rrd, 1264 sizeof (*drc->drc_next_rrd)); 1265 return (err); 1266 } 1267 } 1268 1269 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1270 drc->drc_spill = B_TRUE; 1271 1272 drba.drba_origin = origin; 1273 drba.drba_cookie = drc; 1274 drba.drba_cred = CRED(); 1275 drba.drba_proc = curproc; 1276 1277 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1278 err = dsl_sync_task(tofs, 1279 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1280 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1281 } else { 1282 /* 1283 * For non-raw, non-incremental, non-resuming receives the 1284 * user can specify encryption parameters on the command line 1285 * with "zfs recv -o". For these receives we create a dcp and 1286 * pass it to the sync task. Creating the dcp will implicitly 1287 * remove the encryption params from the localprops nvlist, 1288 * which avoids errors when trying to set these normally 1289 * read-only properties. Any other kind of receive that 1290 * attempts to set these properties will fail as a result. 1291 */ 1292 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1293 DMU_BACKUP_FEATURE_RAW) == 0 && 1294 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1295 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1296 localprops, hidden_args, &drba.drba_dcp); 1297 } 1298 1299 if (err == 0) { 1300 err = dsl_sync_task(tofs, 1301 dmu_recv_begin_check, dmu_recv_begin_sync, 1302 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1303 dsl_crypto_params_free(drba.drba_dcp, !!err); 1304 } 1305 } 1306 1307 if (err != 0) { 1308 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1309 nvlist_free(drc->drc_begin_nvl); 1310 } 1311 return (err); 1312 } 1313 1314 /* 1315 * Holds data need for corrective recv callback 1316 */ 1317 typedef struct cr_cb_data { 1318 uint64_t size; 1319 zbookmark_phys_t zb; 1320 spa_t *spa; 1321 } cr_cb_data_t; 1322 1323 static void 1324 corrective_read_done(zio_t *zio) 1325 { 1326 cr_cb_data_t *data = zio->io_private; 1327 /* Corruption corrected; update error log if needed */ 1328 if (zio->io_error == 0) 1329 spa_remove_error(data->spa, &data->zb); 1330 kmem_free(data, sizeof (cr_cb_data_t)); 1331 abd_free(zio->io_abd); 1332 } 1333 1334 /* 1335 * zio_rewrite the data pointed to by bp with the data from the rrd's abd. 1336 */ 1337 static int 1338 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw, 1339 struct receive_record_arg *rrd, blkptr_t *bp) 1340 { 1341 int err; 1342 zio_t *io; 1343 zbookmark_phys_t zb; 1344 dnode_t *dn; 1345 abd_t *abd = rrd->abd; 1346 zio_cksum_t bp_cksum = bp->blk_cksum; 1347 zio_flag_t flags = ZIO_FLAG_SPECULATIVE | 1348 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL; 1349 1350 if (rwa->raw) 1351 flags |= ZIO_FLAG_RAW; 1352 1353 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn); 1354 if (err != 0) 1355 return (err); 1356 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0, 1357 dbuf_whichblock(dn, 0, drrw->drr_offset)); 1358 dnode_rele(dn, FTAG); 1359 1360 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) { 1361 /* Decompress the stream data */ 1362 abd_t *dabd = abd_alloc_linear( 1363 drrw->drr_logical_size, B_FALSE); 1364 err = zio_decompress_data(drrw->drr_compressiontype, 1365 abd, abd_to_buf(dabd), abd_get_size(abd), 1366 abd_get_size(dabd), NULL); 1367 1368 if (err != 0) { 1369 abd_free(dabd); 1370 return (err); 1371 } 1372 /* Swap in the newly decompressed data into the abd */ 1373 abd_free(abd); 1374 abd = dabd; 1375 } 1376 1377 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 1378 /* Recompress the data */ 1379 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp), 1380 B_FALSE); 1381 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp), 1382 abd, abd_to_buf(cabd), abd_get_size(abd), 1383 rwa->os->os_complevel); 1384 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize); 1385 /* Swap in newly compressed data into the abd */ 1386 abd_free(abd); 1387 abd = cabd; 1388 flags |= ZIO_FLAG_RAW_COMPRESS; 1389 } 1390 1391 /* 1392 * The stream is not encrypted but the data on-disk is. 1393 * We need to re-encrypt the buf using the same 1394 * encryption type, salt, iv, and mac that was used to encrypt 1395 * the block previosly. 1396 */ 1397 if (!rwa->raw && BP_USES_CRYPT(bp)) { 1398 dsl_dataset_t *ds; 1399 dsl_crypto_key_t *dck = NULL; 1400 uint8_t salt[ZIO_DATA_SALT_LEN]; 1401 uint8_t iv[ZIO_DATA_IV_LEN]; 1402 uint8_t mac[ZIO_DATA_MAC_LEN]; 1403 boolean_t no_crypt = B_FALSE; 1404 dsl_pool_t *dp = dmu_objset_pool(rwa->os); 1405 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE); 1406 1407 zio_crypt_decode_params_bp(bp, salt, iv); 1408 zio_crypt_decode_mac_bp(bp, mac); 1409 1410 dsl_pool_config_enter(dp, FTAG); 1411 err = dsl_dataset_hold_flags(dp, rwa->tofs, 1412 DS_HOLD_FLAG_DECRYPT, FTAG, &ds); 1413 if (err != 0) { 1414 dsl_pool_config_exit(dp, FTAG); 1415 abd_free(eabd); 1416 return (SET_ERROR(EACCES)); 1417 } 1418 1419 /* Look up the key from the spa's keystore */ 1420 err = spa_keystore_lookup_key(rwa->os->os_spa, 1421 zb.zb_objset, FTAG, &dck); 1422 if (err != 0) { 1423 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, 1424 FTAG); 1425 dsl_pool_config_exit(dp, FTAG); 1426 abd_free(eabd); 1427 return (SET_ERROR(EACCES)); 1428 } 1429 1430 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 1431 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, 1432 mac, abd_get_size(abd), abd, eabd, &no_crypt); 1433 1434 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG); 1435 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1436 dsl_pool_config_exit(dp, FTAG); 1437 1438 ASSERT0(no_crypt); 1439 if (err != 0) { 1440 abd_free(eabd); 1441 return (err); 1442 } 1443 /* Swap in the newly encrypted data into the abd */ 1444 abd_free(abd); 1445 abd = eabd; 1446 1447 /* 1448 * We want to prevent zio_rewrite() from trying to 1449 * encrypt the data again 1450 */ 1451 flags |= ZIO_FLAG_RAW_ENCRYPT; 1452 } 1453 rrd->abd = abd; 1454 1455 io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd, 1456 BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb); 1457 1458 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) || 1459 abd_get_size(abd) == BP_GET_PSIZE(bp)); 1460 1461 /* compute new bp checksum value and make sure it matches the old one */ 1462 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd)); 1463 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) { 1464 zio_destroy(io); 1465 if (zfs_recv_best_effort_corrective != 0) 1466 return (0); 1467 return (SET_ERROR(ECKSUM)); 1468 } 1469 1470 /* Correct the corruption in place */ 1471 err = zio_wait(io); 1472 if (err == 0) { 1473 cr_cb_data_t *cb_data = 1474 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP); 1475 cb_data->spa = rwa->os->os_spa; 1476 cb_data->size = drrw->drr_logical_size; 1477 cb_data->zb = zb; 1478 /* Test if healing worked by re-reading the bp */ 1479 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp, 1480 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE), 1481 drrw->drr_logical_size, corrective_read_done, 1482 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL)); 1483 } 1484 if (err != 0 && zfs_recv_best_effort_corrective != 0) 1485 err = 0; 1486 1487 return (err); 1488 } 1489 1490 static int 1491 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1492 { 1493 int done = 0; 1494 1495 /* 1496 * The code doesn't rely on this (lengths being multiples of 8). See 1497 * comment in dump_bytes. 1498 */ 1499 ASSERT(len % 8 == 0 || 1500 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1501 1502 while (done < len) { 1503 ssize_t resid; 1504 zfs_file_t *fp = drc->drc_fp; 1505 int err = zfs_file_read(fp, (char *)buf + done, 1506 len - done, &resid); 1507 if (resid == len - done) { 1508 /* 1509 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1510 * that the receive was interrupted and can 1511 * potentially be resumed. 1512 */ 1513 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1514 } 1515 drc->drc_voff += len - done - resid; 1516 done = len - resid; 1517 if (err != 0) 1518 return (err); 1519 } 1520 1521 drc->drc_bytes_read += len; 1522 1523 ASSERT3U(done, ==, len); 1524 return (0); 1525 } 1526 1527 static inline uint8_t 1528 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1529 { 1530 if (bonus_type == DMU_OT_SA) { 1531 return (1); 1532 } else { 1533 return (1 + 1534 ((DN_OLD_MAX_BONUSLEN - 1535 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1536 } 1537 } 1538 1539 static void 1540 save_resume_state(struct receive_writer_arg *rwa, 1541 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1542 { 1543 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1544 1545 if (!rwa->resumable) 1546 return; 1547 1548 /* 1549 * We use ds_resume_bytes[] != 0 to indicate that we need to 1550 * update this on disk, so it must not be 0. 1551 */ 1552 ASSERT(rwa->bytes_read != 0); 1553 1554 /* 1555 * We only resume from write records, which have a valid 1556 * (non-meta-dnode) object number. 1557 */ 1558 ASSERT(object != 0); 1559 1560 /* 1561 * For resuming to work correctly, we must receive records in order, 1562 * sorted by object,offset. This is checked by the callers, but 1563 * assert it here for good measure. 1564 */ 1565 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1566 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1567 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1568 ASSERT3U(rwa->bytes_read, >=, 1569 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1570 1571 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1572 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1573 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1574 } 1575 1576 static int 1577 receive_object_is_same_generation(objset_t *os, uint64_t object, 1578 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1579 const void *new_bonus, boolean_t *samegenp) 1580 { 1581 zfs_file_info_t zoi; 1582 int err; 1583 1584 dmu_buf_t *old_bonus_dbuf; 1585 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1586 if (err != 0) 1587 return (err); 1588 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1589 &zoi); 1590 dmu_buf_rele(old_bonus_dbuf, FTAG); 1591 if (err != 0) 1592 return (err); 1593 uint64_t old_gen = zoi.zfi_generation; 1594 1595 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1596 if (err != 0) 1597 return (err); 1598 uint64_t new_gen = zoi.zfi_generation; 1599 1600 *samegenp = (old_gen == new_gen); 1601 return (0); 1602 } 1603 1604 static int 1605 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1606 const struct drr_object *drro, const dmu_object_info_t *doi, 1607 const void *bonus_data, 1608 uint64_t *object_to_hold, uint32_t *new_blksz) 1609 { 1610 uint32_t indblksz = drro->drr_indblkshift ? 1611 1ULL << drro->drr_indblkshift : 0; 1612 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1613 drro->drr_bonuslen); 1614 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1615 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1616 boolean_t do_free_range = B_FALSE; 1617 int err; 1618 1619 *object_to_hold = drro->drr_object; 1620 1621 /* nblkptr should be bounded by the bonus size and type */ 1622 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1623 return (SET_ERROR(EINVAL)); 1624 1625 /* 1626 * After the previous send stream, the sending system may 1627 * have freed this object, and then happened to re-allocate 1628 * this object number in a later txg. In this case, we are 1629 * receiving a different logical file, and the block size may 1630 * appear to be different. i.e. we may have a different 1631 * block size for this object than what the send stream says. 1632 * In this case we need to remove the object's contents, 1633 * so that its structure can be changed and then its contents 1634 * entirely replaced by subsequent WRITE records. 1635 * 1636 * If this is a -L (--large-block) incremental stream, and 1637 * the previous stream was not -L, the block size may appear 1638 * to increase. i.e. we may have a smaller block size for 1639 * this object than what the send stream says. In this case 1640 * we need to keep the object's contents and block size 1641 * intact, so that we don't lose parts of the object's 1642 * contents that are not changed by this incremental send 1643 * stream. 1644 * 1645 * We can distinguish between the two above cases by using 1646 * the ZPL's generation number (see 1647 * receive_object_is_same_generation()). However, we only 1648 * want to rely on the generation number when absolutely 1649 * necessary, because with raw receives, the generation is 1650 * encrypted. We also want to minimize dependence on the 1651 * ZPL, so that other types of datasets can also be received 1652 * (e.g. ZVOLs, although note that ZVOLS currently do not 1653 * reallocate their objects or change their structure). 1654 * Therefore, we check a number of different cases where we 1655 * know it is safe to discard the object's contents, before 1656 * using the ZPL's generation number to make the above 1657 * distinction. 1658 */ 1659 if (drro->drr_blksz != doi->doi_data_block_size) { 1660 if (rwa->raw) { 1661 /* 1662 * RAW streams always have large blocks, so 1663 * we are sure that the data is not needed 1664 * due to changing --large-block to be on. 1665 * Which is fortunate since the bonus buffer 1666 * (which contains the ZPL generation) is 1667 * encrypted, and the key might not be 1668 * loaded. 1669 */ 1670 do_free_range = B_TRUE; 1671 } else if (rwa->full) { 1672 /* 1673 * This is a full send stream, so it always 1674 * replaces what we have. Even if the 1675 * generation numbers happen to match, this 1676 * can not actually be the same logical file. 1677 * This is relevant when receiving a full 1678 * send as a clone. 1679 */ 1680 do_free_range = B_TRUE; 1681 } else if (drro->drr_type != 1682 DMU_OT_PLAIN_FILE_CONTENTS || 1683 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1684 /* 1685 * PLAIN_FILE_CONTENTS are the only type of 1686 * objects that have ever been stored with 1687 * large blocks, so we don't need the special 1688 * logic below. ZAP blocks can shrink (when 1689 * there's only one block), so we don't want 1690 * to hit the error below about block size 1691 * only increasing. 1692 */ 1693 do_free_range = B_TRUE; 1694 } else if (doi->doi_max_offset <= 1695 doi->doi_data_block_size) { 1696 /* 1697 * There is only one block. We can free it, 1698 * because its contents will be replaced by a 1699 * WRITE record. This can not be the no-L -> 1700 * -L case, because the no-L case would have 1701 * resulted in multiple blocks. If we 1702 * supported -L -> no-L, it would not be safe 1703 * to free the file's contents. Fortunately, 1704 * that is not allowed (see 1705 * recv_check_large_blocks()). 1706 */ 1707 do_free_range = B_TRUE; 1708 } else { 1709 boolean_t is_same_gen; 1710 err = receive_object_is_same_generation(rwa->os, 1711 drro->drr_object, doi->doi_bonus_type, 1712 drro->drr_bonustype, bonus_data, &is_same_gen); 1713 if (err != 0) 1714 return (SET_ERROR(EINVAL)); 1715 1716 if (is_same_gen) { 1717 /* 1718 * This is the same logical file, and 1719 * the block size must be increasing. 1720 * It could only decrease if 1721 * --large-block was changed to be 1722 * off, which is checked in 1723 * recv_check_large_blocks(). 1724 */ 1725 if (drro->drr_blksz <= 1726 doi->doi_data_block_size) 1727 return (SET_ERROR(EINVAL)); 1728 /* 1729 * We keep the existing blocksize and 1730 * contents. 1731 */ 1732 *new_blksz = 1733 doi->doi_data_block_size; 1734 } else { 1735 do_free_range = B_TRUE; 1736 } 1737 } 1738 } 1739 1740 /* nblkptr can only decrease if the object was reallocated */ 1741 if (nblkptr < doi->doi_nblkptr) 1742 do_free_range = B_TRUE; 1743 1744 /* number of slots can only change on reallocation */ 1745 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1746 do_free_range = B_TRUE; 1747 1748 /* 1749 * For raw sends we also check a few other fields to 1750 * ensure we are preserving the objset structure exactly 1751 * as it was on the receive side: 1752 * - A changed indirect block size 1753 * - A smaller nlevels 1754 */ 1755 if (rwa->raw) { 1756 if (indblksz != doi->doi_metadata_block_size) 1757 do_free_range = B_TRUE; 1758 if (drro->drr_nlevels < doi->doi_indirection) 1759 do_free_range = B_TRUE; 1760 } 1761 1762 if (do_free_range) { 1763 err = dmu_free_long_range(rwa->os, drro->drr_object, 1764 0, DMU_OBJECT_END); 1765 if (err != 0) 1766 return (SET_ERROR(EINVAL)); 1767 } 1768 1769 /* 1770 * The dmu does not currently support decreasing nlevels 1771 * or changing the number of dnode slots on an object. For 1772 * non-raw sends, this does not matter and the new object 1773 * can just use the previous one's nlevels. For raw sends, 1774 * however, the structure of the received dnode (including 1775 * nlevels and dnode slots) must match that of the send 1776 * side. Therefore, instead of using dmu_object_reclaim(), 1777 * we must free the object completely and call 1778 * dmu_object_claim_dnsize() instead. 1779 */ 1780 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || 1781 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1782 err = dmu_free_long_object(rwa->os, drro->drr_object); 1783 if (err != 0) 1784 return (SET_ERROR(EINVAL)); 1785 1786 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1787 *object_to_hold = DMU_NEW_OBJECT; 1788 } 1789 1790 /* 1791 * For raw receives, free everything beyond the new incoming 1792 * maxblkid. Normally this would be done with a DRR_FREE 1793 * record that would come after this DRR_OBJECT record is 1794 * processed. However, for raw receives we manually set the 1795 * maxblkid from the drr_maxblkid and so we must first free 1796 * everything above that blkid to ensure the DMU is always 1797 * consistent with itself. We will never free the first block 1798 * of the object here because a maxblkid of 0 could indicate 1799 * an object with a single block or one with no blocks. This 1800 * free may be skipped when dmu_free_long_range() was called 1801 * above since it covers the entire object's contents. 1802 */ 1803 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1804 err = dmu_free_long_range(rwa->os, drro->drr_object, 1805 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1806 DMU_OBJECT_END); 1807 if (err != 0) 1808 return (SET_ERROR(EINVAL)); 1809 } 1810 return (0); 1811 } 1812 1813 noinline static int 1814 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1815 void *data) 1816 { 1817 dmu_object_info_t doi; 1818 dmu_tx_t *tx; 1819 int err; 1820 uint32_t new_blksz = drro->drr_blksz; 1821 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1822 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1823 1824 if (drro->drr_type == DMU_OT_NONE || 1825 !DMU_OT_IS_VALID(drro->drr_type) || 1826 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1827 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1828 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1829 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1830 drro->drr_blksz < SPA_MINBLOCKSIZE || 1831 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1832 drro->drr_bonuslen > 1833 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1834 dn_slots > 1835 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1836 return (SET_ERROR(EINVAL)); 1837 } 1838 1839 if (rwa->raw) { 1840 /* 1841 * We should have received a DRR_OBJECT_RANGE record 1842 * containing this block and stored it in rwa. 1843 */ 1844 if (drro->drr_object < rwa->or_firstobj || 1845 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1846 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1847 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1848 drro->drr_nlevels > DN_MAX_LEVELS || 1849 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1850 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1851 drro->drr_raw_bonuslen) 1852 return (SET_ERROR(EINVAL)); 1853 } else { 1854 /* 1855 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1856 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1857 */ 1858 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1859 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1860 return (SET_ERROR(EINVAL)); 1861 } 1862 1863 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1864 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1865 return (SET_ERROR(EINVAL)); 1866 } 1867 } 1868 1869 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1870 1871 if (err != 0 && err != ENOENT && err != EEXIST) 1872 return (SET_ERROR(EINVAL)); 1873 1874 if (drro->drr_object > rwa->max_object) 1875 rwa->max_object = drro->drr_object; 1876 1877 /* 1878 * If we are losing blkptrs or changing the block size this must 1879 * be a new file instance. We must clear out the previous file 1880 * contents before we can change this type of metadata in the dnode. 1881 * Raw receives will also check that the indirect structure of the 1882 * dnode hasn't changed. 1883 */ 1884 uint64_t object_to_hold; 1885 if (err == 0) { 1886 err = receive_handle_existing_object(rwa, drro, &doi, data, 1887 &object_to_hold, &new_blksz); 1888 if (err != 0) 1889 return (err); 1890 } else if (err == EEXIST) { 1891 /* 1892 * The object requested is currently an interior slot of a 1893 * multi-slot dnode. This will be resolved when the next txg 1894 * is synced out, since the send stream will have told us 1895 * to free this slot when we freed the associated dnode 1896 * earlier in the stream. 1897 */ 1898 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1899 1900 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1901 return (SET_ERROR(EINVAL)); 1902 1903 /* object was freed and we are about to allocate a new one */ 1904 object_to_hold = DMU_NEW_OBJECT; 1905 } else { 1906 /* object is free and we are about to allocate a new one */ 1907 object_to_hold = DMU_NEW_OBJECT; 1908 } 1909 1910 /* 1911 * If this is a multi-slot dnode there is a chance that this 1912 * object will expand into a slot that is already used by 1913 * another object from the previous snapshot. We must free 1914 * these objects before we attempt to allocate the new dnode. 1915 */ 1916 if (dn_slots > 1) { 1917 boolean_t need_sync = B_FALSE; 1918 1919 for (uint64_t slot = drro->drr_object + 1; 1920 slot < drro->drr_object + dn_slots; 1921 slot++) { 1922 dmu_object_info_t slot_doi; 1923 1924 err = dmu_object_info(rwa->os, slot, &slot_doi); 1925 if (err == ENOENT || err == EEXIST) 1926 continue; 1927 else if (err != 0) 1928 return (err); 1929 1930 err = dmu_free_long_object(rwa->os, slot); 1931 if (err != 0) 1932 return (err); 1933 1934 need_sync = B_TRUE; 1935 } 1936 1937 if (need_sync) 1938 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1939 } 1940 1941 tx = dmu_tx_create(rwa->os); 1942 dmu_tx_hold_bonus(tx, object_to_hold); 1943 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1944 err = dmu_tx_assign(tx, TXG_WAIT); 1945 if (err != 0) { 1946 dmu_tx_abort(tx); 1947 return (err); 1948 } 1949 1950 if (object_to_hold == DMU_NEW_OBJECT) { 1951 /* Currently free, wants to be allocated */ 1952 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1953 drro->drr_type, new_blksz, 1954 drro->drr_bonustype, drro->drr_bonuslen, 1955 dn_slots << DNODE_SHIFT, tx); 1956 } else if (drro->drr_type != doi.doi_type || 1957 new_blksz != doi.doi_data_block_size || 1958 drro->drr_bonustype != doi.doi_bonus_type || 1959 drro->drr_bonuslen != doi.doi_bonus_size) { 1960 /* Currently allocated, but with different properties */ 1961 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1962 drro->drr_type, new_blksz, 1963 drro->drr_bonustype, drro->drr_bonuslen, 1964 dn_slots << DNODE_SHIFT, rwa->spill ? 1965 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1966 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1967 /* 1968 * Currently allocated, the existing version of this object 1969 * may reference a spill block that is no longer allocated 1970 * at the source and needs to be freed. 1971 */ 1972 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1973 } 1974 1975 if (err != 0) { 1976 dmu_tx_commit(tx); 1977 return (SET_ERROR(EINVAL)); 1978 } 1979 1980 if (rwa->or_crypt_params_present) { 1981 /* 1982 * Set the crypt params for the buffer associated with this 1983 * range of dnodes. This causes the blkptr_t to have the 1984 * same crypt params (byteorder, salt, iv, mac) as on the 1985 * sending side. 1986 * 1987 * Since we are committing this tx now, it is possible for 1988 * the dnode block to end up on-disk with the incorrect MAC, 1989 * if subsequent objects in this block are received in a 1990 * different txg. However, since the dataset is marked as 1991 * inconsistent, no code paths will do a non-raw read (or 1992 * decrypt the block / verify the MAC). The receive code and 1993 * scrub code can safely do raw reads and verify the 1994 * checksum. They don't need to verify the MAC. 1995 */ 1996 dmu_buf_t *db = NULL; 1997 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1998 1999 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 2000 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 2001 if (err != 0) { 2002 dmu_tx_commit(tx); 2003 return (SET_ERROR(EINVAL)); 2004 } 2005 2006 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 2007 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 2008 2009 dmu_buf_rele(db, FTAG); 2010 2011 rwa->or_crypt_params_present = B_FALSE; 2012 } 2013 2014 dmu_object_set_checksum(rwa->os, drro->drr_object, 2015 drro->drr_checksumtype, tx); 2016 dmu_object_set_compress(rwa->os, drro->drr_object, 2017 drro->drr_compress, tx); 2018 2019 /* handle more restrictive dnode structuring for raw recvs */ 2020 if (rwa->raw) { 2021 /* 2022 * Set the indirect block size, block shift, nlevels. 2023 * This will not fail because we ensured all of the 2024 * blocks were freed earlier if this is a new object. 2025 * For non-new objects block size and indirect block 2026 * shift cannot change and nlevels can only increase. 2027 */ 2028 ASSERT3U(new_blksz, ==, drro->drr_blksz); 2029 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 2030 drro->drr_blksz, drro->drr_indblkshift, tx)); 2031 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 2032 drro->drr_nlevels, tx)); 2033 2034 /* 2035 * Set the maxblkid. This will always succeed because 2036 * we freed all blocks beyond the new maxblkid above. 2037 */ 2038 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 2039 drro->drr_maxblkid, tx)); 2040 } 2041 2042 if (data != NULL) { 2043 dmu_buf_t *db; 2044 dnode_t *dn; 2045 uint32_t flags = DMU_READ_NO_PREFETCH; 2046 2047 if (rwa->raw) 2048 flags |= DMU_READ_NO_DECRYPT; 2049 2050 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 2051 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 2052 2053 dmu_buf_will_dirty(db, tx); 2054 2055 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2056 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 2057 2058 /* 2059 * Raw bonus buffers have their byteorder determined by the 2060 * DRR_OBJECT_RANGE record. 2061 */ 2062 if (rwa->byteswap && !rwa->raw) { 2063 dmu_object_byteswap_t byteswap = 2064 DMU_OT_BYTESWAP(drro->drr_bonustype); 2065 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2066 DRR_OBJECT_PAYLOAD_SIZE(drro)); 2067 } 2068 dmu_buf_rele(db, FTAG); 2069 dnode_rele(dn, FTAG); 2070 } 2071 dmu_tx_commit(tx); 2072 2073 return (0); 2074 } 2075 2076 noinline static int 2077 receive_freeobjects(struct receive_writer_arg *rwa, 2078 struct drr_freeobjects *drrfo) 2079 { 2080 uint64_t obj; 2081 int next_err = 0; 2082 2083 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2084 return (SET_ERROR(EINVAL)); 2085 2086 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 2087 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 2088 obj < DN_MAX_OBJECT && next_err == 0; 2089 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2090 dmu_object_info_t doi; 2091 int err; 2092 2093 err = dmu_object_info(rwa->os, obj, &doi); 2094 if (err == ENOENT) 2095 continue; 2096 else if (err != 0) 2097 return (err); 2098 2099 err = dmu_free_long_object(rwa->os, obj); 2100 2101 if (err != 0) 2102 return (err); 2103 } 2104 if (next_err != ESRCH) 2105 return (next_err); 2106 return (0); 2107 } 2108 2109 /* 2110 * Note: if this fails, the caller will clean up any records left on the 2111 * rwa->write_batch list. 2112 */ 2113 static int 2114 flush_write_batch_impl(struct receive_writer_arg *rwa) 2115 { 2116 dnode_t *dn; 2117 int err; 2118 2119 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 2120 return (SET_ERROR(EINVAL)); 2121 2122 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 2123 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 2124 2125 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2126 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2127 2128 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 2129 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 2130 2131 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2132 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 2133 last_drrw->drr_offset - first_drrw->drr_offset + 2134 last_drrw->drr_logical_size); 2135 err = dmu_tx_assign(tx, TXG_WAIT); 2136 if (err != 0) { 2137 dmu_tx_abort(tx); 2138 dnode_rele(dn, FTAG); 2139 return (err); 2140 } 2141 2142 struct receive_record_arg *rrd; 2143 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 2144 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2145 abd_t *abd = rrd->abd; 2146 2147 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 2148 2149 if (drrw->drr_logical_size != dn->dn_datablksz) { 2150 /* 2151 * The WRITE record is larger than the object's block 2152 * size. We must be receiving an incremental 2153 * large-block stream into a dataset that previously did 2154 * a non-large-block receive. Lightweight writes must 2155 * be exactly one block, so we need to decompress the 2156 * data (if compressed) and do a normal dmu_write(). 2157 */ 2158 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 2159 if (DRR_WRITE_COMPRESSED(drrw)) { 2160 abd_t *decomp_abd = 2161 abd_alloc_linear(drrw->drr_logical_size, 2162 B_FALSE); 2163 2164 err = zio_decompress_data( 2165 drrw->drr_compressiontype, 2166 abd, abd_to_buf(decomp_abd), 2167 abd_get_size(abd), 2168 abd_get_size(decomp_abd), NULL); 2169 2170 if (err == 0) { 2171 dmu_write_by_dnode(dn, 2172 drrw->drr_offset, 2173 drrw->drr_logical_size, 2174 abd_to_buf(decomp_abd), tx); 2175 } 2176 abd_free(decomp_abd); 2177 } else { 2178 dmu_write_by_dnode(dn, 2179 drrw->drr_offset, 2180 drrw->drr_logical_size, 2181 abd_to_buf(abd), tx); 2182 } 2183 if (err == 0) 2184 abd_free(abd); 2185 } else { 2186 zio_prop_t zp; 2187 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 2188 2189 zio_flag_t zio_flags = 0; 2190 2191 if (rwa->raw) { 2192 zp.zp_encrypt = B_TRUE; 2193 zp.zp_compress = drrw->drr_compressiontype; 2194 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 2195 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2196 rwa->byteswap; 2197 memcpy(zp.zp_salt, drrw->drr_salt, 2198 ZIO_DATA_SALT_LEN); 2199 memcpy(zp.zp_iv, drrw->drr_iv, 2200 ZIO_DATA_IV_LEN); 2201 memcpy(zp.zp_mac, drrw->drr_mac, 2202 ZIO_DATA_MAC_LEN); 2203 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 2204 zp.zp_nopwrite = B_FALSE; 2205 zp.zp_copies = MIN(zp.zp_copies, 2206 SPA_DVAS_PER_BP - 1); 2207 } 2208 zio_flags |= ZIO_FLAG_RAW; 2209 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2210 ASSERT3U(drrw->drr_compressed_size, >, 0); 2211 ASSERT3U(drrw->drr_logical_size, >=, 2212 drrw->drr_compressed_size); 2213 zp.zp_compress = drrw->drr_compressiontype; 2214 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 2215 } else if (rwa->byteswap) { 2216 /* 2217 * Note: compressed blocks never need to be 2218 * byteswapped, because WRITE records for 2219 * metadata blocks are never compressed. The 2220 * exception is raw streams, which are written 2221 * in the original byteorder, and the byteorder 2222 * bit is preserved in the BP by setting 2223 * zp_byteorder above. 2224 */ 2225 dmu_object_byteswap_t byteswap = 2226 DMU_OT_BYTESWAP(drrw->drr_type); 2227 dmu_ot_byteswap[byteswap].ob_func( 2228 abd_to_buf(abd), 2229 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2230 } 2231 2232 /* 2233 * Since this data can't be read until the receive 2234 * completes, we can do a "lightweight" write for 2235 * improved performance. 2236 */ 2237 err = dmu_lightweight_write_by_dnode(dn, 2238 drrw->drr_offset, abd, &zp, zio_flags, tx); 2239 } 2240 2241 if (err != 0) { 2242 /* 2243 * This rrd is left on the list, so the caller will 2244 * free it (and the abd). 2245 */ 2246 break; 2247 } 2248 2249 /* 2250 * Note: If the receive fails, we want the resume stream to 2251 * start with the same record that we last successfully 2252 * received (as opposed to the next record), so that we can 2253 * verify that we are resuming from the correct location. 2254 */ 2255 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2256 2257 list_remove(&rwa->write_batch, rrd); 2258 kmem_free(rrd, sizeof (*rrd)); 2259 } 2260 2261 dmu_tx_commit(tx); 2262 dnode_rele(dn, FTAG); 2263 return (err); 2264 } 2265 2266 noinline static int 2267 flush_write_batch(struct receive_writer_arg *rwa) 2268 { 2269 if (list_is_empty(&rwa->write_batch)) 2270 return (0); 2271 int err = rwa->err; 2272 if (err == 0) 2273 err = flush_write_batch_impl(rwa); 2274 if (err != 0) { 2275 struct receive_record_arg *rrd; 2276 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2277 abd_free(rrd->abd); 2278 kmem_free(rrd, sizeof (*rrd)); 2279 } 2280 } 2281 ASSERT(list_is_empty(&rwa->write_batch)); 2282 return (err); 2283 } 2284 2285 noinline static int 2286 receive_process_write_record(struct receive_writer_arg *rwa, 2287 struct receive_record_arg *rrd) 2288 { 2289 int err = 0; 2290 2291 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2292 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2293 2294 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2295 !DMU_OT_IS_VALID(drrw->drr_type)) 2296 return (SET_ERROR(EINVAL)); 2297 2298 if (rwa->heal) { 2299 blkptr_t *bp; 2300 dmu_buf_t *dbp; 2301 dnode_t *dn; 2302 int flags = DB_RF_CANFAIL; 2303 2304 if (rwa->raw) 2305 flags |= DB_RF_NO_DECRYPT; 2306 2307 if (rwa->byteswap) { 2308 dmu_object_byteswap_t byteswap = 2309 DMU_OT_BYTESWAP(drrw->drr_type); 2310 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd), 2311 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2312 } 2313 2314 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object, 2315 drrw->drr_offset, FTAG, &dbp); 2316 if (err != 0) 2317 return (err); 2318 2319 /* Try to read the object to see if it needs healing */ 2320 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags); 2321 /* 2322 * We only try to heal when dbuf_read() returns a ECKSUMs. 2323 * Other errors (even EIO) get returned to caller. 2324 * EIO indicates that the device is not present/accessible, 2325 * so writing to it will likely fail. 2326 * If the block is healthy, we don't want to overwrite it 2327 * unnecessarily. 2328 */ 2329 if (err != ECKSUM) { 2330 dmu_buf_rele(dbp, FTAG); 2331 return (err); 2332 } 2333 dn = dmu_buf_dnode_enter(dbp); 2334 /* Make sure the on-disk block and recv record sizes match */ 2335 if (drrw->drr_logical_size != 2336 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) { 2337 err = ENOTSUP; 2338 dmu_buf_dnode_exit(dbp); 2339 dmu_buf_rele(dbp, FTAG); 2340 return (err); 2341 } 2342 /* Get the block pointer for the corrupted block */ 2343 bp = dmu_buf_get_blkptr(dbp); 2344 err = do_corrective_recv(rwa, drrw, rrd, bp); 2345 dmu_buf_dnode_exit(dbp); 2346 dmu_buf_rele(dbp, FTAG); 2347 return (err); 2348 } 2349 2350 /* 2351 * For resuming to work, records must be in increasing order 2352 * by (object, offset). 2353 */ 2354 if (drrw->drr_object < rwa->last_object || 2355 (drrw->drr_object == rwa->last_object && 2356 drrw->drr_offset < rwa->last_offset)) { 2357 return (SET_ERROR(EINVAL)); 2358 } 2359 2360 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2361 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2362 uint64_t batch_size = 2363 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2364 if (first_rrd != NULL && 2365 (drrw->drr_object != first_drrw->drr_object || 2366 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2367 err = flush_write_batch(rwa); 2368 if (err != 0) 2369 return (err); 2370 } 2371 2372 rwa->last_object = drrw->drr_object; 2373 rwa->last_offset = drrw->drr_offset; 2374 2375 if (rwa->last_object > rwa->max_object) 2376 rwa->max_object = rwa->last_object; 2377 2378 list_insert_tail(&rwa->write_batch, rrd); 2379 /* 2380 * Return EAGAIN to indicate that we will use this rrd again, 2381 * so the caller should not free it 2382 */ 2383 return (EAGAIN); 2384 } 2385 2386 static int 2387 receive_write_embedded(struct receive_writer_arg *rwa, 2388 struct drr_write_embedded *drrwe, void *data) 2389 { 2390 dmu_tx_t *tx; 2391 int err; 2392 2393 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2394 return (SET_ERROR(EINVAL)); 2395 2396 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2397 return (SET_ERROR(EINVAL)); 2398 2399 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2400 return (SET_ERROR(EINVAL)); 2401 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2402 return (SET_ERROR(EINVAL)); 2403 if (rwa->raw) 2404 return (SET_ERROR(EINVAL)); 2405 2406 if (drrwe->drr_object > rwa->max_object) 2407 rwa->max_object = drrwe->drr_object; 2408 2409 tx = dmu_tx_create(rwa->os); 2410 2411 dmu_tx_hold_write(tx, drrwe->drr_object, 2412 drrwe->drr_offset, drrwe->drr_length); 2413 err = dmu_tx_assign(tx, TXG_WAIT); 2414 if (err != 0) { 2415 dmu_tx_abort(tx); 2416 return (err); 2417 } 2418 2419 dmu_write_embedded(rwa->os, drrwe->drr_object, 2420 drrwe->drr_offset, data, drrwe->drr_etype, 2421 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2422 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2423 2424 /* See comment in restore_write. */ 2425 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2426 dmu_tx_commit(tx); 2427 return (0); 2428 } 2429 2430 static int 2431 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2432 abd_t *abd) 2433 { 2434 dmu_buf_t *db, *db_spill; 2435 int err; 2436 2437 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2438 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2439 return (SET_ERROR(EINVAL)); 2440 2441 /* 2442 * This is an unmodified spill block which was added to the stream 2443 * to resolve an issue with incorrectly removing spill blocks. It 2444 * should be ignored by current versions of the code which support 2445 * the DRR_FLAG_SPILL_BLOCK flag. 2446 */ 2447 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2448 abd_free(abd); 2449 return (0); 2450 } 2451 2452 if (rwa->raw) { 2453 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2454 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2455 drrs->drr_compressed_size == 0) 2456 return (SET_ERROR(EINVAL)); 2457 } 2458 2459 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2460 return (SET_ERROR(EINVAL)); 2461 2462 if (drrs->drr_object > rwa->max_object) 2463 rwa->max_object = drrs->drr_object; 2464 2465 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2466 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2467 &db_spill)) != 0) { 2468 dmu_buf_rele(db, FTAG); 2469 return (err); 2470 } 2471 2472 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2473 2474 dmu_tx_hold_spill(tx, db->db_object); 2475 2476 err = dmu_tx_assign(tx, TXG_WAIT); 2477 if (err != 0) { 2478 dmu_buf_rele(db, FTAG); 2479 dmu_buf_rele(db_spill, FTAG); 2480 dmu_tx_abort(tx); 2481 return (err); 2482 } 2483 2484 /* 2485 * Spill blocks may both grow and shrink. When a change in size 2486 * occurs any existing dbuf must be updated to match the logical 2487 * size of the provided arc_buf_t. 2488 */ 2489 if (db_spill->db_size != drrs->drr_length) { 2490 dmu_buf_will_fill(db_spill, tx); 2491 VERIFY0(dbuf_spill_set_blksz(db_spill, 2492 drrs->drr_length, tx)); 2493 } 2494 2495 arc_buf_t *abuf; 2496 if (rwa->raw) { 2497 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2498 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2499 rwa->byteswap; 2500 2501 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2502 drrs->drr_object, byteorder, drrs->drr_salt, 2503 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2504 drrs->drr_compressed_size, drrs->drr_length, 2505 drrs->drr_compressiontype, 0); 2506 } else { 2507 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2508 DMU_OT_IS_METADATA(drrs->drr_type), 2509 drrs->drr_length); 2510 if (rwa->byteswap) { 2511 dmu_object_byteswap_t byteswap = 2512 DMU_OT_BYTESWAP(drrs->drr_type); 2513 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2514 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2515 } 2516 } 2517 2518 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); 2519 abd_free(abd); 2520 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2521 2522 dmu_buf_rele(db, FTAG); 2523 dmu_buf_rele(db_spill, FTAG); 2524 2525 dmu_tx_commit(tx); 2526 return (0); 2527 } 2528 2529 noinline static int 2530 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2531 { 2532 int err; 2533 2534 if (drrf->drr_length != -1ULL && 2535 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2536 return (SET_ERROR(EINVAL)); 2537 2538 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2539 return (SET_ERROR(EINVAL)); 2540 2541 if (drrf->drr_object > rwa->max_object) 2542 rwa->max_object = drrf->drr_object; 2543 2544 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2545 drrf->drr_offset, drrf->drr_length); 2546 2547 return (err); 2548 } 2549 2550 static int 2551 receive_object_range(struct receive_writer_arg *rwa, 2552 struct drr_object_range *drror) 2553 { 2554 /* 2555 * By default, we assume this block is in our native format 2556 * (ZFS_HOST_BYTEORDER). We then take into account whether 2557 * the send stream is byteswapped (rwa->byteswap). Finally, 2558 * we need to byteswap again if this particular block was 2559 * in non-native format on the send side. 2560 */ 2561 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2562 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2563 2564 /* 2565 * Since dnode block sizes are constant, we should not need to worry 2566 * about making sure that the dnode block size is the same on the 2567 * sending and receiving sides for the time being. For non-raw sends, 2568 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2569 * record at all). Raw sends require this record type because the 2570 * encryption parameters are used to protect an entire block of bonus 2571 * buffers. If the size of dnode blocks ever becomes variable, 2572 * handling will need to be added to ensure that dnode block sizes 2573 * match on the sending and receiving side. 2574 */ 2575 if (drror->drr_numslots != DNODES_PER_BLOCK || 2576 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2577 !rwa->raw) 2578 return (SET_ERROR(EINVAL)); 2579 2580 if (drror->drr_firstobj > rwa->max_object) 2581 rwa->max_object = drror->drr_firstobj; 2582 2583 /* 2584 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2585 * so that the block of dnodes is not written out when it's empty, 2586 * and converted to a HOLE BP. 2587 */ 2588 rwa->or_crypt_params_present = B_TRUE; 2589 rwa->or_firstobj = drror->drr_firstobj; 2590 rwa->or_numslots = drror->drr_numslots; 2591 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN); 2592 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN); 2593 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN); 2594 rwa->or_byteorder = byteorder; 2595 2596 return (0); 2597 } 2598 2599 /* 2600 * Until we have the ability to redact large ranges of data efficiently, we 2601 * process these records as frees. 2602 */ 2603 noinline static int 2604 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2605 { 2606 struct drr_free drrf = {0}; 2607 drrf.drr_length = drrr->drr_length; 2608 drrf.drr_object = drrr->drr_object; 2609 drrf.drr_offset = drrr->drr_offset; 2610 drrf.drr_toguid = drrr->drr_toguid; 2611 return (receive_free(rwa, &drrf)); 2612 } 2613 2614 /* used to destroy the drc_ds on error */ 2615 static void 2616 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2617 { 2618 dsl_dataset_t *ds = drc->drc_ds; 2619 ds_hold_flags_t dsflags; 2620 2621 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2622 /* 2623 * Wait for the txg sync before cleaning up the receive. For 2624 * resumable receives, this ensures that our resume state has 2625 * been written out to disk. For raw receives, this ensures 2626 * that the user accounting code will not attempt to do anything 2627 * after we stopped receiving the dataset. 2628 */ 2629 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2630 ds->ds_objset->os_raw_receive = B_FALSE; 2631 2632 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2633 if (drc->drc_resumable && drc->drc_should_save && 2634 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2635 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2636 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2637 } else { 2638 char name[ZFS_MAX_DATASET_NAME_LEN]; 2639 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2640 dsl_dataset_name(ds, name); 2641 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2642 if (!drc->drc_heal) 2643 (void) dsl_destroy_head(name); 2644 } 2645 } 2646 2647 static void 2648 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2649 { 2650 if (drc->drc_byteswap) { 2651 (void) fletcher_4_incremental_byteswap(buf, len, 2652 &drc->drc_cksum); 2653 } else { 2654 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2655 } 2656 } 2657 2658 /* 2659 * Read the payload into a buffer of size len, and update the current record's 2660 * payload field. 2661 * Allocate drc->drc_next_rrd and read the next record's header into 2662 * drc->drc_next_rrd->header. 2663 * Verify checksum of payload and next record. 2664 */ 2665 static int 2666 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2667 { 2668 int err; 2669 2670 if (len != 0) { 2671 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2672 err = receive_read(drc, len, buf); 2673 if (err != 0) 2674 return (err); 2675 receive_cksum(drc, len, buf); 2676 2677 /* note: rrd is NULL when reading the begin record's payload */ 2678 if (drc->drc_rrd != NULL) { 2679 drc->drc_rrd->payload = buf; 2680 drc->drc_rrd->payload_size = len; 2681 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2682 } 2683 } else { 2684 ASSERT3P(buf, ==, NULL); 2685 } 2686 2687 drc->drc_prev_cksum = drc->drc_cksum; 2688 2689 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2690 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2691 &drc->drc_next_rrd->header); 2692 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2693 2694 if (err != 0) { 2695 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2696 drc->drc_next_rrd = NULL; 2697 return (err); 2698 } 2699 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2700 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2701 drc->drc_next_rrd = NULL; 2702 return (SET_ERROR(EINVAL)); 2703 } 2704 2705 /* 2706 * Note: checksum is of everything up to but not including the 2707 * checksum itself. 2708 */ 2709 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2710 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2711 receive_cksum(drc, 2712 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2713 &drc->drc_next_rrd->header); 2714 2715 zio_cksum_t cksum_orig = 2716 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2717 zio_cksum_t *cksump = 2718 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2719 2720 if (drc->drc_byteswap) 2721 byteswap_record(&drc->drc_next_rrd->header); 2722 2723 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2724 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2725 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2726 drc->drc_next_rrd = NULL; 2727 return (SET_ERROR(ECKSUM)); 2728 } 2729 2730 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2731 2732 return (0); 2733 } 2734 2735 /* 2736 * Issue the prefetch reads for any necessary indirect blocks. 2737 * 2738 * We use the object ignore list to tell us whether or not to issue prefetches 2739 * for a given object. We do this for both correctness (in case the blocksize 2740 * of an object has changed) and performance (if the object doesn't exist, don't 2741 * needlessly try to issue prefetches). We also trim the list as we go through 2742 * the stream to prevent it from growing to an unbounded size. 2743 * 2744 * The object numbers within will always be in sorted order, and any write 2745 * records we see will also be in sorted order, but they're not sorted with 2746 * respect to each other (i.e. we can get several object records before 2747 * receiving each object's write records). As a result, once we've reached a 2748 * given object number, we can safely remove any reference to lower object 2749 * numbers in the ignore list. In practice, we receive up to 32 object records 2750 * before receiving write records, so the list can have up to 32 nodes in it. 2751 */ 2752 static void 2753 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2754 uint64_t length) 2755 { 2756 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2757 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2758 ZIO_PRIORITY_SYNC_READ); 2759 } 2760 } 2761 2762 /* 2763 * Read records off the stream, issuing any necessary prefetches. 2764 */ 2765 static int 2766 receive_read_record(dmu_recv_cookie_t *drc) 2767 { 2768 int err; 2769 2770 switch (drc->drc_rrd->header.drr_type) { 2771 case DRR_OBJECT: 2772 { 2773 struct drr_object *drro = 2774 &drc->drc_rrd->header.drr_u.drr_object; 2775 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2776 void *buf = NULL; 2777 dmu_object_info_t doi; 2778 2779 if (size != 0) 2780 buf = kmem_zalloc(size, KM_SLEEP); 2781 2782 err = receive_read_payload_and_next_header(drc, size, buf); 2783 if (err != 0) { 2784 kmem_free(buf, size); 2785 return (err); 2786 } 2787 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2788 /* 2789 * See receive_read_prefetch for an explanation why we're 2790 * storing this object in the ignore_obj_list. 2791 */ 2792 if (err == ENOENT || err == EEXIST || 2793 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2794 objlist_insert(drc->drc_ignore_objlist, 2795 drro->drr_object); 2796 err = 0; 2797 } 2798 return (err); 2799 } 2800 case DRR_FREEOBJECTS: 2801 { 2802 err = receive_read_payload_and_next_header(drc, 0, NULL); 2803 return (err); 2804 } 2805 case DRR_WRITE: 2806 { 2807 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2808 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2809 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2810 err = receive_read_payload_and_next_header(drc, size, 2811 abd_to_buf(abd)); 2812 if (err != 0) { 2813 abd_free(abd); 2814 return (err); 2815 } 2816 drc->drc_rrd->abd = abd; 2817 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2818 drrw->drr_logical_size); 2819 return (err); 2820 } 2821 case DRR_WRITE_EMBEDDED: 2822 { 2823 struct drr_write_embedded *drrwe = 2824 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2825 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2826 void *buf = kmem_zalloc(size, KM_SLEEP); 2827 2828 err = receive_read_payload_and_next_header(drc, size, buf); 2829 if (err != 0) { 2830 kmem_free(buf, size); 2831 return (err); 2832 } 2833 2834 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2835 drrwe->drr_length); 2836 return (err); 2837 } 2838 case DRR_FREE: 2839 case DRR_REDACT: 2840 { 2841 /* 2842 * It might be beneficial to prefetch indirect blocks here, but 2843 * we don't really have the data to decide for sure. 2844 */ 2845 err = receive_read_payload_and_next_header(drc, 0, NULL); 2846 return (err); 2847 } 2848 case DRR_END: 2849 { 2850 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2851 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2852 drre->drr_checksum)) 2853 return (SET_ERROR(ECKSUM)); 2854 return (0); 2855 } 2856 case DRR_SPILL: 2857 { 2858 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2859 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2860 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2861 err = receive_read_payload_and_next_header(drc, size, 2862 abd_to_buf(abd)); 2863 if (err != 0) 2864 abd_free(abd); 2865 else 2866 drc->drc_rrd->abd = abd; 2867 return (err); 2868 } 2869 case DRR_OBJECT_RANGE: 2870 { 2871 err = receive_read_payload_and_next_header(drc, 0, NULL); 2872 return (err); 2873 2874 } 2875 default: 2876 return (SET_ERROR(EINVAL)); 2877 } 2878 } 2879 2880 2881 2882 static void 2883 dprintf_drr(struct receive_record_arg *rrd, int err) 2884 { 2885 #ifdef ZFS_DEBUG 2886 switch (rrd->header.drr_type) { 2887 case DRR_OBJECT: 2888 { 2889 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2890 dprintf("drr_type = OBJECT obj = %llu type = %u " 2891 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2892 "compress = %u dn_slots = %u err = %d\n", 2893 (u_longlong_t)drro->drr_object, drro->drr_type, 2894 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, 2895 drro->drr_checksumtype, drro->drr_compress, 2896 drro->drr_dn_slots, err); 2897 break; 2898 } 2899 case DRR_FREEOBJECTS: 2900 { 2901 struct drr_freeobjects *drrfo = 2902 &rrd->header.drr_u.drr_freeobjects; 2903 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2904 "numobjs = %llu err = %d\n", 2905 (u_longlong_t)drrfo->drr_firstobj, 2906 (u_longlong_t)drrfo->drr_numobjs, err); 2907 break; 2908 } 2909 case DRR_WRITE: 2910 { 2911 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2912 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2913 "lsize = %llu cksumtype = %u flags = %u " 2914 "compress = %u psize = %llu err = %d\n", 2915 (u_longlong_t)drrw->drr_object, drrw->drr_type, 2916 (u_longlong_t)drrw->drr_offset, 2917 (u_longlong_t)drrw->drr_logical_size, 2918 drrw->drr_checksumtype, drrw->drr_flags, 2919 drrw->drr_compressiontype, 2920 (u_longlong_t)drrw->drr_compressed_size, err); 2921 break; 2922 } 2923 case DRR_WRITE_BYREF: 2924 { 2925 struct drr_write_byref *drrwbr = 2926 &rrd->header.drr_u.drr_write_byref; 2927 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2928 "length = %llu toguid = %llx refguid = %llx " 2929 "refobject = %llu refoffset = %llu cksumtype = %u " 2930 "flags = %u err = %d\n", 2931 (u_longlong_t)drrwbr->drr_object, 2932 (u_longlong_t)drrwbr->drr_offset, 2933 (u_longlong_t)drrwbr->drr_length, 2934 (u_longlong_t)drrwbr->drr_toguid, 2935 (u_longlong_t)drrwbr->drr_refguid, 2936 (u_longlong_t)drrwbr->drr_refobject, 2937 (u_longlong_t)drrwbr->drr_refoffset, 2938 drrwbr->drr_checksumtype, drrwbr->drr_flags, err); 2939 break; 2940 } 2941 case DRR_WRITE_EMBEDDED: 2942 { 2943 struct drr_write_embedded *drrwe = 2944 &rrd->header.drr_u.drr_write_embedded; 2945 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 2946 "length = %llu compress = %u etype = %u lsize = %u " 2947 "psize = %u err = %d\n", 2948 (u_longlong_t)drrwe->drr_object, 2949 (u_longlong_t)drrwe->drr_offset, 2950 (u_longlong_t)drrwe->drr_length, 2951 drrwe->drr_compression, drrwe->drr_etype, 2952 drrwe->drr_lsize, drrwe->drr_psize, err); 2953 break; 2954 } 2955 case DRR_FREE: 2956 { 2957 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2958 dprintf("drr_type = FREE obj = %llu offset = %llu " 2959 "length = %lld err = %d\n", 2960 (u_longlong_t)drrf->drr_object, 2961 (u_longlong_t)drrf->drr_offset, 2962 (longlong_t)drrf->drr_length, 2963 err); 2964 break; 2965 } 2966 case DRR_SPILL: 2967 { 2968 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2969 dprintf("drr_type = SPILL obj = %llu length = %llu " 2970 "err = %d\n", (u_longlong_t)drrs->drr_object, 2971 (u_longlong_t)drrs->drr_length, err); 2972 break; 2973 } 2974 case DRR_OBJECT_RANGE: 2975 { 2976 struct drr_object_range *drror = 2977 &rrd->header.drr_u.drr_object_range; 2978 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 2979 "numslots = %llu flags = %u err = %d\n", 2980 (u_longlong_t)drror->drr_firstobj, 2981 (u_longlong_t)drror->drr_numslots, 2982 drror->drr_flags, err); 2983 break; 2984 } 2985 default: 2986 return; 2987 } 2988 #endif 2989 } 2990 2991 /* 2992 * Commit the records to the pool. 2993 */ 2994 static int 2995 receive_process_record(struct receive_writer_arg *rwa, 2996 struct receive_record_arg *rrd) 2997 { 2998 int err; 2999 3000 /* Processing in order, therefore bytes_read should be increasing. */ 3001 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 3002 rwa->bytes_read = rrd->bytes_read; 3003 3004 /* We can only heal write records; other ones get ignored */ 3005 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3006 if (rrd->abd != NULL) { 3007 abd_free(rrd->abd); 3008 rrd->abd = NULL; 3009 } else if (rrd->payload != NULL) { 3010 kmem_free(rrd->payload, rrd->payload_size); 3011 rrd->payload = NULL; 3012 } 3013 return (0); 3014 } 3015 3016 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3017 err = flush_write_batch(rwa); 3018 if (err != 0) { 3019 if (rrd->abd != NULL) { 3020 abd_free(rrd->abd); 3021 rrd->abd = NULL; 3022 rrd->payload = NULL; 3023 } else if (rrd->payload != NULL) { 3024 kmem_free(rrd->payload, rrd->payload_size); 3025 rrd->payload = NULL; 3026 } 3027 3028 return (err); 3029 } 3030 } 3031 3032 switch (rrd->header.drr_type) { 3033 case DRR_OBJECT: 3034 { 3035 struct drr_object *drro = &rrd->header.drr_u.drr_object; 3036 err = receive_object(rwa, drro, rrd->payload); 3037 kmem_free(rrd->payload, rrd->payload_size); 3038 rrd->payload = NULL; 3039 break; 3040 } 3041 case DRR_FREEOBJECTS: 3042 { 3043 struct drr_freeobjects *drrfo = 3044 &rrd->header.drr_u.drr_freeobjects; 3045 err = receive_freeobjects(rwa, drrfo); 3046 break; 3047 } 3048 case DRR_WRITE: 3049 { 3050 err = receive_process_write_record(rwa, rrd); 3051 if (rwa->heal) { 3052 /* 3053 * If healing - always free the abd after processing 3054 */ 3055 abd_free(rrd->abd); 3056 rrd->abd = NULL; 3057 } else if (err != EAGAIN) { 3058 /* 3059 * On success, a non-healing 3060 * receive_process_write_record() returns 3061 * EAGAIN to indicate that we do not want to free 3062 * the rrd or arc_buf. 3063 */ 3064 ASSERT(err != 0); 3065 abd_free(rrd->abd); 3066 rrd->abd = NULL; 3067 } 3068 break; 3069 } 3070 case DRR_WRITE_EMBEDDED: 3071 { 3072 struct drr_write_embedded *drrwe = 3073 &rrd->header.drr_u.drr_write_embedded; 3074 err = receive_write_embedded(rwa, drrwe, rrd->payload); 3075 kmem_free(rrd->payload, rrd->payload_size); 3076 rrd->payload = NULL; 3077 break; 3078 } 3079 case DRR_FREE: 3080 { 3081 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 3082 err = receive_free(rwa, drrf); 3083 break; 3084 } 3085 case DRR_SPILL: 3086 { 3087 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3088 err = receive_spill(rwa, drrs, rrd->abd); 3089 if (err != 0) 3090 abd_free(rrd->abd); 3091 rrd->abd = NULL; 3092 rrd->payload = NULL; 3093 break; 3094 } 3095 case DRR_OBJECT_RANGE: 3096 { 3097 struct drr_object_range *drror = 3098 &rrd->header.drr_u.drr_object_range; 3099 err = receive_object_range(rwa, drror); 3100 break; 3101 } 3102 case DRR_REDACT: 3103 { 3104 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 3105 err = receive_redact(rwa, drrr); 3106 break; 3107 } 3108 default: 3109 err = (SET_ERROR(EINVAL)); 3110 } 3111 3112 if (err != 0) 3113 dprintf_drr(rrd, err); 3114 3115 return (err); 3116 } 3117 3118 /* 3119 * dmu_recv_stream's worker thread; pull records off the queue, and then call 3120 * receive_process_record When we're done, signal the main thread and exit. 3121 */ 3122 static __attribute__((noreturn)) void 3123 receive_writer_thread(void *arg) 3124 { 3125 struct receive_writer_arg *rwa = arg; 3126 struct receive_record_arg *rrd; 3127 fstrans_cookie_t cookie = spl_fstrans_mark(); 3128 3129 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 3130 rrd = bqueue_dequeue(&rwa->q)) { 3131 /* 3132 * If there's an error, the main thread will stop putting things 3133 * on the queue, but we need to clear everything in it before we 3134 * can exit. 3135 */ 3136 int err = 0; 3137 if (rwa->err == 0) { 3138 err = receive_process_record(rwa, rrd); 3139 } else if (rrd->abd != NULL) { 3140 abd_free(rrd->abd); 3141 rrd->abd = NULL; 3142 rrd->payload = NULL; 3143 } else if (rrd->payload != NULL) { 3144 kmem_free(rrd->payload, rrd->payload_size); 3145 rrd->payload = NULL; 3146 } 3147 /* 3148 * EAGAIN indicates that this record has been saved (on 3149 * raw->write_batch), and will be used again, so we don't 3150 * free it. 3151 * When healing data we always need to free the record. 3152 */ 3153 if (err != EAGAIN || rwa->heal) { 3154 if (rwa->err == 0) 3155 rwa->err = err; 3156 kmem_free(rrd, sizeof (*rrd)); 3157 } 3158 } 3159 kmem_free(rrd, sizeof (*rrd)); 3160 3161 if (rwa->heal) { 3162 zio_wait(rwa->heal_pio); 3163 } else { 3164 int err = flush_write_batch(rwa); 3165 if (rwa->err == 0) 3166 rwa->err = err; 3167 } 3168 mutex_enter(&rwa->mutex); 3169 rwa->done = B_TRUE; 3170 cv_signal(&rwa->cv); 3171 mutex_exit(&rwa->mutex); 3172 spl_fstrans_unmark(cookie); 3173 thread_exit(); 3174 } 3175 3176 static int 3177 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 3178 { 3179 uint64_t val; 3180 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 3181 uint64_t dsobj = dmu_objset_id(drc->drc_os); 3182 uint64_t resume_obj, resume_off; 3183 3184 if (nvlist_lookup_uint64(begin_nvl, 3185 "resume_object", &resume_obj) != 0 || 3186 nvlist_lookup_uint64(begin_nvl, 3187 "resume_offset", &resume_off) != 0) { 3188 return (SET_ERROR(EINVAL)); 3189 } 3190 VERIFY0(zap_lookup(mos, dsobj, 3191 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 3192 if (resume_obj != val) 3193 return (SET_ERROR(EINVAL)); 3194 VERIFY0(zap_lookup(mos, dsobj, 3195 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 3196 if (resume_off != val) 3197 return (SET_ERROR(EINVAL)); 3198 3199 return (0); 3200 } 3201 3202 /* 3203 * Read in the stream's records, one by one, and apply them to the pool. There 3204 * are two threads involved; the thread that calls this function will spin up a 3205 * worker thread, read the records off the stream one by one, and issue 3206 * prefetches for any necessary indirect blocks. It will then push the records 3207 * onto an internal blocking queue. The worker thread will pull the records off 3208 * the queue, and actually write the data into the DMU. This way, the worker 3209 * thread doesn't have to wait for reads to complete, since everything it needs 3210 * (the indirect blocks) will be prefetched. 3211 * 3212 * NB: callers *must* call dmu_recv_end() if this succeeds. 3213 */ 3214 int 3215 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 3216 { 3217 int err = 0; 3218 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 3219 3220 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { 3221 uint64_t bytes = 0; 3222 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 3223 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 3224 sizeof (bytes), 1, &bytes); 3225 drc->drc_bytes_read += bytes; 3226 } 3227 3228 drc->drc_ignore_objlist = objlist_create(); 3229 3230 /* these were verified in dmu_recv_begin */ 3231 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 3232 DMU_SUBSTREAM); 3233 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 3234 3235 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 3236 ASSERT0(drc->drc_os->os_encrypted && 3237 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 3238 3239 /* handle DSL encryption key payload */ 3240 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 3241 nvlist_t *keynvl = NULL; 3242 3243 ASSERT(drc->drc_os->os_encrypted); 3244 ASSERT(drc->drc_raw); 3245 3246 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 3247 &keynvl); 3248 if (err != 0) 3249 goto out; 3250 3251 if (!drc->drc_heal) { 3252 /* 3253 * If this is a new dataset we set the key immediately. 3254 * Otherwise we don't want to change the key until we 3255 * are sure the rest of the receive succeeded so we 3256 * stash the keynvl away until then. 3257 */ 3258 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 3259 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 3260 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 3261 if (err != 0) 3262 goto out; 3263 } 3264 3265 /* see comment in dmu_recv_end_sync() */ 3266 drc->drc_ivset_guid = 0; 3267 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 3268 &drc->drc_ivset_guid); 3269 3270 if (!drc->drc_newfs) 3271 drc->drc_keynvl = fnvlist_dup(keynvl); 3272 } 3273 3274 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 3275 err = resume_check(drc, drc->drc_begin_nvl); 3276 if (err != 0) 3277 goto out; 3278 } 3279 3280 /* 3281 * If we failed before this point we will clean up any new resume 3282 * state that was created. Now that we've gotten past the initial 3283 * checks we are ok to retain that resume state. 3284 */ 3285 drc->drc_should_save = B_TRUE; 3286 3287 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 3288 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 3289 offsetof(struct receive_record_arg, node)); 3290 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 3291 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 3292 rwa->os = drc->drc_os; 3293 rwa->byteswap = drc->drc_byteswap; 3294 rwa->heal = drc->drc_heal; 3295 rwa->tofs = drc->drc_tofs; 3296 rwa->resumable = drc->drc_resumable; 3297 rwa->raw = drc->drc_raw; 3298 rwa->spill = drc->drc_spill; 3299 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 3300 rwa->os->os_raw_receive = drc->drc_raw; 3301 if (drc->drc_heal) { 3302 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL, 3303 ZIO_FLAG_GODFATHER); 3304 } 3305 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 3306 offsetof(struct receive_record_arg, node.bqn_node)); 3307 3308 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 3309 TS_RUN, minclsyspri); 3310 /* 3311 * We're reading rwa->err without locks, which is safe since we are the 3312 * only reader, and the worker thread is the only writer. It's ok if we 3313 * miss a write for an iteration or two of the loop, since the writer 3314 * thread will keep freeing records we send it until we send it an eos 3315 * marker. 3316 * 3317 * We can leave this loop in 3 ways: First, if rwa->err is 3318 * non-zero. In that case, the writer thread will free the rrd we just 3319 * pushed. Second, if we're interrupted; in that case, either it's the 3320 * first loop and drc->drc_rrd was never allocated, or it's later, and 3321 * drc->drc_rrd has been handed off to the writer thread who will free 3322 * it. Finally, if receive_read_record fails or we're at the end of the 3323 * stream, then we free drc->drc_rrd and exit. 3324 */ 3325 while (rwa->err == 0) { 3326 if (issig(JUSTLOOKING) && issig(FORREAL)) { 3327 err = SET_ERROR(EINTR); 3328 break; 3329 } 3330 3331 ASSERT3P(drc->drc_rrd, ==, NULL); 3332 drc->drc_rrd = drc->drc_next_rrd; 3333 drc->drc_next_rrd = NULL; 3334 /* Allocates and loads header into drc->drc_next_rrd */ 3335 err = receive_read_record(drc); 3336 3337 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 3338 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 3339 drc->drc_rrd = NULL; 3340 break; 3341 } 3342 3343 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3344 sizeof (struct receive_record_arg) + 3345 drc->drc_rrd->payload_size); 3346 drc->drc_rrd = NULL; 3347 } 3348 3349 ASSERT3P(drc->drc_rrd, ==, NULL); 3350 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3351 drc->drc_rrd->eos_marker = B_TRUE; 3352 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3353 3354 mutex_enter(&rwa->mutex); 3355 while (!rwa->done) { 3356 /* 3357 * We need to use cv_wait_sig() so that any process that may 3358 * be sleeping here can still fork. 3359 */ 3360 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3361 } 3362 mutex_exit(&rwa->mutex); 3363 3364 /* 3365 * If we are receiving a full stream as a clone, all object IDs which 3366 * are greater than the maximum ID referenced in the stream are 3367 * by definition unused and must be freed. 3368 */ 3369 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3370 uint64_t obj = rwa->max_object + 1; 3371 int free_err = 0; 3372 int next_err = 0; 3373 3374 while (next_err == 0) { 3375 free_err = dmu_free_long_object(rwa->os, obj); 3376 if (free_err != 0 && free_err != ENOENT) 3377 break; 3378 3379 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3380 } 3381 3382 if (err == 0) { 3383 if (free_err != 0 && free_err != ENOENT) 3384 err = free_err; 3385 else if (next_err != ESRCH) 3386 err = next_err; 3387 } 3388 } 3389 3390 cv_destroy(&rwa->cv); 3391 mutex_destroy(&rwa->mutex); 3392 bqueue_destroy(&rwa->q); 3393 list_destroy(&rwa->write_batch); 3394 if (err == 0) 3395 err = rwa->err; 3396 3397 out: 3398 /* 3399 * If we hit an error before we started the receive_writer_thread 3400 * we need to clean up the next_rrd we create by processing the 3401 * DRR_BEGIN record. 3402 */ 3403 if (drc->drc_next_rrd != NULL) 3404 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3405 3406 /* 3407 * The objset will be invalidated by dmu_recv_end() when we do 3408 * dsl_dataset_clone_swap_sync_impl(). 3409 */ 3410 drc->drc_os = NULL; 3411 3412 kmem_free(rwa, sizeof (*rwa)); 3413 nvlist_free(drc->drc_begin_nvl); 3414 3415 if (err != 0) { 3416 /* 3417 * Clean up references. If receive is not resumable, 3418 * destroy what we created, so we don't leave it in 3419 * the inconsistent state. 3420 */ 3421 dmu_recv_cleanup_ds(drc); 3422 nvlist_free(drc->drc_keynvl); 3423 } 3424 3425 objlist_destroy(drc->drc_ignore_objlist); 3426 drc->drc_ignore_objlist = NULL; 3427 *voffp = drc->drc_voff; 3428 return (err); 3429 } 3430 3431 static int 3432 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3433 { 3434 dmu_recv_cookie_t *drc = arg; 3435 dsl_pool_t *dp = dmu_tx_pool(tx); 3436 int error; 3437 3438 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3439 3440 if (drc->drc_heal) { 3441 error = 0; 3442 } else if (!drc->drc_newfs) { 3443 dsl_dataset_t *origin_head; 3444 3445 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3446 if (error != 0) 3447 return (error); 3448 if (drc->drc_force) { 3449 /* 3450 * We will destroy any snapshots in tofs (i.e. before 3451 * origin_head) that are after the origin (which is 3452 * the snap before drc_ds, because drc_ds can not 3453 * have any snaps of its own). 3454 */ 3455 uint64_t obj; 3456 3457 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3458 while (obj != 3459 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3460 dsl_dataset_t *snap; 3461 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3462 &snap); 3463 if (error != 0) 3464 break; 3465 if (snap->ds_dir != origin_head->ds_dir) 3466 error = SET_ERROR(EINVAL); 3467 if (error == 0) { 3468 error = dsl_destroy_snapshot_check_impl( 3469 snap, B_FALSE); 3470 } 3471 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3472 dsl_dataset_rele(snap, FTAG); 3473 if (error != 0) 3474 break; 3475 } 3476 if (error != 0) { 3477 dsl_dataset_rele(origin_head, FTAG); 3478 return (error); 3479 } 3480 } 3481 if (drc->drc_keynvl != NULL) { 3482 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3483 drc->drc_keynvl, tx); 3484 if (error != 0) { 3485 dsl_dataset_rele(origin_head, FTAG); 3486 return (error); 3487 } 3488 } 3489 3490 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3491 origin_head, drc->drc_force, drc->drc_owner, tx); 3492 if (error != 0) { 3493 dsl_dataset_rele(origin_head, FTAG); 3494 return (error); 3495 } 3496 error = dsl_dataset_snapshot_check_impl(origin_head, 3497 drc->drc_tosnap, tx, B_TRUE, 1, 3498 drc->drc_cred, drc->drc_proc); 3499 dsl_dataset_rele(origin_head, FTAG); 3500 if (error != 0) 3501 return (error); 3502 3503 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3504 } else { 3505 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3506 drc->drc_tosnap, tx, B_TRUE, 1, 3507 drc->drc_cred, drc->drc_proc); 3508 } 3509 return (error); 3510 } 3511 3512 static void 3513 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3514 { 3515 dmu_recv_cookie_t *drc = arg; 3516 dsl_pool_t *dp = dmu_tx_pool(tx); 3517 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3518 uint64_t newsnapobj = 0; 3519 3520 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3521 tx, "snap=%s", drc->drc_tosnap); 3522 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3523 3524 if (drc->drc_heal) { 3525 if (drc->drc_keynvl != NULL) { 3526 nvlist_free(drc->drc_keynvl); 3527 drc->drc_keynvl = NULL; 3528 } 3529 } else if (!drc->drc_newfs) { 3530 dsl_dataset_t *origin_head; 3531 3532 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3533 &origin_head)); 3534 3535 if (drc->drc_force) { 3536 /* 3537 * Destroy any snapshots of drc_tofs (origin_head) 3538 * after the origin (the snap before drc_ds). 3539 */ 3540 uint64_t obj; 3541 3542 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3543 while (obj != 3544 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3545 dsl_dataset_t *snap; 3546 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3547 &snap)); 3548 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3549 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3550 dsl_destroy_snapshot_sync_impl(snap, 3551 B_FALSE, tx); 3552 dsl_dataset_rele(snap, FTAG); 3553 } 3554 } 3555 if (drc->drc_keynvl != NULL) { 3556 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3557 drc->drc_keynvl, tx); 3558 nvlist_free(drc->drc_keynvl); 3559 drc->drc_keynvl = NULL; 3560 } 3561 3562 VERIFY3P(drc->drc_ds->ds_prev, ==, 3563 origin_head->ds_prev); 3564 3565 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3566 origin_head, tx); 3567 /* 3568 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3569 * so drc_os is no longer valid. 3570 */ 3571 drc->drc_os = NULL; 3572 3573 dsl_dataset_snapshot_sync_impl(origin_head, 3574 drc->drc_tosnap, tx); 3575 3576 /* set snapshot's creation time and guid */ 3577 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3578 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3579 drc->drc_drrb->drr_creation_time; 3580 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3581 drc->drc_drrb->drr_toguid; 3582 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3583 ~DS_FLAG_INCONSISTENT; 3584 3585 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3586 dsl_dataset_phys(origin_head)->ds_flags &= 3587 ~DS_FLAG_INCONSISTENT; 3588 3589 newsnapobj = 3590 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3591 3592 dsl_dataset_rele(origin_head, FTAG); 3593 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3594 3595 if (drc->drc_owner != NULL) 3596 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3597 } else { 3598 dsl_dataset_t *ds = drc->drc_ds; 3599 3600 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3601 3602 /* set snapshot's creation time and guid */ 3603 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3604 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3605 drc->drc_drrb->drr_creation_time; 3606 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3607 drc->drc_drrb->drr_toguid; 3608 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3609 ~DS_FLAG_INCONSISTENT; 3610 3611 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3612 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3613 if (dsl_dataset_has_resume_receive_state(ds)) { 3614 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3615 DS_FIELD_RESUME_FROMGUID, tx); 3616 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3617 DS_FIELD_RESUME_OBJECT, tx); 3618 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3619 DS_FIELD_RESUME_OFFSET, tx); 3620 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3621 DS_FIELD_RESUME_BYTES, tx); 3622 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3623 DS_FIELD_RESUME_TOGUID, tx); 3624 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3625 DS_FIELD_RESUME_TONAME, tx); 3626 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3627 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3628 } 3629 newsnapobj = 3630 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3631 } 3632 3633 /* 3634 * If this is a raw receive, the crypt_keydata nvlist will include 3635 * a to_ivset_guid for us to set on the new snapshot. This value 3636 * will override the value generated by the snapshot code. However, 3637 * this value may not be present, because older implementations of 3638 * the raw send code did not include this value, and we are still 3639 * allowed to receive them if the zfs_disable_ivset_guid_check 3640 * tunable is set, in which case we will leave the newly-generated 3641 * value. 3642 */ 3643 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) { 3644 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3645 DMU_OT_DSL_DATASET, tx); 3646 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3647 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3648 &drc->drc_ivset_guid, tx)); 3649 } 3650 3651 /* 3652 * Release the hold from dmu_recv_begin. This must be done before 3653 * we return to open context, so that when we free the dataset's dnode 3654 * we can evict its bonus buffer. Since the dataset may be destroyed 3655 * at this point (and therefore won't have a valid pointer to the spa) 3656 * we release the key mapping manually here while we do have a valid 3657 * pointer, if it exists. 3658 */ 3659 if (!drc->drc_raw && encrypted) { 3660 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3661 drc->drc_ds->ds_object, drc->drc_ds); 3662 } 3663 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3664 drc->drc_ds = NULL; 3665 } 3666 3667 static int dmu_recv_end_modified_blocks = 3; 3668 3669 static int 3670 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3671 { 3672 #ifdef _KERNEL 3673 /* 3674 * We will be destroying the ds; make sure its origin is unmounted if 3675 * necessary. 3676 */ 3677 char name[ZFS_MAX_DATASET_NAME_LEN]; 3678 dsl_dataset_name(drc->drc_ds, name); 3679 zfs_destroy_unmount_origin(name); 3680 #endif 3681 3682 return (dsl_sync_task(drc->drc_tofs, 3683 dmu_recv_end_check, dmu_recv_end_sync, drc, 3684 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3685 } 3686 3687 static int 3688 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3689 { 3690 return (dsl_sync_task(drc->drc_tofs, 3691 dmu_recv_end_check, dmu_recv_end_sync, drc, 3692 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3693 } 3694 3695 int 3696 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3697 { 3698 int error; 3699 3700 drc->drc_owner = owner; 3701 3702 if (drc->drc_newfs) 3703 error = dmu_recv_new_end(drc); 3704 else 3705 error = dmu_recv_existing_end(drc); 3706 3707 if (error != 0) { 3708 dmu_recv_cleanup_ds(drc); 3709 nvlist_free(drc->drc_keynvl); 3710 } else if (!drc->drc_heal) { 3711 if (drc->drc_newfs) { 3712 zvol_create_minor(drc->drc_tofs); 3713 } 3714 char *snapname = kmem_asprintf("%s@%s", 3715 drc->drc_tofs, drc->drc_tosnap); 3716 zvol_create_minor(snapname); 3717 kmem_strfree(snapname); 3718 } 3719 return (error); 3720 } 3721 3722 /* 3723 * Return TRUE if this objset is currently being received into. 3724 */ 3725 boolean_t 3726 dmu_objset_is_receiving(objset_t *os) 3727 { 3728 return (os->os_dsl_dataset != NULL && 3729 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3730 } 3731 3732 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW, 3733 "Maximum receive queue length"); 3734 3735 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW, 3736 "Receive queue fill fraction"); 3737 3738 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW, 3739 "Maximum amount of writes to batch into one transaction"); 3740 3741 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW, 3742 "Ignore errors during corrective receive"); 3743 /* END CSTYLED */ 3744