xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2019 Datto Inc.
31  * Copyright (c) 2022 Axcient.
32  */
33 
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_send.h>
38 #include <sys/dmu_recv.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dbuf.h>
41 #include <sys/dnode.h>
42 #include <sys/zfs_context.h>
43 #include <sys/dmu_objset.h>
44 #include <sys/dmu_traverse.h>
45 #include <sys/dsl_dataset.h>
46 #include <sys/dsl_dir.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_synctask.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/zap.h>
52 #include <sys/zvol.h>
53 #include <sys/zio_checksum.h>
54 #include <sys/zfs_znode.h>
55 #include <zfs_fletcher.h>
56 #include <sys/avl.h>
57 #include <sys/ddt.h>
58 #include <sys/zfs_onexit.h>
59 #include <sys/dsl_destroy.h>
60 #include <sys/blkptr.h>
61 #include <sys/dsl_bookmark.h>
62 #include <sys/zfeature.h>
63 #include <sys/bqueue.h>
64 #include <sys/objlist.h>
65 #ifdef _KERNEL
66 #include <sys/zfs_vfsops.h>
67 #endif
68 #include <sys/zfs_file.h>
69 
70 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
71 static int zfs_recv_queue_ff = 20;
72 static int zfs_recv_write_batch_size = 1024 * 1024;
73 static int zfs_recv_best_effort_corrective = 0;
74 
75 static const void *const dmu_recv_tag = "dmu_recv_tag";
76 const char *const recv_clone_name = "%recv";
77 
78 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
79     void *buf);
80 
81 struct receive_record_arg {
82 	dmu_replay_record_t header;
83 	void *payload; /* Pointer to a buffer containing the payload */
84 	/*
85 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
86 	 * payload.
87 	 */
88 	abd_t *abd;
89 	int payload_size;
90 	uint64_t bytes_read; /* bytes read from stream when record created */
91 	boolean_t eos_marker; /* Marks the end of the stream */
92 	bqueue_node_t node;
93 };
94 
95 struct receive_writer_arg {
96 	objset_t *os;
97 	boolean_t byteswap;
98 	bqueue_t q;
99 
100 	/*
101 	 * These three members are used to signal to the main thread when
102 	 * we're done.
103 	 */
104 	kmutex_t mutex;
105 	kcondvar_t cv;
106 	boolean_t done;
107 
108 	int err;
109 	const char *tofs;
110 	boolean_t heal;
111 	boolean_t resumable;
112 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
113 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
114 	boolean_t full;  /* this is a full send stream */
115 	uint64_t last_object;
116 	uint64_t last_offset;
117 	uint64_t max_object; /* highest object ID referenced in stream */
118 	uint64_t bytes_read; /* bytes read when current record created */
119 
120 	list_t write_batch;
121 
122 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
123 	boolean_t or_crypt_params_present;
124 	uint64_t or_firstobj;
125 	uint64_t or_numslots;
126 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
127 	uint8_t or_iv[ZIO_DATA_IV_LEN];
128 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
129 	boolean_t or_byteorder;
130 	zio_t *heal_pio;
131 };
132 
133 typedef struct dmu_recv_begin_arg {
134 	const char *drba_origin;
135 	dmu_recv_cookie_t *drba_cookie;
136 	cred_t *drba_cred;
137 	proc_t *drba_proc;
138 	dsl_crypto_params_t *drba_dcp;
139 } dmu_recv_begin_arg_t;
140 
141 static void
142 byteswap_record(dmu_replay_record_t *drr)
143 {
144 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
145 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
146 	drr->drr_type = BSWAP_32(drr->drr_type);
147 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
148 
149 	switch (drr->drr_type) {
150 	case DRR_BEGIN:
151 		DO64(drr_begin.drr_magic);
152 		DO64(drr_begin.drr_versioninfo);
153 		DO64(drr_begin.drr_creation_time);
154 		DO32(drr_begin.drr_type);
155 		DO32(drr_begin.drr_flags);
156 		DO64(drr_begin.drr_toguid);
157 		DO64(drr_begin.drr_fromguid);
158 		break;
159 	case DRR_OBJECT:
160 		DO64(drr_object.drr_object);
161 		DO32(drr_object.drr_type);
162 		DO32(drr_object.drr_bonustype);
163 		DO32(drr_object.drr_blksz);
164 		DO32(drr_object.drr_bonuslen);
165 		DO32(drr_object.drr_raw_bonuslen);
166 		DO64(drr_object.drr_toguid);
167 		DO64(drr_object.drr_maxblkid);
168 		break;
169 	case DRR_FREEOBJECTS:
170 		DO64(drr_freeobjects.drr_firstobj);
171 		DO64(drr_freeobjects.drr_numobjs);
172 		DO64(drr_freeobjects.drr_toguid);
173 		break;
174 	case DRR_WRITE:
175 		DO64(drr_write.drr_object);
176 		DO32(drr_write.drr_type);
177 		DO64(drr_write.drr_offset);
178 		DO64(drr_write.drr_logical_size);
179 		DO64(drr_write.drr_toguid);
180 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
181 		DO64(drr_write.drr_key.ddk_prop);
182 		DO64(drr_write.drr_compressed_size);
183 		break;
184 	case DRR_WRITE_EMBEDDED:
185 		DO64(drr_write_embedded.drr_object);
186 		DO64(drr_write_embedded.drr_offset);
187 		DO64(drr_write_embedded.drr_length);
188 		DO64(drr_write_embedded.drr_toguid);
189 		DO32(drr_write_embedded.drr_lsize);
190 		DO32(drr_write_embedded.drr_psize);
191 		break;
192 	case DRR_FREE:
193 		DO64(drr_free.drr_object);
194 		DO64(drr_free.drr_offset);
195 		DO64(drr_free.drr_length);
196 		DO64(drr_free.drr_toguid);
197 		break;
198 	case DRR_SPILL:
199 		DO64(drr_spill.drr_object);
200 		DO64(drr_spill.drr_length);
201 		DO64(drr_spill.drr_toguid);
202 		DO64(drr_spill.drr_compressed_size);
203 		DO32(drr_spill.drr_type);
204 		break;
205 	case DRR_OBJECT_RANGE:
206 		DO64(drr_object_range.drr_firstobj);
207 		DO64(drr_object_range.drr_numslots);
208 		DO64(drr_object_range.drr_toguid);
209 		break;
210 	case DRR_REDACT:
211 		DO64(drr_redact.drr_object);
212 		DO64(drr_redact.drr_offset);
213 		DO64(drr_redact.drr_length);
214 		DO64(drr_redact.drr_toguid);
215 		break;
216 	case DRR_END:
217 		DO64(drr_end.drr_toguid);
218 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
219 		break;
220 	default:
221 		break;
222 	}
223 
224 	if (drr->drr_type != DRR_BEGIN) {
225 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
226 	}
227 
228 #undef DO64
229 #undef DO32
230 }
231 
232 static boolean_t
233 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
234 {
235 	for (int i = 0; i < num_snaps; i++) {
236 		if (snaps[i] == guid)
237 			return (B_TRUE);
238 	}
239 	return (B_FALSE);
240 }
241 
242 /*
243  * Check that the new stream we're trying to receive is redacted with respect to
244  * a subset of the snapshots that the origin was redacted with respect to.  For
245  * the reasons behind this, see the man page on redacted zfs sends and receives.
246  */
247 static boolean_t
248 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
249     uint64_t *redact_snaps, uint64_t num_redact_snaps)
250 {
251 	/*
252 	 * Short circuit the comparison; if we are redacted with respect to
253 	 * more snapshots than the origin, we can't be redacted with respect
254 	 * to a subset.
255 	 */
256 	if (num_redact_snaps > origin_num_snaps) {
257 		return (B_FALSE);
258 	}
259 
260 	for (int i = 0; i < num_redact_snaps; i++) {
261 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
262 		    redact_snaps[i])) {
263 			return (B_FALSE);
264 		}
265 	}
266 	return (B_TRUE);
267 }
268 
269 static boolean_t
270 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
271 {
272 	uint64_t *origin_snaps;
273 	uint64_t origin_num_snaps;
274 	dmu_recv_cookie_t *drc = drba->drba_cookie;
275 	struct drr_begin *drrb = drc->drc_drrb;
276 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
277 	int err = 0;
278 	boolean_t ret = B_TRUE;
279 	uint64_t *redact_snaps;
280 	uint_t numredactsnaps;
281 
282 	/*
283 	 * If this is a full send stream, we're safe no matter what.
284 	 */
285 	if (drrb->drr_fromguid == 0)
286 		return (ret);
287 
288 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
289 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
290 
291 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
292 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
293 	    0) {
294 		/*
295 		 * If the send stream was sent from the redaction bookmark or
296 		 * the redacted version of the dataset, then we're safe.  Verify
297 		 * that this is from the a compatible redaction bookmark or
298 		 * redacted dataset.
299 		 */
300 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
301 		    redact_snaps, numredactsnaps)) {
302 			err = EINVAL;
303 		}
304 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
305 		/*
306 		 * If the stream is redacted, it must be redacted with respect
307 		 * to a subset of what the origin is redacted with respect to.
308 		 * See case number 2 in the zfs man page section on redacted zfs
309 		 * send.
310 		 */
311 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
312 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
313 
314 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
315 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
316 			err = EINVAL;
317 		}
318 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
319 	    drrb->drr_toguid)) {
320 		/*
321 		 * If the stream isn't redacted but the origin is, this must be
322 		 * one of the snapshots the origin is redacted with respect to.
323 		 * See case number 1 in the zfs man page section on redacted zfs
324 		 * send.
325 		 */
326 		err = EINVAL;
327 	}
328 
329 	if (err != 0)
330 		ret = B_FALSE;
331 	return (ret);
332 }
333 
334 /*
335  * If we previously received a stream with --large-block, we don't support
336  * receiving an incremental on top of it without --large-block.  This avoids
337  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
338  * records.
339  */
340 static int
341 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
342 {
343 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
344 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
345 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
346 	return (0);
347 }
348 
349 static int
350 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
351     uint64_t fromguid, uint64_t featureflags)
352 {
353 	uint64_t obj;
354 	uint64_t children;
355 	int error;
356 	dsl_dataset_t *snap;
357 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
358 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
359 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
360 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
361 
362 	/* Temporary clone name must not exist. */
363 	error = zap_lookup(dp->dp_meta_objset,
364 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
365 	    8, 1, &obj);
366 	if (error != ENOENT)
367 		return (error == 0 ? SET_ERROR(EBUSY) : error);
368 
369 	/* Resume state must not be set. */
370 	if (dsl_dataset_has_resume_receive_state(ds))
371 		return (SET_ERROR(EBUSY));
372 
373 	/* New snapshot name must not exist if we're not healing it. */
374 	error = zap_lookup(dp->dp_meta_objset,
375 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
376 	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
377 	if (drba->drba_cookie->drc_heal) {
378 		if (error != 0)
379 			return (error);
380 	} else if (error != ENOENT) {
381 		return (error == 0 ? SET_ERROR(EEXIST) : error);
382 	}
383 
384 	/* Must not have children if receiving a ZVOL. */
385 	error = zap_count(dp->dp_meta_objset,
386 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
387 	if (error != 0)
388 		return (error);
389 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
390 	    children > 0)
391 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
392 
393 	/*
394 	 * Check snapshot limit before receiving. We'll recheck again at the
395 	 * end, but might as well abort before receiving if we're already over
396 	 * the limit.
397 	 *
398 	 * Note that we do not check the file system limit with
399 	 * dsl_dir_fscount_check because the temporary %clones don't count
400 	 * against that limit.
401 	 */
402 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
403 	    NULL, drba->drba_cred, drba->drba_proc);
404 	if (error != 0)
405 		return (error);
406 
407 	if (drba->drba_cookie->drc_heal) {
408 		/* Encryption is incompatible with embedded data. */
409 		if (encrypted && embed)
410 			return (SET_ERROR(EINVAL));
411 
412 		/* Healing is not supported when in 'force' mode. */
413 		if (drba->drba_cookie->drc_force)
414 			return (SET_ERROR(EINVAL));
415 
416 		/* Must have keys loaded if doing encrypted non-raw recv. */
417 		if (encrypted && !raw) {
418 			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
419 			    NULL, NULL) != 0)
420 				return (SET_ERROR(EACCES));
421 		}
422 
423 		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
424 		if (error != 0)
425 			return (error);
426 
427 		/*
428 		 * When not doing best effort corrective recv healing can only
429 		 * be done if the send stream is for the same snapshot as the
430 		 * one we are trying to heal.
431 		 */
432 		if (zfs_recv_best_effort_corrective == 0 &&
433 		    drba->drba_cookie->drc_drrb->drr_toguid !=
434 		    dsl_dataset_phys(snap)->ds_guid) {
435 			dsl_dataset_rele(snap, FTAG);
436 			return (SET_ERROR(ENOTSUP));
437 		}
438 		dsl_dataset_rele(snap, FTAG);
439 	} else if (fromguid != 0) {
440 		/* Sanity check the incremental recv */
441 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
442 
443 		/* Can't perform a raw receive on top of a non-raw receive */
444 		if (!encrypted && raw)
445 			return (SET_ERROR(EINVAL));
446 
447 		/* Encryption is incompatible with embedded data */
448 		if (encrypted && embed)
449 			return (SET_ERROR(EINVAL));
450 
451 		/* Find snapshot in this dir that matches fromguid. */
452 		while (obj != 0) {
453 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
454 			    &snap);
455 			if (error != 0)
456 				return (SET_ERROR(ENODEV));
457 			if (snap->ds_dir != ds->ds_dir) {
458 				dsl_dataset_rele(snap, FTAG);
459 				return (SET_ERROR(ENODEV));
460 			}
461 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
462 				break;
463 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
464 			dsl_dataset_rele(snap, FTAG);
465 		}
466 		if (obj == 0)
467 			return (SET_ERROR(ENODEV));
468 
469 		if (drba->drba_cookie->drc_force) {
470 			drba->drba_cookie->drc_fromsnapobj = obj;
471 		} else {
472 			/*
473 			 * If we are not forcing, there must be no
474 			 * changes since fromsnap. Raw sends have an
475 			 * additional constraint that requires that
476 			 * no "noop" snapshots exist between fromsnap
477 			 * and tosnap for the IVset checking code to
478 			 * work properly.
479 			 */
480 			if (dsl_dataset_modified_since_snap(ds, snap) ||
481 			    (raw &&
482 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
483 			    snap->ds_object)) {
484 				dsl_dataset_rele(snap, FTAG);
485 				return (SET_ERROR(ETXTBSY));
486 			}
487 			drba->drba_cookie->drc_fromsnapobj =
488 			    ds->ds_prev->ds_object;
489 		}
490 
491 		if (dsl_dataset_feature_is_active(snap,
492 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
493 		    snap)) {
494 			dsl_dataset_rele(snap, FTAG);
495 			return (SET_ERROR(EINVAL));
496 		}
497 
498 		error = recv_check_large_blocks(snap, featureflags);
499 		if (error != 0) {
500 			dsl_dataset_rele(snap, FTAG);
501 			return (error);
502 		}
503 
504 		dsl_dataset_rele(snap, FTAG);
505 	} else {
506 		/* If full and not healing then must be forced. */
507 		if (!drba->drba_cookie->drc_force)
508 			return (SET_ERROR(EEXIST));
509 
510 		/*
511 		 * We don't support using zfs recv -F to blow away
512 		 * encrypted filesystems. This would require the
513 		 * dsl dir to point to the old encryption key and
514 		 * the new one at the same time during the receive.
515 		 */
516 		if ((!encrypted && raw) || encrypted)
517 			return (SET_ERROR(EINVAL));
518 
519 		/*
520 		 * Perform the same encryption checks we would if
521 		 * we were creating a new dataset from scratch.
522 		 */
523 		if (!raw) {
524 			boolean_t will_encrypt;
525 
526 			error = dmu_objset_create_crypt_check(
527 			    ds->ds_dir->dd_parent, drba->drba_dcp,
528 			    &will_encrypt);
529 			if (error != 0)
530 				return (error);
531 
532 			if (will_encrypt && embed)
533 				return (SET_ERROR(EINVAL));
534 		}
535 	}
536 
537 	return (0);
538 }
539 
540 /*
541  * Check that any feature flags used in the data stream we're receiving are
542  * supported by the pool we are receiving into.
543  *
544  * Note that some of the features we explicitly check here have additional
545  * (implicit) features they depend on, but those dependencies are enforced
546  * through the zfeature_register() calls declaring the features that we
547  * explicitly check.
548  */
549 static int
550 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
551 {
552 	/*
553 	 * Check if there are any unsupported feature flags.
554 	 */
555 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
556 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
557 	}
558 
559 	/* Verify pool version supports SA if SA_SPILL feature set */
560 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
561 	    spa_version(spa) < SPA_VERSION_SA)
562 		return (SET_ERROR(ENOTSUP));
563 
564 	/*
565 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
566 	 * and large_dnodes in the stream can only be used if those pool
567 	 * features are enabled because we don't attempt to decompress /
568 	 * un-embed / un-mooch / split up the blocks / dnodes during the
569 	 * receive process.
570 	 */
571 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
572 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
573 		return (SET_ERROR(ENOTSUP));
574 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
575 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
576 		return (SET_ERROR(ENOTSUP));
577 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
578 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
579 		return (SET_ERROR(ENOTSUP));
580 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
581 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
582 		return (SET_ERROR(ENOTSUP));
583 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
584 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
585 		return (SET_ERROR(ENOTSUP));
586 
587 	/*
588 	 * Receiving redacted streams requires that redacted datasets are
589 	 * enabled.
590 	 */
591 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
592 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
593 		return (SET_ERROR(ENOTSUP));
594 
595 	return (0);
596 }
597 
598 static int
599 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
600 {
601 	dmu_recv_begin_arg_t *drba = arg;
602 	dsl_pool_t *dp = dmu_tx_pool(tx);
603 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
604 	uint64_t fromguid = drrb->drr_fromguid;
605 	int flags = drrb->drr_flags;
606 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
607 	int error;
608 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
609 	dsl_dataset_t *ds;
610 	const char *tofs = drba->drba_cookie->drc_tofs;
611 
612 	/* already checked */
613 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
614 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
615 
616 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
617 	    DMU_COMPOUNDSTREAM ||
618 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
619 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
620 		return (SET_ERROR(EINVAL));
621 
622 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
623 	if (error != 0)
624 		return (error);
625 
626 	/* Resumable receives require extensible datasets */
627 	if (drba->drba_cookie->drc_resumable &&
628 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
629 		return (SET_ERROR(ENOTSUP));
630 
631 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
632 		/* raw receives require the encryption feature */
633 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
634 			return (SET_ERROR(ENOTSUP));
635 
636 		/* embedded data is incompatible with encryption and raw recv */
637 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
638 			return (SET_ERROR(EINVAL));
639 
640 		/* raw receives require spill block allocation flag */
641 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
642 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
643 	} else {
644 		/*
645 		 * We support unencrypted datasets below encrypted ones now,
646 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
647 		 * with a dataset we may encrypt.
648 		 */
649 		if (drba->drba_dcp != NULL &&
650 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
651 			dsflags |= DS_HOLD_FLAG_DECRYPT;
652 		}
653 	}
654 
655 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
656 	if (error == 0) {
657 		/* target fs already exists; recv into temp clone */
658 
659 		/* Can't recv a clone into an existing fs */
660 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
661 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
662 			return (SET_ERROR(EINVAL));
663 		}
664 
665 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
666 		    featureflags);
667 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
668 	} else if (error == ENOENT) {
669 		/* target fs does not exist; must be a full backup or clone */
670 		char buf[ZFS_MAX_DATASET_NAME_LEN];
671 		objset_t *os;
672 
673 		/* healing recv must be done "into" an existing snapshot */
674 		if (drba->drba_cookie->drc_heal == B_TRUE)
675 			return (SET_ERROR(ENOTSUP));
676 
677 		/*
678 		 * If it's a non-clone incremental, we are missing the
679 		 * target fs, so fail the recv.
680 		 */
681 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
682 		    drba->drba_origin))
683 			return (SET_ERROR(ENOENT));
684 
685 		/*
686 		 * If we're receiving a full send as a clone, and it doesn't
687 		 * contain all the necessary free records and freeobject
688 		 * records, reject it.
689 		 */
690 		if (fromguid == 0 && drba->drba_origin != NULL &&
691 		    !(flags & DRR_FLAG_FREERECORDS))
692 			return (SET_ERROR(EINVAL));
693 
694 		/* Open the parent of tofs */
695 		ASSERT3U(strlen(tofs), <, sizeof (buf));
696 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
697 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
698 		if (error != 0)
699 			return (error);
700 
701 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
702 		    drba->drba_origin == NULL) {
703 			boolean_t will_encrypt;
704 
705 			/*
706 			 * Check that we aren't breaking any encryption rules
707 			 * and that we have all the parameters we need to
708 			 * create an encrypted dataset if necessary. If we are
709 			 * making an encrypted dataset the stream can't have
710 			 * embedded data.
711 			 */
712 			error = dmu_objset_create_crypt_check(ds->ds_dir,
713 			    drba->drba_dcp, &will_encrypt);
714 			if (error != 0) {
715 				dsl_dataset_rele(ds, FTAG);
716 				return (error);
717 			}
718 
719 			if (will_encrypt &&
720 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
721 				dsl_dataset_rele(ds, FTAG);
722 				return (SET_ERROR(EINVAL));
723 			}
724 		}
725 
726 		/*
727 		 * Check filesystem and snapshot limits before receiving. We'll
728 		 * recheck snapshot limits again at the end (we create the
729 		 * filesystems and increment those counts during begin_sync).
730 		 */
731 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
732 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
733 		    drba->drba_cred, drba->drba_proc);
734 		if (error != 0) {
735 			dsl_dataset_rele(ds, FTAG);
736 			return (error);
737 		}
738 
739 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
740 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
741 		    drba->drba_cred, drba->drba_proc);
742 		if (error != 0) {
743 			dsl_dataset_rele(ds, FTAG);
744 			return (error);
745 		}
746 
747 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
748 		error = dmu_objset_from_ds(ds, &os);
749 		if (error != 0) {
750 			dsl_dataset_rele(ds, FTAG);
751 			return (error);
752 		}
753 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
754 			dsl_dataset_rele(ds, FTAG);
755 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
756 		}
757 
758 		if (drba->drba_origin != NULL) {
759 			dsl_dataset_t *origin;
760 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
761 			    dsflags, FTAG, &origin);
762 			if (error != 0) {
763 				dsl_dataset_rele(ds, FTAG);
764 				return (error);
765 			}
766 			if (!origin->ds_is_snapshot) {
767 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
768 				dsl_dataset_rele(ds, FTAG);
769 				return (SET_ERROR(EINVAL));
770 			}
771 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
772 			    fromguid != 0) {
773 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
774 				dsl_dataset_rele(ds, FTAG);
775 				return (SET_ERROR(ENODEV));
776 			}
777 
778 			if (origin->ds_dir->dd_crypto_obj != 0 &&
779 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
780 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
781 				dsl_dataset_rele(ds, FTAG);
782 				return (SET_ERROR(EINVAL));
783 			}
784 
785 			/*
786 			 * If the origin is redacted we need to verify that this
787 			 * send stream can safely be received on top of the
788 			 * origin.
789 			 */
790 			if (dsl_dataset_feature_is_active(origin,
791 			    SPA_FEATURE_REDACTED_DATASETS)) {
792 				if (!redact_check(drba, origin)) {
793 					dsl_dataset_rele_flags(origin, dsflags,
794 					    FTAG);
795 					dsl_dataset_rele_flags(ds, dsflags,
796 					    FTAG);
797 					return (SET_ERROR(EINVAL));
798 				}
799 			}
800 
801 			error = recv_check_large_blocks(ds, featureflags);
802 			if (error != 0) {
803 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
804 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
805 				return (error);
806 			}
807 
808 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
809 		}
810 
811 		dsl_dataset_rele(ds, FTAG);
812 		error = 0;
813 	}
814 	return (error);
815 }
816 
817 static void
818 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
819 {
820 	dmu_recv_begin_arg_t *drba = arg;
821 	dsl_pool_t *dp = dmu_tx_pool(tx);
822 	objset_t *mos = dp->dp_meta_objset;
823 	dmu_recv_cookie_t *drc = drba->drba_cookie;
824 	struct drr_begin *drrb = drc->drc_drrb;
825 	const char *tofs = drc->drc_tofs;
826 	uint64_t featureflags = drc->drc_featureflags;
827 	dsl_dataset_t *ds, *newds;
828 	objset_t *os;
829 	uint64_t dsobj;
830 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
831 	int error;
832 	uint64_t crflags = 0;
833 	dsl_crypto_params_t dummy_dcp = { 0 };
834 	dsl_crypto_params_t *dcp = drba->drba_dcp;
835 
836 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
837 		crflags |= DS_FLAG_CI_DATASET;
838 
839 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
840 		dsflags |= DS_HOLD_FLAG_DECRYPT;
841 
842 	/*
843 	 * Raw, non-incremental recvs always use a dummy dcp with
844 	 * the raw cmd set. Raw incremental recvs do not use a dcp
845 	 * since the encryption parameters are already set in stone.
846 	 */
847 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
848 	    drba->drba_origin == NULL) {
849 		ASSERT3P(dcp, ==, NULL);
850 		dcp = &dummy_dcp;
851 
852 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
853 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
854 	}
855 
856 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
857 	if (error == 0) {
858 		/* Create temporary clone unless we're doing corrective recv */
859 		dsl_dataset_t *snap = NULL;
860 
861 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
862 			VERIFY0(dsl_dataset_hold_obj(dp,
863 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
864 			ASSERT3P(dcp, ==, NULL);
865 		}
866 		if (drc->drc_heal) {
867 			/* When healing we want to use the provided snapshot */
868 			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
869 			    &dsobj));
870 		} else {
871 			dsobj = dsl_dataset_create_sync(ds->ds_dir,
872 			    recv_clone_name, snap, crflags, drba->drba_cred,
873 			    dcp, tx);
874 		}
875 		if (drba->drba_cookie->drc_fromsnapobj != 0)
876 			dsl_dataset_rele(snap, FTAG);
877 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
878 	} else {
879 		dsl_dir_t *dd;
880 		const char *tail;
881 		dsl_dataset_t *origin = NULL;
882 
883 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
884 
885 		if (drba->drba_origin != NULL) {
886 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
887 			    FTAG, &origin));
888 			ASSERT3P(dcp, ==, NULL);
889 		}
890 
891 		/* Create new dataset. */
892 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
893 		    origin, crflags, drba->drba_cred, dcp, tx);
894 		if (origin != NULL)
895 			dsl_dataset_rele(origin, FTAG);
896 		dsl_dir_rele(dd, FTAG);
897 		drc->drc_newfs = B_TRUE;
898 	}
899 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
900 	    &newds));
901 	if (dsl_dataset_feature_is_active(newds,
902 	    SPA_FEATURE_REDACTED_DATASETS)) {
903 		/*
904 		 * If the origin dataset is redacted, the child will be redacted
905 		 * when we create it.  We clear the new dataset's
906 		 * redaction info; if it should be redacted, we'll fill
907 		 * in its information later.
908 		 */
909 		dsl_dataset_deactivate_feature(newds,
910 		    SPA_FEATURE_REDACTED_DATASETS, tx);
911 	}
912 	VERIFY0(dmu_objset_from_ds(newds, &os));
913 
914 	if (drc->drc_resumable) {
915 		dsl_dataset_zapify(newds, tx);
916 		if (drrb->drr_fromguid != 0) {
917 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
918 			    8, 1, &drrb->drr_fromguid, tx));
919 		}
920 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
921 		    8, 1, &drrb->drr_toguid, tx));
922 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
923 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
924 		uint64_t one = 1;
925 		uint64_t zero = 0;
926 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
927 		    8, 1, &one, tx));
928 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
929 		    8, 1, &zero, tx));
930 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
931 		    8, 1, &zero, tx));
932 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
933 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
934 			    8, 1, &one, tx));
935 		}
936 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
937 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
938 			    8, 1, &one, tx));
939 		}
940 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
941 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
942 			    8, 1, &one, tx));
943 		}
944 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
945 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
946 			    8, 1, &one, tx));
947 		}
948 
949 		uint64_t *redact_snaps;
950 		uint_t numredactsnaps;
951 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
952 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
953 		    &numredactsnaps) == 0) {
954 			VERIFY0(zap_add(mos, dsobj,
955 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
956 			    sizeof (*redact_snaps), numredactsnaps,
957 			    redact_snaps, tx));
958 		}
959 	}
960 
961 	/*
962 	 * Usually the os->os_encrypted value is tied to the presence of a
963 	 * DSL Crypto Key object in the dd. However, that will not be received
964 	 * until dmu_recv_stream(), so we set the value manually for now.
965 	 */
966 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
967 		os->os_encrypted = B_TRUE;
968 		drba->drba_cookie->drc_raw = B_TRUE;
969 	}
970 
971 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
972 		uint64_t *redact_snaps;
973 		uint_t numredactsnaps;
974 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
975 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
976 		dsl_dataset_activate_redaction(newds, redact_snaps,
977 		    numredactsnaps, tx);
978 	}
979 
980 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
981 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
982 
983 	/*
984 	 * If we actually created a non-clone, we need to create the objset
985 	 * in our new dataset. If this is a raw send we postpone this until
986 	 * dmu_recv_stream() so that we can allocate the metadnode with the
987 	 * properties from the DRR_BEGIN payload.
988 	 */
989 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
990 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
991 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
992 	    !drc->drc_heal) {
993 		(void) dmu_objset_create_impl(dp->dp_spa,
994 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
995 	}
996 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
997 
998 	drba->drba_cookie->drc_ds = newds;
999 	drba->drba_cookie->drc_os = os;
1000 
1001 	spa_history_log_internal_ds(newds, "receive", tx, " ");
1002 }
1003 
1004 static int
1005 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1006 {
1007 	dmu_recv_begin_arg_t *drba = arg;
1008 	dmu_recv_cookie_t *drc = drba->drba_cookie;
1009 	dsl_pool_t *dp = dmu_tx_pool(tx);
1010 	struct drr_begin *drrb = drc->drc_drrb;
1011 	int error;
1012 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1013 	dsl_dataset_t *ds;
1014 	const char *tofs = drc->drc_tofs;
1015 
1016 	/* already checked */
1017 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1018 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1019 
1020 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1021 	    DMU_COMPOUNDSTREAM ||
1022 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1023 		return (SET_ERROR(EINVAL));
1024 
1025 	/*
1026 	 * This is mostly a sanity check since we should have already done these
1027 	 * checks during a previous attempt to receive the data.
1028 	 */
1029 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1030 	    dp->dp_spa);
1031 	if (error != 0)
1032 		return (error);
1033 
1034 	/* 6 extra bytes for /%recv */
1035 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1036 
1037 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1038 	    tofs, recv_clone_name);
1039 
1040 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1041 		/* raw receives require spill block allocation flag */
1042 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1043 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1044 	} else {
1045 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1046 	}
1047 
1048 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1049 		/* %recv does not exist; continue in tofs */
1050 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1051 		if (error != 0)
1052 			return (error);
1053 	}
1054 
1055 	/* check that ds is marked inconsistent */
1056 	if (!DS_IS_INCONSISTENT(ds)) {
1057 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1058 		return (SET_ERROR(EINVAL));
1059 	}
1060 
1061 	/* check that there is resuming data, and that the toguid matches */
1062 	if (!dsl_dataset_is_zapified(ds)) {
1063 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1064 		return (SET_ERROR(EINVAL));
1065 	}
1066 	uint64_t val;
1067 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1068 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1069 	if (error != 0 || drrb->drr_toguid != val) {
1070 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1071 		return (SET_ERROR(EINVAL));
1072 	}
1073 
1074 	/*
1075 	 * Check if the receive is still running.  If so, it will be owned.
1076 	 * Note that nothing else can own the dataset (e.g. after the receive
1077 	 * fails) because it will be marked inconsistent.
1078 	 */
1079 	if (dsl_dataset_has_owner(ds)) {
1080 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081 		return (SET_ERROR(EBUSY));
1082 	}
1083 
1084 	/* There should not be any snapshots of this fs yet. */
1085 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1086 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1087 		return (SET_ERROR(EINVAL));
1088 	}
1089 
1090 	/*
1091 	 * Note: resume point will be checked when we process the first WRITE
1092 	 * record.
1093 	 */
1094 
1095 	/* check that the origin matches */
1096 	val = 0;
1097 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1098 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1099 	if (drrb->drr_fromguid != val) {
1100 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1101 		return (SET_ERROR(EINVAL));
1102 	}
1103 
1104 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1105 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1106 
1107 	/*
1108 	 * If we're resuming, and the send is redacted, then the original send
1109 	 * must have been redacted, and must have been redacted with respect to
1110 	 * the same snapshots.
1111 	 */
1112 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1113 		uint64_t num_ds_redact_snaps;
1114 		uint64_t *ds_redact_snaps;
1115 
1116 		uint_t num_stream_redact_snaps;
1117 		uint64_t *stream_redact_snaps;
1118 
1119 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1120 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1121 		    &num_stream_redact_snaps) != 0) {
1122 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1123 			return (SET_ERROR(EINVAL));
1124 		}
1125 
1126 		if (!dsl_dataset_get_uint64_array_feature(ds,
1127 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1128 		    &ds_redact_snaps)) {
1129 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1130 			return (SET_ERROR(EINVAL));
1131 		}
1132 
1133 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1134 			if (!redact_snaps_contains(ds_redact_snaps,
1135 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1136 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1137 				return (SET_ERROR(EINVAL));
1138 			}
1139 		}
1140 	}
1141 
1142 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1143 	if (error != 0) {
1144 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1145 		return (error);
1146 	}
1147 
1148 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1149 	return (0);
1150 }
1151 
1152 static void
1153 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1154 {
1155 	dmu_recv_begin_arg_t *drba = arg;
1156 	dsl_pool_t *dp = dmu_tx_pool(tx);
1157 	const char *tofs = drba->drba_cookie->drc_tofs;
1158 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1159 	dsl_dataset_t *ds;
1160 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1161 	/* 6 extra bytes for /%recv */
1162 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1163 
1164 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1165 	    recv_clone_name);
1166 
1167 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1168 		drba->drba_cookie->drc_raw = B_TRUE;
1169 	} else {
1170 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1171 	}
1172 
1173 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1174 	    != 0) {
1175 		/* %recv does not exist; continue in tofs */
1176 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1177 		    &ds));
1178 		drba->drba_cookie->drc_newfs = B_TRUE;
1179 	}
1180 
1181 	ASSERT(DS_IS_INCONSISTENT(ds));
1182 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1183 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1184 	    drba->drba_cookie->drc_raw);
1185 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1186 
1187 	drba->drba_cookie->drc_ds = ds;
1188 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1189 	drba->drba_cookie->drc_should_save = B_TRUE;
1190 
1191 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1192 }
1193 
1194 /*
1195  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1196  * succeeds; otherwise we will leak the holds on the datasets.
1197  */
1198 int
1199 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1200     boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops,
1201     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1202     zfs_file_t *fp, offset_t *voffp)
1203 {
1204 	dmu_recv_begin_arg_t drba = { 0 };
1205 	int err;
1206 
1207 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1208 	drc->drc_drr_begin = drr_begin;
1209 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1210 	drc->drc_tosnap = tosnap;
1211 	drc->drc_tofs = tofs;
1212 	drc->drc_force = force;
1213 	drc->drc_heal = heal;
1214 	drc->drc_resumable = resumable;
1215 	drc->drc_cred = CRED();
1216 	drc->drc_proc = curproc;
1217 	drc->drc_clone = (origin != NULL);
1218 
1219 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1220 		drc->drc_byteswap = B_TRUE;
1221 		(void) fletcher_4_incremental_byteswap(drr_begin,
1222 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1223 		byteswap_record(drr_begin);
1224 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1225 		(void) fletcher_4_incremental_native(drr_begin,
1226 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1227 	} else {
1228 		return (SET_ERROR(EINVAL));
1229 	}
1230 
1231 	drc->drc_fp = fp;
1232 	drc->drc_voff = *voffp;
1233 	drc->drc_featureflags =
1234 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1235 
1236 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1237 	void *payload = NULL;
1238 	if (payloadlen != 0)
1239 		payload = kmem_alloc(payloadlen, KM_SLEEP);
1240 
1241 	err = receive_read_payload_and_next_header(drc, payloadlen,
1242 	    payload);
1243 	if (err != 0) {
1244 		kmem_free(payload, payloadlen);
1245 		return (err);
1246 	}
1247 	if (payloadlen != 0) {
1248 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1249 		    KM_SLEEP);
1250 		kmem_free(payload, payloadlen);
1251 		if (err != 0) {
1252 			kmem_free(drc->drc_next_rrd,
1253 			    sizeof (*drc->drc_next_rrd));
1254 			return (err);
1255 		}
1256 	}
1257 
1258 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1259 		drc->drc_spill = B_TRUE;
1260 
1261 	drba.drba_origin = origin;
1262 	drba.drba_cookie = drc;
1263 	drba.drba_cred = CRED();
1264 	drba.drba_proc = curproc;
1265 
1266 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1267 		err = dsl_sync_task(tofs,
1268 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1269 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1270 	} else {
1271 		/*
1272 		 * For non-raw, non-incremental, non-resuming receives the
1273 		 * user can specify encryption parameters on the command line
1274 		 * with "zfs recv -o". For these receives we create a dcp and
1275 		 * pass it to the sync task. Creating the dcp will implicitly
1276 		 * remove the encryption params from the localprops nvlist,
1277 		 * which avoids errors when trying to set these normally
1278 		 * read-only properties. Any other kind of receive that
1279 		 * attempts to set these properties will fail as a result.
1280 		 */
1281 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1282 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1283 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1284 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1285 			    localprops, hidden_args, &drba.drba_dcp);
1286 		}
1287 
1288 		if (err == 0) {
1289 			err = dsl_sync_task(tofs,
1290 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1291 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1292 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1293 		}
1294 	}
1295 
1296 	if (err != 0) {
1297 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1298 		nvlist_free(drc->drc_begin_nvl);
1299 	}
1300 	return (err);
1301 }
1302 
1303 /*
1304  * Holds data need for corrective recv callback
1305  */
1306 typedef struct cr_cb_data {
1307 	uint64_t size;
1308 	zbookmark_phys_t zb;
1309 	spa_t *spa;
1310 } cr_cb_data_t;
1311 
1312 static void
1313 corrective_read_done(zio_t *zio)
1314 {
1315 	cr_cb_data_t *data = zio->io_private;
1316 	/* Corruption corrected; update error log if needed */
1317 	if (zio->io_error == 0)
1318 		spa_remove_error(data->spa, &data->zb);
1319 	kmem_free(data, sizeof (cr_cb_data_t));
1320 	abd_free(zio->io_abd);
1321 }
1322 
1323 /*
1324  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1325  */
1326 static int
1327 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1328     struct receive_record_arg *rrd, blkptr_t *bp)
1329 {
1330 	int err;
1331 	zio_t *io;
1332 	zbookmark_phys_t zb;
1333 	dnode_t *dn;
1334 	abd_t *abd = rrd->abd;
1335 	zio_cksum_t bp_cksum = bp->blk_cksum;
1336 	enum zio_flag flags = ZIO_FLAG_SPECULATIVE |
1337 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
1338 
1339 	if (rwa->raw)
1340 		flags |= ZIO_FLAG_RAW;
1341 
1342 	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1343 	if (err != 0)
1344 		return (err);
1345 	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1346 	    dbuf_whichblock(dn, 0, drrw->drr_offset));
1347 	dnode_rele(dn, FTAG);
1348 
1349 	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1350 		/* Decompress the stream data */
1351 		abd_t *dabd = abd_alloc_linear(
1352 		    drrw->drr_logical_size, B_FALSE);
1353 		err = zio_decompress_data(drrw->drr_compressiontype,
1354 		    abd, abd_to_buf(dabd), abd_get_size(abd),
1355 		    abd_get_size(dabd), NULL);
1356 
1357 		if (err != 0) {
1358 			abd_free(dabd);
1359 			return (err);
1360 		}
1361 		/* Swap in the newly decompressed data into the abd */
1362 		abd_free(abd);
1363 		abd = dabd;
1364 	}
1365 
1366 	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1367 		/* Recompress the data */
1368 		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1369 		    B_FALSE);
1370 		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1371 		    abd, abd_to_buf(cabd), abd_get_size(abd),
1372 		    rwa->os->os_complevel);
1373 		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1374 		/* Swap in newly compressed data into the abd */
1375 		abd_free(abd);
1376 		abd = cabd;
1377 		flags |= ZIO_FLAG_RAW_COMPRESS;
1378 	}
1379 
1380 	/*
1381 	 * The stream is not encrypted but the data on-disk is.
1382 	 * We need to re-encrypt the buf using the same
1383 	 * encryption type, salt, iv, and mac that was used to encrypt
1384 	 * the block previosly.
1385 	 */
1386 	if (!rwa->raw && BP_USES_CRYPT(bp)) {
1387 		dsl_dataset_t *ds;
1388 		dsl_crypto_key_t *dck = NULL;
1389 		uint8_t salt[ZIO_DATA_SALT_LEN];
1390 		uint8_t iv[ZIO_DATA_IV_LEN];
1391 		uint8_t mac[ZIO_DATA_MAC_LEN];
1392 		boolean_t no_crypt = B_FALSE;
1393 		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1394 		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1395 
1396 		zio_crypt_decode_params_bp(bp, salt, iv);
1397 		zio_crypt_decode_mac_bp(bp, mac);
1398 
1399 		dsl_pool_config_enter(dp, FTAG);
1400 		err = dsl_dataset_hold_flags(dp, rwa->tofs,
1401 		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1402 		if (err != 0) {
1403 			dsl_pool_config_exit(dp, FTAG);
1404 			abd_free(eabd);
1405 			return (SET_ERROR(EACCES));
1406 		}
1407 
1408 		/* Look up the key from the spa's keystore */
1409 		err = spa_keystore_lookup_key(rwa->os->os_spa,
1410 		    zb.zb_objset, FTAG, &dck);
1411 		if (err != 0) {
1412 			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1413 			    FTAG);
1414 			dsl_pool_config_exit(dp, FTAG);
1415 			abd_free(eabd);
1416 			return (SET_ERROR(EACCES));
1417 		}
1418 
1419 		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1420 		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1421 		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
1422 
1423 		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1424 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1425 		dsl_pool_config_exit(dp, FTAG);
1426 
1427 		ASSERT0(no_crypt);
1428 		if (err != 0) {
1429 			abd_free(eabd);
1430 			return (err);
1431 		}
1432 		/* Swap in the newly encrypted data into the abd */
1433 		abd_free(abd);
1434 		abd = eabd;
1435 
1436 		/*
1437 		 * We want to prevent zio_rewrite() from trying to
1438 		 * encrypt the data again
1439 		 */
1440 		flags |= ZIO_FLAG_RAW_ENCRYPT;
1441 	}
1442 	rrd->abd = abd;
1443 
1444 	io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
1445 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
1446 
1447 	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1448 	    abd_get_size(abd) == BP_GET_PSIZE(bp));
1449 
1450 	/* compute new bp checksum value and make sure it matches the old one */
1451 	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1452 	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1453 		zio_destroy(io);
1454 		if (zfs_recv_best_effort_corrective != 0)
1455 			return (0);
1456 		return (SET_ERROR(ECKSUM));
1457 	}
1458 
1459 	/* Correct the corruption in place */
1460 	err = zio_wait(io);
1461 	if (err == 0) {
1462 		cr_cb_data_t *cb_data =
1463 		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1464 		cb_data->spa = rwa->os->os_spa;
1465 		cb_data->size = drrw->drr_logical_size;
1466 		cb_data->zb = zb;
1467 		/* Test if healing worked by re-reading the bp */
1468 		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1469 		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1470 		    drrw->drr_logical_size, corrective_read_done,
1471 		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1472 	}
1473 	if (err != 0 && zfs_recv_best_effort_corrective != 0)
1474 		err = 0;
1475 
1476 	return (err);
1477 }
1478 
1479 static int
1480 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1481 {
1482 	int done = 0;
1483 
1484 	/*
1485 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1486 	 * comment in dump_bytes.
1487 	 */
1488 	ASSERT(len % 8 == 0 ||
1489 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1490 
1491 	while (done < len) {
1492 		ssize_t resid;
1493 		zfs_file_t *fp = drc->drc_fp;
1494 		int err = zfs_file_read(fp, (char *)buf + done,
1495 		    len - done, &resid);
1496 		if (resid == len - done) {
1497 			/*
1498 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1499 			 * that the receive was interrupted and can
1500 			 * potentially be resumed.
1501 			 */
1502 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1503 		}
1504 		drc->drc_voff += len - done - resid;
1505 		done = len - resid;
1506 		if (err != 0)
1507 			return (err);
1508 	}
1509 
1510 	drc->drc_bytes_read += len;
1511 
1512 	ASSERT3U(done, ==, len);
1513 	return (0);
1514 }
1515 
1516 static inline uint8_t
1517 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1518 {
1519 	if (bonus_type == DMU_OT_SA) {
1520 		return (1);
1521 	} else {
1522 		return (1 +
1523 		    ((DN_OLD_MAX_BONUSLEN -
1524 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1525 	}
1526 }
1527 
1528 static void
1529 save_resume_state(struct receive_writer_arg *rwa,
1530     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1531 {
1532 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1533 
1534 	if (!rwa->resumable)
1535 		return;
1536 
1537 	/*
1538 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1539 	 * update this on disk, so it must not be 0.
1540 	 */
1541 	ASSERT(rwa->bytes_read != 0);
1542 
1543 	/*
1544 	 * We only resume from write records, which have a valid
1545 	 * (non-meta-dnode) object number.
1546 	 */
1547 	ASSERT(object != 0);
1548 
1549 	/*
1550 	 * For resuming to work correctly, we must receive records in order,
1551 	 * sorted by object,offset.  This is checked by the callers, but
1552 	 * assert it here for good measure.
1553 	 */
1554 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1555 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1556 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1557 	ASSERT3U(rwa->bytes_read, >=,
1558 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1559 
1560 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1561 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1562 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1563 }
1564 
1565 static int
1566 receive_object_is_same_generation(objset_t *os, uint64_t object,
1567     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1568     const void *new_bonus, boolean_t *samegenp)
1569 {
1570 	zfs_file_info_t zoi;
1571 	int err;
1572 
1573 	dmu_buf_t *old_bonus_dbuf;
1574 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1575 	if (err != 0)
1576 		return (err);
1577 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1578 	    &zoi);
1579 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1580 	if (err != 0)
1581 		return (err);
1582 	uint64_t old_gen = zoi.zfi_generation;
1583 
1584 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1585 	if (err != 0)
1586 		return (err);
1587 	uint64_t new_gen = zoi.zfi_generation;
1588 
1589 	*samegenp = (old_gen == new_gen);
1590 	return (0);
1591 }
1592 
1593 static int
1594 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1595     const struct drr_object *drro, const dmu_object_info_t *doi,
1596     const void *bonus_data,
1597     uint64_t *object_to_hold, uint32_t *new_blksz)
1598 {
1599 	uint32_t indblksz = drro->drr_indblkshift ?
1600 	    1ULL << drro->drr_indblkshift : 0;
1601 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1602 	    drro->drr_bonuslen);
1603 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1604 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1605 	boolean_t do_free_range = B_FALSE;
1606 	int err;
1607 
1608 	*object_to_hold = drro->drr_object;
1609 
1610 	/* nblkptr should be bounded by the bonus size and type */
1611 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1612 		return (SET_ERROR(EINVAL));
1613 
1614 	/*
1615 	 * After the previous send stream, the sending system may
1616 	 * have freed this object, and then happened to re-allocate
1617 	 * this object number in a later txg. In this case, we are
1618 	 * receiving a different logical file, and the block size may
1619 	 * appear to be different.  i.e. we may have a different
1620 	 * block size for this object than what the send stream says.
1621 	 * In this case we need to remove the object's contents,
1622 	 * so that its structure can be changed and then its contents
1623 	 * entirely replaced by subsequent WRITE records.
1624 	 *
1625 	 * If this is a -L (--large-block) incremental stream, and
1626 	 * the previous stream was not -L, the block size may appear
1627 	 * to increase.  i.e. we may have a smaller block size for
1628 	 * this object than what the send stream says.  In this case
1629 	 * we need to keep the object's contents and block size
1630 	 * intact, so that we don't lose parts of the object's
1631 	 * contents that are not changed by this incremental send
1632 	 * stream.
1633 	 *
1634 	 * We can distinguish between the two above cases by using
1635 	 * the ZPL's generation number (see
1636 	 * receive_object_is_same_generation()).  However, we only
1637 	 * want to rely on the generation number when absolutely
1638 	 * necessary, because with raw receives, the generation is
1639 	 * encrypted.  We also want to minimize dependence on the
1640 	 * ZPL, so that other types of datasets can also be received
1641 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1642 	 * reallocate their objects or change their structure).
1643 	 * Therefore, we check a number of different cases where we
1644 	 * know it is safe to discard the object's contents, before
1645 	 * using the ZPL's generation number to make the above
1646 	 * distinction.
1647 	 */
1648 	if (drro->drr_blksz != doi->doi_data_block_size) {
1649 		if (rwa->raw) {
1650 			/*
1651 			 * RAW streams always have large blocks, so
1652 			 * we are sure that the data is not needed
1653 			 * due to changing --large-block to be on.
1654 			 * Which is fortunate since the bonus buffer
1655 			 * (which contains the ZPL generation) is
1656 			 * encrypted, and the key might not be
1657 			 * loaded.
1658 			 */
1659 			do_free_range = B_TRUE;
1660 		} else if (rwa->full) {
1661 			/*
1662 			 * This is a full send stream, so it always
1663 			 * replaces what we have.  Even if the
1664 			 * generation numbers happen to match, this
1665 			 * can not actually be the same logical file.
1666 			 * This is relevant when receiving a full
1667 			 * send as a clone.
1668 			 */
1669 			do_free_range = B_TRUE;
1670 		} else if (drro->drr_type !=
1671 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1672 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1673 			/*
1674 			 * PLAIN_FILE_CONTENTS are the only type of
1675 			 * objects that have ever been stored with
1676 			 * large blocks, so we don't need the special
1677 			 * logic below.  ZAP blocks can shrink (when
1678 			 * there's only one block), so we don't want
1679 			 * to hit the error below about block size
1680 			 * only increasing.
1681 			 */
1682 			do_free_range = B_TRUE;
1683 		} else if (doi->doi_max_offset <=
1684 		    doi->doi_data_block_size) {
1685 			/*
1686 			 * There is only one block.  We can free it,
1687 			 * because its contents will be replaced by a
1688 			 * WRITE record.  This can not be the no-L ->
1689 			 * -L case, because the no-L case would have
1690 			 * resulted in multiple blocks.  If we
1691 			 * supported -L -> no-L, it would not be safe
1692 			 * to free the file's contents.  Fortunately,
1693 			 * that is not allowed (see
1694 			 * recv_check_large_blocks()).
1695 			 */
1696 			do_free_range = B_TRUE;
1697 		} else {
1698 			boolean_t is_same_gen;
1699 			err = receive_object_is_same_generation(rwa->os,
1700 			    drro->drr_object, doi->doi_bonus_type,
1701 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1702 			if (err != 0)
1703 				return (SET_ERROR(EINVAL));
1704 
1705 			if (is_same_gen) {
1706 				/*
1707 				 * This is the same logical file, and
1708 				 * the block size must be increasing.
1709 				 * It could only decrease if
1710 				 * --large-block was changed to be
1711 				 * off, which is checked in
1712 				 * recv_check_large_blocks().
1713 				 */
1714 				if (drro->drr_blksz <=
1715 				    doi->doi_data_block_size)
1716 					return (SET_ERROR(EINVAL));
1717 				/*
1718 				 * We keep the existing blocksize and
1719 				 * contents.
1720 				 */
1721 				*new_blksz =
1722 				    doi->doi_data_block_size;
1723 			} else {
1724 				do_free_range = B_TRUE;
1725 			}
1726 		}
1727 	}
1728 
1729 	/* nblkptr can only decrease if the object was reallocated */
1730 	if (nblkptr < doi->doi_nblkptr)
1731 		do_free_range = B_TRUE;
1732 
1733 	/* number of slots can only change on reallocation */
1734 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1735 		do_free_range = B_TRUE;
1736 
1737 	/*
1738 	 * For raw sends we also check a few other fields to
1739 	 * ensure we are preserving the objset structure exactly
1740 	 * as it was on the receive side:
1741 	 *     - A changed indirect block size
1742 	 *     - A smaller nlevels
1743 	 */
1744 	if (rwa->raw) {
1745 		if (indblksz != doi->doi_metadata_block_size)
1746 			do_free_range = B_TRUE;
1747 		if (drro->drr_nlevels < doi->doi_indirection)
1748 			do_free_range = B_TRUE;
1749 	}
1750 
1751 	if (do_free_range) {
1752 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1753 		    0, DMU_OBJECT_END);
1754 		if (err != 0)
1755 			return (SET_ERROR(EINVAL));
1756 	}
1757 
1758 	/*
1759 	 * The dmu does not currently support decreasing nlevels
1760 	 * or changing the number of dnode slots on an object. For
1761 	 * non-raw sends, this does not matter and the new object
1762 	 * can just use the previous one's nlevels. For raw sends,
1763 	 * however, the structure of the received dnode (including
1764 	 * nlevels and dnode slots) must match that of the send
1765 	 * side. Therefore, instead of using dmu_object_reclaim(),
1766 	 * we must free the object completely and call
1767 	 * dmu_object_claim_dnsize() instead.
1768 	 */
1769 	if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1770 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1771 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1772 		if (err != 0)
1773 			return (SET_ERROR(EINVAL));
1774 
1775 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1776 		*object_to_hold = DMU_NEW_OBJECT;
1777 	}
1778 
1779 	/*
1780 	 * For raw receives, free everything beyond the new incoming
1781 	 * maxblkid. Normally this would be done with a DRR_FREE
1782 	 * record that would come after this DRR_OBJECT record is
1783 	 * processed. However, for raw receives we manually set the
1784 	 * maxblkid from the drr_maxblkid and so we must first free
1785 	 * everything above that blkid to ensure the DMU is always
1786 	 * consistent with itself. We will never free the first block
1787 	 * of the object here because a maxblkid of 0 could indicate
1788 	 * an object with a single block or one with no blocks. This
1789 	 * free may be skipped when dmu_free_long_range() was called
1790 	 * above since it covers the entire object's contents.
1791 	 */
1792 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1793 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1794 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1795 		    DMU_OBJECT_END);
1796 		if (err != 0)
1797 			return (SET_ERROR(EINVAL));
1798 	}
1799 	return (0);
1800 }
1801 
1802 noinline static int
1803 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1804     void *data)
1805 {
1806 	dmu_object_info_t doi;
1807 	dmu_tx_t *tx;
1808 	int err;
1809 	uint32_t new_blksz = drro->drr_blksz;
1810 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1811 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1812 
1813 	if (drro->drr_type == DMU_OT_NONE ||
1814 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1815 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1816 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1817 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1818 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1819 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1820 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1821 	    drro->drr_bonuslen >
1822 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1823 	    dn_slots >
1824 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1825 		return (SET_ERROR(EINVAL));
1826 	}
1827 
1828 	if (rwa->raw) {
1829 		/*
1830 		 * We should have received a DRR_OBJECT_RANGE record
1831 		 * containing this block and stored it in rwa.
1832 		 */
1833 		if (drro->drr_object < rwa->or_firstobj ||
1834 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1835 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1836 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1837 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1838 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1839 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1840 		    drro->drr_raw_bonuslen)
1841 			return (SET_ERROR(EINVAL));
1842 	} else {
1843 		/*
1844 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1845 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1846 		 */
1847 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1848 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1849 			return (SET_ERROR(EINVAL));
1850 		}
1851 
1852 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1853 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1854 			return (SET_ERROR(EINVAL));
1855 		}
1856 	}
1857 
1858 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1859 
1860 	if (err != 0 && err != ENOENT && err != EEXIST)
1861 		return (SET_ERROR(EINVAL));
1862 
1863 	if (drro->drr_object > rwa->max_object)
1864 		rwa->max_object = drro->drr_object;
1865 
1866 	/*
1867 	 * If we are losing blkptrs or changing the block size this must
1868 	 * be a new file instance.  We must clear out the previous file
1869 	 * contents before we can change this type of metadata in the dnode.
1870 	 * Raw receives will also check that the indirect structure of the
1871 	 * dnode hasn't changed.
1872 	 */
1873 	uint64_t object_to_hold;
1874 	if (err == 0) {
1875 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1876 		    &object_to_hold, &new_blksz);
1877 	} else if (err == EEXIST) {
1878 		/*
1879 		 * The object requested is currently an interior slot of a
1880 		 * multi-slot dnode. This will be resolved when the next txg
1881 		 * is synced out, since the send stream will have told us
1882 		 * to free this slot when we freed the associated dnode
1883 		 * earlier in the stream.
1884 		 */
1885 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1886 
1887 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1888 			return (SET_ERROR(EINVAL));
1889 
1890 		/* object was freed and we are about to allocate a new one */
1891 		object_to_hold = DMU_NEW_OBJECT;
1892 	} else {
1893 		/* object is free and we are about to allocate a new one */
1894 		object_to_hold = DMU_NEW_OBJECT;
1895 	}
1896 
1897 	/*
1898 	 * If this is a multi-slot dnode there is a chance that this
1899 	 * object will expand into a slot that is already used by
1900 	 * another object from the previous snapshot. We must free
1901 	 * these objects before we attempt to allocate the new dnode.
1902 	 */
1903 	if (dn_slots > 1) {
1904 		boolean_t need_sync = B_FALSE;
1905 
1906 		for (uint64_t slot = drro->drr_object + 1;
1907 		    slot < drro->drr_object + dn_slots;
1908 		    slot++) {
1909 			dmu_object_info_t slot_doi;
1910 
1911 			err = dmu_object_info(rwa->os, slot, &slot_doi);
1912 			if (err == ENOENT || err == EEXIST)
1913 				continue;
1914 			else if (err != 0)
1915 				return (err);
1916 
1917 			err = dmu_free_long_object(rwa->os, slot);
1918 			if (err != 0)
1919 				return (err);
1920 
1921 			need_sync = B_TRUE;
1922 		}
1923 
1924 		if (need_sync)
1925 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1926 	}
1927 
1928 	tx = dmu_tx_create(rwa->os);
1929 	dmu_tx_hold_bonus(tx, object_to_hold);
1930 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1931 	err = dmu_tx_assign(tx, TXG_WAIT);
1932 	if (err != 0) {
1933 		dmu_tx_abort(tx);
1934 		return (err);
1935 	}
1936 
1937 	if (object_to_hold == DMU_NEW_OBJECT) {
1938 		/* Currently free, wants to be allocated */
1939 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1940 		    drro->drr_type, new_blksz,
1941 		    drro->drr_bonustype, drro->drr_bonuslen,
1942 		    dn_slots << DNODE_SHIFT, tx);
1943 	} else if (drro->drr_type != doi.doi_type ||
1944 	    new_blksz != doi.doi_data_block_size ||
1945 	    drro->drr_bonustype != doi.doi_bonus_type ||
1946 	    drro->drr_bonuslen != doi.doi_bonus_size) {
1947 		/* Currently allocated, but with different properties */
1948 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1949 		    drro->drr_type, new_blksz,
1950 		    drro->drr_bonustype, drro->drr_bonuslen,
1951 		    dn_slots << DNODE_SHIFT, rwa->spill ?
1952 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1953 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1954 		/*
1955 		 * Currently allocated, the existing version of this object
1956 		 * may reference a spill block that is no longer allocated
1957 		 * at the source and needs to be freed.
1958 		 */
1959 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1960 	}
1961 
1962 	if (err != 0) {
1963 		dmu_tx_commit(tx);
1964 		return (SET_ERROR(EINVAL));
1965 	}
1966 
1967 	if (rwa->or_crypt_params_present) {
1968 		/*
1969 		 * Set the crypt params for the buffer associated with this
1970 		 * range of dnodes.  This causes the blkptr_t to have the
1971 		 * same crypt params (byteorder, salt, iv, mac) as on the
1972 		 * sending side.
1973 		 *
1974 		 * Since we are committing this tx now, it is possible for
1975 		 * the dnode block to end up on-disk with the incorrect MAC,
1976 		 * if subsequent objects in this block are received in a
1977 		 * different txg.  However, since the dataset is marked as
1978 		 * inconsistent, no code paths will do a non-raw read (or
1979 		 * decrypt the block / verify the MAC). The receive code and
1980 		 * scrub code can safely do raw reads and verify the
1981 		 * checksum.  They don't need to verify the MAC.
1982 		 */
1983 		dmu_buf_t *db = NULL;
1984 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1985 
1986 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1987 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1988 		if (err != 0) {
1989 			dmu_tx_commit(tx);
1990 			return (SET_ERROR(EINVAL));
1991 		}
1992 
1993 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1994 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1995 
1996 		dmu_buf_rele(db, FTAG);
1997 
1998 		rwa->or_crypt_params_present = B_FALSE;
1999 	}
2000 
2001 	dmu_object_set_checksum(rwa->os, drro->drr_object,
2002 	    drro->drr_checksumtype, tx);
2003 	dmu_object_set_compress(rwa->os, drro->drr_object,
2004 	    drro->drr_compress, tx);
2005 
2006 	/* handle more restrictive dnode structuring for raw recvs */
2007 	if (rwa->raw) {
2008 		/*
2009 		 * Set the indirect block size, block shift, nlevels.
2010 		 * This will not fail because we ensured all of the
2011 		 * blocks were freed earlier if this is a new object.
2012 		 * For non-new objects block size and indirect block
2013 		 * shift cannot change and nlevels can only increase.
2014 		 */
2015 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
2016 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2017 		    drro->drr_blksz, drro->drr_indblkshift, tx));
2018 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2019 		    drro->drr_nlevels, tx));
2020 
2021 		/*
2022 		 * Set the maxblkid. This will always succeed because
2023 		 * we freed all blocks beyond the new maxblkid above.
2024 		 */
2025 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2026 		    drro->drr_maxblkid, tx));
2027 	}
2028 
2029 	if (data != NULL) {
2030 		dmu_buf_t *db;
2031 		dnode_t *dn;
2032 		uint32_t flags = DMU_READ_NO_PREFETCH;
2033 
2034 		if (rwa->raw)
2035 			flags |= DMU_READ_NO_DECRYPT;
2036 
2037 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2038 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2039 
2040 		dmu_buf_will_dirty(db, tx);
2041 
2042 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2043 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2044 
2045 		/*
2046 		 * Raw bonus buffers have their byteorder determined by the
2047 		 * DRR_OBJECT_RANGE record.
2048 		 */
2049 		if (rwa->byteswap && !rwa->raw) {
2050 			dmu_object_byteswap_t byteswap =
2051 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2052 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2053 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
2054 		}
2055 		dmu_buf_rele(db, FTAG);
2056 		dnode_rele(dn, FTAG);
2057 	}
2058 	dmu_tx_commit(tx);
2059 
2060 	return (0);
2061 }
2062 
2063 noinline static int
2064 receive_freeobjects(struct receive_writer_arg *rwa,
2065     struct drr_freeobjects *drrfo)
2066 {
2067 	uint64_t obj;
2068 	int next_err = 0;
2069 
2070 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2071 		return (SET_ERROR(EINVAL));
2072 
2073 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2074 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2075 	    obj < DN_MAX_OBJECT && next_err == 0;
2076 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2077 		dmu_object_info_t doi;
2078 		int err;
2079 
2080 		err = dmu_object_info(rwa->os, obj, &doi);
2081 		if (err == ENOENT)
2082 			continue;
2083 		else if (err != 0)
2084 			return (err);
2085 
2086 		err = dmu_free_long_object(rwa->os, obj);
2087 
2088 		if (err != 0)
2089 			return (err);
2090 	}
2091 	if (next_err != ESRCH)
2092 		return (next_err);
2093 	return (0);
2094 }
2095 
2096 /*
2097  * Note: if this fails, the caller will clean up any records left on the
2098  * rwa->write_batch list.
2099  */
2100 static int
2101 flush_write_batch_impl(struct receive_writer_arg *rwa)
2102 {
2103 	dnode_t *dn;
2104 	int err;
2105 
2106 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2107 		return (SET_ERROR(EINVAL));
2108 
2109 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2110 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2111 
2112 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2113 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2114 
2115 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2116 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2117 
2118 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2119 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2120 	    last_drrw->drr_offset - first_drrw->drr_offset +
2121 	    last_drrw->drr_logical_size);
2122 	err = dmu_tx_assign(tx, TXG_WAIT);
2123 	if (err != 0) {
2124 		dmu_tx_abort(tx);
2125 		dnode_rele(dn, FTAG);
2126 		return (err);
2127 	}
2128 
2129 	struct receive_record_arg *rrd;
2130 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2131 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2132 		abd_t *abd = rrd->abd;
2133 
2134 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2135 
2136 		if (drrw->drr_logical_size != dn->dn_datablksz) {
2137 			/*
2138 			 * The WRITE record is larger than the object's block
2139 			 * size.  We must be receiving an incremental
2140 			 * large-block stream into a dataset that previously did
2141 			 * a non-large-block receive.  Lightweight writes must
2142 			 * be exactly one block, so we need to decompress the
2143 			 * data (if compressed) and do a normal dmu_write().
2144 			 */
2145 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2146 			if (DRR_WRITE_COMPRESSED(drrw)) {
2147 				abd_t *decomp_abd =
2148 				    abd_alloc_linear(drrw->drr_logical_size,
2149 				    B_FALSE);
2150 
2151 				err = zio_decompress_data(
2152 				    drrw->drr_compressiontype,
2153 				    abd, abd_to_buf(decomp_abd),
2154 				    abd_get_size(abd),
2155 				    abd_get_size(decomp_abd), NULL);
2156 
2157 				if (err == 0) {
2158 					dmu_write_by_dnode(dn,
2159 					    drrw->drr_offset,
2160 					    drrw->drr_logical_size,
2161 					    abd_to_buf(decomp_abd), tx);
2162 				}
2163 				abd_free(decomp_abd);
2164 			} else {
2165 				dmu_write_by_dnode(dn,
2166 				    drrw->drr_offset,
2167 				    drrw->drr_logical_size,
2168 				    abd_to_buf(abd), tx);
2169 			}
2170 			if (err == 0)
2171 				abd_free(abd);
2172 		} else {
2173 			zio_prop_t zp;
2174 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2175 
2176 			enum zio_flag zio_flags = 0;
2177 
2178 			if (rwa->raw) {
2179 				zp.zp_encrypt = B_TRUE;
2180 				zp.zp_compress = drrw->drr_compressiontype;
2181 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2182 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2183 				    rwa->byteswap;
2184 				memcpy(zp.zp_salt, drrw->drr_salt,
2185 				    ZIO_DATA_SALT_LEN);
2186 				memcpy(zp.zp_iv, drrw->drr_iv,
2187 				    ZIO_DATA_IV_LEN);
2188 				memcpy(zp.zp_mac, drrw->drr_mac,
2189 				    ZIO_DATA_MAC_LEN);
2190 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2191 					zp.zp_nopwrite = B_FALSE;
2192 					zp.zp_copies = MIN(zp.zp_copies,
2193 					    SPA_DVAS_PER_BP - 1);
2194 				}
2195 				zio_flags |= ZIO_FLAG_RAW;
2196 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
2197 				ASSERT3U(drrw->drr_compressed_size, >, 0);
2198 				ASSERT3U(drrw->drr_logical_size, >=,
2199 				    drrw->drr_compressed_size);
2200 				zp.zp_compress = drrw->drr_compressiontype;
2201 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2202 			} else if (rwa->byteswap) {
2203 				/*
2204 				 * Note: compressed blocks never need to be
2205 				 * byteswapped, because WRITE records for
2206 				 * metadata blocks are never compressed. The
2207 				 * exception is raw streams, which are written
2208 				 * in the original byteorder, and the byteorder
2209 				 * bit is preserved in the BP by setting
2210 				 * zp_byteorder above.
2211 				 */
2212 				dmu_object_byteswap_t byteswap =
2213 				    DMU_OT_BYTESWAP(drrw->drr_type);
2214 				dmu_ot_byteswap[byteswap].ob_func(
2215 				    abd_to_buf(abd),
2216 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
2217 			}
2218 
2219 			/*
2220 			 * Since this data can't be read until the receive
2221 			 * completes, we can do a "lightweight" write for
2222 			 * improved performance.
2223 			 */
2224 			err = dmu_lightweight_write_by_dnode(dn,
2225 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
2226 		}
2227 
2228 		if (err != 0) {
2229 			/*
2230 			 * This rrd is left on the list, so the caller will
2231 			 * free it (and the abd).
2232 			 */
2233 			break;
2234 		}
2235 
2236 		/*
2237 		 * Note: If the receive fails, we want the resume stream to
2238 		 * start with the same record that we last successfully
2239 		 * received (as opposed to the next record), so that we can
2240 		 * verify that we are resuming from the correct location.
2241 		 */
2242 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2243 
2244 		list_remove(&rwa->write_batch, rrd);
2245 		kmem_free(rrd, sizeof (*rrd));
2246 	}
2247 
2248 	dmu_tx_commit(tx);
2249 	dnode_rele(dn, FTAG);
2250 	return (err);
2251 }
2252 
2253 noinline static int
2254 flush_write_batch(struct receive_writer_arg *rwa)
2255 {
2256 	if (list_is_empty(&rwa->write_batch))
2257 		return (0);
2258 	int err = rwa->err;
2259 	if (err == 0)
2260 		err = flush_write_batch_impl(rwa);
2261 	if (err != 0) {
2262 		struct receive_record_arg *rrd;
2263 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2264 			abd_free(rrd->abd);
2265 			kmem_free(rrd, sizeof (*rrd));
2266 		}
2267 	}
2268 	ASSERT(list_is_empty(&rwa->write_batch));
2269 	return (err);
2270 }
2271 
2272 noinline static int
2273 receive_process_write_record(struct receive_writer_arg *rwa,
2274     struct receive_record_arg *rrd)
2275 {
2276 	int err = 0;
2277 
2278 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2279 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2280 
2281 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2282 	    !DMU_OT_IS_VALID(drrw->drr_type))
2283 		return (SET_ERROR(EINVAL));
2284 
2285 	if (rwa->heal) {
2286 		blkptr_t *bp;
2287 		dmu_buf_t *dbp;
2288 		dnode_t *dn;
2289 		int flags = DB_RF_CANFAIL;
2290 
2291 		if (rwa->raw)
2292 			flags |= DB_RF_NO_DECRYPT;
2293 
2294 		if (rwa->byteswap) {
2295 			dmu_object_byteswap_t byteswap =
2296 			    DMU_OT_BYTESWAP(drrw->drr_type);
2297 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2298 			    DRR_WRITE_PAYLOAD_SIZE(drrw));
2299 		}
2300 
2301 		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2302 		    drrw->drr_offset, FTAG, &dbp);
2303 		if (err != 0)
2304 			return (err);
2305 
2306 		/* Try to read the object to see if it needs healing */
2307 		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2308 		/*
2309 		 * We only try to heal when dbuf_read() returns a ECKSUMs.
2310 		 * Other errors (even EIO) get returned to caller.
2311 		 * EIO indicates that the device is not present/accessible,
2312 		 * so writing to it will likely fail.
2313 		 * If the block is healthy, we don't want to overwrite it
2314 		 * unnecessarily.
2315 		 */
2316 		if (err != ECKSUM) {
2317 			dmu_buf_rele(dbp, FTAG);
2318 			return (err);
2319 		}
2320 		dn = dmu_buf_dnode_enter(dbp);
2321 		/* Make sure the on-disk block and recv record sizes match */
2322 		if (drrw->drr_logical_size !=
2323 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
2324 			err = ENOTSUP;
2325 			dmu_buf_dnode_exit(dbp);
2326 			dmu_buf_rele(dbp, FTAG);
2327 			return (err);
2328 		}
2329 		/* Get the block pointer for the corrupted block */
2330 		bp = dmu_buf_get_blkptr(dbp);
2331 		err = do_corrective_recv(rwa, drrw, rrd, bp);
2332 		dmu_buf_dnode_exit(dbp);
2333 		dmu_buf_rele(dbp, FTAG);
2334 		return (err);
2335 	}
2336 
2337 	/*
2338 	 * For resuming to work, records must be in increasing order
2339 	 * by (object, offset).
2340 	 */
2341 	if (drrw->drr_object < rwa->last_object ||
2342 	    (drrw->drr_object == rwa->last_object &&
2343 	    drrw->drr_offset < rwa->last_offset)) {
2344 		return (SET_ERROR(EINVAL));
2345 	}
2346 
2347 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2348 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2349 	uint64_t batch_size =
2350 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2351 	if (first_rrd != NULL &&
2352 	    (drrw->drr_object != first_drrw->drr_object ||
2353 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2354 		err = flush_write_batch(rwa);
2355 		if (err != 0)
2356 			return (err);
2357 	}
2358 
2359 	rwa->last_object = drrw->drr_object;
2360 	rwa->last_offset = drrw->drr_offset;
2361 
2362 	if (rwa->last_object > rwa->max_object)
2363 		rwa->max_object = rwa->last_object;
2364 
2365 	list_insert_tail(&rwa->write_batch, rrd);
2366 	/*
2367 	 * Return EAGAIN to indicate that we will use this rrd again,
2368 	 * so the caller should not free it
2369 	 */
2370 	return (EAGAIN);
2371 }
2372 
2373 static int
2374 receive_write_embedded(struct receive_writer_arg *rwa,
2375     struct drr_write_embedded *drrwe, void *data)
2376 {
2377 	dmu_tx_t *tx;
2378 	int err;
2379 
2380 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2381 		return (SET_ERROR(EINVAL));
2382 
2383 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2384 		return (SET_ERROR(EINVAL));
2385 
2386 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2387 		return (SET_ERROR(EINVAL));
2388 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2389 		return (SET_ERROR(EINVAL));
2390 	if (rwa->raw)
2391 		return (SET_ERROR(EINVAL));
2392 
2393 	if (drrwe->drr_object > rwa->max_object)
2394 		rwa->max_object = drrwe->drr_object;
2395 
2396 	tx = dmu_tx_create(rwa->os);
2397 
2398 	dmu_tx_hold_write(tx, drrwe->drr_object,
2399 	    drrwe->drr_offset, drrwe->drr_length);
2400 	err = dmu_tx_assign(tx, TXG_WAIT);
2401 	if (err != 0) {
2402 		dmu_tx_abort(tx);
2403 		return (err);
2404 	}
2405 
2406 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2407 	    drrwe->drr_offset, data, drrwe->drr_etype,
2408 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2409 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2410 
2411 	/* See comment in restore_write. */
2412 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2413 	dmu_tx_commit(tx);
2414 	return (0);
2415 }
2416 
2417 static int
2418 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2419     abd_t *abd)
2420 {
2421 	dmu_buf_t *db, *db_spill;
2422 	int err;
2423 
2424 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2425 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2426 		return (SET_ERROR(EINVAL));
2427 
2428 	/*
2429 	 * This is an unmodified spill block which was added to the stream
2430 	 * to resolve an issue with incorrectly removing spill blocks.  It
2431 	 * should be ignored by current versions of the code which support
2432 	 * the DRR_FLAG_SPILL_BLOCK flag.
2433 	 */
2434 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2435 		abd_free(abd);
2436 		return (0);
2437 	}
2438 
2439 	if (rwa->raw) {
2440 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2441 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2442 		    drrs->drr_compressed_size == 0)
2443 			return (SET_ERROR(EINVAL));
2444 	}
2445 
2446 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2447 		return (SET_ERROR(EINVAL));
2448 
2449 	if (drrs->drr_object > rwa->max_object)
2450 		rwa->max_object = drrs->drr_object;
2451 
2452 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2453 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2454 	    &db_spill)) != 0) {
2455 		dmu_buf_rele(db, FTAG);
2456 		return (err);
2457 	}
2458 
2459 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2460 
2461 	dmu_tx_hold_spill(tx, db->db_object);
2462 
2463 	err = dmu_tx_assign(tx, TXG_WAIT);
2464 	if (err != 0) {
2465 		dmu_buf_rele(db, FTAG);
2466 		dmu_buf_rele(db_spill, FTAG);
2467 		dmu_tx_abort(tx);
2468 		return (err);
2469 	}
2470 
2471 	/*
2472 	 * Spill blocks may both grow and shrink.  When a change in size
2473 	 * occurs any existing dbuf must be updated to match the logical
2474 	 * size of the provided arc_buf_t.
2475 	 */
2476 	if (db_spill->db_size != drrs->drr_length) {
2477 		dmu_buf_will_fill(db_spill, tx);
2478 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2479 		    drrs->drr_length, tx));
2480 	}
2481 
2482 	arc_buf_t *abuf;
2483 	if (rwa->raw) {
2484 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2485 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2486 		    rwa->byteswap;
2487 
2488 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2489 		    drrs->drr_object, byteorder, drrs->drr_salt,
2490 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2491 		    drrs->drr_compressed_size, drrs->drr_length,
2492 		    drrs->drr_compressiontype, 0);
2493 	} else {
2494 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2495 		    DMU_OT_IS_METADATA(drrs->drr_type),
2496 		    drrs->drr_length);
2497 		if (rwa->byteswap) {
2498 			dmu_object_byteswap_t byteswap =
2499 			    DMU_OT_BYTESWAP(drrs->drr_type);
2500 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2501 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2502 		}
2503 	}
2504 
2505 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2506 	abd_free(abd);
2507 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2508 
2509 	dmu_buf_rele(db, FTAG);
2510 	dmu_buf_rele(db_spill, FTAG);
2511 
2512 	dmu_tx_commit(tx);
2513 	return (0);
2514 }
2515 
2516 noinline static int
2517 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2518 {
2519 	int err;
2520 
2521 	if (drrf->drr_length != -1ULL &&
2522 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2523 		return (SET_ERROR(EINVAL));
2524 
2525 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2526 		return (SET_ERROR(EINVAL));
2527 
2528 	if (drrf->drr_object > rwa->max_object)
2529 		rwa->max_object = drrf->drr_object;
2530 
2531 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2532 	    drrf->drr_offset, drrf->drr_length);
2533 
2534 	return (err);
2535 }
2536 
2537 static int
2538 receive_object_range(struct receive_writer_arg *rwa,
2539     struct drr_object_range *drror)
2540 {
2541 	/*
2542 	 * By default, we assume this block is in our native format
2543 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2544 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2545 	 * we need to byteswap again if this particular block was
2546 	 * in non-native format on the send side.
2547 	 */
2548 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2549 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2550 
2551 	/*
2552 	 * Since dnode block sizes are constant, we should not need to worry
2553 	 * about making sure that the dnode block size is the same on the
2554 	 * sending and receiving sides for the time being. For non-raw sends,
2555 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2556 	 * record at all). Raw sends require this record type because the
2557 	 * encryption parameters are used to protect an entire block of bonus
2558 	 * buffers. If the size of dnode blocks ever becomes variable,
2559 	 * handling will need to be added to ensure that dnode block sizes
2560 	 * match on the sending and receiving side.
2561 	 */
2562 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2563 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2564 	    !rwa->raw)
2565 		return (SET_ERROR(EINVAL));
2566 
2567 	if (drror->drr_firstobj > rwa->max_object)
2568 		rwa->max_object = drror->drr_firstobj;
2569 
2570 	/*
2571 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2572 	 * so that the block of dnodes is not written out when it's empty,
2573 	 * and converted to a HOLE BP.
2574 	 */
2575 	rwa->or_crypt_params_present = B_TRUE;
2576 	rwa->or_firstobj = drror->drr_firstobj;
2577 	rwa->or_numslots = drror->drr_numslots;
2578 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2579 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2580 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2581 	rwa->or_byteorder = byteorder;
2582 
2583 	return (0);
2584 }
2585 
2586 /*
2587  * Until we have the ability to redact large ranges of data efficiently, we
2588  * process these records as frees.
2589  */
2590 noinline static int
2591 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2592 {
2593 	struct drr_free drrf = {0};
2594 	drrf.drr_length = drrr->drr_length;
2595 	drrf.drr_object = drrr->drr_object;
2596 	drrf.drr_offset = drrr->drr_offset;
2597 	drrf.drr_toguid = drrr->drr_toguid;
2598 	return (receive_free(rwa, &drrf));
2599 }
2600 
2601 /* used to destroy the drc_ds on error */
2602 static void
2603 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2604 {
2605 	dsl_dataset_t *ds = drc->drc_ds;
2606 	ds_hold_flags_t dsflags;
2607 
2608 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2609 	/*
2610 	 * Wait for the txg sync before cleaning up the receive. For
2611 	 * resumable receives, this ensures that our resume state has
2612 	 * been written out to disk. For raw receives, this ensures
2613 	 * that the user accounting code will not attempt to do anything
2614 	 * after we stopped receiving the dataset.
2615 	 */
2616 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2617 	ds->ds_objset->os_raw_receive = B_FALSE;
2618 
2619 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2620 	if (drc->drc_resumable && drc->drc_should_save &&
2621 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2622 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2623 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2624 	} else {
2625 		char name[ZFS_MAX_DATASET_NAME_LEN];
2626 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2627 		dsl_dataset_name(ds, name);
2628 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2629 		if (!drc->drc_heal)
2630 			(void) dsl_destroy_head(name);
2631 	}
2632 }
2633 
2634 static void
2635 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2636 {
2637 	if (drc->drc_byteswap) {
2638 		(void) fletcher_4_incremental_byteswap(buf, len,
2639 		    &drc->drc_cksum);
2640 	} else {
2641 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2642 	}
2643 }
2644 
2645 /*
2646  * Read the payload into a buffer of size len, and update the current record's
2647  * payload field.
2648  * Allocate drc->drc_next_rrd and read the next record's header into
2649  * drc->drc_next_rrd->header.
2650  * Verify checksum of payload and next record.
2651  */
2652 static int
2653 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2654 {
2655 	int err;
2656 
2657 	if (len != 0) {
2658 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2659 		err = receive_read(drc, len, buf);
2660 		if (err != 0)
2661 			return (err);
2662 		receive_cksum(drc, len, buf);
2663 
2664 		/* note: rrd is NULL when reading the begin record's payload */
2665 		if (drc->drc_rrd != NULL) {
2666 			drc->drc_rrd->payload = buf;
2667 			drc->drc_rrd->payload_size = len;
2668 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2669 		}
2670 	} else {
2671 		ASSERT3P(buf, ==, NULL);
2672 	}
2673 
2674 	drc->drc_prev_cksum = drc->drc_cksum;
2675 
2676 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2677 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2678 	    &drc->drc_next_rrd->header);
2679 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2680 
2681 	if (err != 0) {
2682 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2683 		drc->drc_next_rrd = NULL;
2684 		return (err);
2685 	}
2686 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2687 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2688 		drc->drc_next_rrd = NULL;
2689 		return (SET_ERROR(EINVAL));
2690 	}
2691 
2692 	/*
2693 	 * Note: checksum is of everything up to but not including the
2694 	 * checksum itself.
2695 	 */
2696 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2697 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2698 	receive_cksum(drc,
2699 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2700 	    &drc->drc_next_rrd->header);
2701 
2702 	zio_cksum_t cksum_orig =
2703 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2704 	zio_cksum_t *cksump =
2705 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2706 
2707 	if (drc->drc_byteswap)
2708 		byteswap_record(&drc->drc_next_rrd->header);
2709 
2710 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2711 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2712 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2713 		drc->drc_next_rrd = NULL;
2714 		return (SET_ERROR(ECKSUM));
2715 	}
2716 
2717 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2718 
2719 	return (0);
2720 }
2721 
2722 /*
2723  * Issue the prefetch reads for any necessary indirect blocks.
2724  *
2725  * We use the object ignore list to tell us whether or not to issue prefetches
2726  * for a given object.  We do this for both correctness (in case the blocksize
2727  * of an object has changed) and performance (if the object doesn't exist, don't
2728  * needlessly try to issue prefetches).  We also trim the list as we go through
2729  * the stream to prevent it from growing to an unbounded size.
2730  *
2731  * The object numbers within will always be in sorted order, and any write
2732  * records we see will also be in sorted order, but they're not sorted with
2733  * respect to each other (i.e. we can get several object records before
2734  * receiving each object's write records).  As a result, once we've reached a
2735  * given object number, we can safely remove any reference to lower object
2736  * numbers in the ignore list. In practice, we receive up to 32 object records
2737  * before receiving write records, so the list can have up to 32 nodes in it.
2738  */
2739 static void
2740 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2741     uint64_t length)
2742 {
2743 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2744 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2745 		    ZIO_PRIORITY_SYNC_READ);
2746 	}
2747 }
2748 
2749 /*
2750  * Read records off the stream, issuing any necessary prefetches.
2751  */
2752 static int
2753 receive_read_record(dmu_recv_cookie_t *drc)
2754 {
2755 	int err;
2756 
2757 	switch (drc->drc_rrd->header.drr_type) {
2758 	case DRR_OBJECT:
2759 	{
2760 		struct drr_object *drro =
2761 		    &drc->drc_rrd->header.drr_u.drr_object;
2762 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2763 		void *buf = NULL;
2764 		dmu_object_info_t doi;
2765 
2766 		if (size != 0)
2767 			buf = kmem_zalloc(size, KM_SLEEP);
2768 
2769 		err = receive_read_payload_and_next_header(drc, size, buf);
2770 		if (err != 0) {
2771 			kmem_free(buf, size);
2772 			return (err);
2773 		}
2774 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2775 		/*
2776 		 * See receive_read_prefetch for an explanation why we're
2777 		 * storing this object in the ignore_obj_list.
2778 		 */
2779 		if (err == ENOENT || err == EEXIST ||
2780 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2781 			objlist_insert(drc->drc_ignore_objlist,
2782 			    drro->drr_object);
2783 			err = 0;
2784 		}
2785 		return (err);
2786 	}
2787 	case DRR_FREEOBJECTS:
2788 	{
2789 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2790 		return (err);
2791 	}
2792 	case DRR_WRITE:
2793 	{
2794 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2795 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2796 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2797 		err = receive_read_payload_and_next_header(drc, size,
2798 		    abd_to_buf(abd));
2799 		if (err != 0) {
2800 			abd_free(abd);
2801 			return (err);
2802 		}
2803 		drc->drc_rrd->abd = abd;
2804 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2805 		    drrw->drr_logical_size);
2806 		return (err);
2807 	}
2808 	case DRR_WRITE_EMBEDDED:
2809 	{
2810 		struct drr_write_embedded *drrwe =
2811 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2812 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2813 		void *buf = kmem_zalloc(size, KM_SLEEP);
2814 
2815 		err = receive_read_payload_and_next_header(drc, size, buf);
2816 		if (err != 0) {
2817 			kmem_free(buf, size);
2818 			return (err);
2819 		}
2820 
2821 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2822 		    drrwe->drr_length);
2823 		return (err);
2824 	}
2825 	case DRR_FREE:
2826 	case DRR_REDACT:
2827 	{
2828 		/*
2829 		 * It might be beneficial to prefetch indirect blocks here, but
2830 		 * we don't really have the data to decide for sure.
2831 		 */
2832 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2833 		return (err);
2834 	}
2835 	case DRR_END:
2836 	{
2837 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2838 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2839 		    drre->drr_checksum))
2840 			return (SET_ERROR(ECKSUM));
2841 		return (0);
2842 	}
2843 	case DRR_SPILL:
2844 	{
2845 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2846 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2847 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2848 		err = receive_read_payload_and_next_header(drc, size,
2849 		    abd_to_buf(abd));
2850 		if (err != 0)
2851 			abd_free(abd);
2852 		else
2853 			drc->drc_rrd->abd = abd;
2854 		return (err);
2855 	}
2856 	case DRR_OBJECT_RANGE:
2857 	{
2858 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2859 		return (err);
2860 
2861 	}
2862 	default:
2863 		return (SET_ERROR(EINVAL));
2864 	}
2865 }
2866 
2867 
2868 
2869 static void
2870 dprintf_drr(struct receive_record_arg *rrd, int err)
2871 {
2872 #ifdef ZFS_DEBUG
2873 	switch (rrd->header.drr_type) {
2874 	case DRR_OBJECT:
2875 	{
2876 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2877 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2878 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2879 		    "compress = %u dn_slots = %u err = %d\n",
2880 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2881 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2882 		    drro->drr_checksumtype, drro->drr_compress,
2883 		    drro->drr_dn_slots, err);
2884 		break;
2885 	}
2886 	case DRR_FREEOBJECTS:
2887 	{
2888 		struct drr_freeobjects *drrfo =
2889 		    &rrd->header.drr_u.drr_freeobjects;
2890 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2891 		    "numobjs = %llu err = %d\n",
2892 		    (u_longlong_t)drrfo->drr_firstobj,
2893 		    (u_longlong_t)drrfo->drr_numobjs, err);
2894 		break;
2895 	}
2896 	case DRR_WRITE:
2897 	{
2898 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2899 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2900 		    "lsize = %llu cksumtype = %u flags = %u "
2901 		    "compress = %u psize = %llu err = %d\n",
2902 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
2903 		    (u_longlong_t)drrw->drr_offset,
2904 		    (u_longlong_t)drrw->drr_logical_size,
2905 		    drrw->drr_checksumtype, drrw->drr_flags,
2906 		    drrw->drr_compressiontype,
2907 		    (u_longlong_t)drrw->drr_compressed_size, err);
2908 		break;
2909 	}
2910 	case DRR_WRITE_BYREF:
2911 	{
2912 		struct drr_write_byref *drrwbr =
2913 		    &rrd->header.drr_u.drr_write_byref;
2914 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2915 		    "length = %llu toguid = %llx refguid = %llx "
2916 		    "refobject = %llu refoffset = %llu cksumtype = %u "
2917 		    "flags = %u err = %d\n",
2918 		    (u_longlong_t)drrwbr->drr_object,
2919 		    (u_longlong_t)drrwbr->drr_offset,
2920 		    (u_longlong_t)drrwbr->drr_length,
2921 		    (u_longlong_t)drrwbr->drr_toguid,
2922 		    (u_longlong_t)drrwbr->drr_refguid,
2923 		    (u_longlong_t)drrwbr->drr_refobject,
2924 		    (u_longlong_t)drrwbr->drr_refoffset,
2925 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2926 		break;
2927 	}
2928 	case DRR_WRITE_EMBEDDED:
2929 	{
2930 		struct drr_write_embedded *drrwe =
2931 		    &rrd->header.drr_u.drr_write_embedded;
2932 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2933 		    "length = %llu compress = %u etype = %u lsize = %u "
2934 		    "psize = %u err = %d\n",
2935 		    (u_longlong_t)drrwe->drr_object,
2936 		    (u_longlong_t)drrwe->drr_offset,
2937 		    (u_longlong_t)drrwe->drr_length,
2938 		    drrwe->drr_compression, drrwe->drr_etype,
2939 		    drrwe->drr_lsize, drrwe->drr_psize, err);
2940 		break;
2941 	}
2942 	case DRR_FREE:
2943 	{
2944 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2945 		dprintf("drr_type = FREE obj = %llu offset = %llu "
2946 		    "length = %lld err = %d\n",
2947 		    (u_longlong_t)drrf->drr_object,
2948 		    (u_longlong_t)drrf->drr_offset,
2949 		    (longlong_t)drrf->drr_length,
2950 		    err);
2951 		break;
2952 	}
2953 	case DRR_SPILL:
2954 	{
2955 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2956 		dprintf("drr_type = SPILL obj = %llu length = %llu "
2957 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
2958 		    (u_longlong_t)drrs->drr_length, err);
2959 		break;
2960 	}
2961 	case DRR_OBJECT_RANGE:
2962 	{
2963 		struct drr_object_range *drror =
2964 		    &rrd->header.drr_u.drr_object_range;
2965 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2966 		    "numslots = %llu flags = %u err = %d\n",
2967 		    (u_longlong_t)drror->drr_firstobj,
2968 		    (u_longlong_t)drror->drr_numslots,
2969 		    drror->drr_flags, err);
2970 		break;
2971 	}
2972 	default:
2973 		return;
2974 	}
2975 #endif
2976 }
2977 
2978 /*
2979  * Commit the records to the pool.
2980  */
2981 static int
2982 receive_process_record(struct receive_writer_arg *rwa,
2983     struct receive_record_arg *rrd)
2984 {
2985 	int err;
2986 
2987 	/* Processing in order, therefore bytes_read should be increasing. */
2988 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2989 	rwa->bytes_read = rrd->bytes_read;
2990 
2991 	/* We can only heal write records; other ones get ignored */
2992 	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
2993 		if (rrd->abd != NULL) {
2994 			abd_free(rrd->abd);
2995 			rrd->abd = NULL;
2996 		} else if (rrd->payload != NULL) {
2997 			kmem_free(rrd->payload, rrd->payload_size);
2998 			rrd->payload = NULL;
2999 		}
3000 		return (0);
3001 	}
3002 
3003 	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3004 		err = flush_write_batch(rwa);
3005 		if (err != 0) {
3006 			if (rrd->abd != NULL) {
3007 				abd_free(rrd->abd);
3008 				rrd->abd = NULL;
3009 				rrd->payload = NULL;
3010 			} else if (rrd->payload != NULL) {
3011 				kmem_free(rrd->payload, rrd->payload_size);
3012 				rrd->payload = NULL;
3013 			}
3014 
3015 			return (err);
3016 		}
3017 	}
3018 
3019 	switch (rrd->header.drr_type) {
3020 	case DRR_OBJECT:
3021 	{
3022 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
3023 		err = receive_object(rwa, drro, rrd->payload);
3024 		kmem_free(rrd->payload, rrd->payload_size);
3025 		rrd->payload = NULL;
3026 		break;
3027 	}
3028 	case DRR_FREEOBJECTS:
3029 	{
3030 		struct drr_freeobjects *drrfo =
3031 		    &rrd->header.drr_u.drr_freeobjects;
3032 		err = receive_freeobjects(rwa, drrfo);
3033 		break;
3034 	}
3035 	case DRR_WRITE:
3036 	{
3037 		err = receive_process_write_record(rwa, rrd);
3038 		if (rwa->heal) {
3039 			/*
3040 			 * If healing - always free the abd after processing
3041 			 */
3042 			abd_free(rrd->abd);
3043 			rrd->abd = NULL;
3044 		} else if (err != EAGAIN) {
3045 			/*
3046 			 * On success, a non-healing
3047 			 * receive_process_write_record() returns
3048 			 * EAGAIN to indicate that we do not want to free
3049 			 * the rrd or arc_buf.
3050 			 */
3051 			ASSERT(err != 0);
3052 			abd_free(rrd->abd);
3053 			rrd->abd = NULL;
3054 		}
3055 		break;
3056 	}
3057 	case DRR_WRITE_EMBEDDED:
3058 	{
3059 		struct drr_write_embedded *drrwe =
3060 		    &rrd->header.drr_u.drr_write_embedded;
3061 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
3062 		kmem_free(rrd->payload, rrd->payload_size);
3063 		rrd->payload = NULL;
3064 		break;
3065 	}
3066 	case DRR_FREE:
3067 	{
3068 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3069 		err = receive_free(rwa, drrf);
3070 		break;
3071 	}
3072 	case DRR_SPILL:
3073 	{
3074 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3075 		err = receive_spill(rwa, drrs, rrd->abd);
3076 		if (err != 0)
3077 			abd_free(rrd->abd);
3078 		rrd->abd = NULL;
3079 		rrd->payload = NULL;
3080 		break;
3081 	}
3082 	case DRR_OBJECT_RANGE:
3083 	{
3084 		struct drr_object_range *drror =
3085 		    &rrd->header.drr_u.drr_object_range;
3086 		err = receive_object_range(rwa, drror);
3087 		break;
3088 	}
3089 	case DRR_REDACT:
3090 	{
3091 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3092 		err = receive_redact(rwa, drrr);
3093 		break;
3094 	}
3095 	default:
3096 		err = (SET_ERROR(EINVAL));
3097 	}
3098 
3099 	if (err != 0)
3100 		dprintf_drr(rrd, err);
3101 
3102 	return (err);
3103 }
3104 
3105 /*
3106  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3107  * receive_process_record  When we're done, signal the main thread and exit.
3108  */
3109 static __attribute__((noreturn)) void
3110 receive_writer_thread(void *arg)
3111 {
3112 	struct receive_writer_arg *rwa = arg;
3113 	struct receive_record_arg *rrd;
3114 	fstrans_cookie_t cookie = spl_fstrans_mark();
3115 
3116 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3117 	    rrd = bqueue_dequeue(&rwa->q)) {
3118 		/*
3119 		 * If there's an error, the main thread will stop putting things
3120 		 * on the queue, but we need to clear everything in it before we
3121 		 * can exit.
3122 		 */
3123 		int err = 0;
3124 		if (rwa->err == 0) {
3125 			err = receive_process_record(rwa, rrd);
3126 		} else if (rrd->abd != NULL) {
3127 			abd_free(rrd->abd);
3128 			rrd->abd = NULL;
3129 			rrd->payload = NULL;
3130 		} else if (rrd->payload != NULL) {
3131 			kmem_free(rrd->payload, rrd->payload_size);
3132 			rrd->payload = NULL;
3133 		}
3134 		/*
3135 		 * EAGAIN indicates that this record has been saved (on
3136 		 * raw->write_batch), and will be used again, so we don't
3137 		 * free it.
3138 		 * When healing data we always need to free the record.
3139 		 */
3140 		if (err != EAGAIN || rwa->heal) {
3141 			if (rwa->err == 0)
3142 				rwa->err = err;
3143 			kmem_free(rrd, sizeof (*rrd));
3144 		}
3145 	}
3146 	kmem_free(rrd, sizeof (*rrd));
3147 
3148 	if (rwa->heal) {
3149 		zio_wait(rwa->heal_pio);
3150 	} else {
3151 		int err = flush_write_batch(rwa);
3152 		if (rwa->err == 0)
3153 			rwa->err = err;
3154 	}
3155 	mutex_enter(&rwa->mutex);
3156 	rwa->done = B_TRUE;
3157 	cv_signal(&rwa->cv);
3158 	mutex_exit(&rwa->mutex);
3159 	spl_fstrans_unmark(cookie);
3160 	thread_exit();
3161 }
3162 
3163 static int
3164 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3165 {
3166 	uint64_t val;
3167 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3168 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
3169 	uint64_t resume_obj, resume_off;
3170 
3171 	if (nvlist_lookup_uint64(begin_nvl,
3172 	    "resume_object", &resume_obj) != 0 ||
3173 	    nvlist_lookup_uint64(begin_nvl,
3174 	    "resume_offset", &resume_off) != 0) {
3175 		return (SET_ERROR(EINVAL));
3176 	}
3177 	VERIFY0(zap_lookup(mos, dsobj,
3178 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3179 	if (resume_obj != val)
3180 		return (SET_ERROR(EINVAL));
3181 	VERIFY0(zap_lookup(mos, dsobj,
3182 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3183 	if (resume_off != val)
3184 		return (SET_ERROR(EINVAL));
3185 
3186 	return (0);
3187 }
3188 
3189 /*
3190  * Read in the stream's records, one by one, and apply them to the pool.  There
3191  * are two threads involved; the thread that calls this function will spin up a
3192  * worker thread, read the records off the stream one by one, and issue
3193  * prefetches for any necessary indirect blocks.  It will then push the records
3194  * onto an internal blocking queue.  The worker thread will pull the records off
3195  * the queue, and actually write the data into the DMU.  This way, the worker
3196  * thread doesn't have to wait for reads to complete, since everything it needs
3197  * (the indirect blocks) will be prefetched.
3198  *
3199  * NB: callers *must* call dmu_recv_end() if this succeeds.
3200  */
3201 int
3202 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3203 {
3204 	int err = 0;
3205 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3206 
3207 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3208 		uint64_t bytes = 0;
3209 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3210 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3211 		    sizeof (bytes), 1, &bytes);
3212 		drc->drc_bytes_read += bytes;
3213 	}
3214 
3215 	drc->drc_ignore_objlist = objlist_create();
3216 
3217 	/* these were verified in dmu_recv_begin */
3218 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3219 	    DMU_SUBSTREAM);
3220 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3221 
3222 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3223 	ASSERT0(drc->drc_os->os_encrypted &&
3224 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3225 
3226 	/* handle DSL encryption key payload */
3227 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3228 		nvlist_t *keynvl = NULL;
3229 
3230 		ASSERT(drc->drc_os->os_encrypted);
3231 		ASSERT(drc->drc_raw);
3232 
3233 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3234 		    &keynvl);
3235 		if (err != 0)
3236 			goto out;
3237 
3238 		if (!drc->drc_heal) {
3239 			/*
3240 			 * If this is a new dataset we set the key immediately.
3241 			 * Otherwise we don't want to change the key until we
3242 			 * are sure the rest of the receive succeeded so we
3243 			 * stash the keynvl away until then.
3244 			 */
3245 			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3246 			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3247 			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3248 			if (err != 0)
3249 				goto out;
3250 		}
3251 
3252 		/* see comment in dmu_recv_end_sync() */
3253 		drc->drc_ivset_guid = 0;
3254 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3255 		    &drc->drc_ivset_guid);
3256 
3257 		if (!drc->drc_newfs)
3258 			drc->drc_keynvl = fnvlist_dup(keynvl);
3259 	}
3260 
3261 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3262 		err = resume_check(drc, drc->drc_begin_nvl);
3263 		if (err != 0)
3264 			goto out;
3265 	}
3266 
3267 	/*
3268 	 * If we failed before this point we will clean up any new resume
3269 	 * state that was created. Now that we've gotten past the initial
3270 	 * checks we are ok to retain that resume state.
3271 	 */
3272 	drc->drc_should_save = B_TRUE;
3273 
3274 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3275 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3276 	    offsetof(struct receive_record_arg, node));
3277 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3278 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3279 	rwa->os = drc->drc_os;
3280 	rwa->byteswap = drc->drc_byteswap;
3281 	rwa->heal = drc->drc_heal;
3282 	rwa->tofs = drc->drc_tofs;
3283 	rwa->resumable = drc->drc_resumable;
3284 	rwa->raw = drc->drc_raw;
3285 	rwa->spill = drc->drc_spill;
3286 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3287 	rwa->os->os_raw_receive = drc->drc_raw;
3288 	if (drc->drc_heal) {
3289 		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3290 		    ZIO_FLAG_GODFATHER);
3291 	}
3292 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3293 	    offsetof(struct receive_record_arg, node.bqn_node));
3294 
3295 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3296 	    TS_RUN, minclsyspri);
3297 	/*
3298 	 * We're reading rwa->err without locks, which is safe since we are the
3299 	 * only reader, and the worker thread is the only writer.  It's ok if we
3300 	 * miss a write for an iteration or two of the loop, since the writer
3301 	 * thread will keep freeing records we send it until we send it an eos
3302 	 * marker.
3303 	 *
3304 	 * We can leave this loop in 3 ways:  First, if rwa->err is
3305 	 * non-zero.  In that case, the writer thread will free the rrd we just
3306 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3307 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
3308 	 * drc->drc_rrd has been handed off to the writer thread who will free
3309 	 * it.  Finally, if receive_read_record fails or we're at the end of the
3310 	 * stream, then we free drc->drc_rrd and exit.
3311 	 */
3312 	while (rwa->err == 0) {
3313 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
3314 			err = SET_ERROR(EINTR);
3315 			break;
3316 		}
3317 
3318 		ASSERT3P(drc->drc_rrd, ==, NULL);
3319 		drc->drc_rrd = drc->drc_next_rrd;
3320 		drc->drc_next_rrd = NULL;
3321 		/* Allocates and loads header into drc->drc_next_rrd */
3322 		err = receive_read_record(drc);
3323 
3324 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3325 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3326 			drc->drc_rrd = NULL;
3327 			break;
3328 		}
3329 
3330 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3331 		    sizeof (struct receive_record_arg) +
3332 		    drc->drc_rrd->payload_size);
3333 		drc->drc_rrd = NULL;
3334 	}
3335 
3336 	ASSERT3P(drc->drc_rrd, ==, NULL);
3337 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3338 	drc->drc_rrd->eos_marker = B_TRUE;
3339 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3340 
3341 	mutex_enter(&rwa->mutex);
3342 	while (!rwa->done) {
3343 		/*
3344 		 * We need to use cv_wait_sig() so that any process that may
3345 		 * be sleeping here can still fork.
3346 		 */
3347 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3348 	}
3349 	mutex_exit(&rwa->mutex);
3350 
3351 	/*
3352 	 * If we are receiving a full stream as a clone, all object IDs which
3353 	 * are greater than the maximum ID referenced in the stream are
3354 	 * by definition unused and must be freed.
3355 	 */
3356 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3357 		uint64_t obj = rwa->max_object + 1;
3358 		int free_err = 0;
3359 		int next_err = 0;
3360 
3361 		while (next_err == 0) {
3362 			free_err = dmu_free_long_object(rwa->os, obj);
3363 			if (free_err != 0 && free_err != ENOENT)
3364 				break;
3365 
3366 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3367 		}
3368 
3369 		if (err == 0) {
3370 			if (free_err != 0 && free_err != ENOENT)
3371 				err = free_err;
3372 			else if (next_err != ESRCH)
3373 				err = next_err;
3374 		}
3375 	}
3376 
3377 	cv_destroy(&rwa->cv);
3378 	mutex_destroy(&rwa->mutex);
3379 	bqueue_destroy(&rwa->q);
3380 	list_destroy(&rwa->write_batch);
3381 	if (err == 0)
3382 		err = rwa->err;
3383 
3384 out:
3385 	/*
3386 	 * If we hit an error before we started the receive_writer_thread
3387 	 * we need to clean up the next_rrd we create by processing the
3388 	 * DRR_BEGIN record.
3389 	 */
3390 	if (drc->drc_next_rrd != NULL)
3391 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3392 
3393 	/*
3394 	 * The objset will be invalidated by dmu_recv_end() when we do
3395 	 * dsl_dataset_clone_swap_sync_impl().
3396 	 */
3397 	drc->drc_os = NULL;
3398 
3399 	kmem_free(rwa, sizeof (*rwa));
3400 	nvlist_free(drc->drc_begin_nvl);
3401 
3402 	if (err != 0) {
3403 		/*
3404 		 * Clean up references. If receive is not resumable,
3405 		 * destroy what we created, so we don't leave it in
3406 		 * the inconsistent state.
3407 		 */
3408 		dmu_recv_cleanup_ds(drc);
3409 		nvlist_free(drc->drc_keynvl);
3410 	}
3411 
3412 	objlist_destroy(drc->drc_ignore_objlist);
3413 	drc->drc_ignore_objlist = NULL;
3414 	*voffp = drc->drc_voff;
3415 	return (err);
3416 }
3417 
3418 static int
3419 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3420 {
3421 	dmu_recv_cookie_t *drc = arg;
3422 	dsl_pool_t *dp = dmu_tx_pool(tx);
3423 	int error;
3424 
3425 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3426 
3427 	if (drc->drc_heal) {
3428 		error = 0;
3429 	} else if (!drc->drc_newfs) {
3430 		dsl_dataset_t *origin_head;
3431 
3432 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3433 		if (error != 0)
3434 			return (error);
3435 		if (drc->drc_force) {
3436 			/*
3437 			 * We will destroy any snapshots in tofs (i.e. before
3438 			 * origin_head) that are after the origin (which is
3439 			 * the snap before drc_ds, because drc_ds can not
3440 			 * have any snaps of its own).
3441 			 */
3442 			uint64_t obj;
3443 
3444 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3445 			while (obj !=
3446 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3447 				dsl_dataset_t *snap;
3448 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3449 				    &snap);
3450 				if (error != 0)
3451 					break;
3452 				if (snap->ds_dir != origin_head->ds_dir)
3453 					error = SET_ERROR(EINVAL);
3454 				if (error == 0)  {
3455 					error = dsl_destroy_snapshot_check_impl(
3456 					    snap, B_FALSE);
3457 				}
3458 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3459 				dsl_dataset_rele(snap, FTAG);
3460 				if (error != 0)
3461 					break;
3462 			}
3463 			if (error != 0) {
3464 				dsl_dataset_rele(origin_head, FTAG);
3465 				return (error);
3466 			}
3467 		}
3468 		if (drc->drc_keynvl != NULL) {
3469 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3470 			    drc->drc_keynvl, tx);
3471 			if (error != 0) {
3472 				dsl_dataset_rele(origin_head, FTAG);
3473 				return (error);
3474 			}
3475 		}
3476 
3477 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3478 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3479 		if (error != 0) {
3480 			dsl_dataset_rele(origin_head, FTAG);
3481 			return (error);
3482 		}
3483 		error = dsl_dataset_snapshot_check_impl(origin_head,
3484 		    drc->drc_tosnap, tx, B_TRUE, 1,
3485 		    drc->drc_cred, drc->drc_proc);
3486 		dsl_dataset_rele(origin_head, FTAG);
3487 		if (error != 0)
3488 			return (error);
3489 
3490 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3491 	} else {
3492 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3493 		    drc->drc_tosnap, tx, B_TRUE, 1,
3494 		    drc->drc_cred, drc->drc_proc);
3495 	}
3496 	return (error);
3497 }
3498 
3499 static void
3500 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3501 {
3502 	dmu_recv_cookie_t *drc = arg;
3503 	dsl_pool_t *dp = dmu_tx_pool(tx);
3504 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3505 	uint64_t newsnapobj = 0;
3506 
3507 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3508 	    tx, "snap=%s", drc->drc_tosnap);
3509 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3510 
3511 	if (drc->drc_heal) {
3512 		if (drc->drc_keynvl != NULL) {
3513 			nvlist_free(drc->drc_keynvl);
3514 			drc->drc_keynvl = NULL;
3515 		}
3516 	} else if (!drc->drc_newfs) {
3517 		dsl_dataset_t *origin_head;
3518 
3519 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3520 		    &origin_head));
3521 
3522 		if (drc->drc_force) {
3523 			/*
3524 			 * Destroy any snapshots of drc_tofs (origin_head)
3525 			 * after the origin (the snap before drc_ds).
3526 			 */
3527 			uint64_t obj;
3528 
3529 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3530 			while (obj !=
3531 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3532 				dsl_dataset_t *snap;
3533 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3534 				    &snap));
3535 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3536 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3537 				dsl_destroy_snapshot_sync_impl(snap,
3538 				    B_FALSE, tx);
3539 				dsl_dataset_rele(snap, FTAG);
3540 			}
3541 		}
3542 		if (drc->drc_keynvl != NULL) {
3543 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3544 			    drc->drc_keynvl, tx);
3545 			nvlist_free(drc->drc_keynvl);
3546 			drc->drc_keynvl = NULL;
3547 		}
3548 
3549 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3550 		    origin_head->ds_prev);
3551 
3552 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3553 		    origin_head, tx);
3554 		/*
3555 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3556 		 * so drc_os is no longer valid.
3557 		 */
3558 		drc->drc_os = NULL;
3559 
3560 		dsl_dataset_snapshot_sync_impl(origin_head,
3561 		    drc->drc_tosnap, tx);
3562 
3563 		/* set snapshot's creation time and guid */
3564 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3565 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3566 		    drc->drc_drrb->drr_creation_time;
3567 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3568 		    drc->drc_drrb->drr_toguid;
3569 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3570 		    ~DS_FLAG_INCONSISTENT;
3571 
3572 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3573 		dsl_dataset_phys(origin_head)->ds_flags &=
3574 		    ~DS_FLAG_INCONSISTENT;
3575 
3576 		newsnapobj =
3577 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3578 
3579 		dsl_dataset_rele(origin_head, FTAG);
3580 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3581 
3582 		if (drc->drc_owner != NULL)
3583 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3584 	} else {
3585 		dsl_dataset_t *ds = drc->drc_ds;
3586 
3587 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3588 
3589 		/* set snapshot's creation time and guid */
3590 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3591 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3592 		    drc->drc_drrb->drr_creation_time;
3593 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3594 		    drc->drc_drrb->drr_toguid;
3595 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3596 		    ~DS_FLAG_INCONSISTENT;
3597 
3598 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3599 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3600 		if (dsl_dataset_has_resume_receive_state(ds)) {
3601 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3602 			    DS_FIELD_RESUME_FROMGUID, tx);
3603 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3604 			    DS_FIELD_RESUME_OBJECT, tx);
3605 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3606 			    DS_FIELD_RESUME_OFFSET, tx);
3607 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3608 			    DS_FIELD_RESUME_BYTES, tx);
3609 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3610 			    DS_FIELD_RESUME_TOGUID, tx);
3611 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3612 			    DS_FIELD_RESUME_TONAME, tx);
3613 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3614 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3615 		}
3616 		newsnapobj =
3617 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3618 	}
3619 
3620 	/*
3621 	 * If this is a raw receive, the crypt_keydata nvlist will include
3622 	 * a to_ivset_guid for us to set on the new snapshot. This value
3623 	 * will override the value generated by the snapshot code. However,
3624 	 * this value may not be present, because older implementations of
3625 	 * the raw send code did not include this value, and we are still
3626 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3627 	 * tunable is set, in which case we will leave the newly-generated
3628 	 * value.
3629 	 */
3630 	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3631 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3632 		    DMU_OT_DSL_DATASET, tx);
3633 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3634 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3635 		    &drc->drc_ivset_guid, tx));
3636 	}
3637 
3638 	/*
3639 	 * Release the hold from dmu_recv_begin.  This must be done before
3640 	 * we return to open context, so that when we free the dataset's dnode
3641 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3642 	 * at this point (and therefore won't have a valid pointer to the spa)
3643 	 * we release the key mapping manually here while we do have a valid
3644 	 * pointer, if it exists.
3645 	 */
3646 	if (!drc->drc_raw && encrypted) {
3647 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3648 		    drc->drc_ds->ds_object, drc->drc_ds);
3649 	}
3650 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3651 	drc->drc_ds = NULL;
3652 }
3653 
3654 static int dmu_recv_end_modified_blocks = 3;
3655 
3656 static int
3657 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3658 {
3659 #ifdef _KERNEL
3660 	/*
3661 	 * We will be destroying the ds; make sure its origin is unmounted if
3662 	 * necessary.
3663 	 */
3664 	char name[ZFS_MAX_DATASET_NAME_LEN];
3665 	dsl_dataset_name(drc->drc_ds, name);
3666 	zfs_destroy_unmount_origin(name);
3667 #endif
3668 
3669 	return (dsl_sync_task(drc->drc_tofs,
3670 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3671 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3672 }
3673 
3674 static int
3675 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3676 {
3677 	return (dsl_sync_task(drc->drc_tofs,
3678 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3679 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3680 }
3681 
3682 int
3683 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3684 {
3685 	int error;
3686 
3687 	drc->drc_owner = owner;
3688 
3689 	if (drc->drc_newfs)
3690 		error = dmu_recv_new_end(drc);
3691 	else
3692 		error = dmu_recv_existing_end(drc);
3693 
3694 	if (error != 0) {
3695 		dmu_recv_cleanup_ds(drc);
3696 		nvlist_free(drc->drc_keynvl);
3697 	} else if (!drc->drc_heal) {
3698 		if (drc->drc_newfs) {
3699 			zvol_create_minor(drc->drc_tofs);
3700 		}
3701 		char *snapname = kmem_asprintf("%s@%s",
3702 		    drc->drc_tofs, drc->drc_tosnap);
3703 		zvol_create_minor(snapname);
3704 		kmem_strfree(snapname);
3705 	}
3706 	return (error);
3707 }
3708 
3709 /*
3710  * Return TRUE if this objset is currently being received into.
3711  */
3712 boolean_t
3713 dmu_objset_is_receiving(objset_t *os)
3714 {
3715 	return (os->os_dsl_dataset != NULL &&
3716 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3717 }
3718 
3719 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3720 	"Maximum receive queue length");
3721 
3722 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3723 	"Receive queue fill fraction");
3724 
3725 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3726 	"Maximum amount of writes to batch into one transaction");
3727 
3728 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3729 	"Ignore errors during corrective receive");
3730 /* END CSTYLED */
3731