1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2019 Datto Inc. 31 * Copyright (c) 2022 Axcient. 32 */ 33 34 #include <sys/spa_impl.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dmu_send.h> 38 #include <sys/dmu_recv.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/dbuf.h> 41 #include <sys/dnode.h> 42 #include <sys/zfs_context.h> 43 #include <sys/dmu_objset.h> 44 #include <sys/dmu_traverse.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_dir.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dsl_pool.h> 49 #include <sys/dsl_synctask.h> 50 #include <sys/zfs_ioctl.h> 51 #include <sys/zap.h> 52 #include <sys/zvol.h> 53 #include <sys/zio_checksum.h> 54 #include <sys/zfs_znode.h> 55 #include <zfs_fletcher.h> 56 #include <sys/avl.h> 57 #include <sys/ddt.h> 58 #include <sys/zfs_onexit.h> 59 #include <sys/dsl_destroy.h> 60 #include <sys/blkptr.h> 61 #include <sys/dsl_bookmark.h> 62 #include <sys/zfeature.h> 63 #include <sys/bqueue.h> 64 #include <sys/objlist.h> 65 #ifdef _KERNEL 66 #include <sys/zfs_vfsops.h> 67 #endif 68 #include <sys/zfs_file.h> 69 70 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 71 static int zfs_recv_queue_ff = 20; 72 static int zfs_recv_write_batch_size = 1024 * 1024; 73 static int zfs_recv_best_effort_corrective = 0; 74 75 static const void *const dmu_recv_tag = "dmu_recv_tag"; 76 const char *const recv_clone_name = "%recv"; 77 78 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 79 void *buf); 80 81 struct receive_record_arg { 82 dmu_replay_record_t header; 83 void *payload; /* Pointer to a buffer containing the payload */ 84 /* 85 * If the record is a WRITE or SPILL, pointer to the abd containing the 86 * payload. 87 */ 88 abd_t *abd; 89 int payload_size; 90 uint64_t bytes_read; /* bytes read from stream when record created */ 91 boolean_t eos_marker; /* Marks the end of the stream */ 92 bqueue_node_t node; 93 }; 94 95 struct receive_writer_arg { 96 objset_t *os; 97 boolean_t byteswap; 98 bqueue_t q; 99 100 /* 101 * These three members are used to signal to the main thread when 102 * we're done. 103 */ 104 kmutex_t mutex; 105 kcondvar_t cv; 106 boolean_t done; 107 108 int err; 109 const char *tofs; 110 boolean_t heal; 111 boolean_t resumable; 112 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 113 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 114 boolean_t full; /* this is a full send stream */ 115 uint64_t last_object; 116 uint64_t last_offset; 117 uint64_t max_object; /* highest object ID referenced in stream */ 118 uint64_t bytes_read; /* bytes read when current record created */ 119 120 list_t write_batch; 121 122 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 123 boolean_t or_crypt_params_present; 124 uint64_t or_firstobj; 125 uint64_t or_numslots; 126 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 127 uint8_t or_iv[ZIO_DATA_IV_LEN]; 128 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 129 boolean_t or_byteorder; 130 zio_t *heal_pio; 131 }; 132 133 typedef struct dmu_recv_begin_arg { 134 const char *drba_origin; 135 dmu_recv_cookie_t *drba_cookie; 136 cred_t *drba_cred; 137 proc_t *drba_proc; 138 dsl_crypto_params_t *drba_dcp; 139 } dmu_recv_begin_arg_t; 140 141 static void 142 byteswap_record(dmu_replay_record_t *drr) 143 { 144 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 145 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 146 drr->drr_type = BSWAP_32(drr->drr_type); 147 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 148 149 switch (drr->drr_type) { 150 case DRR_BEGIN: 151 DO64(drr_begin.drr_magic); 152 DO64(drr_begin.drr_versioninfo); 153 DO64(drr_begin.drr_creation_time); 154 DO32(drr_begin.drr_type); 155 DO32(drr_begin.drr_flags); 156 DO64(drr_begin.drr_toguid); 157 DO64(drr_begin.drr_fromguid); 158 break; 159 case DRR_OBJECT: 160 DO64(drr_object.drr_object); 161 DO32(drr_object.drr_type); 162 DO32(drr_object.drr_bonustype); 163 DO32(drr_object.drr_blksz); 164 DO32(drr_object.drr_bonuslen); 165 DO32(drr_object.drr_raw_bonuslen); 166 DO64(drr_object.drr_toguid); 167 DO64(drr_object.drr_maxblkid); 168 break; 169 case DRR_FREEOBJECTS: 170 DO64(drr_freeobjects.drr_firstobj); 171 DO64(drr_freeobjects.drr_numobjs); 172 DO64(drr_freeobjects.drr_toguid); 173 break; 174 case DRR_WRITE: 175 DO64(drr_write.drr_object); 176 DO32(drr_write.drr_type); 177 DO64(drr_write.drr_offset); 178 DO64(drr_write.drr_logical_size); 179 DO64(drr_write.drr_toguid); 180 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 181 DO64(drr_write.drr_key.ddk_prop); 182 DO64(drr_write.drr_compressed_size); 183 break; 184 case DRR_WRITE_EMBEDDED: 185 DO64(drr_write_embedded.drr_object); 186 DO64(drr_write_embedded.drr_offset); 187 DO64(drr_write_embedded.drr_length); 188 DO64(drr_write_embedded.drr_toguid); 189 DO32(drr_write_embedded.drr_lsize); 190 DO32(drr_write_embedded.drr_psize); 191 break; 192 case DRR_FREE: 193 DO64(drr_free.drr_object); 194 DO64(drr_free.drr_offset); 195 DO64(drr_free.drr_length); 196 DO64(drr_free.drr_toguid); 197 break; 198 case DRR_SPILL: 199 DO64(drr_spill.drr_object); 200 DO64(drr_spill.drr_length); 201 DO64(drr_spill.drr_toguid); 202 DO64(drr_spill.drr_compressed_size); 203 DO32(drr_spill.drr_type); 204 break; 205 case DRR_OBJECT_RANGE: 206 DO64(drr_object_range.drr_firstobj); 207 DO64(drr_object_range.drr_numslots); 208 DO64(drr_object_range.drr_toguid); 209 break; 210 case DRR_REDACT: 211 DO64(drr_redact.drr_object); 212 DO64(drr_redact.drr_offset); 213 DO64(drr_redact.drr_length); 214 DO64(drr_redact.drr_toguid); 215 break; 216 case DRR_END: 217 DO64(drr_end.drr_toguid); 218 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 219 break; 220 default: 221 break; 222 } 223 224 if (drr->drr_type != DRR_BEGIN) { 225 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 226 } 227 228 #undef DO64 229 #undef DO32 230 } 231 232 static boolean_t 233 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 234 { 235 for (int i = 0; i < num_snaps; i++) { 236 if (snaps[i] == guid) 237 return (B_TRUE); 238 } 239 return (B_FALSE); 240 } 241 242 /* 243 * Check that the new stream we're trying to receive is redacted with respect to 244 * a subset of the snapshots that the origin was redacted with respect to. For 245 * the reasons behind this, see the man page on redacted zfs sends and receives. 246 */ 247 static boolean_t 248 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 249 uint64_t *redact_snaps, uint64_t num_redact_snaps) 250 { 251 /* 252 * Short circuit the comparison; if we are redacted with respect to 253 * more snapshots than the origin, we can't be redacted with respect 254 * to a subset. 255 */ 256 if (num_redact_snaps > origin_num_snaps) { 257 return (B_FALSE); 258 } 259 260 for (int i = 0; i < num_redact_snaps; i++) { 261 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 262 redact_snaps[i])) { 263 return (B_FALSE); 264 } 265 } 266 return (B_TRUE); 267 } 268 269 static boolean_t 270 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 271 { 272 uint64_t *origin_snaps; 273 uint64_t origin_num_snaps; 274 dmu_recv_cookie_t *drc = drba->drba_cookie; 275 struct drr_begin *drrb = drc->drc_drrb; 276 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 277 int err = 0; 278 boolean_t ret = B_TRUE; 279 uint64_t *redact_snaps; 280 uint_t numredactsnaps; 281 282 /* 283 * If this is a full send stream, we're safe no matter what. 284 */ 285 if (drrb->drr_fromguid == 0) 286 return (ret); 287 288 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 289 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 290 291 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 292 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 293 0) { 294 /* 295 * If the send stream was sent from the redaction bookmark or 296 * the redacted version of the dataset, then we're safe. Verify 297 * that this is from the a compatible redaction bookmark or 298 * redacted dataset. 299 */ 300 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 301 redact_snaps, numredactsnaps)) { 302 err = EINVAL; 303 } 304 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 305 /* 306 * If the stream is redacted, it must be redacted with respect 307 * to a subset of what the origin is redacted with respect to. 308 * See case number 2 in the zfs man page section on redacted zfs 309 * send. 310 */ 311 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 312 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 313 314 if (err != 0 || !compatible_redact_snaps(origin_snaps, 315 origin_num_snaps, redact_snaps, numredactsnaps)) { 316 err = EINVAL; 317 } 318 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 319 drrb->drr_toguid)) { 320 /* 321 * If the stream isn't redacted but the origin is, this must be 322 * one of the snapshots the origin is redacted with respect to. 323 * See case number 1 in the zfs man page section on redacted zfs 324 * send. 325 */ 326 err = EINVAL; 327 } 328 329 if (err != 0) 330 ret = B_FALSE; 331 return (ret); 332 } 333 334 /* 335 * If we previously received a stream with --large-block, we don't support 336 * receiving an incremental on top of it without --large-block. This avoids 337 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 338 * records. 339 */ 340 static int 341 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 342 { 343 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 344 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 345 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 346 return (0); 347 } 348 349 static int 350 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 351 uint64_t fromguid, uint64_t featureflags) 352 { 353 uint64_t obj; 354 uint64_t children; 355 int error; 356 dsl_dataset_t *snap; 357 dsl_pool_t *dp = ds->ds_dir->dd_pool; 358 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 359 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 360 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 361 362 /* Temporary clone name must not exist. */ 363 error = zap_lookup(dp->dp_meta_objset, 364 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 365 8, 1, &obj); 366 if (error != ENOENT) 367 return (error == 0 ? SET_ERROR(EBUSY) : error); 368 369 /* Resume state must not be set. */ 370 if (dsl_dataset_has_resume_receive_state(ds)) 371 return (SET_ERROR(EBUSY)); 372 373 /* New snapshot name must not exist if we're not healing it. */ 374 error = zap_lookup(dp->dp_meta_objset, 375 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 376 drba->drba_cookie->drc_tosnap, 8, 1, &obj); 377 if (drba->drba_cookie->drc_heal) { 378 if (error != 0) 379 return (error); 380 } else if (error != ENOENT) { 381 return (error == 0 ? SET_ERROR(EEXIST) : error); 382 } 383 384 /* Must not have children if receiving a ZVOL. */ 385 error = zap_count(dp->dp_meta_objset, 386 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 387 if (error != 0) 388 return (error); 389 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 390 children > 0) 391 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 392 393 /* 394 * Check snapshot limit before receiving. We'll recheck again at the 395 * end, but might as well abort before receiving if we're already over 396 * the limit. 397 * 398 * Note that we do not check the file system limit with 399 * dsl_dir_fscount_check because the temporary %clones don't count 400 * against that limit. 401 */ 402 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 403 NULL, drba->drba_cred, drba->drba_proc); 404 if (error != 0) 405 return (error); 406 407 if (drba->drba_cookie->drc_heal) { 408 /* Encryption is incompatible with embedded data. */ 409 if (encrypted && embed) 410 return (SET_ERROR(EINVAL)); 411 412 /* Healing is not supported when in 'force' mode. */ 413 if (drba->drba_cookie->drc_force) 414 return (SET_ERROR(EINVAL)); 415 416 /* Must have keys loaded if doing encrypted non-raw recv. */ 417 if (encrypted && !raw) { 418 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object, 419 NULL, NULL) != 0) 420 return (SET_ERROR(EACCES)); 421 } 422 423 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); 424 if (error != 0) 425 return (error); 426 427 /* 428 * When not doing best effort corrective recv healing can only 429 * be done if the send stream is for the same snapshot as the 430 * one we are trying to heal. 431 */ 432 if (zfs_recv_best_effort_corrective == 0 && 433 drba->drba_cookie->drc_drrb->drr_toguid != 434 dsl_dataset_phys(snap)->ds_guid) { 435 dsl_dataset_rele(snap, FTAG); 436 return (SET_ERROR(ENOTSUP)); 437 } 438 dsl_dataset_rele(snap, FTAG); 439 } else if (fromguid != 0) { 440 /* Sanity check the incremental recv */ 441 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 442 443 /* Can't perform a raw receive on top of a non-raw receive */ 444 if (!encrypted && raw) 445 return (SET_ERROR(EINVAL)); 446 447 /* Encryption is incompatible with embedded data */ 448 if (encrypted && embed) 449 return (SET_ERROR(EINVAL)); 450 451 /* Find snapshot in this dir that matches fromguid. */ 452 while (obj != 0) { 453 error = dsl_dataset_hold_obj(dp, obj, FTAG, 454 &snap); 455 if (error != 0) 456 return (SET_ERROR(ENODEV)); 457 if (snap->ds_dir != ds->ds_dir) { 458 dsl_dataset_rele(snap, FTAG); 459 return (SET_ERROR(ENODEV)); 460 } 461 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 462 break; 463 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 464 dsl_dataset_rele(snap, FTAG); 465 } 466 if (obj == 0) 467 return (SET_ERROR(ENODEV)); 468 469 if (drba->drba_cookie->drc_force) { 470 drba->drba_cookie->drc_fromsnapobj = obj; 471 } else { 472 /* 473 * If we are not forcing, there must be no 474 * changes since fromsnap. Raw sends have an 475 * additional constraint that requires that 476 * no "noop" snapshots exist between fromsnap 477 * and tosnap for the IVset checking code to 478 * work properly. 479 */ 480 if (dsl_dataset_modified_since_snap(ds, snap) || 481 (raw && 482 dsl_dataset_phys(ds)->ds_prev_snap_obj != 483 snap->ds_object)) { 484 dsl_dataset_rele(snap, FTAG); 485 return (SET_ERROR(ETXTBSY)); 486 } 487 drba->drba_cookie->drc_fromsnapobj = 488 ds->ds_prev->ds_object; 489 } 490 491 if (dsl_dataset_feature_is_active(snap, 492 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 493 snap)) { 494 dsl_dataset_rele(snap, FTAG); 495 return (SET_ERROR(EINVAL)); 496 } 497 498 error = recv_check_large_blocks(snap, featureflags); 499 if (error != 0) { 500 dsl_dataset_rele(snap, FTAG); 501 return (error); 502 } 503 504 dsl_dataset_rele(snap, FTAG); 505 } else { 506 /* If full and not healing then must be forced. */ 507 if (!drba->drba_cookie->drc_force) 508 return (SET_ERROR(EEXIST)); 509 510 /* 511 * We don't support using zfs recv -F to blow away 512 * encrypted filesystems. This would require the 513 * dsl dir to point to the old encryption key and 514 * the new one at the same time during the receive. 515 */ 516 if ((!encrypted && raw) || encrypted) 517 return (SET_ERROR(EINVAL)); 518 519 /* 520 * Perform the same encryption checks we would if 521 * we were creating a new dataset from scratch. 522 */ 523 if (!raw) { 524 boolean_t will_encrypt; 525 526 error = dmu_objset_create_crypt_check( 527 ds->ds_dir->dd_parent, drba->drba_dcp, 528 &will_encrypt); 529 if (error != 0) 530 return (error); 531 532 if (will_encrypt && embed) 533 return (SET_ERROR(EINVAL)); 534 } 535 } 536 537 return (0); 538 } 539 540 /* 541 * Check that any feature flags used in the data stream we're receiving are 542 * supported by the pool we are receiving into. 543 * 544 * Note that some of the features we explicitly check here have additional 545 * (implicit) features they depend on, but those dependencies are enforced 546 * through the zfeature_register() calls declaring the features that we 547 * explicitly check. 548 */ 549 static int 550 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 551 { 552 /* 553 * Check if there are any unsupported feature flags. 554 */ 555 if (!DMU_STREAM_SUPPORTED(featureflags)) { 556 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 557 } 558 559 /* Verify pool version supports SA if SA_SPILL feature set */ 560 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 561 spa_version(spa) < SPA_VERSION_SA) 562 return (SET_ERROR(ENOTSUP)); 563 564 /* 565 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 566 * and large_dnodes in the stream can only be used if those pool 567 * features are enabled because we don't attempt to decompress / 568 * un-embed / un-mooch / split up the blocks / dnodes during the 569 * receive process. 570 */ 571 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 572 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 573 return (SET_ERROR(ENOTSUP)); 574 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 575 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 576 return (SET_ERROR(ENOTSUP)); 577 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 578 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 579 return (SET_ERROR(ENOTSUP)); 580 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 581 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 582 return (SET_ERROR(ENOTSUP)); 583 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 584 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 585 return (SET_ERROR(ENOTSUP)); 586 587 /* 588 * Receiving redacted streams requires that redacted datasets are 589 * enabled. 590 */ 591 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 592 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 593 return (SET_ERROR(ENOTSUP)); 594 595 return (0); 596 } 597 598 static int 599 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 600 { 601 dmu_recv_begin_arg_t *drba = arg; 602 dsl_pool_t *dp = dmu_tx_pool(tx); 603 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 604 uint64_t fromguid = drrb->drr_fromguid; 605 int flags = drrb->drr_flags; 606 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 607 int error; 608 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 609 dsl_dataset_t *ds; 610 const char *tofs = drba->drba_cookie->drc_tofs; 611 612 /* already checked */ 613 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 614 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 615 616 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 617 DMU_COMPOUNDSTREAM || 618 drrb->drr_type >= DMU_OST_NUMTYPES || 619 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 620 return (SET_ERROR(EINVAL)); 621 622 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 623 if (error != 0) 624 return (error); 625 626 /* Resumable receives require extensible datasets */ 627 if (drba->drba_cookie->drc_resumable && 628 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 629 return (SET_ERROR(ENOTSUP)); 630 631 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 632 /* raw receives require the encryption feature */ 633 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 634 return (SET_ERROR(ENOTSUP)); 635 636 /* embedded data is incompatible with encryption and raw recv */ 637 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 638 return (SET_ERROR(EINVAL)); 639 640 /* raw receives require spill block allocation flag */ 641 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 642 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 643 } else { 644 /* 645 * We support unencrypted datasets below encrypted ones now, 646 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing 647 * with a dataset we may encrypt. 648 */ 649 if (drba->drba_dcp != NULL && 650 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { 651 dsflags |= DS_HOLD_FLAG_DECRYPT; 652 } 653 } 654 655 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 656 if (error == 0) { 657 /* target fs already exists; recv into temp clone */ 658 659 /* Can't recv a clone into an existing fs */ 660 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 661 dsl_dataset_rele_flags(ds, dsflags, FTAG); 662 return (SET_ERROR(EINVAL)); 663 } 664 665 error = recv_begin_check_existing_impl(drba, ds, fromguid, 666 featureflags); 667 dsl_dataset_rele_flags(ds, dsflags, FTAG); 668 } else if (error == ENOENT) { 669 /* target fs does not exist; must be a full backup or clone */ 670 char buf[ZFS_MAX_DATASET_NAME_LEN]; 671 objset_t *os; 672 673 /* healing recv must be done "into" an existing snapshot */ 674 if (drba->drba_cookie->drc_heal == B_TRUE) 675 return (SET_ERROR(ENOTSUP)); 676 677 /* 678 * If it's a non-clone incremental, we are missing the 679 * target fs, so fail the recv. 680 */ 681 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 682 drba->drba_origin)) 683 return (SET_ERROR(ENOENT)); 684 685 /* 686 * If we're receiving a full send as a clone, and it doesn't 687 * contain all the necessary free records and freeobject 688 * records, reject it. 689 */ 690 if (fromguid == 0 && drba->drba_origin != NULL && 691 !(flags & DRR_FLAG_FREERECORDS)) 692 return (SET_ERROR(EINVAL)); 693 694 /* Open the parent of tofs */ 695 ASSERT3U(strlen(tofs), <, sizeof (buf)); 696 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 697 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 698 if (error != 0) 699 return (error); 700 701 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 702 drba->drba_origin == NULL) { 703 boolean_t will_encrypt; 704 705 /* 706 * Check that we aren't breaking any encryption rules 707 * and that we have all the parameters we need to 708 * create an encrypted dataset if necessary. If we are 709 * making an encrypted dataset the stream can't have 710 * embedded data. 711 */ 712 error = dmu_objset_create_crypt_check(ds->ds_dir, 713 drba->drba_dcp, &will_encrypt); 714 if (error != 0) { 715 dsl_dataset_rele(ds, FTAG); 716 return (error); 717 } 718 719 if (will_encrypt && 720 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 721 dsl_dataset_rele(ds, FTAG); 722 return (SET_ERROR(EINVAL)); 723 } 724 } 725 726 /* 727 * Check filesystem and snapshot limits before receiving. We'll 728 * recheck snapshot limits again at the end (we create the 729 * filesystems and increment those counts during begin_sync). 730 */ 731 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 732 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 733 drba->drba_cred, drba->drba_proc); 734 if (error != 0) { 735 dsl_dataset_rele(ds, FTAG); 736 return (error); 737 } 738 739 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 740 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 741 drba->drba_cred, drba->drba_proc); 742 if (error != 0) { 743 dsl_dataset_rele(ds, FTAG); 744 return (error); 745 } 746 747 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 748 error = dmu_objset_from_ds(ds, &os); 749 if (error != 0) { 750 dsl_dataset_rele(ds, FTAG); 751 return (error); 752 } 753 if (dmu_objset_type(os) != DMU_OST_ZFS) { 754 dsl_dataset_rele(ds, FTAG); 755 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 756 } 757 758 if (drba->drba_origin != NULL) { 759 dsl_dataset_t *origin; 760 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 761 dsflags, FTAG, &origin); 762 if (error != 0) { 763 dsl_dataset_rele(ds, FTAG); 764 return (error); 765 } 766 if (!origin->ds_is_snapshot) { 767 dsl_dataset_rele_flags(origin, dsflags, FTAG); 768 dsl_dataset_rele(ds, FTAG); 769 return (SET_ERROR(EINVAL)); 770 } 771 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 772 fromguid != 0) { 773 dsl_dataset_rele_flags(origin, dsflags, FTAG); 774 dsl_dataset_rele(ds, FTAG); 775 return (SET_ERROR(ENODEV)); 776 } 777 778 if (origin->ds_dir->dd_crypto_obj != 0 && 779 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 780 dsl_dataset_rele_flags(origin, dsflags, FTAG); 781 dsl_dataset_rele(ds, FTAG); 782 return (SET_ERROR(EINVAL)); 783 } 784 785 /* 786 * If the origin is redacted we need to verify that this 787 * send stream can safely be received on top of the 788 * origin. 789 */ 790 if (dsl_dataset_feature_is_active(origin, 791 SPA_FEATURE_REDACTED_DATASETS)) { 792 if (!redact_check(drba, origin)) { 793 dsl_dataset_rele_flags(origin, dsflags, 794 FTAG); 795 dsl_dataset_rele_flags(ds, dsflags, 796 FTAG); 797 return (SET_ERROR(EINVAL)); 798 } 799 } 800 801 error = recv_check_large_blocks(ds, featureflags); 802 if (error != 0) { 803 dsl_dataset_rele_flags(origin, dsflags, FTAG); 804 dsl_dataset_rele_flags(ds, dsflags, FTAG); 805 return (error); 806 } 807 808 dsl_dataset_rele_flags(origin, dsflags, FTAG); 809 } 810 811 dsl_dataset_rele(ds, FTAG); 812 error = 0; 813 } 814 return (error); 815 } 816 817 static void 818 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 819 { 820 dmu_recv_begin_arg_t *drba = arg; 821 dsl_pool_t *dp = dmu_tx_pool(tx); 822 objset_t *mos = dp->dp_meta_objset; 823 dmu_recv_cookie_t *drc = drba->drba_cookie; 824 struct drr_begin *drrb = drc->drc_drrb; 825 const char *tofs = drc->drc_tofs; 826 uint64_t featureflags = drc->drc_featureflags; 827 dsl_dataset_t *ds, *newds; 828 objset_t *os; 829 uint64_t dsobj; 830 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 831 int error; 832 uint64_t crflags = 0; 833 dsl_crypto_params_t dummy_dcp = { 0 }; 834 dsl_crypto_params_t *dcp = drba->drba_dcp; 835 836 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 837 crflags |= DS_FLAG_CI_DATASET; 838 839 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 840 dsflags |= DS_HOLD_FLAG_DECRYPT; 841 842 /* 843 * Raw, non-incremental recvs always use a dummy dcp with 844 * the raw cmd set. Raw incremental recvs do not use a dcp 845 * since the encryption parameters are already set in stone. 846 */ 847 if (dcp == NULL && drrb->drr_fromguid == 0 && 848 drba->drba_origin == NULL) { 849 ASSERT3P(dcp, ==, NULL); 850 dcp = &dummy_dcp; 851 852 if (featureflags & DMU_BACKUP_FEATURE_RAW) 853 dcp->cp_cmd = DCP_CMD_RAW_RECV; 854 } 855 856 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 857 if (error == 0) { 858 /* Create temporary clone unless we're doing corrective recv */ 859 dsl_dataset_t *snap = NULL; 860 861 if (drba->drba_cookie->drc_fromsnapobj != 0) { 862 VERIFY0(dsl_dataset_hold_obj(dp, 863 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 864 ASSERT3P(dcp, ==, NULL); 865 } 866 if (drc->drc_heal) { 867 /* When healing we want to use the provided snapshot */ 868 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap, 869 &dsobj)); 870 } else { 871 dsobj = dsl_dataset_create_sync(ds->ds_dir, 872 recv_clone_name, snap, crflags, drba->drba_cred, 873 dcp, tx); 874 } 875 if (drba->drba_cookie->drc_fromsnapobj != 0) 876 dsl_dataset_rele(snap, FTAG); 877 dsl_dataset_rele_flags(ds, dsflags, FTAG); 878 } else { 879 dsl_dir_t *dd; 880 const char *tail; 881 dsl_dataset_t *origin = NULL; 882 883 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 884 885 if (drba->drba_origin != NULL) { 886 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 887 FTAG, &origin)); 888 ASSERT3P(dcp, ==, NULL); 889 } 890 891 /* Create new dataset. */ 892 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 893 origin, crflags, drba->drba_cred, dcp, tx); 894 if (origin != NULL) 895 dsl_dataset_rele(origin, FTAG); 896 dsl_dir_rele(dd, FTAG); 897 drc->drc_newfs = B_TRUE; 898 } 899 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 900 &newds)); 901 if (dsl_dataset_feature_is_active(newds, 902 SPA_FEATURE_REDACTED_DATASETS)) { 903 /* 904 * If the origin dataset is redacted, the child will be redacted 905 * when we create it. We clear the new dataset's 906 * redaction info; if it should be redacted, we'll fill 907 * in its information later. 908 */ 909 dsl_dataset_deactivate_feature(newds, 910 SPA_FEATURE_REDACTED_DATASETS, tx); 911 } 912 VERIFY0(dmu_objset_from_ds(newds, &os)); 913 914 if (drc->drc_resumable) { 915 dsl_dataset_zapify(newds, tx); 916 if (drrb->drr_fromguid != 0) { 917 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 918 8, 1, &drrb->drr_fromguid, tx)); 919 } 920 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 921 8, 1, &drrb->drr_toguid, tx)); 922 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 923 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 924 uint64_t one = 1; 925 uint64_t zero = 0; 926 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 927 8, 1, &one, tx)); 928 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 929 8, 1, &zero, tx)); 930 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 931 8, 1, &zero, tx)); 932 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 933 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 934 8, 1, &one, tx)); 935 } 936 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 937 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 938 8, 1, &one, tx)); 939 } 940 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 941 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 942 8, 1, &one, tx)); 943 } 944 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 945 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 946 8, 1, &one, tx)); 947 } 948 949 uint64_t *redact_snaps; 950 uint_t numredactsnaps; 951 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 952 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 953 &numredactsnaps) == 0) { 954 VERIFY0(zap_add(mos, dsobj, 955 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 956 sizeof (*redact_snaps), numredactsnaps, 957 redact_snaps, tx)); 958 } 959 } 960 961 /* 962 * Usually the os->os_encrypted value is tied to the presence of a 963 * DSL Crypto Key object in the dd. However, that will not be received 964 * until dmu_recv_stream(), so we set the value manually for now. 965 */ 966 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 967 os->os_encrypted = B_TRUE; 968 drba->drba_cookie->drc_raw = B_TRUE; 969 } 970 971 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 972 uint64_t *redact_snaps; 973 uint_t numredactsnaps; 974 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 975 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 976 dsl_dataset_activate_redaction(newds, redact_snaps, 977 numredactsnaps, tx); 978 } 979 980 dmu_buf_will_dirty(newds->ds_dbuf, tx); 981 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 982 983 /* 984 * If we actually created a non-clone, we need to create the objset 985 * in our new dataset. If this is a raw send we postpone this until 986 * dmu_recv_stream() so that we can allocate the metadnode with the 987 * properties from the DRR_BEGIN payload. 988 */ 989 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 990 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 991 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 992 !drc->drc_heal) { 993 (void) dmu_objset_create_impl(dp->dp_spa, 994 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 995 } 996 rrw_exit(&newds->ds_bp_rwlock, FTAG); 997 998 drba->drba_cookie->drc_ds = newds; 999 drba->drba_cookie->drc_os = os; 1000 1001 spa_history_log_internal_ds(newds, "receive", tx, " "); 1002 } 1003 1004 static int 1005 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1006 { 1007 dmu_recv_begin_arg_t *drba = arg; 1008 dmu_recv_cookie_t *drc = drba->drba_cookie; 1009 dsl_pool_t *dp = dmu_tx_pool(tx); 1010 struct drr_begin *drrb = drc->drc_drrb; 1011 int error; 1012 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1013 dsl_dataset_t *ds; 1014 const char *tofs = drc->drc_tofs; 1015 1016 /* already checked */ 1017 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1018 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 1019 1020 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1021 DMU_COMPOUNDSTREAM || 1022 drrb->drr_type >= DMU_OST_NUMTYPES) 1023 return (SET_ERROR(EINVAL)); 1024 1025 /* 1026 * This is mostly a sanity check since we should have already done these 1027 * checks during a previous attempt to receive the data. 1028 */ 1029 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 1030 dp->dp_spa); 1031 if (error != 0) 1032 return (error); 1033 1034 /* 6 extra bytes for /%recv */ 1035 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1036 1037 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1038 tofs, recv_clone_name); 1039 1040 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 1041 /* raw receives require spill block allocation flag */ 1042 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 1043 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 1044 } else { 1045 dsflags |= DS_HOLD_FLAG_DECRYPT; 1046 } 1047 1048 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 1049 /* %recv does not exist; continue in tofs */ 1050 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 1051 if (error != 0) 1052 return (error); 1053 } 1054 1055 /* check that ds is marked inconsistent */ 1056 if (!DS_IS_INCONSISTENT(ds)) { 1057 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1058 return (SET_ERROR(EINVAL)); 1059 } 1060 1061 /* check that there is resuming data, and that the toguid matches */ 1062 if (!dsl_dataset_is_zapified(ds)) { 1063 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1064 return (SET_ERROR(EINVAL)); 1065 } 1066 uint64_t val; 1067 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1068 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1069 if (error != 0 || drrb->drr_toguid != val) { 1070 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1071 return (SET_ERROR(EINVAL)); 1072 } 1073 1074 /* 1075 * Check if the receive is still running. If so, it will be owned. 1076 * Note that nothing else can own the dataset (e.g. after the receive 1077 * fails) because it will be marked inconsistent. 1078 */ 1079 if (dsl_dataset_has_owner(ds)) { 1080 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1081 return (SET_ERROR(EBUSY)); 1082 } 1083 1084 /* There should not be any snapshots of this fs yet. */ 1085 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1086 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1087 return (SET_ERROR(EINVAL)); 1088 } 1089 1090 /* 1091 * Note: resume point will be checked when we process the first WRITE 1092 * record. 1093 */ 1094 1095 /* check that the origin matches */ 1096 val = 0; 1097 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1098 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1099 if (drrb->drr_fromguid != val) { 1100 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1101 return (SET_ERROR(EINVAL)); 1102 } 1103 1104 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1105 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1106 1107 /* 1108 * If we're resuming, and the send is redacted, then the original send 1109 * must have been redacted, and must have been redacted with respect to 1110 * the same snapshots. 1111 */ 1112 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1113 uint64_t num_ds_redact_snaps; 1114 uint64_t *ds_redact_snaps; 1115 1116 uint_t num_stream_redact_snaps; 1117 uint64_t *stream_redact_snaps; 1118 1119 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1120 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1121 &num_stream_redact_snaps) != 0) { 1122 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1123 return (SET_ERROR(EINVAL)); 1124 } 1125 1126 if (!dsl_dataset_get_uint64_array_feature(ds, 1127 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1128 &ds_redact_snaps)) { 1129 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1130 return (SET_ERROR(EINVAL)); 1131 } 1132 1133 for (int i = 0; i < num_ds_redact_snaps; i++) { 1134 if (!redact_snaps_contains(ds_redact_snaps, 1135 num_ds_redact_snaps, stream_redact_snaps[i])) { 1136 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1137 return (SET_ERROR(EINVAL)); 1138 } 1139 } 1140 } 1141 1142 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1143 if (error != 0) { 1144 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1145 return (error); 1146 } 1147 1148 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1149 return (0); 1150 } 1151 1152 static void 1153 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1154 { 1155 dmu_recv_begin_arg_t *drba = arg; 1156 dsl_pool_t *dp = dmu_tx_pool(tx); 1157 const char *tofs = drba->drba_cookie->drc_tofs; 1158 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1159 dsl_dataset_t *ds; 1160 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1161 /* 6 extra bytes for /%recv */ 1162 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1163 1164 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1165 recv_clone_name); 1166 1167 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1168 drba->drba_cookie->drc_raw = B_TRUE; 1169 } else { 1170 dsflags |= DS_HOLD_FLAG_DECRYPT; 1171 } 1172 1173 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1174 != 0) { 1175 /* %recv does not exist; continue in tofs */ 1176 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1177 &ds)); 1178 drba->drba_cookie->drc_newfs = B_TRUE; 1179 } 1180 1181 ASSERT(DS_IS_INCONSISTENT(ds)); 1182 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1183 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1184 drba->drba_cookie->drc_raw); 1185 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1186 1187 drba->drba_cookie->drc_ds = ds; 1188 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1189 drba->drba_cookie->drc_should_save = B_TRUE; 1190 1191 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1192 } 1193 1194 /* 1195 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1196 * succeeds; otherwise we will leak the holds on the datasets. 1197 */ 1198 int 1199 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1200 boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops, 1201 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, 1202 zfs_file_t *fp, offset_t *voffp) 1203 { 1204 dmu_recv_begin_arg_t drba = { 0 }; 1205 int err; 1206 1207 memset(drc, 0, sizeof (dmu_recv_cookie_t)); 1208 drc->drc_drr_begin = drr_begin; 1209 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1210 drc->drc_tosnap = tosnap; 1211 drc->drc_tofs = tofs; 1212 drc->drc_force = force; 1213 drc->drc_heal = heal; 1214 drc->drc_resumable = resumable; 1215 drc->drc_cred = CRED(); 1216 drc->drc_proc = curproc; 1217 drc->drc_clone = (origin != NULL); 1218 1219 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1220 drc->drc_byteswap = B_TRUE; 1221 (void) fletcher_4_incremental_byteswap(drr_begin, 1222 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1223 byteswap_record(drr_begin); 1224 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1225 (void) fletcher_4_incremental_native(drr_begin, 1226 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1227 } else { 1228 return (SET_ERROR(EINVAL)); 1229 } 1230 1231 drc->drc_fp = fp; 1232 drc->drc_voff = *voffp; 1233 drc->drc_featureflags = 1234 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1235 1236 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1237 void *payload = NULL; 1238 if (payloadlen != 0) 1239 payload = kmem_alloc(payloadlen, KM_SLEEP); 1240 1241 err = receive_read_payload_and_next_header(drc, payloadlen, 1242 payload); 1243 if (err != 0) { 1244 kmem_free(payload, payloadlen); 1245 return (err); 1246 } 1247 if (payloadlen != 0) { 1248 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1249 KM_SLEEP); 1250 kmem_free(payload, payloadlen); 1251 if (err != 0) { 1252 kmem_free(drc->drc_next_rrd, 1253 sizeof (*drc->drc_next_rrd)); 1254 return (err); 1255 } 1256 } 1257 1258 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1259 drc->drc_spill = B_TRUE; 1260 1261 drba.drba_origin = origin; 1262 drba.drba_cookie = drc; 1263 drba.drba_cred = CRED(); 1264 drba.drba_proc = curproc; 1265 1266 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1267 err = dsl_sync_task(tofs, 1268 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1269 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1270 } else { 1271 /* 1272 * For non-raw, non-incremental, non-resuming receives the 1273 * user can specify encryption parameters on the command line 1274 * with "zfs recv -o". For these receives we create a dcp and 1275 * pass it to the sync task. Creating the dcp will implicitly 1276 * remove the encryption params from the localprops nvlist, 1277 * which avoids errors when trying to set these normally 1278 * read-only properties. Any other kind of receive that 1279 * attempts to set these properties will fail as a result. 1280 */ 1281 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1282 DMU_BACKUP_FEATURE_RAW) == 0 && 1283 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1284 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1285 localprops, hidden_args, &drba.drba_dcp); 1286 } 1287 1288 if (err == 0) { 1289 err = dsl_sync_task(tofs, 1290 dmu_recv_begin_check, dmu_recv_begin_sync, 1291 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1292 dsl_crypto_params_free(drba.drba_dcp, !!err); 1293 } 1294 } 1295 1296 if (err != 0) { 1297 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1298 nvlist_free(drc->drc_begin_nvl); 1299 } 1300 return (err); 1301 } 1302 1303 /* 1304 * Holds data need for corrective recv callback 1305 */ 1306 typedef struct cr_cb_data { 1307 uint64_t size; 1308 zbookmark_phys_t zb; 1309 spa_t *spa; 1310 } cr_cb_data_t; 1311 1312 static void 1313 corrective_read_done(zio_t *zio) 1314 { 1315 cr_cb_data_t *data = zio->io_private; 1316 /* Corruption corrected; update error log if needed */ 1317 if (zio->io_error == 0) 1318 spa_remove_error(data->spa, &data->zb); 1319 kmem_free(data, sizeof (cr_cb_data_t)); 1320 abd_free(zio->io_abd); 1321 } 1322 1323 /* 1324 * zio_rewrite the data pointed to by bp with the data from the rrd's abd. 1325 */ 1326 static int 1327 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw, 1328 struct receive_record_arg *rrd, blkptr_t *bp) 1329 { 1330 int err; 1331 zio_t *io; 1332 zbookmark_phys_t zb; 1333 dnode_t *dn; 1334 abd_t *abd = rrd->abd; 1335 zio_cksum_t bp_cksum = bp->blk_cksum; 1336 enum zio_flag flags = ZIO_FLAG_SPECULATIVE | 1337 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL; 1338 1339 if (rwa->raw) 1340 flags |= ZIO_FLAG_RAW; 1341 1342 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn); 1343 if (err != 0) 1344 return (err); 1345 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0, 1346 dbuf_whichblock(dn, 0, drrw->drr_offset)); 1347 dnode_rele(dn, FTAG); 1348 1349 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) { 1350 /* Decompress the stream data */ 1351 abd_t *dabd = abd_alloc_linear( 1352 drrw->drr_logical_size, B_FALSE); 1353 err = zio_decompress_data(drrw->drr_compressiontype, 1354 abd, abd_to_buf(dabd), abd_get_size(abd), 1355 abd_get_size(dabd), NULL); 1356 1357 if (err != 0) { 1358 abd_free(dabd); 1359 return (err); 1360 } 1361 /* Swap in the newly decompressed data into the abd */ 1362 abd_free(abd); 1363 abd = dabd; 1364 } 1365 1366 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 1367 /* Recompress the data */ 1368 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp), 1369 B_FALSE); 1370 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp), 1371 abd, abd_to_buf(cabd), abd_get_size(abd), 1372 rwa->os->os_complevel); 1373 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize); 1374 /* Swap in newly compressed data into the abd */ 1375 abd_free(abd); 1376 abd = cabd; 1377 flags |= ZIO_FLAG_RAW_COMPRESS; 1378 } 1379 1380 /* 1381 * The stream is not encrypted but the data on-disk is. 1382 * We need to re-encrypt the buf using the same 1383 * encryption type, salt, iv, and mac that was used to encrypt 1384 * the block previosly. 1385 */ 1386 if (!rwa->raw && BP_USES_CRYPT(bp)) { 1387 dsl_dataset_t *ds; 1388 dsl_crypto_key_t *dck = NULL; 1389 uint8_t salt[ZIO_DATA_SALT_LEN]; 1390 uint8_t iv[ZIO_DATA_IV_LEN]; 1391 uint8_t mac[ZIO_DATA_MAC_LEN]; 1392 boolean_t no_crypt = B_FALSE; 1393 dsl_pool_t *dp = dmu_objset_pool(rwa->os); 1394 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE); 1395 1396 zio_crypt_decode_params_bp(bp, salt, iv); 1397 zio_crypt_decode_mac_bp(bp, mac); 1398 1399 dsl_pool_config_enter(dp, FTAG); 1400 err = dsl_dataset_hold_flags(dp, rwa->tofs, 1401 DS_HOLD_FLAG_DECRYPT, FTAG, &ds); 1402 if (err != 0) { 1403 dsl_pool_config_exit(dp, FTAG); 1404 abd_free(eabd); 1405 return (SET_ERROR(EACCES)); 1406 } 1407 1408 /* Look up the key from the spa's keystore */ 1409 err = spa_keystore_lookup_key(rwa->os->os_spa, 1410 zb.zb_objset, FTAG, &dck); 1411 if (err != 0) { 1412 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, 1413 FTAG); 1414 dsl_pool_config_exit(dp, FTAG); 1415 abd_free(eabd); 1416 return (SET_ERROR(EACCES)); 1417 } 1418 1419 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 1420 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, 1421 mac, abd_get_size(abd), abd, eabd, &no_crypt); 1422 1423 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG); 1424 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1425 dsl_pool_config_exit(dp, FTAG); 1426 1427 ASSERT0(no_crypt); 1428 if (err != 0) { 1429 abd_free(eabd); 1430 return (err); 1431 } 1432 /* Swap in the newly encrypted data into the abd */ 1433 abd_free(abd); 1434 abd = eabd; 1435 1436 /* 1437 * We want to prevent zio_rewrite() from trying to 1438 * encrypt the data again 1439 */ 1440 flags |= ZIO_FLAG_RAW_ENCRYPT; 1441 } 1442 rrd->abd = abd; 1443 1444 io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd, 1445 BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb); 1446 1447 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) || 1448 abd_get_size(abd) == BP_GET_PSIZE(bp)); 1449 1450 /* compute new bp checksum value and make sure it matches the old one */ 1451 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd)); 1452 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) { 1453 zio_destroy(io); 1454 if (zfs_recv_best_effort_corrective != 0) 1455 return (0); 1456 return (SET_ERROR(ECKSUM)); 1457 } 1458 1459 /* Correct the corruption in place */ 1460 err = zio_wait(io); 1461 if (err == 0) { 1462 cr_cb_data_t *cb_data = 1463 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP); 1464 cb_data->spa = rwa->os->os_spa; 1465 cb_data->size = drrw->drr_logical_size; 1466 cb_data->zb = zb; 1467 /* Test if healing worked by re-reading the bp */ 1468 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp, 1469 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE), 1470 drrw->drr_logical_size, corrective_read_done, 1471 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL)); 1472 } 1473 if (err != 0 && zfs_recv_best_effort_corrective != 0) 1474 err = 0; 1475 1476 return (err); 1477 } 1478 1479 static int 1480 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1481 { 1482 int done = 0; 1483 1484 /* 1485 * The code doesn't rely on this (lengths being multiples of 8). See 1486 * comment in dump_bytes. 1487 */ 1488 ASSERT(len % 8 == 0 || 1489 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1490 1491 while (done < len) { 1492 ssize_t resid; 1493 zfs_file_t *fp = drc->drc_fp; 1494 int err = zfs_file_read(fp, (char *)buf + done, 1495 len - done, &resid); 1496 if (resid == len - done) { 1497 /* 1498 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1499 * that the receive was interrupted and can 1500 * potentially be resumed. 1501 */ 1502 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1503 } 1504 drc->drc_voff += len - done - resid; 1505 done = len - resid; 1506 if (err != 0) 1507 return (err); 1508 } 1509 1510 drc->drc_bytes_read += len; 1511 1512 ASSERT3U(done, ==, len); 1513 return (0); 1514 } 1515 1516 static inline uint8_t 1517 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1518 { 1519 if (bonus_type == DMU_OT_SA) { 1520 return (1); 1521 } else { 1522 return (1 + 1523 ((DN_OLD_MAX_BONUSLEN - 1524 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1525 } 1526 } 1527 1528 static void 1529 save_resume_state(struct receive_writer_arg *rwa, 1530 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1531 { 1532 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1533 1534 if (!rwa->resumable) 1535 return; 1536 1537 /* 1538 * We use ds_resume_bytes[] != 0 to indicate that we need to 1539 * update this on disk, so it must not be 0. 1540 */ 1541 ASSERT(rwa->bytes_read != 0); 1542 1543 /* 1544 * We only resume from write records, which have a valid 1545 * (non-meta-dnode) object number. 1546 */ 1547 ASSERT(object != 0); 1548 1549 /* 1550 * For resuming to work correctly, we must receive records in order, 1551 * sorted by object,offset. This is checked by the callers, but 1552 * assert it here for good measure. 1553 */ 1554 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1555 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1556 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1557 ASSERT3U(rwa->bytes_read, >=, 1558 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1559 1560 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1561 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1562 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1563 } 1564 1565 static int 1566 receive_object_is_same_generation(objset_t *os, uint64_t object, 1567 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1568 const void *new_bonus, boolean_t *samegenp) 1569 { 1570 zfs_file_info_t zoi; 1571 int err; 1572 1573 dmu_buf_t *old_bonus_dbuf; 1574 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1575 if (err != 0) 1576 return (err); 1577 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1578 &zoi); 1579 dmu_buf_rele(old_bonus_dbuf, FTAG); 1580 if (err != 0) 1581 return (err); 1582 uint64_t old_gen = zoi.zfi_generation; 1583 1584 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1585 if (err != 0) 1586 return (err); 1587 uint64_t new_gen = zoi.zfi_generation; 1588 1589 *samegenp = (old_gen == new_gen); 1590 return (0); 1591 } 1592 1593 static int 1594 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1595 const struct drr_object *drro, const dmu_object_info_t *doi, 1596 const void *bonus_data, 1597 uint64_t *object_to_hold, uint32_t *new_blksz) 1598 { 1599 uint32_t indblksz = drro->drr_indblkshift ? 1600 1ULL << drro->drr_indblkshift : 0; 1601 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1602 drro->drr_bonuslen); 1603 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1604 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1605 boolean_t do_free_range = B_FALSE; 1606 int err; 1607 1608 *object_to_hold = drro->drr_object; 1609 1610 /* nblkptr should be bounded by the bonus size and type */ 1611 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1612 return (SET_ERROR(EINVAL)); 1613 1614 /* 1615 * After the previous send stream, the sending system may 1616 * have freed this object, and then happened to re-allocate 1617 * this object number in a later txg. In this case, we are 1618 * receiving a different logical file, and the block size may 1619 * appear to be different. i.e. we may have a different 1620 * block size for this object than what the send stream says. 1621 * In this case we need to remove the object's contents, 1622 * so that its structure can be changed and then its contents 1623 * entirely replaced by subsequent WRITE records. 1624 * 1625 * If this is a -L (--large-block) incremental stream, and 1626 * the previous stream was not -L, the block size may appear 1627 * to increase. i.e. we may have a smaller block size for 1628 * this object than what the send stream says. In this case 1629 * we need to keep the object's contents and block size 1630 * intact, so that we don't lose parts of the object's 1631 * contents that are not changed by this incremental send 1632 * stream. 1633 * 1634 * We can distinguish between the two above cases by using 1635 * the ZPL's generation number (see 1636 * receive_object_is_same_generation()). However, we only 1637 * want to rely on the generation number when absolutely 1638 * necessary, because with raw receives, the generation is 1639 * encrypted. We also want to minimize dependence on the 1640 * ZPL, so that other types of datasets can also be received 1641 * (e.g. ZVOLs, although note that ZVOLS currently do not 1642 * reallocate their objects or change their structure). 1643 * Therefore, we check a number of different cases where we 1644 * know it is safe to discard the object's contents, before 1645 * using the ZPL's generation number to make the above 1646 * distinction. 1647 */ 1648 if (drro->drr_blksz != doi->doi_data_block_size) { 1649 if (rwa->raw) { 1650 /* 1651 * RAW streams always have large blocks, so 1652 * we are sure that the data is not needed 1653 * due to changing --large-block to be on. 1654 * Which is fortunate since the bonus buffer 1655 * (which contains the ZPL generation) is 1656 * encrypted, and the key might not be 1657 * loaded. 1658 */ 1659 do_free_range = B_TRUE; 1660 } else if (rwa->full) { 1661 /* 1662 * This is a full send stream, so it always 1663 * replaces what we have. Even if the 1664 * generation numbers happen to match, this 1665 * can not actually be the same logical file. 1666 * This is relevant when receiving a full 1667 * send as a clone. 1668 */ 1669 do_free_range = B_TRUE; 1670 } else if (drro->drr_type != 1671 DMU_OT_PLAIN_FILE_CONTENTS || 1672 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1673 /* 1674 * PLAIN_FILE_CONTENTS are the only type of 1675 * objects that have ever been stored with 1676 * large blocks, so we don't need the special 1677 * logic below. ZAP blocks can shrink (when 1678 * there's only one block), so we don't want 1679 * to hit the error below about block size 1680 * only increasing. 1681 */ 1682 do_free_range = B_TRUE; 1683 } else if (doi->doi_max_offset <= 1684 doi->doi_data_block_size) { 1685 /* 1686 * There is only one block. We can free it, 1687 * because its contents will be replaced by a 1688 * WRITE record. This can not be the no-L -> 1689 * -L case, because the no-L case would have 1690 * resulted in multiple blocks. If we 1691 * supported -L -> no-L, it would not be safe 1692 * to free the file's contents. Fortunately, 1693 * that is not allowed (see 1694 * recv_check_large_blocks()). 1695 */ 1696 do_free_range = B_TRUE; 1697 } else { 1698 boolean_t is_same_gen; 1699 err = receive_object_is_same_generation(rwa->os, 1700 drro->drr_object, doi->doi_bonus_type, 1701 drro->drr_bonustype, bonus_data, &is_same_gen); 1702 if (err != 0) 1703 return (SET_ERROR(EINVAL)); 1704 1705 if (is_same_gen) { 1706 /* 1707 * This is the same logical file, and 1708 * the block size must be increasing. 1709 * It could only decrease if 1710 * --large-block was changed to be 1711 * off, which is checked in 1712 * recv_check_large_blocks(). 1713 */ 1714 if (drro->drr_blksz <= 1715 doi->doi_data_block_size) 1716 return (SET_ERROR(EINVAL)); 1717 /* 1718 * We keep the existing blocksize and 1719 * contents. 1720 */ 1721 *new_blksz = 1722 doi->doi_data_block_size; 1723 } else { 1724 do_free_range = B_TRUE; 1725 } 1726 } 1727 } 1728 1729 /* nblkptr can only decrease if the object was reallocated */ 1730 if (nblkptr < doi->doi_nblkptr) 1731 do_free_range = B_TRUE; 1732 1733 /* number of slots can only change on reallocation */ 1734 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1735 do_free_range = B_TRUE; 1736 1737 /* 1738 * For raw sends we also check a few other fields to 1739 * ensure we are preserving the objset structure exactly 1740 * as it was on the receive side: 1741 * - A changed indirect block size 1742 * - A smaller nlevels 1743 */ 1744 if (rwa->raw) { 1745 if (indblksz != doi->doi_metadata_block_size) 1746 do_free_range = B_TRUE; 1747 if (drro->drr_nlevels < doi->doi_indirection) 1748 do_free_range = B_TRUE; 1749 } 1750 1751 if (do_free_range) { 1752 err = dmu_free_long_range(rwa->os, drro->drr_object, 1753 0, DMU_OBJECT_END); 1754 if (err != 0) 1755 return (SET_ERROR(EINVAL)); 1756 } 1757 1758 /* 1759 * The dmu does not currently support decreasing nlevels 1760 * or changing the number of dnode slots on an object. For 1761 * non-raw sends, this does not matter and the new object 1762 * can just use the previous one's nlevels. For raw sends, 1763 * however, the structure of the received dnode (including 1764 * nlevels and dnode slots) must match that of the send 1765 * side. Therefore, instead of using dmu_object_reclaim(), 1766 * we must free the object completely and call 1767 * dmu_object_claim_dnsize() instead. 1768 */ 1769 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || 1770 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1771 err = dmu_free_long_object(rwa->os, drro->drr_object); 1772 if (err != 0) 1773 return (SET_ERROR(EINVAL)); 1774 1775 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1776 *object_to_hold = DMU_NEW_OBJECT; 1777 } 1778 1779 /* 1780 * For raw receives, free everything beyond the new incoming 1781 * maxblkid. Normally this would be done with a DRR_FREE 1782 * record that would come after this DRR_OBJECT record is 1783 * processed. However, for raw receives we manually set the 1784 * maxblkid from the drr_maxblkid and so we must first free 1785 * everything above that blkid to ensure the DMU is always 1786 * consistent with itself. We will never free the first block 1787 * of the object here because a maxblkid of 0 could indicate 1788 * an object with a single block or one with no blocks. This 1789 * free may be skipped when dmu_free_long_range() was called 1790 * above since it covers the entire object's contents. 1791 */ 1792 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1793 err = dmu_free_long_range(rwa->os, drro->drr_object, 1794 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1795 DMU_OBJECT_END); 1796 if (err != 0) 1797 return (SET_ERROR(EINVAL)); 1798 } 1799 return (0); 1800 } 1801 1802 noinline static int 1803 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1804 void *data) 1805 { 1806 dmu_object_info_t doi; 1807 dmu_tx_t *tx; 1808 int err; 1809 uint32_t new_blksz = drro->drr_blksz; 1810 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1811 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1812 1813 if (drro->drr_type == DMU_OT_NONE || 1814 !DMU_OT_IS_VALID(drro->drr_type) || 1815 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1816 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1817 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1818 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1819 drro->drr_blksz < SPA_MINBLOCKSIZE || 1820 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1821 drro->drr_bonuslen > 1822 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1823 dn_slots > 1824 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1825 return (SET_ERROR(EINVAL)); 1826 } 1827 1828 if (rwa->raw) { 1829 /* 1830 * We should have received a DRR_OBJECT_RANGE record 1831 * containing this block and stored it in rwa. 1832 */ 1833 if (drro->drr_object < rwa->or_firstobj || 1834 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1835 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1836 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1837 drro->drr_nlevels > DN_MAX_LEVELS || 1838 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1839 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1840 drro->drr_raw_bonuslen) 1841 return (SET_ERROR(EINVAL)); 1842 } else { 1843 /* 1844 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1845 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1846 */ 1847 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1848 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1849 return (SET_ERROR(EINVAL)); 1850 } 1851 1852 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1853 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1854 return (SET_ERROR(EINVAL)); 1855 } 1856 } 1857 1858 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1859 1860 if (err != 0 && err != ENOENT && err != EEXIST) 1861 return (SET_ERROR(EINVAL)); 1862 1863 if (drro->drr_object > rwa->max_object) 1864 rwa->max_object = drro->drr_object; 1865 1866 /* 1867 * If we are losing blkptrs or changing the block size this must 1868 * be a new file instance. We must clear out the previous file 1869 * contents before we can change this type of metadata in the dnode. 1870 * Raw receives will also check that the indirect structure of the 1871 * dnode hasn't changed. 1872 */ 1873 uint64_t object_to_hold; 1874 if (err == 0) { 1875 err = receive_handle_existing_object(rwa, drro, &doi, data, 1876 &object_to_hold, &new_blksz); 1877 } else if (err == EEXIST) { 1878 /* 1879 * The object requested is currently an interior slot of a 1880 * multi-slot dnode. This will be resolved when the next txg 1881 * is synced out, since the send stream will have told us 1882 * to free this slot when we freed the associated dnode 1883 * earlier in the stream. 1884 */ 1885 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1886 1887 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1888 return (SET_ERROR(EINVAL)); 1889 1890 /* object was freed and we are about to allocate a new one */ 1891 object_to_hold = DMU_NEW_OBJECT; 1892 } else { 1893 /* object is free and we are about to allocate a new one */ 1894 object_to_hold = DMU_NEW_OBJECT; 1895 } 1896 1897 /* 1898 * If this is a multi-slot dnode there is a chance that this 1899 * object will expand into a slot that is already used by 1900 * another object from the previous snapshot. We must free 1901 * these objects before we attempt to allocate the new dnode. 1902 */ 1903 if (dn_slots > 1) { 1904 boolean_t need_sync = B_FALSE; 1905 1906 for (uint64_t slot = drro->drr_object + 1; 1907 slot < drro->drr_object + dn_slots; 1908 slot++) { 1909 dmu_object_info_t slot_doi; 1910 1911 err = dmu_object_info(rwa->os, slot, &slot_doi); 1912 if (err == ENOENT || err == EEXIST) 1913 continue; 1914 else if (err != 0) 1915 return (err); 1916 1917 err = dmu_free_long_object(rwa->os, slot); 1918 if (err != 0) 1919 return (err); 1920 1921 need_sync = B_TRUE; 1922 } 1923 1924 if (need_sync) 1925 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1926 } 1927 1928 tx = dmu_tx_create(rwa->os); 1929 dmu_tx_hold_bonus(tx, object_to_hold); 1930 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1931 err = dmu_tx_assign(tx, TXG_WAIT); 1932 if (err != 0) { 1933 dmu_tx_abort(tx); 1934 return (err); 1935 } 1936 1937 if (object_to_hold == DMU_NEW_OBJECT) { 1938 /* Currently free, wants to be allocated */ 1939 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1940 drro->drr_type, new_blksz, 1941 drro->drr_bonustype, drro->drr_bonuslen, 1942 dn_slots << DNODE_SHIFT, tx); 1943 } else if (drro->drr_type != doi.doi_type || 1944 new_blksz != doi.doi_data_block_size || 1945 drro->drr_bonustype != doi.doi_bonus_type || 1946 drro->drr_bonuslen != doi.doi_bonus_size) { 1947 /* Currently allocated, but with different properties */ 1948 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1949 drro->drr_type, new_blksz, 1950 drro->drr_bonustype, drro->drr_bonuslen, 1951 dn_slots << DNODE_SHIFT, rwa->spill ? 1952 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1953 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1954 /* 1955 * Currently allocated, the existing version of this object 1956 * may reference a spill block that is no longer allocated 1957 * at the source and needs to be freed. 1958 */ 1959 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1960 } 1961 1962 if (err != 0) { 1963 dmu_tx_commit(tx); 1964 return (SET_ERROR(EINVAL)); 1965 } 1966 1967 if (rwa->or_crypt_params_present) { 1968 /* 1969 * Set the crypt params for the buffer associated with this 1970 * range of dnodes. This causes the blkptr_t to have the 1971 * same crypt params (byteorder, salt, iv, mac) as on the 1972 * sending side. 1973 * 1974 * Since we are committing this tx now, it is possible for 1975 * the dnode block to end up on-disk with the incorrect MAC, 1976 * if subsequent objects in this block are received in a 1977 * different txg. However, since the dataset is marked as 1978 * inconsistent, no code paths will do a non-raw read (or 1979 * decrypt the block / verify the MAC). The receive code and 1980 * scrub code can safely do raw reads and verify the 1981 * checksum. They don't need to verify the MAC. 1982 */ 1983 dmu_buf_t *db = NULL; 1984 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1985 1986 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1987 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1988 if (err != 0) { 1989 dmu_tx_commit(tx); 1990 return (SET_ERROR(EINVAL)); 1991 } 1992 1993 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1994 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1995 1996 dmu_buf_rele(db, FTAG); 1997 1998 rwa->or_crypt_params_present = B_FALSE; 1999 } 2000 2001 dmu_object_set_checksum(rwa->os, drro->drr_object, 2002 drro->drr_checksumtype, tx); 2003 dmu_object_set_compress(rwa->os, drro->drr_object, 2004 drro->drr_compress, tx); 2005 2006 /* handle more restrictive dnode structuring for raw recvs */ 2007 if (rwa->raw) { 2008 /* 2009 * Set the indirect block size, block shift, nlevels. 2010 * This will not fail because we ensured all of the 2011 * blocks were freed earlier if this is a new object. 2012 * For non-new objects block size and indirect block 2013 * shift cannot change and nlevels can only increase. 2014 */ 2015 ASSERT3U(new_blksz, ==, drro->drr_blksz); 2016 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 2017 drro->drr_blksz, drro->drr_indblkshift, tx)); 2018 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 2019 drro->drr_nlevels, tx)); 2020 2021 /* 2022 * Set the maxblkid. This will always succeed because 2023 * we freed all blocks beyond the new maxblkid above. 2024 */ 2025 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 2026 drro->drr_maxblkid, tx)); 2027 } 2028 2029 if (data != NULL) { 2030 dmu_buf_t *db; 2031 dnode_t *dn; 2032 uint32_t flags = DMU_READ_NO_PREFETCH; 2033 2034 if (rwa->raw) 2035 flags |= DMU_READ_NO_DECRYPT; 2036 2037 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 2038 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 2039 2040 dmu_buf_will_dirty(db, tx); 2041 2042 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2043 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 2044 2045 /* 2046 * Raw bonus buffers have their byteorder determined by the 2047 * DRR_OBJECT_RANGE record. 2048 */ 2049 if (rwa->byteswap && !rwa->raw) { 2050 dmu_object_byteswap_t byteswap = 2051 DMU_OT_BYTESWAP(drro->drr_bonustype); 2052 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2053 DRR_OBJECT_PAYLOAD_SIZE(drro)); 2054 } 2055 dmu_buf_rele(db, FTAG); 2056 dnode_rele(dn, FTAG); 2057 } 2058 dmu_tx_commit(tx); 2059 2060 return (0); 2061 } 2062 2063 noinline static int 2064 receive_freeobjects(struct receive_writer_arg *rwa, 2065 struct drr_freeobjects *drrfo) 2066 { 2067 uint64_t obj; 2068 int next_err = 0; 2069 2070 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2071 return (SET_ERROR(EINVAL)); 2072 2073 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 2074 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 2075 obj < DN_MAX_OBJECT && next_err == 0; 2076 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2077 dmu_object_info_t doi; 2078 int err; 2079 2080 err = dmu_object_info(rwa->os, obj, &doi); 2081 if (err == ENOENT) 2082 continue; 2083 else if (err != 0) 2084 return (err); 2085 2086 err = dmu_free_long_object(rwa->os, obj); 2087 2088 if (err != 0) 2089 return (err); 2090 } 2091 if (next_err != ESRCH) 2092 return (next_err); 2093 return (0); 2094 } 2095 2096 /* 2097 * Note: if this fails, the caller will clean up any records left on the 2098 * rwa->write_batch list. 2099 */ 2100 static int 2101 flush_write_batch_impl(struct receive_writer_arg *rwa) 2102 { 2103 dnode_t *dn; 2104 int err; 2105 2106 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 2107 return (SET_ERROR(EINVAL)); 2108 2109 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 2110 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 2111 2112 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2113 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2114 2115 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 2116 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 2117 2118 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2119 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 2120 last_drrw->drr_offset - first_drrw->drr_offset + 2121 last_drrw->drr_logical_size); 2122 err = dmu_tx_assign(tx, TXG_WAIT); 2123 if (err != 0) { 2124 dmu_tx_abort(tx); 2125 dnode_rele(dn, FTAG); 2126 return (err); 2127 } 2128 2129 struct receive_record_arg *rrd; 2130 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 2131 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2132 abd_t *abd = rrd->abd; 2133 2134 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 2135 2136 if (drrw->drr_logical_size != dn->dn_datablksz) { 2137 /* 2138 * The WRITE record is larger than the object's block 2139 * size. We must be receiving an incremental 2140 * large-block stream into a dataset that previously did 2141 * a non-large-block receive. Lightweight writes must 2142 * be exactly one block, so we need to decompress the 2143 * data (if compressed) and do a normal dmu_write(). 2144 */ 2145 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 2146 if (DRR_WRITE_COMPRESSED(drrw)) { 2147 abd_t *decomp_abd = 2148 abd_alloc_linear(drrw->drr_logical_size, 2149 B_FALSE); 2150 2151 err = zio_decompress_data( 2152 drrw->drr_compressiontype, 2153 abd, abd_to_buf(decomp_abd), 2154 abd_get_size(abd), 2155 abd_get_size(decomp_abd), NULL); 2156 2157 if (err == 0) { 2158 dmu_write_by_dnode(dn, 2159 drrw->drr_offset, 2160 drrw->drr_logical_size, 2161 abd_to_buf(decomp_abd), tx); 2162 } 2163 abd_free(decomp_abd); 2164 } else { 2165 dmu_write_by_dnode(dn, 2166 drrw->drr_offset, 2167 drrw->drr_logical_size, 2168 abd_to_buf(abd), tx); 2169 } 2170 if (err == 0) 2171 abd_free(abd); 2172 } else { 2173 zio_prop_t zp; 2174 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 2175 2176 enum zio_flag zio_flags = 0; 2177 2178 if (rwa->raw) { 2179 zp.zp_encrypt = B_TRUE; 2180 zp.zp_compress = drrw->drr_compressiontype; 2181 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 2182 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2183 rwa->byteswap; 2184 memcpy(zp.zp_salt, drrw->drr_salt, 2185 ZIO_DATA_SALT_LEN); 2186 memcpy(zp.zp_iv, drrw->drr_iv, 2187 ZIO_DATA_IV_LEN); 2188 memcpy(zp.zp_mac, drrw->drr_mac, 2189 ZIO_DATA_MAC_LEN); 2190 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 2191 zp.zp_nopwrite = B_FALSE; 2192 zp.zp_copies = MIN(zp.zp_copies, 2193 SPA_DVAS_PER_BP - 1); 2194 } 2195 zio_flags |= ZIO_FLAG_RAW; 2196 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2197 ASSERT3U(drrw->drr_compressed_size, >, 0); 2198 ASSERT3U(drrw->drr_logical_size, >=, 2199 drrw->drr_compressed_size); 2200 zp.zp_compress = drrw->drr_compressiontype; 2201 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 2202 } else if (rwa->byteswap) { 2203 /* 2204 * Note: compressed blocks never need to be 2205 * byteswapped, because WRITE records for 2206 * metadata blocks are never compressed. The 2207 * exception is raw streams, which are written 2208 * in the original byteorder, and the byteorder 2209 * bit is preserved in the BP by setting 2210 * zp_byteorder above. 2211 */ 2212 dmu_object_byteswap_t byteswap = 2213 DMU_OT_BYTESWAP(drrw->drr_type); 2214 dmu_ot_byteswap[byteswap].ob_func( 2215 abd_to_buf(abd), 2216 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2217 } 2218 2219 /* 2220 * Since this data can't be read until the receive 2221 * completes, we can do a "lightweight" write for 2222 * improved performance. 2223 */ 2224 err = dmu_lightweight_write_by_dnode(dn, 2225 drrw->drr_offset, abd, &zp, zio_flags, tx); 2226 } 2227 2228 if (err != 0) { 2229 /* 2230 * This rrd is left on the list, so the caller will 2231 * free it (and the abd). 2232 */ 2233 break; 2234 } 2235 2236 /* 2237 * Note: If the receive fails, we want the resume stream to 2238 * start with the same record that we last successfully 2239 * received (as opposed to the next record), so that we can 2240 * verify that we are resuming from the correct location. 2241 */ 2242 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2243 2244 list_remove(&rwa->write_batch, rrd); 2245 kmem_free(rrd, sizeof (*rrd)); 2246 } 2247 2248 dmu_tx_commit(tx); 2249 dnode_rele(dn, FTAG); 2250 return (err); 2251 } 2252 2253 noinline static int 2254 flush_write_batch(struct receive_writer_arg *rwa) 2255 { 2256 if (list_is_empty(&rwa->write_batch)) 2257 return (0); 2258 int err = rwa->err; 2259 if (err == 0) 2260 err = flush_write_batch_impl(rwa); 2261 if (err != 0) { 2262 struct receive_record_arg *rrd; 2263 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2264 abd_free(rrd->abd); 2265 kmem_free(rrd, sizeof (*rrd)); 2266 } 2267 } 2268 ASSERT(list_is_empty(&rwa->write_batch)); 2269 return (err); 2270 } 2271 2272 noinline static int 2273 receive_process_write_record(struct receive_writer_arg *rwa, 2274 struct receive_record_arg *rrd) 2275 { 2276 int err = 0; 2277 2278 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2279 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2280 2281 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2282 !DMU_OT_IS_VALID(drrw->drr_type)) 2283 return (SET_ERROR(EINVAL)); 2284 2285 if (rwa->heal) { 2286 blkptr_t *bp; 2287 dmu_buf_t *dbp; 2288 dnode_t *dn; 2289 int flags = DB_RF_CANFAIL; 2290 2291 if (rwa->raw) 2292 flags |= DB_RF_NO_DECRYPT; 2293 2294 if (rwa->byteswap) { 2295 dmu_object_byteswap_t byteswap = 2296 DMU_OT_BYTESWAP(drrw->drr_type); 2297 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd), 2298 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2299 } 2300 2301 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object, 2302 drrw->drr_offset, FTAG, &dbp); 2303 if (err != 0) 2304 return (err); 2305 2306 /* Try to read the object to see if it needs healing */ 2307 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags); 2308 /* 2309 * We only try to heal when dbuf_read() returns a ECKSUMs. 2310 * Other errors (even EIO) get returned to caller. 2311 * EIO indicates that the device is not present/accessible, 2312 * so writing to it will likely fail. 2313 * If the block is healthy, we don't want to overwrite it 2314 * unnecessarily. 2315 */ 2316 if (err != ECKSUM) { 2317 dmu_buf_rele(dbp, FTAG); 2318 return (err); 2319 } 2320 dn = dmu_buf_dnode_enter(dbp); 2321 /* Make sure the on-disk block and recv record sizes match */ 2322 if (drrw->drr_logical_size != 2323 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) { 2324 err = ENOTSUP; 2325 dmu_buf_dnode_exit(dbp); 2326 dmu_buf_rele(dbp, FTAG); 2327 return (err); 2328 } 2329 /* Get the block pointer for the corrupted block */ 2330 bp = dmu_buf_get_blkptr(dbp); 2331 err = do_corrective_recv(rwa, drrw, rrd, bp); 2332 dmu_buf_dnode_exit(dbp); 2333 dmu_buf_rele(dbp, FTAG); 2334 return (err); 2335 } 2336 2337 /* 2338 * For resuming to work, records must be in increasing order 2339 * by (object, offset). 2340 */ 2341 if (drrw->drr_object < rwa->last_object || 2342 (drrw->drr_object == rwa->last_object && 2343 drrw->drr_offset < rwa->last_offset)) { 2344 return (SET_ERROR(EINVAL)); 2345 } 2346 2347 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2348 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2349 uint64_t batch_size = 2350 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2351 if (first_rrd != NULL && 2352 (drrw->drr_object != first_drrw->drr_object || 2353 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2354 err = flush_write_batch(rwa); 2355 if (err != 0) 2356 return (err); 2357 } 2358 2359 rwa->last_object = drrw->drr_object; 2360 rwa->last_offset = drrw->drr_offset; 2361 2362 if (rwa->last_object > rwa->max_object) 2363 rwa->max_object = rwa->last_object; 2364 2365 list_insert_tail(&rwa->write_batch, rrd); 2366 /* 2367 * Return EAGAIN to indicate that we will use this rrd again, 2368 * so the caller should not free it 2369 */ 2370 return (EAGAIN); 2371 } 2372 2373 static int 2374 receive_write_embedded(struct receive_writer_arg *rwa, 2375 struct drr_write_embedded *drrwe, void *data) 2376 { 2377 dmu_tx_t *tx; 2378 int err; 2379 2380 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2381 return (SET_ERROR(EINVAL)); 2382 2383 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2384 return (SET_ERROR(EINVAL)); 2385 2386 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2387 return (SET_ERROR(EINVAL)); 2388 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2389 return (SET_ERROR(EINVAL)); 2390 if (rwa->raw) 2391 return (SET_ERROR(EINVAL)); 2392 2393 if (drrwe->drr_object > rwa->max_object) 2394 rwa->max_object = drrwe->drr_object; 2395 2396 tx = dmu_tx_create(rwa->os); 2397 2398 dmu_tx_hold_write(tx, drrwe->drr_object, 2399 drrwe->drr_offset, drrwe->drr_length); 2400 err = dmu_tx_assign(tx, TXG_WAIT); 2401 if (err != 0) { 2402 dmu_tx_abort(tx); 2403 return (err); 2404 } 2405 2406 dmu_write_embedded(rwa->os, drrwe->drr_object, 2407 drrwe->drr_offset, data, drrwe->drr_etype, 2408 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2409 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2410 2411 /* See comment in restore_write. */ 2412 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2413 dmu_tx_commit(tx); 2414 return (0); 2415 } 2416 2417 static int 2418 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2419 abd_t *abd) 2420 { 2421 dmu_buf_t *db, *db_spill; 2422 int err; 2423 2424 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2425 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2426 return (SET_ERROR(EINVAL)); 2427 2428 /* 2429 * This is an unmodified spill block which was added to the stream 2430 * to resolve an issue with incorrectly removing spill blocks. It 2431 * should be ignored by current versions of the code which support 2432 * the DRR_FLAG_SPILL_BLOCK flag. 2433 */ 2434 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2435 abd_free(abd); 2436 return (0); 2437 } 2438 2439 if (rwa->raw) { 2440 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2441 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2442 drrs->drr_compressed_size == 0) 2443 return (SET_ERROR(EINVAL)); 2444 } 2445 2446 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2447 return (SET_ERROR(EINVAL)); 2448 2449 if (drrs->drr_object > rwa->max_object) 2450 rwa->max_object = drrs->drr_object; 2451 2452 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2453 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2454 &db_spill)) != 0) { 2455 dmu_buf_rele(db, FTAG); 2456 return (err); 2457 } 2458 2459 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2460 2461 dmu_tx_hold_spill(tx, db->db_object); 2462 2463 err = dmu_tx_assign(tx, TXG_WAIT); 2464 if (err != 0) { 2465 dmu_buf_rele(db, FTAG); 2466 dmu_buf_rele(db_spill, FTAG); 2467 dmu_tx_abort(tx); 2468 return (err); 2469 } 2470 2471 /* 2472 * Spill blocks may both grow and shrink. When a change in size 2473 * occurs any existing dbuf must be updated to match the logical 2474 * size of the provided arc_buf_t. 2475 */ 2476 if (db_spill->db_size != drrs->drr_length) { 2477 dmu_buf_will_fill(db_spill, tx); 2478 VERIFY0(dbuf_spill_set_blksz(db_spill, 2479 drrs->drr_length, tx)); 2480 } 2481 2482 arc_buf_t *abuf; 2483 if (rwa->raw) { 2484 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2485 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2486 rwa->byteswap; 2487 2488 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2489 drrs->drr_object, byteorder, drrs->drr_salt, 2490 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2491 drrs->drr_compressed_size, drrs->drr_length, 2492 drrs->drr_compressiontype, 0); 2493 } else { 2494 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2495 DMU_OT_IS_METADATA(drrs->drr_type), 2496 drrs->drr_length); 2497 if (rwa->byteswap) { 2498 dmu_object_byteswap_t byteswap = 2499 DMU_OT_BYTESWAP(drrs->drr_type); 2500 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2501 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2502 } 2503 } 2504 2505 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); 2506 abd_free(abd); 2507 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2508 2509 dmu_buf_rele(db, FTAG); 2510 dmu_buf_rele(db_spill, FTAG); 2511 2512 dmu_tx_commit(tx); 2513 return (0); 2514 } 2515 2516 noinline static int 2517 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2518 { 2519 int err; 2520 2521 if (drrf->drr_length != -1ULL && 2522 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2523 return (SET_ERROR(EINVAL)); 2524 2525 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2526 return (SET_ERROR(EINVAL)); 2527 2528 if (drrf->drr_object > rwa->max_object) 2529 rwa->max_object = drrf->drr_object; 2530 2531 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2532 drrf->drr_offset, drrf->drr_length); 2533 2534 return (err); 2535 } 2536 2537 static int 2538 receive_object_range(struct receive_writer_arg *rwa, 2539 struct drr_object_range *drror) 2540 { 2541 /* 2542 * By default, we assume this block is in our native format 2543 * (ZFS_HOST_BYTEORDER). We then take into account whether 2544 * the send stream is byteswapped (rwa->byteswap). Finally, 2545 * we need to byteswap again if this particular block was 2546 * in non-native format on the send side. 2547 */ 2548 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2549 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2550 2551 /* 2552 * Since dnode block sizes are constant, we should not need to worry 2553 * about making sure that the dnode block size is the same on the 2554 * sending and receiving sides for the time being. For non-raw sends, 2555 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2556 * record at all). Raw sends require this record type because the 2557 * encryption parameters are used to protect an entire block of bonus 2558 * buffers. If the size of dnode blocks ever becomes variable, 2559 * handling will need to be added to ensure that dnode block sizes 2560 * match on the sending and receiving side. 2561 */ 2562 if (drror->drr_numslots != DNODES_PER_BLOCK || 2563 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2564 !rwa->raw) 2565 return (SET_ERROR(EINVAL)); 2566 2567 if (drror->drr_firstobj > rwa->max_object) 2568 rwa->max_object = drror->drr_firstobj; 2569 2570 /* 2571 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2572 * so that the block of dnodes is not written out when it's empty, 2573 * and converted to a HOLE BP. 2574 */ 2575 rwa->or_crypt_params_present = B_TRUE; 2576 rwa->or_firstobj = drror->drr_firstobj; 2577 rwa->or_numslots = drror->drr_numslots; 2578 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN); 2579 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN); 2580 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN); 2581 rwa->or_byteorder = byteorder; 2582 2583 return (0); 2584 } 2585 2586 /* 2587 * Until we have the ability to redact large ranges of data efficiently, we 2588 * process these records as frees. 2589 */ 2590 noinline static int 2591 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2592 { 2593 struct drr_free drrf = {0}; 2594 drrf.drr_length = drrr->drr_length; 2595 drrf.drr_object = drrr->drr_object; 2596 drrf.drr_offset = drrr->drr_offset; 2597 drrf.drr_toguid = drrr->drr_toguid; 2598 return (receive_free(rwa, &drrf)); 2599 } 2600 2601 /* used to destroy the drc_ds on error */ 2602 static void 2603 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2604 { 2605 dsl_dataset_t *ds = drc->drc_ds; 2606 ds_hold_flags_t dsflags; 2607 2608 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2609 /* 2610 * Wait for the txg sync before cleaning up the receive. For 2611 * resumable receives, this ensures that our resume state has 2612 * been written out to disk. For raw receives, this ensures 2613 * that the user accounting code will not attempt to do anything 2614 * after we stopped receiving the dataset. 2615 */ 2616 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2617 ds->ds_objset->os_raw_receive = B_FALSE; 2618 2619 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2620 if (drc->drc_resumable && drc->drc_should_save && 2621 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2622 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2623 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2624 } else { 2625 char name[ZFS_MAX_DATASET_NAME_LEN]; 2626 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2627 dsl_dataset_name(ds, name); 2628 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2629 if (!drc->drc_heal) 2630 (void) dsl_destroy_head(name); 2631 } 2632 } 2633 2634 static void 2635 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2636 { 2637 if (drc->drc_byteswap) { 2638 (void) fletcher_4_incremental_byteswap(buf, len, 2639 &drc->drc_cksum); 2640 } else { 2641 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2642 } 2643 } 2644 2645 /* 2646 * Read the payload into a buffer of size len, and update the current record's 2647 * payload field. 2648 * Allocate drc->drc_next_rrd and read the next record's header into 2649 * drc->drc_next_rrd->header. 2650 * Verify checksum of payload and next record. 2651 */ 2652 static int 2653 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2654 { 2655 int err; 2656 2657 if (len != 0) { 2658 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2659 err = receive_read(drc, len, buf); 2660 if (err != 0) 2661 return (err); 2662 receive_cksum(drc, len, buf); 2663 2664 /* note: rrd is NULL when reading the begin record's payload */ 2665 if (drc->drc_rrd != NULL) { 2666 drc->drc_rrd->payload = buf; 2667 drc->drc_rrd->payload_size = len; 2668 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2669 } 2670 } else { 2671 ASSERT3P(buf, ==, NULL); 2672 } 2673 2674 drc->drc_prev_cksum = drc->drc_cksum; 2675 2676 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2677 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2678 &drc->drc_next_rrd->header); 2679 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2680 2681 if (err != 0) { 2682 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2683 drc->drc_next_rrd = NULL; 2684 return (err); 2685 } 2686 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2687 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2688 drc->drc_next_rrd = NULL; 2689 return (SET_ERROR(EINVAL)); 2690 } 2691 2692 /* 2693 * Note: checksum is of everything up to but not including the 2694 * checksum itself. 2695 */ 2696 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2697 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2698 receive_cksum(drc, 2699 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2700 &drc->drc_next_rrd->header); 2701 2702 zio_cksum_t cksum_orig = 2703 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2704 zio_cksum_t *cksump = 2705 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2706 2707 if (drc->drc_byteswap) 2708 byteswap_record(&drc->drc_next_rrd->header); 2709 2710 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2711 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2712 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2713 drc->drc_next_rrd = NULL; 2714 return (SET_ERROR(ECKSUM)); 2715 } 2716 2717 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2718 2719 return (0); 2720 } 2721 2722 /* 2723 * Issue the prefetch reads for any necessary indirect blocks. 2724 * 2725 * We use the object ignore list to tell us whether or not to issue prefetches 2726 * for a given object. We do this for both correctness (in case the blocksize 2727 * of an object has changed) and performance (if the object doesn't exist, don't 2728 * needlessly try to issue prefetches). We also trim the list as we go through 2729 * the stream to prevent it from growing to an unbounded size. 2730 * 2731 * The object numbers within will always be in sorted order, and any write 2732 * records we see will also be in sorted order, but they're not sorted with 2733 * respect to each other (i.e. we can get several object records before 2734 * receiving each object's write records). As a result, once we've reached a 2735 * given object number, we can safely remove any reference to lower object 2736 * numbers in the ignore list. In practice, we receive up to 32 object records 2737 * before receiving write records, so the list can have up to 32 nodes in it. 2738 */ 2739 static void 2740 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2741 uint64_t length) 2742 { 2743 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2744 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2745 ZIO_PRIORITY_SYNC_READ); 2746 } 2747 } 2748 2749 /* 2750 * Read records off the stream, issuing any necessary prefetches. 2751 */ 2752 static int 2753 receive_read_record(dmu_recv_cookie_t *drc) 2754 { 2755 int err; 2756 2757 switch (drc->drc_rrd->header.drr_type) { 2758 case DRR_OBJECT: 2759 { 2760 struct drr_object *drro = 2761 &drc->drc_rrd->header.drr_u.drr_object; 2762 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2763 void *buf = NULL; 2764 dmu_object_info_t doi; 2765 2766 if (size != 0) 2767 buf = kmem_zalloc(size, KM_SLEEP); 2768 2769 err = receive_read_payload_and_next_header(drc, size, buf); 2770 if (err != 0) { 2771 kmem_free(buf, size); 2772 return (err); 2773 } 2774 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2775 /* 2776 * See receive_read_prefetch for an explanation why we're 2777 * storing this object in the ignore_obj_list. 2778 */ 2779 if (err == ENOENT || err == EEXIST || 2780 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2781 objlist_insert(drc->drc_ignore_objlist, 2782 drro->drr_object); 2783 err = 0; 2784 } 2785 return (err); 2786 } 2787 case DRR_FREEOBJECTS: 2788 { 2789 err = receive_read_payload_and_next_header(drc, 0, NULL); 2790 return (err); 2791 } 2792 case DRR_WRITE: 2793 { 2794 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2795 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2796 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2797 err = receive_read_payload_and_next_header(drc, size, 2798 abd_to_buf(abd)); 2799 if (err != 0) { 2800 abd_free(abd); 2801 return (err); 2802 } 2803 drc->drc_rrd->abd = abd; 2804 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2805 drrw->drr_logical_size); 2806 return (err); 2807 } 2808 case DRR_WRITE_EMBEDDED: 2809 { 2810 struct drr_write_embedded *drrwe = 2811 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2812 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2813 void *buf = kmem_zalloc(size, KM_SLEEP); 2814 2815 err = receive_read_payload_and_next_header(drc, size, buf); 2816 if (err != 0) { 2817 kmem_free(buf, size); 2818 return (err); 2819 } 2820 2821 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2822 drrwe->drr_length); 2823 return (err); 2824 } 2825 case DRR_FREE: 2826 case DRR_REDACT: 2827 { 2828 /* 2829 * It might be beneficial to prefetch indirect blocks here, but 2830 * we don't really have the data to decide for sure. 2831 */ 2832 err = receive_read_payload_and_next_header(drc, 0, NULL); 2833 return (err); 2834 } 2835 case DRR_END: 2836 { 2837 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2838 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2839 drre->drr_checksum)) 2840 return (SET_ERROR(ECKSUM)); 2841 return (0); 2842 } 2843 case DRR_SPILL: 2844 { 2845 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2846 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2847 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2848 err = receive_read_payload_and_next_header(drc, size, 2849 abd_to_buf(abd)); 2850 if (err != 0) 2851 abd_free(abd); 2852 else 2853 drc->drc_rrd->abd = abd; 2854 return (err); 2855 } 2856 case DRR_OBJECT_RANGE: 2857 { 2858 err = receive_read_payload_and_next_header(drc, 0, NULL); 2859 return (err); 2860 2861 } 2862 default: 2863 return (SET_ERROR(EINVAL)); 2864 } 2865 } 2866 2867 2868 2869 static void 2870 dprintf_drr(struct receive_record_arg *rrd, int err) 2871 { 2872 #ifdef ZFS_DEBUG 2873 switch (rrd->header.drr_type) { 2874 case DRR_OBJECT: 2875 { 2876 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2877 dprintf("drr_type = OBJECT obj = %llu type = %u " 2878 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2879 "compress = %u dn_slots = %u err = %d\n", 2880 (u_longlong_t)drro->drr_object, drro->drr_type, 2881 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, 2882 drro->drr_checksumtype, drro->drr_compress, 2883 drro->drr_dn_slots, err); 2884 break; 2885 } 2886 case DRR_FREEOBJECTS: 2887 { 2888 struct drr_freeobjects *drrfo = 2889 &rrd->header.drr_u.drr_freeobjects; 2890 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2891 "numobjs = %llu err = %d\n", 2892 (u_longlong_t)drrfo->drr_firstobj, 2893 (u_longlong_t)drrfo->drr_numobjs, err); 2894 break; 2895 } 2896 case DRR_WRITE: 2897 { 2898 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2899 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2900 "lsize = %llu cksumtype = %u flags = %u " 2901 "compress = %u psize = %llu err = %d\n", 2902 (u_longlong_t)drrw->drr_object, drrw->drr_type, 2903 (u_longlong_t)drrw->drr_offset, 2904 (u_longlong_t)drrw->drr_logical_size, 2905 drrw->drr_checksumtype, drrw->drr_flags, 2906 drrw->drr_compressiontype, 2907 (u_longlong_t)drrw->drr_compressed_size, err); 2908 break; 2909 } 2910 case DRR_WRITE_BYREF: 2911 { 2912 struct drr_write_byref *drrwbr = 2913 &rrd->header.drr_u.drr_write_byref; 2914 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2915 "length = %llu toguid = %llx refguid = %llx " 2916 "refobject = %llu refoffset = %llu cksumtype = %u " 2917 "flags = %u err = %d\n", 2918 (u_longlong_t)drrwbr->drr_object, 2919 (u_longlong_t)drrwbr->drr_offset, 2920 (u_longlong_t)drrwbr->drr_length, 2921 (u_longlong_t)drrwbr->drr_toguid, 2922 (u_longlong_t)drrwbr->drr_refguid, 2923 (u_longlong_t)drrwbr->drr_refobject, 2924 (u_longlong_t)drrwbr->drr_refoffset, 2925 drrwbr->drr_checksumtype, drrwbr->drr_flags, err); 2926 break; 2927 } 2928 case DRR_WRITE_EMBEDDED: 2929 { 2930 struct drr_write_embedded *drrwe = 2931 &rrd->header.drr_u.drr_write_embedded; 2932 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 2933 "length = %llu compress = %u etype = %u lsize = %u " 2934 "psize = %u err = %d\n", 2935 (u_longlong_t)drrwe->drr_object, 2936 (u_longlong_t)drrwe->drr_offset, 2937 (u_longlong_t)drrwe->drr_length, 2938 drrwe->drr_compression, drrwe->drr_etype, 2939 drrwe->drr_lsize, drrwe->drr_psize, err); 2940 break; 2941 } 2942 case DRR_FREE: 2943 { 2944 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2945 dprintf("drr_type = FREE obj = %llu offset = %llu " 2946 "length = %lld err = %d\n", 2947 (u_longlong_t)drrf->drr_object, 2948 (u_longlong_t)drrf->drr_offset, 2949 (longlong_t)drrf->drr_length, 2950 err); 2951 break; 2952 } 2953 case DRR_SPILL: 2954 { 2955 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2956 dprintf("drr_type = SPILL obj = %llu length = %llu " 2957 "err = %d\n", (u_longlong_t)drrs->drr_object, 2958 (u_longlong_t)drrs->drr_length, err); 2959 break; 2960 } 2961 case DRR_OBJECT_RANGE: 2962 { 2963 struct drr_object_range *drror = 2964 &rrd->header.drr_u.drr_object_range; 2965 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 2966 "numslots = %llu flags = %u err = %d\n", 2967 (u_longlong_t)drror->drr_firstobj, 2968 (u_longlong_t)drror->drr_numslots, 2969 drror->drr_flags, err); 2970 break; 2971 } 2972 default: 2973 return; 2974 } 2975 #endif 2976 } 2977 2978 /* 2979 * Commit the records to the pool. 2980 */ 2981 static int 2982 receive_process_record(struct receive_writer_arg *rwa, 2983 struct receive_record_arg *rrd) 2984 { 2985 int err; 2986 2987 /* Processing in order, therefore bytes_read should be increasing. */ 2988 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2989 rwa->bytes_read = rrd->bytes_read; 2990 2991 /* We can only heal write records; other ones get ignored */ 2992 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) { 2993 if (rrd->abd != NULL) { 2994 abd_free(rrd->abd); 2995 rrd->abd = NULL; 2996 } else if (rrd->payload != NULL) { 2997 kmem_free(rrd->payload, rrd->payload_size); 2998 rrd->payload = NULL; 2999 } 3000 return (0); 3001 } 3002 3003 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3004 err = flush_write_batch(rwa); 3005 if (err != 0) { 3006 if (rrd->abd != NULL) { 3007 abd_free(rrd->abd); 3008 rrd->abd = NULL; 3009 rrd->payload = NULL; 3010 } else if (rrd->payload != NULL) { 3011 kmem_free(rrd->payload, rrd->payload_size); 3012 rrd->payload = NULL; 3013 } 3014 3015 return (err); 3016 } 3017 } 3018 3019 switch (rrd->header.drr_type) { 3020 case DRR_OBJECT: 3021 { 3022 struct drr_object *drro = &rrd->header.drr_u.drr_object; 3023 err = receive_object(rwa, drro, rrd->payload); 3024 kmem_free(rrd->payload, rrd->payload_size); 3025 rrd->payload = NULL; 3026 break; 3027 } 3028 case DRR_FREEOBJECTS: 3029 { 3030 struct drr_freeobjects *drrfo = 3031 &rrd->header.drr_u.drr_freeobjects; 3032 err = receive_freeobjects(rwa, drrfo); 3033 break; 3034 } 3035 case DRR_WRITE: 3036 { 3037 err = receive_process_write_record(rwa, rrd); 3038 if (rwa->heal) { 3039 /* 3040 * If healing - always free the abd after processing 3041 */ 3042 abd_free(rrd->abd); 3043 rrd->abd = NULL; 3044 } else if (err != EAGAIN) { 3045 /* 3046 * On success, a non-healing 3047 * receive_process_write_record() returns 3048 * EAGAIN to indicate that we do not want to free 3049 * the rrd or arc_buf. 3050 */ 3051 ASSERT(err != 0); 3052 abd_free(rrd->abd); 3053 rrd->abd = NULL; 3054 } 3055 break; 3056 } 3057 case DRR_WRITE_EMBEDDED: 3058 { 3059 struct drr_write_embedded *drrwe = 3060 &rrd->header.drr_u.drr_write_embedded; 3061 err = receive_write_embedded(rwa, drrwe, rrd->payload); 3062 kmem_free(rrd->payload, rrd->payload_size); 3063 rrd->payload = NULL; 3064 break; 3065 } 3066 case DRR_FREE: 3067 { 3068 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 3069 err = receive_free(rwa, drrf); 3070 break; 3071 } 3072 case DRR_SPILL: 3073 { 3074 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3075 err = receive_spill(rwa, drrs, rrd->abd); 3076 if (err != 0) 3077 abd_free(rrd->abd); 3078 rrd->abd = NULL; 3079 rrd->payload = NULL; 3080 break; 3081 } 3082 case DRR_OBJECT_RANGE: 3083 { 3084 struct drr_object_range *drror = 3085 &rrd->header.drr_u.drr_object_range; 3086 err = receive_object_range(rwa, drror); 3087 break; 3088 } 3089 case DRR_REDACT: 3090 { 3091 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 3092 err = receive_redact(rwa, drrr); 3093 break; 3094 } 3095 default: 3096 err = (SET_ERROR(EINVAL)); 3097 } 3098 3099 if (err != 0) 3100 dprintf_drr(rrd, err); 3101 3102 return (err); 3103 } 3104 3105 /* 3106 * dmu_recv_stream's worker thread; pull records off the queue, and then call 3107 * receive_process_record When we're done, signal the main thread and exit. 3108 */ 3109 static __attribute__((noreturn)) void 3110 receive_writer_thread(void *arg) 3111 { 3112 struct receive_writer_arg *rwa = arg; 3113 struct receive_record_arg *rrd; 3114 fstrans_cookie_t cookie = spl_fstrans_mark(); 3115 3116 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 3117 rrd = bqueue_dequeue(&rwa->q)) { 3118 /* 3119 * If there's an error, the main thread will stop putting things 3120 * on the queue, but we need to clear everything in it before we 3121 * can exit. 3122 */ 3123 int err = 0; 3124 if (rwa->err == 0) { 3125 err = receive_process_record(rwa, rrd); 3126 } else if (rrd->abd != NULL) { 3127 abd_free(rrd->abd); 3128 rrd->abd = NULL; 3129 rrd->payload = NULL; 3130 } else if (rrd->payload != NULL) { 3131 kmem_free(rrd->payload, rrd->payload_size); 3132 rrd->payload = NULL; 3133 } 3134 /* 3135 * EAGAIN indicates that this record has been saved (on 3136 * raw->write_batch), and will be used again, so we don't 3137 * free it. 3138 * When healing data we always need to free the record. 3139 */ 3140 if (err != EAGAIN || rwa->heal) { 3141 if (rwa->err == 0) 3142 rwa->err = err; 3143 kmem_free(rrd, sizeof (*rrd)); 3144 } 3145 } 3146 kmem_free(rrd, sizeof (*rrd)); 3147 3148 if (rwa->heal) { 3149 zio_wait(rwa->heal_pio); 3150 } else { 3151 int err = flush_write_batch(rwa); 3152 if (rwa->err == 0) 3153 rwa->err = err; 3154 } 3155 mutex_enter(&rwa->mutex); 3156 rwa->done = B_TRUE; 3157 cv_signal(&rwa->cv); 3158 mutex_exit(&rwa->mutex); 3159 spl_fstrans_unmark(cookie); 3160 thread_exit(); 3161 } 3162 3163 static int 3164 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 3165 { 3166 uint64_t val; 3167 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 3168 uint64_t dsobj = dmu_objset_id(drc->drc_os); 3169 uint64_t resume_obj, resume_off; 3170 3171 if (nvlist_lookup_uint64(begin_nvl, 3172 "resume_object", &resume_obj) != 0 || 3173 nvlist_lookup_uint64(begin_nvl, 3174 "resume_offset", &resume_off) != 0) { 3175 return (SET_ERROR(EINVAL)); 3176 } 3177 VERIFY0(zap_lookup(mos, dsobj, 3178 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 3179 if (resume_obj != val) 3180 return (SET_ERROR(EINVAL)); 3181 VERIFY0(zap_lookup(mos, dsobj, 3182 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 3183 if (resume_off != val) 3184 return (SET_ERROR(EINVAL)); 3185 3186 return (0); 3187 } 3188 3189 /* 3190 * Read in the stream's records, one by one, and apply them to the pool. There 3191 * are two threads involved; the thread that calls this function will spin up a 3192 * worker thread, read the records off the stream one by one, and issue 3193 * prefetches for any necessary indirect blocks. It will then push the records 3194 * onto an internal blocking queue. The worker thread will pull the records off 3195 * the queue, and actually write the data into the DMU. This way, the worker 3196 * thread doesn't have to wait for reads to complete, since everything it needs 3197 * (the indirect blocks) will be prefetched. 3198 * 3199 * NB: callers *must* call dmu_recv_end() if this succeeds. 3200 */ 3201 int 3202 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 3203 { 3204 int err = 0; 3205 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 3206 3207 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { 3208 uint64_t bytes = 0; 3209 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 3210 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 3211 sizeof (bytes), 1, &bytes); 3212 drc->drc_bytes_read += bytes; 3213 } 3214 3215 drc->drc_ignore_objlist = objlist_create(); 3216 3217 /* these were verified in dmu_recv_begin */ 3218 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 3219 DMU_SUBSTREAM); 3220 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 3221 3222 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 3223 ASSERT0(drc->drc_os->os_encrypted && 3224 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 3225 3226 /* handle DSL encryption key payload */ 3227 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 3228 nvlist_t *keynvl = NULL; 3229 3230 ASSERT(drc->drc_os->os_encrypted); 3231 ASSERT(drc->drc_raw); 3232 3233 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 3234 &keynvl); 3235 if (err != 0) 3236 goto out; 3237 3238 if (!drc->drc_heal) { 3239 /* 3240 * If this is a new dataset we set the key immediately. 3241 * Otherwise we don't want to change the key until we 3242 * are sure the rest of the receive succeeded so we 3243 * stash the keynvl away until then. 3244 */ 3245 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 3246 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 3247 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 3248 if (err != 0) 3249 goto out; 3250 } 3251 3252 /* see comment in dmu_recv_end_sync() */ 3253 drc->drc_ivset_guid = 0; 3254 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 3255 &drc->drc_ivset_guid); 3256 3257 if (!drc->drc_newfs) 3258 drc->drc_keynvl = fnvlist_dup(keynvl); 3259 } 3260 3261 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 3262 err = resume_check(drc, drc->drc_begin_nvl); 3263 if (err != 0) 3264 goto out; 3265 } 3266 3267 /* 3268 * If we failed before this point we will clean up any new resume 3269 * state that was created. Now that we've gotten past the initial 3270 * checks we are ok to retain that resume state. 3271 */ 3272 drc->drc_should_save = B_TRUE; 3273 3274 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 3275 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 3276 offsetof(struct receive_record_arg, node)); 3277 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 3278 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 3279 rwa->os = drc->drc_os; 3280 rwa->byteswap = drc->drc_byteswap; 3281 rwa->heal = drc->drc_heal; 3282 rwa->tofs = drc->drc_tofs; 3283 rwa->resumable = drc->drc_resumable; 3284 rwa->raw = drc->drc_raw; 3285 rwa->spill = drc->drc_spill; 3286 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 3287 rwa->os->os_raw_receive = drc->drc_raw; 3288 if (drc->drc_heal) { 3289 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL, 3290 ZIO_FLAG_GODFATHER); 3291 } 3292 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 3293 offsetof(struct receive_record_arg, node.bqn_node)); 3294 3295 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 3296 TS_RUN, minclsyspri); 3297 /* 3298 * We're reading rwa->err without locks, which is safe since we are the 3299 * only reader, and the worker thread is the only writer. It's ok if we 3300 * miss a write for an iteration or two of the loop, since the writer 3301 * thread will keep freeing records we send it until we send it an eos 3302 * marker. 3303 * 3304 * We can leave this loop in 3 ways: First, if rwa->err is 3305 * non-zero. In that case, the writer thread will free the rrd we just 3306 * pushed. Second, if we're interrupted; in that case, either it's the 3307 * first loop and drc->drc_rrd was never allocated, or it's later, and 3308 * drc->drc_rrd has been handed off to the writer thread who will free 3309 * it. Finally, if receive_read_record fails or we're at the end of the 3310 * stream, then we free drc->drc_rrd and exit. 3311 */ 3312 while (rwa->err == 0) { 3313 if (issig(JUSTLOOKING) && issig(FORREAL)) { 3314 err = SET_ERROR(EINTR); 3315 break; 3316 } 3317 3318 ASSERT3P(drc->drc_rrd, ==, NULL); 3319 drc->drc_rrd = drc->drc_next_rrd; 3320 drc->drc_next_rrd = NULL; 3321 /* Allocates and loads header into drc->drc_next_rrd */ 3322 err = receive_read_record(drc); 3323 3324 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 3325 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 3326 drc->drc_rrd = NULL; 3327 break; 3328 } 3329 3330 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3331 sizeof (struct receive_record_arg) + 3332 drc->drc_rrd->payload_size); 3333 drc->drc_rrd = NULL; 3334 } 3335 3336 ASSERT3P(drc->drc_rrd, ==, NULL); 3337 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3338 drc->drc_rrd->eos_marker = B_TRUE; 3339 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3340 3341 mutex_enter(&rwa->mutex); 3342 while (!rwa->done) { 3343 /* 3344 * We need to use cv_wait_sig() so that any process that may 3345 * be sleeping here can still fork. 3346 */ 3347 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3348 } 3349 mutex_exit(&rwa->mutex); 3350 3351 /* 3352 * If we are receiving a full stream as a clone, all object IDs which 3353 * are greater than the maximum ID referenced in the stream are 3354 * by definition unused and must be freed. 3355 */ 3356 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3357 uint64_t obj = rwa->max_object + 1; 3358 int free_err = 0; 3359 int next_err = 0; 3360 3361 while (next_err == 0) { 3362 free_err = dmu_free_long_object(rwa->os, obj); 3363 if (free_err != 0 && free_err != ENOENT) 3364 break; 3365 3366 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3367 } 3368 3369 if (err == 0) { 3370 if (free_err != 0 && free_err != ENOENT) 3371 err = free_err; 3372 else if (next_err != ESRCH) 3373 err = next_err; 3374 } 3375 } 3376 3377 cv_destroy(&rwa->cv); 3378 mutex_destroy(&rwa->mutex); 3379 bqueue_destroy(&rwa->q); 3380 list_destroy(&rwa->write_batch); 3381 if (err == 0) 3382 err = rwa->err; 3383 3384 out: 3385 /* 3386 * If we hit an error before we started the receive_writer_thread 3387 * we need to clean up the next_rrd we create by processing the 3388 * DRR_BEGIN record. 3389 */ 3390 if (drc->drc_next_rrd != NULL) 3391 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3392 3393 /* 3394 * The objset will be invalidated by dmu_recv_end() when we do 3395 * dsl_dataset_clone_swap_sync_impl(). 3396 */ 3397 drc->drc_os = NULL; 3398 3399 kmem_free(rwa, sizeof (*rwa)); 3400 nvlist_free(drc->drc_begin_nvl); 3401 3402 if (err != 0) { 3403 /* 3404 * Clean up references. If receive is not resumable, 3405 * destroy what we created, so we don't leave it in 3406 * the inconsistent state. 3407 */ 3408 dmu_recv_cleanup_ds(drc); 3409 nvlist_free(drc->drc_keynvl); 3410 } 3411 3412 objlist_destroy(drc->drc_ignore_objlist); 3413 drc->drc_ignore_objlist = NULL; 3414 *voffp = drc->drc_voff; 3415 return (err); 3416 } 3417 3418 static int 3419 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3420 { 3421 dmu_recv_cookie_t *drc = arg; 3422 dsl_pool_t *dp = dmu_tx_pool(tx); 3423 int error; 3424 3425 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3426 3427 if (drc->drc_heal) { 3428 error = 0; 3429 } else if (!drc->drc_newfs) { 3430 dsl_dataset_t *origin_head; 3431 3432 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3433 if (error != 0) 3434 return (error); 3435 if (drc->drc_force) { 3436 /* 3437 * We will destroy any snapshots in tofs (i.e. before 3438 * origin_head) that are after the origin (which is 3439 * the snap before drc_ds, because drc_ds can not 3440 * have any snaps of its own). 3441 */ 3442 uint64_t obj; 3443 3444 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3445 while (obj != 3446 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3447 dsl_dataset_t *snap; 3448 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3449 &snap); 3450 if (error != 0) 3451 break; 3452 if (snap->ds_dir != origin_head->ds_dir) 3453 error = SET_ERROR(EINVAL); 3454 if (error == 0) { 3455 error = dsl_destroy_snapshot_check_impl( 3456 snap, B_FALSE); 3457 } 3458 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3459 dsl_dataset_rele(snap, FTAG); 3460 if (error != 0) 3461 break; 3462 } 3463 if (error != 0) { 3464 dsl_dataset_rele(origin_head, FTAG); 3465 return (error); 3466 } 3467 } 3468 if (drc->drc_keynvl != NULL) { 3469 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3470 drc->drc_keynvl, tx); 3471 if (error != 0) { 3472 dsl_dataset_rele(origin_head, FTAG); 3473 return (error); 3474 } 3475 } 3476 3477 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3478 origin_head, drc->drc_force, drc->drc_owner, tx); 3479 if (error != 0) { 3480 dsl_dataset_rele(origin_head, FTAG); 3481 return (error); 3482 } 3483 error = dsl_dataset_snapshot_check_impl(origin_head, 3484 drc->drc_tosnap, tx, B_TRUE, 1, 3485 drc->drc_cred, drc->drc_proc); 3486 dsl_dataset_rele(origin_head, FTAG); 3487 if (error != 0) 3488 return (error); 3489 3490 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3491 } else { 3492 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3493 drc->drc_tosnap, tx, B_TRUE, 1, 3494 drc->drc_cred, drc->drc_proc); 3495 } 3496 return (error); 3497 } 3498 3499 static void 3500 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3501 { 3502 dmu_recv_cookie_t *drc = arg; 3503 dsl_pool_t *dp = dmu_tx_pool(tx); 3504 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3505 uint64_t newsnapobj = 0; 3506 3507 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3508 tx, "snap=%s", drc->drc_tosnap); 3509 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3510 3511 if (drc->drc_heal) { 3512 if (drc->drc_keynvl != NULL) { 3513 nvlist_free(drc->drc_keynvl); 3514 drc->drc_keynvl = NULL; 3515 } 3516 } else if (!drc->drc_newfs) { 3517 dsl_dataset_t *origin_head; 3518 3519 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3520 &origin_head)); 3521 3522 if (drc->drc_force) { 3523 /* 3524 * Destroy any snapshots of drc_tofs (origin_head) 3525 * after the origin (the snap before drc_ds). 3526 */ 3527 uint64_t obj; 3528 3529 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3530 while (obj != 3531 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3532 dsl_dataset_t *snap; 3533 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3534 &snap)); 3535 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3536 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3537 dsl_destroy_snapshot_sync_impl(snap, 3538 B_FALSE, tx); 3539 dsl_dataset_rele(snap, FTAG); 3540 } 3541 } 3542 if (drc->drc_keynvl != NULL) { 3543 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3544 drc->drc_keynvl, tx); 3545 nvlist_free(drc->drc_keynvl); 3546 drc->drc_keynvl = NULL; 3547 } 3548 3549 VERIFY3P(drc->drc_ds->ds_prev, ==, 3550 origin_head->ds_prev); 3551 3552 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3553 origin_head, tx); 3554 /* 3555 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3556 * so drc_os is no longer valid. 3557 */ 3558 drc->drc_os = NULL; 3559 3560 dsl_dataset_snapshot_sync_impl(origin_head, 3561 drc->drc_tosnap, tx); 3562 3563 /* set snapshot's creation time and guid */ 3564 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3565 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3566 drc->drc_drrb->drr_creation_time; 3567 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3568 drc->drc_drrb->drr_toguid; 3569 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3570 ~DS_FLAG_INCONSISTENT; 3571 3572 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3573 dsl_dataset_phys(origin_head)->ds_flags &= 3574 ~DS_FLAG_INCONSISTENT; 3575 3576 newsnapobj = 3577 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3578 3579 dsl_dataset_rele(origin_head, FTAG); 3580 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3581 3582 if (drc->drc_owner != NULL) 3583 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3584 } else { 3585 dsl_dataset_t *ds = drc->drc_ds; 3586 3587 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3588 3589 /* set snapshot's creation time and guid */ 3590 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3591 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3592 drc->drc_drrb->drr_creation_time; 3593 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3594 drc->drc_drrb->drr_toguid; 3595 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3596 ~DS_FLAG_INCONSISTENT; 3597 3598 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3599 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3600 if (dsl_dataset_has_resume_receive_state(ds)) { 3601 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3602 DS_FIELD_RESUME_FROMGUID, tx); 3603 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3604 DS_FIELD_RESUME_OBJECT, tx); 3605 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3606 DS_FIELD_RESUME_OFFSET, tx); 3607 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3608 DS_FIELD_RESUME_BYTES, tx); 3609 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3610 DS_FIELD_RESUME_TOGUID, tx); 3611 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3612 DS_FIELD_RESUME_TONAME, tx); 3613 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3614 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3615 } 3616 newsnapobj = 3617 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3618 } 3619 3620 /* 3621 * If this is a raw receive, the crypt_keydata nvlist will include 3622 * a to_ivset_guid for us to set on the new snapshot. This value 3623 * will override the value generated by the snapshot code. However, 3624 * this value may not be present, because older implementations of 3625 * the raw send code did not include this value, and we are still 3626 * allowed to receive them if the zfs_disable_ivset_guid_check 3627 * tunable is set, in which case we will leave the newly-generated 3628 * value. 3629 */ 3630 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) { 3631 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3632 DMU_OT_DSL_DATASET, tx); 3633 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3634 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3635 &drc->drc_ivset_guid, tx)); 3636 } 3637 3638 /* 3639 * Release the hold from dmu_recv_begin. This must be done before 3640 * we return to open context, so that when we free the dataset's dnode 3641 * we can evict its bonus buffer. Since the dataset may be destroyed 3642 * at this point (and therefore won't have a valid pointer to the spa) 3643 * we release the key mapping manually here while we do have a valid 3644 * pointer, if it exists. 3645 */ 3646 if (!drc->drc_raw && encrypted) { 3647 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3648 drc->drc_ds->ds_object, drc->drc_ds); 3649 } 3650 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3651 drc->drc_ds = NULL; 3652 } 3653 3654 static int dmu_recv_end_modified_blocks = 3; 3655 3656 static int 3657 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3658 { 3659 #ifdef _KERNEL 3660 /* 3661 * We will be destroying the ds; make sure its origin is unmounted if 3662 * necessary. 3663 */ 3664 char name[ZFS_MAX_DATASET_NAME_LEN]; 3665 dsl_dataset_name(drc->drc_ds, name); 3666 zfs_destroy_unmount_origin(name); 3667 #endif 3668 3669 return (dsl_sync_task(drc->drc_tofs, 3670 dmu_recv_end_check, dmu_recv_end_sync, drc, 3671 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3672 } 3673 3674 static int 3675 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3676 { 3677 return (dsl_sync_task(drc->drc_tofs, 3678 dmu_recv_end_check, dmu_recv_end_sync, drc, 3679 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3680 } 3681 3682 int 3683 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3684 { 3685 int error; 3686 3687 drc->drc_owner = owner; 3688 3689 if (drc->drc_newfs) 3690 error = dmu_recv_new_end(drc); 3691 else 3692 error = dmu_recv_existing_end(drc); 3693 3694 if (error != 0) { 3695 dmu_recv_cleanup_ds(drc); 3696 nvlist_free(drc->drc_keynvl); 3697 } else if (!drc->drc_heal) { 3698 if (drc->drc_newfs) { 3699 zvol_create_minor(drc->drc_tofs); 3700 } 3701 char *snapname = kmem_asprintf("%s@%s", 3702 drc->drc_tofs, drc->drc_tosnap); 3703 zvol_create_minor(snapname); 3704 kmem_strfree(snapname); 3705 } 3706 return (error); 3707 } 3708 3709 /* 3710 * Return TRUE if this objset is currently being received into. 3711 */ 3712 boolean_t 3713 dmu_objset_is_receiving(objset_t *os) 3714 { 3715 return (os->os_dsl_dataset != NULL && 3716 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3717 } 3718 3719 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW, 3720 "Maximum receive queue length"); 3721 3722 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW, 3723 "Receive queue fill fraction"); 3724 3725 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW, 3726 "Maximum amount of writes to batch into one transaction"); 3727 3728 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW, 3729 "Ignore errors during corrective receive"); 3730 /* END CSTYLED */ 3731