xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision a12eb9e4ae534557867d49803a1e28bfe519a207)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  */
31 
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zvol.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zfs_znode.h>
52 #include <zfs_fletcher.h>
53 #include <sys/avl.h>
54 #include <sys/ddt.h>
55 #include <sys/zfs_onexit.h>
56 #include <sys/dsl_destroy.h>
57 #include <sys/blkptr.h>
58 #include <sys/dsl_bookmark.h>
59 #include <sys/zfeature.h>
60 #include <sys/bqueue.h>
61 #include <sys/objlist.h>
62 #ifdef _KERNEL
63 #include <sys/zfs_vfsops.h>
64 #endif
65 #include <sys/zfs_file.h>
66 
67 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
68 static int zfs_recv_queue_ff = 20;
69 static int zfs_recv_write_batch_size = 1024 * 1024;
70 
71 static const void *const dmu_recv_tag = "dmu_recv_tag";
72 const char *const recv_clone_name = "%recv";
73 
74 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
75     void *buf);
76 
77 struct receive_record_arg {
78 	dmu_replay_record_t header;
79 	void *payload; /* Pointer to a buffer containing the payload */
80 	/*
81 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
82 	 * payload.
83 	 */
84 	abd_t *abd;
85 	int payload_size;
86 	uint64_t bytes_read; /* bytes read from stream when record created */
87 	boolean_t eos_marker; /* Marks the end of the stream */
88 	bqueue_node_t node;
89 };
90 
91 struct receive_writer_arg {
92 	objset_t *os;
93 	boolean_t byteswap;
94 	bqueue_t q;
95 
96 	/*
97 	 * These three members are used to signal to the main thread when
98 	 * we're done.
99 	 */
100 	kmutex_t mutex;
101 	kcondvar_t cv;
102 	boolean_t done;
103 
104 	int err;
105 	boolean_t resumable;
106 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
107 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
108 	boolean_t full;  /* this is a full send stream */
109 	uint64_t last_object;
110 	uint64_t last_offset;
111 	uint64_t max_object; /* highest object ID referenced in stream */
112 	uint64_t bytes_read; /* bytes read when current record created */
113 
114 	list_t write_batch;
115 
116 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
117 	boolean_t or_crypt_params_present;
118 	uint64_t or_firstobj;
119 	uint64_t or_numslots;
120 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
121 	uint8_t or_iv[ZIO_DATA_IV_LEN];
122 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
123 	boolean_t or_byteorder;
124 };
125 
126 typedef struct dmu_recv_begin_arg {
127 	const char *drba_origin;
128 	dmu_recv_cookie_t *drba_cookie;
129 	cred_t *drba_cred;
130 	proc_t *drba_proc;
131 	dsl_crypto_params_t *drba_dcp;
132 } dmu_recv_begin_arg_t;
133 
134 static void
135 byteswap_record(dmu_replay_record_t *drr)
136 {
137 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
138 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
139 	drr->drr_type = BSWAP_32(drr->drr_type);
140 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
141 
142 	switch (drr->drr_type) {
143 	case DRR_BEGIN:
144 		DO64(drr_begin.drr_magic);
145 		DO64(drr_begin.drr_versioninfo);
146 		DO64(drr_begin.drr_creation_time);
147 		DO32(drr_begin.drr_type);
148 		DO32(drr_begin.drr_flags);
149 		DO64(drr_begin.drr_toguid);
150 		DO64(drr_begin.drr_fromguid);
151 		break;
152 	case DRR_OBJECT:
153 		DO64(drr_object.drr_object);
154 		DO32(drr_object.drr_type);
155 		DO32(drr_object.drr_bonustype);
156 		DO32(drr_object.drr_blksz);
157 		DO32(drr_object.drr_bonuslen);
158 		DO32(drr_object.drr_raw_bonuslen);
159 		DO64(drr_object.drr_toguid);
160 		DO64(drr_object.drr_maxblkid);
161 		break;
162 	case DRR_FREEOBJECTS:
163 		DO64(drr_freeobjects.drr_firstobj);
164 		DO64(drr_freeobjects.drr_numobjs);
165 		DO64(drr_freeobjects.drr_toguid);
166 		break;
167 	case DRR_WRITE:
168 		DO64(drr_write.drr_object);
169 		DO32(drr_write.drr_type);
170 		DO64(drr_write.drr_offset);
171 		DO64(drr_write.drr_logical_size);
172 		DO64(drr_write.drr_toguid);
173 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
174 		DO64(drr_write.drr_key.ddk_prop);
175 		DO64(drr_write.drr_compressed_size);
176 		break;
177 	case DRR_WRITE_EMBEDDED:
178 		DO64(drr_write_embedded.drr_object);
179 		DO64(drr_write_embedded.drr_offset);
180 		DO64(drr_write_embedded.drr_length);
181 		DO64(drr_write_embedded.drr_toguid);
182 		DO32(drr_write_embedded.drr_lsize);
183 		DO32(drr_write_embedded.drr_psize);
184 		break;
185 	case DRR_FREE:
186 		DO64(drr_free.drr_object);
187 		DO64(drr_free.drr_offset);
188 		DO64(drr_free.drr_length);
189 		DO64(drr_free.drr_toguid);
190 		break;
191 	case DRR_SPILL:
192 		DO64(drr_spill.drr_object);
193 		DO64(drr_spill.drr_length);
194 		DO64(drr_spill.drr_toguid);
195 		DO64(drr_spill.drr_compressed_size);
196 		DO32(drr_spill.drr_type);
197 		break;
198 	case DRR_OBJECT_RANGE:
199 		DO64(drr_object_range.drr_firstobj);
200 		DO64(drr_object_range.drr_numslots);
201 		DO64(drr_object_range.drr_toguid);
202 		break;
203 	case DRR_REDACT:
204 		DO64(drr_redact.drr_object);
205 		DO64(drr_redact.drr_offset);
206 		DO64(drr_redact.drr_length);
207 		DO64(drr_redact.drr_toguid);
208 		break;
209 	case DRR_END:
210 		DO64(drr_end.drr_toguid);
211 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	if (drr->drr_type != DRR_BEGIN) {
218 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
219 	}
220 
221 #undef DO64
222 #undef DO32
223 }
224 
225 static boolean_t
226 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
227 {
228 	for (int i = 0; i < num_snaps; i++) {
229 		if (snaps[i] == guid)
230 			return (B_TRUE);
231 	}
232 	return (B_FALSE);
233 }
234 
235 /*
236  * Check that the new stream we're trying to receive is redacted with respect to
237  * a subset of the snapshots that the origin was redacted with respect to.  For
238  * the reasons behind this, see the man page on redacted zfs sends and receives.
239  */
240 static boolean_t
241 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
242     uint64_t *redact_snaps, uint64_t num_redact_snaps)
243 {
244 	/*
245 	 * Short circuit the comparison; if we are redacted with respect to
246 	 * more snapshots than the origin, we can't be redacted with respect
247 	 * to a subset.
248 	 */
249 	if (num_redact_snaps > origin_num_snaps) {
250 		return (B_FALSE);
251 	}
252 
253 	for (int i = 0; i < num_redact_snaps; i++) {
254 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
255 		    redact_snaps[i])) {
256 			return (B_FALSE);
257 		}
258 	}
259 	return (B_TRUE);
260 }
261 
262 static boolean_t
263 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
264 {
265 	uint64_t *origin_snaps;
266 	uint64_t origin_num_snaps;
267 	dmu_recv_cookie_t *drc = drba->drba_cookie;
268 	struct drr_begin *drrb = drc->drc_drrb;
269 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
270 	int err = 0;
271 	boolean_t ret = B_TRUE;
272 	uint64_t *redact_snaps;
273 	uint_t numredactsnaps;
274 
275 	/*
276 	 * If this is a full send stream, we're safe no matter what.
277 	 */
278 	if (drrb->drr_fromguid == 0)
279 		return (ret);
280 
281 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
282 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
283 
284 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
285 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
286 	    0) {
287 		/*
288 		 * If the send stream was sent from the redaction bookmark or
289 		 * the redacted version of the dataset, then we're safe.  Verify
290 		 * that this is from the a compatible redaction bookmark or
291 		 * redacted dataset.
292 		 */
293 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
294 		    redact_snaps, numredactsnaps)) {
295 			err = EINVAL;
296 		}
297 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
298 		/*
299 		 * If the stream is redacted, it must be redacted with respect
300 		 * to a subset of what the origin is redacted with respect to.
301 		 * See case number 2 in the zfs man page section on redacted zfs
302 		 * send.
303 		 */
304 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
305 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
306 
307 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
308 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
309 			err = EINVAL;
310 		}
311 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
312 	    drrb->drr_toguid)) {
313 		/*
314 		 * If the stream isn't redacted but the origin is, this must be
315 		 * one of the snapshots the origin is redacted with respect to.
316 		 * See case number 1 in the zfs man page section on redacted zfs
317 		 * send.
318 		 */
319 		err = EINVAL;
320 	}
321 
322 	if (err != 0)
323 		ret = B_FALSE;
324 	return (ret);
325 }
326 
327 /*
328  * If we previously received a stream with --large-block, we don't support
329  * receiving an incremental on top of it without --large-block.  This avoids
330  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
331  * records.
332  */
333 static int
334 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
335 {
336 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
337 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
338 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
339 	return (0);
340 }
341 
342 static int
343 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
344     uint64_t fromguid, uint64_t featureflags)
345 {
346 	uint64_t val;
347 	uint64_t children;
348 	int error;
349 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
350 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
351 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
352 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
353 
354 	/* Temporary clone name must not exist. */
355 	error = zap_lookup(dp->dp_meta_objset,
356 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
357 	    8, 1, &val);
358 	if (error != ENOENT)
359 		return (error == 0 ? SET_ERROR(EBUSY) : error);
360 
361 	/* Resume state must not be set. */
362 	if (dsl_dataset_has_resume_receive_state(ds))
363 		return (SET_ERROR(EBUSY));
364 
365 	/* New snapshot name must not exist. */
366 	error = zap_lookup(dp->dp_meta_objset,
367 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
368 	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
369 	if (error != ENOENT)
370 		return (error == 0 ? SET_ERROR(EEXIST) : error);
371 
372 	/* Must not have children if receiving a ZVOL. */
373 	error = zap_count(dp->dp_meta_objset,
374 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
375 	if (error != 0)
376 		return (error);
377 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
378 	    children > 0)
379 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
380 
381 	/*
382 	 * Check snapshot limit before receiving. We'll recheck again at the
383 	 * end, but might as well abort before receiving if we're already over
384 	 * the limit.
385 	 *
386 	 * Note that we do not check the file system limit with
387 	 * dsl_dir_fscount_check because the temporary %clones don't count
388 	 * against that limit.
389 	 */
390 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
391 	    NULL, drba->drba_cred, drba->drba_proc);
392 	if (error != 0)
393 		return (error);
394 
395 	if (fromguid != 0) {
396 		dsl_dataset_t *snap;
397 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
398 
399 		/* Can't perform a raw receive on top of a non-raw receive */
400 		if (!encrypted && raw)
401 			return (SET_ERROR(EINVAL));
402 
403 		/* Encryption is incompatible with embedded data */
404 		if (encrypted && embed)
405 			return (SET_ERROR(EINVAL));
406 
407 		/* Find snapshot in this dir that matches fromguid. */
408 		while (obj != 0) {
409 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
410 			    &snap);
411 			if (error != 0)
412 				return (SET_ERROR(ENODEV));
413 			if (snap->ds_dir != ds->ds_dir) {
414 				dsl_dataset_rele(snap, FTAG);
415 				return (SET_ERROR(ENODEV));
416 			}
417 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
418 				break;
419 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
420 			dsl_dataset_rele(snap, FTAG);
421 		}
422 		if (obj == 0)
423 			return (SET_ERROR(ENODEV));
424 
425 		if (drba->drba_cookie->drc_force) {
426 			drba->drba_cookie->drc_fromsnapobj = obj;
427 		} else {
428 			/*
429 			 * If we are not forcing, there must be no
430 			 * changes since fromsnap. Raw sends have an
431 			 * additional constraint that requires that
432 			 * no "noop" snapshots exist between fromsnap
433 			 * and tosnap for the IVset checking code to
434 			 * work properly.
435 			 */
436 			if (dsl_dataset_modified_since_snap(ds, snap) ||
437 			    (raw &&
438 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
439 			    snap->ds_object)) {
440 				dsl_dataset_rele(snap, FTAG);
441 				return (SET_ERROR(ETXTBSY));
442 			}
443 			drba->drba_cookie->drc_fromsnapobj =
444 			    ds->ds_prev->ds_object;
445 		}
446 
447 		if (dsl_dataset_feature_is_active(snap,
448 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
449 		    snap)) {
450 			dsl_dataset_rele(snap, FTAG);
451 			return (SET_ERROR(EINVAL));
452 		}
453 
454 		error = recv_check_large_blocks(snap, featureflags);
455 		if (error != 0) {
456 			dsl_dataset_rele(snap, FTAG);
457 			return (error);
458 		}
459 
460 		dsl_dataset_rele(snap, FTAG);
461 	} else {
462 		/* if full, then must be forced */
463 		if (!drba->drba_cookie->drc_force)
464 			return (SET_ERROR(EEXIST));
465 
466 		/*
467 		 * We don't support using zfs recv -F to blow away
468 		 * encrypted filesystems. This would require the
469 		 * dsl dir to point to the old encryption key and
470 		 * the new one at the same time during the receive.
471 		 */
472 		if ((!encrypted && raw) || encrypted)
473 			return (SET_ERROR(EINVAL));
474 
475 		/*
476 		 * Perform the same encryption checks we would if
477 		 * we were creating a new dataset from scratch.
478 		 */
479 		if (!raw) {
480 			boolean_t will_encrypt;
481 
482 			error = dmu_objset_create_crypt_check(
483 			    ds->ds_dir->dd_parent, drba->drba_dcp,
484 			    &will_encrypt);
485 			if (error != 0)
486 				return (error);
487 
488 			if (will_encrypt && embed)
489 				return (SET_ERROR(EINVAL));
490 		}
491 	}
492 
493 	return (0);
494 }
495 
496 /*
497  * Check that any feature flags used in the data stream we're receiving are
498  * supported by the pool we are receiving into.
499  *
500  * Note that some of the features we explicitly check here have additional
501  * (implicit) features they depend on, but those dependencies are enforced
502  * through the zfeature_register() calls declaring the features that we
503  * explicitly check.
504  */
505 static int
506 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
507 {
508 	/*
509 	 * Check if there are any unsupported feature flags.
510 	 */
511 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
512 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
513 	}
514 
515 	/* Verify pool version supports SA if SA_SPILL feature set */
516 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
517 	    spa_version(spa) < SPA_VERSION_SA)
518 		return (SET_ERROR(ENOTSUP));
519 
520 	/*
521 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
522 	 * and large_dnodes in the stream can only be used if those pool
523 	 * features are enabled because we don't attempt to decompress /
524 	 * un-embed / un-mooch / split up the blocks / dnodes during the
525 	 * receive process.
526 	 */
527 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
528 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
529 		return (SET_ERROR(ENOTSUP));
530 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
531 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
532 		return (SET_ERROR(ENOTSUP));
533 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
534 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
535 		return (SET_ERROR(ENOTSUP));
536 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
537 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
538 		return (SET_ERROR(ENOTSUP));
539 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
540 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
541 		return (SET_ERROR(ENOTSUP));
542 
543 	/*
544 	 * Receiving redacted streams requires that redacted datasets are
545 	 * enabled.
546 	 */
547 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
548 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
549 		return (SET_ERROR(ENOTSUP));
550 
551 	return (0);
552 }
553 
554 static int
555 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
556 {
557 	dmu_recv_begin_arg_t *drba = arg;
558 	dsl_pool_t *dp = dmu_tx_pool(tx);
559 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
560 	uint64_t fromguid = drrb->drr_fromguid;
561 	int flags = drrb->drr_flags;
562 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
563 	int error;
564 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
565 	dsl_dataset_t *ds;
566 	const char *tofs = drba->drba_cookie->drc_tofs;
567 
568 	/* already checked */
569 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
570 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
571 
572 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
573 	    DMU_COMPOUNDSTREAM ||
574 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
575 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
576 		return (SET_ERROR(EINVAL));
577 
578 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
579 	if (error != 0)
580 		return (error);
581 
582 	/* Resumable receives require extensible datasets */
583 	if (drba->drba_cookie->drc_resumable &&
584 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
585 		return (SET_ERROR(ENOTSUP));
586 
587 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
588 		/* raw receives require the encryption feature */
589 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
590 			return (SET_ERROR(ENOTSUP));
591 
592 		/* embedded data is incompatible with encryption and raw recv */
593 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
594 			return (SET_ERROR(EINVAL));
595 
596 		/* raw receives require spill block allocation flag */
597 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
598 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
599 	} else {
600 		/*
601 		 * We support unencrypted datasets below encrypted ones now,
602 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
603 		 * with a dataset we may encrypt.
604 		 */
605 		if (drba->drba_dcp != NULL &&
606 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
607 			dsflags |= DS_HOLD_FLAG_DECRYPT;
608 		}
609 	}
610 
611 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
612 	if (error == 0) {
613 		/* target fs already exists; recv into temp clone */
614 
615 		/* Can't recv a clone into an existing fs */
616 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
617 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
618 			return (SET_ERROR(EINVAL));
619 		}
620 
621 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
622 		    featureflags);
623 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
624 	} else if (error == ENOENT) {
625 		/* target fs does not exist; must be a full backup or clone */
626 		char buf[ZFS_MAX_DATASET_NAME_LEN];
627 		objset_t *os;
628 
629 		/*
630 		 * If it's a non-clone incremental, we are missing the
631 		 * target fs, so fail the recv.
632 		 */
633 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
634 		    drba->drba_origin))
635 			return (SET_ERROR(ENOENT));
636 
637 		/*
638 		 * If we're receiving a full send as a clone, and it doesn't
639 		 * contain all the necessary free records and freeobject
640 		 * records, reject it.
641 		 */
642 		if (fromguid == 0 && drba->drba_origin != NULL &&
643 		    !(flags & DRR_FLAG_FREERECORDS))
644 			return (SET_ERROR(EINVAL));
645 
646 		/* Open the parent of tofs */
647 		ASSERT3U(strlen(tofs), <, sizeof (buf));
648 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
649 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
650 		if (error != 0)
651 			return (error);
652 
653 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
654 		    drba->drba_origin == NULL) {
655 			boolean_t will_encrypt;
656 
657 			/*
658 			 * Check that we aren't breaking any encryption rules
659 			 * and that we have all the parameters we need to
660 			 * create an encrypted dataset if necessary. If we are
661 			 * making an encrypted dataset the stream can't have
662 			 * embedded data.
663 			 */
664 			error = dmu_objset_create_crypt_check(ds->ds_dir,
665 			    drba->drba_dcp, &will_encrypt);
666 			if (error != 0) {
667 				dsl_dataset_rele(ds, FTAG);
668 				return (error);
669 			}
670 
671 			if (will_encrypt &&
672 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
673 				dsl_dataset_rele(ds, FTAG);
674 				return (SET_ERROR(EINVAL));
675 			}
676 		}
677 
678 		/*
679 		 * Check filesystem and snapshot limits before receiving. We'll
680 		 * recheck snapshot limits again at the end (we create the
681 		 * filesystems and increment those counts during begin_sync).
682 		 */
683 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
684 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
685 		    drba->drba_cred, drba->drba_proc);
686 		if (error != 0) {
687 			dsl_dataset_rele(ds, FTAG);
688 			return (error);
689 		}
690 
691 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
692 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
693 		    drba->drba_cred, drba->drba_proc);
694 		if (error != 0) {
695 			dsl_dataset_rele(ds, FTAG);
696 			return (error);
697 		}
698 
699 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
700 		error = dmu_objset_from_ds(ds, &os);
701 		if (error != 0) {
702 			dsl_dataset_rele(ds, FTAG);
703 			return (error);
704 		}
705 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
706 			dsl_dataset_rele(ds, FTAG);
707 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
708 		}
709 
710 		if (drba->drba_origin != NULL) {
711 			dsl_dataset_t *origin;
712 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
713 			    dsflags, FTAG, &origin);
714 			if (error != 0) {
715 				dsl_dataset_rele(ds, FTAG);
716 				return (error);
717 			}
718 			if (!origin->ds_is_snapshot) {
719 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
720 				dsl_dataset_rele(ds, FTAG);
721 				return (SET_ERROR(EINVAL));
722 			}
723 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
724 			    fromguid != 0) {
725 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
726 				dsl_dataset_rele(ds, FTAG);
727 				return (SET_ERROR(ENODEV));
728 			}
729 
730 			if (origin->ds_dir->dd_crypto_obj != 0 &&
731 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
732 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
733 				dsl_dataset_rele(ds, FTAG);
734 				return (SET_ERROR(EINVAL));
735 			}
736 
737 			/*
738 			 * If the origin is redacted we need to verify that this
739 			 * send stream can safely be received on top of the
740 			 * origin.
741 			 */
742 			if (dsl_dataset_feature_is_active(origin,
743 			    SPA_FEATURE_REDACTED_DATASETS)) {
744 				if (!redact_check(drba, origin)) {
745 					dsl_dataset_rele_flags(origin, dsflags,
746 					    FTAG);
747 					dsl_dataset_rele_flags(ds, dsflags,
748 					    FTAG);
749 					return (SET_ERROR(EINVAL));
750 				}
751 			}
752 
753 			error = recv_check_large_blocks(ds, featureflags);
754 			if (error != 0) {
755 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
756 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
757 				return (error);
758 			}
759 
760 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
761 		}
762 
763 		dsl_dataset_rele(ds, FTAG);
764 		error = 0;
765 	}
766 	return (error);
767 }
768 
769 static void
770 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
771 {
772 	dmu_recv_begin_arg_t *drba = arg;
773 	dsl_pool_t *dp = dmu_tx_pool(tx);
774 	objset_t *mos = dp->dp_meta_objset;
775 	dmu_recv_cookie_t *drc = drba->drba_cookie;
776 	struct drr_begin *drrb = drc->drc_drrb;
777 	const char *tofs = drc->drc_tofs;
778 	uint64_t featureflags = drc->drc_featureflags;
779 	dsl_dataset_t *ds, *newds;
780 	objset_t *os;
781 	uint64_t dsobj;
782 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
783 	int error;
784 	uint64_t crflags = 0;
785 	dsl_crypto_params_t dummy_dcp = { 0 };
786 	dsl_crypto_params_t *dcp = drba->drba_dcp;
787 
788 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
789 		crflags |= DS_FLAG_CI_DATASET;
790 
791 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
792 		dsflags |= DS_HOLD_FLAG_DECRYPT;
793 
794 	/*
795 	 * Raw, non-incremental recvs always use a dummy dcp with
796 	 * the raw cmd set. Raw incremental recvs do not use a dcp
797 	 * since the encryption parameters are already set in stone.
798 	 */
799 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
800 	    drba->drba_origin == NULL) {
801 		ASSERT3P(dcp, ==, NULL);
802 		dcp = &dummy_dcp;
803 
804 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
805 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
806 	}
807 
808 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
809 	if (error == 0) {
810 		/* create temporary clone */
811 		dsl_dataset_t *snap = NULL;
812 
813 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
814 			VERIFY0(dsl_dataset_hold_obj(dp,
815 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
816 			ASSERT3P(dcp, ==, NULL);
817 		}
818 		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
819 		    snap, crflags, drba->drba_cred, dcp, tx);
820 		if (drba->drba_cookie->drc_fromsnapobj != 0)
821 			dsl_dataset_rele(snap, FTAG);
822 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
823 	} else {
824 		dsl_dir_t *dd;
825 		const char *tail;
826 		dsl_dataset_t *origin = NULL;
827 
828 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
829 
830 		if (drba->drba_origin != NULL) {
831 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
832 			    FTAG, &origin));
833 			ASSERT3P(dcp, ==, NULL);
834 		}
835 
836 		/* Create new dataset. */
837 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
838 		    origin, crflags, drba->drba_cred, dcp, tx);
839 		if (origin != NULL)
840 			dsl_dataset_rele(origin, FTAG);
841 		dsl_dir_rele(dd, FTAG);
842 		drc->drc_newfs = B_TRUE;
843 	}
844 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
845 	    &newds));
846 	if (dsl_dataset_feature_is_active(newds,
847 	    SPA_FEATURE_REDACTED_DATASETS)) {
848 		/*
849 		 * If the origin dataset is redacted, the child will be redacted
850 		 * when we create it.  We clear the new dataset's
851 		 * redaction info; if it should be redacted, we'll fill
852 		 * in its information later.
853 		 */
854 		dsl_dataset_deactivate_feature(newds,
855 		    SPA_FEATURE_REDACTED_DATASETS, tx);
856 	}
857 	VERIFY0(dmu_objset_from_ds(newds, &os));
858 
859 	if (drc->drc_resumable) {
860 		dsl_dataset_zapify(newds, tx);
861 		if (drrb->drr_fromguid != 0) {
862 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
863 			    8, 1, &drrb->drr_fromguid, tx));
864 		}
865 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
866 		    8, 1, &drrb->drr_toguid, tx));
867 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
868 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
869 		uint64_t one = 1;
870 		uint64_t zero = 0;
871 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
872 		    8, 1, &one, tx));
873 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
874 		    8, 1, &zero, tx));
875 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
876 		    8, 1, &zero, tx));
877 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
878 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
879 			    8, 1, &one, tx));
880 		}
881 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
882 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
883 			    8, 1, &one, tx));
884 		}
885 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
886 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
887 			    8, 1, &one, tx));
888 		}
889 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
890 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
891 			    8, 1, &one, tx));
892 		}
893 
894 		uint64_t *redact_snaps;
895 		uint_t numredactsnaps;
896 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
897 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
898 		    &numredactsnaps) == 0) {
899 			VERIFY0(zap_add(mos, dsobj,
900 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
901 			    sizeof (*redact_snaps), numredactsnaps,
902 			    redact_snaps, tx));
903 		}
904 	}
905 
906 	/*
907 	 * Usually the os->os_encrypted value is tied to the presence of a
908 	 * DSL Crypto Key object in the dd. However, that will not be received
909 	 * until dmu_recv_stream(), so we set the value manually for now.
910 	 */
911 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
912 		os->os_encrypted = B_TRUE;
913 		drba->drba_cookie->drc_raw = B_TRUE;
914 	}
915 
916 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
917 		uint64_t *redact_snaps;
918 		uint_t numredactsnaps;
919 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
920 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
921 		dsl_dataset_activate_redaction(newds, redact_snaps,
922 		    numredactsnaps, tx);
923 	}
924 
925 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
926 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
927 
928 	/*
929 	 * If we actually created a non-clone, we need to create the objset
930 	 * in our new dataset. If this is a raw send we postpone this until
931 	 * dmu_recv_stream() so that we can allocate the metadnode with the
932 	 * properties from the DRR_BEGIN payload.
933 	 */
934 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
935 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
936 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
937 		(void) dmu_objset_create_impl(dp->dp_spa,
938 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
939 	}
940 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
941 
942 	drba->drba_cookie->drc_ds = newds;
943 	drba->drba_cookie->drc_os = os;
944 
945 	spa_history_log_internal_ds(newds, "receive", tx, " ");
946 }
947 
948 static int
949 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
950 {
951 	dmu_recv_begin_arg_t *drba = arg;
952 	dmu_recv_cookie_t *drc = drba->drba_cookie;
953 	dsl_pool_t *dp = dmu_tx_pool(tx);
954 	struct drr_begin *drrb = drc->drc_drrb;
955 	int error;
956 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
957 	dsl_dataset_t *ds;
958 	const char *tofs = drc->drc_tofs;
959 
960 	/* already checked */
961 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
962 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
963 
964 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
965 	    DMU_COMPOUNDSTREAM ||
966 	    drrb->drr_type >= DMU_OST_NUMTYPES)
967 		return (SET_ERROR(EINVAL));
968 
969 	/*
970 	 * This is mostly a sanity check since we should have already done these
971 	 * checks during a previous attempt to receive the data.
972 	 */
973 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
974 	    dp->dp_spa);
975 	if (error != 0)
976 		return (error);
977 
978 	/* 6 extra bytes for /%recv */
979 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
980 
981 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
982 	    tofs, recv_clone_name);
983 
984 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
985 		/* raw receives require spill block allocation flag */
986 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
987 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
988 	} else {
989 		dsflags |= DS_HOLD_FLAG_DECRYPT;
990 	}
991 
992 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
993 		/* %recv does not exist; continue in tofs */
994 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
995 		if (error != 0)
996 			return (error);
997 	}
998 
999 	/* check that ds is marked inconsistent */
1000 	if (!DS_IS_INCONSISTENT(ds)) {
1001 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1002 		return (SET_ERROR(EINVAL));
1003 	}
1004 
1005 	/* check that there is resuming data, and that the toguid matches */
1006 	if (!dsl_dataset_is_zapified(ds)) {
1007 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1008 		return (SET_ERROR(EINVAL));
1009 	}
1010 	uint64_t val;
1011 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1012 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1013 	if (error != 0 || drrb->drr_toguid != val) {
1014 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1015 		return (SET_ERROR(EINVAL));
1016 	}
1017 
1018 	/*
1019 	 * Check if the receive is still running.  If so, it will be owned.
1020 	 * Note that nothing else can own the dataset (e.g. after the receive
1021 	 * fails) because it will be marked inconsistent.
1022 	 */
1023 	if (dsl_dataset_has_owner(ds)) {
1024 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1025 		return (SET_ERROR(EBUSY));
1026 	}
1027 
1028 	/* There should not be any snapshots of this fs yet. */
1029 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1030 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1031 		return (SET_ERROR(EINVAL));
1032 	}
1033 
1034 	/*
1035 	 * Note: resume point will be checked when we process the first WRITE
1036 	 * record.
1037 	 */
1038 
1039 	/* check that the origin matches */
1040 	val = 0;
1041 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1042 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1043 	if (drrb->drr_fromguid != val) {
1044 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1045 		return (SET_ERROR(EINVAL));
1046 	}
1047 
1048 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1049 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1050 
1051 	/*
1052 	 * If we're resuming, and the send is redacted, then the original send
1053 	 * must have been redacted, and must have been redacted with respect to
1054 	 * the same snapshots.
1055 	 */
1056 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1057 		uint64_t num_ds_redact_snaps;
1058 		uint64_t *ds_redact_snaps;
1059 
1060 		uint_t num_stream_redact_snaps;
1061 		uint64_t *stream_redact_snaps;
1062 
1063 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1064 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1065 		    &num_stream_redact_snaps) != 0) {
1066 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1067 			return (SET_ERROR(EINVAL));
1068 		}
1069 
1070 		if (!dsl_dataset_get_uint64_array_feature(ds,
1071 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1072 		    &ds_redact_snaps)) {
1073 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1074 			return (SET_ERROR(EINVAL));
1075 		}
1076 
1077 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1078 			if (!redact_snaps_contains(ds_redact_snaps,
1079 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1080 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081 				return (SET_ERROR(EINVAL));
1082 			}
1083 		}
1084 	}
1085 
1086 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1087 	if (error != 0) {
1088 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1089 		return (error);
1090 	}
1091 
1092 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1093 	return (0);
1094 }
1095 
1096 static void
1097 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1098 {
1099 	dmu_recv_begin_arg_t *drba = arg;
1100 	dsl_pool_t *dp = dmu_tx_pool(tx);
1101 	const char *tofs = drba->drba_cookie->drc_tofs;
1102 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1103 	dsl_dataset_t *ds;
1104 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1105 	/* 6 extra bytes for /%recv */
1106 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1107 
1108 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1109 	    recv_clone_name);
1110 
1111 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1112 		drba->drba_cookie->drc_raw = B_TRUE;
1113 	} else {
1114 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1115 	}
1116 
1117 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1118 	    != 0) {
1119 		/* %recv does not exist; continue in tofs */
1120 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1121 		    &ds));
1122 		drba->drba_cookie->drc_newfs = B_TRUE;
1123 	}
1124 
1125 	ASSERT(DS_IS_INCONSISTENT(ds));
1126 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1127 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1128 	    drba->drba_cookie->drc_raw);
1129 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1130 
1131 	drba->drba_cookie->drc_ds = ds;
1132 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1133 	drba->drba_cookie->drc_should_save = B_TRUE;
1134 
1135 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1136 }
1137 
1138 /*
1139  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1140  * succeeds; otherwise we will leak the holds on the datasets.
1141  */
1142 int
1143 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1144     boolean_t force, boolean_t resumable, nvlist_t *localprops,
1145     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1146     zfs_file_t *fp, offset_t *voffp)
1147 {
1148 	dmu_recv_begin_arg_t drba = { 0 };
1149 	int err;
1150 
1151 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1152 	drc->drc_drr_begin = drr_begin;
1153 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1154 	drc->drc_tosnap = tosnap;
1155 	drc->drc_tofs = tofs;
1156 	drc->drc_force = force;
1157 	drc->drc_resumable = resumable;
1158 	drc->drc_cred = CRED();
1159 	drc->drc_proc = curproc;
1160 	drc->drc_clone = (origin != NULL);
1161 
1162 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1163 		drc->drc_byteswap = B_TRUE;
1164 		(void) fletcher_4_incremental_byteswap(drr_begin,
1165 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1166 		byteswap_record(drr_begin);
1167 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1168 		(void) fletcher_4_incremental_native(drr_begin,
1169 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1170 	} else {
1171 		return (SET_ERROR(EINVAL));
1172 	}
1173 
1174 	drc->drc_fp = fp;
1175 	drc->drc_voff = *voffp;
1176 	drc->drc_featureflags =
1177 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1178 
1179 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1180 	void *payload = NULL;
1181 	if (payloadlen != 0)
1182 		payload = kmem_alloc(payloadlen, KM_SLEEP);
1183 
1184 	err = receive_read_payload_and_next_header(drc, payloadlen,
1185 	    payload);
1186 	if (err != 0) {
1187 		kmem_free(payload, payloadlen);
1188 		return (err);
1189 	}
1190 	if (payloadlen != 0) {
1191 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1192 		    KM_SLEEP);
1193 		kmem_free(payload, payloadlen);
1194 		if (err != 0) {
1195 			kmem_free(drc->drc_next_rrd,
1196 			    sizeof (*drc->drc_next_rrd));
1197 			return (err);
1198 		}
1199 	}
1200 
1201 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1202 		drc->drc_spill = B_TRUE;
1203 
1204 	drba.drba_origin = origin;
1205 	drba.drba_cookie = drc;
1206 	drba.drba_cred = CRED();
1207 	drba.drba_proc = curproc;
1208 
1209 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1210 		err = dsl_sync_task(tofs,
1211 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1212 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1213 	} else {
1214 		/*
1215 		 * For non-raw, non-incremental, non-resuming receives the
1216 		 * user can specify encryption parameters on the command line
1217 		 * with "zfs recv -o". For these receives we create a dcp and
1218 		 * pass it to the sync task. Creating the dcp will implicitly
1219 		 * remove the encryption params from the localprops nvlist,
1220 		 * which avoids errors when trying to set these normally
1221 		 * read-only properties. Any other kind of receive that
1222 		 * attempts to set these properties will fail as a result.
1223 		 */
1224 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1225 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1226 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1227 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1228 			    localprops, hidden_args, &drba.drba_dcp);
1229 		}
1230 
1231 		if (err == 0) {
1232 			err = dsl_sync_task(tofs,
1233 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1234 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1235 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1236 		}
1237 	}
1238 
1239 	if (err != 0) {
1240 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1241 		nvlist_free(drc->drc_begin_nvl);
1242 	}
1243 	return (err);
1244 }
1245 
1246 static int
1247 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1248 {
1249 	int done = 0;
1250 
1251 	/*
1252 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1253 	 * comment in dump_bytes.
1254 	 */
1255 	ASSERT(len % 8 == 0 ||
1256 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1257 
1258 	while (done < len) {
1259 		ssize_t resid;
1260 		zfs_file_t *fp = drc->drc_fp;
1261 		int err = zfs_file_read(fp, (char *)buf + done,
1262 		    len - done, &resid);
1263 		if (resid == len - done) {
1264 			/*
1265 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1266 			 * that the receive was interrupted and can
1267 			 * potentially be resumed.
1268 			 */
1269 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1270 		}
1271 		drc->drc_voff += len - done - resid;
1272 		done = len - resid;
1273 		if (err != 0)
1274 			return (err);
1275 	}
1276 
1277 	drc->drc_bytes_read += len;
1278 
1279 	ASSERT3U(done, ==, len);
1280 	return (0);
1281 }
1282 
1283 static inline uint8_t
1284 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1285 {
1286 	if (bonus_type == DMU_OT_SA) {
1287 		return (1);
1288 	} else {
1289 		return (1 +
1290 		    ((DN_OLD_MAX_BONUSLEN -
1291 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1292 	}
1293 }
1294 
1295 static void
1296 save_resume_state(struct receive_writer_arg *rwa,
1297     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1298 {
1299 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1300 
1301 	if (!rwa->resumable)
1302 		return;
1303 
1304 	/*
1305 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1306 	 * update this on disk, so it must not be 0.
1307 	 */
1308 	ASSERT(rwa->bytes_read != 0);
1309 
1310 	/*
1311 	 * We only resume from write records, which have a valid
1312 	 * (non-meta-dnode) object number.
1313 	 */
1314 	ASSERT(object != 0);
1315 
1316 	/*
1317 	 * For resuming to work correctly, we must receive records in order,
1318 	 * sorted by object,offset.  This is checked by the callers, but
1319 	 * assert it here for good measure.
1320 	 */
1321 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1322 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1323 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1324 	ASSERT3U(rwa->bytes_read, >=,
1325 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1326 
1327 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1328 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1329 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1330 }
1331 
1332 static int
1333 receive_object_is_same_generation(objset_t *os, uint64_t object,
1334     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1335     const void *new_bonus, boolean_t *samegenp)
1336 {
1337 	zfs_file_info_t zoi;
1338 	int err;
1339 
1340 	dmu_buf_t *old_bonus_dbuf;
1341 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1342 	if (err != 0)
1343 		return (err);
1344 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1345 	    &zoi);
1346 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1347 	if (err != 0)
1348 		return (err);
1349 	uint64_t old_gen = zoi.zfi_generation;
1350 
1351 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1352 	if (err != 0)
1353 		return (err);
1354 	uint64_t new_gen = zoi.zfi_generation;
1355 
1356 	*samegenp = (old_gen == new_gen);
1357 	return (0);
1358 }
1359 
1360 static int
1361 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1362     const struct drr_object *drro, const dmu_object_info_t *doi,
1363     const void *bonus_data,
1364     uint64_t *object_to_hold, uint32_t *new_blksz)
1365 {
1366 	uint32_t indblksz = drro->drr_indblkshift ?
1367 	    1ULL << drro->drr_indblkshift : 0;
1368 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1369 	    drro->drr_bonuslen);
1370 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1371 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1372 	boolean_t do_free_range = B_FALSE;
1373 	int err;
1374 
1375 	*object_to_hold = drro->drr_object;
1376 
1377 	/* nblkptr should be bounded by the bonus size and type */
1378 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1379 		return (SET_ERROR(EINVAL));
1380 
1381 	/*
1382 	 * After the previous send stream, the sending system may
1383 	 * have freed this object, and then happened to re-allocate
1384 	 * this object number in a later txg. In this case, we are
1385 	 * receiving a different logical file, and the block size may
1386 	 * appear to be different.  i.e. we may have a different
1387 	 * block size for this object than what the send stream says.
1388 	 * In this case we need to remove the object's contents,
1389 	 * so that its structure can be changed and then its contents
1390 	 * entirely replaced by subsequent WRITE records.
1391 	 *
1392 	 * If this is a -L (--large-block) incremental stream, and
1393 	 * the previous stream was not -L, the block size may appear
1394 	 * to increase.  i.e. we may have a smaller block size for
1395 	 * this object than what the send stream says.  In this case
1396 	 * we need to keep the object's contents and block size
1397 	 * intact, so that we don't lose parts of the object's
1398 	 * contents that are not changed by this incremental send
1399 	 * stream.
1400 	 *
1401 	 * We can distinguish between the two above cases by using
1402 	 * the ZPL's generation number (see
1403 	 * receive_object_is_same_generation()).  However, we only
1404 	 * want to rely on the generation number when absolutely
1405 	 * necessary, because with raw receives, the generation is
1406 	 * encrypted.  We also want to minimize dependence on the
1407 	 * ZPL, so that other types of datasets can also be received
1408 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1409 	 * reallocate their objects or change their structure).
1410 	 * Therefore, we check a number of different cases where we
1411 	 * know it is safe to discard the object's contents, before
1412 	 * using the ZPL's generation number to make the above
1413 	 * distinction.
1414 	 */
1415 	if (drro->drr_blksz != doi->doi_data_block_size) {
1416 		if (rwa->raw) {
1417 			/*
1418 			 * RAW streams always have large blocks, so
1419 			 * we are sure that the data is not needed
1420 			 * due to changing --large-block to be on.
1421 			 * Which is fortunate since the bonus buffer
1422 			 * (which contains the ZPL generation) is
1423 			 * encrypted, and the key might not be
1424 			 * loaded.
1425 			 */
1426 			do_free_range = B_TRUE;
1427 		} else if (rwa->full) {
1428 			/*
1429 			 * This is a full send stream, so it always
1430 			 * replaces what we have.  Even if the
1431 			 * generation numbers happen to match, this
1432 			 * can not actually be the same logical file.
1433 			 * This is relevant when receiving a full
1434 			 * send as a clone.
1435 			 */
1436 			do_free_range = B_TRUE;
1437 		} else if (drro->drr_type !=
1438 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1439 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1440 			/*
1441 			 * PLAIN_FILE_CONTENTS are the only type of
1442 			 * objects that have ever been stored with
1443 			 * large blocks, so we don't need the special
1444 			 * logic below.  ZAP blocks can shrink (when
1445 			 * there's only one block), so we don't want
1446 			 * to hit the error below about block size
1447 			 * only increasing.
1448 			 */
1449 			do_free_range = B_TRUE;
1450 		} else if (doi->doi_max_offset <=
1451 		    doi->doi_data_block_size) {
1452 			/*
1453 			 * There is only one block.  We can free it,
1454 			 * because its contents will be replaced by a
1455 			 * WRITE record.  This can not be the no-L ->
1456 			 * -L case, because the no-L case would have
1457 			 * resulted in multiple blocks.  If we
1458 			 * supported -L -> no-L, it would not be safe
1459 			 * to free the file's contents.  Fortunately,
1460 			 * that is not allowed (see
1461 			 * recv_check_large_blocks()).
1462 			 */
1463 			do_free_range = B_TRUE;
1464 		} else {
1465 			boolean_t is_same_gen;
1466 			err = receive_object_is_same_generation(rwa->os,
1467 			    drro->drr_object, doi->doi_bonus_type,
1468 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1469 			if (err != 0)
1470 				return (SET_ERROR(EINVAL));
1471 
1472 			if (is_same_gen) {
1473 				/*
1474 				 * This is the same logical file, and
1475 				 * the block size must be increasing.
1476 				 * It could only decrease if
1477 				 * --large-block was changed to be
1478 				 * off, which is checked in
1479 				 * recv_check_large_blocks().
1480 				 */
1481 				if (drro->drr_blksz <=
1482 				    doi->doi_data_block_size)
1483 					return (SET_ERROR(EINVAL));
1484 				/*
1485 				 * We keep the existing blocksize and
1486 				 * contents.
1487 				 */
1488 				*new_blksz =
1489 				    doi->doi_data_block_size;
1490 			} else {
1491 				do_free_range = B_TRUE;
1492 			}
1493 		}
1494 	}
1495 
1496 	/* nblkptr can only decrease if the object was reallocated */
1497 	if (nblkptr < doi->doi_nblkptr)
1498 		do_free_range = B_TRUE;
1499 
1500 	/* number of slots can only change on reallocation */
1501 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1502 		do_free_range = B_TRUE;
1503 
1504 	/*
1505 	 * For raw sends we also check a few other fields to
1506 	 * ensure we are preserving the objset structure exactly
1507 	 * as it was on the receive side:
1508 	 *     - A changed indirect block size
1509 	 *     - A smaller nlevels
1510 	 */
1511 	if (rwa->raw) {
1512 		if (indblksz != doi->doi_metadata_block_size)
1513 			do_free_range = B_TRUE;
1514 		if (drro->drr_nlevels < doi->doi_indirection)
1515 			do_free_range = B_TRUE;
1516 	}
1517 
1518 	if (do_free_range) {
1519 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1520 		    0, DMU_OBJECT_END);
1521 		if (err != 0)
1522 			return (SET_ERROR(EINVAL));
1523 	}
1524 
1525 	/*
1526 	 * The dmu does not currently support decreasing nlevels
1527 	 * or changing the number of dnode slots on an object. For
1528 	 * non-raw sends, this does not matter and the new object
1529 	 * can just use the previous one's nlevels. For raw sends,
1530 	 * however, the structure of the received dnode (including
1531 	 * nlevels and dnode slots) must match that of the send
1532 	 * side. Therefore, instead of using dmu_object_reclaim(),
1533 	 * we must free the object completely and call
1534 	 * dmu_object_claim_dnsize() instead.
1535 	 */
1536 	if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1537 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1538 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1539 		if (err != 0)
1540 			return (SET_ERROR(EINVAL));
1541 
1542 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1543 		*object_to_hold = DMU_NEW_OBJECT;
1544 	}
1545 
1546 	/*
1547 	 * For raw receives, free everything beyond the new incoming
1548 	 * maxblkid. Normally this would be done with a DRR_FREE
1549 	 * record that would come after this DRR_OBJECT record is
1550 	 * processed. However, for raw receives we manually set the
1551 	 * maxblkid from the drr_maxblkid and so we must first free
1552 	 * everything above that blkid to ensure the DMU is always
1553 	 * consistent with itself. We will never free the first block
1554 	 * of the object here because a maxblkid of 0 could indicate
1555 	 * an object with a single block or one with no blocks. This
1556 	 * free may be skipped when dmu_free_long_range() was called
1557 	 * above since it covers the entire object's contents.
1558 	 */
1559 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1560 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1561 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1562 		    DMU_OBJECT_END);
1563 		if (err != 0)
1564 			return (SET_ERROR(EINVAL));
1565 	}
1566 	return (0);
1567 }
1568 
1569 noinline static int
1570 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1571     void *data)
1572 {
1573 	dmu_object_info_t doi;
1574 	dmu_tx_t *tx;
1575 	int err;
1576 	uint32_t new_blksz = drro->drr_blksz;
1577 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1578 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1579 
1580 	if (drro->drr_type == DMU_OT_NONE ||
1581 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1582 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1583 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1584 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1585 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1586 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1587 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1588 	    drro->drr_bonuslen >
1589 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1590 	    dn_slots >
1591 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1592 		return (SET_ERROR(EINVAL));
1593 	}
1594 
1595 	if (rwa->raw) {
1596 		/*
1597 		 * We should have received a DRR_OBJECT_RANGE record
1598 		 * containing this block and stored it in rwa.
1599 		 */
1600 		if (drro->drr_object < rwa->or_firstobj ||
1601 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1602 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1603 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1604 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1605 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1606 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1607 		    drro->drr_raw_bonuslen)
1608 			return (SET_ERROR(EINVAL));
1609 	} else {
1610 		/*
1611 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1612 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1613 		 */
1614 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1615 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1616 			return (SET_ERROR(EINVAL));
1617 		}
1618 
1619 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1620 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1621 			return (SET_ERROR(EINVAL));
1622 		}
1623 	}
1624 
1625 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1626 
1627 	if (err != 0 && err != ENOENT && err != EEXIST)
1628 		return (SET_ERROR(EINVAL));
1629 
1630 	if (drro->drr_object > rwa->max_object)
1631 		rwa->max_object = drro->drr_object;
1632 
1633 	/*
1634 	 * If we are losing blkptrs or changing the block size this must
1635 	 * be a new file instance.  We must clear out the previous file
1636 	 * contents before we can change this type of metadata in the dnode.
1637 	 * Raw receives will also check that the indirect structure of the
1638 	 * dnode hasn't changed.
1639 	 */
1640 	uint64_t object_to_hold;
1641 	if (err == 0) {
1642 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1643 		    &object_to_hold, &new_blksz);
1644 	} else if (err == EEXIST) {
1645 		/*
1646 		 * The object requested is currently an interior slot of a
1647 		 * multi-slot dnode. This will be resolved when the next txg
1648 		 * is synced out, since the send stream will have told us
1649 		 * to free this slot when we freed the associated dnode
1650 		 * earlier in the stream.
1651 		 */
1652 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1653 
1654 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1655 			return (SET_ERROR(EINVAL));
1656 
1657 		/* object was freed and we are about to allocate a new one */
1658 		object_to_hold = DMU_NEW_OBJECT;
1659 	} else {
1660 		/* object is free and we are about to allocate a new one */
1661 		object_to_hold = DMU_NEW_OBJECT;
1662 	}
1663 
1664 	/*
1665 	 * If this is a multi-slot dnode there is a chance that this
1666 	 * object will expand into a slot that is already used by
1667 	 * another object from the previous snapshot. We must free
1668 	 * these objects before we attempt to allocate the new dnode.
1669 	 */
1670 	if (dn_slots > 1) {
1671 		boolean_t need_sync = B_FALSE;
1672 
1673 		for (uint64_t slot = drro->drr_object + 1;
1674 		    slot < drro->drr_object + dn_slots;
1675 		    slot++) {
1676 			dmu_object_info_t slot_doi;
1677 
1678 			err = dmu_object_info(rwa->os, slot, &slot_doi);
1679 			if (err == ENOENT || err == EEXIST)
1680 				continue;
1681 			else if (err != 0)
1682 				return (err);
1683 
1684 			err = dmu_free_long_object(rwa->os, slot);
1685 			if (err != 0)
1686 				return (err);
1687 
1688 			need_sync = B_TRUE;
1689 		}
1690 
1691 		if (need_sync)
1692 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1693 	}
1694 
1695 	tx = dmu_tx_create(rwa->os);
1696 	dmu_tx_hold_bonus(tx, object_to_hold);
1697 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1698 	err = dmu_tx_assign(tx, TXG_WAIT);
1699 	if (err != 0) {
1700 		dmu_tx_abort(tx);
1701 		return (err);
1702 	}
1703 
1704 	if (object_to_hold == DMU_NEW_OBJECT) {
1705 		/* Currently free, wants to be allocated */
1706 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1707 		    drro->drr_type, new_blksz,
1708 		    drro->drr_bonustype, drro->drr_bonuslen,
1709 		    dn_slots << DNODE_SHIFT, tx);
1710 	} else if (drro->drr_type != doi.doi_type ||
1711 	    new_blksz != doi.doi_data_block_size ||
1712 	    drro->drr_bonustype != doi.doi_bonus_type ||
1713 	    drro->drr_bonuslen != doi.doi_bonus_size) {
1714 		/* Currently allocated, but with different properties */
1715 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1716 		    drro->drr_type, new_blksz,
1717 		    drro->drr_bonustype, drro->drr_bonuslen,
1718 		    dn_slots << DNODE_SHIFT, rwa->spill ?
1719 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1720 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1721 		/*
1722 		 * Currently allocated, the existing version of this object
1723 		 * may reference a spill block that is no longer allocated
1724 		 * at the source and needs to be freed.
1725 		 */
1726 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1727 	}
1728 
1729 	if (err != 0) {
1730 		dmu_tx_commit(tx);
1731 		return (SET_ERROR(EINVAL));
1732 	}
1733 
1734 	if (rwa->or_crypt_params_present) {
1735 		/*
1736 		 * Set the crypt params for the buffer associated with this
1737 		 * range of dnodes.  This causes the blkptr_t to have the
1738 		 * same crypt params (byteorder, salt, iv, mac) as on the
1739 		 * sending side.
1740 		 *
1741 		 * Since we are committing this tx now, it is possible for
1742 		 * the dnode block to end up on-disk with the incorrect MAC,
1743 		 * if subsequent objects in this block are received in a
1744 		 * different txg.  However, since the dataset is marked as
1745 		 * inconsistent, no code paths will do a non-raw read (or
1746 		 * decrypt the block / verify the MAC). The receive code and
1747 		 * scrub code can safely do raw reads and verify the
1748 		 * checksum.  They don't need to verify the MAC.
1749 		 */
1750 		dmu_buf_t *db = NULL;
1751 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1752 
1753 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1754 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1755 		if (err != 0) {
1756 			dmu_tx_commit(tx);
1757 			return (SET_ERROR(EINVAL));
1758 		}
1759 
1760 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1761 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1762 
1763 		dmu_buf_rele(db, FTAG);
1764 
1765 		rwa->or_crypt_params_present = B_FALSE;
1766 	}
1767 
1768 	dmu_object_set_checksum(rwa->os, drro->drr_object,
1769 	    drro->drr_checksumtype, tx);
1770 	dmu_object_set_compress(rwa->os, drro->drr_object,
1771 	    drro->drr_compress, tx);
1772 
1773 	/* handle more restrictive dnode structuring for raw recvs */
1774 	if (rwa->raw) {
1775 		/*
1776 		 * Set the indirect block size, block shift, nlevels.
1777 		 * This will not fail because we ensured all of the
1778 		 * blocks were freed earlier if this is a new object.
1779 		 * For non-new objects block size and indirect block
1780 		 * shift cannot change and nlevels can only increase.
1781 		 */
1782 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
1783 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1784 		    drro->drr_blksz, drro->drr_indblkshift, tx));
1785 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1786 		    drro->drr_nlevels, tx));
1787 
1788 		/*
1789 		 * Set the maxblkid. This will always succeed because
1790 		 * we freed all blocks beyond the new maxblkid above.
1791 		 */
1792 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1793 		    drro->drr_maxblkid, tx));
1794 	}
1795 
1796 	if (data != NULL) {
1797 		dmu_buf_t *db;
1798 		dnode_t *dn;
1799 		uint32_t flags = DMU_READ_NO_PREFETCH;
1800 
1801 		if (rwa->raw)
1802 			flags |= DMU_READ_NO_DECRYPT;
1803 
1804 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1805 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1806 
1807 		dmu_buf_will_dirty(db, tx);
1808 
1809 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1810 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1811 
1812 		/*
1813 		 * Raw bonus buffers have their byteorder determined by the
1814 		 * DRR_OBJECT_RANGE record.
1815 		 */
1816 		if (rwa->byteswap && !rwa->raw) {
1817 			dmu_object_byteswap_t byteswap =
1818 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
1819 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1820 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
1821 		}
1822 		dmu_buf_rele(db, FTAG);
1823 		dnode_rele(dn, FTAG);
1824 	}
1825 	dmu_tx_commit(tx);
1826 
1827 	return (0);
1828 }
1829 
1830 noinline static int
1831 receive_freeobjects(struct receive_writer_arg *rwa,
1832     struct drr_freeobjects *drrfo)
1833 {
1834 	uint64_t obj;
1835 	int next_err = 0;
1836 
1837 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1838 		return (SET_ERROR(EINVAL));
1839 
1840 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1841 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1842 	    obj < DN_MAX_OBJECT && next_err == 0;
1843 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1844 		dmu_object_info_t doi;
1845 		int err;
1846 
1847 		err = dmu_object_info(rwa->os, obj, &doi);
1848 		if (err == ENOENT)
1849 			continue;
1850 		else if (err != 0)
1851 			return (err);
1852 
1853 		err = dmu_free_long_object(rwa->os, obj);
1854 
1855 		if (err != 0)
1856 			return (err);
1857 	}
1858 	if (next_err != ESRCH)
1859 		return (next_err);
1860 	return (0);
1861 }
1862 
1863 /*
1864  * Note: if this fails, the caller will clean up any records left on the
1865  * rwa->write_batch list.
1866  */
1867 static int
1868 flush_write_batch_impl(struct receive_writer_arg *rwa)
1869 {
1870 	dnode_t *dn;
1871 	int err;
1872 
1873 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1874 		return (SET_ERROR(EINVAL));
1875 
1876 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1877 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1878 
1879 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1880 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1881 
1882 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1883 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1884 
1885 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
1886 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1887 	    last_drrw->drr_offset - first_drrw->drr_offset +
1888 	    last_drrw->drr_logical_size);
1889 	err = dmu_tx_assign(tx, TXG_WAIT);
1890 	if (err != 0) {
1891 		dmu_tx_abort(tx);
1892 		dnode_rele(dn, FTAG);
1893 		return (err);
1894 	}
1895 
1896 	struct receive_record_arg *rrd;
1897 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1898 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
1899 		abd_t *abd = rrd->abd;
1900 
1901 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1902 
1903 		if (drrw->drr_logical_size != dn->dn_datablksz) {
1904 			/*
1905 			 * The WRITE record is larger than the object's block
1906 			 * size.  We must be receiving an incremental
1907 			 * large-block stream into a dataset that previously did
1908 			 * a non-large-block receive.  Lightweight writes must
1909 			 * be exactly one block, so we need to decompress the
1910 			 * data (if compressed) and do a normal dmu_write().
1911 			 */
1912 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
1913 			if (DRR_WRITE_COMPRESSED(drrw)) {
1914 				abd_t *decomp_abd =
1915 				    abd_alloc_linear(drrw->drr_logical_size,
1916 				    B_FALSE);
1917 
1918 				err = zio_decompress_data(
1919 				    drrw->drr_compressiontype,
1920 				    abd, abd_to_buf(decomp_abd),
1921 				    abd_get_size(abd),
1922 				    abd_get_size(decomp_abd), NULL);
1923 
1924 				if (err == 0) {
1925 					dmu_write_by_dnode(dn,
1926 					    drrw->drr_offset,
1927 					    drrw->drr_logical_size,
1928 					    abd_to_buf(decomp_abd), tx);
1929 				}
1930 				abd_free(decomp_abd);
1931 			} else {
1932 				dmu_write_by_dnode(dn,
1933 				    drrw->drr_offset,
1934 				    drrw->drr_logical_size,
1935 				    abd_to_buf(abd), tx);
1936 			}
1937 			if (err == 0)
1938 				abd_free(abd);
1939 		} else {
1940 			zio_prop_t zp;
1941 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
1942 
1943 			enum zio_flag zio_flags = 0;
1944 
1945 			if (rwa->raw) {
1946 				zp.zp_encrypt = B_TRUE;
1947 				zp.zp_compress = drrw->drr_compressiontype;
1948 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
1949 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
1950 				    rwa->byteswap;
1951 				memcpy(zp.zp_salt, drrw->drr_salt,
1952 				    ZIO_DATA_SALT_LEN);
1953 				memcpy(zp.zp_iv, drrw->drr_iv,
1954 				    ZIO_DATA_IV_LEN);
1955 				memcpy(zp.zp_mac, drrw->drr_mac,
1956 				    ZIO_DATA_MAC_LEN);
1957 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
1958 					zp.zp_nopwrite = B_FALSE;
1959 					zp.zp_copies = MIN(zp.zp_copies,
1960 					    SPA_DVAS_PER_BP - 1);
1961 				}
1962 				zio_flags |= ZIO_FLAG_RAW;
1963 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
1964 				ASSERT3U(drrw->drr_compressed_size, >, 0);
1965 				ASSERT3U(drrw->drr_logical_size, >=,
1966 				    drrw->drr_compressed_size);
1967 				zp.zp_compress = drrw->drr_compressiontype;
1968 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
1969 			} else if (rwa->byteswap) {
1970 				/*
1971 				 * Note: compressed blocks never need to be
1972 				 * byteswapped, because WRITE records for
1973 				 * metadata blocks are never compressed. The
1974 				 * exception is raw streams, which are written
1975 				 * in the original byteorder, and the byteorder
1976 				 * bit is preserved in the BP by setting
1977 				 * zp_byteorder above.
1978 				 */
1979 				dmu_object_byteswap_t byteswap =
1980 				    DMU_OT_BYTESWAP(drrw->drr_type);
1981 				dmu_ot_byteswap[byteswap].ob_func(
1982 				    abd_to_buf(abd),
1983 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
1984 			}
1985 
1986 			/*
1987 			 * Since this data can't be read until the receive
1988 			 * completes, we can do a "lightweight" write for
1989 			 * improved performance.
1990 			 */
1991 			err = dmu_lightweight_write_by_dnode(dn,
1992 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
1993 		}
1994 
1995 		if (err != 0) {
1996 			/*
1997 			 * This rrd is left on the list, so the caller will
1998 			 * free it (and the abd).
1999 			 */
2000 			break;
2001 		}
2002 
2003 		/*
2004 		 * Note: If the receive fails, we want the resume stream to
2005 		 * start with the same record that we last successfully
2006 		 * received (as opposed to the next record), so that we can
2007 		 * verify that we are resuming from the correct location.
2008 		 */
2009 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2010 
2011 		list_remove(&rwa->write_batch, rrd);
2012 		kmem_free(rrd, sizeof (*rrd));
2013 	}
2014 
2015 	dmu_tx_commit(tx);
2016 	dnode_rele(dn, FTAG);
2017 	return (err);
2018 }
2019 
2020 noinline static int
2021 flush_write_batch(struct receive_writer_arg *rwa)
2022 {
2023 	if (list_is_empty(&rwa->write_batch))
2024 		return (0);
2025 	int err = rwa->err;
2026 	if (err == 0)
2027 		err = flush_write_batch_impl(rwa);
2028 	if (err != 0) {
2029 		struct receive_record_arg *rrd;
2030 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2031 			abd_free(rrd->abd);
2032 			kmem_free(rrd, sizeof (*rrd));
2033 		}
2034 	}
2035 	ASSERT(list_is_empty(&rwa->write_batch));
2036 	return (err);
2037 }
2038 
2039 noinline static int
2040 receive_process_write_record(struct receive_writer_arg *rwa,
2041     struct receive_record_arg *rrd)
2042 {
2043 	int err = 0;
2044 
2045 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2046 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2047 
2048 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2049 	    !DMU_OT_IS_VALID(drrw->drr_type))
2050 		return (SET_ERROR(EINVAL));
2051 
2052 	/*
2053 	 * For resuming to work, records must be in increasing order
2054 	 * by (object, offset).
2055 	 */
2056 	if (drrw->drr_object < rwa->last_object ||
2057 	    (drrw->drr_object == rwa->last_object &&
2058 	    drrw->drr_offset < rwa->last_offset)) {
2059 		return (SET_ERROR(EINVAL));
2060 	}
2061 
2062 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2063 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2064 	uint64_t batch_size =
2065 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2066 	if (first_rrd != NULL &&
2067 	    (drrw->drr_object != first_drrw->drr_object ||
2068 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2069 		err = flush_write_batch(rwa);
2070 		if (err != 0)
2071 			return (err);
2072 	}
2073 
2074 	rwa->last_object = drrw->drr_object;
2075 	rwa->last_offset = drrw->drr_offset;
2076 
2077 	if (rwa->last_object > rwa->max_object)
2078 		rwa->max_object = rwa->last_object;
2079 
2080 	list_insert_tail(&rwa->write_batch, rrd);
2081 	/*
2082 	 * Return EAGAIN to indicate that we will use this rrd again,
2083 	 * so the caller should not free it
2084 	 */
2085 	return (EAGAIN);
2086 }
2087 
2088 static int
2089 receive_write_embedded(struct receive_writer_arg *rwa,
2090     struct drr_write_embedded *drrwe, void *data)
2091 {
2092 	dmu_tx_t *tx;
2093 	int err;
2094 
2095 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2096 		return (SET_ERROR(EINVAL));
2097 
2098 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2099 		return (SET_ERROR(EINVAL));
2100 
2101 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2102 		return (SET_ERROR(EINVAL));
2103 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2104 		return (SET_ERROR(EINVAL));
2105 	if (rwa->raw)
2106 		return (SET_ERROR(EINVAL));
2107 
2108 	if (drrwe->drr_object > rwa->max_object)
2109 		rwa->max_object = drrwe->drr_object;
2110 
2111 	tx = dmu_tx_create(rwa->os);
2112 
2113 	dmu_tx_hold_write(tx, drrwe->drr_object,
2114 	    drrwe->drr_offset, drrwe->drr_length);
2115 	err = dmu_tx_assign(tx, TXG_WAIT);
2116 	if (err != 0) {
2117 		dmu_tx_abort(tx);
2118 		return (err);
2119 	}
2120 
2121 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2122 	    drrwe->drr_offset, data, drrwe->drr_etype,
2123 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2124 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2125 
2126 	/* See comment in restore_write. */
2127 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2128 	dmu_tx_commit(tx);
2129 	return (0);
2130 }
2131 
2132 static int
2133 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2134     abd_t *abd)
2135 {
2136 	dmu_buf_t *db, *db_spill;
2137 	int err;
2138 
2139 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2140 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2141 		return (SET_ERROR(EINVAL));
2142 
2143 	/*
2144 	 * This is an unmodified spill block which was added to the stream
2145 	 * to resolve an issue with incorrectly removing spill blocks.  It
2146 	 * should be ignored by current versions of the code which support
2147 	 * the DRR_FLAG_SPILL_BLOCK flag.
2148 	 */
2149 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2150 		abd_free(abd);
2151 		return (0);
2152 	}
2153 
2154 	if (rwa->raw) {
2155 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2156 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2157 		    drrs->drr_compressed_size == 0)
2158 			return (SET_ERROR(EINVAL));
2159 	}
2160 
2161 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2162 		return (SET_ERROR(EINVAL));
2163 
2164 	if (drrs->drr_object > rwa->max_object)
2165 		rwa->max_object = drrs->drr_object;
2166 
2167 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2168 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2169 	    &db_spill)) != 0) {
2170 		dmu_buf_rele(db, FTAG);
2171 		return (err);
2172 	}
2173 
2174 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2175 
2176 	dmu_tx_hold_spill(tx, db->db_object);
2177 
2178 	err = dmu_tx_assign(tx, TXG_WAIT);
2179 	if (err != 0) {
2180 		dmu_buf_rele(db, FTAG);
2181 		dmu_buf_rele(db_spill, FTAG);
2182 		dmu_tx_abort(tx);
2183 		return (err);
2184 	}
2185 
2186 	/*
2187 	 * Spill blocks may both grow and shrink.  When a change in size
2188 	 * occurs any existing dbuf must be updated to match the logical
2189 	 * size of the provided arc_buf_t.
2190 	 */
2191 	if (db_spill->db_size != drrs->drr_length) {
2192 		dmu_buf_will_fill(db_spill, tx);
2193 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2194 		    drrs->drr_length, tx));
2195 	}
2196 
2197 	arc_buf_t *abuf;
2198 	if (rwa->raw) {
2199 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2200 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2201 		    rwa->byteswap;
2202 
2203 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2204 		    drrs->drr_object, byteorder, drrs->drr_salt,
2205 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2206 		    drrs->drr_compressed_size, drrs->drr_length,
2207 		    drrs->drr_compressiontype, 0);
2208 	} else {
2209 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2210 		    DMU_OT_IS_METADATA(drrs->drr_type),
2211 		    drrs->drr_length);
2212 		if (rwa->byteswap) {
2213 			dmu_object_byteswap_t byteswap =
2214 			    DMU_OT_BYTESWAP(drrs->drr_type);
2215 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2216 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2217 		}
2218 	}
2219 
2220 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2221 	abd_free(abd);
2222 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2223 
2224 	dmu_buf_rele(db, FTAG);
2225 	dmu_buf_rele(db_spill, FTAG);
2226 
2227 	dmu_tx_commit(tx);
2228 	return (0);
2229 }
2230 
2231 noinline static int
2232 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2233 {
2234 	int err;
2235 
2236 	if (drrf->drr_length != -1ULL &&
2237 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2238 		return (SET_ERROR(EINVAL));
2239 
2240 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2241 		return (SET_ERROR(EINVAL));
2242 
2243 	if (drrf->drr_object > rwa->max_object)
2244 		rwa->max_object = drrf->drr_object;
2245 
2246 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2247 	    drrf->drr_offset, drrf->drr_length);
2248 
2249 	return (err);
2250 }
2251 
2252 static int
2253 receive_object_range(struct receive_writer_arg *rwa,
2254     struct drr_object_range *drror)
2255 {
2256 	/*
2257 	 * By default, we assume this block is in our native format
2258 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2259 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2260 	 * we need to byteswap again if this particular block was
2261 	 * in non-native format on the send side.
2262 	 */
2263 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2264 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2265 
2266 	/*
2267 	 * Since dnode block sizes are constant, we should not need to worry
2268 	 * about making sure that the dnode block size is the same on the
2269 	 * sending and receiving sides for the time being. For non-raw sends,
2270 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2271 	 * record at all). Raw sends require this record type because the
2272 	 * encryption parameters are used to protect an entire block of bonus
2273 	 * buffers. If the size of dnode blocks ever becomes variable,
2274 	 * handling will need to be added to ensure that dnode block sizes
2275 	 * match on the sending and receiving side.
2276 	 */
2277 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2278 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2279 	    !rwa->raw)
2280 		return (SET_ERROR(EINVAL));
2281 
2282 	if (drror->drr_firstobj > rwa->max_object)
2283 		rwa->max_object = drror->drr_firstobj;
2284 
2285 	/*
2286 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2287 	 * so that the block of dnodes is not written out when it's empty,
2288 	 * and converted to a HOLE BP.
2289 	 */
2290 	rwa->or_crypt_params_present = B_TRUE;
2291 	rwa->or_firstobj = drror->drr_firstobj;
2292 	rwa->or_numslots = drror->drr_numslots;
2293 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2294 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2295 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2296 	rwa->or_byteorder = byteorder;
2297 
2298 	return (0);
2299 }
2300 
2301 /*
2302  * Until we have the ability to redact large ranges of data efficiently, we
2303  * process these records as frees.
2304  */
2305 noinline static int
2306 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2307 {
2308 	struct drr_free drrf = {0};
2309 	drrf.drr_length = drrr->drr_length;
2310 	drrf.drr_object = drrr->drr_object;
2311 	drrf.drr_offset = drrr->drr_offset;
2312 	drrf.drr_toguid = drrr->drr_toguid;
2313 	return (receive_free(rwa, &drrf));
2314 }
2315 
2316 /* used to destroy the drc_ds on error */
2317 static void
2318 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2319 {
2320 	dsl_dataset_t *ds = drc->drc_ds;
2321 	ds_hold_flags_t dsflags;
2322 
2323 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2324 	/*
2325 	 * Wait for the txg sync before cleaning up the receive. For
2326 	 * resumable receives, this ensures that our resume state has
2327 	 * been written out to disk. For raw receives, this ensures
2328 	 * that the user accounting code will not attempt to do anything
2329 	 * after we stopped receiving the dataset.
2330 	 */
2331 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2332 	ds->ds_objset->os_raw_receive = B_FALSE;
2333 
2334 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2335 	if (drc->drc_resumable && drc->drc_should_save &&
2336 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2337 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2338 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2339 	} else {
2340 		char name[ZFS_MAX_DATASET_NAME_LEN];
2341 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2342 		dsl_dataset_name(ds, name);
2343 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2344 		(void) dsl_destroy_head(name);
2345 	}
2346 }
2347 
2348 static void
2349 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2350 {
2351 	if (drc->drc_byteswap) {
2352 		(void) fletcher_4_incremental_byteswap(buf, len,
2353 		    &drc->drc_cksum);
2354 	} else {
2355 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2356 	}
2357 }
2358 
2359 /*
2360  * Read the payload into a buffer of size len, and update the current record's
2361  * payload field.
2362  * Allocate drc->drc_next_rrd and read the next record's header into
2363  * drc->drc_next_rrd->header.
2364  * Verify checksum of payload and next record.
2365  */
2366 static int
2367 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2368 {
2369 	int err;
2370 
2371 	if (len != 0) {
2372 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2373 		err = receive_read(drc, len, buf);
2374 		if (err != 0)
2375 			return (err);
2376 		receive_cksum(drc, len, buf);
2377 
2378 		/* note: rrd is NULL when reading the begin record's payload */
2379 		if (drc->drc_rrd != NULL) {
2380 			drc->drc_rrd->payload = buf;
2381 			drc->drc_rrd->payload_size = len;
2382 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2383 		}
2384 	} else {
2385 		ASSERT3P(buf, ==, NULL);
2386 	}
2387 
2388 	drc->drc_prev_cksum = drc->drc_cksum;
2389 
2390 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2391 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2392 	    &drc->drc_next_rrd->header);
2393 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2394 
2395 	if (err != 0) {
2396 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2397 		drc->drc_next_rrd = NULL;
2398 		return (err);
2399 	}
2400 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2401 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2402 		drc->drc_next_rrd = NULL;
2403 		return (SET_ERROR(EINVAL));
2404 	}
2405 
2406 	/*
2407 	 * Note: checksum is of everything up to but not including the
2408 	 * checksum itself.
2409 	 */
2410 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2411 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2412 	receive_cksum(drc,
2413 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2414 	    &drc->drc_next_rrd->header);
2415 
2416 	zio_cksum_t cksum_orig =
2417 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2418 	zio_cksum_t *cksump =
2419 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2420 
2421 	if (drc->drc_byteswap)
2422 		byteswap_record(&drc->drc_next_rrd->header);
2423 
2424 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2425 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2426 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2427 		drc->drc_next_rrd = NULL;
2428 		return (SET_ERROR(ECKSUM));
2429 	}
2430 
2431 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2432 
2433 	return (0);
2434 }
2435 
2436 /*
2437  * Issue the prefetch reads for any necessary indirect blocks.
2438  *
2439  * We use the object ignore list to tell us whether or not to issue prefetches
2440  * for a given object.  We do this for both correctness (in case the blocksize
2441  * of an object has changed) and performance (if the object doesn't exist, don't
2442  * needlessly try to issue prefetches).  We also trim the list as we go through
2443  * the stream to prevent it from growing to an unbounded size.
2444  *
2445  * The object numbers within will always be in sorted order, and any write
2446  * records we see will also be in sorted order, but they're not sorted with
2447  * respect to each other (i.e. we can get several object records before
2448  * receiving each object's write records).  As a result, once we've reached a
2449  * given object number, we can safely remove any reference to lower object
2450  * numbers in the ignore list. In practice, we receive up to 32 object records
2451  * before receiving write records, so the list can have up to 32 nodes in it.
2452  */
2453 static void
2454 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2455     uint64_t length)
2456 {
2457 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2458 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2459 		    ZIO_PRIORITY_SYNC_READ);
2460 	}
2461 }
2462 
2463 /*
2464  * Read records off the stream, issuing any necessary prefetches.
2465  */
2466 static int
2467 receive_read_record(dmu_recv_cookie_t *drc)
2468 {
2469 	int err;
2470 
2471 	switch (drc->drc_rrd->header.drr_type) {
2472 	case DRR_OBJECT:
2473 	{
2474 		struct drr_object *drro =
2475 		    &drc->drc_rrd->header.drr_u.drr_object;
2476 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2477 		void *buf = NULL;
2478 		dmu_object_info_t doi;
2479 
2480 		if (size != 0)
2481 			buf = kmem_zalloc(size, KM_SLEEP);
2482 
2483 		err = receive_read_payload_and_next_header(drc, size, buf);
2484 		if (err != 0) {
2485 			kmem_free(buf, size);
2486 			return (err);
2487 		}
2488 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2489 		/*
2490 		 * See receive_read_prefetch for an explanation why we're
2491 		 * storing this object in the ignore_obj_list.
2492 		 */
2493 		if (err == ENOENT || err == EEXIST ||
2494 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2495 			objlist_insert(drc->drc_ignore_objlist,
2496 			    drro->drr_object);
2497 			err = 0;
2498 		}
2499 		return (err);
2500 	}
2501 	case DRR_FREEOBJECTS:
2502 	{
2503 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2504 		return (err);
2505 	}
2506 	case DRR_WRITE:
2507 	{
2508 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2509 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2510 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2511 		err = receive_read_payload_and_next_header(drc, size,
2512 		    abd_to_buf(abd));
2513 		if (err != 0) {
2514 			abd_free(abd);
2515 			return (err);
2516 		}
2517 		drc->drc_rrd->abd = abd;
2518 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2519 		    drrw->drr_logical_size);
2520 		return (err);
2521 	}
2522 	case DRR_WRITE_EMBEDDED:
2523 	{
2524 		struct drr_write_embedded *drrwe =
2525 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2526 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2527 		void *buf = kmem_zalloc(size, KM_SLEEP);
2528 
2529 		err = receive_read_payload_and_next_header(drc, size, buf);
2530 		if (err != 0) {
2531 			kmem_free(buf, size);
2532 			return (err);
2533 		}
2534 
2535 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2536 		    drrwe->drr_length);
2537 		return (err);
2538 	}
2539 	case DRR_FREE:
2540 	case DRR_REDACT:
2541 	{
2542 		/*
2543 		 * It might be beneficial to prefetch indirect blocks here, but
2544 		 * we don't really have the data to decide for sure.
2545 		 */
2546 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2547 		return (err);
2548 	}
2549 	case DRR_END:
2550 	{
2551 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2552 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2553 		    drre->drr_checksum))
2554 			return (SET_ERROR(ECKSUM));
2555 		return (0);
2556 	}
2557 	case DRR_SPILL:
2558 	{
2559 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2560 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2561 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2562 		err = receive_read_payload_and_next_header(drc, size,
2563 		    abd_to_buf(abd));
2564 		if (err != 0)
2565 			abd_free(abd);
2566 		else
2567 			drc->drc_rrd->abd = abd;
2568 		return (err);
2569 	}
2570 	case DRR_OBJECT_RANGE:
2571 	{
2572 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2573 		return (err);
2574 
2575 	}
2576 	default:
2577 		return (SET_ERROR(EINVAL));
2578 	}
2579 }
2580 
2581 
2582 
2583 static void
2584 dprintf_drr(struct receive_record_arg *rrd, int err)
2585 {
2586 #ifdef ZFS_DEBUG
2587 	switch (rrd->header.drr_type) {
2588 	case DRR_OBJECT:
2589 	{
2590 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2591 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2592 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2593 		    "compress = %u dn_slots = %u err = %d\n",
2594 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2595 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2596 		    drro->drr_checksumtype, drro->drr_compress,
2597 		    drro->drr_dn_slots, err);
2598 		break;
2599 	}
2600 	case DRR_FREEOBJECTS:
2601 	{
2602 		struct drr_freeobjects *drrfo =
2603 		    &rrd->header.drr_u.drr_freeobjects;
2604 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2605 		    "numobjs = %llu err = %d\n",
2606 		    (u_longlong_t)drrfo->drr_firstobj,
2607 		    (u_longlong_t)drrfo->drr_numobjs, err);
2608 		break;
2609 	}
2610 	case DRR_WRITE:
2611 	{
2612 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2613 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2614 		    "lsize = %llu cksumtype = %u flags = %u "
2615 		    "compress = %u psize = %llu err = %d\n",
2616 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
2617 		    (u_longlong_t)drrw->drr_offset,
2618 		    (u_longlong_t)drrw->drr_logical_size,
2619 		    drrw->drr_checksumtype, drrw->drr_flags,
2620 		    drrw->drr_compressiontype,
2621 		    (u_longlong_t)drrw->drr_compressed_size, err);
2622 		break;
2623 	}
2624 	case DRR_WRITE_BYREF:
2625 	{
2626 		struct drr_write_byref *drrwbr =
2627 		    &rrd->header.drr_u.drr_write_byref;
2628 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2629 		    "length = %llu toguid = %llx refguid = %llx "
2630 		    "refobject = %llu refoffset = %llu cksumtype = %u "
2631 		    "flags = %u err = %d\n",
2632 		    (u_longlong_t)drrwbr->drr_object,
2633 		    (u_longlong_t)drrwbr->drr_offset,
2634 		    (u_longlong_t)drrwbr->drr_length,
2635 		    (u_longlong_t)drrwbr->drr_toguid,
2636 		    (u_longlong_t)drrwbr->drr_refguid,
2637 		    (u_longlong_t)drrwbr->drr_refobject,
2638 		    (u_longlong_t)drrwbr->drr_refoffset,
2639 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2640 		break;
2641 	}
2642 	case DRR_WRITE_EMBEDDED:
2643 	{
2644 		struct drr_write_embedded *drrwe =
2645 		    &rrd->header.drr_u.drr_write_embedded;
2646 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2647 		    "length = %llu compress = %u etype = %u lsize = %u "
2648 		    "psize = %u err = %d\n",
2649 		    (u_longlong_t)drrwe->drr_object,
2650 		    (u_longlong_t)drrwe->drr_offset,
2651 		    (u_longlong_t)drrwe->drr_length,
2652 		    drrwe->drr_compression, drrwe->drr_etype,
2653 		    drrwe->drr_lsize, drrwe->drr_psize, err);
2654 		break;
2655 	}
2656 	case DRR_FREE:
2657 	{
2658 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2659 		dprintf("drr_type = FREE obj = %llu offset = %llu "
2660 		    "length = %lld err = %d\n",
2661 		    (u_longlong_t)drrf->drr_object,
2662 		    (u_longlong_t)drrf->drr_offset,
2663 		    (longlong_t)drrf->drr_length,
2664 		    err);
2665 		break;
2666 	}
2667 	case DRR_SPILL:
2668 	{
2669 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2670 		dprintf("drr_type = SPILL obj = %llu length = %llu "
2671 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
2672 		    (u_longlong_t)drrs->drr_length, err);
2673 		break;
2674 	}
2675 	case DRR_OBJECT_RANGE:
2676 	{
2677 		struct drr_object_range *drror =
2678 		    &rrd->header.drr_u.drr_object_range;
2679 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2680 		    "numslots = %llu flags = %u err = %d\n",
2681 		    (u_longlong_t)drror->drr_firstobj,
2682 		    (u_longlong_t)drror->drr_numslots,
2683 		    drror->drr_flags, err);
2684 		break;
2685 	}
2686 	default:
2687 		return;
2688 	}
2689 #endif
2690 }
2691 
2692 /*
2693  * Commit the records to the pool.
2694  */
2695 static int
2696 receive_process_record(struct receive_writer_arg *rwa,
2697     struct receive_record_arg *rrd)
2698 {
2699 	int err;
2700 
2701 	/* Processing in order, therefore bytes_read should be increasing. */
2702 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2703 	rwa->bytes_read = rrd->bytes_read;
2704 
2705 	if (rrd->header.drr_type != DRR_WRITE) {
2706 		err = flush_write_batch(rwa);
2707 		if (err != 0) {
2708 			if (rrd->abd != NULL) {
2709 				abd_free(rrd->abd);
2710 				rrd->abd = NULL;
2711 				rrd->payload = NULL;
2712 			} else if (rrd->payload != NULL) {
2713 				kmem_free(rrd->payload, rrd->payload_size);
2714 				rrd->payload = NULL;
2715 			}
2716 
2717 			return (err);
2718 		}
2719 	}
2720 
2721 	switch (rrd->header.drr_type) {
2722 	case DRR_OBJECT:
2723 	{
2724 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2725 		err = receive_object(rwa, drro, rrd->payload);
2726 		kmem_free(rrd->payload, rrd->payload_size);
2727 		rrd->payload = NULL;
2728 		break;
2729 	}
2730 	case DRR_FREEOBJECTS:
2731 	{
2732 		struct drr_freeobjects *drrfo =
2733 		    &rrd->header.drr_u.drr_freeobjects;
2734 		err = receive_freeobjects(rwa, drrfo);
2735 		break;
2736 	}
2737 	case DRR_WRITE:
2738 	{
2739 		err = receive_process_write_record(rwa, rrd);
2740 		if (err != EAGAIN) {
2741 			/*
2742 			 * On success, receive_process_write_record() returns
2743 			 * EAGAIN to indicate that we do not want to free
2744 			 * the rrd or arc_buf.
2745 			 */
2746 			ASSERT(err != 0);
2747 			abd_free(rrd->abd);
2748 			rrd->abd = NULL;
2749 		}
2750 		break;
2751 	}
2752 	case DRR_WRITE_EMBEDDED:
2753 	{
2754 		struct drr_write_embedded *drrwe =
2755 		    &rrd->header.drr_u.drr_write_embedded;
2756 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2757 		kmem_free(rrd->payload, rrd->payload_size);
2758 		rrd->payload = NULL;
2759 		break;
2760 	}
2761 	case DRR_FREE:
2762 	{
2763 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2764 		err = receive_free(rwa, drrf);
2765 		break;
2766 	}
2767 	case DRR_SPILL:
2768 	{
2769 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2770 		err = receive_spill(rwa, drrs, rrd->abd);
2771 		if (err != 0)
2772 			abd_free(rrd->abd);
2773 		rrd->abd = NULL;
2774 		rrd->payload = NULL;
2775 		break;
2776 	}
2777 	case DRR_OBJECT_RANGE:
2778 	{
2779 		struct drr_object_range *drror =
2780 		    &rrd->header.drr_u.drr_object_range;
2781 		err = receive_object_range(rwa, drror);
2782 		break;
2783 	}
2784 	case DRR_REDACT:
2785 	{
2786 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2787 		err = receive_redact(rwa, drrr);
2788 		break;
2789 	}
2790 	default:
2791 		err = (SET_ERROR(EINVAL));
2792 	}
2793 
2794 	if (err != 0)
2795 		dprintf_drr(rrd, err);
2796 
2797 	return (err);
2798 }
2799 
2800 /*
2801  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2802  * receive_process_record  When we're done, signal the main thread and exit.
2803  */
2804 static __attribute__((noreturn)) void
2805 receive_writer_thread(void *arg)
2806 {
2807 	struct receive_writer_arg *rwa = arg;
2808 	struct receive_record_arg *rrd;
2809 	fstrans_cookie_t cookie = spl_fstrans_mark();
2810 
2811 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2812 	    rrd = bqueue_dequeue(&rwa->q)) {
2813 		/*
2814 		 * If there's an error, the main thread will stop putting things
2815 		 * on the queue, but we need to clear everything in it before we
2816 		 * can exit.
2817 		 */
2818 		int err = 0;
2819 		if (rwa->err == 0) {
2820 			err = receive_process_record(rwa, rrd);
2821 		} else if (rrd->abd != NULL) {
2822 			abd_free(rrd->abd);
2823 			rrd->abd = NULL;
2824 			rrd->payload = NULL;
2825 		} else if (rrd->payload != NULL) {
2826 			kmem_free(rrd->payload, rrd->payload_size);
2827 			rrd->payload = NULL;
2828 		}
2829 		/*
2830 		 * EAGAIN indicates that this record has been saved (on
2831 		 * raw->write_batch), and will be used again, so we don't
2832 		 * free it.
2833 		 */
2834 		if (err != EAGAIN) {
2835 			if (rwa->err == 0)
2836 				rwa->err = err;
2837 			kmem_free(rrd, sizeof (*rrd));
2838 		}
2839 	}
2840 	kmem_free(rrd, sizeof (*rrd));
2841 
2842 	int err = flush_write_batch(rwa);
2843 	if (rwa->err == 0)
2844 		rwa->err = err;
2845 
2846 	mutex_enter(&rwa->mutex);
2847 	rwa->done = B_TRUE;
2848 	cv_signal(&rwa->cv);
2849 	mutex_exit(&rwa->mutex);
2850 	spl_fstrans_unmark(cookie);
2851 	thread_exit();
2852 }
2853 
2854 static int
2855 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
2856 {
2857 	uint64_t val;
2858 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2859 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
2860 	uint64_t resume_obj, resume_off;
2861 
2862 	if (nvlist_lookup_uint64(begin_nvl,
2863 	    "resume_object", &resume_obj) != 0 ||
2864 	    nvlist_lookup_uint64(begin_nvl,
2865 	    "resume_offset", &resume_off) != 0) {
2866 		return (SET_ERROR(EINVAL));
2867 	}
2868 	VERIFY0(zap_lookup(mos, dsobj,
2869 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2870 	if (resume_obj != val)
2871 		return (SET_ERROR(EINVAL));
2872 	VERIFY0(zap_lookup(mos, dsobj,
2873 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2874 	if (resume_off != val)
2875 		return (SET_ERROR(EINVAL));
2876 
2877 	return (0);
2878 }
2879 
2880 /*
2881  * Read in the stream's records, one by one, and apply them to the pool.  There
2882  * are two threads involved; the thread that calls this function will spin up a
2883  * worker thread, read the records off the stream one by one, and issue
2884  * prefetches for any necessary indirect blocks.  It will then push the records
2885  * onto an internal blocking queue.  The worker thread will pull the records off
2886  * the queue, and actually write the data into the DMU.  This way, the worker
2887  * thread doesn't have to wait for reads to complete, since everything it needs
2888  * (the indirect blocks) will be prefetched.
2889  *
2890  * NB: callers *must* call dmu_recv_end() if this succeeds.
2891  */
2892 int
2893 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
2894 {
2895 	int err = 0;
2896 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2897 
2898 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
2899 		uint64_t bytes = 0;
2900 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2901 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2902 		    sizeof (bytes), 1, &bytes);
2903 		drc->drc_bytes_read += bytes;
2904 	}
2905 
2906 	drc->drc_ignore_objlist = objlist_create();
2907 
2908 	/* these were verified in dmu_recv_begin */
2909 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2910 	    DMU_SUBSTREAM);
2911 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2912 
2913 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2914 	ASSERT0(drc->drc_os->os_encrypted &&
2915 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2916 
2917 	/* handle DSL encryption key payload */
2918 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
2919 		nvlist_t *keynvl = NULL;
2920 
2921 		ASSERT(drc->drc_os->os_encrypted);
2922 		ASSERT(drc->drc_raw);
2923 
2924 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2925 		    &keynvl);
2926 		if (err != 0)
2927 			goto out;
2928 
2929 		/*
2930 		 * If this is a new dataset we set the key immediately.
2931 		 * Otherwise we don't want to change the key until we
2932 		 * are sure the rest of the receive succeeded so we stash
2933 		 * the keynvl away until then.
2934 		 */
2935 		err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
2936 		    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2937 		    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2938 		if (err != 0)
2939 			goto out;
2940 
2941 		/* see comment in dmu_recv_end_sync() */
2942 		drc->drc_ivset_guid = 0;
2943 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2944 		    &drc->drc_ivset_guid);
2945 
2946 		if (!drc->drc_newfs)
2947 			drc->drc_keynvl = fnvlist_dup(keynvl);
2948 	}
2949 
2950 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2951 		err = resume_check(drc, drc->drc_begin_nvl);
2952 		if (err != 0)
2953 			goto out;
2954 	}
2955 
2956 	/*
2957 	 * If we failed before this point we will clean up any new resume
2958 	 * state that was created. Now that we've gotten past the initial
2959 	 * checks we are ok to retain that resume state.
2960 	 */
2961 	drc->drc_should_save = B_TRUE;
2962 
2963 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
2964 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2965 	    offsetof(struct receive_record_arg, node));
2966 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2967 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
2968 	rwa->os = drc->drc_os;
2969 	rwa->byteswap = drc->drc_byteswap;
2970 	rwa->resumable = drc->drc_resumable;
2971 	rwa->raw = drc->drc_raw;
2972 	rwa->spill = drc->drc_spill;
2973 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
2974 	rwa->os->os_raw_receive = drc->drc_raw;
2975 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2976 	    offsetof(struct receive_record_arg, node.bqn_node));
2977 
2978 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2979 	    TS_RUN, minclsyspri);
2980 	/*
2981 	 * We're reading rwa->err without locks, which is safe since we are the
2982 	 * only reader, and the worker thread is the only writer.  It's ok if we
2983 	 * miss a write for an iteration or two of the loop, since the writer
2984 	 * thread will keep freeing records we send it until we send it an eos
2985 	 * marker.
2986 	 *
2987 	 * We can leave this loop in 3 ways:  First, if rwa->err is
2988 	 * non-zero.  In that case, the writer thread will free the rrd we just
2989 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2990 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
2991 	 * drc->drc_rrd has been handed off to the writer thread who will free
2992 	 * it.  Finally, if receive_read_record fails or we're at the end of the
2993 	 * stream, then we free drc->drc_rrd and exit.
2994 	 */
2995 	while (rwa->err == 0) {
2996 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2997 			err = SET_ERROR(EINTR);
2998 			break;
2999 		}
3000 
3001 		ASSERT3P(drc->drc_rrd, ==, NULL);
3002 		drc->drc_rrd = drc->drc_next_rrd;
3003 		drc->drc_next_rrd = NULL;
3004 		/* Allocates and loads header into drc->drc_next_rrd */
3005 		err = receive_read_record(drc);
3006 
3007 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3008 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3009 			drc->drc_rrd = NULL;
3010 			break;
3011 		}
3012 
3013 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3014 		    sizeof (struct receive_record_arg) +
3015 		    drc->drc_rrd->payload_size);
3016 		drc->drc_rrd = NULL;
3017 	}
3018 
3019 	ASSERT3P(drc->drc_rrd, ==, NULL);
3020 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3021 	drc->drc_rrd->eos_marker = B_TRUE;
3022 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3023 
3024 	mutex_enter(&rwa->mutex);
3025 	while (!rwa->done) {
3026 		/*
3027 		 * We need to use cv_wait_sig() so that any process that may
3028 		 * be sleeping here can still fork.
3029 		 */
3030 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3031 	}
3032 	mutex_exit(&rwa->mutex);
3033 
3034 	/*
3035 	 * If we are receiving a full stream as a clone, all object IDs which
3036 	 * are greater than the maximum ID referenced in the stream are
3037 	 * by definition unused and must be freed.
3038 	 */
3039 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3040 		uint64_t obj = rwa->max_object + 1;
3041 		int free_err = 0;
3042 		int next_err = 0;
3043 
3044 		while (next_err == 0) {
3045 			free_err = dmu_free_long_object(rwa->os, obj);
3046 			if (free_err != 0 && free_err != ENOENT)
3047 				break;
3048 
3049 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3050 		}
3051 
3052 		if (err == 0) {
3053 			if (free_err != 0 && free_err != ENOENT)
3054 				err = free_err;
3055 			else if (next_err != ESRCH)
3056 				err = next_err;
3057 		}
3058 	}
3059 
3060 	cv_destroy(&rwa->cv);
3061 	mutex_destroy(&rwa->mutex);
3062 	bqueue_destroy(&rwa->q);
3063 	list_destroy(&rwa->write_batch);
3064 	if (err == 0)
3065 		err = rwa->err;
3066 
3067 out:
3068 	/*
3069 	 * If we hit an error before we started the receive_writer_thread
3070 	 * we need to clean up the next_rrd we create by processing the
3071 	 * DRR_BEGIN record.
3072 	 */
3073 	if (drc->drc_next_rrd != NULL)
3074 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3075 
3076 	/*
3077 	 * The objset will be invalidated by dmu_recv_end() when we do
3078 	 * dsl_dataset_clone_swap_sync_impl().
3079 	 */
3080 	drc->drc_os = NULL;
3081 
3082 	kmem_free(rwa, sizeof (*rwa));
3083 	nvlist_free(drc->drc_begin_nvl);
3084 
3085 	if (err != 0) {
3086 		/*
3087 		 * Clean up references. If receive is not resumable,
3088 		 * destroy what we created, so we don't leave it in
3089 		 * the inconsistent state.
3090 		 */
3091 		dmu_recv_cleanup_ds(drc);
3092 		nvlist_free(drc->drc_keynvl);
3093 	}
3094 
3095 	objlist_destroy(drc->drc_ignore_objlist);
3096 	drc->drc_ignore_objlist = NULL;
3097 	*voffp = drc->drc_voff;
3098 	return (err);
3099 }
3100 
3101 static int
3102 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3103 {
3104 	dmu_recv_cookie_t *drc = arg;
3105 	dsl_pool_t *dp = dmu_tx_pool(tx);
3106 	int error;
3107 
3108 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3109 
3110 	if (!drc->drc_newfs) {
3111 		dsl_dataset_t *origin_head;
3112 
3113 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3114 		if (error != 0)
3115 			return (error);
3116 		if (drc->drc_force) {
3117 			/*
3118 			 * We will destroy any snapshots in tofs (i.e. before
3119 			 * origin_head) that are after the origin (which is
3120 			 * the snap before drc_ds, because drc_ds can not
3121 			 * have any snaps of its own).
3122 			 */
3123 			uint64_t obj;
3124 
3125 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3126 			while (obj !=
3127 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3128 				dsl_dataset_t *snap;
3129 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3130 				    &snap);
3131 				if (error != 0)
3132 					break;
3133 				if (snap->ds_dir != origin_head->ds_dir)
3134 					error = SET_ERROR(EINVAL);
3135 				if (error == 0)  {
3136 					error = dsl_destroy_snapshot_check_impl(
3137 					    snap, B_FALSE);
3138 				}
3139 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3140 				dsl_dataset_rele(snap, FTAG);
3141 				if (error != 0)
3142 					break;
3143 			}
3144 			if (error != 0) {
3145 				dsl_dataset_rele(origin_head, FTAG);
3146 				return (error);
3147 			}
3148 		}
3149 		if (drc->drc_keynvl != NULL) {
3150 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3151 			    drc->drc_keynvl, tx);
3152 			if (error != 0) {
3153 				dsl_dataset_rele(origin_head, FTAG);
3154 				return (error);
3155 			}
3156 		}
3157 
3158 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3159 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3160 		if (error != 0) {
3161 			dsl_dataset_rele(origin_head, FTAG);
3162 			return (error);
3163 		}
3164 		error = dsl_dataset_snapshot_check_impl(origin_head,
3165 		    drc->drc_tosnap, tx, B_TRUE, 1,
3166 		    drc->drc_cred, drc->drc_proc);
3167 		dsl_dataset_rele(origin_head, FTAG);
3168 		if (error != 0)
3169 			return (error);
3170 
3171 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3172 	} else {
3173 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3174 		    drc->drc_tosnap, tx, B_TRUE, 1,
3175 		    drc->drc_cred, drc->drc_proc);
3176 	}
3177 	return (error);
3178 }
3179 
3180 static void
3181 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3182 {
3183 	dmu_recv_cookie_t *drc = arg;
3184 	dsl_pool_t *dp = dmu_tx_pool(tx);
3185 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3186 	uint64_t newsnapobj;
3187 
3188 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3189 	    tx, "snap=%s", drc->drc_tosnap);
3190 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3191 
3192 	if (!drc->drc_newfs) {
3193 		dsl_dataset_t *origin_head;
3194 
3195 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3196 		    &origin_head));
3197 
3198 		if (drc->drc_force) {
3199 			/*
3200 			 * Destroy any snapshots of drc_tofs (origin_head)
3201 			 * after the origin (the snap before drc_ds).
3202 			 */
3203 			uint64_t obj;
3204 
3205 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3206 			while (obj !=
3207 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3208 				dsl_dataset_t *snap;
3209 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3210 				    &snap));
3211 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3212 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3213 				dsl_destroy_snapshot_sync_impl(snap,
3214 				    B_FALSE, tx);
3215 				dsl_dataset_rele(snap, FTAG);
3216 			}
3217 		}
3218 		if (drc->drc_keynvl != NULL) {
3219 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3220 			    drc->drc_keynvl, tx);
3221 			nvlist_free(drc->drc_keynvl);
3222 			drc->drc_keynvl = NULL;
3223 		}
3224 
3225 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3226 		    origin_head->ds_prev);
3227 
3228 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3229 		    origin_head, tx);
3230 		/*
3231 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3232 		 * so drc_os is no longer valid.
3233 		 */
3234 		drc->drc_os = NULL;
3235 
3236 		dsl_dataset_snapshot_sync_impl(origin_head,
3237 		    drc->drc_tosnap, tx);
3238 
3239 		/* set snapshot's creation time and guid */
3240 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3241 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3242 		    drc->drc_drrb->drr_creation_time;
3243 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3244 		    drc->drc_drrb->drr_toguid;
3245 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3246 		    ~DS_FLAG_INCONSISTENT;
3247 
3248 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3249 		dsl_dataset_phys(origin_head)->ds_flags &=
3250 		    ~DS_FLAG_INCONSISTENT;
3251 
3252 		newsnapobj =
3253 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3254 
3255 		dsl_dataset_rele(origin_head, FTAG);
3256 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3257 
3258 		if (drc->drc_owner != NULL)
3259 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3260 	} else {
3261 		dsl_dataset_t *ds = drc->drc_ds;
3262 
3263 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3264 
3265 		/* set snapshot's creation time and guid */
3266 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3267 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3268 		    drc->drc_drrb->drr_creation_time;
3269 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3270 		    drc->drc_drrb->drr_toguid;
3271 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3272 		    ~DS_FLAG_INCONSISTENT;
3273 
3274 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3275 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3276 		if (dsl_dataset_has_resume_receive_state(ds)) {
3277 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3278 			    DS_FIELD_RESUME_FROMGUID, tx);
3279 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3280 			    DS_FIELD_RESUME_OBJECT, tx);
3281 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3282 			    DS_FIELD_RESUME_OFFSET, tx);
3283 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3284 			    DS_FIELD_RESUME_BYTES, tx);
3285 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3286 			    DS_FIELD_RESUME_TOGUID, tx);
3287 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3288 			    DS_FIELD_RESUME_TONAME, tx);
3289 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3290 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3291 		}
3292 		newsnapobj =
3293 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3294 	}
3295 
3296 	/*
3297 	 * If this is a raw receive, the crypt_keydata nvlist will include
3298 	 * a to_ivset_guid for us to set on the new snapshot. This value
3299 	 * will override the value generated by the snapshot code. However,
3300 	 * this value may not be present, because older implementations of
3301 	 * the raw send code did not include this value, and we are still
3302 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3303 	 * tunable is set, in which case we will leave the newly-generated
3304 	 * value.
3305 	 */
3306 	if (drc->drc_raw && drc->drc_ivset_guid != 0) {
3307 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3308 		    DMU_OT_DSL_DATASET, tx);
3309 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3310 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3311 		    &drc->drc_ivset_guid, tx));
3312 	}
3313 
3314 	/*
3315 	 * Release the hold from dmu_recv_begin.  This must be done before
3316 	 * we return to open context, so that when we free the dataset's dnode
3317 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3318 	 * at this point (and therefore won't have a valid pointer to the spa)
3319 	 * we release the key mapping manually here while we do have a valid
3320 	 * pointer, if it exists.
3321 	 */
3322 	if (!drc->drc_raw && encrypted) {
3323 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3324 		    drc->drc_ds->ds_object, drc->drc_ds);
3325 	}
3326 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3327 	drc->drc_ds = NULL;
3328 }
3329 
3330 static int dmu_recv_end_modified_blocks = 3;
3331 
3332 static int
3333 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3334 {
3335 #ifdef _KERNEL
3336 	/*
3337 	 * We will be destroying the ds; make sure its origin is unmounted if
3338 	 * necessary.
3339 	 */
3340 	char name[ZFS_MAX_DATASET_NAME_LEN];
3341 	dsl_dataset_name(drc->drc_ds, name);
3342 	zfs_destroy_unmount_origin(name);
3343 #endif
3344 
3345 	return (dsl_sync_task(drc->drc_tofs,
3346 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3347 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3348 }
3349 
3350 static int
3351 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3352 {
3353 	return (dsl_sync_task(drc->drc_tofs,
3354 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3355 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3356 }
3357 
3358 int
3359 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3360 {
3361 	int error;
3362 
3363 	drc->drc_owner = owner;
3364 
3365 	if (drc->drc_newfs)
3366 		error = dmu_recv_new_end(drc);
3367 	else
3368 		error = dmu_recv_existing_end(drc);
3369 
3370 	if (error != 0) {
3371 		dmu_recv_cleanup_ds(drc);
3372 		nvlist_free(drc->drc_keynvl);
3373 	} else {
3374 		if (drc->drc_newfs) {
3375 			zvol_create_minor(drc->drc_tofs);
3376 		}
3377 		char *snapname = kmem_asprintf("%s@%s",
3378 		    drc->drc_tofs, drc->drc_tosnap);
3379 		zvol_create_minor(snapname);
3380 		kmem_strfree(snapname);
3381 	}
3382 	return (error);
3383 }
3384 
3385 /*
3386  * Return TRUE if this objset is currently being received into.
3387  */
3388 boolean_t
3389 dmu_objset_is_receiving(objset_t *os)
3390 {
3391 	return (os->os_dsl_dataset != NULL &&
3392 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3393 }
3394 
3395 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3396 	"Maximum receive queue length");
3397 
3398 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3399 	"Receive queue fill fraction");
3400 
3401 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3402 	"Maximum amount of writes to batch into one transaction");
3403