1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_recv.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dbuf.h> 38 #include <sys/dnode.h> 39 #include <sys/zfs_context.h> 40 #include <sys/dmu_objset.h> 41 #include <sys/dmu_traverse.h> 42 #include <sys/dsl_dataset.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_pool.h> 46 #include <sys/dsl_synctask.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zvol.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/zfs_znode.h> 52 #include <zfs_fletcher.h> 53 #include <sys/avl.h> 54 #include <sys/ddt.h> 55 #include <sys/zfs_onexit.h> 56 #include <sys/dsl_destroy.h> 57 #include <sys/blkptr.h> 58 #include <sys/dsl_bookmark.h> 59 #include <sys/zfeature.h> 60 #include <sys/bqueue.h> 61 #include <sys/objlist.h> 62 #ifdef _KERNEL 63 #include <sys/zfs_vfsops.h> 64 #endif 65 #include <sys/zfs_file.h> 66 67 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 68 static int zfs_recv_queue_ff = 20; 69 static int zfs_recv_write_batch_size = 1024 * 1024; 70 71 static const void *const dmu_recv_tag = "dmu_recv_tag"; 72 const char *const recv_clone_name = "%recv"; 73 74 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 75 void *buf); 76 77 struct receive_record_arg { 78 dmu_replay_record_t header; 79 void *payload; /* Pointer to a buffer containing the payload */ 80 /* 81 * If the record is a WRITE or SPILL, pointer to the abd containing the 82 * payload. 83 */ 84 abd_t *abd; 85 int payload_size; 86 uint64_t bytes_read; /* bytes read from stream when record created */ 87 boolean_t eos_marker; /* Marks the end of the stream */ 88 bqueue_node_t node; 89 }; 90 91 struct receive_writer_arg { 92 objset_t *os; 93 boolean_t byteswap; 94 bqueue_t q; 95 96 /* 97 * These three members are used to signal to the main thread when 98 * we're done. 99 */ 100 kmutex_t mutex; 101 kcondvar_t cv; 102 boolean_t done; 103 104 int err; 105 boolean_t resumable; 106 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 107 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 108 boolean_t full; /* this is a full send stream */ 109 uint64_t last_object; 110 uint64_t last_offset; 111 uint64_t max_object; /* highest object ID referenced in stream */ 112 uint64_t bytes_read; /* bytes read when current record created */ 113 114 list_t write_batch; 115 116 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 117 boolean_t or_crypt_params_present; 118 uint64_t or_firstobj; 119 uint64_t or_numslots; 120 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 121 uint8_t or_iv[ZIO_DATA_IV_LEN]; 122 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 123 boolean_t or_byteorder; 124 }; 125 126 typedef struct dmu_recv_begin_arg { 127 const char *drba_origin; 128 dmu_recv_cookie_t *drba_cookie; 129 cred_t *drba_cred; 130 proc_t *drba_proc; 131 dsl_crypto_params_t *drba_dcp; 132 } dmu_recv_begin_arg_t; 133 134 static void 135 byteswap_record(dmu_replay_record_t *drr) 136 { 137 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 138 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 139 drr->drr_type = BSWAP_32(drr->drr_type); 140 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 141 142 switch (drr->drr_type) { 143 case DRR_BEGIN: 144 DO64(drr_begin.drr_magic); 145 DO64(drr_begin.drr_versioninfo); 146 DO64(drr_begin.drr_creation_time); 147 DO32(drr_begin.drr_type); 148 DO32(drr_begin.drr_flags); 149 DO64(drr_begin.drr_toguid); 150 DO64(drr_begin.drr_fromguid); 151 break; 152 case DRR_OBJECT: 153 DO64(drr_object.drr_object); 154 DO32(drr_object.drr_type); 155 DO32(drr_object.drr_bonustype); 156 DO32(drr_object.drr_blksz); 157 DO32(drr_object.drr_bonuslen); 158 DO32(drr_object.drr_raw_bonuslen); 159 DO64(drr_object.drr_toguid); 160 DO64(drr_object.drr_maxblkid); 161 break; 162 case DRR_FREEOBJECTS: 163 DO64(drr_freeobjects.drr_firstobj); 164 DO64(drr_freeobjects.drr_numobjs); 165 DO64(drr_freeobjects.drr_toguid); 166 break; 167 case DRR_WRITE: 168 DO64(drr_write.drr_object); 169 DO32(drr_write.drr_type); 170 DO64(drr_write.drr_offset); 171 DO64(drr_write.drr_logical_size); 172 DO64(drr_write.drr_toguid); 173 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 174 DO64(drr_write.drr_key.ddk_prop); 175 DO64(drr_write.drr_compressed_size); 176 break; 177 case DRR_WRITE_EMBEDDED: 178 DO64(drr_write_embedded.drr_object); 179 DO64(drr_write_embedded.drr_offset); 180 DO64(drr_write_embedded.drr_length); 181 DO64(drr_write_embedded.drr_toguid); 182 DO32(drr_write_embedded.drr_lsize); 183 DO32(drr_write_embedded.drr_psize); 184 break; 185 case DRR_FREE: 186 DO64(drr_free.drr_object); 187 DO64(drr_free.drr_offset); 188 DO64(drr_free.drr_length); 189 DO64(drr_free.drr_toguid); 190 break; 191 case DRR_SPILL: 192 DO64(drr_spill.drr_object); 193 DO64(drr_spill.drr_length); 194 DO64(drr_spill.drr_toguid); 195 DO64(drr_spill.drr_compressed_size); 196 DO32(drr_spill.drr_type); 197 break; 198 case DRR_OBJECT_RANGE: 199 DO64(drr_object_range.drr_firstobj); 200 DO64(drr_object_range.drr_numslots); 201 DO64(drr_object_range.drr_toguid); 202 break; 203 case DRR_REDACT: 204 DO64(drr_redact.drr_object); 205 DO64(drr_redact.drr_offset); 206 DO64(drr_redact.drr_length); 207 DO64(drr_redact.drr_toguid); 208 break; 209 case DRR_END: 210 DO64(drr_end.drr_toguid); 211 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 212 break; 213 default: 214 break; 215 } 216 217 if (drr->drr_type != DRR_BEGIN) { 218 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 219 } 220 221 #undef DO64 222 #undef DO32 223 } 224 225 static boolean_t 226 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 227 { 228 for (int i = 0; i < num_snaps; i++) { 229 if (snaps[i] == guid) 230 return (B_TRUE); 231 } 232 return (B_FALSE); 233 } 234 235 /* 236 * Check that the new stream we're trying to receive is redacted with respect to 237 * a subset of the snapshots that the origin was redacted with respect to. For 238 * the reasons behind this, see the man page on redacted zfs sends and receives. 239 */ 240 static boolean_t 241 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 242 uint64_t *redact_snaps, uint64_t num_redact_snaps) 243 { 244 /* 245 * Short circuit the comparison; if we are redacted with respect to 246 * more snapshots than the origin, we can't be redacted with respect 247 * to a subset. 248 */ 249 if (num_redact_snaps > origin_num_snaps) { 250 return (B_FALSE); 251 } 252 253 for (int i = 0; i < num_redact_snaps; i++) { 254 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 255 redact_snaps[i])) { 256 return (B_FALSE); 257 } 258 } 259 return (B_TRUE); 260 } 261 262 static boolean_t 263 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 264 { 265 uint64_t *origin_snaps; 266 uint64_t origin_num_snaps; 267 dmu_recv_cookie_t *drc = drba->drba_cookie; 268 struct drr_begin *drrb = drc->drc_drrb; 269 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 270 int err = 0; 271 boolean_t ret = B_TRUE; 272 uint64_t *redact_snaps; 273 uint_t numredactsnaps; 274 275 /* 276 * If this is a full send stream, we're safe no matter what. 277 */ 278 if (drrb->drr_fromguid == 0) 279 return (ret); 280 281 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 282 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 283 284 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 285 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 286 0) { 287 /* 288 * If the send stream was sent from the redaction bookmark or 289 * the redacted version of the dataset, then we're safe. Verify 290 * that this is from the a compatible redaction bookmark or 291 * redacted dataset. 292 */ 293 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 294 redact_snaps, numredactsnaps)) { 295 err = EINVAL; 296 } 297 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 298 /* 299 * If the stream is redacted, it must be redacted with respect 300 * to a subset of what the origin is redacted with respect to. 301 * See case number 2 in the zfs man page section on redacted zfs 302 * send. 303 */ 304 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 305 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 306 307 if (err != 0 || !compatible_redact_snaps(origin_snaps, 308 origin_num_snaps, redact_snaps, numredactsnaps)) { 309 err = EINVAL; 310 } 311 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 312 drrb->drr_toguid)) { 313 /* 314 * If the stream isn't redacted but the origin is, this must be 315 * one of the snapshots the origin is redacted with respect to. 316 * See case number 1 in the zfs man page section on redacted zfs 317 * send. 318 */ 319 err = EINVAL; 320 } 321 322 if (err != 0) 323 ret = B_FALSE; 324 return (ret); 325 } 326 327 /* 328 * If we previously received a stream with --large-block, we don't support 329 * receiving an incremental on top of it without --large-block. This avoids 330 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 331 * records. 332 */ 333 static int 334 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 335 { 336 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 337 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 338 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 339 return (0); 340 } 341 342 static int 343 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 344 uint64_t fromguid, uint64_t featureflags) 345 { 346 uint64_t val; 347 uint64_t children; 348 int error; 349 dsl_pool_t *dp = ds->ds_dir->dd_pool; 350 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 351 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 352 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 353 354 /* Temporary clone name must not exist. */ 355 error = zap_lookup(dp->dp_meta_objset, 356 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 357 8, 1, &val); 358 if (error != ENOENT) 359 return (error == 0 ? SET_ERROR(EBUSY) : error); 360 361 /* Resume state must not be set. */ 362 if (dsl_dataset_has_resume_receive_state(ds)) 363 return (SET_ERROR(EBUSY)); 364 365 /* New snapshot name must not exist. */ 366 error = zap_lookup(dp->dp_meta_objset, 367 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 368 drba->drba_cookie->drc_tosnap, 8, 1, &val); 369 if (error != ENOENT) 370 return (error == 0 ? SET_ERROR(EEXIST) : error); 371 372 /* Must not have children if receiving a ZVOL. */ 373 error = zap_count(dp->dp_meta_objset, 374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 375 if (error != 0) 376 return (error); 377 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 378 children > 0) 379 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 380 381 /* 382 * Check snapshot limit before receiving. We'll recheck again at the 383 * end, but might as well abort before receiving if we're already over 384 * the limit. 385 * 386 * Note that we do not check the file system limit with 387 * dsl_dir_fscount_check because the temporary %clones don't count 388 * against that limit. 389 */ 390 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 391 NULL, drba->drba_cred, drba->drba_proc); 392 if (error != 0) 393 return (error); 394 395 if (fromguid != 0) { 396 dsl_dataset_t *snap; 397 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 398 399 /* Can't perform a raw receive on top of a non-raw receive */ 400 if (!encrypted && raw) 401 return (SET_ERROR(EINVAL)); 402 403 /* Encryption is incompatible with embedded data */ 404 if (encrypted && embed) 405 return (SET_ERROR(EINVAL)); 406 407 /* Find snapshot in this dir that matches fromguid. */ 408 while (obj != 0) { 409 error = dsl_dataset_hold_obj(dp, obj, FTAG, 410 &snap); 411 if (error != 0) 412 return (SET_ERROR(ENODEV)); 413 if (snap->ds_dir != ds->ds_dir) { 414 dsl_dataset_rele(snap, FTAG); 415 return (SET_ERROR(ENODEV)); 416 } 417 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 418 break; 419 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 420 dsl_dataset_rele(snap, FTAG); 421 } 422 if (obj == 0) 423 return (SET_ERROR(ENODEV)); 424 425 if (drba->drba_cookie->drc_force) { 426 drba->drba_cookie->drc_fromsnapobj = obj; 427 } else { 428 /* 429 * If we are not forcing, there must be no 430 * changes since fromsnap. Raw sends have an 431 * additional constraint that requires that 432 * no "noop" snapshots exist between fromsnap 433 * and tosnap for the IVset checking code to 434 * work properly. 435 */ 436 if (dsl_dataset_modified_since_snap(ds, snap) || 437 (raw && 438 dsl_dataset_phys(ds)->ds_prev_snap_obj != 439 snap->ds_object)) { 440 dsl_dataset_rele(snap, FTAG); 441 return (SET_ERROR(ETXTBSY)); 442 } 443 drba->drba_cookie->drc_fromsnapobj = 444 ds->ds_prev->ds_object; 445 } 446 447 if (dsl_dataset_feature_is_active(snap, 448 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 449 snap)) { 450 dsl_dataset_rele(snap, FTAG); 451 return (SET_ERROR(EINVAL)); 452 } 453 454 error = recv_check_large_blocks(snap, featureflags); 455 if (error != 0) { 456 dsl_dataset_rele(snap, FTAG); 457 return (error); 458 } 459 460 dsl_dataset_rele(snap, FTAG); 461 } else { 462 /* if full, then must be forced */ 463 if (!drba->drba_cookie->drc_force) 464 return (SET_ERROR(EEXIST)); 465 466 /* 467 * We don't support using zfs recv -F to blow away 468 * encrypted filesystems. This would require the 469 * dsl dir to point to the old encryption key and 470 * the new one at the same time during the receive. 471 */ 472 if ((!encrypted && raw) || encrypted) 473 return (SET_ERROR(EINVAL)); 474 475 /* 476 * Perform the same encryption checks we would if 477 * we were creating a new dataset from scratch. 478 */ 479 if (!raw) { 480 boolean_t will_encrypt; 481 482 error = dmu_objset_create_crypt_check( 483 ds->ds_dir->dd_parent, drba->drba_dcp, 484 &will_encrypt); 485 if (error != 0) 486 return (error); 487 488 if (will_encrypt && embed) 489 return (SET_ERROR(EINVAL)); 490 } 491 } 492 493 return (0); 494 } 495 496 /* 497 * Check that any feature flags used in the data stream we're receiving are 498 * supported by the pool we are receiving into. 499 * 500 * Note that some of the features we explicitly check here have additional 501 * (implicit) features they depend on, but those dependencies are enforced 502 * through the zfeature_register() calls declaring the features that we 503 * explicitly check. 504 */ 505 static int 506 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 507 { 508 /* 509 * Check if there are any unsupported feature flags. 510 */ 511 if (!DMU_STREAM_SUPPORTED(featureflags)) { 512 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 513 } 514 515 /* Verify pool version supports SA if SA_SPILL feature set */ 516 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 517 spa_version(spa) < SPA_VERSION_SA) 518 return (SET_ERROR(ENOTSUP)); 519 520 /* 521 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 522 * and large_dnodes in the stream can only be used if those pool 523 * features are enabled because we don't attempt to decompress / 524 * un-embed / un-mooch / split up the blocks / dnodes during the 525 * receive process. 526 */ 527 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 528 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 529 return (SET_ERROR(ENOTSUP)); 530 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 531 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 532 return (SET_ERROR(ENOTSUP)); 533 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 534 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 535 return (SET_ERROR(ENOTSUP)); 536 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 537 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 538 return (SET_ERROR(ENOTSUP)); 539 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 540 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 541 return (SET_ERROR(ENOTSUP)); 542 543 /* 544 * Receiving redacted streams requires that redacted datasets are 545 * enabled. 546 */ 547 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 548 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 549 return (SET_ERROR(ENOTSUP)); 550 551 return (0); 552 } 553 554 static int 555 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 556 { 557 dmu_recv_begin_arg_t *drba = arg; 558 dsl_pool_t *dp = dmu_tx_pool(tx); 559 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 560 uint64_t fromguid = drrb->drr_fromguid; 561 int flags = drrb->drr_flags; 562 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 563 int error; 564 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 565 dsl_dataset_t *ds; 566 const char *tofs = drba->drba_cookie->drc_tofs; 567 568 /* already checked */ 569 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 570 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 571 572 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 573 DMU_COMPOUNDSTREAM || 574 drrb->drr_type >= DMU_OST_NUMTYPES || 575 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 576 return (SET_ERROR(EINVAL)); 577 578 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 579 if (error != 0) 580 return (error); 581 582 /* Resumable receives require extensible datasets */ 583 if (drba->drba_cookie->drc_resumable && 584 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 585 return (SET_ERROR(ENOTSUP)); 586 587 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 588 /* raw receives require the encryption feature */ 589 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 590 return (SET_ERROR(ENOTSUP)); 591 592 /* embedded data is incompatible with encryption and raw recv */ 593 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 594 return (SET_ERROR(EINVAL)); 595 596 /* raw receives require spill block allocation flag */ 597 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 599 } else { 600 /* 601 * We support unencrypted datasets below encrypted ones now, 602 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing 603 * with a dataset we may encrypt. 604 */ 605 if (drba->drba_dcp != NULL && 606 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { 607 dsflags |= DS_HOLD_FLAG_DECRYPT; 608 } 609 } 610 611 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 612 if (error == 0) { 613 /* target fs already exists; recv into temp clone */ 614 615 /* Can't recv a clone into an existing fs */ 616 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 617 dsl_dataset_rele_flags(ds, dsflags, FTAG); 618 return (SET_ERROR(EINVAL)); 619 } 620 621 error = recv_begin_check_existing_impl(drba, ds, fromguid, 622 featureflags); 623 dsl_dataset_rele_flags(ds, dsflags, FTAG); 624 } else if (error == ENOENT) { 625 /* target fs does not exist; must be a full backup or clone */ 626 char buf[ZFS_MAX_DATASET_NAME_LEN]; 627 objset_t *os; 628 629 /* 630 * If it's a non-clone incremental, we are missing the 631 * target fs, so fail the recv. 632 */ 633 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 634 drba->drba_origin)) 635 return (SET_ERROR(ENOENT)); 636 637 /* 638 * If we're receiving a full send as a clone, and it doesn't 639 * contain all the necessary free records and freeobject 640 * records, reject it. 641 */ 642 if (fromguid == 0 && drba->drba_origin != NULL && 643 !(flags & DRR_FLAG_FREERECORDS)) 644 return (SET_ERROR(EINVAL)); 645 646 /* Open the parent of tofs */ 647 ASSERT3U(strlen(tofs), <, sizeof (buf)); 648 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 649 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 650 if (error != 0) 651 return (error); 652 653 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 654 drba->drba_origin == NULL) { 655 boolean_t will_encrypt; 656 657 /* 658 * Check that we aren't breaking any encryption rules 659 * and that we have all the parameters we need to 660 * create an encrypted dataset if necessary. If we are 661 * making an encrypted dataset the stream can't have 662 * embedded data. 663 */ 664 error = dmu_objset_create_crypt_check(ds->ds_dir, 665 drba->drba_dcp, &will_encrypt); 666 if (error != 0) { 667 dsl_dataset_rele(ds, FTAG); 668 return (error); 669 } 670 671 if (will_encrypt && 672 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 673 dsl_dataset_rele(ds, FTAG); 674 return (SET_ERROR(EINVAL)); 675 } 676 } 677 678 /* 679 * Check filesystem and snapshot limits before receiving. We'll 680 * recheck snapshot limits again at the end (we create the 681 * filesystems and increment those counts during begin_sync). 682 */ 683 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 684 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 685 drba->drba_cred, drba->drba_proc); 686 if (error != 0) { 687 dsl_dataset_rele(ds, FTAG); 688 return (error); 689 } 690 691 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 692 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 693 drba->drba_cred, drba->drba_proc); 694 if (error != 0) { 695 dsl_dataset_rele(ds, FTAG); 696 return (error); 697 } 698 699 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 700 error = dmu_objset_from_ds(ds, &os); 701 if (error != 0) { 702 dsl_dataset_rele(ds, FTAG); 703 return (error); 704 } 705 if (dmu_objset_type(os) != DMU_OST_ZFS) { 706 dsl_dataset_rele(ds, FTAG); 707 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 708 } 709 710 if (drba->drba_origin != NULL) { 711 dsl_dataset_t *origin; 712 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 713 dsflags, FTAG, &origin); 714 if (error != 0) { 715 dsl_dataset_rele(ds, FTAG); 716 return (error); 717 } 718 if (!origin->ds_is_snapshot) { 719 dsl_dataset_rele_flags(origin, dsflags, FTAG); 720 dsl_dataset_rele(ds, FTAG); 721 return (SET_ERROR(EINVAL)); 722 } 723 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 724 fromguid != 0) { 725 dsl_dataset_rele_flags(origin, dsflags, FTAG); 726 dsl_dataset_rele(ds, FTAG); 727 return (SET_ERROR(ENODEV)); 728 } 729 730 if (origin->ds_dir->dd_crypto_obj != 0 && 731 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 732 dsl_dataset_rele_flags(origin, dsflags, FTAG); 733 dsl_dataset_rele(ds, FTAG); 734 return (SET_ERROR(EINVAL)); 735 } 736 737 /* 738 * If the origin is redacted we need to verify that this 739 * send stream can safely be received on top of the 740 * origin. 741 */ 742 if (dsl_dataset_feature_is_active(origin, 743 SPA_FEATURE_REDACTED_DATASETS)) { 744 if (!redact_check(drba, origin)) { 745 dsl_dataset_rele_flags(origin, dsflags, 746 FTAG); 747 dsl_dataset_rele_flags(ds, dsflags, 748 FTAG); 749 return (SET_ERROR(EINVAL)); 750 } 751 } 752 753 error = recv_check_large_blocks(ds, featureflags); 754 if (error != 0) { 755 dsl_dataset_rele_flags(origin, dsflags, FTAG); 756 dsl_dataset_rele_flags(ds, dsflags, FTAG); 757 return (error); 758 } 759 760 dsl_dataset_rele_flags(origin, dsflags, FTAG); 761 } 762 763 dsl_dataset_rele(ds, FTAG); 764 error = 0; 765 } 766 return (error); 767 } 768 769 static void 770 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 771 { 772 dmu_recv_begin_arg_t *drba = arg; 773 dsl_pool_t *dp = dmu_tx_pool(tx); 774 objset_t *mos = dp->dp_meta_objset; 775 dmu_recv_cookie_t *drc = drba->drba_cookie; 776 struct drr_begin *drrb = drc->drc_drrb; 777 const char *tofs = drc->drc_tofs; 778 uint64_t featureflags = drc->drc_featureflags; 779 dsl_dataset_t *ds, *newds; 780 objset_t *os; 781 uint64_t dsobj; 782 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 783 int error; 784 uint64_t crflags = 0; 785 dsl_crypto_params_t dummy_dcp = { 0 }; 786 dsl_crypto_params_t *dcp = drba->drba_dcp; 787 788 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 789 crflags |= DS_FLAG_CI_DATASET; 790 791 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 792 dsflags |= DS_HOLD_FLAG_DECRYPT; 793 794 /* 795 * Raw, non-incremental recvs always use a dummy dcp with 796 * the raw cmd set. Raw incremental recvs do not use a dcp 797 * since the encryption parameters are already set in stone. 798 */ 799 if (dcp == NULL && drrb->drr_fromguid == 0 && 800 drba->drba_origin == NULL) { 801 ASSERT3P(dcp, ==, NULL); 802 dcp = &dummy_dcp; 803 804 if (featureflags & DMU_BACKUP_FEATURE_RAW) 805 dcp->cp_cmd = DCP_CMD_RAW_RECV; 806 } 807 808 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 809 if (error == 0) { 810 /* create temporary clone */ 811 dsl_dataset_t *snap = NULL; 812 813 if (drba->drba_cookie->drc_fromsnapobj != 0) { 814 VERIFY0(dsl_dataset_hold_obj(dp, 815 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 816 ASSERT3P(dcp, ==, NULL); 817 } 818 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 819 snap, crflags, drba->drba_cred, dcp, tx); 820 if (drba->drba_cookie->drc_fromsnapobj != 0) 821 dsl_dataset_rele(snap, FTAG); 822 dsl_dataset_rele_flags(ds, dsflags, FTAG); 823 } else { 824 dsl_dir_t *dd; 825 const char *tail; 826 dsl_dataset_t *origin = NULL; 827 828 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 829 830 if (drba->drba_origin != NULL) { 831 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 832 FTAG, &origin)); 833 ASSERT3P(dcp, ==, NULL); 834 } 835 836 /* Create new dataset. */ 837 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 838 origin, crflags, drba->drba_cred, dcp, tx); 839 if (origin != NULL) 840 dsl_dataset_rele(origin, FTAG); 841 dsl_dir_rele(dd, FTAG); 842 drc->drc_newfs = B_TRUE; 843 } 844 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 845 &newds)); 846 if (dsl_dataset_feature_is_active(newds, 847 SPA_FEATURE_REDACTED_DATASETS)) { 848 /* 849 * If the origin dataset is redacted, the child will be redacted 850 * when we create it. We clear the new dataset's 851 * redaction info; if it should be redacted, we'll fill 852 * in its information later. 853 */ 854 dsl_dataset_deactivate_feature(newds, 855 SPA_FEATURE_REDACTED_DATASETS, tx); 856 } 857 VERIFY0(dmu_objset_from_ds(newds, &os)); 858 859 if (drc->drc_resumable) { 860 dsl_dataset_zapify(newds, tx); 861 if (drrb->drr_fromguid != 0) { 862 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 863 8, 1, &drrb->drr_fromguid, tx)); 864 } 865 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 866 8, 1, &drrb->drr_toguid, tx)); 867 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 868 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 869 uint64_t one = 1; 870 uint64_t zero = 0; 871 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 872 8, 1, &one, tx)); 873 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 874 8, 1, &zero, tx)); 875 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 876 8, 1, &zero, tx)); 877 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 878 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 879 8, 1, &one, tx)); 880 } 881 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 882 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 883 8, 1, &one, tx)); 884 } 885 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 886 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 887 8, 1, &one, tx)); 888 } 889 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 890 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 891 8, 1, &one, tx)); 892 } 893 894 uint64_t *redact_snaps; 895 uint_t numredactsnaps; 896 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 897 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 898 &numredactsnaps) == 0) { 899 VERIFY0(zap_add(mos, dsobj, 900 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 901 sizeof (*redact_snaps), numredactsnaps, 902 redact_snaps, tx)); 903 } 904 } 905 906 /* 907 * Usually the os->os_encrypted value is tied to the presence of a 908 * DSL Crypto Key object in the dd. However, that will not be received 909 * until dmu_recv_stream(), so we set the value manually for now. 910 */ 911 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 912 os->os_encrypted = B_TRUE; 913 drba->drba_cookie->drc_raw = B_TRUE; 914 } 915 916 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 917 uint64_t *redact_snaps; 918 uint_t numredactsnaps; 919 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 920 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 921 dsl_dataset_activate_redaction(newds, redact_snaps, 922 numredactsnaps, tx); 923 } 924 925 dmu_buf_will_dirty(newds->ds_dbuf, tx); 926 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 927 928 /* 929 * If we actually created a non-clone, we need to create the objset 930 * in our new dataset. If this is a raw send we postpone this until 931 * dmu_recv_stream() so that we can allocate the metadnode with the 932 * properties from the DRR_BEGIN payload. 933 */ 934 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 935 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 936 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 937 (void) dmu_objset_create_impl(dp->dp_spa, 938 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 939 } 940 rrw_exit(&newds->ds_bp_rwlock, FTAG); 941 942 drba->drba_cookie->drc_ds = newds; 943 drba->drba_cookie->drc_os = os; 944 945 spa_history_log_internal_ds(newds, "receive", tx, " "); 946 } 947 948 static int 949 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 950 { 951 dmu_recv_begin_arg_t *drba = arg; 952 dmu_recv_cookie_t *drc = drba->drba_cookie; 953 dsl_pool_t *dp = dmu_tx_pool(tx); 954 struct drr_begin *drrb = drc->drc_drrb; 955 int error; 956 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 957 dsl_dataset_t *ds; 958 const char *tofs = drc->drc_tofs; 959 960 /* already checked */ 961 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 962 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 963 964 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 965 DMU_COMPOUNDSTREAM || 966 drrb->drr_type >= DMU_OST_NUMTYPES) 967 return (SET_ERROR(EINVAL)); 968 969 /* 970 * This is mostly a sanity check since we should have already done these 971 * checks during a previous attempt to receive the data. 972 */ 973 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 974 dp->dp_spa); 975 if (error != 0) 976 return (error); 977 978 /* 6 extra bytes for /%recv */ 979 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 980 981 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 982 tofs, recv_clone_name); 983 984 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 985 /* raw receives require spill block allocation flag */ 986 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 987 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 988 } else { 989 dsflags |= DS_HOLD_FLAG_DECRYPT; 990 } 991 992 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 993 /* %recv does not exist; continue in tofs */ 994 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 995 if (error != 0) 996 return (error); 997 } 998 999 /* check that ds is marked inconsistent */ 1000 if (!DS_IS_INCONSISTENT(ds)) { 1001 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1002 return (SET_ERROR(EINVAL)); 1003 } 1004 1005 /* check that there is resuming data, and that the toguid matches */ 1006 if (!dsl_dataset_is_zapified(ds)) { 1007 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1008 return (SET_ERROR(EINVAL)); 1009 } 1010 uint64_t val; 1011 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1012 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1013 if (error != 0 || drrb->drr_toguid != val) { 1014 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1015 return (SET_ERROR(EINVAL)); 1016 } 1017 1018 /* 1019 * Check if the receive is still running. If so, it will be owned. 1020 * Note that nothing else can own the dataset (e.g. after the receive 1021 * fails) because it will be marked inconsistent. 1022 */ 1023 if (dsl_dataset_has_owner(ds)) { 1024 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1025 return (SET_ERROR(EBUSY)); 1026 } 1027 1028 /* There should not be any snapshots of this fs yet. */ 1029 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1030 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1031 return (SET_ERROR(EINVAL)); 1032 } 1033 1034 /* 1035 * Note: resume point will be checked when we process the first WRITE 1036 * record. 1037 */ 1038 1039 /* check that the origin matches */ 1040 val = 0; 1041 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1042 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1043 if (drrb->drr_fromguid != val) { 1044 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1045 return (SET_ERROR(EINVAL)); 1046 } 1047 1048 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1049 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1050 1051 /* 1052 * If we're resuming, and the send is redacted, then the original send 1053 * must have been redacted, and must have been redacted with respect to 1054 * the same snapshots. 1055 */ 1056 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1057 uint64_t num_ds_redact_snaps; 1058 uint64_t *ds_redact_snaps; 1059 1060 uint_t num_stream_redact_snaps; 1061 uint64_t *stream_redact_snaps; 1062 1063 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1064 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1065 &num_stream_redact_snaps) != 0) { 1066 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1067 return (SET_ERROR(EINVAL)); 1068 } 1069 1070 if (!dsl_dataset_get_uint64_array_feature(ds, 1071 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1072 &ds_redact_snaps)) { 1073 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1074 return (SET_ERROR(EINVAL)); 1075 } 1076 1077 for (int i = 0; i < num_ds_redact_snaps; i++) { 1078 if (!redact_snaps_contains(ds_redact_snaps, 1079 num_ds_redact_snaps, stream_redact_snaps[i])) { 1080 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1081 return (SET_ERROR(EINVAL)); 1082 } 1083 } 1084 } 1085 1086 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1087 if (error != 0) { 1088 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1089 return (error); 1090 } 1091 1092 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1093 return (0); 1094 } 1095 1096 static void 1097 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1098 { 1099 dmu_recv_begin_arg_t *drba = arg; 1100 dsl_pool_t *dp = dmu_tx_pool(tx); 1101 const char *tofs = drba->drba_cookie->drc_tofs; 1102 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1103 dsl_dataset_t *ds; 1104 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1105 /* 6 extra bytes for /%recv */ 1106 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1107 1108 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1109 recv_clone_name); 1110 1111 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1112 drba->drba_cookie->drc_raw = B_TRUE; 1113 } else { 1114 dsflags |= DS_HOLD_FLAG_DECRYPT; 1115 } 1116 1117 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1118 != 0) { 1119 /* %recv does not exist; continue in tofs */ 1120 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1121 &ds)); 1122 drba->drba_cookie->drc_newfs = B_TRUE; 1123 } 1124 1125 ASSERT(DS_IS_INCONSISTENT(ds)); 1126 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1127 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1128 drba->drba_cookie->drc_raw); 1129 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1130 1131 drba->drba_cookie->drc_ds = ds; 1132 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1133 drba->drba_cookie->drc_should_save = B_TRUE; 1134 1135 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1136 } 1137 1138 /* 1139 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1140 * succeeds; otherwise we will leak the holds on the datasets. 1141 */ 1142 int 1143 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1144 boolean_t force, boolean_t resumable, nvlist_t *localprops, 1145 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, 1146 zfs_file_t *fp, offset_t *voffp) 1147 { 1148 dmu_recv_begin_arg_t drba = { 0 }; 1149 int err; 1150 1151 memset(drc, 0, sizeof (dmu_recv_cookie_t)); 1152 drc->drc_drr_begin = drr_begin; 1153 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1154 drc->drc_tosnap = tosnap; 1155 drc->drc_tofs = tofs; 1156 drc->drc_force = force; 1157 drc->drc_resumable = resumable; 1158 drc->drc_cred = CRED(); 1159 drc->drc_proc = curproc; 1160 drc->drc_clone = (origin != NULL); 1161 1162 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1163 drc->drc_byteswap = B_TRUE; 1164 (void) fletcher_4_incremental_byteswap(drr_begin, 1165 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1166 byteswap_record(drr_begin); 1167 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1168 (void) fletcher_4_incremental_native(drr_begin, 1169 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1170 } else { 1171 return (SET_ERROR(EINVAL)); 1172 } 1173 1174 drc->drc_fp = fp; 1175 drc->drc_voff = *voffp; 1176 drc->drc_featureflags = 1177 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1178 1179 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1180 void *payload = NULL; 1181 if (payloadlen != 0) 1182 payload = kmem_alloc(payloadlen, KM_SLEEP); 1183 1184 err = receive_read_payload_and_next_header(drc, payloadlen, 1185 payload); 1186 if (err != 0) { 1187 kmem_free(payload, payloadlen); 1188 return (err); 1189 } 1190 if (payloadlen != 0) { 1191 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1192 KM_SLEEP); 1193 kmem_free(payload, payloadlen); 1194 if (err != 0) { 1195 kmem_free(drc->drc_next_rrd, 1196 sizeof (*drc->drc_next_rrd)); 1197 return (err); 1198 } 1199 } 1200 1201 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1202 drc->drc_spill = B_TRUE; 1203 1204 drba.drba_origin = origin; 1205 drba.drba_cookie = drc; 1206 drba.drba_cred = CRED(); 1207 drba.drba_proc = curproc; 1208 1209 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1210 err = dsl_sync_task(tofs, 1211 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1212 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1213 } else { 1214 /* 1215 * For non-raw, non-incremental, non-resuming receives the 1216 * user can specify encryption parameters on the command line 1217 * with "zfs recv -o". For these receives we create a dcp and 1218 * pass it to the sync task. Creating the dcp will implicitly 1219 * remove the encryption params from the localprops nvlist, 1220 * which avoids errors when trying to set these normally 1221 * read-only properties. Any other kind of receive that 1222 * attempts to set these properties will fail as a result. 1223 */ 1224 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1225 DMU_BACKUP_FEATURE_RAW) == 0 && 1226 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1227 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1228 localprops, hidden_args, &drba.drba_dcp); 1229 } 1230 1231 if (err == 0) { 1232 err = dsl_sync_task(tofs, 1233 dmu_recv_begin_check, dmu_recv_begin_sync, 1234 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1235 dsl_crypto_params_free(drba.drba_dcp, !!err); 1236 } 1237 } 1238 1239 if (err != 0) { 1240 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1241 nvlist_free(drc->drc_begin_nvl); 1242 } 1243 return (err); 1244 } 1245 1246 static int 1247 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1248 { 1249 int done = 0; 1250 1251 /* 1252 * The code doesn't rely on this (lengths being multiples of 8). See 1253 * comment in dump_bytes. 1254 */ 1255 ASSERT(len % 8 == 0 || 1256 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1257 1258 while (done < len) { 1259 ssize_t resid; 1260 zfs_file_t *fp = drc->drc_fp; 1261 int err = zfs_file_read(fp, (char *)buf + done, 1262 len - done, &resid); 1263 if (resid == len - done) { 1264 /* 1265 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1266 * that the receive was interrupted and can 1267 * potentially be resumed. 1268 */ 1269 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1270 } 1271 drc->drc_voff += len - done - resid; 1272 done = len - resid; 1273 if (err != 0) 1274 return (err); 1275 } 1276 1277 drc->drc_bytes_read += len; 1278 1279 ASSERT3U(done, ==, len); 1280 return (0); 1281 } 1282 1283 static inline uint8_t 1284 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1285 { 1286 if (bonus_type == DMU_OT_SA) { 1287 return (1); 1288 } else { 1289 return (1 + 1290 ((DN_OLD_MAX_BONUSLEN - 1291 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1292 } 1293 } 1294 1295 static void 1296 save_resume_state(struct receive_writer_arg *rwa, 1297 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1298 { 1299 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1300 1301 if (!rwa->resumable) 1302 return; 1303 1304 /* 1305 * We use ds_resume_bytes[] != 0 to indicate that we need to 1306 * update this on disk, so it must not be 0. 1307 */ 1308 ASSERT(rwa->bytes_read != 0); 1309 1310 /* 1311 * We only resume from write records, which have a valid 1312 * (non-meta-dnode) object number. 1313 */ 1314 ASSERT(object != 0); 1315 1316 /* 1317 * For resuming to work correctly, we must receive records in order, 1318 * sorted by object,offset. This is checked by the callers, but 1319 * assert it here for good measure. 1320 */ 1321 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1322 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1323 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1324 ASSERT3U(rwa->bytes_read, >=, 1325 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1326 1327 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1328 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1329 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1330 } 1331 1332 static int 1333 receive_object_is_same_generation(objset_t *os, uint64_t object, 1334 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1335 const void *new_bonus, boolean_t *samegenp) 1336 { 1337 zfs_file_info_t zoi; 1338 int err; 1339 1340 dmu_buf_t *old_bonus_dbuf; 1341 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1342 if (err != 0) 1343 return (err); 1344 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1345 &zoi); 1346 dmu_buf_rele(old_bonus_dbuf, FTAG); 1347 if (err != 0) 1348 return (err); 1349 uint64_t old_gen = zoi.zfi_generation; 1350 1351 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1352 if (err != 0) 1353 return (err); 1354 uint64_t new_gen = zoi.zfi_generation; 1355 1356 *samegenp = (old_gen == new_gen); 1357 return (0); 1358 } 1359 1360 static int 1361 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1362 const struct drr_object *drro, const dmu_object_info_t *doi, 1363 const void *bonus_data, 1364 uint64_t *object_to_hold, uint32_t *new_blksz) 1365 { 1366 uint32_t indblksz = drro->drr_indblkshift ? 1367 1ULL << drro->drr_indblkshift : 0; 1368 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1369 drro->drr_bonuslen); 1370 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1371 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1372 boolean_t do_free_range = B_FALSE; 1373 int err; 1374 1375 *object_to_hold = drro->drr_object; 1376 1377 /* nblkptr should be bounded by the bonus size and type */ 1378 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1379 return (SET_ERROR(EINVAL)); 1380 1381 /* 1382 * After the previous send stream, the sending system may 1383 * have freed this object, and then happened to re-allocate 1384 * this object number in a later txg. In this case, we are 1385 * receiving a different logical file, and the block size may 1386 * appear to be different. i.e. we may have a different 1387 * block size for this object than what the send stream says. 1388 * In this case we need to remove the object's contents, 1389 * so that its structure can be changed and then its contents 1390 * entirely replaced by subsequent WRITE records. 1391 * 1392 * If this is a -L (--large-block) incremental stream, and 1393 * the previous stream was not -L, the block size may appear 1394 * to increase. i.e. we may have a smaller block size for 1395 * this object than what the send stream says. In this case 1396 * we need to keep the object's contents and block size 1397 * intact, so that we don't lose parts of the object's 1398 * contents that are not changed by this incremental send 1399 * stream. 1400 * 1401 * We can distinguish between the two above cases by using 1402 * the ZPL's generation number (see 1403 * receive_object_is_same_generation()). However, we only 1404 * want to rely on the generation number when absolutely 1405 * necessary, because with raw receives, the generation is 1406 * encrypted. We also want to minimize dependence on the 1407 * ZPL, so that other types of datasets can also be received 1408 * (e.g. ZVOLs, although note that ZVOLS currently do not 1409 * reallocate their objects or change their structure). 1410 * Therefore, we check a number of different cases where we 1411 * know it is safe to discard the object's contents, before 1412 * using the ZPL's generation number to make the above 1413 * distinction. 1414 */ 1415 if (drro->drr_blksz != doi->doi_data_block_size) { 1416 if (rwa->raw) { 1417 /* 1418 * RAW streams always have large blocks, so 1419 * we are sure that the data is not needed 1420 * due to changing --large-block to be on. 1421 * Which is fortunate since the bonus buffer 1422 * (which contains the ZPL generation) is 1423 * encrypted, and the key might not be 1424 * loaded. 1425 */ 1426 do_free_range = B_TRUE; 1427 } else if (rwa->full) { 1428 /* 1429 * This is a full send stream, so it always 1430 * replaces what we have. Even if the 1431 * generation numbers happen to match, this 1432 * can not actually be the same logical file. 1433 * This is relevant when receiving a full 1434 * send as a clone. 1435 */ 1436 do_free_range = B_TRUE; 1437 } else if (drro->drr_type != 1438 DMU_OT_PLAIN_FILE_CONTENTS || 1439 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1440 /* 1441 * PLAIN_FILE_CONTENTS are the only type of 1442 * objects that have ever been stored with 1443 * large blocks, so we don't need the special 1444 * logic below. ZAP blocks can shrink (when 1445 * there's only one block), so we don't want 1446 * to hit the error below about block size 1447 * only increasing. 1448 */ 1449 do_free_range = B_TRUE; 1450 } else if (doi->doi_max_offset <= 1451 doi->doi_data_block_size) { 1452 /* 1453 * There is only one block. We can free it, 1454 * because its contents will be replaced by a 1455 * WRITE record. This can not be the no-L -> 1456 * -L case, because the no-L case would have 1457 * resulted in multiple blocks. If we 1458 * supported -L -> no-L, it would not be safe 1459 * to free the file's contents. Fortunately, 1460 * that is not allowed (see 1461 * recv_check_large_blocks()). 1462 */ 1463 do_free_range = B_TRUE; 1464 } else { 1465 boolean_t is_same_gen; 1466 err = receive_object_is_same_generation(rwa->os, 1467 drro->drr_object, doi->doi_bonus_type, 1468 drro->drr_bonustype, bonus_data, &is_same_gen); 1469 if (err != 0) 1470 return (SET_ERROR(EINVAL)); 1471 1472 if (is_same_gen) { 1473 /* 1474 * This is the same logical file, and 1475 * the block size must be increasing. 1476 * It could only decrease if 1477 * --large-block was changed to be 1478 * off, which is checked in 1479 * recv_check_large_blocks(). 1480 */ 1481 if (drro->drr_blksz <= 1482 doi->doi_data_block_size) 1483 return (SET_ERROR(EINVAL)); 1484 /* 1485 * We keep the existing blocksize and 1486 * contents. 1487 */ 1488 *new_blksz = 1489 doi->doi_data_block_size; 1490 } else { 1491 do_free_range = B_TRUE; 1492 } 1493 } 1494 } 1495 1496 /* nblkptr can only decrease if the object was reallocated */ 1497 if (nblkptr < doi->doi_nblkptr) 1498 do_free_range = B_TRUE; 1499 1500 /* number of slots can only change on reallocation */ 1501 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1502 do_free_range = B_TRUE; 1503 1504 /* 1505 * For raw sends we also check a few other fields to 1506 * ensure we are preserving the objset structure exactly 1507 * as it was on the receive side: 1508 * - A changed indirect block size 1509 * - A smaller nlevels 1510 */ 1511 if (rwa->raw) { 1512 if (indblksz != doi->doi_metadata_block_size) 1513 do_free_range = B_TRUE; 1514 if (drro->drr_nlevels < doi->doi_indirection) 1515 do_free_range = B_TRUE; 1516 } 1517 1518 if (do_free_range) { 1519 err = dmu_free_long_range(rwa->os, drro->drr_object, 1520 0, DMU_OBJECT_END); 1521 if (err != 0) 1522 return (SET_ERROR(EINVAL)); 1523 } 1524 1525 /* 1526 * The dmu does not currently support decreasing nlevels 1527 * or changing the number of dnode slots on an object. For 1528 * non-raw sends, this does not matter and the new object 1529 * can just use the previous one's nlevels. For raw sends, 1530 * however, the structure of the received dnode (including 1531 * nlevels and dnode slots) must match that of the send 1532 * side. Therefore, instead of using dmu_object_reclaim(), 1533 * we must free the object completely and call 1534 * dmu_object_claim_dnsize() instead. 1535 */ 1536 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || 1537 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1538 err = dmu_free_long_object(rwa->os, drro->drr_object); 1539 if (err != 0) 1540 return (SET_ERROR(EINVAL)); 1541 1542 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1543 *object_to_hold = DMU_NEW_OBJECT; 1544 } 1545 1546 /* 1547 * For raw receives, free everything beyond the new incoming 1548 * maxblkid. Normally this would be done with a DRR_FREE 1549 * record that would come after this DRR_OBJECT record is 1550 * processed. However, for raw receives we manually set the 1551 * maxblkid from the drr_maxblkid and so we must first free 1552 * everything above that blkid to ensure the DMU is always 1553 * consistent with itself. We will never free the first block 1554 * of the object here because a maxblkid of 0 could indicate 1555 * an object with a single block or one with no blocks. This 1556 * free may be skipped when dmu_free_long_range() was called 1557 * above since it covers the entire object's contents. 1558 */ 1559 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1560 err = dmu_free_long_range(rwa->os, drro->drr_object, 1561 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1562 DMU_OBJECT_END); 1563 if (err != 0) 1564 return (SET_ERROR(EINVAL)); 1565 } 1566 return (0); 1567 } 1568 1569 noinline static int 1570 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1571 void *data) 1572 { 1573 dmu_object_info_t doi; 1574 dmu_tx_t *tx; 1575 int err; 1576 uint32_t new_blksz = drro->drr_blksz; 1577 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1578 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1579 1580 if (drro->drr_type == DMU_OT_NONE || 1581 !DMU_OT_IS_VALID(drro->drr_type) || 1582 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1583 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1584 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1585 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1586 drro->drr_blksz < SPA_MINBLOCKSIZE || 1587 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1588 drro->drr_bonuslen > 1589 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1590 dn_slots > 1591 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1592 return (SET_ERROR(EINVAL)); 1593 } 1594 1595 if (rwa->raw) { 1596 /* 1597 * We should have received a DRR_OBJECT_RANGE record 1598 * containing this block and stored it in rwa. 1599 */ 1600 if (drro->drr_object < rwa->or_firstobj || 1601 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1602 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1603 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1604 drro->drr_nlevels > DN_MAX_LEVELS || 1605 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1606 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1607 drro->drr_raw_bonuslen) 1608 return (SET_ERROR(EINVAL)); 1609 } else { 1610 /* 1611 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1612 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1613 */ 1614 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1615 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1616 return (SET_ERROR(EINVAL)); 1617 } 1618 1619 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1620 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1621 return (SET_ERROR(EINVAL)); 1622 } 1623 } 1624 1625 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1626 1627 if (err != 0 && err != ENOENT && err != EEXIST) 1628 return (SET_ERROR(EINVAL)); 1629 1630 if (drro->drr_object > rwa->max_object) 1631 rwa->max_object = drro->drr_object; 1632 1633 /* 1634 * If we are losing blkptrs or changing the block size this must 1635 * be a new file instance. We must clear out the previous file 1636 * contents before we can change this type of metadata in the dnode. 1637 * Raw receives will also check that the indirect structure of the 1638 * dnode hasn't changed. 1639 */ 1640 uint64_t object_to_hold; 1641 if (err == 0) { 1642 err = receive_handle_existing_object(rwa, drro, &doi, data, 1643 &object_to_hold, &new_blksz); 1644 } else if (err == EEXIST) { 1645 /* 1646 * The object requested is currently an interior slot of a 1647 * multi-slot dnode. This will be resolved when the next txg 1648 * is synced out, since the send stream will have told us 1649 * to free this slot when we freed the associated dnode 1650 * earlier in the stream. 1651 */ 1652 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1653 1654 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1655 return (SET_ERROR(EINVAL)); 1656 1657 /* object was freed and we are about to allocate a new one */ 1658 object_to_hold = DMU_NEW_OBJECT; 1659 } else { 1660 /* object is free and we are about to allocate a new one */ 1661 object_to_hold = DMU_NEW_OBJECT; 1662 } 1663 1664 /* 1665 * If this is a multi-slot dnode there is a chance that this 1666 * object will expand into a slot that is already used by 1667 * another object from the previous snapshot. We must free 1668 * these objects before we attempt to allocate the new dnode. 1669 */ 1670 if (dn_slots > 1) { 1671 boolean_t need_sync = B_FALSE; 1672 1673 for (uint64_t slot = drro->drr_object + 1; 1674 slot < drro->drr_object + dn_slots; 1675 slot++) { 1676 dmu_object_info_t slot_doi; 1677 1678 err = dmu_object_info(rwa->os, slot, &slot_doi); 1679 if (err == ENOENT || err == EEXIST) 1680 continue; 1681 else if (err != 0) 1682 return (err); 1683 1684 err = dmu_free_long_object(rwa->os, slot); 1685 if (err != 0) 1686 return (err); 1687 1688 need_sync = B_TRUE; 1689 } 1690 1691 if (need_sync) 1692 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1693 } 1694 1695 tx = dmu_tx_create(rwa->os); 1696 dmu_tx_hold_bonus(tx, object_to_hold); 1697 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1698 err = dmu_tx_assign(tx, TXG_WAIT); 1699 if (err != 0) { 1700 dmu_tx_abort(tx); 1701 return (err); 1702 } 1703 1704 if (object_to_hold == DMU_NEW_OBJECT) { 1705 /* Currently free, wants to be allocated */ 1706 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1707 drro->drr_type, new_blksz, 1708 drro->drr_bonustype, drro->drr_bonuslen, 1709 dn_slots << DNODE_SHIFT, tx); 1710 } else if (drro->drr_type != doi.doi_type || 1711 new_blksz != doi.doi_data_block_size || 1712 drro->drr_bonustype != doi.doi_bonus_type || 1713 drro->drr_bonuslen != doi.doi_bonus_size) { 1714 /* Currently allocated, but with different properties */ 1715 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1716 drro->drr_type, new_blksz, 1717 drro->drr_bonustype, drro->drr_bonuslen, 1718 dn_slots << DNODE_SHIFT, rwa->spill ? 1719 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1720 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1721 /* 1722 * Currently allocated, the existing version of this object 1723 * may reference a spill block that is no longer allocated 1724 * at the source and needs to be freed. 1725 */ 1726 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1727 } 1728 1729 if (err != 0) { 1730 dmu_tx_commit(tx); 1731 return (SET_ERROR(EINVAL)); 1732 } 1733 1734 if (rwa->or_crypt_params_present) { 1735 /* 1736 * Set the crypt params for the buffer associated with this 1737 * range of dnodes. This causes the blkptr_t to have the 1738 * same crypt params (byteorder, salt, iv, mac) as on the 1739 * sending side. 1740 * 1741 * Since we are committing this tx now, it is possible for 1742 * the dnode block to end up on-disk with the incorrect MAC, 1743 * if subsequent objects in this block are received in a 1744 * different txg. However, since the dataset is marked as 1745 * inconsistent, no code paths will do a non-raw read (or 1746 * decrypt the block / verify the MAC). The receive code and 1747 * scrub code can safely do raw reads and verify the 1748 * checksum. They don't need to verify the MAC. 1749 */ 1750 dmu_buf_t *db = NULL; 1751 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1752 1753 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1754 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1755 if (err != 0) { 1756 dmu_tx_commit(tx); 1757 return (SET_ERROR(EINVAL)); 1758 } 1759 1760 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1761 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1762 1763 dmu_buf_rele(db, FTAG); 1764 1765 rwa->or_crypt_params_present = B_FALSE; 1766 } 1767 1768 dmu_object_set_checksum(rwa->os, drro->drr_object, 1769 drro->drr_checksumtype, tx); 1770 dmu_object_set_compress(rwa->os, drro->drr_object, 1771 drro->drr_compress, tx); 1772 1773 /* handle more restrictive dnode structuring for raw recvs */ 1774 if (rwa->raw) { 1775 /* 1776 * Set the indirect block size, block shift, nlevels. 1777 * This will not fail because we ensured all of the 1778 * blocks were freed earlier if this is a new object. 1779 * For non-new objects block size and indirect block 1780 * shift cannot change and nlevels can only increase. 1781 */ 1782 ASSERT3U(new_blksz, ==, drro->drr_blksz); 1783 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1784 drro->drr_blksz, drro->drr_indblkshift, tx)); 1785 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1786 drro->drr_nlevels, tx)); 1787 1788 /* 1789 * Set the maxblkid. This will always succeed because 1790 * we freed all blocks beyond the new maxblkid above. 1791 */ 1792 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1793 drro->drr_maxblkid, tx)); 1794 } 1795 1796 if (data != NULL) { 1797 dmu_buf_t *db; 1798 dnode_t *dn; 1799 uint32_t flags = DMU_READ_NO_PREFETCH; 1800 1801 if (rwa->raw) 1802 flags |= DMU_READ_NO_DECRYPT; 1803 1804 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1805 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1806 1807 dmu_buf_will_dirty(db, tx); 1808 1809 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1810 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1811 1812 /* 1813 * Raw bonus buffers have their byteorder determined by the 1814 * DRR_OBJECT_RANGE record. 1815 */ 1816 if (rwa->byteswap && !rwa->raw) { 1817 dmu_object_byteswap_t byteswap = 1818 DMU_OT_BYTESWAP(drro->drr_bonustype); 1819 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1820 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1821 } 1822 dmu_buf_rele(db, FTAG); 1823 dnode_rele(dn, FTAG); 1824 } 1825 dmu_tx_commit(tx); 1826 1827 return (0); 1828 } 1829 1830 noinline static int 1831 receive_freeobjects(struct receive_writer_arg *rwa, 1832 struct drr_freeobjects *drrfo) 1833 { 1834 uint64_t obj; 1835 int next_err = 0; 1836 1837 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1838 return (SET_ERROR(EINVAL)); 1839 1840 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1841 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 1842 obj < DN_MAX_OBJECT && next_err == 0; 1843 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1844 dmu_object_info_t doi; 1845 int err; 1846 1847 err = dmu_object_info(rwa->os, obj, &doi); 1848 if (err == ENOENT) 1849 continue; 1850 else if (err != 0) 1851 return (err); 1852 1853 err = dmu_free_long_object(rwa->os, obj); 1854 1855 if (err != 0) 1856 return (err); 1857 } 1858 if (next_err != ESRCH) 1859 return (next_err); 1860 return (0); 1861 } 1862 1863 /* 1864 * Note: if this fails, the caller will clean up any records left on the 1865 * rwa->write_batch list. 1866 */ 1867 static int 1868 flush_write_batch_impl(struct receive_writer_arg *rwa) 1869 { 1870 dnode_t *dn; 1871 int err; 1872 1873 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 1874 return (SET_ERROR(EINVAL)); 1875 1876 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 1877 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 1878 1879 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 1880 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 1881 1882 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 1883 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 1884 1885 dmu_tx_t *tx = dmu_tx_create(rwa->os); 1886 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 1887 last_drrw->drr_offset - first_drrw->drr_offset + 1888 last_drrw->drr_logical_size); 1889 err = dmu_tx_assign(tx, TXG_WAIT); 1890 if (err != 0) { 1891 dmu_tx_abort(tx); 1892 dnode_rele(dn, FTAG); 1893 return (err); 1894 } 1895 1896 struct receive_record_arg *rrd; 1897 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 1898 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 1899 abd_t *abd = rrd->abd; 1900 1901 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 1902 1903 if (drrw->drr_logical_size != dn->dn_datablksz) { 1904 /* 1905 * The WRITE record is larger than the object's block 1906 * size. We must be receiving an incremental 1907 * large-block stream into a dataset that previously did 1908 * a non-large-block receive. Lightweight writes must 1909 * be exactly one block, so we need to decompress the 1910 * data (if compressed) and do a normal dmu_write(). 1911 */ 1912 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 1913 if (DRR_WRITE_COMPRESSED(drrw)) { 1914 abd_t *decomp_abd = 1915 abd_alloc_linear(drrw->drr_logical_size, 1916 B_FALSE); 1917 1918 err = zio_decompress_data( 1919 drrw->drr_compressiontype, 1920 abd, abd_to_buf(decomp_abd), 1921 abd_get_size(abd), 1922 abd_get_size(decomp_abd), NULL); 1923 1924 if (err == 0) { 1925 dmu_write_by_dnode(dn, 1926 drrw->drr_offset, 1927 drrw->drr_logical_size, 1928 abd_to_buf(decomp_abd), tx); 1929 } 1930 abd_free(decomp_abd); 1931 } else { 1932 dmu_write_by_dnode(dn, 1933 drrw->drr_offset, 1934 drrw->drr_logical_size, 1935 abd_to_buf(abd), tx); 1936 } 1937 if (err == 0) 1938 abd_free(abd); 1939 } else { 1940 zio_prop_t zp; 1941 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 1942 1943 enum zio_flag zio_flags = 0; 1944 1945 if (rwa->raw) { 1946 zp.zp_encrypt = B_TRUE; 1947 zp.zp_compress = drrw->drr_compressiontype; 1948 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 1949 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 1950 rwa->byteswap; 1951 memcpy(zp.zp_salt, drrw->drr_salt, 1952 ZIO_DATA_SALT_LEN); 1953 memcpy(zp.zp_iv, drrw->drr_iv, 1954 ZIO_DATA_IV_LEN); 1955 memcpy(zp.zp_mac, drrw->drr_mac, 1956 ZIO_DATA_MAC_LEN); 1957 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 1958 zp.zp_nopwrite = B_FALSE; 1959 zp.zp_copies = MIN(zp.zp_copies, 1960 SPA_DVAS_PER_BP - 1); 1961 } 1962 zio_flags |= ZIO_FLAG_RAW; 1963 } else if (DRR_WRITE_COMPRESSED(drrw)) { 1964 ASSERT3U(drrw->drr_compressed_size, >, 0); 1965 ASSERT3U(drrw->drr_logical_size, >=, 1966 drrw->drr_compressed_size); 1967 zp.zp_compress = drrw->drr_compressiontype; 1968 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 1969 } else if (rwa->byteswap) { 1970 /* 1971 * Note: compressed blocks never need to be 1972 * byteswapped, because WRITE records for 1973 * metadata blocks are never compressed. The 1974 * exception is raw streams, which are written 1975 * in the original byteorder, and the byteorder 1976 * bit is preserved in the BP by setting 1977 * zp_byteorder above. 1978 */ 1979 dmu_object_byteswap_t byteswap = 1980 DMU_OT_BYTESWAP(drrw->drr_type); 1981 dmu_ot_byteswap[byteswap].ob_func( 1982 abd_to_buf(abd), 1983 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1984 } 1985 1986 /* 1987 * Since this data can't be read until the receive 1988 * completes, we can do a "lightweight" write for 1989 * improved performance. 1990 */ 1991 err = dmu_lightweight_write_by_dnode(dn, 1992 drrw->drr_offset, abd, &zp, zio_flags, tx); 1993 } 1994 1995 if (err != 0) { 1996 /* 1997 * This rrd is left on the list, so the caller will 1998 * free it (and the abd). 1999 */ 2000 break; 2001 } 2002 2003 /* 2004 * Note: If the receive fails, we want the resume stream to 2005 * start with the same record that we last successfully 2006 * received (as opposed to the next record), so that we can 2007 * verify that we are resuming from the correct location. 2008 */ 2009 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2010 2011 list_remove(&rwa->write_batch, rrd); 2012 kmem_free(rrd, sizeof (*rrd)); 2013 } 2014 2015 dmu_tx_commit(tx); 2016 dnode_rele(dn, FTAG); 2017 return (err); 2018 } 2019 2020 noinline static int 2021 flush_write_batch(struct receive_writer_arg *rwa) 2022 { 2023 if (list_is_empty(&rwa->write_batch)) 2024 return (0); 2025 int err = rwa->err; 2026 if (err == 0) 2027 err = flush_write_batch_impl(rwa); 2028 if (err != 0) { 2029 struct receive_record_arg *rrd; 2030 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2031 abd_free(rrd->abd); 2032 kmem_free(rrd, sizeof (*rrd)); 2033 } 2034 } 2035 ASSERT(list_is_empty(&rwa->write_batch)); 2036 return (err); 2037 } 2038 2039 noinline static int 2040 receive_process_write_record(struct receive_writer_arg *rwa, 2041 struct receive_record_arg *rrd) 2042 { 2043 int err = 0; 2044 2045 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2046 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2047 2048 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2049 !DMU_OT_IS_VALID(drrw->drr_type)) 2050 return (SET_ERROR(EINVAL)); 2051 2052 /* 2053 * For resuming to work, records must be in increasing order 2054 * by (object, offset). 2055 */ 2056 if (drrw->drr_object < rwa->last_object || 2057 (drrw->drr_object == rwa->last_object && 2058 drrw->drr_offset < rwa->last_offset)) { 2059 return (SET_ERROR(EINVAL)); 2060 } 2061 2062 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2063 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2064 uint64_t batch_size = 2065 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2066 if (first_rrd != NULL && 2067 (drrw->drr_object != first_drrw->drr_object || 2068 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2069 err = flush_write_batch(rwa); 2070 if (err != 0) 2071 return (err); 2072 } 2073 2074 rwa->last_object = drrw->drr_object; 2075 rwa->last_offset = drrw->drr_offset; 2076 2077 if (rwa->last_object > rwa->max_object) 2078 rwa->max_object = rwa->last_object; 2079 2080 list_insert_tail(&rwa->write_batch, rrd); 2081 /* 2082 * Return EAGAIN to indicate that we will use this rrd again, 2083 * so the caller should not free it 2084 */ 2085 return (EAGAIN); 2086 } 2087 2088 static int 2089 receive_write_embedded(struct receive_writer_arg *rwa, 2090 struct drr_write_embedded *drrwe, void *data) 2091 { 2092 dmu_tx_t *tx; 2093 int err; 2094 2095 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2096 return (SET_ERROR(EINVAL)); 2097 2098 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2099 return (SET_ERROR(EINVAL)); 2100 2101 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2102 return (SET_ERROR(EINVAL)); 2103 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2104 return (SET_ERROR(EINVAL)); 2105 if (rwa->raw) 2106 return (SET_ERROR(EINVAL)); 2107 2108 if (drrwe->drr_object > rwa->max_object) 2109 rwa->max_object = drrwe->drr_object; 2110 2111 tx = dmu_tx_create(rwa->os); 2112 2113 dmu_tx_hold_write(tx, drrwe->drr_object, 2114 drrwe->drr_offset, drrwe->drr_length); 2115 err = dmu_tx_assign(tx, TXG_WAIT); 2116 if (err != 0) { 2117 dmu_tx_abort(tx); 2118 return (err); 2119 } 2120 2121 dmu_write_embedded(rwa->os, drrwe->drr_object, 2122 drrwe->drr_offset, data, drrwe->drr_etype, 2123 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2124 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2125 2126 /* See comment in restore_write. */ 2127 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2128 dmu_tx_commit(tx); 2129 return (0); 2130 } 2131 2132 static int 2133 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2134 abd_t *abd) 2135 { 2136 dmu_buf_t *db, *db_spill; 2137 int err; 2138 2139 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2140 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2141 return (SET_ERROR(EINVAL)); 2142 2143 /* 2144 * This is an unmodified spill block which was added to the stream 2145 * to resolve an issue with incorrectly removing spill blocks. It 2146 * should be ignored by current versions of the code which support 2147 * the DRR_FLAG_SPILL_BLOCK flag. 2148 */ 2149 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2150 abd_free(abd); 2151 return (0); 2152 } 2153 2154 if (rwa->raw) { 2155 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2156 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2157 drrs->drr_compressed_size == 0) 2158 return (SET_ERROR(EINVAL)); 2159 } 2160 2161 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2162 return (SET_ERROR(EINVAL)); 2163 2164 if (drrs->drr_object > rwa->max_object) 2165 rwa->max_object = drrs->drr_object; 2166 2167 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2168 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2169 &db_spill)) != 0) { 2170 dmu_buf_rele(db, FTAG); 2171 return (err); 2172 } 2173 2174 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2175 2176 dmu_tx_hold_spill(tx, db->db_object); 2177 2178 err = dmu_tx_assign(tx, TXG_WAIT); 2179 if (err != 0) { 2180 dmu_buf_rele(db, FTAG); 2181 dmu_buf_rele(db_spill, FTAG); 2182 dmu_tx_abort(tx); 2183 return (err); 2184 } 2185 2186 /* 2187 * Spill blocks may both grow and shrink. When a change in size 2188 * occurs any existing dbuf must be updated to match the logical 2189 * size of the provided arc_buf_t. 2190 */ 2191 if (db_spill->db_size != drrs->drr_length) { 2192 dmu_buf_will_fill(db_spill, tx); 2193 VERIFY0(dbuf_spill_set_blksz(db_spill, 2194 drrs->drr_length, tx)); 2195 } 2196 2197 arc_buf_t *abuf; 2198 if (rwa->raw) { 2199 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2200 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2201 rwa->byteswap; 2202 2203 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2204 drrs->drr_object, byteorder, drrs->drr_salt, 2205 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2206 drrs->drr_compressed_size, drrs->drr_length, 2207 drrs->drr_compressiontype, 0); 2208 } else { 2209 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2210 DMU_OT_IS_METADATA(drrs->drr_type), 2211 drrs->drr_length); 2212 if (rwa->byteswap) { 2213 dmu_object_byteswap_t byteswap = 2214 DMU_OT_BYTESWAP(drrs->drr_type); 2215 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2216 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2217 } 2218 } 2219 2220 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); 2221 abd_free(abd); 2222 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2223 2224 dmu_buf_rele(db, FTAG); 2225 dmu_buf_rele(db_spill, FTAG); 2226 2227 dmu_tx_commit(tx); 2228 return (0); 2229 } 2230 2231 noinline static int 2232 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2233 { 2234 int err; 2235 2236 if (drrf->drr_length != -1ULL && 2237 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2238 return (SET_ERROR(EINVAL)); 2239 2240 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2241 return (SET_ERROR(EINVAL)); 2242 2243 if (drrf->drr_object > rwa->max_object) 2244 rwa->max_object = drrf->drr_object; 2245 2246 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2247 drrf->drr_offset, drrf->drr_length); 2248 2249 return (err); 2250 } 2251 2252 static int 2253 receive_object_range(struct receive_writer_arg *rwa, 2254 struct drr_object_range *drror) 2255 { 2256 /* 2257 * By default, we assume this block is in our native format 2258 * (ZFS_HOST_BYTEORDER). We then take into account whether 2259 * the send stream is byteswapped (rwa->byteswap). Finally, 2260 * we need to byteswap again if this particular block was 2261 * in non-native format on the send side. 2262 */ 2263 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2264 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2265 2266 /* 2267 * Since dnode block sizes are constant, we should not need to worry 2268 * about making sure that the dnode block size is the same on the 2269 * sending and receiving sides for the time being. For non-raw sends, 2270 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2271 * record at all). Raw sends require this record type because the 2272 * encryption parameters are used to protect an entire block of bonus 2273 * buffers. If the size of dnode blocks ever becomes variable, 2274 * handling will need to be added to ensure that dnode block sizes 2275 * match on the sending and receiving side. 2276 */ 2277 if (drror->drr_numslots != DNODES_PER_BLOCK || 2278 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2279 !rwa->raw) 2280 return (SET_ERROR(EINVAL)); 2281 2282 if (drror->drr_firstobj > rwa->max_object) 2283 rwa->max_object = drror->drr_firstobj; 2284 2285 /* 2286 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2287 * so that the block of dnodes is not written out when it's empty, 2288 * and converted to a HOLE BP. 2289 */ 2290 rwa->or_crypt_params_present = B_TRUE; 2291 rwa->or_firstobj = drror->drr_firstobj; 2292 rwa->or_numslots = drror->drr_numslots; 2293 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN); 2294 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN); 2295 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN); 2296 rwa->or_byteorder = byteorder; 2297 2298 return (0); 2299 } 2300 2301 /* 2302 * Until we have the ability to redact large ranges of data efficiently, we 2303 * process these records as frees. 2304 */ 2305 noinline static int 2306 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2307 { 2308 struct drr_free drrf = {0}; 2309 drrf.drr_length = drrr->drr_length; 2310 drrf.drr_object = drrr->drr_object; 2311 drrf.drr_offset = drrr->drr_offset; 2312 drrf.drr_toguid = drrr->drr_toguid; 2313 return (receive_free(rwa, &drrf)); 2314 } 2315 2316 /* used to destroy the drc_ds on error */ 2317 static void 2318 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2319 { 2320 dsl_dataset_t *ds = drc->drc_ds; 2321 ds_hold_flags_t dsflags; 2322 2323 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2324 /* 2325 * Wait for the txg sync before cleaning up the receive. For 2326 * resumable receives, this ensures that our resume state has 2327 * been written out to disk. For raw receives, this ensures 2328 * that the user accounting code will not attempt to do anything 2329 * after we stopped receiving the dataset. 2330 */ 2331 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2332 ds->ds_objset->os_raw_receive = B_FALSE; 2333 2334 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2335 if (drc->drc_resumable && drc->drc_should_save && 2336 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2337 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2338 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2339 } else { 2340 char name[ZFS_MAX_DATASET_NAME_LEN]; 2341 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2342 dsl_dataset_name(ds, name); 2343 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2344 (void) dsl_destroy_head(name); 2345 } 2346 } 2347 2348 static void 2349 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2350 { 2351 if (drc->drc_byteswap) { 2352 (void) fletcher_4_incremental_byteswap(buf, len, 2353 &drc->drc_cksum); 2354 } else { 2355 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2356 } 2357 } 2358 2359 /* 2360 * Read the payload into a buffer of size len, and update the current record's 2361 * payload field. 2362 * Allocate drc->drc_next_rrd and read the next record's header into 2363 * drc->drc_next_rrd->header. 2364 * Verify checksum of payload and next record. 2365 */ 2366 static int 2367 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2368 { 2369 int err; 2370 2371 if (len != 0) { 2372 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2373 err = receive_read(drc, len, buf); 2374 if (err != 0) 2375 return (err); 2376 receive_cksum(drc, len, buf); 2377 2378 /* note: rrd is NULL when reading the begin record's payload */ 2379 if (drc->drc_rrd != NULL) { 2380 drc->drc_rrd->payload = buf; 2381 drc->drc_rrd->payload_size = len; 2382 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2383 } 2384 } else { 2385 ASSERT3P(buf, ==, NULL); 2386 } 2387 2388 drc->drc_prev_cksum = drc->drc_cksum; 2389 2390 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2391 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2392 &drc->drc_next_rrd->header); 2393 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2394 2395 if (err != 0) { 2396 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2397 drc->drc_next_rrd = NULL; 2398 return (err); 2399 } 2400 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2401 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2402 drc->drc_next_rrd = NULL; 2403 return (SET_ERROR(EINVAL)); 2404 } 2405 2406 /* 2407 * Note: checksum is of everything up to but not including the 2408 * checksum itself. 2409 */ 2410 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2411 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2412 receive_cksum(drc, 2413 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2414 &drc->drc_next_rrd->header); 2415 2416 zio_cksum_t cksum_orig = 2417 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2418 zio_cksum_t *cksump = 2419 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2420 2421 if (drc->drc_byteswap) 2422 byteswap_record(&drc->drc_next_rrd->header); 2423 2424 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2425 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2426 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2427 drc->drc_next_rrd = NULL; 2428 return (SET_ERROR(ECKSUM)); 2429 } 2430 2431 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2432 2433 return (0); 2434 } 2435 2436 /* 2437 * Issue the prefetch reads for any necessary indirect blocks. 2438 * 2439 * We use the object ignore list to tell us whether or not to issue prefetches 2440 * for a given object. We do this for both correctness (in case the blocksize 2441 * of an object has changed) and performance (if the object doesn't exist, don't 2442 * needlessly try to issue prefetches). We also trim the list as we go through 2443 * the stream to prevent it from growing to an unbounded size. 2444 * 2445 * The object numbers within will always be in sorted order, and any write 2446 * records we see will also be in sorted order, but they're not sorted with 2447 * respect to each other (i.e. we can get several object records before 2448 * receiving each object's write records). As a result, once we've reached a 2449 * given object number, we can safely remove any reference to lower object 2450 * numbers in the ignore list. In practice, we receive up to 32 object records 2451 * before receiving write records, so the list can have up to 32 nodes in it. 2452 */ 2453 static void 2454 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2455 uint64_t length) 2456 { 2457 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2458 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2459 ZIO_PRIORITY_SYNC_READ); 2460 } 2461 } 2462 2463 /* 2464 * Read records off the stream, issuing any necessary prefetches. 2465 */ 2466 static int 2467 receive_read_record(dmu_recv_cookie_t *drc) 2468 { 2469 int err; 2470 2471 switch (drc->drc_rrd->header.drr_type) { 2472 case DRR_OBJECT: 2473 { 2474 struct drr_object *drro = 2475 &drc->drc_rrd->header.drr_u.drr_object; 2476 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2477 void *buf = NULL; 2478 dmu_object_info_t doi; 2479 2480 if (size != 0) 2481 buf = kmem_zalloc(size, KM_SLEEP); 2482 2483 err = receive_read_payload_and_next_header(drc, size, buf); 2484 if (err != 0) { 2485 kmem_free(buf, size); 2486 return (err); 2487 } 2488 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2489 /* 2490 * See receive_read_prefetch for an explanation why we're 2491 * storing this object in the ignore_obj_list. 2492 */ 2493 if (err == ENOENT || err == EEXIST || 2494 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2495 objlist_insert(drc->drc_ignore_objlist, 2496 drro->drr_object); 2497 err = 0; 2498 } 2499 return (err); 2500 } 2501 case DRR_FREEOBJECTS: 2502 { 2503 err = receive_read_payload_and_next_header(drc, 0, NULL); 2504 return (err); 2505 } 2506 case DRR_WRITE: 2507 { 2508 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2509 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2510 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2511 err = receive_read_payload_and_next_header(drc, size, 2512 abd_to_buf(abd)); 2513 if (err != 0) { 2514 abd_free(abd); 2515 return (err); 2516 } 2517 drc->drc_rrd->abd = abd; 2518 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2519 drrw->drr_logical_size); 2520 return (err); 2521 } 2522 case DRR_WRITE_EMBEDDED: 2523 { 2524 struct drr_write_embedded *drrwe = 2525 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2526 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2527 void *buf = kmem_zalloc(size, KM_SLEEP); 2528 2529 err = receive_read_payload_and_next_header(drc, size, buf); 2530 if (err != 0) { 2531 kmem_free(buf, size); 2532 return (err); 2533 } 2534 2535 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2536 drrwe->drr_length); 2537 return (err); 2538 } 2539 case DRR_FREE: 2540 case DRR_REDACT: 2541 { 2542 /* 2543 * It might be beneficial to prefetch indirect blocks here, but 2544 * we don't really have the data to decide for sure. 2545 */ 2546 err = receive_read_payload_and_next_header(drc, 0, NULL); 2547 return (err); 2548 } 2549 case DRR_END: 2550 { 2551 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2552 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2553 drre->drr_checksum)) 2554 return (SET_ERROR(ECKSUM)); 2555 return (0); 2556 } 2557 case DRR_SPILL: 2558 { 2559 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2560 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2561 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2562 err = receive_read_payload_and_next_header(drc, size, 2563 abd_to_buf(abd)); 2564 if (err != 0) 2565 abd_free(abd); 2566 else 2567 drc->drc_rrd->abd = abd; 2568 return (err); 2569 } 2570 case DRR_OBJECT_RANGE: 2571 { 2572 err = receive_read_payload_and_next_header(drc, 0, NULL); 2573 return (err); 2574 2575 } 2576 default: 2577 return (SET_ERROR(EINVAL)); 2578 } 2579 } 2580 2581 2582 2583 static void 2584 dprintf_drr(struct receive_record_arg *rrd, int err) 2585 { 2586 #ifdef ZFS_DEBUG 2587 switch (rrd->header.drr_type) { 2588 case DRR_OBJECT: 2589 { 2590 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2591 dprintf("drr_type = OBJECT obj = %llu type = %u " 2592 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2593 "compress = %u dn_slots = %u err = %d\n", 2594 (u_longlong_t)drro->drr_object, drro->drr_type, 2595 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, 2596 drro->drr_checksumtype, drro->drr_compress, 2597 drro->drr_dn_slots, err); 2598 break; 2599 } 2600 case DRR_FREEOBJECTS: 2601 { 2602 struct drr_freeobjects *drrfo = 2603 &rrd->header.drr_u.drr_freeobjects; 2604 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2605 "numobjs = %llu err = %d\n", 2606 (u_longlong_t)drrfo->drr_firstobj, 2607 (u_longlong_t)drrfo->drr_numobjs, err); 2608 break; 2609 } 2610 case DRR_WRITE: 2611 { 2612 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2613 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2614 "lsize = %llu cksumtype = %u flags = %u " 2615 "compress = %u psize = %llu err = %d\n", 2616 (u_longlong_t)drrw->drr_object, drrw->drr_type, 2617 (u_longlong_t)drrw->drr_offset, 2618 (u_longlong_t)drrw->drr_logical_size, 2619 drrw->drr_checksumtype, drrw->drr_flags, 2620 drrw->drr_compressiontype, 2621 (u_longlong_t)drrw->drr_compressed_size, err); 2622 break; 2623 } 2624 case DRR_WRITE_BYREF: 2625 { 2626 struct drr_write_byref *drrwbr = 2627 &rrd->header.drr_u.drr_write_byref; 2628 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2629 "length = %llu toguid = %llx refguid = %llx " 2630 "refobject = %llu refoffset = %llu cksumtype = %u " 2631 "flags = %u err = %d\n", 2632 (u_longlong_t)drrwbr->drr_object, 2633 (u_longlong_t)drrwbr->drr_offset, 2634 (u_longlong_t)drrwbr->drr_length, 2635 (u_longlong_t)drrwbr->drr_toguid, 2636 (u_longlong_t)drrwbr->drr_refguid, 2637 (u_longlong_t)drrwbr->drr_refobject, 2638 (u_longlong_t)drrwbr->drr_refoffset, 2639 drrwbr->drr_checksumtype, drrwbr->drr_flags, err); 2640 break; 2641 } 2642 case DRR_WRITE_EMBEDDED: 2643 { 2644 struct drr_write_embedded *drrwe = 2645 &rrd->header.drr_u.drr_write_embedded; 2646 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 2647 "length = %llu compress = %u etype = %u lsize = %u " 2648 "psize = %u err = %d\n", 2649 (u_longlong_t)drrwe->drr_object, 2650 (u_longlong_t)drrwe->drr_offset, 2651 (u_longlong_t)drrwe->drr_length, 2652 drrwe->drr_compression, drrwe->drr_etype, 2653 drrwe->drr_lsize, drrwe->drr_psize, err); 2654 break; 2655 } 2656 case DRR_FREE: 2657 { 2658 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2659 dprintf("drr_type = FREE obj = %llu offset = %llu " 2660 "length = %lld err = %d\n", 2661 (u_longlong_t)drrf->drr_object, 2662 (u_longlong_t)drrf->drr_offset, 2663 (longlong_t)drrf->drr_length, 2664 err); 2665 break; 2666 } 2667 case DRR_SPILL: 2668 { 2669 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2670 dprintf("drr_type = SPILL obj = %llu length = %llu " 2671 "err = %d\n", (u_longlong_t)drrs->drr_object, 2672 (u_longlong_t)drrs->drr_length, err); 2673 break; 2674 } 2675 case DRR_OBJECT_RANGE: 2676 { 2677 struct drr_object_range *drror = 2678 &rrd->header.drr_u.drr_object_range; 2679 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 2680 "numslots = %llu flags = %u err = %d\n", 2681 (u_longlong_t)drror->drr_firstobj, 2682 (u_longlong_t)drror->drr_numslots, 2683 drror->drr_flags, err); 2684 break; 2685 } 2686 default: 2687 return; 2688 } 2689 #endif 2690 } 2691 2692 /* 2693 * Commit the records to the pool. 2694 */ 2695 static int 2696 receive_process_record(struct receive_writer_arg *rwa, 2697 struct receive_record_arg *rrd) 2698 { 2699 int err; 2700 2701 /* Processing in order, therefore bytes_read should be increasing. */ 2702 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2703 rwa->bytes_read = rrd->bytes_read; 2704 2705 if (rrd->header.drr_type != DRR_WRITE) { 2706 err = flush_write_batch(rwa); 2707 if (err != 0) { 2708 if (rrd->abd != NULL) { 2709 abd_free(rrd->abd); 2710 rrd->abd = NULL; 2711 rrd->payload = NULL; 2712 } else if (rrd->payload != NULL) { 2713 kmem_free(rrd->payload, rrd->payload_size); 2714 rrd->payload = NULL; 2715 } 2716 2717 return (err); 2718 } 2719 } 2720 2721 switch (rrd->header.drr_type) { 2722 case DRR_OBJECT: 2723 { 2724 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2725 err = receive_object(rwa, drro, rrd->payload); 2726 kmem_free(rrd->payload, rrd->payload_size); 2727 rrd->payload = NULL; 2728 break; 2729 } 2730 case DRR_FREEOBJECTS: 2731 { 2732 struct drr_freeobjects *drrfo = 2733 &rrd->header.drr_u.drr_freeobjects; 2734 err = receive_freeobjects(rwa, drrfo); 2735 break; 2736 } 2737 case DRR_WRITE: 2738 { 2739 err = receive_process_write_record(rwa, rrd); 2740 if (err != EAGAIN) { 2741 /* 2742 * On success, receive_process_write_record() returns 2743 * EAGAIN to indicate that we do not want to free 2744 * the rrd or arc_buf. 2745 */ 2746 ASSERT(err != 0); 2747 abd_free(rrd->abd); 2748 rrd->abd = NULL; 2749 } 2750 break; 2751 } 2752 case DRR_WRITE_EMBEDDED: 2753 { 2754 struct drr_write_embedded *drrwe = 2755 &rrd->header.drr_u.drr_write_embedded; 2756 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2757 kmem_free(rrd->payload, rrd->payload_size); 2758 rrd->payload = NULL; 2759 break; 2760 } 2761 case DRR_FREE: 2762 { 2763 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2764 err = receive_free(rwa, drrf); 2765 break; 2766 } 2767 case DRR_SPILL: 2768 { 2769 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2770 err = receive_spill(rwa, drrs, rrd->abd); 2771 if (err != 0) 2772 abd_free(rrd->abd); 2773 rrd->abd = NULL; 2774 rrd->payload = NULL; 2775 break; 2776 } 2777 case DRR_OBJECT_RANGE: 2778 { 2779 struct drr_object_range *drror = 2780 &rrd->header.drr_u.drr_object_range; 2781 err = receive_object_range(rwa, drror); 2782 break; 2783 } 2784 case DRR_REDACT: 2785 { 2786 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 2787 err = receive_redact(rwa, drrr); 2788 break; 2789 } 2790 default: 2791 err = (SET_ERROR(EINVAL)); 2792 } 2793 2794 if (err != 0) 2795 dprintf_drr(rrd, err); 2796 2797 return (err); 2798 } 2799 2800 /* 2801 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2802 * receive_process_record When we're done, signal the main thread and exit. 2803 */ 2804 static __attribute__((noreturn)) void 2805 receive_writer_thread(void *arg) 2806 { 2807 struct receive_writer_arg *rwa = arg; 2808 struct receive_record_arg *rrd; 2809 fstrans_cookie_t cookie = spl_fstrans_mark(); 2810 2811 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2812 rrd = bqueue_dequeue(&rwa->q)) { 2813 /* 2814 * If there's an error, the main thread will stop putting things 2815 * on the queue, but we need to clear everything in it before we 2816 * can exit. 2817 */ 2818 int err = 0; 2819 if (rwa->err == 0) { 2820 err = receive_process_record(rwa, rrd); 2821 } else if (rrd->abd != NULL) { 2822 abd_free(rrd->abd); 2823 rrd->abd = NULL; 2824 rrd->payload = NULL; 2825 } else if (rrd->payload != NULL) { 2826 kmem_free(rrd->payload, rrd->payload_size); 2827 rrd->payload = NULL; 2828 } 2829 /* 2830 * EAGAIN indicates that this record has been saved (on 2831 * raw->write_batch), and will be used again, so we don't 2832 * free it. 2833 */ 2834 if (err != EAGAIN) { 2835 if (rwa->err == 0) 2836 rwa->err = err; 2837 kmem_free(rrd, sizeof (*rrd)); 2838 } 2839 } 2840 kmem_free(rrd, sizeof (*rrd)); 2841 2842 int err = flush_write_batch(rwa); 2843 if (rwa->err == 0) 2844 rwa->err = err; 2845 2846 mutex_enter(&rwa->mutex); 2847 rwa->done = B_TRUE; 2848 cv_signal(&rwa->cv); 2849 mutex_exit(&rwa->mutex); 2850 spl_fstrans_unmark(cookie); 2851 thread_exit(); 2852 } 2853 2854 static int 2855 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 2856 { 2857 uint64_t val; 2858 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 2859 uint64_t dsobj = dmu_objset_id(drc->drc_os); 2860 uint64_t resume_obj, resume_off; 2861 2862 if (nvlist_lookup_uint64(begin_nvl, 2863 "resume_object", &resume_obj) != 0 || 2864 nvlist_lookup_uint64(begin_nvl, 2865 "resume_offset", &resume_off) != 0) { 2866 return (SET_ERROR(EINVAL)); 2867 } 2868 VERIFY0(zap_lookup(mos, dsobj, 2869 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2870 if (resume_obj != val) 2871 return (SET_ERROR(EINVAL)); 2872 VERIFY0(zap_lookup(mos, dsobj, 2873 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2874 if (resume_off != val) 2875 return (SET_ERROR(EINVAL)); 2876 2877 return (0); 2878 } 2879 2880 /* 2881 * Read in the stream's records, one by one, and apply them to the pool. There 2882 * are two threads involved; the thread that calls this function will spin up a 2883 * worker thread, read the records off the stream one by one, and issue 2884 * prefetches for any necessary indirect blocks. It will then push the records 2885 * onto an internal blocking queue. The worker thread will pull the records off 2886 * the queue, and actually write the data into the DMU. This way, the worker 2887 * thread doesn't have to wait for reads to complete, since everything it needs 2888 * (the indirect blocks) will be prefetched. 2889 * 2890 * NB: callers *must* call dmu_recv_end() if this succeeds. 2891 */ 2892 int 2893 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 2894 { 2895 int err = 0; 2896 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 2897 2898 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { 2899 uint64_t bytes = 0; 2900 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2901 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2902 sizeof (bytes), 1, &bytes); 2903 drc->drc_bytes_read += bytes; 2904 } 2905 2906 drc->drc_ignore_objlist = objlist_create(); 2907 2908 /* these were verified in dmu_recv_begin */ 2909 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2910 DMU_SUBSTREAM); 2911 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2912 2913 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2914 ASSERT0(drc->drc_os->os_encrypted && 2915 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2916 2917 /* handle DSL encryption key payload */ 2918 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 2919 nvlist_t *keynvl = NULL; 2920 2921 ASSERT(drc->drc_os->os_encrypted); 2922 ASSERT(drc->drc_raw); 2923 2924 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 2925 &keynvl); 2926 if (err != 0) 2927 goto out; 2928 2929 /* 2930 * If this is a new dataset we set the key immediately. 2931 * Otherwise we don't want to change the key until we 2932 * are sure the rest of the receive succeeded so we stash 2933 * the keynvl away until then. 2934 */ 2935 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 2936 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2937 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2938 if (err != 0) 2939 goto out; 2940 2941 /* see comment in dmu_recv_end_sync() */ 2942 drc->drc_ivset_guid = 0; 2943 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2944 &drc->drc_ivset_guid); 2945 2946 if (!drc->drc_newfs) 2947 drc->drc_keynvl = fnvlist_dup(keynvl); 2948 } 2949 2950 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2951 err = resume_check(drc, drc->drc_begin_nvl); 2952 if (err != 0) 2953 goto out; 2954 } 2955 2956 /* 2957 * If we failed before this point we will clean up any new resume 2958 * state that was created. Now that we've gotten past the initial 2959 * checks we are ok to retain that resume state. 2960 */ 2961 drc->drc_should_save = B_TRUE; 2962 2963 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 2964 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 2965 offsetof(struct receive_record_arg, node)); 2966 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 2967 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 2968 rwa->os = drc->drc_os; 2969 rwa->byteswap = drc->drc_byteswap; 2970 rwa->resumable = drc->drc_resumable; 2971 rwa->raw = drc->drc_raw; 2972 rwa->spill = drc->drc_spill; 2973 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 2974 rwa->os->os_raw_receive = drc->drc_raw; 2975 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 2976 offsetof(struct receive_record_arg, node.bqn_node)); 2977 2978 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 2979 TS_RUN, minclsyspri); 2980 /* 2981 * We're reading rwa->err without locks, which is safe since we are the 2982 * only reader, and the worker thread is the only writer. It's ok if we 2983 * miss a write for an iteration or two of the loop, since the writer 2984 * thread will keep freeing records we send it until we send it an eos 2985 * marker. 2986 * 2987 * We can leave this loop in 3 ways: First, if rwa->err is 2988 * non-zero. In that case, the writer thread will free the rrd we just 2989 * pushed. Second, if we're interrupted; in that case, either it's the 2990 * first loop and drc->drc_rrd was never allocated, or it's later, and 2991 * drc->drc_rrd has been handed off to the writer thread who will free 2992 * it. Finally, if receive_read_record fails or we're at the end of the 2993 * stream, then we free drc->drc_rrd and exit. 2994 */ 2995 while (rwa->err == 0) { 2996 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2997 err = SET_ERROR(EINTR); 2998 break; 2999 } 3000 3001 ASSERT3P(drc->drc_rrd, ==, NULL); 3002 drc->drc_rrd = drc->drc_next_rrd; 3003 drc->drc_next_rrd = NULL; 3004 /* Allocates and loads header into drc->drc_next_rrd */ 3005 err = receive_read_record(drc); 3006 3007 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 3008 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 3009 drc->drc_rrd = NULL; 3010 break; 3011 } 3012 3013 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3014 sizeof (struct receive_record_arg) + 3015 drc->drc_rrd->payload_size); 3016 drc->drc_rrd = NULL; 3017 } 3018 3019 ASSERT3P(drc->drc_rrd, ==, NULL); 3020 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3021 drc->drc_rrd->eos_marker = B_TRUE; 3022 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3023 3024 mutex_enter(&rwa->mutex); 3025 while (!rwa->done) { 3026 /* 3027 * We need to use cv_wait_sig() so that any process that may 3028 * be sleeping here can still fork. 3029 */ 3030 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3031 } 3032 mutex_exit(&rwa->mutex); 3033 3034 /* 3035 * If we are receiving a full stream as a clone, all object IDs which 3036 * are greater than the maximum ID referenced in the stream are 3037 * by definition unused and must be freed. 3038 */ 3039 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3040 uint64_t obj = rwa->max_object + 1; 3041 int free_err = 0; 3042 int next_err = 0; 3043 3044 while (next_err == 0) { 3045 free_err = dmu_free_long_object(rwa->os, obj); 3046 if (free_err != 0 && free_err != ENOENT) 3047 break; 3048 3049 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3050 } 3051 3052 if (err == 0) { 3053 if (free_err != 0 && free_err != ENOENT) 3054 err = free_err; 3055 else if (next_err != ESRCH) 3056 err = next_err; 3057 } 3058 } 3059 3060 cv_destroy(&rwa->cv); 3061 mutex_destroy(&rwa->mutex); 3062 bqueue_destroy(&rwa->q); 3063 list_destroy(&rwa->write_batch); 3064 if (err == 0) 3065 err = rwa->err; 3066 3067 out: 3068 /* 3069 * If we hit an error before we started the receive_writer_thread 3070 * we need to clean up the next_rrd we create by processing the 3071 * DRR_BEGIN record. 3072 */ 3073 if (drc->drc_next_rrd != NULL) 3074 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3075 3076 /* 3077 * The objset will be invalidated by dmu_recv_end() when we do 3078 * dsl_dataset_clone_swap_sync_impl(). 3079 */ 3080 drc->drc_os = NULL; 3081 3082 kmem_free(rwa, sizeof (*rwa)); 3083 nvlist_free(drc->drc_begin_nvl); 3084 3085 if (err != 0) { 3086 /* 3087 * Clean up references. If receive is not resumable, 3088 * destroy what we created, so we don't leave it in 3089 * the inconsistent state. 3090 */ 3091 dmu_recv_cleanup_ds(drc); 3092 nvlist_free(drc->drc_keynvl); 3093 } 3094 3095 objlist_destroy(drc->drc_ignore_objlist); 3096 drc->drc_ignore_objlist = NULL; 3097 *voffp = drc->drc_voff; 3098 return (err); 3099 } 3100 3101 static int 3102 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3103 { 3104 dmu_recv_cookie_t *drc = arg; 3105 dsl_pool_t *dp = dmu_tx_pool(tx); 3106 int error; 3107 3108 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3109 3110 if (!drc->drc_newfs) { 3111 dsl_dataset_t *origin_head; 3112 3113 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3114 if (error != 0) 3115 return (error); 3116 if (drc->drc_force) { 3117 /* 3118 * We will destroy any snapshots in tofs (i.e. before 3119 * origin_head) that are after the origin (which is 3120 * the snap before drc_ds, because drc_ds can not 3121 * have any snaps of its own). 3122 */ 3123 uint64_t obj; 3124 3125 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3126 while (obj != 3127 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3128 dsl_dataset_t *snap; 3129 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3130 &snap); 3131 if (error != 0) 3132 break; 3133 if (snap->ds_dir != origin_head->ds_dir) 3134 error = SET_ERROR(EINVAL); 3135 if (error == 0) { 3136 error = dsl_destroy_snapshot_check_impl( 3137 snap, B_FALSE); 3138 } 3139 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3140 dsl_dataset_rele(snap, FTAG); 3141 if (error != 0) 3142 break; 3143 } 3144 if (error != 0) { 3145 dsl_dataset_rele(origin_head, FTAG); 3146 return (error); 3147 } 3148 } 3149 if (drc->drc_keynvl != NULL) { 3150 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3151 drc->drc_keynvl, tx); 3152 if (error != 0) { 3153 dsl_dataset_rele(origin_head, FTAG); 3154 return (error); 3155 } 3156 } 3157 3158 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3159 origin_head, drc->drc_force, drc->drc_owner, tx); 3160 if (error != 0) { 3161 dsl_dataset_rele(origin_head, FTAG); 3162 return (error); 3163 } 3164 error = dsl_dataset_snapshot_check_impl(origin_head, 3165 drc->drc_tosnap, tx, B_TRUE, 1, 3166 drc->drc_cred, drc->drc_proc); 3167 dsl_dataset_rele(origin_head, FTAG); 3168 if (error != 0) 3169 return (error); 3170 3171 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3172 } else { 3173 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3174 drc->drc_tosnap, tx, B_TRUE, 1, 3175 drc->drc_cred, drc->drc_proc); 3176 } 3177 return (error); 3178 } 3179 3180 static void 3181 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3182 { 3183 dmu_recv_cookie_t *drc = arg; 3184 dsl_pool_t *dp = dmu_tx_pool(tx); 3185 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3186 uint64_t newsnapobj; 3187 3188 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3189 tx, "snap=%s", drc->drc_tosnap); 3190 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3191 3192 if (!drc->drc_newfs) { 3193 dsl_dataset_t *origin_head; 3194 3195 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3196 &origin_head)); 3197 3198 if (drc->drc_force) { 3199 /* 3200 * Destroy any snapshots of drc_tofs (origin_head) 3201 * after the origin (the snap before drc_ds). 3202 */ 3203 uint64_t obj; 3204 3205 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3206 while (obj != 3207 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3208 dsl_dataset_t *snap; 3209 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3210 &snap)); 3211 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3212 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3213 dsl_destroy_snapshot_sync_impl(snap, 3214 B_FALSE, tx); 3215 dsl_dataset_rele(snap, FTAG); 3216 } 3217 } 3218 if (drc->drc_keynvl != NULL) { 3219 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3220 drc->drc_keynvl, tx); 3221 nvlist_free(drc->drc_keynvl); 3222 drc->drc_keynvl = NULL; 3223 } 3224 3225 VERIFY3P(drc->drc_ds->ds_prev, ==, 3226 origin_head->ds_prev); 3227 3228 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3229 origin_head, tx); 3230 /* 3231 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3232 * so drc_os is no longer valid. 3233 */ 3234 drc->drc_os = NULL; 3235 3236 dsl_dataset_snapshot_sync_impl(origin_head, 3237 drc->drc_tosnap, tx); 3238 3239 /* set snapshot's creation time and guid */ 3240 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3241 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3242 drc->drc_drrb->drr_creation_time; 3243 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3244 drc->drc_drrb->drr_toguid; 3245 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3246 ~DS_FLAG_INCONSISTENT; 3247 3248 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3249 dsl_dataset_phys(origin_head)->ds_flags &= 3250 ~DS_FLAG_INCONSISTENT; 3251 3252 newsnapobj = 3253 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3254 3255 dsl_dataset_rele(origin_head, FTAG); 3256 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3257 3258 if (drc->drc_owner != NULL) 3259 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3260 } else { 3261 dsl_dataset_t *ds = drc->drc_ds; 3262 3263 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3264 3265 /* set snapshot's creation time and guid */ 3266 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3267 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3268 drc->drc_drrb->drr_creation_time; 3269 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3270 drc->drc_drrb->drr_toguid; 3271 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3272 ~DS_FLAG_INCONSISTENT; 3273 3274 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3275 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3276 if (dsl_dataset_has_resume_receive_state(ds)) { 3277 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3278 DS_FIELD_RESUME_FROMGUID, tx); 3279 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3280 DS_FIELD_RESUME_OBJECT, tx); 3281 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3282 DS_FIELD_RESUME_OFFSET, tx); 3283 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3284 DS_FIELD_RESUME_BYTES, tx); 3285 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3286 DS_FIELD_RESUME_TOGUID, tx); 3287 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3288 DS_FIELD_RESUME_TONAME, tx); 3289 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3290 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3291 } 3292 newsnapobj = 3293 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3294 } 3295 3296 /* 3297 * If this is a raw receive, the crypt_keydata nvlist will include 3298 * a to_ivset_guid for us to set on the new snapshot. This value 3299 * will override the value generated by the snapshot code. However, 3300 * this value may not be present, because older implementations of 3301 * the raw send code did not include this value, and we are still 3302 * allowed to receive them if the zfs_disable_ivset_guid_check 3303 * tunable is set, in which case we will leave the newly-generated 3304 * value. 3305 */ 3306 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 3307 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3308 DMU_OT_DSL_DATASET, tx); 3309 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3310 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3311 &drc->drc_ivset_guid, tx)); 3312 } 3313 3314 /* 3315 * Release the hold from dmu_recv_begin. This must be done before 3316 * we return to open context, so that when we free the dataset's dnode 3317 * we can evict its bonus buffer. Since the dataset may be destroyed 3318 * at this point (and therefore won't have a valid pointer to the spa) 3319 * we release the key mapping manually here while we do have a valid 3320 * pointer, if it exists. 3321 */ 3322 if (!drc->drc_raw && encrypted) { 3323 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3324 drc->drc_ds->ds_object, drc->drc_ds); 3325 } 3326 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3327 drc->drc_ds = NULL; 3328 } 3329 3330 static int dmu_recv_end_modified_blocks = 3; 3331 3332 static int 3333 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3334 { 3335 #ifdef _KERNEL 3336 /* 3337 * We will be destroying the ds; make sure its origin is unmounted if 3338 * necessary. 3339 */ 3340 char name[ZFS_MAX_DATASET_NAME_LEN]; 3341 dsl_dataset_name(drc->drc_ds, name); 3342 zfs_destroy_unmount_origin(name); 3343 #endif 3344 3345 return (dsl_sync_task(drc->drc_tofs, 3346 dmu_recv_end_check, dmu_recv_end_sync, drc, 3347 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3348 } 3349 3350 static int 3351 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3352 { 3353 return (dsl_sync_task(drc->drc_tofs, 3354 dmu_recv_end_check, dmu_recv_end_sync, drc, 3355 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3356 } 3357 3358 int 3359 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3360 { 3361 int error; 3362 3363 drc->drc_owner = owner; 3364 3365 if (drc->drc_newfs) 3366 error = dmu_recv_new_end(drc); 3367 else 3368 error = dmu_recv_existing_end(drc); 3369 3370 if (error != 0) { 3371 dmu_recv_cleanup_ds(drc); 3372 nvlist_free(drc->drc_keynvl); 3373 } else { 3374 if (drc->drc_newfs) { 3375 zvol_create_minor(drc->drc_tofs); 3376 } 3377 char *snapname = kmem_asprintf("%s@%s", 3378 drc->drc_tofs, drc->drc_tosnap); 3379 zvol_create_minor(snapname); 3380 kmem_strfree(snapname); 3381 } 3382 return (error); 3383 } 3384 3385 /* 3386 * Return TRUE if this objset is currently being received into. 3387 */ 3388 boolean_t 3389 dmu_objset_is_receiving(objset_t *os) 3390 { 3391 return (os->os_dsl_dataset != NULL && 3392 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3393 } 3394 3395 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW, 3396 "Maximum receive queue length"); 3397 3398 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW, 3399 "Receive queue fill fraction"); 3400 3401 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW, 3402 "Maximum amount of writes to batch into one transaction"); 3403