1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_recv.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dbuf.h> 38 #include <sys/dnode.h> 39 #include <sys/zfs_context.h> 40 #include <sys/dmu_objset.h> 41 #include <sys/dmu_traverse.h> 42 #include <sys/dsl_dataset.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_pool.h> 46 #include <sys/dsl_synctask.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zvol.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/zfs_znode.h> 52 #include <zfs_fletcher.h> 53 #include <sys/avl.h> 54 #include <sys/ddt.h> 55 #include <sys/zfs_onexit.h> 56 #include <sys/dmu_send.h> 57 #include <sys/dsl_destroy.h> 58 #include <sys/blkptr.h> 59 #include <sys/dsl_bookmark.h> 60 #include <sys/zfeature.h> 61 #include <sys/bqueue.h> 62 #include <sys/objlist.h> 63 #ifdef _KERNEL 64 #include <sys/zfs_vfsops.h> 65 #endif 66 #include <sys/zfs_file.h> 67 68 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 69 int zfs_recv_queue_ff = 20; 70 int zfs_recv_write_batch_size = 1024 * 1024; 71 72 static char *dmu_recv_tag = "dmu_recv_tag"; 73 const char *recv_clone_name = "%recv"; 74 75 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 76 void *buf); 77 78 struct receive_record_arg { 79 dmu_replay_record_t header; 80 void *payload; /* Pointer to a buffer containing the payload */ 81 /* 82 * If the record is a WRITE or SPILL, pointer to the abd containing the 83 * payload. 84 */ 85 abd_t *abd; 86 int payload_size; 87 uint64_t bytes_read; /* bytes read from stream when record created */ 88 boolean_t eos_marker; /* Marks the end of the stream */ 89 bqueue_node_t node; 90 }; 91 92 struct receive_writer_arg { 93 objset_t *os; 94 boolean_t byteswap; 95 bqueue_t q; 96 97 /* 98 * These three members are used to signal to the main thread when 99 * we're done. 100 */ 101 kmutex_t mutex; 102 kcondvar_t cv; 103 boolean_t done; 104 105 int err; 106 boolean_t resumable; 107 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 108 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 109 boolean_t full; /* this is a full send stream */ 110 uint64_t last_object; 111 uint64_t last_offset; 112 uint64_t max_object; /* highest object ID referenced in stream */ 113 uint64_t bytes_read; /* bytes read when current record created */ 114 115 list_t write_batch; 116 117 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 118 boolean_t or_crypt_params_present; 119 uint64_t or_firstobj; 120 uint64_t or_numslots; 121 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 122 uint8_t or_iv[ZIO_DATA_IV_LEN]; 123 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 124 boolean_t or_byteorder; 125 }; 126 127 typedef struct dmu_recv_begin_arg { 128 const char *drba_origin; 129 dmu_recv_cookie_t *drba_cookie; 130 cred_t *drba_cred; 131 proc_t *drba_proc; 132 dsl_crypto_params_t *drba_dcp; 133 } dmu_recv_begin_arg_t; 134 135 static void 136 byteswap_record(dmu_replay_record_t *drr) 137 { 138 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 139 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 140 drr->drr_type = BSWAP_32(drr->drr_type); 141 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 142 143 switch (drr->drr_type) { 144 case DRR_BEGIN: 145 DO64(drr_begin.drr_magic); 146 DO64(drr_begin.drr_versioninfo); 147 DO64(drr_begin.drr_creation_time); 148 DO32(drr_begin.drr_type); 149 DO32(drr_begin.drr_flags); 150 DO64(drr_begin.drr_toguid); 151 DO64(drr_begin.drr_fromguid); 152 break; 153 case DRR_OBJECT: 154 DO64(drr_object.drr_object); 155 DO32(drr_object.drr_type); 156 DO32(drr_object.drr_bonustype); 157 DO32(drr_object.drr_blksz); 158 DO32(drr_object.drr_bonuslen); 159 DO32(drr_object.drr_raw_bonuslen); 160 DO64(drr_object.drr_toguid); 161 DO64(drr_object.drr_maxblkid); 162 break; 163 case DRR_FREEOBJECTS: 164 DO64(drr_freeobjects.drr_firstobj); 165 DO64(drr_freeobjects.drr_numobjs); 166 DO64(drr_freeobjects.drr_toguid); 167 break; 168 case DRR_WRITE: 169 DO64(drr_write.drr_object); 170 DO32(drr_write.drr_type); 171 DO64(drr_write.drr_offset); 172 DO64(drr_write.drr_logical_size); 173 DO64(drr_write.drr_toguid); 174 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 175 DO64(drr_write.drr_key.ddk_prop); 176 DO64(drr_write.drr_compressed_size); 177 break; 178 case DRR_WRITE_EMBEDDED: 179 DO64(drr_write_embedded.drr_object); 180 DO64(drr_write_embedded.drr_offset); 181 DO64(drr_write_embedded.drr_length); 182 DO64(drr_write_embedded.drr_toguid); 183 DO32(drr_write_embedded.drr_lsize); 184 DO32(drr_write_embedded.drr_psize); 185 break; 186 case DRR_FREE: 187 DO64(drr_free.drr_object); 188 DO64(drr_free.drr_offset); 189 DO64(drr_free.drr_length); 190 DO64(drr_free.drr_toguid); 191 break; 192 case DRR_SPILL: 193 DO64(drr_spill.drr_object); 194 DO64(drr_spill.drr_length); 195 DO64(drr_spill.drr_toguid); 196 DO64(drr_spill.drr_compressed_size); 197 DO32(drr_spill.drr_type); 198 break; 199 case DRR_OBJECT_RANGE: 200 DO64(drr_object_range.drr_firstobj); 201 DO64(drr_object_range.drr_numslots); 202 DO64(drr_object_range.drr_toguid); 203 break; 204 case DRR_REDACT: 205 DO64(drr_redact.drr_object); 206 DO64(drr_redact.drr_offset); 207 DO64(drr_redact.drr_length); 208 DO64(drr_redact.drr_toguid); 209 break; 210 case DRR_END: 211 DO64(drr_end.drr_toguid); 212 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 213 break; 214 default: 215 break; 216 } 217 218 if (drr->drr_type != DRR_BEGIN) { 219 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 220 } 221 222 #undef DO64 223 #undef DO32 224 } 225 226 static boolean_t 227 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 228 { 229 for (int i = 0; i < num_snaps; i++) { 230 if (snaps[i] == guid) 231 return (B_TRUE); 232 } 233 return (B_FALSE); 234 } 235 236 /* 237 * Check that the new stream we're trying to receive is redacted with respect to 238 * a subset of the snapshots that the origin was redacted with respect to. For 239 * the reasons behind this, see the man page on redacted zfs sends and receives. 240 */ 241 static boolean_t 242 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 243 uint64_t *redact_snaps, uint64_t num_redact_snaps) 244 { 245 /* 246 * Short circuit the comparison; if we are redacted with respect to 247 * more snapshots than the origin, we can't be redacted with respect 248 * to a subset. 249 */ 250 if (num_redact_snaps > origin_num_snaps) { 251 return (B_FALSE); 252 } 253 254 for (int i = 0; i < num_redact_snaps; i++) { 255 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 256 redact_snaps[i])) { 257 return (B_FALSE); 258 } 259 } 260 return (B_TRUE); 261 } 262 263 static boolean_t 264 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 265 { 266 uint64_t *origin_snaps; 267 uint64_t origin_num_snaps; 268 dmu_recv_cookie_t *drc = drba->drba_cookie; 269 struct drr_begin *drrb = drc->drc_drrb; 270 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 271 int err = 0; 272 boolean_t ret = B_TRUE; 273 uint64_t *redact_snaps; 274 uint_t numredactsnaps; 275 276 /* 277 * If this is a full send stream, we're safe no matter what. 278 */ 279 if (drrb->drr_fromguid == 0) 280 return (ret); 281 282 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 283 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 284 285 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 286 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 287 0) { 288 /* 289 * If the send stream was sent from the redaction bookmark or 290 * the redacted version of the dataset, then we're safe. Verify 291 * that this is from the a compatible redaction bookmark or 292 * redacted dataset. 293 */ 294 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 295 redact_snaps, numredactsnaps)) { 296 err = EINVAL; 297 } 298 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 299 /* 300 * If the stream is redacted, it must be redacted with respect 301 * to a subset of what the origin is redacted with respect to. 302 * See case number 2 in the zfs man page section on redacted zfs 303 * send. 304 */ 305 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 306 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 307 308 if (err != 0 || !compatible_redact_snaps(origin_snaps, 309 origin_num_snaps, redact_snaps, numredactsnaps)) { 310 err = EINVAL; 311 } 312 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 313 drrb->drr_toguid)) { 314 /* 315 * If the stream isn't redacted but the origin is, this must be 316 * one of the snapshots the origin is redacted with respect to. 317 * See case number 1 in the zfs man page section on redacted zfs 318 * send. 319 */ 320 err = EINVAL; 321 } 322 323 if (err != 0) 324 ret = B_FALSE; 325 return (ret); 326 } 327 328 /* 329 * If we previously received a stream with --large-block, we don't support 330 * receiving an incremental on top of it without --large-block. This avoids 331 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 332 * records. 333 */ 334 static int 335 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 336 { 337 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 338 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 339 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 340 return (0); 341 } 342 343 static int 344 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 345 uint64_t fromguid, uint64_t featureflags) 346 { 347 uint64_t val; 348 uint64_t children; 349 int error; 350 dsl_pool_t *dp = ds->ds_dir->dd_pool; 351 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 352 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 353 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 354 355 /* Temporary clone name must not exist. */ 356 error = zap_lookup(dp->dp_meta_objset, 357 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 358 8, 1, &val); 359 if (error != ENOENT) 360 return (error == 0 ? SET_ERROR(EBUSY) : error); 361 362 /* Resume state must not be set. */ 363 if (dsl_dataset_has_resume_receive_state(ds)) 364 return (SET_ERROR(EBUSY)); 365 366 /* New snapshot name must not exist. */ 367 error = zap_lookup(dp->dp_meta_objset, 368 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 369 drba->drba_cookie->drc_tosnap, 8, 1, &val); 370 if (error != ENOENT) 371 return (error == 0 ? SET_ERROR(EEXIST) : error); 372 373 /* Must not have children if receiving a ZVOL. */ 374 error = zap_count(dp->dp_meta_objset, 375 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 376 if (error != 0) 377 return (error); 378 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 379 children > 0) 380 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 381 382 /* 383 * Check snapshot limit before receiving. We'll recheck again at the 384 * end, but might as well abort before receiving if we're already over 385 * the limit. 386 * 387 * Note that we do not check the file system limit with 388 * dsl_dir_fscount_check because the temporary %clones don't count 389 * against that limit. 390 */ 391 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 392 NULL, drba->drba_cred, drba->drba_proc); 393 if (error != 0) 394 return (error); 395 396 if (fromguid != 0) { 397 dsl_dataset_t *snap; 398 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 399 400 /* Can't perform a raw receive on top of a non-raw receive */ 401 if (!encrypted && raw) 402 return (SET_ERROR(EINVAL)); 403 404 /* Encryption is incompatible with embedded data */ 405 if (encrypted && embed) 406 return (SET_ERROR(EINVAL)); 407 408 /* Find snapshot in this dir that matches fromguid. */ 409 while (obj != 0) { 410 error = dsl_dataset_hold_obj(dp, obj, FTAG, 411 &snap); 412 if (error != 0) 413 return (SET_ERROR(ENODEV)); 414 if (snap->ds_dir != ds->ds_dir) { 415 dsl_dataset_rele(snap, FTAG); 416 return (SET_ERROR(ENODEV)); 417 } 418 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 419 break; 420 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 421 dsl_dataset_rele(snap, FTAG); 422 } 423 if (obj == 0) 424 return (SET_ERROR(ENODEV)); 425 426 if (drba->drba_cookie->drc_force) { 427 drba->drba_cookie->drc_fromsnapobj = obj; 428 } else { 429 /* 430 * If we are not forcing, there must be no 431 * changes since fromsnap. Raw sends have an 432 * additional constraint that requires that 433 * no "noop" snapshots exist between fromsnap 434 * and tosnap for the IVset checking code to 435 * work properly. 436 */ 437 if (dsl_dataset_modified_since_snap(ds, snap) || 438 (raw && 439 dsl_dataset_phys(ds)->ds_prev_snap_obj != 440 snap->ds_object)) { 441 dsl_dataset_rele(snap, FTAG); 442 return (SET_ERROR(ETXTBSY)); 443 } 444 drba->drba_cookie->drc_fromsnapobj = 445 ds->ds_prev->ds_object; 446 } 447 448 if (dsl_dataset_feature_is_active(snap, 449 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 450 snap)) { 451 dsl_dataset_rele(snap, FTAG); 452 return (SET_ERROR(EINVAL)); 453 } 454 455 error = recv_check_large_blocks(snap, featureflags); 456 if (error != 0) { 457 dsl_dataset_rele(snap, FTAG); 458 return (error); 459 } 460 461 dsl_dataset_rele(snap, FTAG); 462 } else { 463 /* if full, then must be forced */ 464 if (!drba->drba_cookie->drc_force) 465 return (SET_ERROR(EEXIST)); 466 467 /* 468 * We don't support using zfs recv -F to blow away 469 * encrypted filesystems. This would require the 470 * dsl dir to point to the old encryption key and 471 * the new one at the same time during the receive. 472 */ 473 if ((!encrypted && raw) || encrypted) 474 return (SET_ERROR(EINVAL)); 475 476 /* 477 * Perform the same encryption checks we would if 478 * we were creating a new dataset from scratch. 479 */ 480 if (!raw) { 481 boolean_t will_encrypt; 482 483 error = dmu_objset_create_crypt_check( 484 ds->ds_dir->dd_parent, drba->drba_dcp, 485 &will_encrypt); 486 if (error != 0) 487 return (error); 488 489 if (will_encrypt && embed) 490 return (SET_ERROR(EINVAL)); 491 } 492 } 493 494 return (0); 495 } 496 497 /* 498 * Check that any feature flags used in the data stream we're receiving are 499 * supported by the pool we are receiving into. 500 * 501 * Note that some of the features we explicitly check here have additional 502 * (implicit) features they depend on, but those dependencies are enforced 503 * through the zfeature_register() calls declaring the features that we 504 * explicitly check. 505 */ 506 static int 507 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 508 { 509 /* 510 * Check if there are any unsupported feature flags. 511 */ 512 if (!DMU_STREAM_SUPPORTED(featureflags)) { 513 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 514 } 515 516 /* Verify pool version supports SA if SA_SPILL feature set */ 517 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 518 spa_version(spa) < SPA_VERSION_SA) 519 return (SET_ERROR(ENOTSUP)); 520 521 /* 522 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 523 * and large_dnodes in the stream can only be used if those pool 524 * features are enabled because we don't attempt to decompress / 525 * un-embed / un-mooch / split up the blocks / dnodes during the 526 * receive process. 527 */ 528 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 529 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 530 return (SET_ERROR(ENOTSUP)); 531 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 532 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 533 return (SET_ERROR(ENOTSUP)); 534 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 535 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 536 return (SET_ERROR(ENOTSUP)); 537 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 538 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 539 return (SET_ERROR(ENOTSUP)); 540 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 541 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 542 return (SET_ERROR(ENOTSUP)); 543 544 /* 545 * Receiving redacted streams requires that redacted datasets are 546 * enabled. 547 */ 548 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 549 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 550 return (SET_ERROR(ENOTSUP)); 551 552 return (0); 553 } 554 555 static int 556 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 557 { 558 dmu_recv_begin_arg_t *drba = arg; 559 dsl_pool_t *dp = dmu_tx_pool(tx); 560 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 561 uint64_t fromguid = drrb->drr_fromguid; 562 int flags = drrb->drr_flags; 563 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 564 int error; 565 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 566 dsl_dataset_t *ds; 567 const char *tofs = drba->drba_cookie->drc_tofs; 568 569 /* already checked */ 570 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 571 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 572 573 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 574 DMU_COMPOUNDSTREAM || 575 drrb->drr_type >= DMU_OST_NUMTYPES || 576 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 577 return (SET_ERROR(EINVAL)); 578 579 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 580 if (error != 0) 581 return (error); 582 583 /* Resumable receives require extensible datasets */ 584 if (drba->drba_cookie->drc_resumable && 585 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 586 return (SET_ERROR(ENOTSUP)); 587 588 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 589 /* raw receives require the encryption feature */ 590 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 591 return (SET_ERROR(ENOTSUP)); 592 593 /* embedded data is incompatible with encryption and raw recv */ 594 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 595 return (SET_ERROR(EINVAL)); 596 597 /* raw receives require spill block allocation flag */ 598 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 599 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 600 } else { 601 dsflags |= DS_HOLD_FLAG_DECRYPT; 602 } 603 604 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 605 if (error == 0) { 606 /* target fs already exists; recv into temp clone */ 607 608 /* Can't recv a clone into an existing fs */ 609 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 610 dsl_dataset_rele_flags(ds, dsflags, FTAG); 611 return (SET_ERROR(EINVAL)); 612 } 613 614 error = recv_begin_check_existing_impl(drba, ds, fromguid, 615 featureflags); 616 dsl_dataset_rele_flags(ds, dsflags, FTAG); 617 } else if (error == ENOENT) { 618 /* target fs does not exist; must be a full backup or clone */ 619 char buf[ZFS_MAX_DATASET_NAME_LEN]; 620 objset_t *os; 621 622 /* 623 * If it's a non-clone incremental, we are missing the 624 * target fs, so fail the recv. 625 */ 626 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 627 drba->drba_origin)) 628 return (SET_ERROR(ENOENT)); 629 630 /* 631 * If we're receiving a full send as a clone, and it doesn't 632 * contain all the necessary free records and freeobject 633 * records, reject it. 634 */ 635 if (fromguid == 0 && drba->drba_origin != NULL && 636 !(flags & DRR_FLAG_FREERECORDS)) 637 return (SET_ERROR(EINVAL)); 638 639 /* Open the parent of tofs */ 640 ASSERT3U(strlen(tofs), <, sizeof (buf)); 641 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 642 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 643 if (error != 0) 644 return (error); 645 646 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 647 drba->drba_origin == NULL) { 648 boolean_t will_encrypt; 649 650 /* 651 * Check that we aren't breaking any encryption rules 652 * and that we have all the parameters we need to 653 * create an encrypted dataset if necessary. If we are 654 * making an encrypted dataset the stream can't have 655 * embedded data. 656 */ 657 error = dmu_objset_create_crypt_check(ds->ds_dir, 658 drba->drba_dcp, &will_encrypt); 659 if (error != 0) { 660 dsl_dataset_rele(ds, FTAG); 661 return (error); 662 } 663 664 if (will_encrypt && 665 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 666 dsl_dataset_rele(ds, FTAG); 667 return (SET_ERROR(EINVAL)); 668 } 669 } 670 671 /* 672 * Check filesystem and snapshot limits before receiving. We'll 673 * recheck snapshot limits again at the end (we create the 674 * filesystems and increment those counts during begin_sync). 675 */ 676 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 677 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 678 drba->drba_cred, drba->drba_proc); 679 if (error != 0) { 680 dsl_dataset_rele(ds, FTAG); 681 return (error); 682 } 683 684 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 685 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 686 drba->drba_cred, drba->drba_proc); 687 if (error != 0) { 688 dsl_dataset_rele(ds, FTAG); 689 return (error); 690 } 691 692 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 693 error = dmu_objset_from_ds(ds, &os); 694 if (error != 0) { 695 dsl_dataset_rele(ds, FTAG); 696 return (error); 697 } 698 if (dmu_objset_type(os) != DMU_OST_ZFS) { 699 dsl_dataset_rele(ds, FTAG); 700 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 701 } 702 703 if (drba->drba_origin != NULL) { 704 dsl_dataset_t *origin; 705 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 706 dsflags, FTAG, &origin); 707 if (error != 0) { 708 dsl_dataset_rele(ds, FTAG); 709 return (error); 710 } 711 if (!origin->ds_is_snapshot) { 712 dsl_dataset_rele_flags(origin, dsflags, FTAG); 713 dsl_dataset_rele(ds, FTAG); 714 return (SET_ERROR(EINVAL)); 715 } 716 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 717 fromguid != 0) { 718 dsl_dataset_rele_flags(origin, dsflags, FTAG); 719 dsl_dataset_rele(ds, FTAG); 720 return (SET_ERROR(ENODEV)); 721 } 722 723 if (origin->ds_dir->dd_crypto_obj != 0 && 724 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 725 dsl_dataset_rele_flags(origin, dsflags, FTAG); 726 dsl_dataset_rele(ds, FTAG); 727 return (SET_ERROR(EINVAL)); 728 } 729 730 /* 731 * If the origin is redacted we need to verify that this 732 * send stream can safely be received on top of the 733 * origin. 734 */ 735 if (dsl_dataset_feature_is_active(origin, 736 SPA_FEATURE_REDACTED_DATASETS)) { 737 if (!redact_check(drba, origin)) { 738 dsl_dataset_rele_flags(origin, dsflags, 739 FTAG); 740 dsl_dataset_rele_flags(ds, dsflags, 741 FTAG); 742 return (SET_ERROR(EINVAL)); 743 } 744 } 745 746 error = recv_check_large_blocks(ds, featureflags); 747 if (error != 0) { 748 dsl_dataset_rele_flags(origin, dsflags, FTAG); 749 dsl_dataset_rele_flags(ds, dsflags, FTAG); 750 return (error); 751 } 752 753 dsl_dataset_rele_flags(origin, dsflags, FTAG); 754 } 755 756 dsl_dataset_rele(ds, FTAG); 757 error = 0; 758 } 759 return (error); 760 } 761 762 static void 763 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 764 { 765 dmu_recv_begin_arg_t *drba = arg; 766 dsl_pool_t *dp = dmu_tx_pool(tx); 767 objset_t *mos = dp->dp_meta_objset; 768 dmu_recv_cookie_t *drc = drba->drba_cookie; 769 struct drr_begin *drrb = drc->drc_drrb; 770 const char *tofs = drc->drc_tofs; 771 uint64_t featureflags = drc->drc_featureflags; 772 dsl_dataset_t *ds, *newds; 773 objset_t *os; 774 uint64_t dsobj; 775 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 776 int error; 777 uint64_t crflags = 0; 778 dsl_crypto_params_t dummy_dcp = { 0 }; 779 dsl_crypto_params_t *dcp = drba->drba_dcp; 780 781 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 782 crflags |= DS_FLAG_CI_DATASET; 783 784 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 785 dsflags |= DS_HOLD_FLAG_DECRYPT; 786 787 /* 788 * Raw, non-incremental recvs always use a dummy dcp with 789 * the raw cmd set. Raw incremental recvs do not use a dcp 790 * since the encryption parameters are already set in stone. 791 */ 792 if (dcp == NULL && drrb->drr_fromguid == 0 && 793 drba->drba_origin == NULL) { 794 ASSERT3P(dcp, ==, NULL); 795 dcp = &dummy_dcp; 796 797 if (featureflags & DMU_BACKUP_FEATURE_RAW) 798 dcp->cp_cmd = DCP_CMD_RAW_RECV; 799 } 800 801 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 802 if (error == 0) { 803 /* create temporary clone */ 804 dsl_dataset_t *snap = NULL; 805 806 if (drba->drba_cookie->drc_fromsnapobj != 0) { 807 VERIFY0(dsl_dataset_hold_obj(dp, 808 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 809 ASSERT3P(dcp, ==, NULL); 810 } 811 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 812 snap, crflags, drba->drba_cred, dcp, tx); 813 if (drba->drba_cookie->drc_fromsnapobj != 0) 814 dsl_dataset_rele(snap, FTAG); 815 dsl_dataset_rele_flags(ds, dsflags, FTAG); 816 } else { 817 dsl_dir_t *dd; 818 const char *tail; 819 dsl_dataset_t *origin = NULL; 820 821 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 822 823 if (drba->drba_origin != NULL) { 824 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 825 FTAG, &origin)); 826 ASSERT3P(dcp, ==, NULL); 827 } 828 829 /* Create new dataset. */ 830 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 831 origin, crflags, drba->drba_cred, dcp, tx); 832 if (origin != NULL) 833 dsl_dataset_rele(origin, FTAG); 834 dsl_dir_rele(dd, FTAG); 835 drc->drc_newfs = B_TRUE; 836 } 837 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 838 &newds)); 839 if (dsl_dataset_feature_is_active(newds, 840 SPA_FEATURE_REDACTED_DATASETS)) { 841 /* 842 * If the origin dataset is redacted, the child will be redacted 843 * when we create it. We clear the new dataset's 844 * redaction info; if it should be redacted, we'll fill 845 * in its information later. 846 */ 847 dsl_dataset_deactivate_feature(newds, 848 SPA_FEATURE_REDACTED_DATASETS, tx); 849 } 850 VERIFY0(dmu_objset_from_ds(newds, &os)); 851 852 if (drc->drc_resumable) { 853 dsl_dataset_zapify(newds, tx); 854 if (drrb->drr_fromguid != 0) { 855 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 856 8, 1, &drrb->drr_fromguid, tx)); 857 } 858 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 859 8, 1, &drrb->drr_toguid, tx)); 860 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 861 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 862 uint64_t one = 1; 863 uint64_t zero = 0; 864 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 865 8, 1, &one, tx)); 866 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 867 8, 1, &zero, tx)); 868 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 869 8, 1, &zero, tx)); 870 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 871 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 872 8, 1, &one, tx)); 873 } 874 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 875 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 876 8, 1, &one, tx)); 877 } 878 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 879 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 880 8, 1, &one, tx)); 881 } 882 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 883 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 884 8, 1, &one, tx)); 885 } 886 887 uint64_t *redact_snaps; 888 uint_t numredactsnaps; 889 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 890 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 891 &numredactsnaps) == 0) { 892 VERIFY0(zap_add(mos, dsobj, 893 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 894 sizeof (*redact_snaps), numredactsnaps, 895 redact_snaps, tx)); 896 } 897 } 898 899 /* 900 * Usually the os->os_encrypted value is tied to the presence of a 901 * DSL Crypto Key object in the dd. However, that will not be received 902 * until dmu_recv_stream(), so we set the value manually for now. 903 */ 904 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 905 os->os_encrypted = B_TRUE; 906 drba->drba_cookie->drc_raw = B_TRUE; 907 } 908 909 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 910 uint64_t *redact_snaps; 911 uint_t numredactsnaps; 912 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 913 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 914 dsl_dataset_activate_redaction(newds, redact_snaps, 915 numredactsnaps, tx); 916 } 917 918 dmu_buf_will_dirty(newds->ds_dbuf, tx); 919 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 920 921 /* 922 * If we actually created a non-clone, we need to create the objset 923 * in our new dataset. If this is a raw send we postpone this until 924 * dmu_recv_stream() so that we can allocate the metadnode with the 925 * properties from the DRR_BEGIN payload. 926 */ 927 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 928 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 929 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 930 (void) dmu_objset_create_impl(dp->dp_spa, 931 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 932 } 933 rrw_exit(&newds->ds_bp_rwlock, FTAG); 934 935 drba->drba_cookie->drc_ds = newds; 936 drba->drba_cookie->drc_os = os; 937 938 spa_history_log_internal_ds(newds, "receive", tx, " "); 939 } 940 941 static int 942 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 943 { 944 dmu_recv_begin_arg_t *drba = arg; 945 dmu_recv_cookie_t *drc = drba->drba_cookie; 946 dsl_pool_t *dp = dmu_tx_pool(tx); 947 struct drr_begin *drrb = drc->drc_drrb; 948 int error; 949 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 950 dsl_dataset_t *ds; 951 const char *tofs = drc->drc_tofs; 952 953 /* already checked */ 954 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 955 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 956 957 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 958 DMU_COMPOUNDSTREAM || 959 drrb->drr_type >= DMU_OST_NUMTYPES) 960 return (SET_ERROR(EINVAL)); 961 962 /* 963 * This is mostly a sanity check since we should have already done these 964 * checks during a previous attempt to receive the data. 965 */ 966 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 967 dp->dp_spa); 968 if (error != 0) 969 return (error); 970 971 /* 6 extra bytes for /%recv */ 972 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 973 974 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 975 tofs, recv_clone_name); 976 977 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 978 /* raw receives require spill block allocation flag */ 979 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 980 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 981 } else { 982 dsflags |= DS_HOLD_FLAG_DECRYPT; 983 } 984 985 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 986 /* %recv does not exist; continue in tofs */ 987 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 988 if (error != 0) 989 return (error); 990 } 991 992 /* check that ds is marked inconsistent */ 993 if (!DS_IS_INCONSISTENT(ds)) { 994 dsl_dataset_rele_flags(ds, dsflags, FTAG); 995 return (SET_ERROR(EINVAL)); 996 } 997 998 /* check that there is resuming data, and that the toguid matches */ 999 if (!dsl_dataset_is_zapified(ds)) { 1000 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1001 return (SET_ERROR(EINVAL)); 1002 } 1003 uint64_t val; 1004 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1005 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1006 if (error != 0 || drrb->drr_toguid != val) { 1007 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1008 return (SET_ERROR(EINVAL)); 1009 } 1010 1011 /* 1012 * Check if the receive is still running. If so, it will be owned. 1013 * Note that nothing else can own the dataset (e.g. after the receive 1014 * fails) because it will be marked inconsistent. 1015 */ 1016 if (dsl_dataset_has_owner(ds)) { 1017 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1018 return (SET_ERROR(EBUSY)); 1019 } 1020 1021 /* There should not be any snapshots of this fs yet. */ 1022 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1023 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1024 return (SET_ERROR(EINVAL)); 1025 } 1026 1027 /* 1028 * Note: resume point will be checked when we process the first WRITE 1029 * record. 1030 */ 1031 1032 /* check that the origin matches */ 1033 val = 0; 1034 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1035 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1036 if (drrb->drr_fromguid != val) { 1037 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1038 return (SET_ERROR(EINVAL)); 1039 } 1040 1041 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1042 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1043 1044 /* 1045 * If we're resuming, and the send is redacted, then the original send 1046 * must have been redacted, and must have been redacted with respect to 1047 * the same snapshots. 1048 */ 1049 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1050 uint64_t num_ds_redact_snaps; 1051 uint64_t *ds_redact_snaps; 1052 1053 uint_t num_stream_redact_snaps; 1054 uint64_t *stream_redact_snaps; 1055 1056 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1057 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1058 &num_stream_redact_snaps) != 0) { 1059 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1060 return (SET_ERROR(EINVAL)); 1061 } 1062 1063 if (!dsl_dataset_get_uint64_array_feature(ds, 1064 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1065 &ds_redact_snaps)) { 1066 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1067 return (SET_ERROR(EINVAL)); 1068 } 1069 1070 for (int i = 0; i < num_ds_redact_snaps; i++) { 1071 if (!redact_snaps_contains(ds_redact_snaps, 1072 num_ds_redact_snaps, stream_redact_snaps[i])) { 1073 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1074 return (SET_ERROR(EINVAL)); 1075 } 1076 } 1077 } 1078 1079 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1080 if (error != 0) { 1081 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1082 return (error); 1083 } 1084 1085 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1086 return (0); 1087 } 1088 1089 static void 1090 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1091 { 1092 dmu_recv_begin_arg_t *drba = arg; 1093 dsl_pool_t *dp = dmu_tx_pool(tx); 1094 const char *tofs = drba->drba_cookie->drc_tofs; 1095 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1096 dsl_dataset_t *ds; 1097 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1098 /* 6 extra bytes for /%recv */ 1099 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1100 1101 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1102 recv_clone_name); 1103 1104 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1105 drba->drba_cookie->drc_raw = B_TRUE; 1106 } else { 1107 dsflags |= DS_HOLD_FLAG_DECRYPT; 1108 } 1109 1110 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1111 != 0) { 1112 /* %recv does not exist; continue in tofs */ 1113 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1114 &ds)); 1115 drba->drba_cookie->drc_newfs = B_TRUE; 1116 } 1117 1118 ASSERT(DS_IS_INCONSISTENT(ds)); 1119 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1120 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1121 drba->drba_cookie->drc_raw); 1122 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1123 1124 drba->drba_cookie->drc_ds = ds; 1125 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1126 drba->drba_cookie->drc_should_save = B_TRUE; 1127 1128 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1129 } 1130 1131 /* 1132 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1133 * succeeds; otherwise we will leak the holds on the datasets. 1134 */ 1135 int 1136 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1137 boolean_t force, boolean_t resumable, nvlist_t *localprops, 1138 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, 1139 zfs_file_t *fp, offset_t *voffp) 1140 { 1141 dmu_recv_begin_arg_t drba = { 0 }; 1142 int err; 1143 1144 bzero(drc, sizeof (dmu_recv_cookie_t)); 1145 drc->drc_drr_begin = drr_begin; 1146 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1147 drc->drc_tosnap = tosnap; 1148 drc->drc_tofs = tofs; 1149 drc->drc_force = force; 1150 drc->drc_resumable = resumable; 1151 drc->drc_cred = CRED(); 1152 drc->drc_proc = curproc; 1153 drc->drc_clone = (origin != NULL); 1154 1155 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1156 drc->drc_byteswap = B_TRUE; 1157 (void) fletcher_4_incremental_byteswap(drr_begin, 1158 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1159 byteswap_record(drr_begin); 1160 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1161 (void) fletcher_4_incremental_native(drr_begin, 1162 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1163 } else { 1164 return (SET_ERROR(EINVAL)); 1165 } 1166 1167 drc->drc_fp = fp; 1168 drc->drc_voff = *voffp; 1169 drc->drc_featureflags = 1170 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1171 1172 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1173 void *payload = NULL; 1174 if (payloadlen != 0) 1175 payload = kmem_alloc(payloadlen, KM_SLEEP); 1176 1177 err = receive_read_payload_and_next_header(drc, payloadlen, 1178 payload); 1179 if (err != 0) { 1180 kmem_free(payload, payloadlen); 1181 return (err); 1182 } 1183 if (payloadlen != 0) { 1184 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1185 KM_SLEEP); 1186 kmem_free(payload, payloadlen); 1187 if (err != 0) { 1188 kmem_free(drc->drc_next_rrd, 1189 sizeof (*drc->drc_next_rrd)); 1190 return (err); 1191 } 1192 } 1193 1194 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1195 drc->drc_spill = B_TRUE; 1196 1197 drba.drba_origin = origin; 1198 drba.drba_cookie = drc; 1199 drba.drba_cred = CRED(); 1200 drba.drba_proc = curproc; 1201 1202 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1203 err = dsl_sync_task(tofs, 1204 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1205 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1206 } else { 1207 1208 /* 1209 * For non-raw, non-incremental, non-resuming receives the 1210 * user can specify encryption parameters on the command line 1211 * with "zfs recv -o". For these receives we create a dcp and 1212 * pass it to the sync task. Creating the dcp will implicitly 1213 * remove the encryption params from the localprops nvlist, 1214 * which avoids errors when trying to set these normally 1215 * read-only properties. Any other kind of receive that 1216 * attempts to set these properties will fail as a result. 1217 */ 1218 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1219 DMU_BACKUP_FEATURE_RAW) == 0 && 1220 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1221 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1222 localprops, hidden_args, &drba.drba_dcp); 1223 } 1224 1225 if (err == 0) { 1226 err = dsl_sync_task(tofs, 1227 dmu_recv_begin_check, dmu_recv_begin_sync, 1228 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1229 dsl_crypto_params_free(drba.drba_dcp, !!err); 1230 } 1231 } 1232 1233 if (err != 0) { 1234 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1235 nvlist_free(drc->drc_begin_nvl); 1236 } 1237 return (err); 1238 } 1239 1240 static int 1241 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1242 { 1243 int done = 0; 1244 1245 /* 1246 * The code doesn't rely on this (lengths being multiples of 8). See 1247 * comment in dump_bytes. 1248 */ 1249 ASSERT(len % 8 == 0 || 1250 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1251 1252 while (done < len) { 1253 ssize_t resid; 1254 zfs_file_t *fp = drc->drc_fp; 1255 int err = zfs_file_read(fp, (char *)buf + done, 1256 len - done, &resid); 1257 if (resid == len - done) { 1258 /* 1259 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1260 * that the receive was interrupted and can 1261 * potentially be resumed. 1262 */ 1263 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1264 } 1265 drc->drc_voff += len - done - resid; 1266 done = len - resid; 1267 if (err != 0) 1268 return (err); 1269 } 1270 1271 drc->drc_bytes_read += len; 1272 1273 ASSERT3U(done, ==, len); 1274 return (0); 1275 } 1276 1277 static inline uint8_t 1278 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1279 { 1280 if (bonus_type == DMU_OT_SA) { 1281 return (1); 1282 } else { 1283 return (1 + 1284 ((DN_OLD_MAX_BONUSLEN - 1285 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1286 } 1287 } 1288 1289 static void 1290 save_resume_state(struct receive_writer_arg *rwa, 1291 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1292 { 1293 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1294 1295 if (!rwa->resumable) 1296 return; 1297 1298 /* 1299 * We use ds_resume_bytes[] != 0 to indicate that we need to 1300 * update this on disk, so it must not be 0. 1301 */ 1302 ASSERT(rwa->bytes_read != 0); 1303 1304 /* 1305 * We only resume from write records, which have a valid 1306 * (non-meta-dnode) object number. 1307 */ 1308 ASSERT(object != 0); 1309 1310 /* 1311 * For resuming to work correctly, we must receive records in order, 1312 * sorted by object,offset. This is checked by the callers, but 1313 * assert it here for good measure. 1314 */ 1315 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1316 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1317 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1318 ASSERT3U(rwa->bytes_read, >=, 1319 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1320 1321 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1322 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1323 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1324 } 1325 1326 static int 1327 receive_object_is_same_generation(objset_t *os, uint64_t object, 1328 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1329 const void *new_bonus, boolean_t *samegenp) 1330 { 1331 zfs_file_info_t zoi; 1332 int err; 1333 1334 dmu_buf_t *old_bonus_dbuf; 1335 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1336 if (err != 0) 1337 return (err); 1338 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1339 &zoi); 1340 dmu_buf_rele(old_bonus_dbuf, FTAG); 1341 if (err != 0) 1342 return (err); 1343 uint64_t old_gen = zoi.zfi_generation; 1344 1345 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1346 if (err != 0) 1347 return (err); 1348 uint64_t new_gen = zoi.zfi_generation; 1349 1350 *samegenp = (old_gen == new_gen); 1351 return (0); 1352 } 1353 1354 static int 1355 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1356 const struct drr_object *drro, const dmu_object_info_t *doi, 1357 const void *bonus_data, 1358 uint64_t *object_to_hold, uint32_t *new_blksz) 1359 { 1360 uint32_t indblksz = drro->drr_indblkshift ? 1361 1ULL << drro->drr_indblkshift : 0; 1362 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1363 drro->drr_bonuslen); 1364 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1365 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1366 boolean_t do_free_range = B_FALSE; 1367 int err; 1368 1369 *object_to_hold = drro->drr_object; 1370 1371 /* nblkptr should be bounded by the bonus size and type */ 1372 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1373 return (SET_ERROR(EINVAL)); 1374 1375 /* 1376 * After the previous send stream, the sending system may 1377 * have freed this object, and then happened to re-allocate 1378 * this object number in a later txg. In this case, we are 1379 * receiving a different logical file, and the block size may 1380 * appear to be different. i.e. we may have a different 1381 * block size for this object than what the send stream says. 1382 * In this case we need to remove the object's contents, 1383 * so that its structure can be changed and then its contents 1384 * entirely replaced by subsequent WRITE records. 1385 * 1386 * If this is a -L (--large-block) incremental stream, and 1387 * the previous stream was not -L, the block size may appear 1388 * to increase. i.e. we may have a smaller block size for 1389 * this object than what the send stream says. In this case 1390 * we need to keep the object's contents and block size 1391 * intact, so that we don't lose parts of the object's 1392 * contents that are not changed by this incremental send 1393 * stream. 1394 * 1395 * We can distinguish between the two above cases by using 1396 * the ZPL's generation number (see 1397 * receive_object_is_same_generation()). However, we only 1398 * want to rely on the generation number when absolutely 1399 * necessary, because with raw receives, the generation is 1400 * encrypted. We also want to minimize dependence on the 1401 * ZPL, so that other types of datasets can also be received 1402 * (e.g. ZVOLs, although note that ZVOLS currently do not 1403 * reallocate their objects or change their structure). 1404 * Therefore, we check a number of different cases where we 1405 * know it is safe to discard the object's contents, before 1406 * using the ZPL's generation number to make the above 1407 * distinction. 1408 */ 1409 if (drro->drr_blksz != doi->doi_data_block_size) { 1410 if (rwa->raw) { 1411 /* 1412 * RAW streams always have large blocks, so 1413 * we are sure that the data is not needed 1414 * due to changing --large-block to be on. 1415 * Which is fortunate since the bonus buffer 1416 * (which contains the ZPL generation) is 1417 * encrypted, and the key might not be 1418 * loaded. 1419 */ 1420 do_free_range = B_TRUE; 1421 } else if (rwa->full) { 1422 /* 1423 * This is a full send stream, so it always 1424 * replaces what we have. Even if the 1425 * generation numbers happen to match, this 1426 * can not actually be the same logical file. 1427 * This is relevant when receiving a full 1428 * send as a clone. 1429 */ 1430 do_free_range = B_TRUE; 1431 } else if (drro->drr_type != 1432 DMU_OT_PLAIN_FILE_CONTENTS || 1433 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1434 /* 1435 * PLAIN_FILE_CONTENTS are the only type of 1436 * objects that have ever been stored with 1437 * large blocks, so we don't need the special 1438 * logic below. ZAP blocks can shrink (when 1439 * there's only one block), so we don't want 1440 * to hit the error below about block size 1441 * only increasing. 1442 */ 1443 do_free_range = B_TRUE; 1444 } else if (doi->doi_max_offset <= 1445 doi->doi_data_block_size) { 1446 /* 1447 * There is only one block. We can free it, 1448 * because its contents will be replaced by a 1449 * WRITE record. This can not be the no-L -> 1450 * -L case, because the no-L case would have 1451 * resulted in multiple blocks. If we 1452 * supported -L -> no-L, it would not be safe 1453 * to free the file's contents. Fortunately, 1454 * that is not allowed (see 1455 * recv_check_large_blocks()). 1456 */ 1457 do_free_range = B_TRUE; 1458 } else { 1459 boolean_t is_same_gen; 1460 err = receive_object_is_same_generation(rwa->os, 1461 drro->drr_object, doi->doi_bonus_type, 1462 drro->drr_bonustype, bonus_data, &is_same_gen); 1463 if (err != 0) 1464 return (SET_ERROR(EINVAL)); 1465 1466 if (is_same_gen) { 1467 /* 1468 * This is the same logical file, and 1469 * the block size must be increasing. 1470 * It could only decrease if 1471 * --large-block was changed to be 1472 * off, which is checked in 1473 * recv_check_large_blocks(). 1474 */ 1475 if (drro->drr_blksz <= 1476 doi->doi_data_block_size) 1477 return (SET_ERROR(EINVAL)); 1478 /* 1479 * We keep the existing blocksize and 1480 * contents. 1481 */ 1482 *new_blksz = 1483 doi->doi_data_block_size; 1484 } else { 1485 do_free_range = B_TRUE; 1486 } 1487 } 1488 } 1489 1490 /* nblkptr can only decrease if the object was reallocated */ 1491 if (nblkptr < doi->doi_nblkptr) 1492 do_free_range = B_TRUE; 1493 1494 /* number of slots can only change on reallocation */ 1495 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1496 do_free_range = B_TRUE; 1497 1498 /* 1499 * For raw sends we also check a few other fields to 1500 * ensure we are preserving the objset structure exactly 1501 * as it was on the receive side: 1502 * - A changed indirect block size 1503 * - A smaller nlevels 1504 */ 1505 if (rwa->raw) { 1506 if (indblksz != doi->doi_metadata_block_size) 1507 do_free_range = B_TRUE; 1508 if (drro->drr_nlevels < doi->doi_indirection) 1509 do_free_range = B_TRUE; 1510 } 1511 1512 if (do_free_range) { 1513 err = dmu_free_long_range(rwa->os, drro->drr_object, 1514 0, DMU_OBJECT_END); 1515 if (err != 0) 1516 return (SET_ERROR(EINVAL)); 1517 } 1518 1519 /* 1520 * The dmu does not currently support decreasing nlevels 1521 * or changing the number of dnode slots on an object. For 1522 * non-raw sends, this does not matter and the new object 1523 * can just use the previous one's nlevels. For raw sends, 1524 * however, the structure of the received dnode (including 1525 * nlevels and dnode slots) must match that of the send 1526 * side. Therefore, instead of using dmu_object_reclaim(), 1527 * we must free the object completely and call 1528 * dmu_object_claim_dnsize() instead. 1529 */ 1530 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || 1531 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1532 err = dmu_free_long_object(rwa->os, drro->drr_object); 1533 if (err != 0) 1534 return (SET_ERROR(EINVAL)); 1535 1536 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1537 *object_to_hold = DMU_NEW_OBJECT; 1538 } 1539 1540 /* 1541 * For raw receives, free everything beyond the new incoming 1542 * maxblkid. Normally this would be done with a DRR_FREE 1543 * record that would come after this DRR_OBJECT record is 1544 * processed. However, for raw receives we manually set the 1545 * maxblkid from the drr_maxblkid and so we must first free 1546 * everything above that blkid to ensure the DMU is always 1547 * consistent with itself. We will never free the first block 1548 * of the object here because a maxblkid of 0 could indicate 1549 * an object with a single block or one with no blocks. This 1550 * free may be skipped when dmu_free_long_range() was called 1551 * above since it covers the entire object's contents. 1552 */ 1553 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1554 err = dmu_free_long_range(rwa->os, drro->drr_object, 1555 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1556 DMU_OBJECT_END); 1557 if (err != 0) 1558 return (SET_ERROR(EINVAL)); 1559 } 1560 return (0); 1561 } 1562 1563 noinline static int 1564 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1565 void *data) 1566 { 1567 dmu_object_info_t doi; 1568 dmu_tx_t *tx; 1569 int err; 1570 uint32_t new_blksz = drro->drr_blksz; 1571 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1572 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1573 1574 if (drro->drr_type == DMU_OT_NONE || 1575 !DMU_OT_IS_VALID(drro->drr_type) || 1576 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1577 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1578 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1579 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1580 drro->drr_blksz < SPA_MINBLOCKSIZE || 1581 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1582 drro->drr_bonuslen > 1583 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1584 dn_slots > 1585 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1586 return (SET_ERROR(EINVAL)); 1587 } 1588 1589 if (rwa->raw) { 1590 /* 1591 * We should have received a DRR_OBJECT_RANGE record 1592 * containing this block and stored it in rwa. 1593 */ 1594 if (drro->drr_object < rwa->or_firstobj || 1595 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1596 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1597 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1598 drro->drr_nlevels > DN_MAX_LEVELS || 1599 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1600 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1601 drro->drr_raw_bonuslen) 1602 return (SET_ERROR(EINVAL)); 1603 } else { 1604 /* 1605 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1606 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1607 */ 1608 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1609 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1610 return (SET_ERROR(EINVAL)); 1611 } 1612 1613 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1614 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1615 return (SET_ERROR(EINVAL)); 1616 } 1617 } 1618 1619 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1620 1621 if (err != 0 && err != ENOENT && err != EEXIST) 1622 return (SET_ERROR(EINVAL)); 1623 1624 if (drro->drr_object > rwa->max_object) 1625 rwa->max_object = drro->drr_object; 1626 1627 /* 1628 * If we are losing blkptrs or changing the block size this must 1629 * be a new file instance. We must clear out the previous file 1630 * contents before we can change this type of metadata in the dnode. 1631 * Raw receives will also check that the indirect structure of the 1632 * dnode hasn't changed. 1633 */ 1634 uint64_t object_to_hold; 1635 if (err == 0) { 1636 err = receive_handle_existing_object(rwa, drro, &doi, data, 1637 &object_to_hold, &new_blksz); 1638 } else if (err == EEXIST) { 1639 /* 1640 * The object requested is currently an interior slot of a 1641 * multi-slot dnode. This will be resolved when the next txg 1642 * is synced out, since the send stream will have told us 1643 * to free this slot when we freed the associated dnode 1644 * earlier in the stream. 1645 */ 1646 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1647 1648 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1649 return (SET_ERROR(EINVAL)); 1650 1651 /* object was freed and we are about to allocate a new one */ 1652 object_to_hold = DMU_NEW_OBJECT; 1653 } else { 1654 /* object is free and we are about to allocate a new one */ 1655 object_to_hold = DMU_NEW_OBJECT; 1656 } 1657 1658 /* 1659 * If this is a multi-slot dnode there is a chance that this 1660 * object will expand into a slot that is already used by 1661 * another object from the previous snapshot. We must free 1662 * these objects before we attempt to allocate the new dnode. 1663 */ 1664 if (dn_slots > 1) { 1665 boolean_t need_sync = B_FALSE; 1666 1667 for (uint64_t slot = drro->drr_object + 1; 1668 slot < drro->drr_object + dn_slots; 1669 slot++) { 1670 dmu_object_info_t slot_doi; 1671 1672 err = dmu_object_info(rwa->os, slot, &slot_doi); 1673 if (err == ENOENT || err == EEXIST) 1674 continue; 1675 else if (err != 0) 1676 return (err); 1677 1678 err = dmu_free_long_object(rwa->os, slot); 1679 if (err != 0) 1680 return (err); 1681 1682 need_sync = B_TRUE; 1683 } 1684 1685 if (need_sync) 1686 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1687 } 1688 1689 tx = dmu_tx_create(rwa->os); 1690 dmu_tx_hold_bonus(tx, object_to_hold); 1691 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1692 err = dmu_tx_assign(tx, TXG_WAIT); 1693 if (err != 0) { 1694 dmu_tx_abort(tx); 1695 return (err); 1696 } 1697 1698 if (object_to_hold == DMU_NEW_OBJECT) { 1699 /* Currently free, wants to be allocated */ 1700 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1701 drro->drr_type, new_blksz, 1702 drro->drr_bonustype, drro->drr_bonuslen, 1703 dn_slots << DNODE_SHIFT, tx); 1704 } else if (drro->drr_type != doi.doi_type || 1705 new_blksz != doi.doi_data_block_size || 1706 drro->drr_bonustype != doi.doi_bonus_type || 1707 drro->drr_bonuslen != doi.doi_bonus_size) { 1708 /* Currently allocated, but with different properties */ 1709 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1710 drro->drr_type, new_blksz, 1711 drro->drr_bonustype, drro->drr_bonuslen, 1712 dn_slots << DNODE_SHIFT, rwa->spill ? 1713 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1714 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1715 /* 1716 * Currently allocated, the existing version of this object 1717 * may reference a spill block that is no longer allocated 1718 * at the source and needs to be freed. 1719 */ 1720 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1721 } 1722 1723 if (err != 0) { 1724 dmu_tx_commit(tx); 1725 return (SET_ERROR(EINVAL)); 1726 } 1727 1728 if (rwa->or_crypt_params_present) { 1729 /* 1730 * Set the crypt params for the buffer associated with this 1731 * range of dnodes. This causes the blkptr_t to have the 1732 * same crypt params (byteorder, salt, iv, mac) as on the 1733 * sending side. 1734 * 1735 * Since we are committing this tx now, it is possible for 1736 * the dnode block to end up on-disk with the incorrect MAC, 1737 * if subsequent objects in this block are received in a 1738 * different txg. However, since the dataset is marked as 1739 * inconsistent, no code paths will do a non-raw read (or 1740 * decrypt the block / verify the MAC). The receive code and 1741 * scrub code can safely do raw reads and verify the 1742 * checksum. They don't need to verify the MAC. 1743 */ 1744 dmu_buf_t *db = NULL; 1745 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1746 1747 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1748 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1749 if (err != 0) { 1750 dmu_tx_commit(tx); 1751 return (SET_ERROR(EINVAL)); 1752 } 1753 1754 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1755 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1756 1757 dmu_buf_rele(db, FTAG); 1758 1759 rwa->or_crypt_params_present = B_FALSE; 1760 } 1761 1762 dmu_object_set_checksum(rwa->os, drro->drr_object, 1763 drro->drr_checksumtype, tx); 1764 dmu_object_set_compress(rwa->os, drro->drr_object, 1765 drro->drr_compress, tx); 1766 1767 /* handle more restrictive dnode structuring for raw recvs */ 1768 if (rwa->raw) { 1769 /* 1770 * Set the indirect block size, block shift, nlevels. 1771 * This will not fail because we ensured all of the 1772 * blocks were freed earlier if this is a new object. 1773 * For non-new objects block size and indirect block 1774 * shift cannot change and nlevels can only increase. 1775 */ 1776 ASSERT3U(new_blksz, ==, drro->drr_blksz); 1777 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1778 drro->drr_blksz, drro->drr_indblkshift, tx)); 1779 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1780 drro->drr_nlevels, tx)); 1781 1782 /* 1783 * Set the maxblkid. This will always succeed because 1784 * we freed all blocks beyond the new maxblkid above. 1785 */ 1786 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1787 drro->drr_maxblkid, tx)); 1788 } 1789 1790 if (data != NULL) { 1791 dmu_buf_t *db; 1792 dnode_t *dn; 1793 uint32_t flags = DMU_READ_NO_PREFETCH; 1794 1795 if (rwa->raw) 1796 flags |= DMU_READ_NO_DECRYPT; 1797 1798 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1799 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1800 1801 dmu_buf_will_dirty(db, tx); 1802 1803 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1804 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1805 1806 /* 1807 * Raw bonus buffers have their byteorder determined by the 1808 * DRR_OBJECT_RANGE record. 1809 */ 1810 if (rwa->byteswap && !rwa->raw) { 1811 dmu_object_byteswap_t byteswap = 1812 DMU_OT_BYTESWAP(drro->drr_bonustype); 1813 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1814 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1815 } 1816 dmu_buf_rele(db, FTAG); 1817 dnode_rele(dn, FTAG); 1818 } 1819 dmu_tx_commit(tx); 1820 1821 return (0); 1822 } 1823 1824 /* ARGSUSED */ 1825 noinline static int 1826 receive_freeobjects(struct receive_writer_arg *rwa, 1827 struct drr_freeobjects *drrfo) 1828 { 1829 uint64_t obj; 1830 int next_err = 0; 1831 1832 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1833 return (SET_ERROR(EINVAL)); 1834 1835 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1836 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 1837 obj < DN_MAX_OBJECT && next_err == 0; 1838 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1839 dmu_object_info_t doi; 1840 int err; 1841 1842 err = dmu_object_info(rwa->os, obj, &doi); 1843 if (err == ENOENT) 1844 continue; 1845 else if (err != 0) 1846 return (err); 1847 1848 err = dmu_free_long_object(rwa->os, obj); 1849 1850 if (err != 0) 1851 return (err); 1852 } 1853 if (next_err != ESRCH) 1854 return (next_err); 1855 return (0); 1856 } 1857 1858 /* 1859 * Note: if this fails, the caller will clean up any records left on the 1860 * rwa->write_batch list. 1861 */ 1862 static int 1863 flush_write_batch_impl(struct receive_writer_arg *rwa) 1864 { 1865 dnode_t *dn; 1866 int err; 1867 1868 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 1869 return (SET_ERROR(EINVAL)); 1870 1871 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 1872 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 1873 1874 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 1875 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 1876 1877 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 1878 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 1879 1880 dmu_tx_t *tx = dmu_tx_create(rwa->os); 1881 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 1882 last_drrw->drr_offset - first_drrw->drr_offset + 1883 last_drrw->drr_logical_size); 1884 err = dmu_tx_assign(tx, TXG_WAIT); 1885 if (err != 0) { 1886 dmu_tx_abort(tx); 1887 dnode_rele(dn, FTAG); 1888 return (err); 1889 } 1890 1891 struct receive_record_arg *rrd; 1892 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 1893 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 1894 abd_t *abd = rrd->abd; 1895 1896 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 1897 1898 if (drrw->drr_logical_size != dn->dn_datablksz) { 1899 /* 1900 * The WRITE record is larger than the object's block 1901 * size. We must be receiving an incremental 1902 * large-block stream into a dataset that previously did 1903 * a non-large-block receive. Lightweight writes must 1904 * be exactly one block, so we need to decompress the 1905 * data (if compressed) and do a normal dmu_write(). 1906 */ 1907 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 1908 if (DRR_WRITE_COMPRESSED(drrw)) { 1909 abd_t *decomp_abd = 1910 abd_alloc_linear(drrw->drr_logical_size, 1911 B_FALSE); 1912 1913 err = zio_decompress_data( 1914 drrw->drr_compressiontype, 1915 abd, abd_to_buf(decomp_abd), 1916 abd_get_size(abd), 1917 abd_get_size(decomp_abd), NULL); 1918 1919 if (err == 0) { 1920 dmu_write_by_dnode(dn, 1921 drrw->drr_offset, 1922 drrw->drr_logical_size, 1923 abd_to_buf(decomp_abd), tx); 1924 } 1925 abd_free(decomp_abd); 1926 } else { 1927 dmu_write_by_dnode(dn, 1928 drrw->drr_offset, 1929 drrw->drr_logical_size, 1930 abd_to_buf(abd), tx); 1931 } 1932 if (err == 0) 1933 abd_free(abd); 1934 } else { 1935 zio_prop_t zp; 1936 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 1937 1938 enum zio_flag zio_flags = 0; 1939 1940 if (rwa->raw) { 1941 zp.zp_encrypt = B_TRUE; 1942 zp.zp_compress = drrw->drr_compressiontype; 1943 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 1944 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 1945 rwa->byteswap; 1946 bcopy(drrw->drr_salt, zp.zp_salt, 1947 ZIO_DATA_SALT_LEN); 1948 bcopy(drrw->drr_iv, zp.zp_iv, 1949 ZIO_DATA_IV_LEN); 1950 bcopy(drrw->drr_mac, zp.zp_mac, 1951 ZIO_DATA_MAC_LEN); 1952 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 1953 zp.zp_nopwrite = B_FALSE; 1954 zp.zp_copies = MIN(zp.zp_copies, 1955 SPA_DVAS_PER_BP - 1); 1956 } 1957 zio_flags |= ZIO_FLAG_RAW; 1958 } else if (DRR_WRITE_COMPRESSED(drrw)) { 1959 ASSERT3U(drrw->drr_compressed_size, >, 0); 1960 ASSERT3U(drrw->drr_logical_size, >=, 1961 drrw->drr_compressed_size); 1962 zp.zp_compress = drrw->drr_compressiontype; 1963 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 1964 } else if (rwa->byteswap) { 1965 /* 1966 * Note: compressed blocks never need to be 1967 * byteswapped, because WRITE records for 1968 * metadata blocks are never compressed. The 1969 * exception is raw streams, which are written 1970 * in the original byteorder, and the byteorder 1971 * bit is preserved in the BP by setting 1972 * zp_byteorder above. 1973 */ 1974 dmu_object_byteswap_t byteswap = 1975 DMU_OT_BYTESWAP(drrw->drr_type); 1976 dmu_ot_byteswap[byteswap].ob_func( 1977 abd_to_buf(abd), 1978 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1979 } 1980 1981 /* 1982 * Since this data can't be read until the receive 1983 * completes, we can do a "lightweight" write for 1984 * improved performance. 1985 */ 1986 err = dmu_lightweight_write_by_dnode(dn, 1987 drrw->drr_offset, abd, &zp, zio_flags, tx); 1988 } 1989 1990 if (err != 0) { 1991 /* 1992 * This rrd is left on the list, so the caller will 1993 * free it (and the abd). 1994 */ 1995 break; 1996 } 1997 1998 /* 1999 * Note: If the receive fails, we want the resume stream to 2000 * start with the same record that we last successfully 2001 * received (as opposed to the next record), so that we can 2002 * verify that we are resuming from the correct location. 2003 */ 2004 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2005 2006 list_remove(&rwa->write_batch, rrd); 2007 kmem_free(rrd, sizeof (*rrd)); 2008 } 2009 2010 dmu_tx_commit(tx); 2011 dnode_rele(dn, FTAG); 2012 return (err); 2013 } 2014 2015 noinline static int 2016 flush_write_batch(struct receive_writer_arg *rwa) 2017 { 2018 if (list_is_empty(&rwa->write_batch)) 2019 return (0); 2020 int err = rwa->err; 2021 if (err == 0) 2022 err = flush_write_batch_impl(rwa); 2023 if (err != 0) { 2024 struct receive_record_arg *rrd; 2025 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2026 abd_free(rrd->abd); 2027 kmem_free(rrd, sizeof (*rrd)); 2028 } 2029 } 2030 ASSERT(list_is_empty(&rwa->write_batch)); 2031 return (err); 2032 } 2033 2034 noinline static int 2035 receive_process_write_record(struct receive_writer_arg *rwa, 2036 struct receive_record_arg *rrd) 2037 { 2038 int err = 0; 2039 2040 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2041 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2042 2043 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2044 !DMU_OT_IS_VALID(drrw->drr_type)) 2045 return (SET_ERROR(EINVAL)); 2046 2047 /* 2048 * For resuming to work, records must be in increasing order 2049 * by (object, offset). 2050 */ 2051 if (drrw->drr_object < rwa->last_object || 2052 (drrw->drr_object == rwa->last_object && 2053 drrw->drr_offset < rwa->last_offset)) { 2054 return (SET_ERROR(EINVAL)); 2055 } 2056 2057 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2058 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2059 uint64_t batch_size = 2060 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2061 if (first_rrd != NULL && 2062 (drrw->drr_object != first_drrw->drr_object || 2063 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2064 err = flush_write_batch(rwa); 2065 if (err != 0) 2066 return (err); 2067 } 2068 2069 rwa->last_object = drrw->drr_object; 2070 rwa->last_offset = drrw->drr_offset; 2071 2072 if (rwa->last_object > rwa->max_object) 2073 rwa->max_object = rwa->last_object; 2074 2075 list_insert_tail(&rwa->write_batch, rrd); 2076 /* 2077 * Return EAGAIN to indicate that we will use this rrd again, 2078 * so the caller should not free it 2079 */ 2080 return (EAGAIN); 2081 } 2082 2083 static int 2084 receive_write_embedded(struct receive_writer_arg *rwa, 2085 struct drr_write_embedded *drrwe, void *data) 2086 { 2087 dmu_tx_t *tx; 2088 int err; 2089 2090 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2091 return (SET_ERROR(EINVAL)); 2092 2093 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2094 return (SET_ERROR(EINVAL)); 2095 2096 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2097 return (SET_ERROR(EINVAL)); 2098 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2099 return (SET_ERROR(EINVAL)); 2100 if (rwa->raw) 2101 return (SET_ERROR(EINVAL)); 2102 2103 if (drrwe->drr_object > rwa->max_object) 2104 rwa->max_object = drrwe->drr_object; 2105 2106 tx = dmu_tx_create(rwa->os); 2107 2108 dmu_tx_hold_write(tx, drrwe->drr_object, 2109 drrwe->drr_offset, drrwe->drr_length); 2110 err = dmu_tx_assign(tx, TXG_WAIT); 2111 if (err != 0) { 2112 dmu_tx_abort(tx); 2113 return (err); 2114 } 2115 2116 dmu_write_embedded(rwa->os, drrwe->drr_object, 2117 drrwe->drr_offset, data, drrwe->drr_etype, 2118 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2119 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2120 2121 /* See comment in restore_write. */ 2122 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2123 dmu_tx_commit(tx); 2124 return (0); 2125 } 2126 2127 static int 2128 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2129 abd_t *abd) 2130 { 2131 dmu_buf_t *db, *db_spill; 2132 int err; 2133 2134 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2135 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2136 return (SET_ERROR(EINVAL)); 2137 2138 /* 2139 * This is an unmodified spill block which was added to the stream 2140 * to resolve an issue with incorrectly removing spill blocks. It 2141 * should be ignored by current versions of the code which support 2142 * the DRR_FLAG_SPILL_BLOCK flag. 2143 */ 2144 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2145 abd_free(abd); 2146 return (0); 2147 } 2148 2149 if (rwa->raw) { 2150 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2151 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2152 drrs->drr_compressed_size == 0) 2153 return (SET_ERROR(EINVAL)); 2154 } 2155 2156 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2157 return (SET_ERROR(EINVAL)); 2158 2159 if (drrs->drr_object > rwa->max_object) 2160 rwa->max_object = drrs->drr_object; 2161 2162 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2163 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2164 &db_spill)) != 0) { 2165 dmu_buf_rele(db, FTAG); 2166 return (err); 2167 } 2168 2169 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2170 2171 dmu_tx_hold_spill(tx, db->db_object); 2172 2173 err = dmu_tx_assign(tx, TXG_WAIT); 2174 if (err != 0) { 2175 dmu_buf_rele(db, FTAG); 2176 dmu_buf_rele(db_spill, FTAG); 2177 dmu_tx_abort(tx); 2178 return (err); 2179 } 2180 2181 /* 2182 * Spill blocks may both grow and shrink. When a change in size 2183 * occurs any existing dbuf must be updated to match the logical 2184 * size of the provided arc_buf_t. 2185 */ 2186 if (db_spill->db_size != drrs->drr_length) { 2187 dmu_buf_will_fill(db_spill, tx); 2188 VERIFY0(dbuf_spill_set_blksz(db_spill, 2189 drrs->drr_length, tx)); 2190 } 2191 2192 arc_buf_t *abuf; 2193 if (rwa->raw) { 2194 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2195 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2196 rwa->byteswap; 2197 2198 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2199 drrs->drr_object, byteorder, drrs->drr_salt, 2200 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2201 drrs->drr_compressed_size, drrs->drr_length, 2202 drrs->drr_compressiontype, 0); 2203 } else { 2204 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2205 DMU_OT_IS_METADATA(drrs->drr_type), 2206 drrs->drr_length); 2207 if (rwa->byteswap) { 2208 dmu_object_byteswap_t byteswap = 2209 DMU_OT_BYTESWAP(drrs->drr_type); 2210 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2211 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2212 } 2213 } 2214 2215 bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs)); 2216 abd_free(abd); 2217 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2218 2219 dmu_buf_rele(db, FTAG); 2220 dmu_buf_rele(db_spill, FTAG); 2221 2222 dmu_tx_commit(tx); 2223 return (0); 2224 } 2225 2226 /* ARGSUSED */ 2227 noinline static int 2228 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2229 { 2230 int err; 2231 2232 if (drrf->drr_length != -1ULL && 2233 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2234 return (SET_ERROR(EINVAL)); 2235 2236 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2237 return (SET_ERROR(EINVAL)); 2238 2239 if (drrf->drr_object > rwa->max_object) 2240 rwa->max_object = drrf->drr_object; 2241 2242 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2243 drrf->drr_offset, drrf->drr_length); 2244 2245 return (err); 2246 } 2247 2248 static int 2249 receive_object_range(struct receive_writer_arg *rwa, 2250 struct drr_object_range *drror) 2251 { 2252 /* 2253 * By default, we assume this block is in our native format 2254 * (ZFS_HOST_BYTEORDER). We then take into account whether 2255 * the send stream is byteswapped (rwa->byteswap). Finally, 2256 * we need to byteswap again if this particular block was 2257 * in non-native format on the send side. 2258 */ 2259 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2260 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2261 2262 /* 2263 * Since dnode block sizes are constant, we should not need to worry 2264 * about making sure that the dnode block size is the same on the 2265 * sending and receiving sides for the time being. For non-raw sends, 2266 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2267 * record at all). Raw sends require this record type because the 2268 * encryption parameters are used to protect an entire block of bonus 2269 * buffers. If the size of dnode blocks ever becomes variable, 2270 * handling will need to be added to ensure that dnode block sizes 2271 * match on the sending and receiving side. 2272 */ 2273 if (drror->drr_numslots != DNODES_PER_BLOCK || 2274 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2275 !rwa->raw) 2276 return (SET_ERROR(EINVAL)); 2277 2278 if (drror->drr_firstobj > rwa->max_object) 2279 rwa->max_object = drror->drr_firstobj; 2280 2281 /* 2282 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2283 * so that the block of dnodes is not written out when it's empty, 2284 * and converted to a HOLE BP. 2285 */ 2286 rwa->or_crypt_params_present = B_TRUE; 2287 rwa->or_firstobj = drror->drr_firstobj; 2288 rwa->or_numslots = drror->drr_numslots; 2289 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); 2290 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); 2291 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); 2292 rwa->or_byteorder = byteorder; 2293 2294 return (0); 2295 } 2296 2297 /* 2298 * Until we have the ability to redact large ranges of data efficiently, we 2299 * process these records as frees. 2300 */ 2301 /* ARGSUSED */ 2302 noinline static int 2303 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2304 { 2305 struct drr_free drrf = {0}; 2306 drrf.drr_length = drrr->drr_length; 2307 drrf.drr_object = drrr->drr_object; 2308 drrf.drr_offset = drrr->drr_offset; 2309 drrf.drr_toguid = drrr->drr_toguid; 2310 return (receive_free(rwa, &drrf)); 2311 } 2312 2313 /* used to destroy the drc_ds on error */ 2314 static void 2315 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2316 { 2317 dsl_dataset_t *ds = drc->drc_ds; 2318 ds_hold_flags_t dsflags; 2319 2320 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2321 /* 2322 * Wait for the txg sync before cleaning up the receive. For 2323 * resumable receives, this ensures that our resume state has 2324 * been written out to disk. For raw receives, this ensures 2325 * that the user accounting code will not attempt to do anything 2326 * after we stopped receiving the dataset. 2327 */ 2328 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2329 ds->ds_objset->os_raw_receive = B_FALSE; 2330 2331 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2332 if (drc->drc_resumable && drc->drc_should_save && 2333 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2334 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2335 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2336 } else { 2337 char name[ZFS_MAX_DATASET_NAME_LEN]; 2338 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2339 dsl_dataset_name(ds, name); 2340 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2341 (void) dsl_destroy_head(name); 2342 } 2343 } 2344 2345 static void 2346 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2347 { 2348 if (drc->drc_byteswap) { 2349 (void) fletcher_4_incremental_byteswap(buf, len, 2350 &drc->drc_cksum); 2351 } else { 2352 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2353 } 2354 } 2355 2356 /* 2357 * Read the payload into a buffer of size len, and update the current record's 2358 * payload field. 2359 * Allocate drc->drc_next_rrd and read the next record's header into 2360 * drc->drc_next_rrd->header. 2361 * Verify checksum of payload and next record. 2362 */ 2363 static int 2364 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2365 { 2366 int err; 2367 2368 if (len != 0) { 2369 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2370 err = receive_read(drc, len, buf); 2371 if (err != 0) 2372 return (err); 2373 receive_cksum(drc, len, buf); 2374 2375 /* note: rrd is NULL when reading the begin record's payload */ 2376 if (drc->drc_rrd != NULL) { 2377 drc->drc_rrd->payload = buf; 2378 drc->drc_rrd->payload_size = len; 2379 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2380 } 2381 } else { 2382 ASSERT3P(buf, ==, NULL); 2383 } 2384 2385 drc->drc_prev_cksum = drc->drc_cksum; 2386 2387 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2388 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2389 &drc->drc_next_rrd->header); 2390 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2391 2392 if (err != 0) { 2393 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2394 drc->drc_next_rrd = NULL; 2395 return (err); 2396 } 2397 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2398 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2399 drc->drc_next_rrd = NULL; 2400 return (SET_ERROR(EINVAL)); 2401 } 2402 2403 /* 2404 * Note: checksum is of everything up to but not including the 2405 * checksum itself. 2406 */ 2407 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2408 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2409 receive_cksum(drc, 2410 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2411 &drc->drc_next_rrd->header); 2412 2413 zio_cksum_t cksum_orig = 2414 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2415 zio_cksum_t *cksump = 2416 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2417 2418 if (drc->drc_byteswap) 2419 byteswap_record(&drc->drc_next_rrd->header); 2420 2421 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2422 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2423 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2424 drc->drc_next_rrd = NULL; 2425 return (SET_ERROR(ECKSUM)); 2426 } 2427 2428 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2429 2430 return (0); 2431 } 2432 2433 /* 2434 * Issue the prefetch reads for any necessary indirect blocks. 2435 * 2436 * We use the object ignore list to tell us whether or not to issue prefetches 2437 * for a given object. We do this for both correctness (in case the blocksize 2438 * of an object has changed) and performance (if the object doesn't exist, don't 2439 * needlessly try to issue prefetches). We also trim the list as we go through 2440 * the stream to prevent it from growing to an unbounded size. 2441 * 2442 * The object numbers within will always be in sorted order, and any write 2443 * records we see will also be in sorted order, but they're not sorted with 2444 * respect to each other (i.e. we can get several object records before 2445 * receiving each object's write records). As a result, once we've reached a 2446 * given object number, we can safely remove any reference to lower object 2447 * numbers in the ignore list. In practice, we receive up to 32 object records 2448 * before receiving write records, so the list can have up to 32 nodes in it. 2449 */ 2450 /* ARGSUSED */ 2451 static void 2452 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2453 uint64_t length) 2454 { 2455 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2456 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2457 ZIO_PRIORITY_SYNC_READ); 2458 } 2459 } 2460 2461 /* 2462 * Read records off the stream, issuing any necessary prefetches. 2463 */ 2464 static int 2465 receive_read_record(dmu_recv_cookie_t *drc) 2466 { 2467 int err; 2468 2469 switch (drc->drc_rrd->header.drr_type) { 2470 case DRR_OBJECT: 2471 { 2472 struct drr_object *drro = 2473 &drc->drc_rrd->header.drr_u.drr_object; 2474 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2475 void *buf = NULL; 2476 dmu_object_info_t doi; 2477 2478 if (size != 0) 2479 buf = kmem_zalloc(size, KM_SLEEP); 2480 2481 err = receive_read_payload_and_next_header(drc, size, buf); 2482 if (err != 0) { 2483 kmem_free(buf, size); 2484 return (err); 2485 } 2486 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2487 /* 2488 * See receive_read_prefetch for an explanation why we're 2489 * storing this object in the ignore_obj_list. 2490 */ 2491 if (err == ENOENT || err == EEXIST || 2492 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2493 objlist_insert(drc->drc_ignore_objlist, 2494 drro->drr_object); 2495 err = 0; 2496 } 2497 return (err); 2498 } 2499 case DRR_FREEOBJECTS: 2500 { 2501 err = receive_read_payload_and_next_header(drc, 0, NULL); 2502 return (err); 2503 } 2504 case DRR_WRITE: 2505 { 2506 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2507 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2508 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2509 err = receive_read_payload_and_next_header(drc, size, 2510 abd_to_buf(abd)); 2511 if (err != 0) { 2512 abd_free(abd); 2513 return (err); 2514 } 2515 drc->drc_rrd->abd = abd; 2516 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2517 drrw->drr_logical_size); 2518 return (err); 2519 } 2520 case DRR_WRITE_EMBEDDED: 2521 { 2522 struct drr_write_embedded *drrwe = 2523 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2524 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2525 void *buf = kmem_zalloc(size, KM_SLEEP); 2526 2527 err = receive_read_payload_and_next_header(drc, size, buf); 2528 if (err != 0) { 2529 kmem_free(buf, size); 2530 return (err); 2531 } 2532 2533 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2534 drrwe->drr_length); 2535 return (err); 2536 } 2537 case DRR_FREE: 2538 case DRR_REDACT: 2539 { 2540 /* 2541 * It might be beneficial to prefetch indirect blocks here, but 2542 * we don't really have the data to decide for sure. 2543 */ 2544 err = receive_read_payload_and_next_header(drc, 0, NULL); 2545 return (err); 2546 } 2547 case DRR_END: 2548 { 2549 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2550 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2551 drre->drr_checksum)) 2552 return (SET_ERROR(ECKSUM)); 2553 return (0); 2554 } 2555 case DRR_SPILL: 2556 { 2557 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2558 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2559 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2560 err = receive_read_payload_and_next_header(drc, size, 2561 abd_to_buf(abd)); 2562 if (err != 0) 2563 abd_free(abd); 2564 else 2565 drc->drc_rrd->abd = abd; 2566 return (err); 2567 } 2568 case DRR_OBJECT_RANGE: 2569 { 2570 err = receive_read_payload_and_next_header(drc, 0, NULL); 2571 return (err); 2572 2573 } 2574 default: 2575 return (SET_ERROR(EINVAL)); 2576 } 2577 } 2578 2579 2580 2581 static void 2582 dprintf_drr(struct receive_record_arg *rrd, int err) 2583 { 2584 #ifdef ZFS_DEBUG 2585 switch (rrd->header.drr_type) { 2586 case DRR_OBJECT: 2587 { 2588 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2589 dprintf("drr_type = OBJECT obj = %llu type = %u " 2590 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2591 "compress = %u dn_slots = %u err = %d\n", 2592 drro->drr_object, drro->drr_type, drro->drr_bonustype, 2593 drro->drr_blksz, drro->drr_bonuslen, 2594 drro->drr_checksumtype, drro->drr_compress, 2595 drro->drr_dn_slots, err); 2596 break; 2597 } 2598 case DRR_FREEOBJECTS: 2599 { 2600 struct drr_freeobjects *drrfo = 2601 &rrd->header.drr_u.drr_freeobjects; 2602 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2603 "numobjs = %llu err = %d\n", 2604 drrfo->drr_firstobj, drrfo->drr_numobjs, err); 2605 break; 2606 } 2607 case DRR_WRITE: 2608 { 2609 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2610 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2611 "lsize = %llu cksumtype = %u flags = %u " 2612 "compress = %u psize = %llu err = %d\n", 2613 drrw->drr_object, drrw->drr_type, drrw->drr_offset, 2614 drrw->drr_logical_size, drrw->drr_checksumtype, 2615 drrw->drr_flags, drrw->drr_compressiontype, 2616 drrw->drr_compressed_size, err); 2617 break; 2618 } 2619 case DRR_WRITE_BYREF: 2620 { 2621 struct drr_write_byref *drrwbr = 2622 &rrd->header.drr_u.drr_write_byref; 2623 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2624 "length = %llu toguid = %llx refguid = %llx " 2625 "refobject = %llu refoffset = %llu cksumtype = %u " 2626 "flags = %u err = %d\n", 2627 drrwbr->drr_object, drrwbr->drr_offset, 2628 drrwbr->drr_length, drrwbr->drr_toguid, 2629 drrwbr->drr_refguid, drrwbr->drr_refobject, 2630 drrwbr->drr_refoffset, drrwbr->drr_checksumtype, 2631 drrwbr->drr_flags, err); 2632 break; 2633 } 2634 case DRR_WRITE_EMBEDDED: 2635 { 2636 struct drr_write_embedded *drrwe = 2637 &rrd->header.drr_u.drr_write_embedded; 2638 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 2639 "length = %llu compress = %u etype = %u lsize = %u " 2640 "psize = %u err = %d\n", 2641 drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length, 2642 drrwe->drr_compression, drrwe->drr_etype, 2643 drrwe->drr_lsize, drrwe->drr_psize, err); 2644 break; 2645 } 2646 case DRR_FREE: 2647 { 2648 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2649 dprintf("drr_type = FREE obj = %llu offset = %llu " 2650 "length = %lld err = %d\n", 2651 drrf->drr_object, drrf->drr_offset, drrf->drr_length, 2652 err); 2653 break; 2654 } 2655 case DRR_SPILL: 2656 { 2657 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2658 dprintf("drr_type = SPILL obj = %llu length = %llu " 2659 "err = %d\n", drrs->drr_object, drrs->drr_length, err); 2660 break; 2661 } 2662 case DRR_OBJECT_RANGE: 2663 { 2664 struct drr_object_range *drror = 2665 &rrd->header.drr_u.drr_object_range; 2666 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 2667 "numslots = %llu flags = %u err = %d\n", 2668 drror->drr_firstobj, drror->drr_numslots, 2669 drror->drr_flags, err); 2670 break; 2671 } 2672 default: 2673 return; 2674 } 2675 #endif 2676 } 2677 2678 /* 2679 * Commit the records to the pool. 2680 */ 2681 static int 2682 receive_process_record(struct receive_writer_arg *rwa, 2683 struct receive_record_arg *rrd) 2684 { 2685 int err; 2686 2687 /* Processing in order, therefore bytes_read should be increasing. */ 2688 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2689 rwa->bytes_read = rrd->bytes_read; 2690 2691 if (rrd->header.drr_type != DRR_WRITE) { 2692 err = flush_write_batch(rwa); 2693 if (err != 0) { 2694 if (rrd->abd != NULL) { 2695 abd_free(rrd->abd); 2696 rrd->abd = NULL; 2697 rrd->payload = NULL; 2698 } else if (rrd->payload != NULL) { 2699 kmem_free(rrd->payload, rrd->payload_size); 2700 rrd->payload = NULL; 2701 } 2702 2703 return (err); 2704 } 2705 } 2706 2707 switch (rrd->header.drr_type) { 2708 case DRR_OBJECT: 2709 { 2710 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2711 err = receive_object(rwa, drro, rrd->payload); 2712 kmem_free(rrd->payload, rrd->payload_size); 2713 rrd->payload = NULL; 2714 break; 2715 } 2716 case DRR_FREEOBJECTS: 2717 { 2718 struct drr_freeobjects *drrfo = 2719 &rrd->header.drr_u.drr_freeobjects; 2720 err = receive_freeobjects(rwa, drrfo); 2721 break; 2722 } 2723 case DRR_WRITE: 2724 { 2725 err = receive_process_write_record(rwa, rrd); 2726 if (err != EAGAIN) { 2727 /* 2728 * On success, receive_process_write_record() returns 2729 * EAGAIN to indicate that we do not want to free 2730 * the rrd or arc_buf. 2731 */ 2732 ASSERT(err != 0); 2733 abd_free(rrd->abd); 2734 rrd->abd = NULL; 2735 } 2736 break; 2737 } 2738 case DRR_WRITE_EMBEDDED: 2739 { 2740 struct drr_write_embedded *drrwe = 2741 &rrd->header.drr_u.drr_write_embedded; 2742 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2743 kmem_free(rrd->payload, rrd->payload_size); 2744 rrd->payload = NULL; 2745 break; 2746 } 2747 case DRR_FREE: 2748 { 2749 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2750 err = receive_free(rwa, drrf); 2751 break; 2752 } 2753 case DRR_SPILL: 2754 { 2755 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2756 err = receive_spill(rwa, drrs, rrd->abd); 2757 if (err != 0) 2758 abd_free(rrd->abd); 2759 rrd->abd = NULL; 2760 rrd->payload = NULL; 2761 break; 2762 } 2763 case DRR_OBJECT_RANGE: 2764 { 2765 struct drr_object_range *drror = 2766 &rrd->header.drr_u.drr_object_range; 2767 err = receive_object_range(rwa, drror); 2768 break; 2769 } 2770 case DRR_REDACT: 2771 { 2772 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 2773 err = receive_redact(rwa, drrr); 2774 break; 2775 } 2776 default: 2777 err = (SET_ERROR(EINVAL)); 2778 } 2779 2780 if (err != 0) 2781 dprintf_drr(rrd, err); 2782 2783 return (err); 2784 } 2785 2786 /* 2787 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2788 * receive_process_record When we're done, signal the main thread and exit. 2789 */ 2790 static void 2791 receive_writer_thread(void *arg) 2792 { 2793 struct receive_writer_arg *rwa = arg; 2794 struct receive_record_arg *rrd; 2795 fstrans_cookie_t cookie = spl_fstrans_mark(); 2796 2797 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2798 rrd = bqueue_dequeue(&rwa->q)) { 2799 /* 2800 * If there's an error, the main thread will stop putting things 2801 * on the queue, but we need to clear everything in it before we 2802 * can exit. 2803 */ 2804 int err = 0; 2805 if (rwa->err == 0) { 2806 err = receive_process_record(rwa, rrd); 2807 } else if (rrd->abd != NULL) { 2808 abd_free(rrd->abd); 2809 rrd->abd = NULL; 2810 rrd->payload = NULL; 2811 } else if (rrd->payload != NULL) { 2812 kmem_free(rrd->payload, rrd->payload_size); 2813 rrd->payload = NULL; 2814 } 2815 /* 2816 * EAGAIN indicates that this record has been saved (on 2817 * raw->write_batch), and will be used again, so we don't 2818 * free it. 2819 */ 2820 if (err != EAGAIN) { 2821 if (rwa->err == 0) 2822 rwa->err = err; 2823 kmem_free(rrd, sizeof (*rrd)); 2824 } 2825 } 2826 kmem_free(rrd, sizeof (*rrd)); 2827 2828 int err = flush_write_batch(rwa); 2829 if (rwa->err == 0) 2830 rwa->err = err; 2831 2832 mutex_enter(&rwa->mutex); 2833 rwa->done = B_TRUE; 2834 cv_signal(&rwa->cv); 2835 mutex_exit(&rwa->mutex); 2836 spl_fstrans_unmark(cookie); 2837 thread_exit(); 2838 } 2839 2840 static int 2841 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 2842 { 2843 uint64_t val; 2844 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 2845 uint64_t dsobj = dmu_objset_id(drc->drc_os); 2846 uint64_t resume_obj, resume_off; 2847 2848 if (nvlist_lookup_uint64(begin_nvl, 2849 "resume_object", &resume_obj) != 0 || 2850 nvlist_lookup_uint64(begin_nvl, 2851 "resume_offset", &resume_off) != 0) { 2852 return (SET_ERROR(EINVAL)); 2853 } 2854 VERIFY0(zap_lookup(mos, dsobj, 2855 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2856 if (resume_obj != val) 2857 return (SET_ERROR(EINVAL)); 2858 VERIFY0(zap_lookup(mos, dsobj, 2859 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2860 if (resume_off != val) 2861 return (SET_ERROR(EINVAL)); 2862 2863 return (0); 2864 } 2865 2866 /* 2867 * Read in the stream's records, one by one, and apply them to the pool. There 2868 * are two threads involved; the thread that calls this function will spin up a 2869 * worker thread, read the records off the stream one by one, and issue 2870 * prefetches for any necessary indirect blocks. It will then push the records 2871 * onto an internal blocking queue. The worker thread will pull the records off 2872 * the queue, and actually write the data into the DMU. This way, the worker 2873 * thread doesn't have to wait for reads to complete, since everything it needs 2874 * (the indirect blocks) will be prefetched. 2875 * 2876 * NB: callers *must* call dmu_recv_end() if this succeeds. 2877 */ 2878 int 2879 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 2880 { 2881 int err = 0; 2882 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 2883 2884 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2885 uint64_t bytes; 2886 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2887 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2888 sizeof (bytes), 1, &bytes); 2889 drc->drc_bytes_read += bytes; 2890 } 2891 2892 drc->drc_ignore_objlist = objlist_create(); 2893 2894 /* these were verified in dmu_recv_begin */ 2895 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2896 DMU_SUBSTREAM); 2897 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2898 2899 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2900 ASSERT0(drc->drc_os->os_encrypted && 2901 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2902 2903 /* handle DSL encryption key payload */ 2904 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 2905 nvlist_t *keynvl = NULL; 2906 2907 ASSERT(drc->drc_os->os_encrypted); 2908 ASSERT(drc->drc_raw); 2909 2910 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 2911 &keynvl); 2912 if (err != 0) 2913 goto out; 2914 2915 /* 2916 * If this is a new dataset we set the key immediately. 2917 * Otherwise we don't want to change the key until we 2918 * are sure the rest of the receive succeeded so we stash 2919 * the keynvl away until then. 2920 */ 2921 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 2922 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2923 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2924 if (err != 0) 2925 goto out; 2926 2927 /* see comment in dmu_recv_end_sync() */ 2928 drc->drc_ivset_guid = 0; 2929 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2930 &drc->drc_ivset_guid); 2931 2932 if (!drc->drc_newfs) 2933 drc->drc_keynvl = fnvlist_dup(keynvl); 2934 } 2935 2936 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2937 err = resume_check(drc, drc->drc_begin_nvl); 2938 if (err != 0) 2939 goto out; 2940 } 2941 2942 /* 2943 * If we failed before this point we will clean up any new resume 2944 * state that was created. Now that we've gotten past the initial 2945 * checks we are ok to retain that resume state. 2946 */ 2947 drc->drc_should_save = B_TRUE; 2948 2949 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 2950 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 2951 offsetof(struct receive_record_arg, node)); 2952 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 2953 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 2954 rwa->os = drc->drc_os; 2955 rwa->byteswap = drc->drc_byteswap; 2956 rwa->resumable = drc->drc_resumable; 2957 rwa->raw = drc->drc_raw; 2958 rwa->spill = drc->drc_spill; 2959 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 2960 rwa->os->os_raw_receive = drc->drc_raw; 2961 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 2962 offsetof(struct receive_record_arg, node.bqn_node)); 2963 2964 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 2965 TS_RUN, minclsyspri); 2966 /* 2967 * We're reading rwa->err without locks, which is safe since we are the 2968 * only reader, and the worker thread is the only writer. It's ok if we 2969 * miss a write for an iteration or two of the loop, since the writer 2970 * thread will keep freeing records we send it until we send it an eos 2971 * marker. 2972 * 2973 * We can leave this loop in 3 ways: First, if rwa->err is 2974 * non-zero. In that case, the writer thread will free the rrd we just 2975 * pushed. Second, if we're interrupted; in that case, either it's the 2976 * first loop and drc->drc_rrd was never allocated, or it's later, and 2977 * drc->drc_rrd has been handed off to the writer thread who will free 2978 * it. Finally, if receive_read_record fails or we're at the end of the 2979 * stream, then we free drc->drc_rrd and exit. 2980 */ 2981 while (rwa->err == 0) { 2982 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2983 err = SET_ERROR(EINTR); 2984 break; 2985 } 2986 2987 ASSERT3P(drc->drc_rrd, ==, NULL); 2988 drc->drc_rrd = drc->drc_next_rrd; 2989 drc->drc_next_rrd = NULL; 2990 /* Allocates and loads header into drc->drc_next_rrd */ 2991 err = receive_read_record(drc); 2992 2993 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 2994 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 2995 drc->drc_rrd = NULL; 2996 break; 2997 } 2998 2999 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3000 sizeof (struct receive_record_arg) + 3001 drc->drc_rrd->payload_size); 3002 drc->drc_rrd = NULL; 3003 } 3004 3005 ASSERT3P(drc->drc_rrd, ==, NULL); 3006 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3007 drc->drc_rrd->eos_marker = B_TRUE; 3008 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3009 3010 mutex_enter(&rwa->mutex); 3011 while (!rwa->done) { 3012 /* 3013 * We need to use cv_wait_sig() so that any process that may 3014 * be sleeping here can still fork. 3015 */ 3016 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3017 } 3018 mutex_exit(&rwa->mutex); 3019 3020 /* 3021 * If we are receiving a full stream as a clone, all object IDs which 3022 * are greater than the maximum ID referenced in the stream are 3023 * by definition unused and must be freed. 3024 */ 3025 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3026 uint64_t obj = rwa->max_object + 1; 3027 int free_err = 0; 3028 int next_err = 0; 3029 3030 while (next_err == 0) { 3031 free_err = dmu_free_long_object(rwa->os, obj); 3032 if (free_err != 0 && free_err != ENOENT) 3033 break; 3034 3035 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3036 } 3037 3038 if (err == 0) { 3039 if (free_err != 0 && free_err != ENOENT) 3040 err = free_err; 3041 else if (next_err != ESRCH) 3042 err = next_err; 3043 } 3044 } 3045 3046 cv_destroy(&rwa->cv); 3047 mutex_destroy(&rwa->mutex); 3048 bqueue_destroy(&rwa->q); 3049 list_destroy(&rwa->write_batch); 3050 if (err == 0) 3051 err = rwa->err; 3052 3053 out: 3054 /* 3055 * If we hit an error before we started the receive_writer_thread 3056 * we need to clean up the next_rrd we create by processing the 3057 * DRR_BEGIN record. 3058 */ 3059 if (drc->drc_next_rrd != NULL) 3060 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3061 3062 /* 3063 * The objset will be invalidated by dmu_recv_end() when we do 3064 * dsl_dataset_clone_swap_sync_impl(). 3065 */ 3066 drc->drc_os = NULL; 3067 3068 kmem_free(rwa, sizeof (*rwa)); 3069 nvlist_free(drc->drc_begin_nvl); 3070 3071 if (err != 0) { 3072 /* 3073 * Clean up references. If receive is not resumable, 3074 * destroy what we created, so we don't leave it in 3075 * the inconsistent state. 3076 */ 3077 dmu_recv_cleanup_ds(drc); 3078 nvlist_free(drc->drc_keynvl); 3079 } 3080 3081 objlist_destroy(drc->drc_ignore_objlist); 3082 drc->drc_ignore_objlist = NULL; 3083 *voffp = drc->drc_voff; 3084 return (err); 3085 } 3086 3087 static int 3088 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3089 { 3090 dmu_recv_cookie_t *drc = arg; 3091 dsl_pool_t *dp = dmu_tx_pool(tx); 3092 int error; 3093 3094 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3095 3096 if (!drc->drc_newfs) { 3097 dsl_dataset_t *origin_head; 3098 3099 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3100 if (error != 0) 3101 return (error); 3102 if (drc->drc_force) { 3103 /* 3104 * We will destroy any snapshots in tofs (i.e. before 3105 * origin_head) that are after the origin (which is 3106 * the snap before drc_ds, because drc_ds can not 3107 * have any snaps of its own). 3108 */ 3109 uint64_t obj; 3110 3111 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3112 while (obj != 3113 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3114 dsl_dataset_t *snap; 3115 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3116 &snap); 3117 if (error != 0) 3118 break; 3119 if (snap->ds_dir != origin_head->ds_dir) 3120 error = SET_ERROR(EINVAL); 3121 if (error == 0) { 3122 error = dsl_destroy_snapshot_check_impl( 3123 snap, B_FALSE); 3124 } 3125 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3126 dsl_dataset_rele(snap, FTAG); 3127 if (error != 0) 3128 break; 3129 } 3130 if (error != 0) { 3131 dsl_dataset_rele(origin_head, FTAG); 3132 return (error); 3133 } 3134 } 3135 if (drc->drc_keynvl != NULL) { 3136 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3137 drc->drc_keynvl, tx); 3138 if (error != 0) { 3139 dsl_dataset_rele(origin_head, FTAG); 3140 return (error); 3141 } 3142 } 3143 3144 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3145 origin_head, drc->drc_force, drc->drc_owner, tx); 3146 if (error != 0) { 3147 dsl_dataset_rele(origin_head, FTAG); 3148 return (error); 3149 } 3150 error = dsl_dataset_snapshot_check_impl(origin_head, 3151 drc->drc_tosnap, tx, B_TRUE, 1, 3152 drc->drc_cred, drc->drc_proc); 3153 dsl_dataset_rele(origin_head, FTAG); 3154 if (error != 0) 3155 return (error); 3156 3157 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3158 } else { 3159 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3160 drc->drc_tosnap, tx, B_TRUE, 1, 3161 drc->drc_cred, drc->drc_proc); 3162 } 3163 return (error); 3164 } 3165 3166 static void 3167 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3168 { 3169 dmu_recv_cookie_t *drc = arg; 3170 dsl_pool_t *dp = dmu_tx_pool(tx); 3171 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3172 uint64_t newsnapobj; 3173 3174 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3175 tx, "snap=%s", drc->drc_tosnap); 3176 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3177 3178 if (!drc->drc_newfs) { 3179 dsl_dataset_t *origin_head; 3180 3181 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3182 &origin_head)); 3183 3184 if (drc->drc_force) { 3185 /* 3186 * Destroy any snapshots of drc_tofs (origin_head) 3187 * after the origin (the snap before drc_ds). 3188 */ 3189 uint64_t obj; 3190 3191 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3192 while (obj != 3193 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3194 dsl_dataset_t *snap; 3195 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3196 &snap)); 3197 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3198 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3199 dsl_destroy_snapshot_sync_impl(snap, 3200 B_FALSE, tx); 3201 dsl_dataset_rele(snap, FTAG); 3202 } 3203 } 3204 if (drc->drc_keynvl != NULL) { 3205 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3206 drc->drc_keynvl, tx); 3207 nvlist_free(drc->drc_keynvl); 3208 drc->drc_keynvl = NULL; 3209 } 3210 3211 VERIFY3P(drc->drc_ds->ds_prev, ==, 3212 origin_head->ds_prev); 3213 3214 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3215 origin_head, tx); 3216 /* 3217 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3218 * so drc_os is no longer valid. 3219 */ 3220 drc->drc_os = NULL; 3221 3222 dsl_dataset_snapshot_sync_impl(origin_head, 3223 drc->drc_tosnap, tx); 3224 3225 /* set snapshot's creation time and guid */ 3226 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3227 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3228 drc->drc_drrb->drr_creation_time; 3229 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3230 drc->drc_drrb->drr_toguid; 3231 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3232 ~DS_FLAG_INCONSISTENT; 3233 3234 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3235 dsl_dataset_phys(origin_head)->ds_flags &= 3236 ~DS_FLAG_INCONSISTENT; 3237 3238 newsnapobj = 3239 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3240 3241 dsl_dataset_rele(origin_head, FTAG); 3242 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3243 3244 if (drc->drc_owner != NULL) 3245 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3246 } else { 3247 dsl_dataset_t *ds = drc->drc_ds; 3248 3249 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3250 3251 /* set snapshot's creation time and guid */ 3252 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3253 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3254 drc->drc_drrb->drr_creation_time; 3255 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3256 drc->drc_drrb->drr_toguid; 3257 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3258 ~DS_FLAG_INCONSISTENT; 3259 3260 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3261 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3262 if (dsl_dataset_has_resume_receive_state(ds)) { 3263 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3264 DS_FIELD_RESUME_FROMGUID, tx); 3265 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3266 DS_FIELD_RESUME_OBJECT, tx); 3267 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3268 DS_FIELD_RESUME_OFFSET, tx); 3269 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3270 DS_FIELD_RESUME_BYTES, tx); 3271 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3272 DS_FIELD_RESUME_TOGUID, tx); 3273 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3274 DS_FIELD_RESUME_TONAME, tx); 3275 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3276 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3277 } 3278 newsnapobj = 3279 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3280 } 3281 3282 /* 3283 * If this is a raw receive, the crypt_keydata nvlist will include 3284 * a to_ivset_guid for us to set on the new snapshot. This value 3285 * will override the value generated by the snapshot code. However, 3286 * this value may not be present, because older implementations of 3287 * the raw send code did not include this value, and we are still 3288 * allowed to receive them if the zfs_disable_ivset_guid_check 3289 * tunable is set, in which case we will leave the newly-generated 3290 * value. 3291 */ 3292 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 3293 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3294 DMU_OT_DSL_DATASET, tx); 3295 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3296 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3297 &drc->drc_ivset_guid, tx)); 3298 } 3299 3300 /* 3301 * Release the hold from dmu_recv_begin. This must be done before 3302 * we return to open context, so that when we free the dataset's dnode 3303 * we can evict its bonus buffer. Since the dataset may be destroyed 3304 * at this point (and therefore won't have a valid pointer to the spa) 3305 * we release the key mapping manually here while we do have a valid 3306 * pointer, if it exists. 3307 */ 3308 if (!drc->drc_raw && encrypted) { 3309 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3310 drc->drc_ds->ds_object, drc->drc_ds); 3311 } 3312 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3313 drc->drc_ds = NULL; 3314 } 3315 3316 static int dmu_recv_end_modified_blocks = 3; 3317 3318 static int 3319 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3320 { 3321 #ifdef _KERNEL 3322 /* 3323 * We will be destroying the ds; make sure its origin is unmounted if 3324 * necessary. 3325 */ 3326 char name[ZFS_MAX_DATASET_NAME_LEN]; 3327 dsl_dataset_name(drc->drc_ds, name); 3328 zfs_destroy_unmount_origin(name); 3329 #endif 3330 3331 return (dsl_sync_task(drc->drc_tofs, 3332 dmu_recv_end_check, dmu_recv_end_sync, drc, 3333 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3334 } 3335 3336 static int 3337 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3338 { 3339 return (dsl_sync_task(drc->drc_tofs, 3340 dmu_recv_end_check, dmu_recv_end_sync, drc, 3341 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3342 } 3343 3344 int 3345 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3346 { 3347 int error; 3348 3349 drc->drc_owner = owner; 3350 3351 if (drc->drc_newfs) 3352 error = dmu_recv_new_end(drc); 3353 else 3354 error = dmu_recv_existing_end(drc); 3355 3356 if (error != 0) { 3357 dmu_recv_cleanup_ds(drc); 3358 nvlist_free(drc->drc_keynvl); 3359 } else { 3360 if (drc->drc_newfs) { 3361 zvol_create_minor(drc->drc_tofs); 3362 } 3363 char *snapname = kmem_asprintf("%s@%s", 3364 drc->drc_tofs, drc->drc_tosnap); 3365 zvol_create_minor(snapname); 3366 kmem_strfree(snapname); 3367 } 3368 return (error); 3369 } 3370 3371 /* 3372 * Return TRUE if this objset is currently being received into. 3373 */ 3374 boolean_t 3375 dmu_objset_is_receiving(objset_t *os) 3376 { 3377 return (os->os_dsl_dataset != NULL && 3378 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3379 } 3380 3381 /* BEGIN CSTYLED */ 3382 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW, 3383 "Maximum receive queue length"); 3384 3385 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW, 3386 "Receive queue fill fraction"); 3387 3388 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW, 3389 "Maximum amount of writes to batch into one transaction"); 3390 /* END CSTYLED */ 3391