1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2019 Datto Inc. 31 * Copyright (c) 2022 Axcient. 32 */ 33 34 #include <sys/arc.h> 35 #include <sys/spa_impl.h> 36 #include <sys/dmu.h> 37 #include <sys/dmu_impl.h> 38 #include <sys/dmu_send.h> 39 #include <sys/dmu_recv.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/dbuf.h> 42 #include <sys/dnode.h> 43 #include <sys/zfs_context.h> 44 #include <sys/dmu_objset.h> 45 #include <sys/dmu_traverse.h> 46 #include <sys/dsl_dataset.h> 47 #include <sys/dsl_dir.h> 48 #include <sys/dsl_prop.h> 49 #include <sys/dsl_pool.h> 50 #include <sys/dsl_synctask.h> 51 #include <sys/zfs_ioctl.h> 52 #include <sys/zap.h> 53 #include <sys/zvol.h> 54 #include <sys/zio_checksum.h> 55 #include <sys/zfs_znode.h> 56 #include <zfs_fletcher.h> 57 #include <sys/avl.h> 58 #include <sys/ddt.h> 59 #include <sys/zfs_onexit.h> 60 #include <sys/dsl_destroy.h> 61 #include <sys/blkptr.h> 62 #include <sys/dsl_bookmark.h> 63 #include <sys/zfeature.h> 64 #include <sys/bqueue.h> 65 #include <sys/objlist.h> 66 #ifdef _KERNEL 67 #include <sys/zfs_vfsops.h> 68 #endif 69 #include <sys/zfs_file.h> 70 71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 72 static uint_t zfs_recv_queue_ff = 20; 73 static uint_t zfs_recv_write_batch_size = 1024 * 1024; 74 static int zfs_recv_best_effort_corrective = 0; 75 76 static const void *const dmu_recv_tag = "dmu_recv_tag"; 77 const char *const recv_clone_name = "%recv"; 78 79 typedef enum { 80 ORNS_NO, 81 ORNS_YES, 82 ORNS_MAYBE 83 } or_need_sync_t; 84 85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 86 void *buf); 87 88 struct receive_record_arg { 89 dmu_replay_record_t header; 90 void *payload; /* Pointer to a buffer containing the payload */ 91 /* 92 * If the record is a WRITE or SPILL, pointer to the abd containing the 93 * payload. 94 */ 95 abd_t *abd; 96 int payload_size; 97 uint64_t bytes_read; /* bytes read from stream when record created */ 98 boolean_t eos_marker; /* Marks the end of the stream */ 99 bqueue_node_t node; 100 }; 101 102 struct receive_writer_arg { 103 objset_t *os; 104 boolean_t byteswap; 105 bqueue_t q; 106 107 /* 108 * These three members are used to signal to the main thread when 109 * we're done. 110 */ 111 kmutex_t mutex; 112 kcondvar_t cv; 113 boolean_t done; 114 115 int err; 116 const char *tofs; 117 boolean_t heal; 118 boolean_t resumable; 119 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 120 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 121 boolean_t full; /* this is a full send stream */ 122 uint64_t last_object; 123 uint64_t last_offset; 124 uint64_t max_object; /* highest object ID referenced in stream */ 125 uint64_t bytes_read; /* bytes read when current record created */ 126 127 list_t write_batch; 128 129 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 130 boolean_t or_crypt_params_present; 131 uint64_t or_firstobj; 132 uint64_t or_numslots; 133 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 134 uint8_t or_iv[ZIO_DATA_IV_LEN]; 135 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 136 boolean_t or_byteorder; 137 zio_t *heal_pio; 138 139 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */ 140 or_need_sync_t or_need_sync; 141 }; 142 143 typedef struct dmu_recv_begin_arg { 144 const char *drba_origin; 145 dmu_recv_cookie_t *drba_cookie; 146 cred_t *drba_cred; 147 proc_t *drba_proc; 148 dsl_crypto_params_t *drba_dcp; 149 } dmu_recv_begin_arg_t; 150 151 static void 152 byteswap_record(dmu_replay_record_t *drr) 153 { 154 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 155 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 156 drr->drr_type = BSWAP_32(drr->drr_type); 157 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 158 159 switch (drr->drr_type) { 160 case DRR_BEGIN: 161 DO64(drr_begin.drr_magic); 162 DO64(drr_begin.drr_versioninfo); 163 DO64(drr_begin.drr_creation_time); 164 DO32(drr_begin.drr_type); 165 DO32(drr_begin.drr_flags); 166 DO64(drr_begin.drr_toguid); 167 DO64(drr_begin.drr_fromguid); 168 break; 169 case DRR_OBJECT: 170 DO64(drr_object.drr_object); 171 DO32(drr_object.drr_type); 172 DO32(drr_object.drr_bonustype); 173 DO32(drr_object.drr_blksz); 174 DO32(drr_object.drr_bonuslen); 175 DO32(drr_object.drr_raw_bonuslen); 176 DO64(drr_object.drr_toguid); 177 DO64(drr_object.drr_maxblkid); 178 break; 179 case DRR_FREEOBJECTS: 180 DO64(drr_freeobjects.drr_firstobj); 181 DO64(drr_freeobjects.drr_numobjs); 182 DO64(drr_freeobjects.drr_toguid); 183 break; 184 case DRR_WRITE: 185 DO64(drr_write.drr_object); 186 DO32(drr_write.drr_type); 187 DO64(drr_write.drr_offset); 188 DO64(drr_write.drr_logical_size); 189 DO64(drr_write.drr_toguid); 190 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 191 DO64(drr_write.drr_key.ddk_prop); 192 DO64(drr_write.drr_compressed_size); 193 break; 194 case DRR_WRITE_EMBEDDED: 195 DO64(drr_write_embedded.drr_object); 196 DO64(drr_write_embedded.drr_offset); 197 DO64(drr_write_embedded.drr_length); 198 DO64(drr_write_embedded.drr_toguid); 199 DO32(drr_write_embedded.drr_lsize); 200 DO32(drr_write_embedded.drr_psize); 201 break; 202 case DRR_FREE: 203 DO64(drr_free.drr_object); 204 DO64(drr_free.drr_offset); 205 DO64(drr_free.drr_length); 206 DO64(drr_free.drr_toguid); 207 break; 208 case DRR_SPILL: 209 DO64(drr_spill.drr_object); 210 DO64(drr_spill.drr_length); 211 DO64(drr_spill.drr_toguid); 212 DO64(drr_spill.drr_compressed_size); 213 DO32(drr_spill.drr_type); 214 break; 215 case DRR_OBJECT_RANGE: 216 DO64(drr_object_range.drr_firstobj); 217 DO64(drr_object_range.drr_numslots); 218 DO64(drr_object_range.drr_toguid); 219 break; 220 case DRR_REDACT: 221 DO64(drr_redact.drr_object); 222 DO64(drr_redact.drr_offset); 223 DO64(drr_redact.drr_length); 224 DO64(drr_redact.drr_toguid); 225 break; 226 case DRR_END: 227 DO64(drr_end.drr_toguid); 228 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 229 break; 230 default: 231 break; 232 } 233 234 if (drr->drr_type != DRR_BEGIN) { 235 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 236 } 237 238 #undef DO64 239 #undef DO32 240 } 241 242 static boolean_t 243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 244 { 245 for (int i = 0; i < num_snaps; i++) { 246 if (snaps[i] == guid) 247 return (B_TRUE); 248 } 249 return (B_FALSE); 250 } 251 252 /* 253 * Check that the new stream we're trying to receive is redacted with respect to 254 * a subset of the snapshots that the origin was redacted with respect to. For 255 * the reasons behind this, see the man page on redacted zfs sends and receives. 256 */ 257 static boolean_t 258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 259 uint64_t *redact_snaps, uint64_t num_redact_snaps) 260 { 261 /* 262 * Short circuit the comparison; if we are redacted with respect to 263 * more snapshots than the origin, we can't be redacted with respect 264 * to a subset. 265 */ 266 if (num_redact_snaps > origin_num_snaps) { 267 return (B_FALSE); 268 } 269 270 for (int i = 0; i < num_redact_snaps; i++) { 271 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 272 redact_snaps[i])) { 273 return (B_FALSE); 274 } 275 } 276 return (B_TRUE); 277 } 278 279 static boolean_t 280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 281 { 282 uint64_t *origin_snaps; 283 uint64_t origin_num_snaps; 284 dmu_recv_cookie_t *drc = drba->drba_cookie; 285 struct drr_begin *drrb = drc->drc_drrb; 286 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 287 int err = 0; 288 boolean_t ret = B_TRUE; 289 uint64_t *redact_snaps; 290 uint_t numredactsnaps; 291 292 /* 293 * If this is a full send stream, we're safe no matter what. 294 */ 295 if (drrb->drr_fromguid == 0) 296 return (ret); 297 298 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 299 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 300 301 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 302 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 303 0) { 304 /* 305 * If the send stream was sent from the redaction bookmark or 306 * the redacted version of the dataset, then we're safe. Verify 307 * that this is from the a compatible redaction bookmark or 308 * redacted dataset. 309 */ 310 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 311 redact_snaps, numredactsnaps)) { 312 err = EINVAL; 313 } 314 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 315 /* 316 * If the stream is redacted, it must be redacted with respect 317 * to a subset of what the origin is redacted with respect to. 318 * See case number 2 in the zfs man page section on redacted zfs 319 * send. 320 */ 321 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 322 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 323 324 if (err != 0 || !compatible_redact_snaps(origin_snaps, 325 origin_num_snaps, redact_snaps, numredactsnaps)) { 326 err = EINVAL; 327 } 328 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 329 drrb->drr_toguid)) { 330 /* 331 * If the stream isn't redacted but the origin is, this must be 332 * one of the snapshots the origin is redacted with respect to. 333 * See case number 1 in the zfs man page section on redacted zfs 334 * send. 335 */ 336 err = EINVAL; 337 } 338 339 if (err != 0) 340 ret = B_FALSE; 341 return (ret); 342 } 343 344 /* 345 * If we previously received a stream with --large-block, we don't support 346 * receiving an incremental on top of it without --large-block. This avoids 347 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 348 * records. 349 */ 350 static int 351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 352 { 353 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 354 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 355 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 356 return (0); 357 } 358 359 static int 360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 361 uint64_t fromguid, uint64_t featureflags) 362 { 363 uint64_t obj; 364 uint64_t children; 365 int error; 366 dsl_dataset_t *snap; 367 dsl_pool_t *dp = ds->ds_dir->dd_pool; 368 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 369 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 370 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 371 372 /* Temporary clone name must not exist. */ 373 error = zap_lookup(dp->dp_meta_objset, 374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 375 8, 1, &obj); 376 if (error != ENOENT) 377 return (error == 0 ? SET_ERROR(EBUSY) : error); 378 379 /* Resume state must not be set. */ 380 if (dsl_dataset_has_resume_receive_state(ds)) 381 return (SET_ERROR(EBUSY)); 382 383 /* New snapshot name must not exist if we're not healing it. */ 384 error = zap_lookup(dp->dp_meta_objset, 385 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 386 drba->drba_cookie->drc_tosnap, 8, 1, &obj); 387 if (drba->drba_cookie->drc_heal) { 388 if (error != 0) 389 return (error); 390 } else if (error != ENOENT) { 391 return (error == 0 ? SET_ERROR(EEXIST) : error); 392 } 393 394 /* Must not have children if receiving a ZVOL. */ 395 error = zap_count(dp->dp_meta_objset, 396 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 397 if (error != 0) 398 return (error); 399 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 400 children > 0) 401 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 402 403 /* 404 * Check snapshot limit before receiving. We'll recheck again at the 405 * end, but might as well abort before receiving if we're already over 406 * the limit. 407 * 408 * Note that we do not check the file system limit with 409 * dsl_dir_fscount_check because the temporary %clones don't count 410 * against that limit. 411 */ 412 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 413 NULL, drba->drba_cred, drba->drba_proc); 414 if (error != 0) 415 return (error); 416 417 if (drba->drba_cookie->drc_heal) { 418 /* Encryption is incompatible with embedded data. */ 419 if (encrypted && embed) 420 return (SET_ERROR(EINVAL)); 421 422 /* Healing is not supported when in 'force' mode. */ 423 if (drba->drba_cookie->drc_force) 424 return (SET_ERROR(EINVAL)); 425 426 /* Must have keys loaded if doing encrypted non-raw recv. */ 427 if (encrypted && !raw) { 428 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object, 429 NULL, NULL) != 0) 430 return (SET_ERROR(EACCES)); 431 } 432 433 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); 434 if (error != 0) 435 return (error); 436 437 /* 438 * When not doing best effort corrective recv healing can only 439 * be done if the send stream is for the same snapshot as the 440 * one we are trying to heal. 441 */ 442 if (zfs_recv_best_effort_corrective == 0 && 443 drba->drba_cookie->drc_drrb->drr_toguid != 444 dsl_dataset_phys(snap)->ds_guid) { 445 dsl_dataset_rele(snap, FTAG); 446 return (SET_ERROR(ENOTSUP)); 447 } 448 dsl_dataset_rele(snap, FTAG); 449 } else if (fromguid != 0) { 450 /* Sanity check the incremental recv */ 451 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 452 453 /* Can't perform a raw receive on top of a non-raw receive */ 454 if (!encrypted && raw) 455 return (SET_ERROR(EINVAL)); 456 457 /* Encryption is incompatible with embedded data */ 458 if (encrypted && embed) 459 return (SET_ERROR(EINVAL)); 460 461 /* Find snapshot in this dir that matches fromguid. */ 462 while (obj != 0) { 463 error = dsl_dataset_hold_obj(dp, obj, FTAG, 464 &snap); 465 if (error != 0) 466 return (SET_ERROR(ENODEV)); 467 if (snap->ds_dir != ds->ds_dir) { 468 dsl_dataset_rele(snap, FTAG); 469 return (SET_ERROR(ENODEV)); 470 } 471 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 472 break; 473 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 474 dsl_dataset_rele(snap, FTAG); 475 } 476 if (obj == 0) 477 return (SET_ERROR(ENODEV)); 478 479 if (drba->drba_cookie->drc_force) { 480 drba->drba_cookie->drc_fromsnapobj = obj; 481 } else { 482 /* 483 * If we are not forcing, there must be no 484 * changes since fromsnap. Raw sends have an 485 * additional constraint that requires that 486 * no "noop" snapshots exist between fromsnap 487 * and tosnap for the IVset checking code to 488 * work properly. 489 */ 490 if (dsl_dataset_modified_since_snap(ds, snap) || 491 (raw && 492 dsl_dataset_phys(ds)->ds_prev_snap_obj != 493 snap->ds_object)) { 494 dsl_dataset_rele(snap, FTAG); 495 return (SET_ERROR(ETXTBSY)); 496 } 497 drba->drba_cookie->drc_fromsnapobj = 498 ds->ds_prev->ds_object; 499 } 500 501 if (dsl_dataset_feature_is_active(snap, 502 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 503 snap)) { 504 dsl_dataset_rele(snap, FTAG); 505 return (SET_ERROR(EINVAL)); 506 } 507 508 error = recv_check_large_blocks(snap, featureflags); 509 if (error != 0) { 510 dsl_dataset_rele(snap, FTAG); 511 return (error); 512 } 513 514 dsl_dataset_rele(snap, FTAG); 515 } else { 516 /* If full and not healing then must be forced. */ 517 if (!drba->drba_cookie->drc_force) 518 return (SET_ERROR(EEXIST)); 519 520 /* 521 * We don't support using zfs recv -F to blow away 522 * encrypted filesystems. This would require the 523 * dsl dir to point to the old encryption key and 524 * the new one at the same time during the receive. 525 */ 526 if ((!encrypted && raw) || encrypted) 527 return (SET_ERROR(EINVAL)); 528 529 /* 530 * Perform the same encryption checks we would if 531 * we were creating a new dataset from scratch. 532 */ 533 if (!raw) { 534 boolean_t will_encrypt; 535 536 error = dmu_objset_create_crypt_check( 537 ds->ds_dir->dd_parent, drba->drba_dcp, 538 &will_encrypt); 539 if (error != 0) 540 return (error); 541 542 if (will_encrypt && embed) 543 return (SET_ERROR(EINVAL)); 544 } 545 } 546 547 return (0); 548 } 549 550 /* 551 * Check that any feature flags used in the data stream we're receiving are 552 * supported by the pool we are receiving into. 553 * 554 * Note that some of the features we explicitly check here have additional 555 * (implicit) features they depend on, but those dependencies are enforced 556 * through the zfeature_register() calls declaring the features that we 557 * explicitly check. 558 */ 559 static int 560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 561 { 562 /* 563 * Check if there are any unsupported feature flags. 564 */ 565 if (!DMU_STREAM_SUPPORTED(featureflags)) { 566 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 567 } 568 569 /* Verify pool version supports SA if SA_SPILL feature set */ 570 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 571 spa_version(spa) < SPA_VERSION_SA) 572 return (SET_ERROR(ENOTSUP)); 573 574 /* 575 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 576 * and large_dnodes in the stream can only be used if those pool 577 * features are enabled because we don't attempt to decompress / 578 * un-embed / un-mooch / split up the blocks / dnodes during the 579 * receive process. 580 */ 581 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 582 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 583 return (SET_ERROR(ENOTSUP)); 584 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 585 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 586 return (SET_ERROR(ENOTSUP)); 587 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 588 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 589 return (SET_ERROR(ENOTSUP)); 590 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 591 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 592 return (SET_ERROR(ENOTSUP)); 593 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 594 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 595 return (SET_ERROR(ENOTSUP)); 596 597 /* 598 * Receiving redacted streams requires that redacted datasets are 599 * enabled. 600 */ 601 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 602 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 603 return (SET_ERROR(ENOTSUP)); 604 605 return (0); 606 } 607 608 static int 609 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 610 { 611 dmu_recv_begin_arg_t *drba = arg; 612 dsl_pool_t *dp = dmu_tx_pool(tx); 613 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 614 uint64_t fromguid = drrb->drr_fromguid; 615 int flags = drrb->drr_flags; 616 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 617 int error; 618 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 619 dsl_dataset_t *ds; 620 const char *tofs = drba->drba_cookie->drc_tofs; 621 622 /* already checked */ 623 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 624 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 625 626 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 627 DMU_COMPOUNDSTREAM || 628 drrb->drr_type >= DMU_OST_NUMTYPES || 629 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 630 return (SET_ERROR(EINVAL)); 631 632 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 633 if (error != 0) 634 return (error); 635 636 /* Resumable receives require extensible datasets */ 637 if (drba->drba_cookie->drc_resumable && 638 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 639 return (SET_ERROR(ENOTSUP)); 640 641 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 642 /* raw receives require the encryption feature */ 643 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 644 return (SET_ERROR(ENOTSUP)); 645 646 /* embedded data is incompatible with encryption and raw recv */ 647 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 648 return (SET_ERROR(EINVAL)); 649 650 /* raw receives require spill block allocation flag */ 651 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 652 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 653 } else { 654 /* 655 * We support unencrypted datasets below encrypted ones now, 656 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing 657 * with a dataset we may encrypt. 658 */ 659 if (drba->drba_dcp == NULL || 660 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { 661 dsflags |= DS_HOLD_FLAG_DECRYPT; 662 } 663 } 664 665 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 666 if (error == 0) { 667 /* target fs already exists; recv into temp clone */ 668 669 /* Can't recv a clone into an existing fs */ 670 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 671 dsl_dataset_rele_flags(ds, dsflags, FTAG); 672 return (SET_ERROR(EINVAL)); 673 } 674 675 error = recv_begin_check_existing_impl(drba, ds, fromguid, 676 featureflags); 677 dsl_dataset_rele_flags(ds, dsflags, FTAG); 678 } else if (error == ENOENT) { 679 /* target fs does not exist; must be a full backup or clone */ 680 char buf[ZFS_MAX_DATASET_NAME_LEN]; 681 objset_t *os; 682 683 /* healing recv must be done "into" an existing snapshot */ 684 if (drba->drba_cookie->drc_heal == B_TRUE) 685 return (SET_ERROR(ENOTSUP)); 686 687 /* 688 * If it's a non-clone incremental, we are missing the 689 * target fs, so fail the recv. 690 */ 691 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 692 drba->drba_origin)) 693 return (SET_ERROR(ENOENT)); 694 695 /* 696 * If we're receiving a full send as a clone, and it doesn't 697 * contain all the necessary free records and freeobject 698 * records, reject it. 699 */ 700 if (fromguid == 0 && drba->drba_origin != NULL && 701 !(flags & DRR_FLAG_FREERECORDS)) 702 return (SET_ERROR(EINVAL)); 703 704 /* Open the parent of tofs */ 705 ASSERT3U(strlen(tofs), <, sizeof (buf)); 706 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 707 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 708 if (error != 0) 709 return (error); 710 711 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 712 drba->drba_origin == NULL) { 713 boolean_t will_encrypt; 714 715 /* 716 * Check that we aren't breaking any encryption rules 717 * and that we have all the parameters we need to 718 * create an encrypted dataset if necessary. If we are 719 * making an encrypted dataset the stream can't have 720 * embedded data. 721 */ 722 error = dmu_objset_create_crypt_check(ds->ds_dir, 723 drba->drba_dcp, &will_encrypt); 724 if (error != 0) { 725 dsl_dataset_rele(ds, FTAG); 726 return (error); 727 } 728 729 if (will_encrypt && 730 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 731 dsl_dataset_rele(ds, FTAG); 732 return (SET_ERROR(EINVAL)); 733 } 734 } 735 736 /* 737 * Check filesystem and snapshot limits before receiving. We'll 738 * recheck snapshot limits again at the end (we create the 739 * filesystems and increment those counts during begin_sync). 740 */ 741 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 742 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 743 drba->drba_cred, drba->drba_proc); 744 if (error != 0) { 745 dsl_dataset_rele(ds, FTAG); 746 return (error); 747 } 748 749 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 750 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 751 drba->drba_cred, drba->drba_proc); 752 if (error != 0) { 753 dsl_dataset_rele(ds, FTAG); 754 return (error); 755 } 756 757 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 758 error = dmu_objset_from_ds(ds, &os); 759 if (error != 0) { 760 dsl_dataset_rele(ds, FTAG); 761 return (error); 762 } 763 if (dmu_objset_type(os) != DMU_OST_ZFS) { 764 dsl_dataset_rele(ds, FTAG); 765 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 766 } 767 768 if (drba->drba_origin != NULL) { 769 dsl_dataset_t *origin; 770 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 771 dsflags, FTAG, &origin); 772 if (error != 0) { 773 dsl_dataset_rele(ds, FTAG); 774 return (error); 775 } 776 if (!origin->ds_is_snapshot) { 777 dsl_dataset_rele_flags(origin, dsflags, FTAG); 778 dsl_dataset_rele(ds, FTAG); 779 return (SET_ERROR(EINVAL)); 780 } 781 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 782 fromguid != 0) { 783 dsl_dataset_rele_flags(origin, dsflags, FTAG); 784 dsl_dataset_rele(ds, FTAG); 785 return (SET_ERROR(ENODEV)); 786 } 787 788 if (origin->ds_dir->dd_crypto_obj != 0 && 789 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 790 dsl_dataset_rele_flags(origin, dsflags, FTAG); 791 dsl_dataset_rele(ds, FTAG); 792 return (SET_ERROR(EINVAL)); 793 } 794 795 /* 796 * If the origin is redacted we need to verify that this 797 * send stream can safely be received on top of the 798 * origin. 799 */ 800 if (dsl_dataset_feature_is_active(origin, 801 SPA_FEATURE_REDACTED_DATASETS)) { 802 if (!redact_check(drba, origin)) { 803 dsl_dataset_rele_flags(origin, dsflags, 804 FTAG); 805 dsl_dataset_rele_flags(ds, dsflags, 806 FTAG); 807 return (SET_ERROR(EINVAL)); 808 } 809 } 810 811 error = recv_check_large_blocks(ds, featureflags); 812 if (error != 0) { 813 dsl_dataset_rele_flags(origin, dsflags, FTAG); 814 dsl_dataset_rele_flags(ds, dsflags, FTAG); 815 return (error); 816 } 817 818 dsl_dataset_rele_flags(origin, dsflags, FTAG); 819 } 820 821 dsl_dataset_rele(ds, FTAG); 822 error = 0; 823 } 824 return (error); 825 } 826 827 static void 828 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 829 { 830 dmu_recv_begin_arg_t *drba = arg; 831 dsl_pool_t *dp = dmu_tx_pool(tx); 832 objset_t *mos = dp->dp_meta_objset; 833 dmu_recv_cookie_t *drc = drba->drba_cookie; 834 struct drr_begin *drrb = drc->drc_drrb; 835 const char *tofs = drc->drc_tofs; 836 uint64_t featureflags = drc->drc_featureflags; 837 dsl_dataset_t *ds, *newds; 838 objset_t *os; 839 uint64_t dsobj; 840 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 841 int error; 842 uint64_t crflags = 0; 843 dsl_crypto_params_t dummy_dcp = { 0 }; 844 dsl_crypto_params_t *dcp = drba->drba_dcp; 845 846 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 847 crflags |= DS_FLAG_CI_DATASET; 848 849 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 850 dsflags |= DS_HOLD_FLAG_DECRYPT; 851 852 /* 853 * Raw, non-incremental recvs always use a dummy dcp with 854 * the raw cmd set. Raw incremental recvs do not use a dcp 855 * since the encryption parameters are already set in stone. 856 */ 857 if (dcp == NULL && drrb->drr_fromguid == 0 && 858 drba->drba_origin == NULL) { 859 ASSERT3P(dcp, ==, NULL); 860 dcp = &dummy_dcp; 861 862 if (featureflags & DMU_BACKUP_FEATURE_RAW) 863 dcp->cp_cmd = DCP_CMD_RAW_RECV; 864 } 865 866 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 867 if (error == 0) { 868 /* Create temporary clone unless we're doing corrective recv */ 869 dsl_dataset_t *snap = NULL; 870 871 if (drba->drba_cookie->drc_fromsnapobj != 0) { 872 VERIFY0(dsl_dataset_hold_obj(dp, 873 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 874 ASSERT3P(dcp, ==, NULL); 875 } 876 if (drc->drc_heal) { 877 /* When healing we want to use the provided snapshot */ 878 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap, 879 &dsobj)); 880 } else { 881 dsobj = dsl_dataset_create_sync(ds->ds_dir, 882 recv_clone_name, snap, crflags, drba->drba_cred, 883 dcp, tx); 884 } 885 if (drba->drba_cookie->drc_fromsnapobj != 0) 886 dsl_dataset_rele(snap, FTAG); 887 dsl_dataset_rele_flags(ds, dsflags, FTAG); 888 } else { 889 dsl_dir_t *dd; 890 const char *tail; 891 dsl_dataset_t *origin = NULL; 892 893 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 894 895 if (drba->drba_origin != NULL) { 896 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 897 FTAG, &origin)); 898 ASSERT3P(dcp, ==, NULL); 899 } 900 901 /* Create new dataset. */ 902 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 903 origin, crflags, drba->drba_cred, dcp, tx); 904 if (origin != NULL) 905 dsl_dataset_rele(origin, FTAG); 906 dsl_dir_rele(dd, FTAG); 907 drc->drc_newfs = B_TRUE; 908 } 909 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 910 &newds)); 911 if (dsl_dataset_feature_is_active(newds, 912 SPA_FEATURE_REDACTED_DATASETS)) { 913 /* 914 * If the origin dataset is redacted, the child will be redacted 915 * when we create it. We clear the new dataset's 916 * redaction info; if it should be redacted, we'll fill 917 * in its information later. 918 */ 919 dsl_dataset_deactivate_feature(newds, 920 SPA_FEATURE_REDACTED_DATASETS, tx); 921 } 922 VERIFY0(dmu_objset_from_ds(newds, &os)); 923 924 if (drc->drc_resumable) { 925 dsl_dataset_zapify(newds, tx); 926 if (drrb->drr_fromguid != 0) { 927 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 928 8, 1, &drrb->drr_fromguid, tx)); 929 } 930 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 931 8, 1, &drrb->drr_toguid, tx)); 932 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 933 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 934 uint64_t one = 1; 935 uint64_t zero = 0; 936 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 937 8, 1, &one, tx)); 938 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 939 8, 1, &zero, tx)); 940 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 941 8, 1, &zero, tx)); 942 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 943 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 944 8, 1, &one, tx)); 945 } 946 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 947 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 948 8, 1, &one, tx)); 949 } 950 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 951 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 952 8, 1, &one, tx)); 953 } 954 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 955 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 956 8, 1, &one, tx)); 957 } 958 959 uint64_t *redact_snaps; 960 uint_t numredactsnaps; 961 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 962 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 963 &numredactsnaps) == 0) { 964 VERIFY0(zap_add(mos, dsobj, 965 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 966 sizeof (*redact_snaps), numredactsnaps, 967 redact_snaps, tx)); 968 } 969 } 970 971 /* 972 * Usually the os->os_encrypted value is tied to the presence of a 973 * DSL Crypto Key object in the dd. However, that will not be received 974 * until dmu_recv_stream(), so we set the value manually for now. 975 */ 976 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 977 os->os_encrypted = B_TRUE; 978 drba->drba_cookie->drc_raw = B_TRUE; 979 } 980 981 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 982 uint64_t *redact_snaps; 983 uint_t numredactsnaps; 984 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 985 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 986 dsl_dataset_activate_redaction(newds, redact_snaps, 987 numredactsnaps, tx); 988 } 989 990 dmu_buf_will_dirty(newds->ds_dbuf, tx); 991 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 992 993 /* 994 * If we actually created a non-clone, we need to create the objset 995 * in our new dataset. If this is a raw send we postpone this until 996 * dmu_recv_stream() so that we can allocate the metadnode with the 997 * properties from the DRR_BEGIN payload. 998 */ 999 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1000 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 1001 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 1002 !drc->drc_heal) { 1003 (void) dmu_objset_create_impl(dp->dp_spa, 1004 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1005 } 1006 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1007 1008 drba->drba_cookie->drc_ds = newds; 1009 drba->drba_cookie->drc_os = os; 1010 1011 spa_history_log_internal_ds(newds, "receive", tx, " "); 1012 } 1013 1014 static int 1015 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1016 { 1017 dmu_recv_begin_arg_t *drba = arg; 1018 dmu_recv_cookie_t *drc = drba->drba_cookie; 1019 dsl_pool_t *dp = dmu_tx_pool(tx); 1020 struct drr_begin *drrb = drc->drc_drrb; 1021 int error; 1022 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1023 dsl_dataset_t *ds; 1024 const char *tofs = drc->drc_tofs; 1025 1026 /* already checked */ 1027 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1028 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 1029 1030 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1031 DMU_COMPOUNDSTREAM || 1032 drrb->drr_type >= DMU_OST_NUMTYPES) 1033 return (SET_ERROR(EINVAL)); 1034 1035 /* 1036 * This is mostly a sanity check since we should have already done these 1037 * checks during a previous attempt to receive the data. 1038 */ 1039 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 1040 dp->dp_spa); 1041 if (error != 0) 1042 return (error); 1043 1044 /* 6 extra bytes for /%recv */ 1045 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1046 1047 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1048 tofs, recv_clone_name); 1049 1050 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 1051 /* raw receives require spill block allocation flag */ 1052 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 1053 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 1054 } else { 1055 dsflags |= DS_HOLD_FLAG_DECRYPT; 1056 } 1057 1058 boolean_t recvexist = B_TRUE; 1059 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 1060 /* %recv does not exist; continue in tofs */ 1061 recvexist = B_FALSE; 1062 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 1063 if (error != 0) 1064 return (error); 1065 } 1066 1067 /* 1068 * Resume of full/newfs recv on existing dataset should be done with 1069 * force flag 1070 */ 1071 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) { 1072 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1073 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS)); 1074 } 1075 1076 /* check that ds is marked inconsistent */ 1077 if (!DS_IS_INCONSISTENT(ds)) { 1078 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1079 return (SET_ERROR(EINVAL)); 1080 } 1081 1082 /* check that there is resuming data, and that the toguid matches */ 1083 if (!dsl_dataset_is_zapified(ds)) { 1084 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1085 return (SET_ERROR(EINVAL)); 1086 } 1087 uint64_t val; 1088 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1089 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1090 if (error != 0 || drrb->drr_toguid != val) { 1091 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1092 return (SET_ERROR(EINVAL)); 1093 } 1094 1095 /* 1096 * Check if the receive is still running. If so, it will be owned. 1097 * Note that nothing else can own the dataset (e.g. after the receive 1098 * fails) because it will be marked inconsistent. 1099 */ 1100 if (dsl_dataset_has_owner(ds)) { 1101 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1102 return (SET_ERROR(EBUSY)); 1103 } 1104 1105 /* There should not be any snapshots of this fs yet. */ 1106 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1107 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1108 return (SET_ERROR(EINVAL)); 1109 } 1110 1111 /* 1112 * Note: resume point will be checked when we process the first WRITE 1113 * record. 1114 */ 1115 1116 /* check that the origin matches */ 1117 val = 0; 1118 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1119 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1120 if (drrb->drr_fromguid != val) { 1121 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1122 return (SET_ERROR(EINVAL)); 1123 } 1124 1125 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1126 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1127 1128 /* 1129 * If we're resuming, and the send is redacted, then the original send 1130 * must have been redacted, and must have been redacted with respect to 1131 * the same snapshots. 1132 */ 1133 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1134 uint64_t num_ds_redact_snaps; 1135 uint64_t *ds_redact_snaps; 1136 1137 uint_t num_stream_redact_snaps; 1138 uint64_t *stream_redact_snaps; 1139 1140 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1141 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1142 &num_stream_redact_snaps) != 0) { 1143 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1144 return (SET_ERROR(EINVAL)); 1145 } 1146 1147 if (!dsl_dataset_get_uint64_array_feature(ds, 1148 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1149 &ds_redact_snaps)) { 1150 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1151 return (SET_ERROR(EINVAL)); 1152 } 1153 1154 for (int i = 0; i < num_ds_redact_snaps; i++) { 1155 if (!redact_snaps_contains(ds_redact_snaps, 1156 num_ds_redact_snaps, stream_redact_snaps[i])) { 1157 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1158 return (SET_ERROR(EINVAL)); 1159 } 1160 } 1161 } 1162 1163 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1164 if (error != 0) { 1165 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1166 return (error); 1167 } 1168 1169 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1170 return (0); 1171 } 1172 1173 static void 1174 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1175 { 1176 dmu_recv_begin_arg_t *drba = arg; 1177 dsl_pool_t *dp = dmu_tx_pool(tx); 1178 const char *tofs = drba->drba_cookie->drc_tofs; 1179 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1180 dsl_dataset_t *ds; 1181 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1182 /* 6 extra bytes for /%recv */ 1183 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1184 1185 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1186 recv_clone_name); 1187 1188 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1189 drba->drba_cookie->drc_raw = B_TRUE; 1190 } else { 1191 dsflags |= DS_HOLD_FLAG_DECRYPT; 1192 } 1193 1194 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1195 != 0) { 1196 /* %recv does not exist; continue in tofs */ 1197 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1198 &ds)); 1199 drba->drba_cookie->drc_newfs = B_TRUE; 1200 } 1201 1202 ASSERT(DS_IS_INCONSISTENT(ds)); 1203 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1204 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1205 drba->drba_cookie->drc_raw); 1206 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1207 1208 drba->drba_cookie->drc_ds = ds; 1209 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1210 drba->drba_cookie->drc_should_save = B_TRUE; 1211 1212 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1213 } 1214 1215 /* 1216 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1217 * succeeds; otherwise we will leak the holds on the datasets. 1218 */ 1219 int 1220 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1221 boolean_t force, boolean_t heal, boolean_t resumable, nvlist_t *localprops, 1222 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, 1223 zfs_file_t *fp, offset_t *voffp) 1224 { 1225 dmu_recv_begin_arg_t drba = { 0 }; 1226 int err; 1227 1228 memset(drc, 0, sizeof (dmu_recv_cookie_t)); 1229 drc->drc_drr_begin = drr_begin; 1230 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1231 drc->drc_tosnap = tosnap; 1232 drc->drc_tofs = tofs; 1233 drc->drc_force = force; 1234 drc->drc_heal = heal; 1235 drc->drc_resumable = resumable; 1236 drc->drc_cred = CRED(); 1237 drc->drc_proc = curproc; 1238 drc->drc_clone = (origin != NULL); 1239 1240 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1241 drc->drc_byteswap = B_TRUE; 1242 (void) fletcher_4_incremental_byteswap(drr_begin, 1243 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1244 byteswap_record(drr_begin); 1245 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1246 (void) fletcher_4_incremental_native(drr_begin, 1247 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1248 } else { 1249 return (SET_ERROR(EINVAL)); 1250 } 1251 1252 drc->drc_fp = fp; 1253 drc->drc_voff = *voffp; 1254 drc->drc_featureflags = 1255 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1256 1257 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1258 void *payload = NULL; 1259 1260 /* 1261 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace 1262 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard 1263 * upper limit. Systems with less than 1GB of RAM will see a lower 1264 * limit from `arc_all_memory() / 4`. 1265 */ 1266 if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4))) 1267 return (E2BIG); 1268 1269 if (payloadlen != 0) 1270 payload = vmem_alloc(payloadlen, KM_SLEEP); 1271 1272 err = receive_read_payload_and_next_header(drc, payloadlen, 1273 payload); 1274 if (err != 0) { 1275 vmem_free(payload, payloadlen); 1276 return (err); 1277 } 1278 if (payloadlen != 0) { 1279 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1280 KM_SLEEP); 1281 vmem_free(payload, payloadlen); 1282 if (err != 0) { 1283 kmem_free(drc->drc_next_rrd, 1284 sizeof (*drc->drc_next_rrd)); 1285 return (err); 1286 } 1287 } 1288 1289 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1290 drc->drc_spill = B_TRUE; 1291 1292 drba.drba_origin = origin; 1293 drba.drba_cookie = drc; 1294 drba.drba_cred = CRED(); 1295 drba.drba_proc = curproc; 1296 1297 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1298 err = dsl_sync_task(tofs, 1299 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1300 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1301 } else { 1302 /* 1303 * For non-raw, non-incremental, non-resuming receives the 1304 * user can specify encryption parameters on the command line 1305 * with "zfs recv -o". For these receives we create a dcp and 1306 * pass it to the sync task. Creating the dcp will implicitly 1307 * remove the encryption params from the localprops nvlist, 1308 * which avoids errors when trying to set these normally 1309 * read-only properties. Any other kind of receive that 1310 * attempts to set these properties will fail as a result. 1311 */ 1312 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1313 DMU_BACKUP_FEATURE_RAW) == 0 && 1314 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1315 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1316 localprops, hidden_args, &drba.drba_dcp); 1317 } 1318 1319 if (err == 0) { 1320 err = dsl_sync_task(tofs, 1321 dmu_recv_begin_check, dmu_recv_begin_sync, 1322 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1323 dsl_crypto_params_free(drba.drba_dcp, !!err); 1324 } 1325 } 1326 1327 if (err != 0) { 1328 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1329 nvlist_free(drc->drc_begin_nvl); 1330 } 1331 return (err); 1332 } 1333 1334 /* 1335 * Holds data need for corrective recv callback 1336 */ 1337 typedef struct cr_cb_data { 1338 uint64_t size; 1339 zbookmark_phys_t zb; 1340 spa_t *spa; 1341 } cr_cb_data_t; 1342 1343 static void 1344 corrective_read_done(zio_t *zio) 1345 { 1346 cr_cb_data_t *data = zio->io_private; 1347 /* Corruption corrected; update error log if needed */ 1348 if (zio->io_error == 0) 1349 spa_remove_error(data->spa, &data->zb); 1350 kmem_free(data, sizeof (cr_cb_data_t)); 1351 abd_free(zio->io_abd); 1352 } 1353 1354 /* 1355 * zio_rewrite the data pointed to by bp with the data from the rrd's abd. 1356 */ 1357 static int 1358 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw, 1359 struct receive_record_arg *rrd, blkptr_t *bp) 1360 { 1361 int err; 1362 zio_t *io; 1363 zbookmark_phys_t zb; 1364 dnode_t *dn; 1365 abd_t *abd = rrd->abd; 1366 zio_cksum_t bp_cksum = bp->blk_cksum; 1367 zio_flag_t flags = ZIO_FLAG_SPECULATIVE | 1368 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL; 1369 1370 if (rwa->raw) 1371 flags |= ZIO_FLAG_RAW; 1372 1373 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn); 1374 if (err != 0) 1375 return (err); 1376 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0, 1377 dbuf_whichblock(dn, 0, drrw->drr_offset)); 1378 dnode_rele(dn, FTAG); 1379 1380 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) { 1381 /* Decompress the stream data */ 1382 abd_t *dabd = abd_alloc_linear( 1383 drrw->drr_logical_size, B_FALSE); 1384 err = zio_decompress_data(drrw->drr_compressiontype, 1385 abd, abd_to_buf(dabd), abd_get_size(abd), 1386 abd_get_size(dabd), NULL); 1387 1388 if (err != 0) { 1389 abd_free(dabd); 1390 return (err); 1391 } 1392 /* Swap in the newly decompressed data into the abd */ 1393 abd_free(abd); 1394 abd = dabd; 1395 } 1396 1397 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 1398 /* Recompress the data */ 1399 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp), 1400 B_FALSE); 1401 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp), 1402 abd, abd_to_buf(cabd), abd_get_size(abd), 1403 rwa->os->os_complevel); 1404 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize); 1405 /* Swap in newly compressed data into the abd */ 1406 abd_free(abd); 1407 abd = cabd; 1408 flags |= ZIO_FLAG_RAW_COMPRESS; 1409 } 1410 1411 /* 1412 * The stream is not encrypted but the data on-disk is. 1413 * We need to re-encrypt the buf using the same 1414 * encryption type, salt, iv, and mac that was used to encrypt 1415 * the block previosly. 1416 */ 1417 if (!rwa->raw && BP_USES_CRYPT(bp)) { 1418 dsl_dataset_t *ds; 1419 dsl_crypto_key_t *dck = NULL; 1420 uint8_t salt[ZIO_DATA_SALT_LEN]; 1421 uint8_t iv[ZIO_DATA_IV_LEN]; 1422 uint8_t mac[ZIO_DATA_MAC_LEN]; 1423 boolean_t no_crypt = B_FALSE; 1424 dsl_pool_t *dp = dmu_objset_pool(rwa->os); 1425 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE); 1426 1427 zio_crypt_decode_params_bp(bp, salt, iv); 1428 zio_crypt_decode_mac_bp(bp, mac); 1429 1430 dsl_pool_config_enter(dp, FTAG); 1431 err = dsl_dataset_hold_flags(dp, rwa->tofs, 1432 DS_HOLD_FLAG_DECRYPT, FTAG, &ds); 1433 if (err != 0) { 1434 dsl_pool_config_exit(dp, FTAG); 1435 abd_free(eabd); 1436 return (SET_ERROR(EACCES)); 1437 } 1438 1439 /* Look up the key from the spa's keystore */ 1440 err = spa_keystore_lookup_key(rwa->os->os_spa, 1441 zb.zb_objset, FTAG, &dck); 1442 if (err != 0) { 1443 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, 1444 FTAG); 1445 dsl_pool_config_exit(dp, FTAG); 1446 abd_free(eabd); 1447 return (SET_ERROR(EACCES)); 1448 } 1449 1450 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 1451 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, 1452 mac, abd_get_size(abd), abd, eabd, &no_crypt); 1453 1454 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG); 1455 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1456 dsl_pool_config_exit(dp, FTAG); 1457 1458 ASSERT0(no_crypt); 1459 if (err != 0) { 1460 abd_free(eabd); 1461 return (err); 1462 } 1463 /* Swap in the newly encrypted data into the abd */ 1464 abd_free(abd); 1465 abd = eabd; 1466 1467 /* 1468 * We want to prevent zio_rewrite() from trying to 1469 * encrypt the data again 1470 */ 1471 flags |= ZIO_FLAG_RAW_ENCRYPT; 1472 } 1473 rrd->abd = abd; 1474 1475 io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd, 1476 BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb); 1477 1478 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) || 1479 abd_get_size(abd) == BP_GET_PSIZE(bp)); 1480 1481 /* compute new bp checksum value and make sure it matches the old one */ 1482 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd)); 1483 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) { 1484 zio_destroy(io); 1485 if (zfs_recv_best_effort_corrective != 0) 1486 return (0); 1487 return (SET_ERROR(ECKSUM)); 1488 } 1489 1490 /* Correct the corruption in place */ 1491 err = zio_wait(io); 1492 if (err == 0) { 1493 cr_cb_data_t *cb_data = 1494 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP); 1495 cb_data->spa = rwa->os->os_spa; 1496 cb_data->size = drrw->drr_logical_size; 1497 cb_data->zb = zb; 1498 /* Test if healing worked by re-reading the bp */ 1499 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp, 1500 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE), 1501 drrw->drr_logical_size, corrective_read_done, 1502 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL)); 1503 } 1504 if (err != 0 && zfs_recv_best_effort_corrective != 0) 1505 err = 0; 1506 1507 return (err); 1508 } 1509 1510 static int 1511 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1512 { 1513 int done = 0; 1514 1515 /* 1516 * The code doesn't rely on this (lengths being multiples of 8). See 1517 * comment in dump_bytes. 1518 */ 1519 ASSERT(len % 8 == 0 || 1520 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1521 1522 while (done < len) { 1523 ssize_t resid = len - done; 1524 zfs_file_t *fp = drc->drc_fp; 1525 int err = zfs_file_read(fp, (char *)buf + done, 1526 len - done, &resid); 1527 if (err == 0 && resid == len - done) { 1528 /* 1529 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1530 * that the receive was interrupted and can 1531 * potentially be resumed. 1532 */ 1533 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1534 } 1535 drc->drc_voff += len - done - resid; 1536 done = len - resid; 1537 if (err != 0) 1538 return (err); 1539 } 1540 1541 drc->drc_bytes_read += len; 1542 1543 ASSERT3U(done, ==, len); 1544 return (0); 1545 } 1546 1547 static inline uint8_t 1548 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1549 { 1550 if (bonus_type == DMU_OT_SA) { 1551 return (1); 1552 } else { 1553 return (1 + 1554 ((DN_OLD_MAX_BONUSLEN - 1555 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1556 } 1557 } 1558 1559 static void 1560 save_resume_state(struct receive_writer_arg *rwa, 1561 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1562 { 1563 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1564 1565 if (!rwa->resumable) 1566 return; 1567 1568 /* 1569 * We use ds_resume_bytes[] != 0 to indicate that we need to 1570 * update this on disk, so it must not be 0. 1571 */ 1572 ASSERT(rwa->bytes_read != 0); 1573 1574 /* 1575 * We only resume from write records, which have a valid 1576 * (non-meta-dnode) object number. 1577 */ 1578 ASSERT(object != 0); 1579 1580 /* 1581 * For resuming to work correctly, we must receive records in order, 1582 * sorted by object,offset. This is checked by the callers, but 1583 * assert it here for good measure. 1584 */ 1585 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1586 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1587 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1588 ASSERT3U(rwa->bytes_read, >=, 1589 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1590 1591 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1592 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1593 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1594 } 1595 1596 static int 1597 receive_object_is_same_generation(objset_t *os, uint64_t object, 1598 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1599 const void *new_bonus, boolean_t *samegenp) 1600 { 1601 zfs_file_info_t zoi; 1602 int err; 1603 1604 dmu_buf_t *old_bonus_dbuf; 1605 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1606 if (err != 0) 1607 return (err); 1608 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1609 &zoi); 1610 dmu_buf_rele(old_bonus_dbuf, FTAG); 1611 if (err != 0) 1612 return (err); 1613 uint64_t old_gen = zoi.zfi_generation; 1614 1615 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1616 if (err != 0) 1617 return (err); 1618 uint64_t new_gen = zoi.zfi_generation; 1619 1620 *samegenp = (old_gen == new_gen); 1621 return (0); 1622 } 1623 1624 static int 1625 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1626 const struct drr_object *drro, const dmu_object_info_t *doi, 1627 const void *bonus_data, 1628 uint64_t *object_to_hold, uint32_t *new_blksz) 1629 { 1630 uint32_t indblksz = drro->drr_indblkshift ? 1631 1ULL << drro->drr_indblkshift : 0; 1632 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1633 drro->drr_bonuslen); 1634 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1635 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1636 boolean_t do_free_range = B_FALSE; 1637 int err; 1638 1639 *object_to_hold = drro->drr_object; 1640 1641 /* nblkptr should be bounded by the bonus size and type */ 1642 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1643 return (SET_ERROR(EINVAL)); 1644 1645 /* 1646 * After the previous send stream, the sending system may 1647 * have freed this object, and then happened to re-allocate 1648 * this object number in a later txg. In this case, we are 1649 * receiving a different logical file, and the block size may 1650 * appear to be different. i.e. we may have a different 1651 * block size for this object than what the send stream says. 1652 * In this case we need to remove the object's contents, 1653 * so that its structure can be changed and then its contents 1654 * entirely replaced by subsequent WRITE records. 1655 * 1656 * If this is a -L (--large-block) incremental stream, and 1657 * the previous stream was not -L, the block size may appear 1658 * to increase. i.e. we may have a smaller block size for 1659 * this object than what the send stream says. In this case 1660 * we need to keep the object's contents and block size 1661 * intact, so that we don't lose parts of the object's 1662 * contents that are not changed by this incremental send 1663 * stream. 1664 * 1665 * We can distinguish between the two above cases by using 1666 * the ZPL's generation number (see 1667 * receive_object_is_same_generation()). However, we only 1668 * want to rely on the generation number when absolutely 1669 * necessary, because with raw receives, the generation is 1670 * encrypted. We also want to minimize dependence on the 1671 * ZPL, so that other types of datasets can also be received 1672 * (e.g. ZVOLs, although note that ZVOLS currently do not 1673 * reallocate their objects or change their structure). 1674 * Therefore, we check a number of different cases where we 1675 * know it is safe to discard the object's contents, before 1676 * using the ZPL's generation number to make the above 1677 * distinction. 1678 */ 1679 if (drro->drr_blksz != doi->doi_data_block_size) { 1680 if (rwa->raw) { 1681 /* 1682 * RAW streams always have large blocks, so 1683 * we are sure that the data is not needed 1684 * due to changing --large-block to be on. 1685 * Which is fortunate since the bonus buffer 1686 * (which contains the ZPL generation) is 1687 * encrypted, and the key might not be 1688 * loaded. 1689 */ 1690 do_free_range = B_TRUE; 1691 } else if (rwa->full) { 1692 /* 1693 * This is a full send stream, so it always 1694 * replaces what we have. Even if the 1695 * generation numbers happen to match, this 1696 * can not actually be the same logical file. 1697 * This is relevant when receiving a full 1698 * send as a clone. 1699 */ 1700 do_free_range = B_TRUE; 1701 } else if (drro->drr_type != 1702 DMU_OT_PLAIN_FILE_CONTENTS || 1703 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1704 /* 1705 * PLAIN_FILE_CONTENTS are the only type of 1706 * objects that have ever been stored with 1707 * large blocks, so we don't need the special 1708 * logic below. ZAP blocks can shrink (when 1709 * there's only one block), so we don't want 1710 * to hit the error below about block size 1711 * only increasing. 1712 */ 1713 do_free_range = B_TRUE; 1714 } else if (doi->doi_max_offset <= 1715 doi->doi_data_block_size) { 1716 /* 1717 * There is only one block. We can free it, 1718 * because its contents will be replaced by a 1719 * WRITE record. This can not be the no-L -> 1720 * -L case, because the no-L case would have 1721 * resulted in multiple blocks. If we 1722 * supported -L -> no-L, it would not be safe 1723 * to free the file's contents. Fortunately, 1724 * that is not allowed (see 1725 * recv_check_large_blocks()). 1726 */ 1727 do_free_range = B_TRUE; 1728 } else { 1729 boolean_t is_same_gen; 1730 err = receive_object_is_same_generation(rwa->os, 1731 drro->drr_object, doi->doi_bonus_type, 1732 drro->drr_bonustype, bonus_data, &is_same_gen); 1733 if (err != 0) 1734 return (SET_ERROR(EINVAL)); 1735 1736 if (is_same_gen) { 1737 /* 1738 * This is the same logical file, and 1739 * the block size must be increasing. 1740 * It could only decrease if 1741 * --large-block was changed to be 1742 * off, which is checked in 1743 * recv_check_large_blocks(). 1744 */ 1745 if (drro->drr_blksz <= 1746 doi->doi_data_block_size) 1747 return (SET_ERROR(EINVAL)); 1748 /* 1749 * We keep the existing blocksize and 1750 * contents. 1751 */ 1752 *new_blksz = 1753 doi->doi_data_block_size; 1754 } else { 1755 do_free_range = B_TRUE; 1756 } 1757 } 1758 } 1759 1760 /* nblkptr can only decrease if the object was reallocated */ 1761 if (nblkptr < doi->doi_nblkptr) 1762 do_free_range = B_TRUE; 1763 1764 /* number of slots can only change on reallocation */ 1765 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1766 do_free_range = B_TRUE; 1767 1768 /* 1769 * For raw sends we also check a few other fields to 1770 * ensure we are preserving the objset structure exactly 1771 * as it was on the receive side: 1772 * - A changed indirect block size 1773 * - A smaller nlevels 1774 */ 1775 if (rwa->raw) { 1776 if (indblksz != doi->doi_metadata_block_size) 1777 do_free_range = B_TRUE; 1778 if (drro->drr_nlevels < doi->doi_indirection) 1779 do_free_range = B_TRUE; 1780 } 1781 1782 if (do_free_range) { 1783 err = dmu_free_long_range(rwa->os, drro->drr_object, 1784 0, DMU_OBJECT_END); 1785 if (err != 0) 1786 return (SET_ERROR(EINVAL)); 1787 } 1788 1789 /* 1790 * The dmu does not currently support decreasing nlevels 1791 * or changing the number of dnode slots on an object. For 1792 * non-raw sends, this does not matter and the new object 1793 * can just use the previous one's nlevels. For raw sends, 1794 * however, the structure of the received dnode (including 1795 * nlevels and dnode slots) must match that of the send 1796 * side. Therefore, instead of using dmu_object_reclaim(), 1797 * we must free the object completely and call 1798 * dmu_object_claim_dnsize() instead. 1799 */ 1800 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || 1801 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1802 err = dmu_free_long_object(rwa->os, drro->drr_object); 1803 if (err != 0) 1804 return (SET_ERROR(EINVAL)); 1805 1806 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1807 *object_to_hold = DMU_NEW_OBJECT; 1808 } 1809 1810 /* 1811 * For raw receives, free everything beyond the new incoming 1812 * maxblkid. Normally this would be done with a DRR_FREE 1813 * record that would come after this DRR_OBJECT record is 1814 * processed. However, for raw receives we manually set the 1815 * maxblkid from the drr_maxblkid and so we must first free 1816 * everything above that blkid to ensure the DMU is always 1817 * consistent with itself. We will never free the first block 1818 * of the object here because a maxblkid of 0 could indicate 1819 * an object with a single block or one with no blocks. This 1820 * free may be skipped when dmu_free_long_range() was called 1821 * above since it covers the entire object's contents. 1822 */ 1823 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1824 err = dmu_free_long_range(rwa->os, drro->drr_object, 1825 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1826 DMU_OBJECT_END); 1827 if (err != 0) 1828 return (SET_ERROR(EINVAL)); 1829 } 1830 return (0); 1831 } 1832 1833 noinline static int 1834 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1835 void *data) 1836 { 1837 dmu_object_info_t doi; 1838 dmu_tx_t *tx; 1839 int err; 1840 uint32_t new_blksz = drro->drr_blksz; 1841 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1842 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1843 1844 if (drro->drr_type == DMU_OT_NONE || 1845 !DMU_OT_IS_VALID(drro->drr_type) || 1846 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1847 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1848 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1849 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1850 drro->drr_blksz < SPA_MINBLOCKSIZE || 1851 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1852 drro->drr_bonuslen > 1853 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1854 dn_slots > 1855 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1856 return (SET_ERROR(EINVAL)); 1857 } 1858 1859 if (rwa->raw) { 1860 /* 1861 * We should have received a DRR_OBJECT_RANGE record 1862 * containing this block and stored it in rwa. 1863 */ 1864 if (drro->drr_object < rwa->or_firstobj || 1865 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1866 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1867 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1868 drro->drr_nlevels > DN_MAX_LEVELS || 1869 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1870 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1871 drro->drr_raw_bonuslen) 1872 return (SET_ERROR(EINVAL)); 1873 } else { 1874 /* 1875 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1876 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1877 */ 1878 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1879 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1880 return (SET_ERROR(EINVAL)); 1881 } 1882 1883 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1884 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1885 return (SET_ERROR(EINVAL)); 1886 } 1887 } 1888 1889 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1890 1891 if (err != 0 && err != ENOENT && err != EEXIST) 1892 return (SET_ERROR(EINVAL)); 1893 1894 if (drro->drr_object > rwa->max_object) 1895 rwa->max_object = drro->drr_object; 1896 1897 /* 1898 * If we are losing blkptrs or changing the block size this must 1899 * be a new file instance. We must clear out the previous file 1900 * contents before we can change this type of metadata in the dnode. 1901 * Raw receives will also check that the indirect structure of the 1902 * dnode hasn't changed. 1903 */ 1904 uint64_t object_to_hold; 1905 if (err == 0) { 1906 err = receive_handle_existing_object(rwa, drro, &doi, data, 1907 &object_to_hold, &new_blksz); 1908 if (err != 0) 1909 return (err); 1910 } else if (err == EEXIST) { 1911 /* 1912 * The object requested is currently an interior slot of a 1913 * multi-slot dnode. This will be resolved when the next txg 1914 * is synced out, since the send stream will have told us 1915 * to free this slot when we freed the associated dnode 1916 * earlier in the stream. 1917 */ 1918 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1919 1920 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1921 return (SET_ERROR(EINVAL)); 1922 1923 /* object was freed and we are about to allocate a new one */ 1924 object_to_hold = DMU_NEW_OBJECT; 1925 } else { 1926 /* 1927 * If the only record in this range so far was DRR_FREEOBJECTS 1928 * with at least one actually freed object, it's possible that 1929 * the block will now be converted to a hole. We need to wait 1930 * for the txg to sync to prevent races. 1931 */ 1932 if (rwa->or_need_sync == ORNS_YES) 1933 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1934 1935 /* object is free and we are about to allocate a new one */ 1936 object_to_hold = DMU_NEW_OBJECT; 1937 } 1938 1939 /* Only relevant for the first object in the range */ 1940 rwa->or_need_sync = ORNS_NO; 1941 1942 /* 1943 * If this is a multi-slot dnode there is a chance that this 1944 * object will expand into a slot that is already used by 1945 * another object from the previous snapshot. We must free 1946 * these objects before we attempt to allocate the new dnode. 1947 */ 1948 if (dn_slots > 1) { 1949 boolean_t need_sync = B_FALSE; 1950 1951 for (uint64_t slot = drro->drr_object + 1; 1952 slot < drro->drr_object + dn_slots; 1953 slot++) { 1954 dmu_object_info_t slot_doi; 1955 1956 err = dmu_object_info(rwa->os, slot, &slot_doi); 1957 if (err == ENOENT || err == EEXIST) 1958 continue; 1959 else if (err != 0) 1960 return (err); 1961 1962 err = dmu_free_long_object(rwa->os, slot); 1963 if (err != 0) 1964 return (err); 1965 1966 need_sync = B_TRUE; 1967 } 1968 1969 if (need_sync) 1970 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1971 } 1972 1973 tx = dmu_tx_create(rwa->os); 1974 dmu_tx_hold_bonus(tx, object_to_hold); 1975 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1976 err = dmu_tx_assign(tx, TXG_WAIT); 1977 if (err != 0) { 1978 dmu_tx_abort(tx); 1979 return (err); 1980 } 1981 1982 if (object_to_hold == DMU_NEW_OBJECT) { 1983 /* Currently free, wants to be allocated */ 1984 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1985 drro->drr_type, new_blksz, 1986 drro->drr_bonustype, drro->drr_bonuslen, 1987 dn_slots << DNODE_SHIFT, tx); 1988 } else if (drro->drr_type != doi.doi_type || 1989 new_blksz != doi.doi_data_block_size || 1990 drro->drr_bonustype != doi.doi_bonus_type || 1991 drro->drr_bonuslen != doi.doi_bonus_size) { 1992 /* Currently allocated, but with different properties */ 1993 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1994 drro->drr_type, new_blksz, 1995 drro->drr_bonustype, drro->drr_bonuslen, 1996 dn_slots << DNODE_SHIFT, rwa->spill ? 1997 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1998 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1999 /* 2000 * Currently allocated, the existing version of this object 2001 * may reference a spill block that is no longer allocated 2002 * at the source and needs to be freed. 2003 */ 2004 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 2005 } 2006 2007 if (err != 0) { 2008 dmu_tx_commit(tx); 2009 return (SET_ERROR(EINVAL)); 2010 } 2011 2012 if (rwa->or_crypt_params_present) { 2013 /* 2014 * Set the crypt params for the buffer associated with this 2015 * range of dnodes. This causes the blkptr_t to have the 2016 * same crypt params (byteorder, salt, iv, mac) as on the 2017 * sending side. 2018 * 2019 * Since we are committing this tx now, it is possible for 2020 * the dnode block to end up on-disk with the incorrect MAC, 2021 * if subsequent objects in this block are received in a 2022 * different txg. However, since the dataset is marked as 2023 * inconsistent, no code paths will do a non-raw read (or 2024 * decrypt the block / verify the MAC). The receive code and 2025 * scrub code can safely do raw reads and verify the 2026 * checksum. They don't need to verify the MAC. 2027 */ 2028 dmu_buf_t *db = NULL; 2029 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 2030 2031 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 2032 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 2033 if (err != 0) { 2034 dmu_tx_commit(tx); 2035 return (SET_ERROR(EINVAL)); 2036 } 2037 2038 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 2039 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 2040 2041 dmu_buf_rele(db, FTAG); 2042 2043 rwa->or_crypt_params_present = B_FALSE; 2044 } 2045 2046 dmu_object_set_checksum(rwa->os, drro->drr_object, 2047 drro->drr_checksumtype, tx); 2048 dmu_object_set_compress(rwa->os, drro->drr_object, 2049 drro->drr_compress, tx); 2050 2051 /* handle more restrictive dnode structuring for raw recvs */ 2052 if (rwa->raw) { 2053 /* 2054 * Set the indirect block size, block shift, nlevels. 2055 * This will not fail because we ensured all of the 2056 * blocks were freed earlier if this is a new object. 2057 * For non-new objects block size and indirect block 2058 * shift cannot change and nlevels can only increase. 2059 */ 2060 ASSERT3U(new_blksz, ==, drro->drr_blksz); 2061 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 2062 drro->drr_blksz, drro->drr_indblkshift, tx)); 2063 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 2064 drro->drr_nlevels, tx)); 2065 2066 /* 2067 * Set the maxblkid. This will always succeed because 2068 * we freed all blocks beyond the new maxblkid above. 2069 */ 2070 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 2071 drro->drr_maxblkid, tx)); 2072 } 2073 2074 if (data != NULL) { 2075 dmu_buf_t *db; 2076 dnode_t *dn; 2077 uint32_t flags = DMU_READ_NO_PREFETCH; 2078 2079 if (rwa->raw) 2080 flags |= DMU_READ_NO_DECRYPT; 2081 2082 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 2083 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 2084 2085 dmu_buf_will_dirty(db, tx); 2086 2087 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2088 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 2089 2090 /* 2091 * Raw bonus buffers have their byteorder determined by the 2092 * DRR_OBJECT_RANGE record. 2093 */ 2094 if (rwa->byteswap && !rwa->raw) { 2095 dmu_object_byteswap_t byteswap = 2096 DMU_OT_BYTESWAP(drro->drr_bonustype); 2097 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2098 DRR_OBJECT_PAYLOAD_SIZE(drro)); 2099 } 2100 dmu_buf_rele(db, FTAG); 2101 dnode_rele(dn, FTAG); 2102 } 2103 dmu_tx_commit(tx); 2104 2105 return (0); 2106 } 2107 2108 noinline static int 2109 receive_freeobjects(struct receive_writer_arg *rwa, 2110 struct drr_freeobjects *drrfo) 2111 { 2112 uint64_t obj; 2113 int next_err = 0; 2114 2115 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2116 return (SET_ERROR(EINVAL)); 2117 2118 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 2119 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 2120 obj < DN_MAX_OBJECT && next_err == 0; 2121 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2122 dmu_object_info_t doi; 2123 int err; 2124 2125 err = dmu_object_info(rwa->os, obj, &doi); 2126 if (err == ENOENT) 2127 continue; 2128 else if (err != 0) 2129 return (err); 2130 2131 err = dmu_free_long_object(rwa->os, obj); 2132 2133 if (err != 0) 2134 return (err); 2135 2136 if (rwa->or_need_sync == ORNS_MAYBE) 2137 rwa->or_need_sync = ORNS_YES; 2138 } 2139 if (next_err != ESRCH) 2140 return (next_err); 2141 return (0); 2142 } 2143 2144 /* 2145 * Note: if this fails, the caller will clean up any records left on the 2146 * rwa->write_batch list. 2147 */ 2148 static int 2149 flush_write_batch_impl(struct receive_writer_arg *rwa) 2150 { 2151 dnode_t *dn; 2152 int err; 2153 2154 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 2155 return (SET_ERROR(EINVAL)); 2156 2157 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 2158 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 2159 2160 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2161 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2162 2163 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 2164 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 2165 2166 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2167 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 2168 last_drrw->drr_offset - first_drrw->drr_offset + 2169 last_drrw->drr_logical_size); 2170 err = dmu_tx_assign(tx, TXG_WAIT); 2171 if (err != 0) { 2172 dmu_tx_abort(tx); 2173 dnode_rele(dn, FTAG); 2174 return (err); 2175 } 2176 2177 struct receive_record_arg *rrd; 2178 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 2179 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2180 abd_t *abd = rrd->abd; 2181 2182 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 2183 2184 if (drrw->drr_logical_size != dn->dn_datablksz) { 2185 /* 2186 * The WRITE record is larger than the object's block 2187 * size. We must be receiving an incremental 2188 * large-block stream into a dataset that previously did 2189 * a non-large-block receive. Lightweight writes must 2190 * be exactly one block, so we need to decompress the 2191 * data (if compressed) and do a normal dmu_write(). 2192 */ 2193 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 2194 if (DRR_WRITE_COMPRESSED(drrw)) { 2195 abd_t *decomp_abd = 2196 abd_alloc_linear(drrw->drr_logical_size, 2197 B_FALSE); 2198 2199 err = zio_decompress_data( 2200 drrw->drr_compressiontype, 2201 abd, abd_to_buf(decomp_abd), 2202 abd_get_size(abd), 2203 abd_get_size(decomp_abd), NULL); 2204 2205 if (err == 0) { 2206 dmu_write_by_dnode(dn, 2207 drrw->drr_offset, 2208 drrw->drr_logical_size, 2209 abd_to_buf(decomp_abd), tx); 2210 } 2211 abd_free(decomp_abd); 2212 } else { 2213 dmu_write_by_dnode(dn, 2214 drrw->drr_offset, 2215 drrw->drr_logical_size, 2216 abd_to_buf(abd), tx); 2217 } 2218 if (err == 0) 2219 abd_free(abd); 2220 } else { 2221 zio_prop_t zp; 2222 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 2223 2224 zio_flag_t zio_flags = 0; 2225 2226 if (rwa->raw) { 2227 zp.zp_encrypt = B_TRUE; 2228 zp.zp_compress = drrw->drr_compressiontype; 2229 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 2230 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2231 rwa->byteswap; 2232 memcpy(zp.zp_salt, drrw->drr_salt, 2233 ZIO_DATA_SALT_LEN); 2234 memcpy(zp.zp_iv, drrw->drr_iv, 2235 ZIO_DATA_IV_LEN); 2236 memcpy(zp.zp_mac, drrw->drr_mac, 2237 ZIO_DATA_MAC_LEN); 2238 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 2239 zp.zp_nopwrite = B_FALSE; 2240 zp.zp_copies = MIN(zp.zp_copies, 2241 SPA_DVAS_PER_BP - 1); 2242 } 2243 zio_flags |= ZIO_FLAG_RAW; 2244 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2245 ASSERT3U(drrw->drr_compressed_size, >, 0); 2246 ASSERT3U(drrw->drr_logical_size, >=, 2247 drrw->drr_compressed_size); 2248 zp.zp_compress = drrw->drr_compressiontype; 2249 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 2250 } else if (rwa->byteswap) { 2251 /* 2252 * Note: compressed blocks never need to be 2253 * byteswapped, because WRITE records for 2254 * metadata blocks are never compressed. The 2255 * exception is raw streams, which are written 2256 * in the original byteorder, and the byteorder 2257 * bit is preserved in the BP by setting 2258 * zp_byteorder above. 2259 */ 2260 dmu_object_byteswap_t byteswap = 2261 DMU_OT_BYTESWAP(drrw->drr_type); 2262 dmu_ot_byteswap[byteswap].ob_func( 2263 abd_to_buf(abd), 2264 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2265 } 2266 2267 /* 2268 * Since this data can't be read until the receive 2269 * completes, we can do a "lightweight" write for 2270 * improved performance. 2271 */ 2272 err = dmu_lightweight_write_by_dnode(dn, 2273 drrw->drr_offset, abd, &zp, zio_flags, tx); 2274 } 2275 2276 if (err != 0) { 2277 /* 2278 * This rrd is left on the list, so the caller will 2279 * free it (and the abd). 2280 */ 2281 break; 2282 } 2283 2284 /* 2285 * Note: If the receive fails, we want the resume stream to 2286 * start with the same record that we last successfully 2287 * received (as opposed to the next record), so that we can 2288 * verify that we are resuming from the correct location. 2289 */ 2290 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2291 2292 list_remove(&rwa->write_batch, rrd); 2293 kmem_free(rrd, sizeof (*rrd)); 2294 } 2295 2296 dmu_tx_commit(tx); 2297 dnode_rele(dn, FTAG); 2298 return (err); 2299 } 2300 2301 noinline static int 2302 flush_write_batch(struct receive_writer_arg *rwa) 2303 { 2304 if (list_is_empty(&rwa->write_batch)) 2305 return (0); 2306 int err = rwa->err; 2307 if (err == 0) 2308 err = flush_write_batch_impl(rwa); 2309 if (err != 0) { 2310 struct receive_record_arg *rrd; 2311 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2312 abd_free(rrd->abd); 2313 kmem_free(rrd, sizeof (*rrd)); 2314 } 2315 } 2316 ASSERT(list_is_empty(&rwa->write_batch)); 2317 return (err); 2318 } 2319 2320 noinline static int 2321 receive_process_write_record(struct receive_writer_arg *rwa, 2322 struct receive_record_arg *rrd) 2323 { 2324 int err = 0; 2325 2326 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2327 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2328 2329 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2330 !DMU_OT_IS_VALID(drrw->drr_type)) 2331 return (SET_ERROR(EINVAL)); 2332 2333 if (rwa->heal) { 2334 blkptr_t *bp; 2335 dmu_buf_t *dbp; 2336 dnode_t *dn; 2337 int flags = DB_RF_CANFAIL; 2338 2339 if (rwa->raw) 2340 flags |= DB_RF_NO_DECRYPT; 2341 2342 if (rwa->byteswap) { 2343 dmu_object_byteswap_t byteswap = 2344 DMU_OT_BYTESWAP(drrw->drr_type); 2345 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd), 2346 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2347 } 2348 2349 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object, 2350 drrw->drr_offset, FTAG, &dbp); 2351 if (err != 0) 2352 return (err); 2353 2354 /* Try to read the object to see if it needs healing */ 2355 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags); 2356 /* 2357 * We only try to heal when dbuf_read() returns a ECKSUMs. 2358 * Other errors (even EIO) get returned to caller. 2359 * EIO indicates that the device is not present/accessible, 2360 * so writing to it will likely fail. 2361 * If the block is healthy, we don't want to overwrite it 2362 * unnecessarily. 2363 */ 2364 if (err != ECKSUM) { 2365 dmu_buf_rele(dbp, FTAG); 2366 return (err); 2367 } 2368 dn = dmu_buf_dnode_enter(dbp); 2369 /* Make sure the on-disk block and recv record sizes match */ 2370 if (drrw->drr_logical_size != 2371 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) { 2372 err = ENOTSUP; 2373 dmu_buf_dnode_exit(dbp); 2374 dmu_buf_rele(dbp, FTAG); 2375 return (err); 2376 } 2377 /* Get the block pointer for the corrupted block */ 2378 bp = dmu_buf_get_blkptr(dbp); 2379 err = do_corrective_recv(rwa, drrw, rrd, bp); 2380 dmu_buf_dnode_exit(dbp); 2381 dmu_buf_rele(dbp, FTAG); 2382 return (err); 2383 } 2384 2385 /* 2386 * For resuming to work, records must be in increasing order 2387 * by (object, offset). 2388 */ 2389 if (drrw->drr_object < rwa->last_object || 2390 (drrw->drr_object == rwa->last_object && 2391 drrw->drr_offset < rwa->last_offset)) { 2392 return (SET_ERROR(EINVAL)); 2393 } 2394 2395 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2396 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2397 uint64_t batch_size = 2398 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2399 if (first_rrd != NULL && 2400 (drrw->drr_object != first_drrw->drr_object || 2401 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2402 err = flush_write_batch(rwa); 2403 if (err != 0) 2404 return (err); 2405 } 2406 2407 rwa->last_object = drrw->drr_object; 2408 rwa->last_offset = drrw->drr_offset; 2409 2410 if (rwa->last_object > rwa->max_object) 2411 rwa->max_object = rwa->last_object; 2412 2413 list_insert_tail(&rwa->write_batch, rrd); 2414 /* 2415 * Return EAGAIN to indicate that we will use this rrd again, 2416 * so the caller should not free it 2417 */ 2418 return (EAGAIN); 2419 } 2420 2421 static int 2422 receive_write_embedded(struct receive_writer_arg *rwa, 2423 struct drr_write_embedded *drrwe, void *data) 2424 { 2425 dmu_tx_t *tx; 2426 int err; 2427 2428 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2429 return (SET_ERROR(EINVAL)); 2430 2431 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2432 return (SET_ERROR(EINVAL)); 2433 2434 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2435 return (SET_ERROR(EINVAL)); 2436 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2437 return (SET_ERROR(EINVAL)); 2438 if (rwa->raw) 2439 return (SET_ERROR(EINVAL)); 2440 2441 if (drrwe->drr_object > rwa->max_object) 2442 rwa->max_object = drrwe->drr_object; 2443 2444 tx = dmu_tx_create(rwa->os); 2445 2446 dmu_tx_hold_write(tx, drrwe->drr_object, 2447 drrwe->drr_offset, drrwe->drr_length); 2448 err = dmu_tx_assign(tx, TXG_WAIT); 2449 if (err != 0) { 2450 dmu_tx_abort(tx); 2451 return (err); 2452 } 2453 2454 dmu_write_embedded(rwa->os, drrwe->drr_object, 2455 drrwe->drr_offset, data, drrwe->drr_etype, 2456 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2457 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2458 2459 /* See comment in restore_write. */ 2460 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2461 dmu_tx_commit(tx); 2462 return (0); 2463 } 2464 2465 static int 2466 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2467 abd_t *abd) 2468 { 2469 dmu_buf_t *db, *db_spill; 2470 int err; 2471 2472 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2473 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2474 return (SET_ERROR(EINVAL)); 2475 2476 /* 2477 * This is an unmodified spill block which was added to the stream 2478 * to resolve an issue with incorrectly removing spill blocks. It 2479 * should be ignored by current versions of the code which support 2480 * the DRR_FLAG_SPILL_BLOCK flag. 2481 */ 2482 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2483 abd_free(abd); 2484 return (0); 2485 } 2486 2487 if (rwa->raw) { 2488 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2489 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2490 drrs->drr_compressed_size == 0) 2491 return (SET_ERROR(EINVAL)); 2492 } 2493 2494 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2495 return (SET_ERROR(EINVAL)); 2496 2497 if (drrs->drr_object > rwa->max_object) 2498 rwa->max_object = drrs->drr_object; 2499 2500 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2501 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2502 &db_spill)) != 0) { 2503 dmu_buf_rele(db, FTAG); 2504 return (err); 2505 } 2506 2507 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2508 2509 dmu_tx_hold_spill(tx, db->db_object); 2510 2511 err = dmu_tx_assign(tx, TXG_WAIT); 2512 if (err != 0) { 2513 dmu_buf_rele(db, FTAG); 2514 dmu_buf_rele(db_spill, FTAG); 2515 dmu_tx_abort(tx); 2516 return (err); 2517 } 2518 2519 /* 2520 * Spill blocks may both grow and shrink. When a change in size 2521 * occurs any existing dbuf must be updated to match the logical 2522 * size of the provided arc_buf_t. 2523 */ 2524 if (db_spill->db_size != drrs->drr_length) { 2525 dmu_buf_will_fill(db_spill, tx); 2526 VERIFY0(dbuf_spill_set_blksz(db_spill, 2527 drrs->drr_length, tx)); 2528 } 2529 2530 arc_buf_t *abuf; 2531 if (rwa->raw) { 2532 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2533 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2534 rwa->byteswap; 2535 2536 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2537 drrs->drr_object, byteorder, drrs->drr_salt, 2538 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2539 drrs->drr_compressed_size, drrs->drr_length, 2540 drrs->drr_compressiontype, 0); 2541 } else { 2542 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2543 DMU_OT_IS_METADATA(drrs->drr_type), 2544 drrs->drr_length); 2545 if (rwa->byteswap) { 2546 dmu_object_byteswap_t byteswap = 2547 DMU_OT_BYTESWAP(drrs->drr_type); 2548 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2549 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2550 } 2551 } 2552 2553 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); 2554 abd_free(abd); 2555 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2556 2557 dmu_buf_rele(db, FTAG); 2558 dmu_buf_rele(db_spill, FTAG); 2559 2560 dmu_tx_commit(tx); 2561 return (0); 2562 } 2563 2564 noinline static int 2565 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2566 { 2567 int err; 2568 2569 if (drrf->drr_length != -1ULL && 2570 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2571 return (SET_ERROR(EINVAL)); 2572 2573 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2574 return (SET_ERROR(EINVAL)); 2575 2576 if (drrf->drr_object > rwa->max_object) 2577 rwa->max_object = drrf->drr_object; 2578 2579 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2580 drrf->drr_offset, drrf->drr_length); 2581 2582 return (err); 2583 } 2584 2585 static int 2586 receive_object_range(struct receive_writer_arg *rwa, 2587 struct drr_object_range *drror) 2588 { 2589 /* 2590 * By default, we assume this block is in our native format 2591 * (ZFS_HOST_BYTEORDER). We then take into account whether 2592 * the send stream is byteswapped (rwa->byteswap). Finally, 2593 * we need to byteswap again if this particular block was 2594 * in non-native format on the send side. 2595 */ 2596 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2597 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2598 2599 /* 2600 * Since dnode block sizes are constant, we should not need to worry 2601 * about making sure that the dnode block size is the same on the 2602 * sending and receiving sides for the time being. For non-raw sends, 2603 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2604 * record at all). Raw sends require this record type because the 2605 * encryption parameters are used to protect an entire block of bonus 2606 * buffers. If the size of dnode blocks ever becomes variable, 2607 * handling will need to be added to ensure that dnode block sizes 2608 * match on the sending and receiving side. 2609 */ 2610 if (drror->drr_numslots != DNODES_PER_BLOCK || 2611 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2612 !rwa->raw) 2613 return (SET_ERROR(EINVAL)); 2614 2615 if (drror->drr_firstobj > rwa->max_object) 2616 rwa->max_object = drror->drr_firstobj; 2617 2618 /* 2619 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2620 * so that the block of dnodes is not written out when it's empty, 2621 * and converted to a HOLE BP. 2622 */ 2623 rwa->or_crypt_params_present = B_TRUE; 2624 rwa->or_firstobj = drror->drr_firstobj; 2625 rwa->or_numslots = drror->drr_numslots; 2626 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN); 2627 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN); 2628 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN); 2629 rwa->or_byteorder = byteorder; 2630 2631 rwa->or_need_sync = ORNS_MAYBE; 2632 2633 return (0); 2634 } 2635 2636 /* 2637 * Until we have the ability to redact large ranges of data efficiently, we 2638 * process these records as frees. 2639 */ 2640 noinline static int 2641 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2642 { 2643 struct drr_free drrf = {0}; 2644 drrf.drr_length = drrr->drr_length; 2645 drrf.drr_object = drrr->drr_object; 2646 drrf.drr_offset = drrr->drr_offset; 2647 drrf.drr_toguid = drrr->drr_toguid; 2648 return (receive_free(rwa, &drrf)); 2649 } 2650 2651 /* used to destroy the drc_ds on error */ 2652 static void 2653 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2654 { 2655 dsl_dataset_t *ds = drc->drc_ds; 2656 ds_hold_flags_t dsflags; 2657 2658 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2659 /* 2660 * Wait for the txg sync before cleaning up the receive. For 2661 * resumable receives, this ensures that our resume state has 2662 * been written out to disk. For raw receives, this ensures 2663 * that the user accounting code will not attempt to do anything 2664 * after we stopped receiving the dataset. 2665 */ 2666 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2667 ds->ds_objset->os_raw_receive = B_FALSE; 2668 2669 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2670 if (drc->drc_resumable && drc->drc_should_save && 2671 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2672 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2673 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2674 } else { 2675 char name[ZFS_MAX_DATASET_NAME_LEN]; 2676 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2677 dsl_dataset_name(ds, name); 2678 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2679 if (!drc->drc_heal) 2680 (void) dsl_destroy_head(name); 2681 } 2682 } 2683 2684 static void 2685 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2686 { 2687 if (drc->drc_byteswap) { 2688 (void) fletcher_4_incremental_byteswap(buf, len, 2689 &drc->drc_cksum); 2690 } else { 2691 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2692 } 2693 } 2694 2695 /* 2696 * Read the payload into a buffer of size len, and update the current record's 2697 * payload field. 2698 * Allocate drc->drc_next_rrd and read the next record's header into 2699 * drc->drc_next_rrd->header. 2700 * Verify checksum of payload and next record. 2701 */ 2702 static int 2703 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2704 { 2705 int err; 2706 2707 if (len != 0) { 2708 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2709 err = receive_read(drc, len, buf); 2710 if (err != 0) 2711 return (err); 2712 receive_cksum(drc, len, buf); 2713 2714 /* note: rrd is NULL when reading the begin record's payload */ 2715 if (drc->drc_rrd != NULL) { 2716 drc->drc_rrd->payload = buf; 2717 drc->drc_rrd->payload_size = len; 2718 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2719 } 2720 } else { 2721 ASSERT3P(buf, ==, NULL); 2722 } 2723 2724 drc->drc_prev_cksum = drc->drc_cksum; 2725 2726 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2727 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2728 &drc->drc_next_rrd->header); 2729 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2730 2731 if (err != 0) { 2732 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2733 drc->drc_next_rrd = NULL; 2734 return (err); 2735 } 2736 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2737 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2738 drc->drc_next_rrd = NULL; 2739 return (SET_ERROR(EINVAL)); 2740 } 2741 2742 /* 2743 * Note: checksum is of everything up to but not including the 2744 * checksum itself. 2745 */ 2746 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2747 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2748 receive_cksum(drc, 2749 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2750 &drc->drc_next_rrd->header); 2751 2752 zio_cksum_t cksum_orig = 2753 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2754 zio_cksum_t *cksump = 2755 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2756 2757 if (drc->drc_byteswap) 2758 byteswap_record(&drc->drc_next_rrd->header); 2759 2760 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2761 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2762 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2763 drc->drc_next_rrd = NULL; 2764 return (SET_ERROR(ECKSUM)); 2765 } 2766 2767 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2768 2769 return (0); 2770 } 2771 2772 /* 2773 * Issue the prefetch reads for any necessary indirect blocks. 2774 * 2775 * We use the object ignore list to tell us whether or not to issue prefetches 2776 * for a given object. We do this for both correctness (in case the blocksize 2777 * of an object has changed) and performance (if the object doesn't exist, don't 2778 * needlessly try to issue prefetches). We also trim the list as we go through 2779 * the stream to prevent it from growing to an unbounded size. 2780 * 2781 * The object numbers within will always be in sorted order, and any write 2782 * records we see will also be in sorted order, but they're not sorted with 2783 * respect to each other (i.e. we can get several object records before 2784 * receiving each object's write records). As a result, once we've reached a 2785 * given object number, we can safely remove any reference to lower object 2786 * numbers in the ignore list. In practice, we receive up to 32 object records 2787 * before receiving write records, so the list can have up to 32 nodes in it. 2788 */ 2789 static void 2790 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2791 uint64_t length) 2792 { 2793 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2794 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2795 ZIO_PRIORITY_SYNC_READ); 2796 } 2797 } 2798 2799 /* 2800 * Read records off the stream, issuing any necessary prefetches. 2801 */ 2802 static int 2803 receive_read_record(dmu_recv_cookie_t *drc) 2804 { 2805 int err; 2806 2807 switch (drc->drc_rrd->header.drr_type) { 2808 case DRR_OBJECT: 2809 { 2810 struct drr_object *drro = 2811 &drc->drc_rrd->header.drr_u.drr_object; 2812 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2813 void *buf = NULL; 2814 dmu_object_info_t doi; 2815 2816 if (size != 0) 2817 buf = kmem_zalloc(size, KM_SLEEP); 2818 2819 err = receive_read_payload_and_next_header(drc, size, buf); 2820 if (err != 0) { 2821 kmem_free(buf, size); 2822 return (err); 2823 } 2824 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2825 /* 2826 * See receive_read_prefetch for an explanation why we're 2827 * storing this object in the ignore_obj_list. 2828 */ 2829 if (err == ENOENT || err == EEXIST || 2830 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2831 objlist_insert(drc->drc_ignore_objlist, 2832 drro->drr_object); 2833 err = 0; 2834 } 2835 return (err); 2836 } 2837 case DRR_FREEOBJECTS: 2838 { 2839 err = receive_read_payload_and_next_header(drc, 0, NULL); 2840 return (err); 2841 } 2842 case DRR_WRITE: 2843 { 2844 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2845 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2846 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2847 err = receive_read_payload_and_next_header(drc, size, 2848 abd_to_buf(abd)); 2849 if (err != 0) { 2850 abd_free(abd); 2851 return (err); 2852 } 2853 drc->drc_rrd->abd = abd; 2854 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2855 drrw->drr_logical_size); 2856 return (err); 2857 } 2858 case DRR_WRITE_EMBEDDED: 2859 { 2860 struct drr_write_embedded *drrwe = 2861 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2862 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2863 void *buf = kmem_zalloc(size, KM_SLEEP); 2864 2865 err = receive_read_payload_and_next_header(drc, size, buf); 2866 if (err != 0) { 2867 kmem_free(buf, size); 2868 return (err); 2869 } 2870 2871 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2872 drrwe->drr_length); 2873 return (err); 2874 } 2875 case DRR_FREE: 2876 case DRR_REDACT: 2877 { 2878 /* 2879 * It might be beneficial to prefetch indirect blocks here, but 2880 * we don't really have the data to decide for sure. 2881 */ 2882 err = receive_read_payload_and_next_header(drc, 0, NULL); 2883 return (err); 2884 } 2885 case DRR_END: 2886 { 2887 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2888 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2889 drre->drr_checksum)) 2890 return (SET_ERROR(ECKSUM)); 2891 return (0); 2892 } 2893 case DRR_SPILL: 2894 { 2895 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2896 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2897 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2898 err = receive_read_payload_and_next_header(drc, size, 2899 abd_to_buf(abd)); 2900 if (err != 0) 2901 abd_free(abd); 2902 else 2903 drc->drc_rrd->abd = abd; 2904 return (err); 2905 } 2906 case DRR_OBJECT_RANGE: 2907 { 2908 err = receive_read_payload_and_next_header(drc, 0, NULL); 2909 return (err); 2910 2911 } 2912 default: 2913 return (SET_ERROR(EINVAL)); 2914 } 2915 } 2916 2917 2918 2919 static void 2920 dprintf_drr(struct receive_record_arg *rrd, int err) 2921 { 2922 #ifdef ZFS_DEBUG 2923 switch (rrd->header.drr_type) { 2924 case DRR_OBJECT: 2925 { 2926 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2927 dprintf("drr_type = OBJECT obj = %llu type = %u " 2928 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2929 "compress = %u dn_slots = %u err = %d\n", 2930 (u_longlong_t)drro->drr_object, drro->drr_type, 2931 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, 2932 drro->drr_checksumtype, drro->drr_compress, 2933 drro->drr_dn_slots, err); 2934 break; 2935 } 2936 case DRR_FREEOBJECTS: 2937 { 2938 struct drr_freeobjects *drrfo = 2939 &rrd->header.drr_u.drr_freeobjects; 2940 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2941 "numobjs = %llu err = %d\n", 2942 (u_longlong_t)drrfo->drr_firstobj, 2943 (u_longlong_t)drrfo->drr_numobjs, err); 2944 break; 2945 } 2946 case DRR_WRITE: 2947 { 2948 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2949 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2950 "lsize = %llu cksumtype = %u flags = %u " 2951 "compress = %u psize = %llu err = %d\n", 2952 (u_longlong_t)drrw->drr_object, drrw->drr_type, 2953 (u_longlong_t)drrw->drr_offset, 2954 (u_longlong_t)drrw->drr_logical_size, 2955 drrw->drr_checksumtype, drrw->drr_flags, 2956 drrw->drr_compressiontype, 2957 (u_longlong_t)drrw->drr_compressed_size, err); 2958 break; 2959 } 2960 case DRR_WRITE_BYREF: 2961 { 2962 struct drr_write_byref *drrwbr = 2963 &rrd->header.drr_u.drr_write_byref; 2964 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2965 "length = %llu toguid = %llx refguid = %llx " 2966 "refobject = %llu refoffset = %llu cksumtype = %u " 2967 "flags = %u err = %d\n", 2968 (u_longlong_t)drrwbr->drr_object, 2969 (u_longlong_t)drrwbr->drr_offset, 2970 (u_longlong_t)drrwbr->drr_length, 2971 (u_longlong_t)drrwbr->drr_toguid, 2972 (u_longlong_t)drrwbr->drr_refguid, 2973 (u_longlong_t)drrwbr->drr_refobject, 2974 (u_longlong_t)drrwbr->drr_refoffset, 2975 drrwbr->drr_checksumtype, drrwbr->drr_flags, err); 2976 break; 2977 } 2978 case DRR_WRITE_EMBEDDED: 2979 { 2980 struct drr_write_embedded *drrwe = 2981 &rrd->header.drr_u.drr_write_embedded; 2982 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 2983 "length = %llu compress = %u etype = %u lsize = %u " 2984 "psize = %u err = %d\n", 2985 (u_longlong_t)drrwe->drr_object, 2986 (u_longlong_t)drrwe->drr_offset, 2987 (u_longlong_t)drrwe->drr_length, 2988 drrwe->drr_compression, drrwe->drr_etype, 2989 drrwe->drr_lsize, drrwe->drr_psize, err); 2990 break; 2991 } 2992 case DRR_FREE: 2993 { 2994 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2995 dprintf("drr_type = FREE obj = %llu offset = %llu " 2996 "length = %lld err = %d\n", 2997 (u_longlong_t)drrf->drr_object, 2998 (u_longlong_t)drrf->drr_offset, 2999 (longlong_t)drrf->drr_length, 3000 err); 3001 break; 3002 } 3003 case DRR_SPILL: 3004 { 3005 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3006 dprintf("drr_type = SPILL obj = %llu length = %llu " 3007 "err = %d\n", (u_longlong_t)drrs->drr_object, 3008 (u_longlong_t)drrs->drr_length, err); 3009 break; 3010 } 3011 case DRR_OBJECT_RANGE: 3012 { 3013 struct drr_object_range *drror = 3014 &rrd->header.drr_u.drr_object_range; 3015 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 3016 "numslots = %llu flags = %u err = %d\n", 3017 (u_longlong_t)drror->drr_firstobj, 3018 (u_longlong_t)drror->drr_numslots, 3019 drror->drr_flags, err); 3020 break; 3021 } 3022 default: 3023 return; 3024 } 3025 #endif 3026 } 3027 3028 /* 3029 * Commit the records to the pool. 3030 */ 3031 static int 3032 receive_process_record(struct receive_writer_arg *rwa, 3033 struct receive_record_arg *rrd) 3034 { 3035 int err; 3036 3037 /* Processing in order, therefore bytes_read should be increasing. */ 3038 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 3039 rwa->bytes_read = rrd->bytes_read; 3040 3041 /* We can only heal write records; other ones get ignored */ 3042 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3043 if (rrd->abd != NULL) { 3044 abd_free(rrd->abd); 3045 rrd->abd = NULL; 3046 } else if (rrd->payload != NULL) { 3047 kmem_free(rrd->payload, rrd->payload_size); 3048 rrd->payload = NULL; 3049 } 3050 return (0); 3051 } 3052 3053 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3054 err = flush_write_batch(rwa); 3055 if (err != 0) { 3056 if (rrd->abd != NULL) { 3057 abd_free(rrd->abd); 3058 rrd->abd = NULL; 3059 rrd->payload = NULL; 3060 } else if (rrd->payload != NULL) { 3061 kmem_free(rrd->payload, rrd->payload_size); 3062 rrd->payload = NULL; 3063 } 3064 3065 return (err); 3066 } 3067 } 3068 3069 switch (rrd->header.drr_type) { 3070 case DRR_OBJECT: 3071 { 3072 struct drr_object *drro = &rrd->header.drr_u.drr_object; 3073 err = receive_object(rwa, drro, rrd->payload); 3074 kmem_free(rrd->payload, rrd->payload_size); 3075 rrd->payload = NULL; 3076 break; 3077 } 3078 case DRR_FREEOBJECTS: 3079 { 3080 struct drr_freeobjects *drrfo = 3081 &rrd->header.drr_u.drr_freeobjects; 3082 err = receive_freeobjects(rwa, drrfo); 3083 break; 3084 } 3085 case DRR_WRITE: 3086 { 3087 err = receive_process_write_record(rwa, rrd); 3088 if (rwa->heal) { 3089 /* 3090 * If healing - always free the abd after processing 3091 */ 3092 abd_free(rrd->abd); 3093 rrd->abd = NULL; 3094 } else if (err != EAGAIN) { 3095 /* 3096 * On success, a non-healing 3097 * receive_process_write_record() returns 3098 * EAGAIN to indicate that we do not want to free 3099 * the rrd or arc_buf. 3100 */ 3101 ASSERT(err != 0); 3102 abd_free(rrd->abd); 3103 rrd->abd = NULL; 3104 } 3105 break; 3106 } 3107 case DRR_WRITE_EMBEDDED: 3108 { 3109 struct drr_write_embedded *drrwe = 3110 &rrd->header.drr_u.drr_write_embedded; 3111 err = receive_write_embedded(rwa, drrwe, rrd->payload); 3112 kmem_free(rrd->payload, rrd->payload_size); 3113 rrd->payload = NULL; 3114 break; 3115 } 3116 case DRR_FREE: 3117 { 3118 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 3119 err = receive_free(rwa, drrf); 3120 break; 3121 } 3122 case DRR_SPILL: 3123 { 3124 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3125 err = receive_spill(rwa, drrs, rrd->abd); 3126 if (err != 0) 3127 abd_free(rrd->abd); 3128 rrd->abd = NULL; 3129 rrd->payload = NULL; 3130 break; 3131 } 3132 case DRR_OBJECT_RANGE: 3133 { 3134 struct drr_object_range *drror = 3135 &rrd->header.drr_u.drr_object_range; 3136 err = receive_object_range(rwa, drror); 3137 break; 3138 } 3139 case DRR_REDACT: 3140 { 3141 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 3142 err = receive_redact(rwa, drrr); 3143 break; 3144 } 3145 default: 3146 err = (SET_ERROR(EINVAL)); 3147 } 3148 3149 if (err != 0) 3150 dprintf_drr(rrd, err); 3151 3152 return (err); 3153 } 3154 3155 /* 3156 * dmu_recv_stream's worker thread; pull records off the queue, and then call 3157 * receive_process_record When we're done, signal the main thread and exit. 3158 */ 3159 static __attribute__((noreturn)) void 3160 receive_writer_thread(void *arg) 3161 { 3162 struct receive_writer_arg *rwa = arg; 3163 struct receive_record_arg *rrd; 3164 fstrans_cookie_t cookie = spl_fstrans_mark(); 3165 3166 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 3167 rrd = bqueue_dequeue(&rwa->q)) { 3168 /* 3169 * If there's an error, the main thread will stop putting things 3170 * on the queue, but we need to clear everything in it before we 3171 * can exit. 3172 */ 3173 int err = 0; 3174 if (rwa->err == 0) { 3175 err = receive_process_record(rwa, rrd); 3176 } else if (rrd->abd != NULL) { 3177 abd_free(rrd->abd); 3178 rrd->abd = NULL; 3179 rrd->payload = NULL; 3180 } else if (rrd->payload != NULL) { 3181 kmem_free(rrd->payload, rrd->payload_size); 3182 rrd->payload = NULL; 3183 } 3184 /* 3185 * EAGAIN indicates that this record has been saved (on 3186 * raw->write_batch), and will be used again, so we don't 3187 * free it. 3188 * When healing data we always need to free the record. 3189 */ 3190 if (err != EAGAIN || rwa->heal) { 3191 if (rwa->err == 0) 3192 rwa->err = err; 3193 kmem_free(rrd, sizeof (*rrd)); 3194 } 3195 } 3196 kmem_free(rrd, sizeof (*rrd)); 3197 3198 if (rwa->heal) { 3199 zio_wait(rwa->heal_pio); 3200 } else { 3201 int err = flush_write_batch(rwa); 3202 if (rwa->err == 0) 3203 rwa->err = err; 3204 } 3205 mutex_enter(&rwa->mutex); 3206 rwa->done = B_TRUE; 3207 cv_signal(&rwa->cv); 3208 mutex_exit(&rwa->mutex); 3209 spl_fstrans_unmark(cookie); 3210 thread_exit(); 3211 } 3212 3213 static int 3214 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 3215 { 3216 uint64_t val; 3217 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 3218 uint64_t dsobj = dmu_objset_id(drc->drc_os); 3219 uint64_t resume_obj, resume_off; 3220 3221 if (nvlist_lookup_uint64(begin_nvl, 3222 "resume_object", &resume_obj) != 0 || 3223 nvlist_lookup_uint64(begin_nvl, 3224 "resume_offset", &resume_off) != 0) { 3225 return (SET_ERROR(EINVAL)); 3226 } 3227 VERIFY0(zap_lookup(mos, dsobj, 3228 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 3229 if (resume_obj != val) 3230 return (SET_ERROR(EINVAL)); 3231 VERIFY0(zap_lookup(mos, dsobj, 3232 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 3233 if (resume_off != val) 3234 return (SET_ERROR(EINVAL)); 3235 3236 return (0); 3237 } 3238 3239 /* 3240 * Read in the stream's records, one by one, and apply them to the pool. There 3241 * are two threads involved; the thread that calls this function will spin up a 3242 * worker thread, read the records off the stream one by one, and issue 3243 * prefetches for any necessary indirect blocks. It will then push the records 3244 * onto an internal blocking queue. The worker thread will pull the records off 3245 * the queue, and actually write the data into the DMU. This way, the worker 3246 * thread doesn't have to wait for reads to complete, since everything it needs 3247 * (the indirect blocks) will be prefetched. 3248 * 3249 * NB: callers *must* call dmu_recv_end() if this succeeds. 3250 */ 3251 int 3252 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 3253 { 3254 int err = 0; 3255 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 3256 3257 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { 3258 uint64_t bytes = 0; 3259 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 3260 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 3261 sizeof (bytes), 1, &bytes); 3262 drc->drc_bytes_read += bytes; 3263 } 3264 3265 drc->drc_ignore_objlist = objlist_create(); 3266 3267 /* these were verified in dmu_recv_begin */ 3268 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 3269 DMU_SUBSTREAM); 3270 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 3271 3272 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 3273 ASSERT0(drc->drc_os->os_encrypted && 3274 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 3275 3276 /* handle DSL encryption key payload */ 3277 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 3278 nvlist_t *keynvl = NULL; 3279 3280 ASSERT(drc->drc_os->os_encrypted); 3281 ASSERT(drc->drc_raw); 3282 3283 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 3284 &keynvl); 3285 if (err != 0) 3286 goto out; 3287 3288 if (!drc->drc_heal) { 3289 /* 3290 * If this is a new dataset we set the key immediately. 3291 * Otherwise we don't want to change the key until we 3292 * are sure the rest of the receive succeeded so we 3293 * stash the keynvl away until then. 3294 */ 3295 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 3296 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 3297 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 3298 if (err != 0) 3299 goto out; 3300 } 3301 3302 /* see comment in dmu_recv_end_sync() */ 3303 drc->drc_ivset_guid = 0; 3304 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 3305 &drc->drc_ivset_guid); 3306 3307 if (!drc->drc_newfs) 3308 drc->drc_keynvl = fnvlist_dup(keynvl); 3309 } 3310 3311 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 3312 err = resume_check(drc, drc->drc_begin_nvl); 3313 if (err != 0) 3314 goto out; 3315 } 3316 3317 /* 3318 * If we failed before this point we will clean up any new resume 3319 * state that was created. Now that we've gotten past the initial 3320 * checks we are ok to retain that resume state. 3321 */ 3322 drc->drc_should_save = B_TRUE; 3323 3324 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 3325 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 3326 offsetof(struct receive_record_arg, node)); 3327 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 3328 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 3329 rwa->os = drc->drc_os; 3330 rwa->byteswap = drc->drc_byteswap; 3331 rwa->heal = drc->drc_heal; 3332 rwa->tofs = drc->drc_tofs; 3333 rwa->resumable = drc->drc_resumable; 3334 rwa->raw = drc->drc_raw; 3335 rwa->spill = drc->drc_spill; 3336 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 3337 rwa->os->os_raw_receive = drc->drc_raw; 3338 if (drc->drc_heal) { 3339 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL, 3340 ZIO_FLAG_GODFATHER); 3341 } 3342 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 3343 offsetof(struct receive_record_arg, node.bqn_node)); 3344 3345 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 3346 TS_RUN, minclsyspri); 3347 /* 3348 * We're reading rwa->err without locks, which is safe since we are the 3349 * only reader, and the worker thread is the only writer. It's ok if we 3350 * miss a write for an iteration or two of the loop, since the writer 3351 * thread will keep freeing records we send it until we send it an eos 3352 * marker. 3353 * 3354 * We can leave this loop in 3 ways: First, if rwa->err is 3355 * non-zero. In that case, the writer thread will free the rrd we just 3356 * pushed. Second, if we're interrupted; in that case, either it's the 3357 * first loop and drc->drc_rrd was never allocated, or it's later, and 3358 * drc->drc_rrd has been handed off to the writer thread who will free 3359 * it. Finally, if receive_read_record fails or we're at the end of the 3360 * stream, then we free drc->drc_rrd and exit. 3361 */ 3362 while (rwa->err == 0) { 3363 if (issig(JUSTLOOKING) && issig(FORREAL)) { 3364 err = SET_ERROR(EINTR); 3365 break; 3366 } 3367 3368 ASSERT3P(drc->drc_rrd, ==, NULL); 3369 drc->drc_rrd = drc->drc_next_rrd; 3370 drc->drc_next_rrd = NULL; 3371 /* Allocates and loads header into drc->drc_next_rrd */ 3372 err = receive_read_record(drc); 3373 3374 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 3375 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 3376 drc->drc_rrd = NULL; 3377 break; 3378 } 3379 3380 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3381 sizeof (struct receive_record_arg) + 3382 drc->drc_rrd->payload_size); 3383 drc->drc_rrd = NULL; 3384 } 3385 3386 ASSERT3P(drc->drc_rrd, ==, NULL); 3387 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3388 drc->drc_rrd->eos_marker = B_TRUE; 3389 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3390 3391 mutex_enter(&rwa->mutex); 3392 while (!rwa->done) { 3393 /* 3394 * We need to use cv_wait_sig() so that any process that may 3395 * be sleeping here can still fork. 3396 */ 3397 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3398 } 3399 mutex_exit(&rwa->mutex); 3400 3401 /* 3402 * If we are receiving a full stream as a clone, all object IDs which 3403 * are greater than the maximum ID referenced in the stream are 3404 * by definition unused and must be freed. 3405 */ 3406 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3407 uint64_t obj = rwa->max_object + 1; 3408 int free_err = 0; 3409 int next_err = 0; 3410 3411 while (next_err == 0) { 3412 free_err = dmu_free_long_object(rwa->os, obj); 3413 if (free_err != 0 && free_err != ENOENT) 3414 break; 3415 3416 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3417 } 3418 3419 if (err == 0) { 3420 if (free_err != 0 && free_err != ENOENT) 3421 err = free_err; 3422 else if (next_err != ESRCH) 3423 err = next_err; 3424 } 3425 } 3426 3427 cv_destroy(&rwa->cv); 3428 mutex_destroy(&rwa->mutex); 3429 bqueue_destroy(&rwa->q); 3430 list_destroy(&rwa->write_batch); 3431 if (err == 0) 3432 err = rwa->err; 3433 3434 out: 3435 /* 3436 * If we hit an error before we started the receive_writer_thread 3437 * we need to clean up the next_rrd we create by processing the 3438 * DRR_BEGIN record. 3439 */ 3440 if (drc->drc_next_rrd != NULL) 3441 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3442 3443 /* 3444 * The objset will be invalidated by dmu_recv_end() when we do 3445 * dsl_dataset_clone_swap_sync_impl(). 3446 */ 3447 drc->drc_os = NULL; 3448 3449 kmem_free(rwa, sizeof (*rwa)); 3450 nvlist_free(drc->drc_begin_nvl); 3451 3452 if (err != 0) { 3453 /* 3454 * Clean up references. If receive is not resumable, 3455 * destroy what we created, so we don't leave it in 3456 * the inconsistent state. 3457 */ 3458 dmu_recv_cleanup_ds(drc); 3459 nvlist_free(drc->drc_keynvl); 3460 } 3461 3462 objlist_destroy(drc->drc_ignore_objlist); 3463 drc->drc_ignore_objlist = NULL; 3464 *voffp = drc->drc_voff; 3465 return (err); 3466 } 3467 3468 static int 3469 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3470 { 3471 dmu_recv_cookie_t *drc = arg; 3472 dsl_pool_t *dp = dmu_tx_pool(tx); 3473 int error; 3474 3475 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3476 3477 if (drc->drc_heal) { 3478 error = 0; 3479 } else if (!drc->drc_newfs) { 3480 dsl_dataset_t *origin_head; 3481 3482 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3483 if (error != 0) 3484 return (error); 3485 if (drc->drc_force) { 3486 /* 3487 * We will destroy any snapshots in tofs (i.e. before 3488 * origin_head) that are after the origin (which is 3489 * the snap before drc_ds, because drc_ds can not 3490 * have any snaps of its own). 3491 */ 3492 uint64_t obj; 3493 3494 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3495 while (obj != 3496 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3497 dsl_dataset_t *snap; 3498 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3499 &snap); 3500 if (error != 0) 3501 break; 3502 if (snap->ds_dir != origin_head->ds_dir) 3503 error = SET_ERROR(EINVAL); 3504 if (error == 0) { 3505 error = dsl_destroy_snapshot_check_impl( 3506 snap, B_FALSE); 3507 } 3508 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3509 dsl_dataset_rele(snap, FTAG); 3510 if (error != 0) 3511 break; 3512 } 3513 if (error != 0) { 3514 dsl_dataset_rele(origin_head, FTAG); 3515 return (error); 3516 } 3517 } 3518 if (drc->drc_keynvl != NULL) { 3519 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3520 drc->drc_keynvl, tx); 3521 if (error != 0) { 3522 dsl_dataset_rele(origin_head, FTAG); 3523 return (error); 3524 } 3525 } 3526 3527 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3528 origin_head, drc->drc_force, drc->drc_owner, tx); 3529 if (error != 0) { 3530 dsl_dataset_rele(origin_head, FTAG); 3531 return (error); 3532 } 3533 error = dsl_dataset_snapshot_check_impl(origin_head, 3534 drc->drc_tosnap, tx, B_TRUE, 1, 3535 drc->drc_cred, drc->drc_proc); 3536 dsl_dataset_rele(origin_head, FTAG); 3537 if (error != 0) 3538 return (error); 3539 3540 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3541 } else { 3542 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3543 drc->drc_tosnap, tx, B_TRUE, 1, 3544 drc->drc_cred, drc->drc_proc); 3545 } 3546 return (error); 3547 } 3548 3549 static void 3550 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3551 { 3552 dmu_recv_cookie_t *drc = arg; 3553 dsl_pool_t *dp = dmu_tx_pool(tx); 3554 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3555 uint64_t newsnapobj = 0; 3556 3557 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3558 tx, "snap=%s", drc->drc_tosnap); 3559 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3560 3561 if (drc->drc_heal) { 3562 if (drc->drc_keynvl != NULL) { 3563 nvlist_free(drc->drc_keynvl); 3564 drc->drc_keynvl = NULL; 3565 } 3566 } else if (!drc->drc_newfs) { 3567 dsl_dataset_t *origin_head; 3568 3569 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3570 &origin_head)); 3571 3572 if (drc->drc_force) { 3573 /* 3574 * Destroy any snapshots of drc_tofs (origin_head) 3575 * after the origin (the snap before drc_ds). 3576 */ 3577 uint64_t obj; 3578 3579 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3580 while (obj != 3581 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3582 dsl_dataset_t *snap; 3583 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3584 &snap)); 3585 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3586 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3587 dsl_destroy_snapshot_sync_impl(snap, 3588 B_FALSE, tx); 3589 dsl_dataset_rele(snap, FTAG); 3590 } 3591 } 3592 if (drc->drc_keynvl != NULL) { 3593 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3594 drc->drc_keynvl, tx); 3595 nvlist_free(drc->drc_keynvl); 3596 drc->drc_keynvl = NULL; 3597 } 3598 3599 VERIFY3P(drc->drc_ds->ds_prev, ==, 3600 origin_head->ds_prev); 3601 3602 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3603 origin_head, tx); 3604 /* 3605 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3606 * so drc_os is no longer valid. 3607 */ 3608 drc->drc_os = NULL; 3609 3610 dsl_dataset_snapshot_sync_impl(origin_head, 3611 drc->drc_tosnap, tx); 3612 3613 /* set snapshot's creation time and guid */ 3614 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3615 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3616 drc->drc_drrb->drr_creation_time; 3617 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3618 drc->drc_drrb->drr_toguid; 3619 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3620 ~DS_FLAG_INCONSISTENT; 3621 3622 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3623 dsl_dataset_phys(origin_head)->ds_flags &= 3624 ~DS_FLAG_INCONSISTENT; 3625 3626 newsnapobj = 3627 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3628 3629 dsl_dataset_rele(origin_head, FTAG); 3630 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3631 3632 if (drc->drc_owner != NULL) 3633 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3634 } else { 3635 dsl_dataset_t *ds = drc->drc_ds; 3636 3637 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3638 3639 /* set snapshot's creation time and guid */ 3640 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3641 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3642 drc->drc_drrb->drr_creation_time; 3643 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3644 drc->drc_drrb->drr_toguid; 3645 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3646 ~DS_FLAG_INCONSISTENT; 3647 3648 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3649 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3650 if (dsl_dataset_has_resume_receive_state(ds)) { 3651 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3652 DS_FIELD_RESUME_FROMGUID, tx); 3653 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3654 DS_FIELD_RESUME_OBJECT, tx); 3655 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3656 DS_FIELD_RESUME_OFFSET, tx); 3657 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3658 DS_FIELD_RESUME_BYTES, tx); 3659 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3660 DS_FIELD_RESUME_TOGUID, tx); 3661 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3662 DS_FIELD_RESUME_TONAME, tx); 3663 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3664 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3665 } 3666 newsnapobj = 3667 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3668 } 3669 3670 /* 3671 * If this is a raw receive, the crypt_keydata nvlist will include 3672 * a to_ivset_guid for us to set on the new snapshot. This value 3673 * will override the value generated by the snapshot code. However, 3674 * this value may not be present, because older implementations of 3675 * the raw send code did not include this value, and we are still 3676 * allowed to receive them if the zfs_disable_ivset_guid_check 3677 * tunable is set, in which case we will leave the newly-generated 3678 * value. 3679 */ 3680 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) { 3681 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3682 DMU_OT_DSL_DATASET, tx); 3683 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3684 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3685 &drc->drc_ivset_guid, tx)); 3686 } 3687 3688 /* 3689 * Release the hold from dmu_recv_begin. This must be done before 3690 * we return to open context, so that when we free the dataset's dnode 3691 * we can evict its bonus buffer. Since the dataset may be destroyed 3692 * at this point (and therefore won't have a valid pointer to the spa) 3693 * we release the key mapping manually here while we do have a valid 3694 * pointer, if it exists. 3695 */ 3696 if (!drc->drc_raw && encrypted) { 3697 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3698 drc->drc_ds->ds_object, drc->drc_ds); 3699 } 3700 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3701 drc->drc_ds = NULL; 3702 } 3703 3704 static int dmu_recv_end_modified_blocks = 3; 3705 3706 static int 3707 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3708 { 3709 #ifdef _KERNEL 3710 /* 3711 * We will be destroying the ds; make sure its origin is unmounted if 3712 * necessary. 3713 */ 3714 char name[ZFS_MAX_DATASET_NAME_LEN]; 3715 dsl_dataset_name(drc->drc_ds, name); 3716 zfs_destroy_unmount_origin(name); 3717 #endif 3718 3719 return (dsl_sync_task(drc->drc_tofs, 3720 dmu_recv_end_check, dmu_recv_end_sync, drc, 3721 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3722 } 3723 3724 static int 3725 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3726 { 3727 return (dsl_sync_task(drc->drc_tofs, 3728 dmu_recv_end_check, dmu_recv_end_sync, drc, 3729 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3730 } 3731 3732 int 3733 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3734 { 3735 int error; 3736 3737 drc->drc_owner = owner; 3738 3739 if (drc->drc_newfs) 3740 error = dmu_recv_new_end(drc); 3741 else 3742 error = dmu_recv_existing_end(drc); 3743 3744 if (error != 0) { 3745 dmu_recv_cleanup_ds(drc); 3746 nvlist_free(drc->drc_keynvl); 3747 } else if (!drc->drc_heal) { 3748 if (drc->drc_newfs) { 3749 zvol_create_minor(drc->drc_tofs); 3750 } 3751 char *snapname = kmem_asprintf("%s@%s", 3752 drc->drc_tofs, drc->drc_tosnap); 3753 zvol_create_minor(snapname); 3754 kmem_strfree(snapname); 3755 } 3756 return (error); 3757 } 3758 3759 /* 3760 * Return TRUE if this objset is currently being received into. 3761 */ 3762 boolean_t 3763 dmu_objset_is_receiving(objset_t *os) 3764 { 3765 return (os->os_dsl_dataset != NULL && 3766 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3767 } 3768 3769 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW, 3770 "Maximum receive queue length"); 3771 3772 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW, 3773 "Receive queue fill fraction"); 3774 3775 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW, 3776 "Maximum amount of writes to batch into one transaction"); 3777 3778 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW, 3779 "Ignore errors during corrective receive"); 3780 /* END CSTYLED */ 3781