xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  */
31 
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zvol.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zfs_znode.h>
52 #include <zfs_fletcher.h>
53 #include <sys/avl.h>
54 #include <sys/ddt.h>
55 #include <sys/zfs_onexit.h>
56 #include <sys/dsl_destroy.h>
57 #include <sys/blkptr.h>
58 #include <sys/dsl_bookmark.h>
59 #include <sys/zfeature.h>
60 #include <sys/bqueue.h>
61 #include <sys/objlist.h>
62 #ifdef _KERNEL
63 #include <sys/zfs_vfsops.h>
64 #endif
65 #include <sys/zfs_file.h>
66 
67 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
68 static int zfs_recv_queue_ff = 20;
69 static int zfs_recv_write_batch_size = 1024 * 1024;
70 
71 static void *const dmu_recv_tag = "dmu_recv_tag";
72 const char *const recv_clone_name = "%recv";
73 
74 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
75     void *buf);
76 
77 struct receive_record_arg {
78 	dmu_replay_record_t header;
79 	void *payload; /* Pointer to a buffer containing the payload */
80 	/*
81 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
82 	 * payload.
83 	 */
84 	abd_t *abd;
85 	int payload_size;
86 	uint64_t bytes_read; /* bytes read from stream when record created */
87 	boolean_t eos_marker; /* Marks the end of the stream */
88 	bqueue_node_t node;
89 };
90 
91 struct receive_writer_arg {
92 	objset_t *os;
93 	boolean_t byteswap;
94 	bqueue_t q;
95 
96 	/*
97 	 * These three members are used to signal to the main thread when
98 	 * we're done.
99 	 */
100 	kmutex_t mutex;
101 	kcondvar_t cv;
102 	boolean_t done;
103 
104 	int err;
105 	boolean_t resumable;
106 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
107 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
108 	boolean_t full;  /* this is a full send stream */
109 	uint64_t last_object;
110 	uint64_t last_offset;
111 	uint64_t max_object; /* highest object ID referenced in stream */
112 	uint64_t bytes_read; /* bytes read when current record created */
113 
114 	list_t write_batch;
115 
116 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
117 	boolean_t or_crypt_params_present;
118 	uint64_t or_firstobj;
119 	uint64_t or_numslots;
120 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
121 	uint8_t or_iv[ZIO_DATA_IV_LEN];
122 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
123 	boolean_t or_byteorder;
124 };
125 
126 typedef struct dmu_recv_begin_arg {
127 	const char *drba_origin;
128 	dmu_recv_cookie_t *drba_cookie;
129 	cred_t *drba_cred;
130 	proc_t *drba_proc;
131 	dsl_crypto_params_t *drba_dcp;
132 } dmu_recv_begin_arg_t;
133 
134 static void
135 byteswap_record(dmu_replay_record_t *drr)
136 {
137 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
138 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
139 	drr->drr_type = BSWAP_32(drr->drr_type);
140 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
141 
142 	switch (drr->drr_type) {
143 	case DRR_BEGIN:
144 		DO64(drr_begin.drr_magic);
145 		DO64(drr_begin.drr_versioninfo);
146 		DO64(drr_begin.drr_creation_time);
147 		DO32(drr_begin.drr_type);
148 		DO32(drr_begin.drr_flags);
149 		DO64(drr_begin.drr_toguid);
150 		DO64(drr_begin.drr_fromguid);
151 		break;
152 	case DRR_OBJECT:
153 		DO64(drr_object.drr_object);
154 		DO32(drr_object.drr_type);
155 		DO32(drr_object.drr_bonustype);
156 		DO32(drr_object.drr_blksz);
157 		DO32(drr_object.drr_bonuslen);
158 		DO32(drr_object.drr_raw_bonuslen);
159 		DO64(drr_object.drr_toguid);
160 		DO64(drr_object.drr_maxblkid);
161 		break;
162 	case DRR_FREEOBJECTS:
163 		DO64(drr_freeobjects.drr_firstobj);
164 		DO64(drr_freeobjects.drr_numobjs);
165 		DO64(drr_freeobjects.drr_toguid);
166 		break;
167 	case DRR_WRITE:
168 		DO64(drr_write.drr_object);
169 		DO32(drr_write.drr_type);
170 		DO64(drr_write.drr_offset);
171 		DO64(drr_write.drr_logical_size);
172 		DO64(drr_write.drr_toguid);
173 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
174 		DO64(drr_write.drr_key.ddk_prop);
175 		DO64(drr_write.drr_compressed_size);
176 		break;
177 	case DRR_WRITE_EMBEDDED:
178 		DO64(drr_write_embedded.drr_object);
179 		DO64(drr_write_embedded.drr_offset);
180 		DO64(drr_write_embedded.drr_length);
181 		DO64(drr_write_embedded.drr_toguid);
182 		DO32(drr_write_embedded.drr_lsize);
183 		DO32(drr_write_embedded.drr_psize);
184 		break;
185 	case DRR_FREE:
186 		DO64(drr_free.drr_object);
187 		DO64(drr_free.drr_offset);
188 		DO64(drr_free.drr_length);
189 		DO64(drr_free.drr_toguid);
190 		break;
191 	case DRR_SPILL:
192 		DO64(drr_spill.drr_object);
193 		DO64(drr_spill.drr_length);
194 		DO64(drr_spill.drr_toguid);
195 		DO64(drr_spill.drr_compressed_size);
196 		DO32(drr_spill.drr_type);
197 		break;
198 	case DRR_OBJECT_RANGE:
199 		DO64(drr_object_range.drr_firstobj);
200 		DO64(drr_object_range.drr_numslots);
201 		DO64(drr_object_range.drr_toguid);
202 		break;
203 	case DRR_REDACT:
204 		DO64(drr_redact.drr_object);
205 		DO64(drr_redact.drr_offset);
206 		DO64(drr_redact.drr_length);
207 		DO64(drr_redact.drr_toguid);
208 		break;
209 	case DRR_END:
210 		DO64(drr_end.drr_toguid);
211 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
212 		break;
213 	default:
214 		break;
215 	}
216 
217 	if (drr->drr_type != DRR_BEGIN) {
218 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
219 	}
220 
221 #undef DO64
222 #undef DO32
223 }
224 
225 static boolean_t
226 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
227 {
228 	for (int i = 0; i < num_snaps; i++) {
229 		if (snaps[i] == guid)
230 			return (B_TRUE);
231 	}
232 	return (B_FALSE);
233 }
234 
235 /*
236  * Check that the new stream we're trying to receive is redacted with respect to
237  * a subset of the snapshots that the origin was redacted with respect to.  For
238  * the reasons behind this, see the man page on redacted zfs sends and receives.
239  */
240 static boolean_t
241 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
242     uint64_t *redact_snaps, uint64_t num_redact_snaps)
243 {
244 	/*
245 	 * Short circuit the comparison; if we are redacted with respect to
246 	 * more snapshots than the origin, we can't be redacted with respect
247 	 * to a subset.
248 	 */
249 	if (num_redact_snaps > origin_num_snaps) {
250 		return (B_FALSE);
251 	}
252 
253 	for (int i = 0; i < num_redact_snaps; i++) {
254 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
255 		    redact_snaps[i])) {
256 			return (B_FALSE);
257 		}
258 	}
259 	return (B_TRUE);
260 }
261 
262 static boolean_t
263 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
264 {
265 	uint64_t *origin_snaps;
266 	uint64_t origin_num_snaps;
267 	dmu_recv_cookie_t *drc = drba->drba_cookie;
268 	struct drr_begin *drrb = drc->drc_drrb;
269 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
270 	int err = 0;
271 	boolean_t ret = B_TRUE;
272 	uint64_t *redact_snaps;
273 	uint_t numredactsnaps;
274 
275 	/*
276 	 * If this is a full send stream, we're safe no matter what.
277 	 */
278 	if (drrb->drr_fromguid == 0)
279 		return (ret);
280 
281 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
282 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
283 
284 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
285 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
286 	    0) {
287 		/*
288 		 * If the send stream was sent from the redaction bookmark or
289 		 * the redacted version of the dataset, then we're safe.  Verify
290 		 * that this is from the a compatible redaction bookmark or
291 		 * redacted dataset.
292 		 */
293 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
294 		    redact_snaps, numredactsnaps)) {
295 			err = EINVAL;
296 		}
297 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
298 		/*
299 		 * If the stream is redacted, it must be redacted with respect
300 		 * to a subset of what the origin is redacted with respect to.
301 		 * See case number 2 in the zfs man page section on redacted zfs
302 		 * send.
303 		 */
304 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
305 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
306 
307 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
308 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
309 			err = EINVAL;
310 		}
311 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
312 	    drrb->drr_toguid)) {
313 		/*
314 		 * If the stream isn't redacted but the origin is, this must be
315 		 * one of the snapshots the origin is redacted with respect to.
316 		 * See case number 1 in the zfs man page section on redacted zfs
317 		 * send.
318 		 */
319 		err = EINVAL;
320 	}
321 
322 	if (err != 0)
323 		ret = B_FALSE;
324 	return (ret);
325 }
326 
327 /*
328  * If we previously received a stream with --large-block, we don't support
329  * receiving an incremental on top of it without --large-block.  This avoids
330  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
331  * records.
332  */
333 static int
334 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
335 {
336 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
337 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
338 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
339 	return (0);
340 }
341 
342 static int
343 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
344     uint64_t fromguid, uint64_t featureflags)
345 {
346 	uint64_t val;
347 	uint64_t children;
348 	int error;
349 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
350 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
351 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
352 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
353 
354 	/* Temporary clone name must not exist. */
355 	error = zap_lookup(dp->dp_meta_objset,
356 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
357 	    8, 1, &val);
358 	if (error != ENOENT)
359 		return (error == 0 ? SET_ERROR(EBUSY) : error);
360 
361 	/* Resume state must not be set. */
362 	if (dsl_dataset_has_resume_receive_state(ds))
363 		return (SET_ERROR(EBUSY));
364 
365 	/* New snapshot name must not exist. */
366 	error = zap_lookup(dp->dp_meta_objset,
367 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
368 	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
369 	if (error != ENOENT)
370 		return (error == 0 ? SET_ERROR(EEXIST) : error);
371 
372 	/* Must not have children if receiving a ZVOL. */
373 	error = zap_count(dp->dp_meta_objset,
374 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
375 	if (error != 0)
376 		return (error);
377 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
378 	    children > 0)
379 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
380 
381 	/*
382 	 * Check snapshot limit before receiving. We'll recheck again at the
383 	 * end, but might as well abort before receiving if we're already over
384 	 * the limit.
385 	 *
386 	 * Note that we do not check the file system limit with
387 	 * dsl_dir_fscount_check because the temporary %clones don't count
388 	 * against that limit.
389 	 */
390 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
391 	    NULL, drba->drba_cred, drba->drba_proc);
392 	if (error != 0)
393 		return (error);
394 
395 	if (fromguid != 0) {
396 		dsl_dataset_t *snap;
397 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
398 
399 		/* Can't perform a raw receive on top of a non-raw receive */
400 		if (!encrypted && raw)
401 			return (SET_ERROR(EINVAL));
402 
403 		/* Encryption is incompatible with embedded data */
404 		if (encrypted && embed)
405 			return (SET_ERROR(EINVAL));
406 
407 		/* Find snapshot in this dir that matches fromguid. */
408 		while (obj != 0) {
409 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
410 			    &snap);
411 			if (error != 0)
412 				return (SET_ERROR(ENODEV));
413 			if (snap->ds_dir != ds->ds_dir) {
414 				dsl_dataset_rele(snap, FTAG);
415 				return (SET_ERROR(ENODEV));
416 			}
417 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
418 				break;
419 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
420 			dsl_dataset_rele(snap, FTAG);
421 		}
422 		if (obj == 0)
423 			return (SET_ERROR(ENODEV));
424 
425 		if (drba->drba_cookie->drc_force) {
426 			drba->drba_cookie->drc_fromsnapobj = obj;
427 		} else {
428 			/*
429 			 * If we are not forcing, there must be no
430 			 * changes since fromsnap. Raw sends have an
431 			 * additional constraint that requires that
432 			 * no "noop" snapshots exist between fromsnap
433 			 * and tosnap for the IVset checking code to
434 			 * work properly.
435 			 */
436 			if (dsl_dataset_modified_since_snap(ds, snap) ||
437 			    (raw &&
438 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
439 			    snap->ds_object)) {
440 				dsl_dataset_rele(snap, FTAG);
441 				return (SET_ERROR(ETXTBSY));
442 			}
443 			drba->drba_cookie->drc_fromsnapobj =
444 			    ds->ds_prev->ds_object;
445 		}
446 
447 		if (dsl_dataset_feature_is_active(snap,
448 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
449 		    snap)) {
450 			dsl_dataset_rele(snap, FTAG);
451 			return (SET_ERROR(EINVAL));
452 		}
453 
454 		error = recv_check_large_blocks(snap, featureflags);
455 		if (error != 0) {
456 			dsl_dataset_rele(snap, FTAG);
457 			return (error);
458 		}
459 
460 		dsl_dataset_rele(snap, FTAG);
461 	} else {
462 		/* if full, then must be forced */
463 		if (!drba->drba_cookie->drc_force)
464 			return (SET_ERROR(EEXIST));
465 
466 		/*
467 		 * We don't support using zfs recv -F to blow away
468 		 * encrypted filesystems. This would require the
469 		 * dsl dir to point to the old encryption key and
470 		 * the new one at the same time during the receive.
471 		 */
472 		if ((!encrypted && raw) || encrypted)
473 			return (SET_ERROR(EINVAL));
474 
475 		/*
476 		 * Perform the same encryption checks we would if
477 		 * we were creating a new dataset from scratch.
478 		 */
479 		if (!raw) {
480 			boolean_t will_encrypt;
481 
482 			error = dmu_objset_create_crypt_check(
483 			    ds->ds_dir->dd_parent, drba->drba_dcp,
484 			    &will_encrypt);
485 			if (error != 0)
486 				return (error);
487 
488 			if (will_encrypt && embed)
489 				return (SET_ERROR(EINVAL));
490 		}
491 	}
492 
493 	return (0);
494 }
495 
496 /*
497  * Check that any feature flags used in the data stream we're receiving are
498  * supported by the pool we are receiving into.
499  *
500  * Note that some of the features we explicitly check here have additional
501  * (implicit) features they depend on, but those dependencies are enforced
502  * through the zfeature_register() calls declaring the features that we
503  * explicitly check.
504  */
505 static int
506 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
507 {
508 	/*
509 	 * Check if there are any unsupported feature flags.
510 	 */
511 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
512 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
513 	}
514 
515 	/* Verify pool version supports SA if SA_SPILL feature set */
516 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
517 	    spa_version(spa) < SPA_VERSION_SA)
518 		return (SET_ERROR(ENOTSUP));
519 
520 	/*
521 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
522 	 * and large_dnodes in the stream can only be used if those pool
523 	 * features are enabled because we don't attempt to decompress /
524 	 * un-embed / un-mooch / split up the blocks / dnodes during the
525 	 * receive process.
526 	 */
527 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
528 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
529 		return (SET_ERROR(ENOTSUP));
530 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
531 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
532 		return (SET_ERROR(ENOTSUP));
533 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
534 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
535 		return (SET_ERROR(ENOTSUP));
536 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
537 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
538 		return (SET_ERROR(ENOTSUP));
539 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
540 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
541 		return (SET_ERROR(ENOTSUP));
542 
543 	/*
544 	 * Receiving redacted streams requires that redacted datasets are
545 	 * enabled.
546 	 */
547 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
548 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
549 		return (SET_ERROR(ENOTSUP));
550 
551 	return (0);
552 }
553 
554 static int
555 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
556 {
557 	dmu_recv_begin_arg_t *drba = arg;
558 	dsl_pool_t *dp = dmu_tx_pool(tx);
559 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
560 	uint64_t fromguid = drrb->drr_fromguid;
561 	int flags = drrb->drr_flags;
562 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
563 	int error;
564 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
565 	dsl_dataset_t *ds;
566 	const char *tofs = drba->drba_cookie->drc_tofs;
567 
568 	/* already checked */
569 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
570 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
571 
572 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
573 	    DMU_COMPOUNDSTREAM ||
574 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
575 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
576 		return (SET_ERROR(EINVAL));
577 
578 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
579 	if (error != 0)
580 		return (error);
581 
582 	/* Resumable receives require extensible datasets */
583 	if (drba->drba_cookie->drc_resumable &&
584 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
585 		return (SET_ERROR(ENOTSUP));
586 
587 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
588 		/* raw receives require the encryption feature */
589 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
590 			return (SET_ERROR(ENOTSUP));
591 
592 		/* embedded data is incompatible with encryption and raw recv */
593 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
594 			return (SET_ERROR(EINVAL));
595 
596 		/* raw receives require spill block allocation flag */
597 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
598 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
599 	} else {
600 		dsflags |= DS_HOLD_FLAG_DECRYPT;
601 	}
602 
603 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
604 	if (error == 0) {
605 		/* target fs already exists; recv into temp clone */
606 
607 		/* Can't recv a clone into an existing fs */
608 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
609 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
610 			return (SET_ERROR(EINVAL));
611 		}
612 
613 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
614 		    featureflags);
615 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
616 	} else if (error == ENOENT) {
617 		/* target fs does not exist; must be a full backup or clone */
618 		char buf[ZFS_MAX_DATASET_NAME_LEN];
619 		objset_t *os;
620 
621 		/*
622 		 * If it's a non-clone incremental, we are missing the
623 		 * target fs, so fail the recv.
624 		 */
625 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
626 		    drba->drba_origin))
627 			return (SET_ERROR(ENOENT));
628 
629 		/*
630 		 * If we're receiving a full send as a clone, and it doesn't
631 		 * contain all the necessary free records and freeobject
632 		 * records, reject it.
633 		 */
634 		if (fromguid == 0 && drba->drba_origin != NULL &&
635 		    !(flags & DRR_FLAG_FREERECORDS))
636 			return (SET_ERROR(EINVAL));
637 
638 		/* Open the parent of tofs */
639 		ASSERT3U(strlen(tofs), <, sizeof (buf));
640 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
641 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
642 		if (error != 0)
643 			return (error);
644 
645 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
646 		    drba->drba_origin == NULL) {
647 			boolean_t will_encrypt;
648 
649 			/*
650 			 * Check that we aren't breaking any encryption rules
651 			 * and that we have all the parameters we need to
652 			 * create an encrypted dataset if necessary. If we are
653 			 * making an encrypted dataset the stream can't have
654 			 * embedded data.
655 			 */
656 			error = dmu_objset_create_crypt_check(ds->ds_dir,
657 			    drba->drba_dcp, &will_encrypt);
658 			if (error != 0) {
659 				dsl_dataset_rele(ds, FTAG);
660 				return (error);
661 			}
662 
663 			if (will_encrypt &&
664 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
665 				dsl_dataset_rele(ds, FTAG);
666 				return (SET_ERROR(EINVAL));
667 			}
668 		}
669 
670 		/*
671 		 * Check filesystem and snapshot limits before receiving. We'll
672 		 * recheck snapshot limits again at the end (we create the
673 		 * filesystems and increment those counts during begin_sync).
674 		 */
675 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
676 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
677 		    drba->drba_cred, drba->drba_proc);
678 		if (error != 0) {
679 			dsl_dataset_rele(ds, FTAG);
680 			return (error);
681 		}
682 
683 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
684 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
685 		    drba->drba_cred, drba->drba_proc);
686 		if (error != 0) {
687 			dsl_dataset_rele(ds, FTAG);
688 			return (error);
689 		}
690 
691 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
692 		error = dmu_objset_from_ds(ds, &os);
693 		if (error != 0) {
694 			dsl_dataset_rele(ds, FTAG);
695 			return (error);
696 		}
697 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
698 			dsl_dataset_rele(ds, FTAG);
699 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
700 		}
701 
702 		if (drba->drba_origin != NULL) {
703 			dsl_dataset_t *origin;
704 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
705 			    dsflags, FTAG, &origin);
706 			if (error != 0) {
707 				dsl_dataset_rele(ds, FTAG);
708 				return (error);
709 			}
710 			if (!origin->ds_is_snapshot) {
711 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
712 				dsl_dataset_rele(ds, FTAG);
713 				return (SET_ERROR(EINVAL));
714 			}
715 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
716 			    fromguid != 0) {
717 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
718 				dsl_dataset_rele(ds, FTAG);
719 				return (SET_ERROR(ENODEV));
720 			}
721 
722 			if (origin->ds_dir->dd_crypto_obj != 0 &&
723 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
724 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
725 				dsl_dataset_rele(ds, FTAG);
726 				return (SET_ERROR(EINVAL));
727 			}
728 
729 			/*
730 			 * If the origin is redacted we need to verify that this
731 			 * send stream can safely be received on top of the
732 			 * origin.
733 			 */
734 			if (dsl_dataset_feature_is_active(origin,
735 			    SPA_FEATURE_REDACTED_DATASETS)) {
736 				if (!redact_check(drba, origin)) {
737 					dsl_dataset_rele_flags(origin, dsflags,
738 					    FTAG);
739 					dsl_dataset_rele_flags(ds, dsflags,
740 					    FTAG);
741 					return (SET_ERROR(EINVAL));
742 				}
743 			}
744 
745 			error = recv_check_large_blocks(ds, featureflags);
746 			if (error != 0) {
747 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
748 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
749 				return (error);
750 			}
751 
752 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
753 		}
754 
755 		dsl_dataset_rele(ds, FTAG);
756 		error = 0;
757 	}
758 	return (error);
759 }
760 
761 static void
762 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
763 {
764 	dmu_recv_begin_arg_t *drba = arg;
765 	dsl_pool_t *dp = dmu_tx_pool(tx);
766 	objset_t *mos = dp->dp_meta_objset;
767 	dmu_recv_cookie_t *drc = drba->drba_cookie;
768 	struct drr_begin *drrb = drc->drc_drrb;
769 	const char *tofs = drc->drc_tofs;
770 	uint64_t featureflags = drc->drc_featureflags;
771 	dsl_dataset_t *ds, *newds;
772 	objset_t *os;
773 	uint64_t dsobj;
774 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
775 	int error;
776 	uint64_t crflags = 0;
777 	dsl_crypto_params_t dummy_dcp = { 0 };
778 	dsl_crypto_params_t *dcp = drba->drba_dcp;
779 
780 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
781 		crflags |= DS_FLAG_CI_DATASET;
782 
783 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
784 		dsflags |= DS_HOLD_FLAG_DECRYPT;
785 
786 	/*
787 	 * Raw, non-incremental recvs always use a dummy dcp with
788 	 * the raw cmd set. Raw incremental recvs do not use a dcp
789 	 * since the encryption parameters are already set in stone.
790 	 */
791 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
792 	    drba->drba_origin == NULL) {
793 		ASSERT3P(dcp, ==, NULL);
794 		dcp = &dummy_dcp;
795 
796 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
797 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
798 	}
799 
800 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
801 	if (error == 0) {
802 		/* create temporary clone */
803 		dsl_dataset_t *snap = NULL;
804 
805 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
806 			VERIFY0(dsl_dataset_hold_obj(dp,
807 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
808 			ASSERT3P(dcp, ==, NULL);
809 		}
810 		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
811 		    snap, crflags, drba->drba_cred, dcp, tx);
812 		if (drba->drba_cookie->drc_fromsnapobj != 0)
813 			dsl_dataset_rele(snap, FTAG);
814 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
815 	} else {
816 		dsl_dir_t *dd;
817 		const char *tail;
818 		dsl_dataset_t *origin = NULL;
819 
820 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
821 
822 		if (drba->drba_origin != NULL) {
823 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
824 			    FTAG, &origin));
825 			ASSERT3P(dcp, ==, NULL);
826 		}
827 
828 		/* Create new dataset. */
829 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
830 		    origin, crflags, drba->drba_cred, dcp, tx);
831 		if (origin != NULL)
832 			dsl_dataset_rele(origin, FTAG);
833 		dsl_dir_rele(dd, FTAG);
834 		drc->drc_newfs = B_TRUE;
835 	}
836 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
837 	    &newds));
838 	if (dsl_dataset_feature_is_active(newds,
839 	    SPA_FEATURE_REDACTED_DATASETS)) {
840 		/*
841 		 * If the origin dataset is redacted, the child will be redacted
842 		 * when we create it.  We clear the new dataset's
843 		 * redaction info; if it should be redacted, we'll fill
844 		 * in its information later.
845 		 */
846 		dsl_dataset_deactivate_feature(newds,
847 		    SPA_FEATURE_REDACTED_DATASETS, tx);
848 	}
849 	VERIFY0(dmu_objset_from_ds(newds, &os));
850 
851 	if (drc->drc_resumable) {
852 		dsl_dataset_zapify(newds, tx);
853 		if (drrb->drr_fromguid != 0) {
854 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
855 			    8, 1, &drrb->drr_fromguid, tx));
856 		}
857 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
858 		    8, 1, &drrb->drr_toguid, tx));
859 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
860 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
861 		uint64_t one = 1;
862 		uint64_t zero = 0;
863 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
864 		    8, 1, &one, tx));
865 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
866 		    8, 1, &zero, tx));
867 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
868 		    8, 1, &zero, tx));
869 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
870 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
871 			    8, 1, &one, tx));
872 		}
873 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
874 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
875 			    8, 1, &one, tx));
876 		}
877 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
878 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
879 			    8, 1, &one, tx));
880 		}
881 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
882 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
883 			    8, 1, &one, tx));
884 		}
885 
886 		uint64_t *redact_snaps;
887 		uint_t numredactsnaps;
888 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
889 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
890 		    &numredactsnaps) == 0) {
891 			VERIFY0(zap_add(mos, dsobj,
892 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
893 			    sizeof (*redact_snaps), numredactsnaps,
894 			    redact_snaps, tx));
895 		}
896 	}
897 
898 	/*
899 	 * Usually the os->os_encrypted value is tied to the presence of a
900 	 * DSL Crypto Key object in the dd. However, that will not be received
901 	 * until dmu_recv_stream(), so we set the value manually for now.
902 	 */
903 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
904 		os->os_encrypted = B_TRUE;
905 		drba->drba_cookie->drc_raw = B_TRUE;
906 	}
907 
908 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
909 		uint64_t *redact_snaps;
910 		uint_t numredactsnaps;
911 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
912 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
913 		dsl_dataset_activate_redaction(newds, redact_snaps,
914 		    numredactsnaps, tx);
915 	}
916 
917 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
918 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
919 
920 	/*
921 	 * If we actually created a non-clone, we need to create the objset
922 	 * in our new dataset. If this is a raw send we postpone this until
923 	 * dmu_recv_stream() so that we can allocate the metadnode with the
924 	 * properties from the DRR_BEGIN payload.
925 	 */
926 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
927 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
928 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
929 		(void) dmu_objset_create_impl(dp->dp_spa,
930 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
931 	}
932 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
933 
934 	drba->drba_cookie->drc_ds = newds;
935 	drba->drba_cookie->drc_os = os;
936 
937 	spa_history_log_internal_ds(newds, "receive", tx, " ");
938 }
939 
940 static int
941 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
942 {
943 	dmu_recv_begin_arg_t *drba = arg;
944 	dmu_recv_cookie_t *drc = drba->drba_cookie;
945 	dsl_pool_t *dp = dmu_tx_pool(tx);
946 	struct drr_begin *drrb = drc->drc_drrb;
947 	int error;
948 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
949 	dsl_dataset_t *ds;
950 	const char *tofs = drc->drc_tofs;
951 
952 	/* already checked */
953 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
954 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
955 
956 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
957 	    DMU_COMPOUNDSTREAM ||
958 	    drrb->drr_type >= DMU_OST_NUMTYPES)
959 		return (SET_ERROR(EINVAL));
960 
961 	/*
962 	 * This is mostly a sanity check since we should have already done these
963 	 * checks during a previous attempt to receive the data.
964 	 */
965 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
966 	    dp->dp_spa);
967 	if (error != 0)
968 		return (error);
969 
970 	/* 6 extra bytes for /%recv */
971 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
972 
973 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
974 	    tofs, recv_clone_name);
975 
976 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
977 		/* raw receives require spill block allocation flag */
978 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
979 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
980 	} else {
981 		dsflags |= DS_HOLD_FLAG_DECRYPT;
982 	}
983 
984 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
985 		/* %recv does not exist; continue in tofs */
986 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
987 		if (error != 0)
988 			return (error);
989 	}
990 
991 	/* check that ds is marked inconsistent */
992 	if (!DS_IS_INCONSISTENT(ds)) {
993 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
994 		return (SET_ERROR(EINVAL));
995 	}
996 
997 	/* check that there is resuming data, and that the toguid matches */
998 	if (!dsl_dataset_is_zapified(ds)) {
999 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1000 		return (SET_ERROR(EINVAL));
1001 	}
1002 	uint64_t val;
1003 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1004 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1005 	if (error != 0 || drrb->drr_toguid != val) {
1006 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1007 		return (SET_ERROR(EINVAL));
1008 	}
1009 
1010 	/*
1011 	 * Check if the receive is still running.  If so, it will be owned.
1012 	 * Note that nothing else can own the dataset (e.g. after the receive
1013 	 * fails) because it will be marked inconsistent.
1014 	 */
1015 	if (dsl_dataset_has_owner(ds)) {
1016 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1017 		return (SET_ERROR(EBUSY));
1018 	}
1019 
1020 	/* There should not be any snapshots of this fs yet. */
1021 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1022 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1023 		return (SET_ERROR(EINVAL));
1024 	}
1025 
1026 	/*
1027 	 * Note: resume point will be checked when we process the first WRITE
1028 	 * record.
1029 	 */
1030 
1031 	/* check that the origin matches */
1032 	val = 0;
1033 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1034 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1035 	if (drrb->drr_fromguid != val) {
1036 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1037 		return (SET_ERROR(EINVAL));
1038 	}
1039 
1040 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1041 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1042 
1043 	/*
1044 	 * If we're resuming, and the send is redacted, then the original send
1045 	 * must have been redacted, and must have been redacted with respect to
1046 	 * the same snapshots.
1047 	 */
1048 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1049 		uint64_t num_ds_redact_snaps;
1050 		uint64_t *ds_redact_snaps;
1051 
1052 		uint_t num_stream_redact_snaps;
1053 		uint64_t *stream_redact_snaps;
1054 
1055 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1056 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1057 		    &num_stream_redact_snaps) != 0) {
1058 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1059 			return (SET_ERROR(EINVAL));
1060 		}
1061 
1062 		if (!dsl_dataset_get_uint64_array_feature(ds,
1063 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1064 		    &ds_redact_snaps)) {
1065 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1066 			return (SET_ERROR(EINVAL));
1067 		}
1068 
1069 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1070 			if (!redact_snaps_contains(ds_redact_snaps,
1071 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1072 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073 				return (SET_ERROR(EINVAL));
1074 			}
1075 		}
1076 	}
1077 
1078 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1079 	if (error != 0) {
1080 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1081 		return (error);
1082 	}
1083 
1084 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085 	return (0);
1086 }
1087 
1088 static void
1089 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1090 {
1091 	dmu_recv_begin_arg_t *drba = arg;
1092 	dsl_pool_t *dp = dmu_tx_pool(tx);
1093 	const char *tofs = drba->drba_cookie->drc_tofs;
1094 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1095 	dsl_dataset_t *ds;
1096 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1097 	/* 6 extra bytes for /%recv */
1098 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1099 
1100 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1101 	    recv_clone_name);
1102 
1103 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1104 		drba->drba_cookie->drc_raw = B_TRUE;
1105 	} else {
1106 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1107 	}
1108 
1109 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1110 	    != 0) {
1111 		/* %recv does not exist; continue in tofs */
1112 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1113 		    &ds));
1114 		drba->drba_cookie->drc_newfs = B_TRUE;
1115 	}
1116 
1117 	ASSERT(DS_IS_INCONSISTENT(ds));
1118 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1119 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1120 	    drba->drba_cookie->drc_raw);
1121 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1122 
1123 	drba->drba_cookie->drc_ds = ds;
1124 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1125 	drba->drba_cookie->drc_should_save = B_TRUE;
1126 
1127 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1128 }
1129 
1130 /*
1131  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1132  * succeeds; otherwise we will leak the holds on the datasets.
1133  */
1134 int
1135 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1136     boolean_t force, boolean_t resumable, nvlist_t *localprops,
1137     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1138     zfs_file_t *fp, offset_t *voffp)
1139 {
1140 	dmu_recv_begin_arg_t drba = { 0 };
1141 	int err;
1142 
1143 	bzero(drc, sizeof (dmu_recv_cookie_t));
1144 	drc->drc_drr_begin = drr_begin;
1145 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1146 	drc->drc_tosnap = tosnap;
1147 	drc->drc_tofs = tofs;
1148 	drc->drc_force = force;
1149 	drc->drc_resumable = resumable;
1150 	drc->drc_cred = CRED();
1151 	drc->drc_proc = curproc;
1152 	drc->drc_clone = (origin != NULL);
1153 
1154 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1155 		drc->drc_byteswap = B_TRUE;
1156 		(void) fletcher_4_incremental_byteswap(drr_begin,
1157 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1158 		byteswap_record(drr_begin);
1159 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1160 		(void) fletcher_4_incremental_native(drr_begin,
1161 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1162 	} else {
1163 		return (SET_ERROR(EINVAL));
1164 	}
1165 
1166 	drc->drc_fp = fp;
1167 	drc->drc_voff = *voffp;
1168 	drc->drc_featureflags =
1169 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1170 
1171 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1172 	void *payload = NULL;
1173 	if (payloadlen != 0)
1174 		payload = kmem_alloc(payloadlen, KM_SLEEP);
1175 
1176 	err = receive_read_payload_and_next_header(drc, payloadlen,
1177 	    payload);
1178 	if (err != 0) {
1179 		kmem_free(payload, payloadlen);
1180 		return (err);
1181 	}
1182 	if (payloadlen != 0) {
1183 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1184 		    KM_SLEEP);
1185 		kmem_free(payload, payloadlen);
1186 		if (err != 0) {
1187 			kmem_free(drc->drc_next_rrd,
1188 			    sizeof (*drc->drc_next_rrd));
1189 			return (err);
1190 		}
1191 	}
1192 
1193 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1194 		drc->drc_spill = B_TRUE;
1195 
1196 	drba.drba_origin = origin;
1197 	drba.drba_cookie = drc;
1198 	drba.drba_cred = CRED();
1199 	drba.drba_proc = curproc;
1200 
1201 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1202 		err = dsl_sync_task(tofs,
1203 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1204 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1205 	} else {
1206 
1207 		/*
1208 		 * For non-raw, non-incremental, non-resuming receives the
1209 		 * user can specify encryption parameters on the command line
1210 		 * with "zfs recv -o". For these receives we create a dcp and
1211 		 * pass it to the sync task. Creating the dcp will implicitly
1212 		 * remove the encryption params from the localprops nvlist,
1213 		 * which avoids errors when trying to set these normally
1214 		 * read-only properties. Any other kind of receive that
1215 		 * attempts to set these properties will fail as a result.
1216 		 */
1217 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1218 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1219 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1220 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1221 			    localprops, hidden_args, &drba.drba_dcp);
1222 		}
1223 
1224 		if (err == 0) {
1225 			err = dsl_sync_task(tofs,
1226 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1227 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1228 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1229 		}
1230 	}
1231 
1232 	if (err != 0) {
1233 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1234 		nvlist_free(drc->drc_begin_nvl);
1235 	}
1236 	return (err);
1237 }
1238 
1239 static int
1240 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1241 {
1242 	int done = 0;
1243 
1244 	/*
1245 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1246 	 * comment in dump_bytes.
1247 	 */
1248 	ASSERT(len % 8 == 0 ||
1249 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1250 
1251 	while (done < len) {
1252 		ssize_t resid;
1253 		zfs_file_t *fp = drc->drc_fp;
1254 		int err = zfs_file_read(fp, (char *)buf + done,
1255 		    len - done, &resid);
1256 		if (resid == len - done) {
1257 			/*
1258 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1259 			 * that the receive was interrupted and can
1260 			 * potentially be resumed.
1261 			 */
1262 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1263 		}
1264 		drc->drc_voff += len - done - resid;
1265 		done = len - resid;
1266 		if (err != 0)
1267 			return (err);
1268 	}
1269 
1270 	drc->drc_bytes_read += len;
1271 
1272 	ASSERT3U(done, ==, len);
1273 	return (0);
1274 }
1275 
1276 static inline uint8_t
1277 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1278 {
1279 	if (bonus_type == DMU_OT_SA) {
1280 		return (1);
1281 	} else {
1282 		return (1 +
1283 		    ((DN_OLD_MAX_BONUSLEN -
1284 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1285 	}
1286 }
1287 
1288 static void
1289 save_resume_state(struct receive_writer_arg *rwa,
1290     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1291 {
1292 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1293 
1294 	if (!rwa->resumable)
1295 		return;
1296 
1297 	/*
1298 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1299 	 * update this on disk, so it must not be 0.
1300 	 */
1301 	ASSERT(rwa->bytes_read != 0);
1302 
1303 	/*
1304 	 * We only resume from write records, which have a valid
1305 	 * (non-meta-dnode) object number.
1306 	 */
1307 	ASSERT(object != 0);
1308 
1309 	/*
1310 	 * For resuming to work correctly, we must receive records in order,
1311 	 * sorted by object,offset.  This is checked by the callers, but
1312 	 * assert it here for good measure.
1313 	 */
1314 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1315 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1316 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1317 	ASSERT3U(rwa->bytes_read, >=,
1318 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1319 
1320 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1321 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1322 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1323 }
1324 
1325 static int
1326 receive_object_is_same_generation(objset_t *os, uint64_t object,
1327     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1328     const void *new_bonus, boolean_t *samegenp)
1329 {
1330 	zfs_file_info_t zoi;
1331 	int err;
1332 
1333 	dmu_buf_t *old_bonus_dbuf;
1334 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1335 	if (err != 0)
1336 		return (err);
1337 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1338 	    &zoi);
1339 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1340 	if (err != 0)
1341 		return (err);
1342 	uint64_t old_gen = zoi.zfi_generation;
1343 
1344 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1345 	if (err != 0)
1346 		return (err);
1347 	uint64_t new_gen = zoi.zfi_generation;
1348 
1349 	*samegenp = (old_gen == new_gen);
1350 	return (0);
1351 }
1352 
1353 static int
1354 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1355     const struct drr_object *drro, const dmu_object_info_t *doi,
1356     const void *bonus_data,
1357     uint64_t *object_to_hold, uint32_t *new_blksz)
1358 {
1359 	uint32_t indblksz = drro->drr_indblkshift ?
1360 	    1ULL << drro->drr_indblkshift : 0;
1361 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1362 	    drro->drr_bonuslen);
1363 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1364 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1365 	boolean_t do_free_range = B_FALSE;
1366 	int err;
1367 
1368 	*object_to_hold = drro->drr_object;
1369 
1370 	/* nblkptr should be bounded by the bonus size and type */
1371 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1372 		return (SET_ERROR(EINVAL));
1373 
1374 	/*
1375 	 * After the previous send stream, the sending system may
1376 	 * have freed this object, and then happened to re-allocate
1377 	 * this object number in a later txg. In this case, we are
1378 	 * receiving a different logical file, and the block size may
1379 	 * appear to be different.  i.e. we may have a different
1380 	 * block size for this object than what the send stream says.
1381 	 * In this case we need to remove the object's contents,
1382 	 * so that its structure can be changed and then its contents
1383 	 * entirely replaced by subsequent WRITE records.
1384 	 *
1385 	 * If this is a -L (--large-block) incremental stream, and
1386 	 * the previous stream was not -L, the block size may appear
1387 	 * to increase.  i.e. we may have a smaller block size for
1388 	 * this object than what the send stream says.  In this case
1389 	 * we need to keep the object's contents and block size
1390 	 * intact, so that we don't lose parts of the object's
1391 	 * contents that are not changed by this incremental send
1392 	 * stream.
1393 	 *
1394 	 * We can distinguish between the two above cases by using
1395 	 * the ZPL's generation number (see
1396 	 * receive_object_is_same_generation()).  However, we only
1397 	 * want to rely on the generation number when absolutely
1398 	 * necessary, because with raw receives, the generation is
1399 	 * encrypted.  We also want to minimize dependence on the
1400 	 * ZPL, so that other types of datasets can also be received
1401 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1402 	 * reallocate their objects or change their structure).
1403 	 * Therefore, we check a number of different cases where we
1404 	 * know it is safe to discard the object's contents, before
1405 	 * using the ZPL's generation number to make the above
1406 	 * distinction.
1407 	 */
1408 	if (drro->drr_blksz != doi->doi_data_block_size) {
1409 		if (rwa->raw) {
1410 			/*
1411 			 * RAW streams always have large blocks, so
1412 			 * we are sure that the data is not needed
1413 			 * due to changing --large-block to be on.
1414 			 * Which is fortunate since the bonus buffer
1415 			 * (which contains the ZPL generation) is
1416 			 * encrypted, and the key might not be
1417 			 * loaded.
1418 			 */
1419 			do_free_range = B_TRUE;
1420 		} else if (rwa->full) {
1421 			/*
1422 			 * This is a full send stream, so it always
1423 			 * replaces what we have.  Even if the
1424 			 * generation numbers happen to match, this
1425 			 * can not actually be the same logical file.
1426 			 * This is relevant when receiving a full
1427 			 * send as a clone.
1428 			 */
1429 			do_free_range = B_TRUE;
1430 		} else if (drro->drr_type !=
1431 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1432 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1433 			/*
1434 			 * PLAIN_FILE_CONTENTS are the only type of
1435 			 * objects that have ever been stored with
1436 			 * large blocks, so we don't need the special
1437 			 * logic below.  ZAP blocks can shrink (when
1438 			 * there's only one block), so we don't want
1439 			 * to hit the error below about block size
1440 			 * only increasing.
1441 			 */
1442 			do_free_range = B_TRUE;
1443 		} else if (doi->doi_max_offset <=
1444 		    doi->doi_data_block_size) {
1445 			/*
1446 			 * There is only one block.  We can free it,
1447 			 * because its contents will be replaced by a
1448 			 * WRITE record.  This can not be the no-L ->
1449 			 * -L case, because the no-L case would have
1450 			 * resulted in multiple blocks.  If we
1451 			 * supported -L -> no-L, it would not be safe
1452 			 * to free the file's contents.  Fortunately,
1453 			 * that is not allowed (see
1454 			 * recv_check_large_blocks()).
1455 			 */
1456 			do_free_range = B_TRUE;
1457 		} else {
1458 			boolean_t is_same_gen;
1459 			err = receive_object_is_same_generation(rwa->os,
1460 			    drro->drr_object, doi->doi_bonus_type,
1461 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1462 			if (err != 0)
1463 				return (SET_ERROR(EINVAL));
1464 
1465 			if (is_same_gen) {
1466 				/*
1467 				 * This is the same logical file, and
1468 				 * the block size must be increasing.
1469 				 * It could only decrease if
1470 				 * --large-block was changed to be
1471 				 * off, which is checked in
1472 				 * recv_check_large_blocks().
1473 				 */
1474 				if (drro->drr_blksz <=
1475 				    doi->doi_data_block_size)
1476 					return (SET_ERROR(EINVAL));
1477 				/*
1478 				 * We keep the existing blocksize and
1479 				 * contents.
1480 				 */
1481 				*new_blksz =
1482 				    doi->doi_data_block_size;
1483 			} else {
1484 				do_free_range = B_TRUE;
1485 			}
1486 		}
1487 	}
1488 
1489 	/* nblkptr can only decrease if the object was reallocated */
1490 	if (nblkptr < doi->doi_nblkptr)
1491 		do_free_range = B_TRUE;
1492 
1493 	/* number of slots can only change on reallocation */
1494 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1495 		do_free_range = B_TRUE;
1496 
1497 	/*
1498 	 * For raw sends we also check a few other fields to
1499 	 * ensure we are preserving the objset structure exactly
1500 	 * as it was on the receive side:
1501 	 *     - A changed indirect block size
1502 	 *     - A smaller nlevels
1503 	 */
1504 	if (rwa->raw) {
1505 		if (indblksz != doi->doi_metadata_block_size)
1506 			do_free_range = B_TRUE;
1507 		if (drro->drr_nlevels < doi->doi_indirection)
1508 			do_free_range = B_TRUE;
1509 	}
1510 
1511 	if (do_free_range) {
1512 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1513 		    0, DMU_OBJECT_END);
1514 		if (err != 0)
1515 			return (SET_ERROR(EINVAL));
1516 	}
1517 
1518 	/*
1519 	 * The dmu does not currently support decreasing nlevels
1520 	 * or changing the number of dnode slots on an object. For
1521 	 * non-raw sends, this does not matter and the new object
1522 	 * can just use the previous one's nlevels. For raw sends,
1523 	 * however, the structure of the received dnode (including
1524 	 * nlevels and dnode slots) must match that of the send
1525 	 * side. Therefore, instead of using dmu_object_reclaim(),
1526 	 * we must free the object completely and call
1527 	 * dmu_object_claim_dnsize() instead.
1528 	 */
1529 	if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1530 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1531 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1532 		if (err != 0)
1533 			return (SET_ERROR(EINVAL));
1534 
1535 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1536 		*object_to_hold = DMU_NEW_OBJECT;
1537 	}
1538 
1539 	/*
1540 	 * For raw receives, free everything beyond the new incoming
1541 	 * maxblkid. Normally this would be done with a DRR_FREE
1542 	 * record that would come after this DRR_OBJECT record is
1543 	 * processed. However, for raw receives we manually set the
1544 	 * maxblkid from the drr_maxblkid and so we must first free
1545 	 * everything above that blkid to ensure the DMU is always
1546 	 * consistent with itself. We will never free the first block
1547 	 * of the object here because a maxblkid of 0 could indicate
1548 	 * an object with a single block or one with no blocks. This
1549 	 * free may be skipped when dmu_free_long_range() was called
1550 	 * above since it covers the entire object's contents.
1551 	 */
1552 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1553 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1554 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1555 		    DMU_OBJECT_END);
1556 		if (err != 0)
1557 			return (SET_ERROR(EINVAL));
1558 	}
1559 	return (0);
1560 }
1561 
1562 noinline static int
1563 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1564     void *data)
1565 {
1566 	dmu_object_info_t doi;
1567 	dmu_tx_t *tx;
1568 	int err;
1569 	uint32_t new_blksz = drro->drr_blksz;
1570 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1571 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1572 
1573 	if (drro->drr_type == DMU_OT_NONE ||
1574 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1575 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1576 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1577 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1578 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1579 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1580 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1581 	    drro->drr_bonuslen >
1582 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1583 	    dn_slots >
1584 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1585 		return (SET_ERROR(EINVAL));
1586 	}
1587 
1588 	if (rwa->raw) {
1589 		/*
1590 		 * We should have received a DRR_OBJECT_RANGE record
1591 		 * containing this block and stored it in rwa.
1592 		 */
1593 		if (drro->drr_object < rwa->or_firstobj ||
1594 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1595 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1596 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1597 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1598 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1599 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1600 		    drro->drr_raw_bonuslen)
1601 			return (SET_ERROR(EINVAL));
1602 	} else {
1603 		/*
1604 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1605 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1606 		 */
1607 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1608 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1609 			return (SET_ERROR(EINVAL));
1610 		}
1611 
1612 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1613 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1614 			return (SET_ERROR(EINVAL));
1615 		}
1616 	}
1617 
1618 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1619 
1620 	if (err != 0 && err != ENOENT && err != EEXIST)
1621 		return (SET_ERROR(EINVAL));
1622 
1623 	if (drro->drr_object > rwa->max_object)
1624 		rwa->max_object = drro->drr_object;
1625 
1626 	/*
1627 	 * If we are losing blkptrs or changing the block size this must
1628 	 * be a new file instance.  We must clear out the previous file
1629 	 * contents before we can change this type of metadata in the dnode.
1630 	 * Raw receives will also check that the indirect structure of the
1631 	 * dnode hasn't changed.
1632 	 */
1633 	uint64_t object_to_hold;
1634 	if (err == 0) {
1635 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1636 		    &object_to_hold, &new_blksz);
1637 	} else if (err == EEXIST) {
1638 		/*
1639 		 * The object requested is currently an interior slot of a
1640 		 * multi-slot dnode. This will be resolved when the next txg
1641 		 * is synced out, since the send stream will have told us
1642 		 * to free this slot when we freed the associated dnode
1643 		 * earlier in the stream.
1644 		 */
1645 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1646 
1647 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1648 			return (SET_ERROR(EINVAL));
1649 
1650 		/* object was freed and we are about to allocate a new one */
1651 		object_to_hold = DMU_NEW_OBJECT;
1652 	} else {
1653 		/* object is free and we are about to allocate a new one */
1654 		object_to_hold = DMU_NEW_OBJECT;
1655 	}
1656 
1657 	/*
1658 	 * If this is a multi-slot dnode there is a chance that this
1659 	 * object will expand into a slot that is already used by
1660 	 * another object from the previous snapshot. We must free
1661 	 * these objects before we attempt to allocate the new dnode.
1662 	 */
1663 	if (dn_slots > 1) {
1664 		boolean_t need_sync = B_FALSE;
1665 
1666 		for (uint64_t slot = drro->drr_object + 1;
1667 		    slot < drro->drr_object + dn_slots;
1668 		    slot++) {
1669 			dmu_object_info_t slot_doi;
1670 
1671 			err = dmu_object_info(rwa->os, slot, &slot_doi);
1672 			if (err == ENOENT || err == EEXIST)
1673 				continue;
1674 			else if (err != 0)
1675 				return (err);
1676 
1677 			err = dmu_free_long_object(rwa->os, slot);
1678 			if (err != 0)
1679 				return (err);
1680 
1681 			need_sync = B_TRUE;
1682 		}
1683 
1684 		if (need_sync)
1685 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1686 	}
1687 
1688 	tx = dmu_tx_create(rwa->os);
1689 	dmu_tx_hold_bonus(tx, object_to_hold);
1690 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1691 	err = dmu_tx_assign(tx, TXG_WAIT);
1692 	if (err != 0) {
1693 		dmu_tx_abort(tx);
1694 		return (err);
1695 	}
1696 
1697 	if (object_to_hold == DMU_NEW_OBJECT) {
1698 		/* Currently free, wants to be allocated */
1699 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1700 		    drro->drr_type, new_blksz,
1701 		    drro->drr_bonustype, drro->drr_bonuslen,
1702 		    dn_slots << DNODE_SHIFT, tx);
1703 	} else if (drro->drr_type != doi.doi_type ||
1704 	    new_blksz != doi.doi_data_block_size ||
1705 	    drro->drr_bonustype != doi.doi_bonus_type ||
1706 	    drro->drr_bonuslen != doi.doi_bonus_size) {
1707 		/* Currently allocated, but with different properties */
1708 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1709 		    drro->drr_type, new_blksz,
1710 		    drro->drr_bonustype, drro->drr_bonuslen,
1711 		    dn_slots << DNODE_SHIFT, rwa->spill ?
1712 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1713 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1714 		/*
1715 		 * Currently allocated, the existing version of this object
1716 		 * may reference a spill block that is no longer allocated
1717 		 * at the source and needs to be freed.
1718 		 */
1719 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1720 	}
1721 
1722 	if (err != 0) {
1723 		dmu_tx_commit(tx);
1724 		return (SET_ERROR(EINVAL));
1725 	}
1726 
1727 	if (rwa->or_crypt_params_present) {
1728 		/*
1729 		 * Set the crypt params for the buffer associated with this
1730 		 * range of dnodes.  This causes the blkptr_t to have the
1731 		 * same crypt params (byteorder, salt, iv, mac) as on the
1732 		 * sending side.
1733 		 *
1734 		 * Since we are committing this tx now, it is possible for
1735 		 * the dnode block to end up on-disk with the incorrect MAC,
1736 		 * if subsequent objects in this block are received in a
1737 		 * different txg.  However, since the dataset is marked as
1738 		 * inconsistent, no code paths will do a non-raw read (or
1739 		 * decrypt the block / verify the MAC). The receive code and
1740 		 * scrub code can safely do raw reads and verify the
1741 		 * checksum.  They don't need to verify the MAC.
1742 		 */
1743 		dmu_buf_t *db = NULL;
1744 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1745 
1746 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1747 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1748 		if (err != 0) {
1749 			dmu_tx_commit(tx);
1750 			return (SET_ERROR(EINVAL));
1751 		}
1752 
1753 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1754 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1755 
1756 		dmu_buf_rele(db, FTAG);
1757 
1758 		rwa->or_crypt_params_present = B_FALSE;
1759 	}
1760 
1761 	dmu_object_set_checksum(rwa->os, drro->drr_object,
1762 	    drro->drr_checksumtype, tx);
1763 	dmu_object_set_compress(rwa->os, drro->drr_object,
1764 	    drro->drr_compress, tx);
1765 
1766 	/* handle more restrictive dnode structuring for raw recvs */
1767 	if (rwa->raw) {
1768 		/*
1769 		 * Set the indirect block size, block shift, nlevels.
1770 		 * This will not fail because we ensured all of the
1771 		 * blocks were freed earlier if this is a new object.
1772 		 * For non-new objects block size and indirect block
1773 		 * shift cannot change and nlevels can only increase.
1774 		 */
1775 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
1776 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1777 		    drro->drr_blksz, drro->drr_indblkshift, tx));
1778 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1779 		    drro->drr_nlevels, tx));
1780 
1781 		/*
1782 		 * Set the maxblkid. This will always succeed because
1783 		 * we freed all blocks beyond the new maxblkid above.
1784 		 */
1785 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1786 		    drro->drr_maxblkid, tx));
1787 	}
1788 
1789 	if (data != NULL) {
1790 		dmu_buf_t *db;
1791 		dnode_t *dn;
1792 		uint32_t flags = DMU_READ_NO_PREFETCH;
1793 
1794 		if (rwa->raw)
1795 			flags |= DMU_READ_NO_DECRYPT;
1796 
1797 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1798 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1799 
1800 		dmu_buf_will_dirty(db, tx);
1801 
1802 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1803 		bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1804 
1805 		/*
1806 		 * Raw bonus buffers have their byteorder determined by the
1807 		 * DRR_OBJECT_RANGE record.
1808 		 */
1809 		if (rwa->byteswap && !rwa->raw) {
1810 			dmu_object_byteswap_t byteswap =
1811 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
1812 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1813 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
1814 		}
1815 		dmu_buf_rele(db, FTAG);
1816 		dnode_rele(dn, FTAG);
1817 	}
1818 	dmu_tx_commit(tx);
1819 
1820 	return (0);
1821 }
1822 
1823 /* ARGSUSED */
1824 noinline static int
1825 receive_freeobjects(struct receive_writer_arg *rwa,
1826     struct drr_freeobjects *drrfo)
1827 {
1828 	uint64_t obj;
1829 	int next_err = 0;
1830 
1831 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1832 		return (SET_ERROR(EINVAL));
1833 
1834 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1835 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1836 	    obj < DN_MAX_OBJECT && next_err == 0;
1837 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1838 		dmu_object_info_t doi;
1839 		int err;
1840 
1841 		err = dmu_object_info(rwa->os, obj, &doi);
1842 		if (err == ENOENT)
1843 			continue;
1844 		else if (err != 0)
1845 			return (err);
1846 
1847 		err = dmu_free_long_object(rwa->os, obj);
1848 
1849 		if (err != 0)
1850 			return (err);
1851 	}
1852 	if (next_err != ESRCH)
1853 		return (next_err);
1854 	return (0);
1855 }
1856 
1857 /*
1858  * Note: if this fails, the caller will clean up any records left on the
1859  * rwa->write_batch list.
1860  */
1861 static int
1862 flush_write_batch_impl(struct receive_writer_arg *rwa)
1863 {
1864 	dnode_t *dn;
1865 	int err;
1866 
1867 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1868 		return (SET_ERROR(EINVAL));
1869 
1870 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1871 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1872 
1873 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1874 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1875 
1876 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1877 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1878 
1879 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
1880 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1881 	    last_drrw->drr_offset - first_drrw->drr_offset +
1882 	    last_drrw->drr_logical_size);
1883 	err = dmu_tx_assign(tx, TXG_WAIT);
1884 	if (err != 0) {
1885 		dmu_tx_abort(tx);
1886 		dnode_rele(dn, FTAG);
1887 		return (err);
1888 	}
1889 
1890 	struct receive_record_arg *rrd;
1891 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1892 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
1893 		abd_t *abd = rrd->abd;
1894 
1895 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1896 
1897 		if (drrw->drr_logical_size != dn->dn_datablksz) {
1898 			/*
1899 			 * The WRITE record is larger than the object's block
1900 			 * size.  We must be receiving an incremental
1901 			 * large-block stream into a dataset that previously did
1902 			 * a non-large-block receive.  Lightweight writes must
1903 			 * be exactly one block, so we need to decompress the
1904 			 * data (if compressed) and do a normal dmu_write().
1905 			 */
1906 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
1907 			if (DRR_WRITE_COMPRESSED(drrw)) {
1908 				abd_t *decomp_abd =
1909 				    abd_alloc_linear(drrw->drr_logical_size,
1910 				    B_FALSE);
1911 
1912 				err = zio_decompress_data(
1913 				    drrw->drr_compressiontype,
1914 				    abd, abd_to_buf(decomp_abd),
1915 				    abd_get_size(abd),
1916 				    abd_get_size(decomp_abd), NULL);
1917 
1918 				if (err == 0) {
1919 					dmu_write_by_dnode(dn,
1920 					    drrw->drr_offset,
1921 					    drrw->drr_logical_size,
1922 					    abd_to_buf(decomp_abd), tx);
1923 				}
1924 				abd_free(decomp_abd);
1925 			} else {
1926 				dmu_write_by_dnode(dn,
1927 				    drrw->drr_offset,
1928 				    drrw->drr_logical_size,
1929 				    abd_to_buf(abd), tx);
1930 			}
1931 			if (err == 0)
1932 				abd_free(abd);
1933 		} else {
1934 			zio_prop_t zp;
1935 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
1936 
1937 			enum zio_flag zio_flags = 0;
1938 
1939 			if (rwa->raw) {
1940 				zp.zp_encrypt = B_TRUE;
1941 				zp.zp_compress = drrw->drr_compressiontype;
1942 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
1943 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
1944 				    rwa->byteswap;
1945 				bcopy(drrw->drr_salt, zp.zp_salt,
1946 				    ZIO_DATA_SALT_LEN);
1947 				bcopy(drrw->drr_iv, zp.zp_iv,
1948 				    ZIO_DATA_IV_LEN);
1949 				bcopy(drrw->drr_mac, zp.zp_mac,
1950 				    ZIO_DATA_MAC_LEN);
1951 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
1952 					zp.zp_nopwrite = B_FALSE;
1953 					zp.zp_copies = MIN(zp.zp_copies,
1954 					    SPA_DVAS_PER_BP - 1);
1955 				}
1956 				zio_flags |= ZIO_FLAG_RAW;
1957 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
1958 				ASSERT3U(drrw->drr_compressed_size, >, 0);
1959 				ASSERT3U(drrw->drr_logical_size, >=,
1960 				    drrw->drr_compressed_size);
1961 				zp.zp_compress = drrw->drr_compressiontype;
1962 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
1963 			} else if (rwa->byteswap) {
1964 				/*
1965 				 * Note: compressed blocks never need to be
1966 				 * byteswapped, because WRITE records for
1967 				 * metadata blocks are never compressed. The
1968 				 * exception is raw streams, which are written
1969 				 * in the original byteorder, and the byteorder
1970 				 * bit is preserved in the BP by setting
1971 				 * zp_byteorder above.
1972 				 */
1973 				dmu_object_byteswap_t byteswap =
1974 				    DMU_OT_BYTESWAP(drrw->drr_type);
1975 				dmu_ot_byteswap[byteswap].ob_func(
1976 				    abd_to_buf(abd),
1977 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
1978 			}
1979 
1980 			/*
1981 			 * Since this data can't be read until the receive
1982 			 * completes, we can do a "lightweight" write for
1983 			 * improved performance.
1984 			 */
1985 			err = dmu_lightweight_write_by_dnode(dn,
1986 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
1987 		}
1988 
1989 		if (err != 0) {
1990 			/*
1991 			 * This rrd is left on the list, so the caller will
1992 			 * free it (and the abd).
1993 			 */
1994 			break;
1995 		}
1996 
1997 		/*
1998 		 * Note: If the receive fails, we want the resume stream to
1999 		 * start with the same record that we last successfully
2000 		 * received (as opposed to the next record), so that we can
2001 		 * verify that we are resuming from the correct location.
2002 		 */
2003 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2004 
2005 		list_remove(&rwa->write_batch, rrd);
2006 		kmem_free(rrd, sizeof (*rrd));
2007 	}
2008 
2009 	dmu_tx_commit(tx);
2010 	dnode_rele(dn, FTAG);
2011 	return (err);
2012 }
2013 
2014 noinline static int
2015 flush_write_batch(struct receive_writer_arg *rwa)
2016 {
2017 	if (list_is_empty(&rwa->write_batch))
2018 		return (0);
2019 	int err = rwa->err;
2020 	if (err == 0)
2021 		err = flush_write_batch_impl(rwa);
2022 	if (err != 0) {
2023 		struct receive_record_arg *rrd;
2024 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2025 			abd_free(rrd->abd);
2026 			kmem_free(rrd, sizeof (*rrd));
2027 		}
2028 	}
2029 	ASSERT(list_is_empty(&rwa->write_batch));
2030 	return (err);
2031 }
2032 
2033 noinline static int
2034 receive_process_write_record(struct receive_writer_arg *rwa,
2035     struct receive_record_arg *rrd)
2036 {
2037 	int err = 0;
2038 
2039 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2040 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2041 
2042 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2043 	    !DMU_OT_IS_VALID(drrw->drr_type))
2044 		return (SET_ERROR(EINVAL));
2045 
2046 	/*
2047 	 * For resuming to work, records must be in increasing order
2048 	 * by (object, offset).
2049 	 */
2050 	if (drrw->drr_object < rwa->last_object ||
2051 	    (drrw->drr_object == rwa->last_object &&
2052 	    drrw->drr_offset < rwa->last_offset)) {
2053 		return (SET_ERROR(EINVAL));
2054 	}
2055 
2056 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2057 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2058 	uint64_t batch_size =
2059 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2060 	if (first_rrd != NULL &&
2061 	    (drrw->drr_object != first_drrw->drr_object ||
2062 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2063 		err = flush_write_batch(rwa);
2064 		if (err != 0)
2065 			return (err);
2066 	}
2067 
2068 	rwa->last_object = drrw->drr_object;
2069 	rwa->last_offset = drrw->drr_offset;
2070 
2071 	if (rwa->last_object > rwa->max_object)
2072 		rwa->max_object = rwa->last_object;
2073 
2074 	list_insert_tail(&rwa->write_batch, rrd);
2075 	/*
2076 	 * Return EAGAIN to indicate that we will use this rrd again,
2077 	 * so the caller should not free it
2078 	 */
2079 	return (EAGAIN);
2080 }
2081 
2082 static int
2083 receive_write_embedded(struct receive_writer_arg *rwa,
2084     struct drr_write_embedded *drrwe, void *data)
2085 {
2086 	dmu_tx_t *tx;
2087 	int err;
2088 
2089 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2090 		return (SET_ERROR(EINVAL));
2091 
2092 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2093 		return (SET_ERROR(EINVAL));
2094 
2095 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2096 		return (SET_ERROR(EINVAL));
2097 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2098 		return (SET_ERROR(EINVAL));
2099 	if (rwa->raw)
2100 		return (SET_ERROR(EINVAL));
2101 
2102 	if (drrwe->drr_object > rwa->max_object)
2103 		rwa->max_object = drrwe->drr_object;
2104 
2105 	tx = dmu_tx_create(rwa->os);
2106 
2107 	dmu_tx_hold_write(tx, drrwe->drr_object,
2108 	    drrwe->drr_offset, drrwe->drr_length);
2109 	err = dmu_tx_assign(tx, TXG_WAIT);
2110 	if (err != 0) {
2111 		dmu_tx_abort(tx);
2112 		return (err);
2113 	}
2114 
2115 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2116 	    drrwe->drr_offset, data, drrwe->drr_etype,
2117 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2118 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2119 
2120 	/* See comment in restore_write. */
2121 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2122 	dmu_tx_commit(tx);
2123 	return (0);
2124 }
2125 
2126 static int
2127 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2128     abd_t *abd)
2129 {
2130 	dmu_buf_t *db, *db_spill;
2131 	int err;
2132 
2133 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2134 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2135 		return (SET_ERROR(EINVAL));
2136 
2137 	/*
2138 	 * This is an unmodified spill block which was added to the stream
2139 	 * to resolve an issue with incorrectly removing spill blocks.  It
2140 	 * should be ignored by current versions of the code which support
2141 	 * the DRR_FLAG_SPILL_BLOCK flag.
2142 	 */
2143 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2144 		abd_free(abd);
2145 		return (0);
2146 	}
2147 
2148 	if (rwa->raw) {
2149 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2150 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2151 		    drrs->drr_compressed_size == 0)
2152 			return (SET_ERROR(EINVAL));
2153 	}
2154 
2155 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2156 		return (SET_ERROR(EINVAL));
2157 
2158 	if (drrs->drr_object > rwa->max_object)
2159 		rwa->max_object = drrs->drr_object;
2160 
2161 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2162 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2163 	    &db_spill)) != 0) {
2164 		dmu_buf_rele(db, FTAG);
2165 		return (err);
2166 	}
2167 
2168 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2169 
2170 	dmu_tx_hold_spill(tx, db->db_object);
2171 
2172 	err = dmu_tx_assign(tx, TXG_WAIT);
2173 	if (err != 0) {
2174 		dmu_buf_rele(db, FTAG);
2175 		dmu_buf_rele(db_spill, FTAG);
2176 		dmu_tx_abort(tx);
2177 		return (err);
2178 	}
2179 
2180 	/*
2181 	 * Spill blocks may both grow and shrink.  When a change in size
2182 	 * occurs any existing dbuf must be updated to match the logical
2183 	 * size of the provided arc_buf_t.
2184 	 */
2185 	if (db_spill->db_size != drrs->drr_length) {
2186 		dmu_buf_will_fill(db_spill, tx);
2187 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2188 		    drrs->drr_length, tx));
2189 	}
2190 
2191 	arc_buf_t *abuf;
2192 	if (rwa->raw) {
2193 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2194 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2195 		    rwa->byteswap;
2196 
2197 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2198 		    drrs->drr_object, byteorder, drrs->drr_salt,
2199 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2200 		    drrs->drr_compressed_size, drrs->drr_length,
2201 		    drrs->drr_compressiontype, 0);
2202 	} else {
2203 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2204 		    DMU_OT_IS_METADATA(drrs->drr_type),
2205 		    drrs->drr_length);
2206 		if (rwa->byteswap) {
2207 			dmu_object_byteswap_t byteswap =
2208 			    DMU_OT_BYTESWAP(drrs->drr_type);
2209 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2210 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2211 		}
2212 	}
2213 
2214 	bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs));
2215 	abd_free(abd);
2216 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2217 
2218 	dmu_buf_rele(db, FTAG);
2219 	dmu_buf_rele(db_spill, FTAG);
2220 
2221 	dmu_tx_commit(tx);
2222 	return (0);
2223 }
2224 
2225 /* ARGSUSED */
2226 noinline static int
2227 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2228 {
2229 	int err;
2230 
2231 	if (drrf->drr_length != -1ULL &&
2232 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2233 		return (SET_ERROR(EINVAL));
2234 
2235 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2236 		return (SET_ERROR(EINVAL));
2237 
2238 	if (drrf->drr_object > rwa->max_object)
2239 		rwa->max_object = drrf->drr_object;
2240 
2241 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2242 	    drrf->drr_offset, drrf->drr_length);
2243 
2244 	return (err);
2245 }
2246 
2247 static int
2248 receive_object_range(struct receive_writer_arg *rwa,
2249     struct drr_object_range *drror)
2250 {
2251 	/*
2252 	 * By default, we assume this block is in our native format
2253 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2254 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2255 	 * we need to byteswap again if this particular block was
2256 	 * in non-native format on the send side.
2257 	 */
2258 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2259 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2260 
2261 	/*
2262 	 * Since dnode block sizes are constant, we should not need to worry
2263 	 * about making sure that the dnode block size is the same on the
2264 	 * sending and receiving sides for the time being. For non-raw sends,
2265 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2266 	 * record at all). Raw sends require this record type because the
2267 	 * encryption parameters are used to protect an entire block of bonus
2268 	 * buffers. If the size of dnode blocks ever becomes variable,
2269 	 * handling will need to be added to ensure that dnode block sizes
2270 	 * match on the sending and receiving side.
2271 	 */
2272 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2273 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2274 	    !rwa->raw)
2275 		return (SET_ERROR(EINVAL));
2276 
2277 	if (drror->drr_firstobj > rwa->max_object)
2278 		rwa->max_object = drror->drr_firstobj;
2279 
2280 	/*
2281 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2282 	 * so that the block of dnodes is not written out when it's empty,
2283 	 * and converted to a HOLE BP.
2284 	 */
2285 	rwa->or_crypt_params_present = B_TRUE;
2286 	rwa->or_firstobj = drror->drr_firstobj;
2287 	rwa->or_numslots = drror->drr_numslots;
2288 	bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
2289 	bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
2290 	bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
2291 	rwa->or_byteorder = byteorder;
2292 
2293 	return (0);
2294 }
2295 
2296 /*
2297  * Until we have the ability to redact large ranges of data efficiently, we
2298  * process these records as frees.
2299  */
2300 /* ARGSUSED */
2301 noinline static int
2302 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2303 {
2304 	struct drr_free drrf = {0};
2305 	drrf.drr_length = drrr->drr_length;
2306 	drrf.drr_object = drrr->drr_object;
2307 	drrf.drr_offset = drrr->drr_offset;
2308 	drrf.drr_toguid = drrr->drr_toguid;
2309 	return (receive_free(rwa, &drrf));
2310 }
2311 
2312 /* used to destroy the drc_ds on error */
2313 static void
2314 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2315 {
2316 	dsl_dataset_t *ds = drc->drc_ds;
2317 	ds_hold_flags_t dsflags;
2318 
2319 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2320 	/*
2321 	 * Wait for the txg sync before cleaning up the receive. For
2322 	 * resumable receives, this ensures that our resume state has
2323 	 * been written out to disk. For raw receives, this ensures
2324 	 * that the user accounting code will not attempt to do anything
2325 	 * after we stopped receiving the dataset.
2326 	 */
2327 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2328 	ds->ds_objset->os_raw_receive = B_FALSE;
2329 
2330 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2331 	if (drc->drc_resumable && drc->drc_should_save &&
2332 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2333 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2334 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2335 	} else {
2336 		char name[ZFS_MAX_DATASET_NAME_LEN];
2337 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2338 		dsl_dataset_name(ds, name);
2339 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2340 		(void) dsl_destroy_head(name);
2341 	}
2342 }
2343 
2344 static void
2345 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2346 {
2347 	if (drc->drc_byteswap) {
2348 		(void) fletcher_4_incremental_byteswap(buf, len,
2349 		    &drc->drc_cksum);
2350 	} else {
2351 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2352 	}
2353 }
2354 
2355 /*
2356  * Read the payload into a buffer of size len, and update the current record's
2357  * payload field.
2358  * Allocate drc->drc_next_rrd and read the next record's header into
2359  * drc->drc_next_rrd->header.
2360  * Verify checksum of payload and next record.
2361  */
2362 static int
2363 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2364 {
2365 	int err;
2366 
2367 	if (len != 0) {
2368 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2369 		err = receive_read(drc, len, buf);
2370 		if (err != 0)
2371 			return (err);
2372 		receive_cksum(drc, len, buf);
2373 
2374 		/* note: rrd is NULL when reading the begin record's payload */
2375 		if (drc->drc_rrd != NULL) {
2376 			drc->drc_rrd->payload = buf;
2377 			drc->drc_rrd->payload_size = len;
2378 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2379 		}
2380 	} else {
2381 		ASSERT3P(buf, ==, NULL);
2382 	}
2383 
2384 	drc->drc_prev_cksum = drc->drc_cksum;
2385 
2386 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2387 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2388 	    &drc->drc_next_rrd->header);
2389 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2390 
2391 	if (err != 0) {
2392 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2393 		drc->drc_next_rrd = NULL;
2394 		return (err);
2395 	}
2396 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2397 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2398 		drc->drc_next_rrd = NULL;
2399 		return (SET_ERROR(EINVAL));
2400 	}
2401 
2402 	/*
2403 	 * Note: checksum is of everything up to but not including the
2404 	 * checksum itself.
2405 	 */
2406 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2407 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2408 	receive_cksum(drc,
2409 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2410 	    &drc->drc_next_rrd->header);
2411 
2412 	zio_cksum_t cksum_orig =
2413 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2414 	zio_cksum_t *cksump =
2415 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2416 
2417 	if (drc->drc_byteswap)
2418 		byteswap_record(&drc->drc_next_rrd->header);
2419 
2420 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2421 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2422 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2423 		drc->drc_next_rrd = NULL;
2424 		return (SET_ERROR(ECKSUM));
2425 	}
2426 
2427 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2428 
2429 	return (0);
2430 }
2431 
2432 /*
2433  * Issue the prefetch reads for any necessary indirect blocks.
2434  *
2435  * We use the object ignore list to tell us whether or not to issue prefetches
2436  * for a given object.  We do this for both correctness (in case the blocksize
2437  * of an object has changed) and performance (if the object doesn't exist, don't
2438  * needlessly try to issue prefetches).  We also trim the list as we go through
2439  * the stream to prevent it from growing to an unbounded size.
2440  *
2441  * The object numbers within will always be in sorted order, and any write
2442  * records we see will also be in sorted order, but they're not sorted with
2443  * respect to each other (i.e. we can get several object records before
2444  * receiving each object's write records).  As a result, once we've reached a
2445  * given object number, we can safely remove any reference to lower object
2446  * numbers in the ignore list. In practice, we receive up to 32 object records
2447  * before receiving write records, so the list can have up to 32 nodes in it.
2448  */
2449 /* ARGSUSED */
2450 static void
2451 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2452     uint64_t length)
2453 {
2454 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2455 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2456 		    ZIO_PRIORITY_SYNC_READ);
2457 	}
2458 }
2459 
2460 /*
2461  * Read records off the stream, issuing any necessary prefetches.
2462  */
2463 static int
2464 receive_read_record(dmu_recv_cookie_t *drc)
2465 {
2466 	int err;
2467 
2468 	switch (drc->drc_rrd->header.drr_type) {
2469 	case DRR_OBJECT:
2470 	{
2471 		struct drr_object *drro =
2472 		    &drc->drc_rrd->header.drr_u.drr_object;
2473 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2474 		void *buf = NULL;
2475 		dmu_object_info_t doi;
2476 
2477 		if (size != 0)
2478 			buf = kmem_zalloc(size, KM_SLEEP);
2479 
2480 		err = receive_read_payload_and_next_header(drc, size, buf);
2481 		if (err != 0) {
2482 			kmem_free(buf, size);
2483 			return (err);
2484 		}
2485 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2486 		/*
2487 		 * See receive_read_prefetch for an explanation why we're
2488 		 * storing this object in the ignore_obj_list.
2489 		 */
2490 		if (err == ENOENT || err == EEXIST ||
2491 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2492 			objlist_insert(drc->drc_ignore_objlist,
2493 			    drro->drr_object);
2494 			err = 0;
2495 		}
2496 		return (err);
2497 	}
2498 	case DRR_FREEOBJECTS:
2499 	{
2500 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2501 		return (err);
2502 	}
2503 	case DRR_WRITE:
2504 	{
2505 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2506 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2507 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2508 		err = receive_read_payload_and_next_header(drc, size,
2509 		    abd_to_buf(abd));
2510 		if (err != 0) {
2511 			abd_free(abd);
2512 			return (err);
2513 		}
2514 		drc->drc_rrd->abd = abd;
2515 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2516 		    drrw->drr_logical_size);
2517 		return (err);
2518 	}
2519 	case DRR_WRITE_EMBEDDED:
2520 	{
2521 		struct drr_write_embedded *drrwe =
2522 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2523 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2524 		void *buf = kmem_zalloc(size, KM_SLEEP);
2525 
2526 		err = receive_read_payload_and_next_header(drc, size, buf);
2527 		if (err != 0) {
2528 			kmem_free(buf, size);
2529 			return (err);
2530 		}
2531 
2532 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2533 		    drrwe->drr_length);
2534 		return (err);
2535 	}
2536 	case DRR_FREE:
2537 	case DRR_REDACT:
2538 	{
2539 		/*
2540 		 * It might be beneficial to prefetch indirect blocks here, but
2541 		 * we don't really have the data to decide for sure.
2542 		 */
2543 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2544 		return (err);
2545 	}
2546 	case DRR_END:
2547 	{
2548 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2549 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2550 		    drre->drr_checksum))
2551 			return (SET_ERROR(ECKSUM));
2552 		return (0);
2553 	}
2554 	case DRR_SPILL:
2555 	{
2556 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2557 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2558 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2559 		err = receive_read_payload_and_next_header(drc, size,
2560 		    abd_to_buf(abd));
2561 		if (err != 0)
2562 			abd_free(abd);
2563 		else
2564 			drc->drc_rrd->abd = abd;
2565 		return (err);
2566 	}
2567 	case DRR_OBJECT_RANGE:
2568 	{
2569 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2570 		return (err);
2571 
2572 	}
2573 	default:
2574 		return (SET_ERROR(EINVAL));
2575 	}
2576 }
2577 
2578 
2579 
2580 static void
2581 dprintf_drr(struct receive_record_arg *rrd, int err)
2582 {
2583 #ifdef ZFS_DEBUG
2584 	switch (rrd->header.drr_type) {
2585 	case DRR_OBJECT:
2586 	{
2587 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2588 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2589 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2590 		    "compress = %u dn_slots = %u err = %d\n",
2591 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2592 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2593 		    drro->drr_checksumtype, drro->drr_compress,
2594 		    drro->drr_dn_slots, err);
2595 		break;
2596 	}
2597 	case DRR_FREEOBJECTS:
2598 	{
2599 		struct drr_freeobjects *drrfo =
2600 		    &rrd->header.drr_u.drr_freeobjects;
2601 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2602 		    "numobjs = %llu err = %d\n",
2603 		    (u_longlong_t)drrfo->drr_firstobj,
2604 		    (u_longlong_t)drrfo->drr_numobjs, err);
2605 		break;
2606 	}
2607 	case DRR_WRITE:
2608 	{
2609 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2610 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2611 		    "lsize = %llu cksumtype = %u flags = %u "
2612 		    "compress = %u psize = %llu err = %d\n",
2613 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
2614 		    (u_longlong_t)drrw->drr_offset,
2615 		    (u_longlong_t)drrw->drr_logical_size,
2616 		    drrw->drr_checksumtype, drrw->drr_flags,
2617 		    drrw->drr_compressiontype,
2618 		    (u_longlong_t)drrw->drr_compressed_size, err);
2619 		break;
2620 	}
2621 	case DRR_WRITE_BYREF:
2622 	{
2623 		struct drr_write_byref *drrwbr =
2624 		    &rrd->header.drr_u.drr_write_byref;
2625 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2626 		    "length = %llu toguid = %llx refguid = %llx "
2627 		    "refobject = %llu refoffset = %llu cksumtype = %u "
2628 		    "flags = %u err = %d\n",
2629 		    (u_longlong_t)drrwbr->drr_object,
2630 		    (u_longlong_t)drrwbr->drr_offset,
2631 		    (u_longlong_t)drrwbr->drr_length,
2632 		    (u_longlong_t)drrwbr->drr_toguid,
2633 		    (u_longlong_t)drrwbr->drr_refguid,
2634 		    (u_longlong_t)drrwbr->drr_refobject,
2635 		    (u_longlong_t)drrwbr->drr_refoffset,
2636 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2637 		break;
2638 	}
2639 	case DRR_WRITE_EMBEDDED:
2640 	{
2641 		struct drr_write_embedded *drrwe =
2642 		    &rrd->header.drr_u.drr_write_embedded;
2643 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2644 		    "length = %llu compress = %u etype = %u lsize = %u "
2645 		    "psize = %u err = %d\n",
2646 		    (u_longlong_t)drrwe->drr_object,
2647 		    (u_longlong_t)drrwe->drr_offset,
2648 		    (u_longlong_t)drrwe->drr_length,
2649 		    drrwe->drr_compression, drrwe->drr_etype,
2650 		    drrwe->drr_lsize, drrwe->drr_psize, err);
2651 		break;
2652 	}
2653 	case DRR_FREE:
2654 	{
2655 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2656 		dprintf("drr_type = FREE obj = %llu offset = %llu "
2657 		    "length = %lld err = %d\n",
2658 		    (u_longlong_t)drrf->drr_object,
2659 		    (u_longlong_t)drrf->drr_offset,
2660 		    (longlong_t)drrf->drr_length,
2661 		    err);
2662 		break;
2663 	}
2664 	case DRR_SPILL:
2665 	{
2666 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2667 		dprintf("drr_type = SPILL obj = %llu length = %llu "
2668 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
2669 		    (u_longlong_t)drrs->drr_length, err);
2670 		break;
2671 	}
2672 	case DRR_OBJECT_RANGE:
2673 	{
2674 		struct drr_object_range *drror =
2675 		    &rrd->header.drr_u.drr_object_range;
2676 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2677 		    "numslots = %llu flags = %u err = %d\n",
2678 		    (u_longlong_t)drror->drr_firstobj,
2679 		    (u_longlong_t)drror->drr_numslots,
2680 		    drror->drr_flags, err);
2681 		break;
2682 	}
2683 	default:
2684 		return;
2685 	}
2686 #endif
2687 }
2688 
2689 /*
2690  * Commit the records to the pool.
2691  */
2692 static int
2693 receive_process_record(struct receive_writer_arg *rwa,
2694     struct receive_record_arg *rrd)
2695 {
2696 	int err;
2697 
2698 	/* Processing in order, therefore bytes_read should be increasing. */
2699 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2700 	rwa->bytes_read = rrd->bytes_read;
2701 
2702 	if (rrd->header.drr_type != DRR_WRITE) {
2703 		err = flush_write_batch(rwa);
2704 		if (err != 0) {
2705 			if (rrd->abd != NULL) {
2706 				abd_free(rrd->abd);
2707 				rrd->abd = NULL;
2708 				rrd->payload = NULL;
2709 			} else if (rrd->payload != NULL) {
2710 				kmem_free(rrd->payload, rrd->payload_size);
2711 				rrd->payload = NULL;
2712 			}
2713 
2714 			return (err);
2715 		}
2716 	}
2717 
2718 	switch (rrd->header.drr_type) {
2719 	case DRR_OBJECT:
2720 	{
2721 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2722 		err = receive_object(rwa, drro, rrd->payload);
2723 		kmem_free(rrd->payload, rrd->payload_size);
2724 		rrd->payload = NULL;
2725 		break;
2726 	}
2727 	case DRR_FREEOBJECTS:
2728 	{
2729 		struct drr_freeobjects *drrfo =
2730 		    &rrd->header.drr_u.drr_freeobjects;
2731 		err = receive_freeobjects(rwa, drrfo);
2732 		break;
2733 	}
2734 	case DRR_WRITE:
2735 	{
2736 		err = receive_process_write_record(rwa, rrd);
2737 		if (err != EAGAIN) {
2738 			/*
2739 			 * On success, receive_process_write_record() returns
2740 			 * EAGAIN to indicate that we do not want to free
2741 			 * the rrd or arc_buf.
2742 			 */
2743 			ASSERT(err != 0);
2744 			abd_free(rrd->abd);
2745 			rrd->abd = NULL;
2746 		}
2747 		break;
2748 	}
2749 	case DRR_WRITE_EMBEDDED:
2750 	{
2751 		struct drr_write_embedded *drrwe =
2752 		    &rrd->header.drr_u.drr_write_embedded;
2753 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2754 		kmem_free(rrd->payload, rrd->payload_size);
2755 		rrd->payload = NULL;
2756 		break;
2757 	}
2758 	case DRR_FREE:
2759 	{
2760 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2761 		err = receive_free(rwa, drrf);
2762 		break;
2763 	}
2764 	case DRR_SPILL:
2765 	{
2766 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2767 		err = receive_spill(rwa, drrs, rrd->abd);
2768 		if (err != 0)
2769 			abd_free(rrd->abd);
2770 		rrd->abd = NULL;
2771 		rrd->payload = NULL;
2772 		break;
2773 	}
2774 	case DRR_OBJECT_RANGE:
2775 	{
2776 		struct drr_object_range *drror =
2777 		    &rrd->header.drr_u.drr_object_range;
2778 		err = receive_object_range(rwa, drror);
2779 		break;
2780 	}
2781 	case DRR_REDACT:
2782 	{
2783 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2784 		err = receive_redact(rwa, drrr);
2785 		break;
2786 	}
2787 	default:
2788 		err = (SET_ERROR(EINVAL));
2789 	}
2790 
2791 	if (err != 0)
2792 		dprintf_drr(rrd, err);
2793 
2794 	return (err);
2795 }
2796 
2797 /*
2798  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2799  * receive_process_record  When we're done, signal the main thread and exit.
2800  */
2801 static void
2802 receive_writer_thread(void *arg)
2803 {
2804 	struct receive_writer_arg *rwa = arg;
2805 	struct receive_record_arg *rrd;
2806 	fstrans_cookie_t cookie = spl_fstrans_mark();
2807 
2808 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2809 	    rrd = bqueue_dequeue(&rwa->q)) {
2810 		/*
2811 		 * If there's an error, the main thread will stop putting things
2812 		 * on the queue, but we need to clear everything in it before we
2813 		 * can exit.
2814 		 */
2815 		int err = 0;
2816 		if (rwa->err == 0) {
2817 			err = receive_process_record(rwa, rrd);
2818 		} else if (rrd->abd != NULL) {
2819 			abd_free(rrd->abd);
2820 			rrd->abd = NULL;
2821 			rrd->payload = NULL;
2822 		} else if (rrd->payload != NULL) {
2823 			kmem_free(rrd->payload, rrd->payload_size);
2824 			rrd->payload = NULL;
2825 		}
2826 		/*
2827 		 * EAGAIN indicates that this record has been saved (on
2828 		 * raw->write_batch), and will be used again, so we don't
2829 		 * free it.
2830 		 */
2831 		if (err != EAGAIN) {
2832 			if (rwa->err == 0)
2833 				rwa->err = err;
2834 			kmem_free(rrd, sizeof (*rrd));
2835 		}
2836 	}
2837 	kmem_free(rrd, sizeof (*rrd));
2838 
2839 	int err = flush_write_batch(rwa);
2840 	if (rwa->err == 0)
2841 		rwa->err = err;
2842 
2843 	mutex_enter(&rwa->mutex);
2844 	rwa->done = B_TRUE;
2845 	cv_signal(&rwa->cv);
2846 	mutex_exit(&rwa->mutex);
2847 	spl_fstrans_unmark(cookie);
2848 	thread_exit();
2849 }
2850 
2851 static int
2852 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
2853 {
2854 	uint64_t val;
2855 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2856 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
2857 	uint64_t resume_obj, resume_off;
2858 
2859 	if (nvlist_lookup_uint64(begin_nvl,
2860 	    "resume_object", &resume_obj) != 0 ||
2861 	    nvlist_lookup_uint64(begin_nvl,
2862 	    "resume_offset", &resume_off) != 0) {
2863 		return (SET_ERROR(EINVAL));
2864 	}
2865 	VERIFY0(zap_lookup(mos, dsobj,
2866 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2867 	if (resume_obj != val)
2868 		return (SET_ERROR(EINVAL));
2869 	VERIFY0(zap_lookup(mos, dsobj,
2870 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2871 	if (resume_off != val)
2872 		return (SET_ERROR(EINVAL));
2873 
2874 	return (0);
2875 }
2876 
2877 /*
2878  * Read in the stream's records, one by one, and apply them to the pool.  There
2879  * are two threads involved; the thread that calls this function will spin up a
2880  * worker thread, read the records off the stream one by one, and issue
2881  * prefetches for any necessary indirect blocks.  It will then push the records
2882  * onto an internal blocking queue.  The worker thread will pull the records off
2883  * the queue, and actually write the data into the DMU.  This way, the worker
2884  * thread doesn't have to wait for reads to complete, since everything it needs
2885  * (the indirect blocks) will be prefetched.
2886  *
2887  * NB: callers *must* call dmu_recv_end() if this succeeds.
2888  */
2889 int
2890 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
2891 {
2892 	int err = 0;
2893 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2894 
2895 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
2896 		uint64_t bytes = 0;
2897 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2898 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2899 		    sizeof (bytes), 1, &bytes);
2900 		drc->drc_bytes_read += bytes;
2901 	}
2902 
2903 	drc->drc_ignore_objlist = objlist_create();
2904 
2905 	/* these were verified in dmu_recv_begin */
2906 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2907 	    DMU_SUBSTREAM);
2908 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2909 
2910 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2911 	ASSERT0(drc->drc_os->os_encrypted &&
2912 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2913 
2914 	/* handle DSL encryption key payload */
2915 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
2916 		nvlist_t *keynvl = NULL;
2917 
2918 		ASSERT(drc->drc_os->os_encrypted);
2919 		ASSERT(drc->drc_raw);
2920 
2921 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2922 		    &keynvl);
2923 		if (err != 0)
2924 			goto out;
2925 
2926 		/*
2927 		 * If this is a new dataset we set the key immediately.
2928 		 * Otherwise we don't want to change the key until we
2929 		 * are sure the rest of the receive succeeded so we stash
2930 		 * the keynvl away until then.
2931 		 */
2932 		err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
2933 		    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2934 		    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2935 		if (err != 0)
2936 			goto out;
2937 
2938 		/* see comment in dmu_recv_end_sync() */
2939 		drc->drc_ivset_guid = 0;
2940 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2941 		    &drc->drc_ivset_guid);
2942 
2943 		if (!drc->drc_newfs)
2944 			drc->drc_keynvl = fnvlist_dup(keynvl);
2945 	}
2946 
2947 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2948 		err = resume_check(drc, drc->drc_begin_nvl);
2949 		if (err != 0)
2950 			goto out;
2951 	}
2952 
2953 	/*
2954 	 * If we failed before this point we will clean up any new resume
2955 	 * state that was created. Now that we've gotten past the initial
2956 	 * checks we are ok to retain that resume state.
2957 	 */
2958 	drc->drc_should_save = B_TRUE;
2959 
2960 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
2961 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2962 	    offsetof(struct receive_record_arg, node));
2963 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2964 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
2965 	rwa->os = drc->drc_os;
2966 	rwa->byteswap = drc->drc_byteswap;
2967 	rwa->resumable = drc->drc_resumable;
2968 	rwa->raw = drc->drc_raw;
2969 	rwa->spill = drc->drc_spill;
2970 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
2971 	rwa->os->os_raw_receive = drc->drc_raw;
2972 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2973 	    offsetof(struct receive_record_arg, node.bqn_node));
2974 
2975 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2976 	    TS_RUN, minclsyspri);
2977 	/*
2978 	 * We're reading rwa->err without locks, which is safe since we are the
2979 	 * only reader, and the worker thread is the only writer.  It's ok if we
2980 	 * miss a write for an iteration or two of the loop, since the writer
2981 	 * thread will keep freeing records we send it until we send it an eos
2982 	 * marker.
2983 	 *
2984 	 * We can leave this loop in 3 ways:  First, if rwa->err is
2985 	 * non-zero.  In that case, the writer thread will free the rrd we just
2986 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2987 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
2988 	 * drc->drc_rrd has been handed off to the writer thread who will free
2989 	 * it.  Finally, if receive_read_record fails or we're at the end of the
2990 	 * stream, then we free drc->drc_rrd and exit.
2991 	 */
2992 	while (rwa->err == 0) {
2993 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2994 			err = SET_ERROR(EINTR);
2995 			break;
2996 		}
2997 
2998 		ASSERT3P(drc->drc_rrd, ==, NULL);
2999 		drc->drc_rrd = drc->drc_next_rrd;
3000 		drc->drc_next_rrd = NULL;
3001 		/* Allocates and loads header into drc->drc_next_rrd */
3002 		err = receive_read_record(drc);
3003 
3004 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3005 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3006 			drc->drc_rrd = NULL;
3007 			break;
3008 		}
3009 
3010 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3011 		    sizeof (struct receive_record_arg) +
3012 		    drc->drc_rrd->payload_size);
3013 		drc->drc_rrd = NULL;
3014 	}
3015 
3016 	ASSERT3P(drc->drc_rrd, ==, NULL);
3017 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3018 	drc->drc_rrd->eos_marker = B_TRUE;
3019 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3020 
3021 	mutex_enter(&rwa->mutex);
3022 	while (!rwa->done) {
3023 		/*
3024 		 * We need to use cv_wait_sig() so that any process that may
3025 		 * be sleeping here can still fork.
3026 		 */
3027 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3028 	}
3029 	mutex_exit(&rwa->mutex);
3030 
3031 	/*
3032 	 * If we are receiving a full stream as a clone, all object IDs which
3033 	 * are greater than the maximum ID referenced in the stream are
3034 	 * by definition unused and must be freed.
3035 	 */
3036 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3037 		uint64_t obj = rwa->max_object + 1;
3038 		int free_err = 0;
3039 		int next_err = 0;
3040 
3041 		while (next_err == 0) {
3042 			free_err = dmu_free_long_object(rwa->os, obj);
3043 			if (free_err != 0 && free_err != ENOENT)
3044 				break;
3045 
3046 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3047 		}
3048 
3049 		if (err == 0) {
3050 			if (free_err != 0 && free_err != ENOENT)
3051 				err = free_err;
3052 			else if (next_err != ESRCH)
3053 				err = next_err;
3054 		}
3055 	}
3056 
3057 	cv_destroy(&rwa->cv);
3058 	mutex_destroy(&rwa->mutex);
3059 	bqueue_destroy(&rwa->q);
3060 	list_destroy(&rwa->write_batch);
3061 	if (err == 0)
3062 		err = rwa->err;
3063 
3064 out:
3065 	/*
3066 	 * If we hit an error before we started the receive_writer_thread
3067 	 * we need to clean up the next_rrd we create by processing the
3068 	 * DRR_BEGIN record.
3069 	 */
3070 	if (drc->drc_next_rrd != NULL)
3071 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3072 
3073 	/*
3074 	 * The objset will be invalidated by dmu_recv_end() when we do
3075 	 * dsl_dataset_clone_swap_sync_impl().
3076 	 */
3077 	drc->drc_os = NULL;
3078 
3079 	kmem_free(rwa, sizeof (*rwa));
3080 	nvlist_free(drc->drc_begin_nvl);
3081 
3082 	if (err != 0) {
3083 		/*
3084 		 * Clean up references. If receive is not resumable,
3085 		 * destroy what we created, so we don't leave it in
3086 		 * the inconsistent state.
3087 		 */
3088 		dmu_recv_cleanup_ds(drc);
3089 		nvlist_free(drc->drc_keynvl);
3090 	}
3091 
3092 	objlist_destroy(drc->drc_ignore_objlist);
3093 	drc->drc_ignore_objlist = NULL;
3094 	*voffp = drc->drc_voff;
3095 	return (err);
3096 }
3097 
3098 static int
3099 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3100 {
3101 	dmu_recv_cookie_t *drc = arg;
3102 	dsl_pool_t *dp = dmu_tx_pool(tx);
3103 	int error;
3104 
3105 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3106 
3107 	if (!drc->drc_newfs) {
3108 		dsl_dataset_t *origin_head;
3109 
3110 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3111 		if (error != 0)
3112 			return (error);
3113 		if (drc->drc_force) {
3114 			/*
3115 			 * We will destroy any snapshots in tofs (i.e. before
3116 			 * origin_head) that are after the origin (which is
3117 			 * the snap before drc_ds, because drc_ds can not
3118 			 * have any snaps of its own).
3119 			 */
3120 			uint64_t obj;
3121 
3122 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3123 			while (obj !=
3124 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3125 				dsl_dataset_t *snap;
3126 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3127 				    &snap);
3128 				if (error != 0)
3129 					break;
3130 				if (snap->ds_dir != origin_head->ds_dir)
3131 					error = SET_ERROR(EINVAL);
3132 				if (error == 0)  {
3133 					error = dsl_destroy_snapshot_check_impl(
3134 					    snap, B_FALSE);
3135 				}
3136 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3137 				dsl_dataset_rele(snap, FTAG);
3138 				if (error != 0)
3139 					break;
3140 			}
3141 			if (error != 0) {
3142 				dsl_dataset_rele(origin_head, FTAG);
3143 				return (error);
3144 			}
3145 		}
3146 		if (drc->drc_keynvl != NULL) {
3147 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3148 			    drc->drc_keynvl, tx);
3149 			if (error != 0) {
3150 				dsl_dataset_rele(origin_head, FTAG);
3151 				return (error);
3152 			}
3153 		}
3154 
3155 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3156 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3157 		if (error != 0) {
3158 			dsl_dataset_rele(origin_head, FTAG);
3159 			return (error);
3160 		}
3161 		error = dsl_dataset_snapshot_check_impl(origin_head,
3162 		    drc->drc_tosnap, tx, B_TRUE, 1,
3163 		    drc->drc_cred, drc->drc_proc);
3164 		dsl_dataset_rele(origin_head, FTAG);
3165 		if (error != 0)
3166 			return (error);
3167 
3168 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3169 	} else {
3170 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3171 		    drc->drc_tosnap, tx, B_TRUE, 1,
3172 		    drc->drc_cred, drc->drc_proc);
3173 	}
3174 	return (error);
3175 }
3176 
3177 static void
3178 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3179 {
3180 	dmu_recv_cookie_t *drc = arg;
3181 	dsl_pool_t *dp = dmu_tx_pool(tx);
3182 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3183 	uint64_t newsnapobj;
3184 
3185 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3186 	    tx, "snap=%s", drc->drc_tosnap);
3187 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3188 
3189 	if (!drc->drc_newfs) {
3190 		dsl_dataset_t *origin_head;
3191 
3192 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3193 		    &origin_head));
3194 
3195 		if (drc->drc_force) {
3196 			/*
3197 			 * Destroy any snapshots of drc_tofs (origin_head)
3198 			 * after the origin (the snap before drc_ds).
3199 			 */
3200 			uint64_t obj;
3201 
3202 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3203 			while (obj !=
3204 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3205 				dsl_dataset_t *snap;
3206 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3207 				    &snap));
3208 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3209 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3210 				dsl_destroy_snapshot_sync_impl(snap,
3211 				    B_FALSE, tx);
3212 				dsl_dataset_rele(snap, FTAG);
3213 			}
3214 		}
3215 		if (drc->drc_keynvl != NULL) {
3216 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3217 			    drc->drc_keynvl, tx);
3218 			nvlist_free(drc->drc_keynvl);
3219 			drc->drc_keynvl = NULL;
3220 		}
3221 
3222 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3223 		    origin_head->ds_prev);
3224 
3225 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3226 		    origin_head, tx);
3227 		/*
3228 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3229 		 * so drc_os is no longer valid.
3230 		 */
3231 		drc->drc_os = NULL;
3232 
3233 		dsl_dataset_snapshot_sync_impl(origin_head,
3234 		    drc->drc_tosnap, tx);
3235 
3236 		/* set snapshot's creation time and guid */
3237 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3238 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3239 		    drc->drc_drrb->drr_creation_time;
3240 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3241 		    drc->drc_drrb->drr_toguid;
3242 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3243 		    ~DS_FLAG_INCONSISTENT;
3244 
3245 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3246 		dsl_dataset_phys(origin_head)->ds_flags &=
3247 		    ~DS_FLAG_INCONSISTENT;
3248 
3249 		newsnapobj =
3250 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3251 
3252 		dsl_dataset_rele(origin_head, FTAG);
3253 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3254 
3255 		if (drc->drc_owner != NULL)
3256 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3257 	} else {
3258 		dsl_dataset_t *ds = drc->drc_ds;
3259 
3260 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3261 
3262 		/* set snapshot's creation time and guid */
3263 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3264 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3265 		    drc->drc_drrb->drr_creation_time;
3266 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3267 		    drc->drc_drrb->drr_toguid;
3268 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3269 		    ~DS_FLAG_INCONSISTENT;
3270 
3271 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3272 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3273 		if (dsl_dataset_has_resume_receive_state(ds)) {
3274 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3275 			    DS_FIELD_RESUME_FROMGUID, tx);
3276 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3277 			    DS_FIELD_RESUME_OBJECT, tx);
3278 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3279 			    DS_FIELD_RESUME_OFFSET, tx);
3280 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3281 			    DS_FIELD_RESUME_BYTES, tx);
3282 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3283 			    DS_FIELD_RESUME_TOGUID, tx);
3284 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3285 			    DS_FIELD_RESUME_TONAME, tx);
3286 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3287 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3288 		}
3289 		newsnapobj =
3290 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3291 	}
3292 
3293 	/*
3294 	 * If this is a raw receive, the crypt_keydata nvlist will include
3295 	 * a to_ivset_guid for us to set on the new snapshot. This value
3296 	 * will override the value generated by the snapshot code. However,
3297 	 * this value may not be present, because older implementations of
3298 	 * the raw send code did not include this value, and we are still
3299 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3300 	 * tunable is set, in which case we will leave the newly-generated
3301 	 * value.
3302 	 */
3303 	if (drc->drc_raw && drc->drc_ivset_guid != 0) {
3304 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3305 		    DMU_OT_DSL_DATASET, tx);
3306 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3307 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3308 		    &drc->drc_ivset_guid, tx));
3309 	}
3310 
3311 	/*
3312 	 * Release the hold from dmu_recv_begin.  This must be done before
3313 	 * we return to open context, so that when we free the dataset's dnode
3314 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3315 	 * at this point (and therefore won't have a valid pointer to the spa)
3316 	 * we release the key mapping manually here while we do have a valid
3317 	 * pointer, if it exists.
3318 	 */
3319 	if (!drc->drc_raw && encrypted) {
3320 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3321 		    drc->drc_ds->ds_object, drc->drc_ds);
3322 	}
3323 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3324 	drc->drc_ds = NULL;
3325 }
3326 
3327 static int dmu_recv_end_modified_blocks = 3;
3328 
3329 static int
3330 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3331 {
3332 #ifdef _KERNEL
3333 	/*
3334 	 * We will be destroying the ds; make sure its origin is unmounted if
3335 	 * necessary.
3336 	 */
3337 	char name[ZFS_MAX_DATASET_NAME_LEN];
3338 	dsl_dataset_name(drc->drc_ds, name);
3339 	zfs_destroy_unmount_origin(name);
3340 #endif
3341 
3342 	return (dsl_sync_task(drc->drc_tofs,
3343 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3344 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3345 }
3346 
3347 static int
3348 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3349 {
3350 	return (dsl_sync_task(drc->drc_tofs,
3351 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3352 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3353 }
3354 
3355 int
3356 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3357 {
3358 	int error;
3359 
3360 	drc->drc_owner = owner;
3361 
3362 	if (drc->drc_newfs)
3363 		error = dmu_recv_new_end(drc);
3364 	else
3365 		error = dmu_recv_existing_end(drc);
3366 
3367 	if (error != 0) {
3368 		dmu_recv_cleanup_ds(drc);
3369 		nvlist_free(drc->drc_keynvl);
3370 	} else {
3371 		if (drc->drc_newfs) {
3372 			zvol_create_minor(drc->drc_tofs);
3373 		}
3374 		char *snapname = kmem_asprintf("%s@%s",
3375 		    drc->drc_tofs, drc->drc_tosnap);
3376 		zvol_create_minor(snapname);
3377 		kmem_strfree(snapname);
3378 	}
3379 	return (error);
3380 }
3381 
3382 /*
3383  * Return TRUE if this objset is currently being received into.
3384  */
3385 boolean_t
3386 dmu_objset_is_receiving(objset_t *os)
3387 {
3388 	return (os->os_dsl_dataset != NULL &&
3389 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3390 }
3391 
3392 /* BEGIN CSTYLED */
3393 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3394 	"Maximum receive queue length");
3395 
3396 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3397 	"Receive queue fill fraction");
3398 
3399 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3400 	"Maximum amount of writes to batch into one transaction");
3401 /* END CSTYLED */
3402