1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 */ 31 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_recv.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dbuf.h> 38 #include <sys/dnode.h> 39 #include <sys/zfs_context.h> 40 #include <sys/dmu_objset.h> 41 #include <sys/dmu_traverse.h> 42 #include <sys/dsl_dataset.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_pool.h> 46 #include <sys/dsl_synctask.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zvol.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/zfs_znode.h> 52 #include <zfs_fletcher.h> 53 #include <sys/avl.h> 54 #include <sys/ddt.h> 55 #include <sys/zfs_onexit.h> 56 #include <sys/dsl_destroy.h> 57 #include <sys/blkptr.h> 58 #include <sys/dsl_bookmark.h> 59 #include <sys/zfeature.h> 60 #include <sys/bqueue.h> 61 #include <sys/objlist.h> 62 #ifdef _KERNEL 63 #include <sys/zfs_vfsops.h> 64 #endif 65 #include <sys/zfs_file.h> 66 67 static int zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 68 static int zfs_recv_queue_ff = 20; 69 static int zfs_recv_write_batch_size = 1024 * 1024; 70 71 static void *const dmu_recv_tag = "dmu_recv_tag"; 72 const char *const recv_clone_name = "%recv"; 73 74 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 75 void *buf); 76 77 struct receive_record_arg { 78 dmu_replay_record_t header; 79 void *payload; /* Pointer to a buffer containing the payload */ 80 /* 81 * If the record is a WRITE or SPILL, pointer to the abd containing the 82 * payload. 83 */ 84 abd_t *abd; 85 int payload_size; 86 uint64_t bytes_read; /* bytes read from stream when record created */ 87 boolean_t eos_marker; /* Marks the end of the stream */ 88 bqueue_node_t node; 89 }; 90 91 struct receive_writer_arg { 92 objset_t *os; 93 boolean_t byteswap; 94 bqueue_t q; 95 96 /* 97 * These three members are used to signal to the main thread when 98 * we're done. 99 */ 100 kmutex_t mutex; 101 kcondvar_t cv; 102 boolean_t done; 103 104 int err; 105 boolean_t resumable; 106 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 107 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 108 boolean_t full; /* this is a full send stream */ 109 uint64_t last_object; 110 uint64_t last_offset; 111 uint64_t max_object; /* highest object ID referenced in stream */ 112 uint64_t bytes_read; /* bytes read when current record created */ 113 114 list_t write_batch; 115 116 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 117 boolean_t or_crypt_params_present; 118 uint64_t or_firstobj; 119 uint64_t or_numslots; 120 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 121 uint8_t or_iv[ZIO_DATA_IV_LEN]; 122 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 123 boolean_t or_byteorder; 124 }; 125 126 typedef struct dmu_recv_begin_arg { 127 const char *drba_origin; 128 dmu_recv_cookie_t *drba_cookie; 129 cred_t *drba_cred; 130 proc_t *drba_proc; 131 dsl_crypto_params_t *drba_dcp; 132 } dmu_recv_begin_arg_t; 133 134 static void 135 byteswap_record(dmu_replay_record_t *drr) 136 { 137 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 138 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 139 drr->drr_type = BSWAP_32(drr->drr_type); 140 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 141 142 switch (drr->drr_type) { 143 case DRR_BEGIN: 144 DO64(drr_begin.drr_magic); 145 DO64(drr_begin.drr_versioninfo); 146 DO64(drr_begin.drr_creation_time); 147 DO32(drr_begin.drr_type); 148 DO32(drr_begin.drr_flags); 149 DO64(drr_begin.drr_toguid); 150 DO64(drr_begin.drr_fromguid); 151 break; 152 case DRR_OBJECT: 153 DO64(drr_object.drr_object); 154 DO32(drr_object.drr_type); 155 DO32(drr_object.drr_bonustype); 156 DO32(drr_object.drr_blksz); 157 DO32(drr_object.drr_bonuslen); 158 DO32(drr_object.drr_raw_bonuslen); 159 DO64(drr_object.drr_toguid); 160 DO64(drr_object.drr_maxblkid); 161 break; 162 case DRR_FREEOBJECTS: 163 DO64(drr_freeobjects.drr_firstobj); 164 DO64(drr_freeobjects.drr_numobjs); 165 DO64(drr_freeobjects.drr_toguid); 166 break; 167 case DRR_WRITE: 168 DO64(drr_write.drr_object); 169 DO32(drr_write.drr_type); 170 DO64(drr_write.drr_offset); 171 DO64(drr_write.drr_logical_size); 172 DO64(drr_write.drr_toguid); 173 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 174 DO64(drr_write.drr_key.ddk_prop); 175 DO64(drr_write.drr_compressed_size); 176 break; 177 case DRR_WRITE_EMBEDDED: 178 DO64(drr_write_embedded.drr_object); 179 DO64(drr_write_embedded.drr_offset); 180 DO64(drr_write_embedded.drr_length); 181 DO64(drr_write_embedded.drr_toguid); 182 DO32(drr_write_embedded.drr_lsize); 183 DO32(drr_write_embedded.drr_psize); 184 break; 185 case DRR_FREE: 186 DO64(drr_free.drr_object); 187 DO64(drr_free.drr_offset); 188 DO64(drr_free.drr_length); 189 DO64(drr_free.drr_toguid); 190 break; 191 case DRR_SPILL: 192 DO64(drr_spill.drr_object); 193 DO64(drr_spill.drr_length); 194 DO64(drr_spill.drr_toguid); 195 DO64(drr_spill.drr_compressed_size); 196 DO32(drr_spill.drr_type); 197 break; 198 case DRR_OBJECT_RANGE: 199 DO64(drr_object_range.drr_firstobj); 200 DO64(drr_object_range.drr_numslots); 201 DO64(drr_object_range.drr_toguid); 202 break; 203 case DRR_REDACT: 204 DO64(drr_redact.drr_object); 205 DO64(drr_redact.drr_offset); 206 DO64(drr_redact.drr_length); 207 DO64(drr_redact.drr_toguid); 208 break; 209 case DRR_END: 210 DO64(drr_end.drr_toguid); 211 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 212 break; 213 default: 214 break; 215 } 216 217 if (drr->drr_type != DRR_BEGIN) { 218 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 219 } 220 221 #undef DO64 222 #undef DO32 223 } 224 225 static boolean_t 226 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 227 { 228 for (int i = 0; i < num_snaps; i++) { 229 if (snaps[i] == guid) 230 return (B_TRUE); 231 } 232 return (B_FALSE); 233 } 234 235 /* 236 * Check that the new stream we're trying to receive is redacted with respect to 237 * a subset of the snapshots that the origin was redacted with respect to. For 238 * the reasons behind this, see the man page on redacted zfs sends and receives. 239 */ 240 static boolean_t 241 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 242 uint64_t *redact_snaps, uint64_t num_redact_snaps) 243 { 244 /* 245 * Short circuit the comparison; if we are redacted with respect to 246 * more snapshots than the origin, we can't be redacted with respect 247 * to a subset. 248 */ 249 if (num_redact_snaps > origin_num_snaps) { 250 return (B_FALSE); 251 } 252 253 for (int i = 0; i < num_redact_snaps; i++) { 254 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 255 redact_snaps[i])) { 256 return (B_FALSE); 257 } 258 } 259 return (B_TRUE); 260 } 261 262 static boolean_t 263 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 264 { 265 uint64_t *origin_snaps; 266 uint64_t origin_num_snaps; 267 dmu_recv_cookie_t *drc = drba->drba_cookie; 268 struct drr_begin *drrb = drc->drc_drrb; 269 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 270 int err = 0; 271 boolean_t ret = B_TRUE; 272 uint64_t *redact_snaps; 273 uint_t numredactsnaps; 274 275 /* 276 * If this is a full send stream, we're safe no matter what. 277 */ 278 if (drrb->drr_fromguid == 0) 279 return (ret); 280 281 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 282 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 283 284 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 285 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 286 0) { 287 /* 288 * If the send stream was sent from the redaction bookmark or 289 * the redacted version of the dataset, then we're safe. Verify 290 * that this is from the a compatible redaction bookmark or 291 * redacted dataset. 292 */ 293 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 294 redact_snaps, numredactsnaps)) { 295 err = EINVAL; 296 } 297 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 298 /* 299 * If the stream is redacted, it must be redacted with respect 300 * to a subset of what the origin is redacted with respect to. 301 * See case number 2 in the zfs man page section on redacted zfs 302 * send. 303 */ 304 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 305 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 306 307 if (err != 0 || !compatible_redact_snaps(origin_snaps, 308 origin_num_snaps, redact_snaps, numredactsnaps)) { 309 err = EINVAL; 310 } 311 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 312 drrb->drr_toguid)) { 313 /* 314 * If the stream isn't redacted but the origin is, this must be 315 * one of the snapshots the origin is redacted with respect to. 316 * See case number 1 in the zfs man page section on redacted zfs 317 * send. 318 */ 319 err = EINVAL; 320 } 321 322 if (err != 0) 323 ret = B_FALSE; 324 return (ret); 325 } 326 327 /* 328 * If we previously received a stream with --large-block, we don't support 329 * receiving an incremental on top of it without --large-block. This avoids 330 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 331 * records. 332 */ 333 static int 334 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 335 { 336 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 337 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 338 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 339 return (0); 340 } 341 342 static int 343 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 344 uint64_t fromguid, uint64_t featureflags) 345 { 346 uint64_t val; 347 uint64_t children; 348 int error; 349 dsl_pool_t *dp = ds->ds_dir->dd_pool; 350 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 351 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 352 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 353 354 /* Temporary clone name must not exist. */ 355 error = zap_lookup(dp->dp_meta_objset, 356 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 357 8, 1, &val); 358 if (error != ENOENT) 359 return (error == 0 ? SET_ERROR(EBUSY) : error); 360 361 /* Resume state must not be set. */ 362 if (dsl_dataset_has_resume_receive_state(ds)) 363 return (SET_ERROR(EBUSY)); 364 365 /* New snapshot name must not exist. */ 366 error = zap_lookup(dp->dp_meta_objset, 367 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 368 drba->drba_cookie->drc_tosnap, 8, 1, &val); 369 if (error != ENOENT) 370 return (error == 0 ? SET_ERROR(EEXIST) : error); 371 372 /* Must not have children if receiving a ZVOL. */ 373 error = zap_count(dp->dp_meta_objset, 374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 375 if (error != 0) 376 return (error); 377 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 378 children > 0) 379 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 380 381 /* 382 * Check snapshot limit before receiving. We'll recheck again at the 383 * end, but might as well abort before receiving if we're already over 384 * the limit. 385 * 386 * Note that we do not check the file system limit with 387 * dsl_dir_fscount_check because the temporary %clones don't count 388 * against that limit. 389 */ 390 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 391 NULL, drba->drba_cred, drba->drba_proc); 392 if (error != 0) 393 return (error); 394 395 if (fromguid != 0) { 396 dsl_dataset_t *snap; 397 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 398 399 /* Can't perform a raw receive on top of a non-raw receive */ 400 if (!encrypted && raw) 401 return (SET_ERROR(EINVAL)); 402 403 /* Encryption is incompatible with embedded data */ 404 if (encrypted && embed) 405 return (SET_ERROR(EINVAL)); 406 407 /* Find snapshot in this dir that matches fromguid. */ 408 while (obj != 0) { 409 error = dsl_dataset_hold_obj(dp, obj, FTAG, 410 &snap); 411 if (error != 0) 412 return (SET_ERROR(ENODEV)); 413 if (snap->ds_dir != ds->ds_dir) { 414 dsl_dataset_rele(snap, FTAG); 415 return (SET_ERROR(ENODEV)); 416 } 417 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 418 break; 419 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 420 dsl_dataset_rele(snap, FTAG); 421 } 422 if (obj == 0) 423 return (SET_ERROR(ENODEV)); 424 425 if (drba->drba_cookie->drc_force) { 426 drba->drba_cookie->drc_fromsnapobj = obj; 427 } else { 428 /* 429 * If we are not forcing, there must be no 430 * changes since fromsnap. Raw sends have an 431 * additional constraint that requires that 432 * no "noop" snapshots exist between fromsnap 433 * and tosnap for the IVset checking code to 434 * work properly. 435 */ 436 if (dsl_dataset_modified_since_snap(ds, snap) || 437 (raw && 438 dsl_dataset_phys(ds)->ds_prev_snap_obj != 439 snap->ds_object)) { 440 dsl_dataset_rele(snap, FTAG); 441 return (SET_ERROR(ETXTBSY)); 442 } 443 drba->drba_cookie->drc_fromsnapobj = 444 ds->ds_prev->ds_object; 445 } 446 447 if (dsl_dataset_feature_is_active(snap, 448 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 449 snap)) { 450 dsl_dataset_rele(snap, FTAG); 451 return (SET_ERROR(EINVAL)); 452 } 453 454 error = recv_check_large_blocks(snap, featureflags); 455 if (error != 0) { 456 dsl_dataset_rele(snap, FTAG); 457 return (error); 458 } 459 460 dsl_dataset_rele(snap, FTAG); 461 } else { 462 /* if full, then must be forced */ 463 if (!drba->drba_cookie->drc_force) 464 return (SET_ERROR(EEXIST)); 465 466 /* 467 * We don't support using zfs recv -F to blow away 468 * encrypted filesystems. This would require the 469 * dsl dir to point to the old encryption key and 470 * the new one at the same time during the receive. 471 */ 472 if ((!encrypted && raw) || encrypted) 473 return (SET_ERROR(EINVAL)); 474 475 /* 476 * Perform the same encryption checks we would if 477 * we were creating a new dataset from scratch. 478 */ 479 if (!raw) { 480 boolean_t will_encrypt; 481 482 error = dmu_objset_create_crypt_check( 483 ds->ds_dir->dd_parent, drba->drba_dcp, 484 &will_encrypt); 485 if (error != 0) 486 return (error); 487 488 if (will_encrypt && embed) 489 return (SET_ERROR(EINVAL)); 490 } 491 } 492 493 return (0); 494 } 495 496 /* 497 * Check that any feature flags used in the data stream we're receiving are 498 * supported by the pool we are receiving into. 499 * 500 * Note that some of the features we explicitly check here have additional 501 * (implicit) features they depend on, but those dependencies are enforced 502 * through the zfeature_register() calls declaring the features that we 503 * explicitly check. 504 */ 505 static int 506 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 507 { 508 /* 509 * Check if there are any unsupported feature flags. 510 */ 511 if (!DMU_STREAM_SUPPORTED(featureflags)) { 512 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 513 } 514 515 /* Verify pool version supports SA if SA_SPILL feature set */ 516 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 517 spa_version(spa) < SPA_VERSION_SA) 518 return (SET_ERROR(ENOTSUP)); 519 520 /* 521 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 522 * and large_dnodes in the stream can only be used if those pool 523 * features are enabled because we don't attempt to decompress / 524 * un-embed / un-mooch / split up the blocks / dnodes during the 525 * receive process. 526 */ 527 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 528 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 529 return (SET_ERROR(ENOTSUP)); 530 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 531 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 532 return (SET_ERROR(ENOTSUP)); 533 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 534 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 535 return (SET_ERROR(ENOTSUP)); 536 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 537 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 538 return (SET_ERROR(ENOTSUP)); 539 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 540 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 541 return (SET_ERROR(ENOTSUP)); 542 543 /* 544 * Receiving redacted streams requires that redacted datasets are 545 * enabled. 546 */ 547 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 548 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 549 return (SET_ERROR(ENOTSUP)); 550 551 return (0); 552 } 553 554 static int 555 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 556 { 557 dmu_recv_begin_arg_t *drba = arg; 558 dsl_pool_t *dp = dmu_tx_pool(tx); 559 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 560 uint64_t fromguid = drrb->drr_fromguid; 561 int flags = drrb->drr_flags; 562 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 563 int error; 564 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 565 dsl_dataset_t *ds; 566 const char *tofs = drba->drba_cookie->drc_tofs; 567 568 /* already checked */ 569 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 570 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 571 572 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 573 DMU_COMPOUNDSTREAM || 574 drrb->drr_type >= DMU_OST_NUMTYPES || 575 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 576 return (SET_ERROR(EINVAL)); 577 578 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 579 if (error != 0) 580 return (error); 581 582 /* Resumable receives require extensible datasets */ 583 if (drba->drba_cookie->drc_resumable && 584 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 585 return (SET_ERROR(ENOTSUP)); 586 587 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 588 /* raw receives require the encryption feature */ 589 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 590 return (SET_ERROR(ENOTSUP)); 591 592 /* embedded data is incompatible with encryption and raw recv */ 593 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 594 return (SET_ERROR(EINVAL)); 595 596 /* raw receives require spill block allocation flag */ 597 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 598 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 599 } else { 600 dsflags |= DS_HOLD_FLAG_DECRYPT; 601 } 602 603 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 604 if (error == 0) { 605 /* target fs already exists; recv into temp clone */ 606 607 /* Can't recv a clone into an existing fs */ 608 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 609 dsl_dataset_rele_flags(ds, dsflags, FTAG); 610 return (SET_ERROR(EINVAL)); 611 } 612 613 error = recv_begin_check_existing_impl(drba, ds, fromguid, 614 featureflags); 615 dsl_dataset_rele_flags(ds, dsflags, FTAG); 616 } else if (error == ENOENT) { 617 /* target fs does not exist; must be a full backup or clone */ 618 char buf[ZFS_MAX_DATASET_NAME_LEN]; 619 objset_t *os; 620 621 /* 622 * If it's a non-clone incremental, we are missing the 623 * target fs, so fail the recv. 624 */ 625 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 626 drba->drba_origin)) 627 return (SET_ERROR(ENOENT)); 628 629 /* 630 * If we're receiving a full send as a clone, and it doesn't 631 * contain all the necessary free records and freeobject 632 * records, reject it. 633 */ 634 if (fromguid == 0 && drba->drba_origin != NULL && 635 !(flags & DRR_FLAG_FREERECORDS)) 636 return (SET_ERROR(EINVAL)); 637 638 /* Open the parent of tofs */ 639 ASSERT3U(strlen(tofs), <, sizeof (buf)); 640 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 641 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 642 if (error != 0) 643 return (error); 644 645 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 646 drba->drba_origin == NULL) { 647 boolean_t will_encrypt; 648 649 /* 650 * Check that we aren't breaking any encryption rules 651 * and that we have all the parameters we need to 652 * create an encrypted dataset if necessary. If we are 653 * making an encrypted dataset the stream can't have 654 * embedded data. 655 */ 656 error = dmu_objset_create_crypt_check(ds->ds_dir, 657 drba->drba_dcp, &will_encrypt); 658 if (error != 0) { 659 dsl_dataset_rele(ds, FTAG); 660 return (error); 661 } 662 663 if (will_encrypt && 664 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 665 dsl_dataset_rele(ds, FTAG); 666 return (SET_ERROR(EINVAL)); 667 } 668 } 669 670 /* 671 * Check filesystem and snapshot limits before receiving. We'll 672 * recheck snapshot limits again at the end (we create the 673 * filesystems and increment those counts during begin_sync). 674 */ 675 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 676 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 677 drba->drba_cred, drba->drba_proc); 678 if (error != 0) { 679 dsl_dataset_rele(ds, FTAG); 680 return (error); 681 } 682 683 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 684 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 685 drba->drba_cred, drba->drba_proc); 686 if (error != 0) { 687 dsl_dataset_rele(ds, FTAG); 688 return (error); 689 } 690 691 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 692 error = dmu_objset_from_ds(ds, &os); 693 if (error != 0) { 694 dsl_dataset_rele(ds, FTAG); 695 return (error); 696 } 697 if (dmu_objset_type(os) != DMU_OST_ZFS) { 698 dsl_dataset_rele(ds, FTAG); 699 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 700 } 701 702 if (drba->drba_origin != NULL) { 703 dsl_dataset_t *origin; 704 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 705 dsflags, FTAG, &origin); 706 if (error != 0) { 707 dsl_dataset_rele(ds, FTAG); 708 return (error); 709 } 710 if (!origin->ds_is_snapshot) { 711 dsl_dataset_rele_flags(origin, dsflags, FTAG); 712 dsl_dataset_rele(ds, FTAG); 713 return (SET_ERROR(EINVAL)); 714 } 715 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 716 fromguid != 0) { 717 dsl_dataset_rele_flags(origin, dsflags, FTAG); 718 dsl_dataset_rele(ds, FTAG); 719 return (SET_ERROR(ENODEV)); 720 } 721 722 if (origin->ds_dir->dd_crypto_obj != 0 && 723 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 724 dsl_dataset_rele_flags(origin, dsflags, FTAG); 725 dsl_dataset_rele(ds, FTAG); 726 return (SET_ERROR(EINVAL)); 727 } 728 729 /* 730 * If the origin is redacted we need to verify that this 731 * send stream can safely be received on top of the 732 * origin. 733 */ 734 if (dsl_dataset_feature_is_active(origin, 735 SPA_FEATURE_REDACTED_DATASETS)) { 736 if (!redact_check(drba, origin)) { 737 dsl_dataset_rele_flags(origin, dsflags, 738 FTAG); 739 dsl_dataset_rele_flags(ds, dsflags, 740 FTAG); 741 return (SET_ERROR(EINVAL)); 742 } 743 } 744 745 error = recv_check_large_blocks(ds, featureflags); 746 if (error != 0) { 747 dsl_dataset_rele_flags(origin, dsflags, FTAG); 748 dsl_dataset_rele_flags(ds, dsflags, FTAG); 749 return (error); 750 } 751 752 dsl_dataset_rele_flags(origin, dsflags, FTAG); 753 } 754 755 dsl_dataset_rele(ds, FTAG); 756 error = 0; 757 } 758 return (error); 759 } 760 761 static void 762 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 763 { 764 dmu_recv_begin_arg_t *drba = arg; 765 dsl_pool_t *dp = dmu_tx_pool(tx); 766 objset_t *mos = dp->dp_meta_objset; 767 dmu_recv_cookie_t *drc = drba->drba_cookie; 768 struct drr_begin *drrb = drc->drc_drrb; 769 const char *tofs = drc->drc_tofs; 770 uint64_t featureflags = drc->drc_featureflags; 771 dsl_dataset_t *ds, *newds; 772 objset_t *os; 773 uint64_t dsobj; 774 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 775 int error; 776 uint64_t crflags = 0; 777 dsl_crypto_params_t dummy_dcp = { 0 }; 778 dsl_crypto_params_t *dcp = drba->drba_dcp; 779 780 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 781 crflags |= DS_FLAG_CI_DATASET; 782 783 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 784 dsflags |= DS_HOLD_FLAG_DECRYPT; 785 786 /* 787 * Raw, non-incremental recvs always use a dummy dcp with 788 * the raw cmd set. Raw incremental recvs do not use a dcp 789 * since the encryption parameters are already set in stone. 790 */ 791 if (dcp == NULL && drrb->drr_fromguid == 0 && 792 drba->drba_origin == NULL) { 793 ASSERT3P(dcp, ==, NULL); 794 dcp = &dummy_dcp; 795 796 if (featureflags & DMU_BACKUP_FEATURE_RAW) 797 dcp->cp_cmd = DCP_CMD_RAW_RECV; 798 } 799 800 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 801 if (error == 0) { 802 /* create temporary clone */ 803 dsl_dataset_t *snap = NULL; 804 805 if (drba->drba_cookie->drc_fromsnapobj != 0) { 806 VERIFY0(dsl_dataset_hold_obj(dp, 807 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 808 ASSERT3P(dcp, ==, NULL); 809 } 810 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 811 snap, crflags, drba->drba_cred, dcp, tx); 812 if (drba->drba_cookie->drc_fromsnapobj != 0) 813 dsl_dataset_rele(snap, FTAG); 814 dsl_dataset_rele_flags(ds, dsflags, FTAG); 815 } else { 816 dsl_dir_t *dd; 817 const char *tail; 818 dsl_dataset_t *origin = NULL; 819 820 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 821 822 if (drba->drba_origin != NULL) { 823 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 824 FTAG, &origin)); 825 ASSERT3P(dcp, ==, NULL); 826 } 827 828 /* Create new dataset. */ 829 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 830 origin, crflags, drba->drba_cred, dcp, tx); 831 if (origin != NULL) 832 dsl_dataset_rele(origin, FTAG); 833 dsl_dir_rele(dd, FTAG); 834 drc->drc_newfs = B_TRUE; 835 } 836 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 837 &newds)); 838 if (dsl_dataset_feature_is_active(newds, 839 SPA_FEATURE_REDACTED_DATASETS)) { 840 /* 841 * If the origin dataset is redacted, the child will be redacted 842 * when we create it. We clear the new dataset's 843 * redaction info; if it should be redacted, we'll fill 844 * in its information later. 845 */ 846 dsl_dataset_deactivate_feature(newds, 847 SPA_FEATURE_REDACTED_DATASETS, tx); 848 } 849 VERIFY0(dmu_objset_from_ds(newds, &os)); 850 851 if (drc->drc_resumable) { 852 dsl_dataset_zapify(newds, tx); 853 if (drrb->drr_fromguid != 0) { 854 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 855 8, 1, &drrb->drr_fromguid, tx)); 856 } 857 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 858 8, 1, &drrb->drr_toguid, tx)); 859 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 860 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 861 uint64_t one = 1; 862 uint64_t zero = 0; 863 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 864 8, 1, &one, tx)); 865 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 866 8, 1, &zero, tx)); 867 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 868 8, 1, &zero, tx)); 869 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 870 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 871 8, 1, &one, tx)); 872 } 873 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 874 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 875 8, 1, &one, tx)); 876 } 877 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 878 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 879 8, 1, &one, tx)); 880 } 881 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 882 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 883 8, 1, &one, tx)); 884 } 885 886 uint64_t *redact_snaps; 887 uint_t numredactsnaps; 888 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 889 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 890 &numredactsnaps) == 0) { 891 VERIFY0(zap_add(mos, dsobj, 892 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 893 sizeof (*redact_snaps), numredactsnaps, 894 redact_snaps, tx)); 895 } 896 } 897 898 /* 899 * Usually the os->os_encrypted value is tied to the presence of a 900 * DSL Crypto Key object in the dd. However, that will not be received 901 * until dmu_recv_stream(), so we set the value manually for now. 902 */ 903 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 904 os->os_encrypted = B_TRUE; 905 drba->drba_cookie->drc_raw = B_TRUE; 906 } 907 908 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 909 uint64_t *redact_snaps; 910 uint_t numredactsnaps; 911 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 912 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 913 dsl_dataset_activate_redaction(newds, redact_snaps, 914 numredactsnaps, tx); 915 } 916 917 dmu_buf_will_dirty(newds->ds_dbuf, tx); 918 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 919 920 /* 921 * If we actually created a non-clone, we need to create the objset 922 * in our new dataset. If this is a raw send we postpone this until 923 * dmu_recv_stream() so that we can allocate the metadnode with the 924 * properties from the DRR_BEGIN payload. 925 */ 926 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 927 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 928 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) { 929 (void) dmu_objset_create_impl(dp->dp_spa, 930 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 931 } 932 rrw_exit(&newds->ds_bp_rwlock, FTAG); 933 934 drba->drba_cookie->drc_ds = newds; 935 drba->drba_cookie->drc_os = os; 936 937 spa_history_log_internal_ds(newds, "receive", tx, " "); 938 } 939 940 static int 941 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 942 { 943 dmu_recv_begin_arg_t *drba = arg; 944 dmu_recv_cookie_t *drc = drba->drba_cookie; 945 dsl_pool_t *dp = dmu_tx_pool(tx); 946 struct drr_begin *drrb = drc->drc_drrb; 947 int error; 948 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 949 dsl_dataset_t *ds; 950 const char *tofs = drc->drc_tofs; 951 952 /* already checked */ 953 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 954 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 955 956 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 957 DMU_COMPOUNDSTREAM || 958 drrb->drr_type >= DMU_OST_NUMTYPES) 959 return (SET_ERROR(EINVAL)); 960 961 /* 962 * This is mostly a sanity check since we should have already done these 963 * checks during a previous attempt to receive the data. 964 */ 965 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 966 dp->dp_spa); 967 if (error != 0) 968 return (error); 969 970 /* 6 extra bytes for /%recv */ 971 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 972 973 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 974 tofs, recv_clone_name); 975 976 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 977 /* raw receives require spill block allocation flag */ 978 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 979 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 980 } else { 981 dsflags |= DS_HOLD_FLAG_DECRYPT; 982 } 983 984 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 985 /* %recv does not exist; continue in tofs */ 986 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 987 if (error != 0) 988 return (error); 989 } 990 991 /* check that ds is marked inconsistent */ 992 if (!DS_IS_INCONSISTENT(ds)) { 993 dsl_dataset_rele_flags(ds, dsflags, FTAG); 994 return (SET_ERROR(EINVAL)); 995 } 996 997 /* check that there is resuming data, and that the toguid matches */ 998 if (!dsl_dataset_is_zapified(ds)) { 999 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1000 return (SET_ERROR(EINVAL)); 1001 } 1002 uint64_t val; 1003 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1004 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1005 if (error != 0 || drrb->drr_toguid != val) { 1006 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1007 return (SET_ERROR(EINVAL)); 1008 } 1009 1010 /* 1011 * Check if the receive is still running. If so, it will be owned. 1012 * Note that nothing else can own the dataset (e.g. after the receive 1013 * fails) because it will be marked inconsistent. 1014 */ 1015 if (dsl_dataset_has_owner(ds)) { 1016 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1017 return (SET_ERROR(EBUSY)); 1018 } 1019 1020 /* There should not be any snapshots of this fs yet. */ 1021 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1022 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1023 return (SET_ERROR(EINVAL)); 1024 } 1025 1026 /* 1027 * Note: resume point will be checked when we process the first WRITE 1028 * record. 1029 */ 1030 1031 /* check that the origin matches */ 1032 val = 0; 1033 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1034 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1035 if (drrb->drr_fromguid != val) { 1036 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1037 return (SET_ERROR(EINVAL)); 1038 } 1039 1040 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1041 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1042 1043 /* 1044 * If we're resuming, and the send is redacted, then the original send 1045 * must have been redacted, and must have been redacted with respect to 1046 * the same snapshots. 1047 */ 1048 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1049 uint64_t num_ds_redact_snaps; 1050 uint64_t *ds_redact_snaps; 1051 1052 uint_t num_stream_redact_snaps; 1053 uint64_t *stream_redact_snaps; 1054 1055 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1056 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1057 &num_stream_redact_snaps) != 0) { 1058 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1059 return (SET_ERROR(EINVAL)); 1060 } 1061 1062 if (!dsl_dataset_get_uint64_array_feature(ds, 1063 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1064 &ds_redact_snaps)) { 1065 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1066 return (SET_ERROR(EINVAL)); 1067 } 1068 1069 for (int i = 0; i < num_ds_redact_snaps; i++) { 1070 if (!redact_snaps_contains(ds_redact_snaps, 1071 num_ds_redact_snaps, stream_redact_snaps[i])) { 1072 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1073 return (SET_ERROR(EINVAL)); 1074 } 1075 } 1076 } 1077 1078 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1079 if (error != 0) { 1080 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1081 return (error); 1082 } 1083 1084 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1085 return (0); 1086 } 1087 1088 static void 1089 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1090 { 1091 dmu_recv_begin_arg_t *drba = arg; 1092 dsl_pool_t *dp = dmu_tx_pool(tx); 1093 const char *tofs = drba->drba_cookie->drc_tofs; 1094 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1095 dsl_dataset_t *ds; 1096 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1097 /* 6 extra bytes for /%recv */ 1098 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1099 1100 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1101 recv_clone_name); 1102 1103 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1104 drba->drba_cookie->drc_raw = B_TRUE; 1105 } else { 1106 dsflags |= DS_HOLD_FLAG_DECRYPT; 1107 } 1108 1109 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1110 != 0) { 1111 /* %recv does not exist; continue in tofs */ 1112 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1113 &ds)); 1114 drba->drba_cookie->drc_newfs = B_TRUE; 1115 } 1116 1117 ASSERT(DS_IS_INCONSISTENT(ds)); 1118 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1119 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1120 drba->drba_cookie->drc_raw); 1121 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1122 1123 drba->drba_cookie->drc_ds = ds; 1124 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1125 drba->drba_cookie->drc_should_save = B_TRUE; 1126 1127 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1128 } 1129 1130 /* 1131 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1132 * succeeds; otherwise we will leak the holds on the datasets. 1133 */ 1134 int 1135 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1136 boolean_t force, boolean_t resumable, nvlist_t *localprops, 1137 nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc, 1138 zfs_file_t *fp, offset_t *voffp) 1139 { 1140 dmu_recv_begin_arg_t drba = { 0 }; 1141 int err; 1142 1143 bzero(drc, sizeof (dmu_recv_cookie_t)); 1144 drc->drc_drr_begin = drr_begin; 1145 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1146 drc->drc_tosnap = tosnap; 1147 drc->drc_tofs = tofs; 1148 drc->drc_force = force; 1149 drc->drc_resumable = resumable; 1150 drc->drc_cred = CRED(); 1151 drc->drc_proc = curproc; 1152 drc->drc_clone = (origin != NULL); 1153 1154 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1155 drc->drc_byteswap = B_TRUE; 1156 (void) fletcher_4_incremental_byteswap(drr_begin, 1157 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1158 byteswap_record(drr_begin); 1159 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1160 (void) fletcher_4_incremental_native(drr_begin, 1161 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1162 } else { 1163 return (SET_ERROR(EINVAL)); 1164 } 1165 1166 drc->drc_fp = fp; 1167 drc->drc_voff = *voffp; 1168 drc->drc_featureflags = 1169 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1170 1171 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1172 void *payload = NULL; 1173 if (payloadlen != 0) 1174 payload = kmem_alloc(payloadlen, KM_SLEEP); 1175 1176 err = receive_read_payload_and_next_header(drc, payloadlen, 1177 payload); 1178 if (err != 0) { 1179 kmem_free(payload, payloadlen); 1180 return (err); 1181 } 1182 if (payloadlen != 0) { 1183 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1184 KM_SLEEP); 1185 kmem_free(payload, payloadlen); 1186 if (err != 0) { 1187 kmem_free(drc->drc_next_rrd, 1188 sizeof (*drc->drc_next_rrd)); 1189 return (err); 1190 } 1191 } 1192 1193 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1194 drc->drc_spill = B_TRUE; 1195 1196 drba.drba_origin = origin; 1197 drba.drba_cookie = drc; 1198 drba.drba_cred = CRED(); 1199 drba.drba_proc = curproc; 1200 1201 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1202 err = dsl_sync_task(tofs, 1203 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1204 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1205 } else { 1206 1207 /* 1208 * For non-raw, non-incremental, non-resuming receives the 1209 * user can specify encryption parameters on the command line 1210 * with "zfs recv -o". For these receives we create a dcp and 1211 * pass it to the sync task. Creating the dcp will implicitly 1212 * remove the encryption params from the localprops nvlist, 1213 * which avoids errors when trying to set these normally 1214 * read-only properties. Any other kind of receive that 1215 * attempts to set these properties will fail as a result. 1216 */ 1217 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1218 DMU_BACKUP_FEATURE_RAW) == 0 && 1219 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1220 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1221 localprops, hidden_args, &drba.drba_dcp); 1222 } 1223 1224 if (err == 0) { 1225 err = dsl_sync_task(tofs, 1226 dmu_recv_begin_check, dmu_recv_begin_sync, 1227 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1228 dsl_crypto_params_free(drba.drba_dcp, !!err); 1229 } 1230 } 1231 1232 if (err != 0) { 1233 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1234 nvlist_free(drc->drc_begin_nvl); 1235 } 1236 return (err); 1237 } 1238 1239 static int 1240 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1241 { 1242 int done = 0; 1243 1244 /* 1245 * The code doesn't rely on this (lengths being multiples of 8). See 1246 * comment in dump_bytes. 1247 */ 1248 ASSERT(len % 8 == 0 || 1249 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1250 1251 while (done < len) { 1252 ssize_t resid; 1253 zfs_file_t *fp = drc->drc_fp; 1254 int err = zfs_file_read(fp, (char *)buf + done, 1255 len - done, &resid); 1256 if (resid == len - done) { 1257 /* 1258 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1259 * that the receive was interrupted and can 1260 * potentially be resumed. 1261 */ 1262 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1263 } 1264 drc->drc_voff += len - done - resid; 1265 done = len - resid; 1266 if (err != 0) 1267 return (err); 1268 } 1269 1270 drc->drc_bytes_read += len; 1271 1272 ASSERT3U(done, ==, len); 1273 return (0); 1274 } 1275 1276 static inline uint8_t 1277 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1278 { 1279 if (bonus_type == DMU_OT_SA) { 1280 return (1); 1281 } else { 1282 return (1 + 1283 ((DN_OLD_MAX_BONUSLEN - 1284 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1285 } 1286 } 1287 1288 static void 1289 save_resume_state(struct receive_writer_arg *rwa, 1290 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1291 { 1292 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1293 1294 if (!rwa->resumable) 1295 return; 1296 1297 /* 1298 * We use ds_resume_bytes[] != 0 to indicate that we need to 1299 * update this on disk, so it must not be 0. 1300 */ 1301 ASSERT(rwa->bytes_read != 0); 1302 1303 /* 1304 * We only resume from write records, which have a valid 1305 * (non-meta-dnode) object number. 1306 */ 1307 ASSERT(object != 0); 1308 1309 /* 1310 * For resuming to work correctly, we must receive records in order, 1311 * sorted by object,offset. This is checked by the callers, but 1312 * assert it here for good measure. 1313 */ 1314 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1315 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1316 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1317 ASSERT3U(rwa->bytes_read, >=, 1318 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1319 1320 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1321 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1322 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1323 } 1324 1325 static int 1326 receive_object_is_same_generation(objset_t *os, uint64_t object, 1327 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1328 const void *new_bonus, boolean_t *samegenp) 1329 { 1330 zfs_file_info_t zoi; 1331 int err; 1332 1333 dmu_buf_t *old_bonus_dbuf; 1334 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1335 if (err != 0) 1336 return (err); 1337 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1338 &zoi); 1339 dmu_buf_rele(old_bonus_dbuf, FTAG); 1340 if (err != 0) 1341 return (err); 1342 uint64_t old_gen = zoi.zfi_generation; 1343 1344 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1345 if (err != 0) 1346 return (err); 1347 uint64_t new_gen = zoi.zfi_generation; 1348 1349 *samegenp = (old_gen == new_gen); 1350 return (0); 1351 } 1352 1353 static int 1354 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1355 const struct drr_object *drro, const dmu_object_info_t *doi, 1356 const void *bonus_data, 1357 uint64_t *object_to_hold, uint32_t *new_blksz) 1358 { 1359 uint32_t indblksz = drro->drr_indblkshift ? 1360 1ULL << drro->drr_indblkshift : 0; 1361 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1362 drro->drr_bonuslen); 1363 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1364 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1365 boolean_t do_free_range = B_FALSE; 1366 int err; 1367 1368 *object_to_hold = drro->drr_object; 1369 1370 /* nblkptr should be bounded by the bonus size and type */ 1371 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1372 return (SET_ERROR(EINVAL)); 1373 1374 /* 1375 * After the previous send stream, the sending system may 1376 * have freed this object, and then happened to re-allocate 1377 * this object number in a later txg. In this case, we are 1378 * receiving a different logical file, and the block size may 1379 * appear to be different. i.e. we may have a different 1380 * block size for this object than what the send stream says. 1381 * In this case we need to remove the object's contents, 1382 * so that its structure can be changed and then its contents 1383 * entirely replaced by subsequent WRITE records. 1384 * 1385 * If this is a -L (--large-block) incremental stream, and 1386 * the previous stream was not -L, the block size may appear 1387 * to increase. i.e. we may have a smaller block size for 1388 * this object than what the send stream says. In this case 1389 * we need to keep the object's contents and block size 1390 * intact, so that we don't lose parts of the object's 1391 * contents that are not changed by this incremental send 1392 * stream. 1393 * 1394 * We can distinguish between the two above cases by using 1395 * the ZPL's generation number (see 1396 * receive_object_is_same_generation()). However, we only 1397 * want to rely on the generation number when absolutely 1398 * necessary, because with raw receives, the generation is 1399 * encrypted. We also want to minimize dependence on the 1400 * ZPL, so that other types of datasets can also be received 1401 * (e.g. ZVOLs, although note that ZVOLS currently do not 1402 * reallocate their objects or change their structure). 1403 * Therefore, we check a number of different cases where we 1404 * know it is safe to discard the object's contents, before 1405 * using the ZPL's generation number to make the above 1406 * distinction. 1407 */ 1408 if (drro->drr_blksz != doi->doi_data_block_size) { 1409 if (rwa->raw) { 1410 /* 1411 * RAW streams always have large blocks, so 1412 * we are sure that the data is not needed 1413 * due to changing --large-block to be on. 1414 * Which is fortunate since the bonus buffer 1415 * (which contains the ZPL generation) is 1416 * encrypted, and the key might not be 1417 * loaded. 1418 */ 1419 do_free_range = B_TRUE; 1420 } else if (rwa->full) { 1421 /* 1422 * This is a full send stream, so it always 1423 * replaces what we have. Even if the 1424 * generation numbers happen to match, this 1425 * can not actually be the same logical file. 1426 * This is relevant when receiving a full 1427 * send as a clone. 1428 */ 1429 do_free_range = B_TRUE; 1430 } else if (drro->drr_type != 1431 DMU_OT_PLAIN_FILE_CONTENTS || 1432 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1433 /* 1434 * PLAIN_FILE_CONTENTS are the only type of 1435 * objects that have ever been stored with 1436 * large blocks, so we don't need the special 1437 * logic below. ZAP blocks can shrink (when 1438 * there's only one block), so we don't want 1439 * to hit the error below about block size 1440 * only increasing. 1441 */ 1442 do_free_range = B_TRUE; 1443 } else if (doi->doi_max_offset <= 1444 doi->doi_data_block_size) { 1445 /* 1446 * There is only one block. We can free it, 1447 * because its contents will be replaced by a 1448 * WRITE record. This can not be the no-L -> 1449 * -L case, because the no-L case would have 1450 * resulted in multiple blocks. If we 1451 * supported -L -> no-L, it would not be safe 1452 * to free the file's contents. Fortunately, 1453 * that is not allowed (see 1454 * recv_check_large_blocks()). 1455 */ 1456 do_free_range = B_TRUE; 1457 } else { 1458 boolean_t is_same_gen; 1459 err = receive_object_is_same_generation(rwa->os, 1460 drro->drr_object, doi->doi_bonus_type, 1461 drro->drr_bonustype, bonus_data, &is_same_gen); 1462 if (err != 0) 1463 return (SET_ERROR(EINVAL)); 1464 1465 if (is_same_gen) { 1466 /* 1467 * This is the same logical file, and 1468 * the block size must be increasing. 1469 * It could only decrease if 1470 * --large-block was changed to be 1471 * off, which is checked in 1472 * recv_check_large_blocks(). 1473 */ 1474 if (drro->drr_blksz <= 1475 doi->doi_data_block_size) 1476 return (SET_ERROR(EINVAL)); 1477 /* 1478 * We keep the existing blocksize and 1479 * contents. 1480 */ 1481 *new_blksz = 1482 doi->doi_data_block_size; 1483 } else { 1484 do_free_range = B_TRUE; 1485 } 1486 } 1487 } 1488 1489 /* nblkptr can only decrease if the object was reallocated */ 1490 if (nblkptr < doi->doi_nblkptr) 1491 do_free_range = B_TRUE; 1492 1493 /* number of slots can only change on reallocation */ 1494 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1495 do_free_range = B_TRUE; 1496 1497 /* 1498 * For raw sends we also check a few other fields to 1499 * ensure we are preserving the objset structure exactly 1500 * as it was on the receive side: 1501 * - A changed indirect block size 1502 * - A smaller nlevels 1503 */ 1504 if (rwa->raw) { 1505 if (indblksz != doi->doi_metadata_block_size) 1506 do_free_range = B_TRUE; 1507 if (drro->drr_nlevels < doi->doi_indirection) 1508 do_free_range = B_TRUE; 1509 } 1510 1511 if (do_free_range) { 1512 err = dmu_free_long_range(rwa->os, drro->drr_object, 1513 0, DMU_OBJECT_END); 1514 if (err != 0) 1515 return (SET_ERROR(EINVAL)); 1516 } 1517 1518 /* 1519 * The dmu does not currently support decreasing nlevels 1520 * or changing the number of dnode slots on an object. For 1521 * non-raw sends, this does not matter and the new object 1522 * can just use the previous one's nlevels. For raw sends, 1523 * however, the structure of the received dnode (including 1524 * nlevels and dnode slots) must match that of the send 1525 * side. Therefore, instead of using dmu_object_reclaim(), 1526 * we must free the object completely and call 1527 * dmu_object_claim_dnsize() instead. 1528 */ 1529 if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) || 1530 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1531 err = dmu_free_long_object(rwa->os, drro->drr_object); 1532 if (err != 0) 1533 return (SET_ERROR(EINVAL)); 1534 1535 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1536 *object_to_hold = DMU_NEW_OBJECT; 1537 } 1538 1539 /* 1540 * For raw receives, free everything beyond the new incoming 1541 * maxblkid. Normally this would be done with a DRR_FREE 1542 * record that would come after this DRR_OBJECT record is 1543 * processed. However, for raw receives we manually set the 1544 * maxblkid from the drr_maxblkid and so we must first free 1545 * everything above that blkid to ensure the DMU is always 1546 * consistent with itself. We will never free the first block 1547 * of the object here because a maxblkid of 0 could indicate 1548 * an object with a single block or one with no blocks. This 1549 * free may be skipped when dmu_free_long_range() was called 1550 * above since it covers the entire object's contents. 1551 */ 1552 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1553 err = dmu_free_long_range(rwa->os, drro->drr_object, 1554 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1555 DMU_OBJECT_END); 1556 if (err != 0) 1557 return (SET_ERROR(EINVAL)); 1558 } 1559 return (0); 1560 } 1561 1562 noinline static int 1563 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1564 void *data) 1565 { 1566 dmu_object_info_t doi; 1567 dmu_tx_t *tx; 1568 int err; 1569 uint32_t new_blksz = drro->drr_blksz; 1570 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1571 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1572 1573 if (drro->drr_type == DMU_OT_NONE || 1574 !DMU_OT_IS_VALID(drro->drr_type) || 1575 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1576 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1577 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1578 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1579 drro->drr_blksz < SPA_MINBLOCKSIZE || 1580 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1581 drro->drr_bonuslen > 1582 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1583 dn_slots > 1584 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1585 return (SET_ERROR(EINVAL)); 1586 } 1587 1588 if (rwa->raw) { 1589 /* 1590 * We should have received a DRR_OBJECT_RANGE record 1591 * containing this block and stored it in rwa. 1592 */ 1593 if (drro->drr_object < rwa->or_firstobj || 1594 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1595 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1596 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1597 drro->drr_nlevels > DN_MAX_LEVELS || 1598 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1599 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1600 drro->drr_raw_bonuslen) 1601 return (SET_ERROR(EINVAL)); 1602 } else { 1603 /* 1604 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1605 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1606 */ 1607 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1608 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1609 return (SET_ERROR(EINVAL)); 1610 } 1611 1612 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1613 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1614 return (SET_ERROR(EINVAL)); 1615 } 1616 } 1617 1618 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1619 1620 if (err != 0 && err != ENOENT && err != EEXIST) 1621 return (SET_ERROR(EINVAL)); 1622 1623 if (drro->drr_object > rwa->max_object) 1624 rwa->max_object = drro->drr_object; 1625 1626 /* 1627 * If we are losing blkptrs or changing the block size this must 1628 * be a new file instance. We must clear out the previous file 1629 * contents before we can change this type of metadata in the dnode. 1630 * Raw receives will also check that the indirect structure of the 1631 * dnode hasn't changed. 1632 */ 1633 uint64_t object_to_hold; 1634 if (err == 0) { 1635 err = receive_handle_existing_object(rwa, drro, &doi, data, 1636 &object_to_hold, &new_blksz); 1637 } else if (err == EEXIST) { 1638 /* 1639 * The object requested is currently an interior slot of a 1640 * multi-slot dnode. This will be resolved when the next txg 1641 * is synced out, since the send stream will have told us 1642 * to free this slot when we freed the associated dnode 1643 * earlier in the stream. 1644 */ 1645 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1646 1647 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1648 return (SET_ERROR(EINVAL)); 1649 1650 /* object was freed and we are about to allocate a new one */ 1651 object_to_hold = DMU_NEW_OBJECT; 1652 } else { 1653 /* object is free and we are about to allocate a new one */ 1654 object_to_hold = DMU_NEW_OBJECT; 1655 } 1656 1657 /* 1658 * If this is a multi-slot dnode there is a chance that this 1659 * object will expand into a slot that is already used by 1660 * another object from the previous snapshot. We must free 1661 * these objects before we attempt to allocate the new dnode. 1662 */ 1663 if (dn_slots > 1) { 1664 boolean_t need_sync = B_FALSE; 1665 1666 for (uint64_t slot = drro->drr_object + 1; 1667 slot < drro->drr_object + dn_slots; 1668 slot++) { 1669 dmu_object_info_t slot_doi; 1670 1671 err = dmu_object_info(rwa->os, slot, &slot_doi); 1672 if (err == ENOENT || err == EEXIST) 1673 continue; 1674 else if (err != 0) 1675 return (err); 1676 1677 err = dmu_free_long_object(rwa->os, slot); 1678 if (err != 0) 1679 return (err); 1680 1681 need_sync = B_TRUE; 1682 } 1683 1684 if (need_sync) 1685 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1686 } 1687 1688 tx = dmu_tx_create(rwa->os); 1689 dmu_tx_hold_bonus(tx, object_to_hold); 1690 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1691 err = dmu_tx_assign(tx, TXG_WAIT); 1692 if (err != 0) { 1693 dmu_tx_abort(tx); 1694 return (err); 1695 } 1696 1697 if (object_to_hold == DMU_NEW_OBJECT) { 1698 /* Currently free, wants to be allocated */ 1699 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1700 drro->drr_type, new_blksz, 1701 drro->drr_bonustype, drro->drr_bonuslen, 1702 dn_slots << DNODE_SHIFT, tx); 1703 } else if (drro->drr_type != doi.doi_type || 1704 new_blksz != doi.doi_data_block_size || 1705 drro->drr_bonustype != doi.doi_bonus_type || 1706 drro->drr_bonuslen != doi.doi_bonus_size) { 1707 /* Currently allocated, but with different properties */ 1708 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 1709 drro->drr_type, new_blksz, 1710 drro->drr_bonustype, drro->drr_bonuslen, 1711 dn_slots << DNODE_SHIFT, rwa->spill ? 1712 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 1713 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 1714 /* 1715 * Currently allocated, the existing version of this object 1716 * may reference a spill block that is no longer allocated 1717 * at the source and needs to be freed. 1718 */ 1719 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 1720 } 1721 1722 if (err != 0) { 1723 dmu_tx_commit(tx); 1724 return (SET_ERROR(EINVAL)); 1725 } 1726 1727 if (rwa->or_crypt_params_present) { 1728 /* 1729 * Set the crypt params for the buffer associated with this 1730 * range of dnodes. This causes the blkptr_t to have the 1731 * same crypt params (byteorder, salt, iv, mac) as on the 1732 * sending side. 1733 * 1734 * Since we are committing this tx now, it is possible for 1735 * the dnode block to end up on-disk with the incorrect MAC, 1736 * if subsequent objects in this block are received in a 1737 * different txg. However, since the dataset is marked as 1738 * inconsistent, no code paths will do a non-raw read (or 1739 * decrypt the block / verify the MAC). The receive code and 1740 * scrub code can safely do raw reads and verify the 1741 * checksum. They don't need to verify the MAC. 1742 */ 1743 dmu_buf_t *db = NULL; 1744 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 1745 1746 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 1747 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 1748 if (err != 0) { 1749 dmu_tx_commit(tx); 1750 return (SET_ERROR(EINVAL)); 1751 } 1752 1753 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 1754 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 1755 1756 dmu_buf_rele(db, FTAG); 1757 1758 rwa->or_crypt_params_present = B_FALSE; 1759 } 1760 1761 dmu_object_set_checksum(rwa->os, drro->drr_object, 1762 drro->drr_checksumtype, tx); 1763 dmu_object_set_compress(rwa->os, drro->drr_object, 1764 drro->drr_compress, tx); 1765 1766 /* handle more restrictive dnode structuring for raw recvs */ 1767 if (rwa->raw) { 1768 /* 1769 * Set the indirect block size, block shift, nlevels. 1770 * This will not fail because we ensured all of the 1771 * blocks were freed earlier if this is a new object. 1772 * For non-new objects block size and indirect block 1773 * shift cannot change and nlevels can only increase. 1774 */ 1775 ASSERT3U(new_blksz, ==, drro->drr_blksz); 1776 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 1777 drro->drr_blksz, drro->drr_indblkshift, tx)); 1778 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 1779 drro->drr_nlevels, tx)); 1780 1781 /* 1782 * Set the maxblkid. This will always succeed because 1783 * we freed all blocks beyond the new maxblkid above. 1784 */ 1785 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 1786 drro->drr_maxblkid, tx)); 1787 } 1788 1789 if (data != NULL) { 1790 dmu_buf_t *db; 1791 dnode_t *dn; 1792 uint32_t flags = DMU_READ_NO_PREFETCH; 1793 1794 if (rwa->raw) 1795 flags |= DMU_READ_NO_DECRYPT; 1796 1797 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 1798 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 1799 1800 dmu_buf_will_dirty(db, tx); 1801 1802 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 1803 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 1804 1805 /* 1806 * Raw bonus buffers have their byteorder determined by the 1807 * DRR_OBJECT_RANGE record. 1808 */ 1809 if (rwa->byteswap && !rwa->raw) { 1810 dmu_object_byteswap_t byteswap = 1811 DMU_OT_BYTESWAP(drro->drr_bonustype); 1812 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 1813 DRR_OBJECT_PAYLOAD_SIZE(drro)); 1814 } 1815 dmu_buf_rele(db, FTAG); 1816 dnode_rele(dn, FTAG); 1817 } 1818 dmu_tx_commit(tx); 1819 1820 return (0); 1821 } 1822 1823 /* ARGSUSED */ 1824 noinline static int 1825 receive_freeobjects(struct receive_writer_arg *rwa, 1826 struct drr_freeobjects *drrfo) 1827 { 1828 uint64_t obj; 1829 int next_err = 0; 1830 1831 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 1832 return (SET_ERROR(EINVAL)); 1833 1834 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 1835 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 1836 obj < DN_MAX_OBJECT && next_err == 0; 1837 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 1838 dmu_object_info_t doi; 1839 int err; 1840 1841 err = dmu_object_info(rwa->os, obj, &doi); 1842 if (err == ENOENT) 1843 continue; 1844 else if (err != 0) 1845 return (err); 1846 1847 err = dmu_free_long_object(rwa->os, obj); 1848 1849 if (err != 0) 1850 return (err); 1851 } 1852 if (next_err != ESRCH) 1853 return (next_err); 1854 return (0); 1855 } 1856 1857 /* 1858 * Note: if this fails, the caller will clean up any records left on the 1859 * rwa->write_batch list. 1860 */ 1861 static int 1862 flush_write_batch_impl(struct receive_writer_arg *rwa) 1863 { 1864 dnode_t *dn; 1865 int err; 1866 1867 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 1868 return (SET_ERROR(EINVAL)); 1869 1870 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 1871 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 1872 1873 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 1874 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 1875 1876 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 1877 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 1878 1879 dmu_tx_t *tx = dmu_tx_create(rwa->os); 1880 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 1881 last_drrw->drr_offset - first_drrw->drr_offset + 1882 last_drrw->drr_logical_size); 1883 err = dmu_tx_assign(tx, TXG_WAIT); 1884 if (err != 0) { 1885 dmu_tx_abort(tx); 1886 dnode_rele(dn, FTAG); 1887 return (err); 1888 } 1889 1890 struct receive_record_arg *rrd; 1891 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 1892 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 1893 abd_t *abd = rrd->abd; 1894 1895 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 1896 1897 if (drrw->drr_logical_size != dn->dn_datablksz) { 1898 /* 1899 * The WRITE record is larger than the object's block 1900 * size. We must be receiving an incremental 1901 * large-block stream into a dataset that previously did 1902 * a non-large-block receive. Lightweight writes must 1903 * be exactly one block, so we need to decompress the 1904 * data (if compressed) and do a normal dmu_write(). 1905 */ 1906 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 1907 if (DRR_WRITE_COMPRESSED(drrw)) { 1908 abd_t *decomp_abd = 1909 abd_alloc_linear(drrw->drr_logical_size, 1910 B_FALSE); 1911 1912 err = zio_decompress_data( 1913 drrw->drr_compressiontype, 1914 abd, abd_to_buf(decomp_abd), 1915 abd_get_size(abd), 1916 abd_get_size(decomp_abd), NULL); 1917 1918 if (err == 0) { 1919 dmu_write_by_dnode(dn, 1920 drrw->drr_offset, 1921 drrw->drr_logical_size, 1922 abd_to_buf(decomp_abd), tx); 1923 } 1924 abd_free(decomp_abd); 1925 } else { 1926 dmu_write_by_dnode(dn, 1927 drrw->drr_offset, 1928 drrw->drr_logical_size, 1929 abd_to_buf(abd), tx); 1930 } 1931 if (err == 0) 1932 abd_free(abd); 1933 } else { 1934 zio_prop_t zp; 1935 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 1936 1937 enum zio_flag zio_flags = 0; 1938 1939 if (rwa->raw) { 1940 zp.zp_encrypt = B_TRUE; 1941 zp.zp_compress = drrw->drr_compressiontype; 1942 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 1943 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 1944 rwa->byteswap; 1945 bcopy(drrw->drr_salt, zp.zp_salt, 1946 ZIO_DATA_SALT_LEN); 1947 bcopy(drrw->drr_iv, zp.zp_iv, 1948 ZIO_DATA_IV_LEN); 1949 bcopy(drrw->drr_mac, zp.zp_mac, 1950 ZIO_DATA_MAC_LEN); 1951 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 1952 zp.zp_nopwrite = B_FALSE; 1953 zp.zp_copies = MIN(zp.zp_copies, 1954 SPA_DVAS_PER_BP - 1); 1955 } 1956 zio_flags |= ZIO_FLAG_RAW; 1957 } else if (DRR_WRITE_COMPRESSED(drrw)) { 1958 ASSERT3U(drrw->drr_compressed_size, >, 0); 1959 ASSERT3U(drrw->drr_logical_size, >=, 1960 drrw->drr_compressed_size); 1961 zp.zp_compress = drrw->drr_compressiontype; 1962 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 1963 } else if (rwa->byteswap) { 1964 /* 1965 * Note: compressed blocks never need to be 1966 * byteswapped, because WRITE records for 1967 * metadata blocks are never compressed. The 1968 * exception is raw streams, which are written 1969 * in the original byteorder, and the byteorder 1970 * bit is preserved in the BP by setting 1971 * zp_byteorder above. 1972 */ 1973 dmu_object_byteswap_t byteswap = 1974 DMU_OT_BYTESWAP(drrw->drr_type); 1975 dmu_ot_byteswap[byteswap].ob_func( 1976 abd_to_buf(abd), 1977 DRR_WRITE_PAYLOAD_SIZE(drrw)); 1978 } 1979 1980 /* 1981 * Since this data can't be read until the receive 1982 * completes, we can do a "lightweight" write for 1983 * improved performance. 1984 */ 1985 err = dmu_lightweight_write_by_dnode(dn, 1986 drrw->drr_offset, abd, &zp, zio_flags, tx); 1987 } 1988 1989 if (err != 0) { 1990 /* 1991 * This rrd is left on the list, so the caller will 1992 * free it (and the abd). 1993 */ 1994 break; 1995 } 1996 1997 /* 1998 * Note: If the receive fails, we want the resume stream to 1999 * start with the same record that we last successfully 2000 * received (as opposed to the next record), so that we can 2001 * verify that we are resuming from the correct location. 2002 */ 2003 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2004 2005 list_remove(&rwa->write_batch, rrd); 2006 kmem_free(rrd, sizeof (*rrd)); 2007 } 2008 2009 dmu_tx_commit(tx); 2010 dnode_rele(dn, FTAG); 2011 return (err); 2012 } 2013 2014 noinline static int 2015 flush_write_batch(struct receive_writer_arg *rwa) 2016 { 2017 if (list_is_empty(&rwa->write_batch)) 2018 return (0); 2019 int err = rwa->err; 2020 if (err == 0) 2021 err = flush_write_batch_impl(rwa); 2022 if (err != 0) { 2023 struct receive_record_arg *rrd; 2024 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2025 abd_free(rrd->abd); 2026 kmem_free(rrd, sizeof (*rrd)); 2027 } 2028 } 2029 ASSERT(list_is_empty(&rwa->write_batch)); 2030 return (err); 2031 } 2032 2033 noinline static int 2034 receive_process_write_record(struct receive_writer_arg *rwa, 2035 struct receive_record_arg *rrd) 2036 { 2037 int err = 0; 2038 2039 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2040 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2041 2042 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2043 !DMU_OT_IS_VALID(drrw->drr_type)) 2044 return (SET_ERROR(EINVAL)); 2045 2046 /* 2047 * For resuming to work, records must be in increasing order 2048 * by (object, offset). 2049 */ 2050 if (drrw->drr_object < rwa->last_object || 2051 (drrw->drr_object == rwa->last_object && 2052 drrw->drr_offset < rwa->last_offset)) { 2053 return (SET_ERROR(EINVAL)); 2054 } 2055 2056 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2057 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2058 uint64_t batch_size = 2059 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2060 if (first_rrd != NULL && 2061 (drrw->drr_object != first_drrw->drr_object || 2062 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2063 err = flush_write_batch(rwa); 2064 if (err != 0) 2065 return (err); 2066 } 2067 2068 rwa->last_object = drrw->drr_object; 2069 rwa->last_offset = drrw->drr_offset; 2070 2071 if (rwa->last_object > rwa->max_object) 2072 rwa->max_object = rwa->last_object; 2073 2074 list_insert_tail(&rwa->write_batch, rrd); 2075 /* 2076 * Return EAGAIN to indicate that we will use this rrd again, 2077 * so the caller should not free it 2078 */ 2079 return (EAGAIN); 2080 } 2081 2082 static int 2083 receive_write_embedded(struct receive_writer_arg *rwa, 2084 struct drr_write_embedded *drrwe, void *data) 2085 { 2086 dmu_tx_t *tx; 2087 int err; 2088 2089 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2090 return (SET_ERROR(EINVAL)); 2091 2092 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2093 return (SET_ERROR(EINVAL)); 2094 2095 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2096 return (SET_ERROR(EINVAL)); 2097 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2098 return (SET_ERROR(EINVAL)); 2099 if (rwa->raw) 2100 return (SET_ERROR(EINVAL)); 2101 2102 if (drrwe->drr_object > rwa->max_object) 2103 rwa->max_object = drrwe->drr_object; 2104 2105 tx = dmu_tx_create(rwa->os); 2106 2107 dmu_tx_hold_write(tx, drrwe->drr_object, 2108 drrwe->drr_offset, drrwe->drr_length); 2109 err = dmu_tx_assign(tx, TXG_WAIT); 2110 if (err != 0) { 2111 dmu_tx_abort(tx); 2112 return (err); 2113 } 2114 2115 dmu_write_embedded(rwa->os, drrwe->drr_object, 2116 drrwe->drr_offset, data, drrwe->drr_etype, 2117 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2118 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2119 2120 /* See comment in restore_write. */ 2121 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2122 dmu_tx_commit(tx); 2123 return (0); 2124 } 2125 2126 static int 2127 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2128 abd_t *abd) 2129 { 2130 dmu_buf_t *db, *db_spill; 2131 int err; 2132 2133 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2134 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2135 return (SET_ERROR(EINVAL)); 2136 2137 /* 2138 * This is an unmodified spill block which was added to the stream 2139 * to resolve an issue with incorrectly removing spill blocks. It 2140 * should be ignored by current versions of the code which support 2141 * the DRR_FLAG_SPILL_BLOCK flag. 2142 */ 2143 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2144 abd_free(abd); 2145 return (0); 2146 } 2147 2148 if (rwa->raw) { 2149 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2150 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2151 drrs->drr_compressed_size == 0) 2152 return (SET_ERROR(EINVAL)); 2153 } 2154 2155 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2156 return (SET_ERROR(EINVAL)); 2157 2158 if (drrs->drr_object > rwa->max_object) 2159 rwa->max_object = drrs->drr_object; 2160 2161 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2162 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2163 &db_spill)) != 0) { 2164 dmu_buf_rele(db, FTAG); 2165 return (err); 2166 } 2167 2168 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2169 2170 dmu_tx_hold_spill(tx, db->db_object); 2171 2172 err = dmu_tx_assign(tx, TXG_WAIT); 2173 if (err != 0) { 2174 dmu_buf_rele(db, FTAG); 2175 dmu_buf_rele(db_spill, FTAG); 2176 dmu_tx_abort(tx); 2177 return (err); 2178 } 2179 2180 /* 2181 * Spill blocks may both grow and shrink. When a change in size 2182 * occurs any existing dbuf must be updated to match the logical 2183 * size of the provided arc_buf_t. 2184 */ 2185 if (db_spill->db_size != drrs->drr_length) { 2186 dmu_buf_will_fill(db_spill, tx); 2187 VERIFY0(dbuf_spill_set_blksz(db_spill, 2188 drrs->drr_length, tx)); 2189 } 2190 2191 arc_buf_t *abuf; 2192 if (rwa->raw) { 2193 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2194 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2195 rwa->byteswap; 2196 2197 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2198 drrs->drr_object, byteorder, drrs->drr_salt, 2199 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2200 drrs->drr_compressed_size, drrs->drr_length, 2201 drrs->drr_compressiontype, 0); 2202 } else { 2203 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2204 DMU_OT_IS_METADATA(drrs->drr_type), 2205 drrs->drr_length); 2206 if (rwa->byteswap) { 2207 dmu_object_byteswap_t byteswap = 2208 DMU_OT_BYTESWAP(drrs->drr_type); 2209 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2210 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2211 } 2212 } 2213 2214 bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs)); 2215 abd_free(abd); 2216 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2217 2218 dmu_buf_rele(db, FTAG); 2219 dmu_buf_rele(db_spill, FTAG); 2220 2221 dmu_tx_commit(tx); 2222 return (0); 2223 } 2224 2225 /* ARGSUSED */ 2226 noinline static int 2227 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2228 { 2229 int err; 2230 2231 if (drrf->drr_length != -1ULL && 2232 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2233 return (SET_ERROR(EINVAL)); 2234 2235 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2236 return (SET_ERROR(EINVAL)); 2237 2238 if (drrf->drr_object > rwa->max_object) 2239 rwa->max_object = drrf->drr_object; 2240 2241 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2242 drrf->drr_offset, drrf->drr_length); 2243 2244 return (err); 2245 } 2246 2247 static int 2248 receive_object_range(struct receive_writer_arg *rwa, 2249 struct drr_object_range *drror) 2250 { 2251 /* 2252 * By default, we assume this block is in our native format 2253 * (ZFS_HOST_BYTEORDER). We then take into account whether 2254 * the send stream is byteswapped (rwa->byteswap). Finally, 2255 * we need to byteswap again if this particular block was 2256 * in non-native format on the send side. 2257 */ 2258 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2259 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2260 2261 /* 2262 * Since dnode block sizes are constant, we should not need to worry 2263 * about making sure that the dnode block size is the same on the 2264 * sending and receiving sides for the time being. For non-raw sends, 2265 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2266 * record at all). Raw sends require this record type because the 2267 * encryption parameters are used to protect an entire block of bonus 2268 * buffers. If the size of dnode blocks ever becomes variable, 2269 * handling will need to be added to ensure that dnode block sizes 2270 * match on the sending and receiving side. 2271 */ 2272 if (drror->drr_numslots != DNODES_PER_BLOCK || 2273 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2274 !rwa->raw) 2275 return (SET_ERROR(EINVAL)); 2276 2277 if (drror->drr_firstobj > rwa->max_object) 2278 rwa->max_object = drror->drr_firstobj; 2279 2280 /* 2281 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2282 * so that the block of dnodes is not written out when it's empty, 2283 * and converted to a HOLE BP. 2284 */ 2285 rwa->or_crypt_params_present = B_TRUE; 2286 rwa->or_firstobj = drror->drr_firstobj; 2287 rwa->or_numslots = drror->drr_numslots; 2288 bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN); 2289 bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN); 2290 bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN); 2291 rwa->or_byteorder = byteorder; 2292 2293 return (0); 2294 } 2295 2296 /* 2297 * Until we have the ability to redact large ranges of data efficiently, we 2298 * process these records as frees. 2299 */ 2300 /* ARGSUSED */ 2301 noinline static int 2302 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2303 { 2304 struct drr_free drrf = {0}; 2305 drrf.drr_length = drrr->drr_length; 2306 drrf.drr_object = drrr->drr_object; 2307 drrf.drr_offset = drrr->drr_offset; 2308 drrf.drr_toguid = drrr->drr_toguid; 2309 return (receive_free(rwa, &drrf)); 2310 } 2311 2312 /* used to destroy the drc_ds on error */ 2313 static void 2314 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2315 { 2316 dsl_dataset_t *ds = drc->drc_ds; 2317 ds_hold_flags_t dsflags; 2318 2319 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2320 /* 2321 * Wait for the txg sync before cleaning up the receive. For 2322 * resumable receives, this ensures that our resume state has 2323 * been written out to disk. For raw receives, this ensures 2324 * that the user accounting code will not attempt to do anything 2325 * after we stopped receiving the dataset. 2326 */ 2327 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2328 ds->ds_objset->os_raw_receive = B_FALSE; 2329 2330 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2331 if (drc->drc_resumable && drc->drc_should_save && 2332 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2333 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2334 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2335 } else { 2336 char name[ZFS_MAX_DATASET_NAME_LEN]; 2337 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2338 dsl_dataset_name(ds, name); 2339 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2340 (void) dsl_destroy_head(name); 2341 } 2342 } 2343 2344 static void 2345 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2346 { 2347 if (drc->drc_byteswap) { 2348 (void) fletcher_4_incremental_byteswap(buf, len, 2349 &drc->drc_cksum); 2350 } else { 2351 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2352 } 2353 } 2354 2355 /* 2356 * Read the payload into a buffer of size len, and update the current record's 2357 * payload field. 2358 * Allocate drc->drc_next_rrd and read the next record's header into 2359 * drc->drc_next_rrd->header. 2360 * Verify checksum of payload and next record. 2361 */ 2362 static int 2363 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2364 { 2365 int err; 2366 2367 if (len != 0) { 2368 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2369 err = receive_read(drc, len, buf); 2370 if (err != 0) 2371 return (err); 2372 receive_cksum(drc, len, buf); 2373 2374 /* note: rrd is NULL when reading the begin record's payload */ 2375 if (drc->drc_rrd != NULL) { 2376 drc->drc_rrd->payload = buf; 2377 drc->drc_rrd->payload_size = len; 2378 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2379 } 2380 } else { 2381 ASSERT3P(buf, ==, NULL); 2382 } 2383 2384 drc->drc_prev_cksum = drc->drc_cksum; 2385 2386 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2387 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2388 &drc->drc_next_rrd->header); 2389 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2390 2391 if (err != 0) { 2392 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2393 drc->drc_next_rrd = NULL; 2394 return (err); 2395 } 2396 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2397 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2398 drc->drc_next_rrd = NULL; 2399 return (SET_ERROR(EINVAL)); 2400 } 2401 2402 /* 2403 * Note: checksum is of everything up to but not including the 2404 * checksum itself. 2405 */ 2406 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2407 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2408 receive_cksum(drc, 2409 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2410 &drc->drc_next_rrd->header); 2411 2412 zio_cksum_t cksum_orig = 2413 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2414 zio_cksum_t *cksump = 2415 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2416 2417 if (drc->drc_byteswap) 2418 byteswap_record(&drc->drc_next_rrd->header); 2419 2420 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2421 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2422 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2423 drc->drc_next_rrd = NULL; 2424 return (SET_ERROR(ECKSUM)); 2425 } 2426 2427 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2428 2429 return (0); 2430 } 2431 2432 /* 2433 * Issue the prefetch reads for any necessary indirect blocks. 2434 * 2435 * We use the object ignore list to tell us whether or not to issue prefetches 2436 * for a given object. We do this for both correctness (in case the blocksize 2437 * of an object has changed) and performance (if the object doesn't exist, don't 2438 * needlessly try to issue prefetches). We also trim the list as we go through 2439 * the stream to prevent it from growing to an unbounded size. 2440 * 2441 * The object numbers within will always be in sorted order, and any write 2442 * records we see will also be in sorted order, but they're not sorted with 2443 * respect to each other (i.e. we can get several object records before 2444 * receiving each object's write records). As a result, once we've reached a 2445 * given object number, we can safely remove any reference to lower object 2446 * numbers in the ignore list. In practice, we receive up to 32 object records 2447 * before receiving write records, so the list can have up to 32 nodes in it. 2448 */ 2449 /* ARGSUSED */ 2450 static void 2451 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2452 uint64_t length) 2453 { 2454 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2455 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2456 ZIO_PRIORITY_SYNC_READ); 2457 } 2458 } 2459 2460 /* 2461 * Read records off the stream, issuing any necessary prefetches. 2462 */ 2463 static int 2464 receive_read_record(dmu_recv_cookie_t *drc) 2465 { 2466 int err; 2467 2468 switch (drc->drc_rrd->header.drr_type) { 2469 case DRR_OBJECT: 2470 { 2471 struct drr_object *drro = 2472 &drc->drc_rrd->header.drr_u.drr_object; 2473 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2474 void *buf = NULL; 2475 dmu_object_info_t doi; 2476 2477 if (size != 0) 2478 buf = kmem_zalloc(size, KM_SLEEP); 2479 2480 err = receive_read_payload_and_next_header(drc, size, buf); 2481 if (err != 0) { 2482 kmem_free(buf, size); 2483 return (err); 2484 } 2485 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2486 /* 2487 * See receive_read_prefetch for an explanation why we're 2488 * storing this object in the ignore_obj_list. 2489 */ 2490 if (err == ENOENT || err == EEXIST || 2491 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2492 objlist_insert(drc->drc_ignore_objlist, 2493 drro->drr_object); 2494 err = 0; 2495 } 2496 return (err); 2497 } 2498 case DRR_FREEOBJECTS: 2499 { 2500 err = receive_read_payload_and_next_header(drc, 0, NULL); 2501 return (err); 2502 } 2503 case DRR_WRITE: 2504 { 2505 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2506 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2507 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2508 err = receive_read_payload_and_next_header(drc, size, 2509 abd_to_buf(abd)); 2510 if (err != 0) { 2511 abd_free(abd); 2512 return (err); 2513 } 2514 drc->drc_rrd->abd = abd; 2515 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2516 drrw->drr_logical_size); 2517 return (err); 2518 } 2519 case DRR_WRITE_EMBEDDED: 2520 { 2521 struct drr_write_embedded *drrwe = 2522 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2523 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2524 void *buf = kmem_zalloc(size, KM_SLEEP); 2525 2526 err = receive_read_payload_and_next_header(drc, size, buf); 2527 if (err != 0) { 2528 kmem_free(buf, size); 2529 return (err); 2530 } 2531 2532 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2533 drrwe->drr_length); 2534 return (err); 2535 } 2536 case DRR_FREE: 2537 case DRR_REDACT: 2538 { 2539 /* 2540 * It might be beneficial to prefetch indirect blocks here, but 2541 * we don't really have the data to decide for sure. 2542 */ 2543 err = receive_read_payload_and_next_header(drc, 0, NULL); 2544 return (err); 2545 } 2546 case DRR_END: 2547 { 2548 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2549 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2550 drre->drr_checksum)) 2551 return (SET_ERROR(ECKSUM)); 2552 return (0); 2553 } 2554 case DRR_SPILL: 2555 { 2556 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2557 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2558 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2559 err = receive_read_payload_and_next_header(drc, size, 2560 abd_to_buf(abd)); 2561 if (err != 0) 2562 abd_free(abd); 2563 else 2564 drc->drc_rrd->abd = abd; 2565 return (err); 2566 } 2567 case DRR_OBJECT_RANGE: 2568 { 2569 err = receive_read_payload_and_next_header(drc, 0, NULL); 2570 return (err); 2571 2572 } 2573 default: 2574 return (SET_ERROR(EINVAL)); 2575 } 2576 } 2577 2578 2579 2580 static void 2581 dprintf_drr(struct receive_record_arg *rrd, int err) 2582 { 2583 #ifdef ZFS_DEBUG 2584 switch (rrd->header.drr_type) { 2585 case DRR_OBJECT: 2586 { 2587 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2588 dprintf("drr_type = OBJECT obj = %llu type = %u " 2589 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2590 "compress = %u dn_slots = %u err = %d\n", 2591 (u_longlong_t)drro->drr_object, drro->drr_type, 2592 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, 2593 drro->drr_checksumtype, drro->drr_compress, 2594 drro->drr_dn_slots, err); 2595 break; 2596 } 2597 case DRR_FREEOBJECTS: 2598 { 2599 struct drr_freeobjects *drrfo = 2600 &rrd->header.drr_u.drr_freeobjects; 2601 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2602 "numobjs = %llu err = %d\n", 2603 (u_longlong_t)drrfo->drr_firstobj, 2604 (u_longlong_t)drrfo->drr_numobjs, err); 2605 break; 2606 } 2607 case DRR_WRITE: 2608 { 2609 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2610 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2611 "lsize = %llu cksumtype = %u flags = %u " 2612 "compress = %u psize = %llu err = %d\n", 2613 (u_longlong_t)drrw->drr_object, drrw->drr_type, 2614 (u_longlong_t)drrw->drr_offset, 2615 (u_longlong_t)drrw->drr_logical_size, 2616 drrw->drr_checksumtype, drrw->drr_flags, 2617 drrw->drr_compressiontype, 2618 (u_longlong_t)drrw->drr_compressed_size, err); 2619 break; 2620 } 2621 case DRR_WRITE_BYREF: 2622 { 2623 struct drr_write_byref *drrwbr = 2624 &rrd->header.drr_u.drr_write_byref; 2625 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2626 "length = %llu toguid = %llx refguid = %llx " 2627 "refobject = %llu refoffset = %llu cksumtype = %u " 2628 "flags = %u err = %d\n", 2629 (u_longlong_t)drrwbr->drr_object, 2630 (u_longlong_t)drrwbr->drr_offset, 2631 (u_longlong_t)drrwbr->drr_length, 2632 (u_longlong_t)drrwbr->drr_toguid, 2633 (u_longlong_t)drrwbr->drr_refguid, 2634 (u_longlong_t)drrwbr->drr_refobject, 2635 (u_longlong_t)drrwbr->drr_refoffset, 2636 drrwbr->drr_checksumtype, drrwbr->drr_flags, err); 2637 break; 2638 } 2639 case DRR_WRITE_EMBEDDED: 2640 { 2641 struct drr_write_embedded *drrwe = 2642 &rrd->header.drr_u.drr_write_embedded; 2643 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 2644 "length = %llu compress = %u etype = %u lsize = %u " 2645 "psize = %u err = %d\n", 2646 (u_longlong_t)drrwe->drr_object, 2647 (u_longlong_t)drrwe->drr_offset, 2648 (u_longlong_t)drrwe->drr_length, 2649 drrwe->drr_compression, drrwe->drr_etype, 2650 drrwe->drr_lsize, drrwe->drr_psize, err); 2651 break; 2652 } 2653 case DRR_FREE: 2654 { 2655 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2656 dprintf("drr_type = FREE obj = %llu offset = %llu " 2657 "length = %lld err = %d\n", 2658 (u_longlong_t)drrf->drr_object, 2659 (u_longlong_t)drrf->drr_offset, 2660 (longlong_t)drrf->drr_length, 2661 err); 2662 break; 2663 } 2664 case DRR_SPILL: 2665 { 2666 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2667 dprintf("drr_type = SPILL obj = %llu length = %llu " 2668 "err = %d\n", (u_longlong_t)drrs->drr_object, 2669 (u_longlong_t)drrs->drr_length, err); 2670 break; 2671 } 2672 case DRR_OBJECT_RANGE: 2673 { 2674 struct drr_object_range *drror = 2675 &rrd->header.drr_u.drr_object_range; 2676 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 2677 "numslots = %llu flags = %u err = %d\n", 2678 (u_longlong_t)drror->drr_firstobj, 2679 (u_longlong_t)drror->drr_numslots, 2680 drror->drr_flags, err); 2681 break; 2682 } 2683 default: 2684 return; 2685 } 2686 #endif 2687 } 2688 2689 /* 2690 * Commit the records to the pool. 2691 */ 2692 static int 2693 receive_process_record(struct receive_writer_arg *rwa, 2694 struct receive_record_arg *rrd) 2695 { 2696 int err; 2697 2698 /* Processing in order, therefore bytes_read should be increasing. */ 2699 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2700 rwa->bytes_read = rrd->bytes_read; 2701 2702 if (rrd->header.drr_type != DRR_WRITE) { 2703 err = flush_write_batch(rwa); 2704 if (err != 0) { 2705 if (rrd->abd != NULL) { 2706 abd_free(rrd->abd); 2707 rrd->abd = NULL; 2708 rrd->payload = NULL; 2709 } else if (rrd->payload != NULL) { 2710 kmem_free(rrd->payload, rrd->payload_size); 2711 rrd->payload = NULL; 2712 } 2713 2714 return (err); 2715 } 2716 } 2717 2718 switch (rrd->header.drr_type) { 2719 case DRR_OBJECT: 2720 { 2721 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2722 err = receive_object(rwa, drro, rrd->payload); 2723 kmem_free(rrd->payload, rrd->payload_size); 2724 rrd->payload = NULL; 2725 break; 2726 } 2727 case DRR_FREEOBJECTS: 2728 { 2729 struct drr_freeobjects *drrfo = 2730 &rrd->header.drr_u.drr_freeobjects; 2731 err = receive_freeobjects(rwa, drrfo); 2732 break; 2733 } 2734 case DRR_WRITE: 2735 { 2736 err = receive_process_write_record(rwa, rrd); 2737 if (err != EAGAIN) { 2738 /* 2739 * On success, receive_process_write_record() returns 2740 * EAGAIN to indicate that we do not want to free 2741 * the rrd or arc_buf. 2742 */ 2743 ASSERT(err != 0); 2744 abd_free(rrd->abd); 2745 rrd->abd = NULL; 2746 } 2747 break; 2748 } 2749 case DRR_WRITE_EMBEDDED: 2750 { 2751 struct drr_write_embedded *drrwe = 2752 &rrd->header.drr_u.drr_write_embedded; 2753 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2754 kmem_free(rrd->payload, rrd->payload_size); 2755 rrd->payload = NULL; 2756 break; 2757 } 2758 case DRR_FREE: 2759 { 2760 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2761 err = receive_free(rwa, drrf); 2762 break; 2763 } 2764 case DRR_SPILL: 2765 { 2766 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2767 err = receive_spill(rwa, drrs, rrd->abd); 2768 if (err != 0) 2769 abd_free(rrd->abd); 2770 rrd->abd = NULL; 2771 rrd->payload = NULL; 2772 break; 2773 } 2774 case DRR_OBJECT_RANGE: 2775 { 2776 struct drr_object_range *drror = 2777 &rrd->header.drr_u.drr_object_range; 2778 err = receive_object_range(rwa, drror); 2779 break; 2780 } 2781 case DRR_REDACT: 2782 { 2783 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 2784 err = receive_redact(rwa, drrr); 2785 break; 2786 } 2787 default: 2788 err = (SET_ERROR(EINVAL)); 2789 } 2790 2791 if (err != 0) 2792 dprintf_drr(rrd, err); 2793 2794 return (err); 2795 } 2796 2797 /* 2798 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2799 * receive_process_record When we're done, signal the main thread and exit. 2800 */ 2801 static void 2802 receive_writer_thread(void *arg) 2803 { 2804 struct receive_writer_arg *rwa = arg; 2805 struct receive_record_arg *rrd; 2806 fstrans_cookie_t cookie = spl_fstrans_mark(); 2807 2808 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2809 rrd = bqueue_dequeue(&rwa->q)) { 2810 /* 2811 * If there's an error, the main thread will stop putting things 2812 * on the queue, but we need to clear everything in it before we 2813 * can exit. 2814 */ 2815 int err = 0; 2816 if (rwa->err == 0) { 2817 err = receive_process_record(rwa, rrd); 2818 } else if (rrd->abd != NULL) { 2819 abd_free(rrd->abd); 2820 rrd->abd = NULL; 2821 rrd->payload = NULL; 2822 } else if (rrd->payload != NULL) { 2823 kmem_free(rrd->payload, rrd->payload_size); 2824 rrd->payload = NULL; 2825 } 2826 /* 2827 * EAGAIN indicates that this record has been saved (on 2828 * raw->write_batch), and will be used again, so we don't 2829 * free it. 2830 */ 2831 if (err != EAGAIN) { 2832 if (rwa->err == 0) 2833 rwa->err = err; 2834 kmem_free(rrd, sizeof (*rrd)); 2835 } 2836 } 2837 kmem_free(rrd, sizeof (*rrd)); 2838 2839 int err = flush_write_batch(rwa); 2840 if (rwa->err == 0) 2841 rwa->err = err; 2842 2843 mutex_enter(&rwa->mutex); 2844 rwa->done = B_TRUE; 2845 cv_signal(&rwa->cv); 2846 mutex_exit(&rwa->mutex); 2847 spl_fstrans_unmark(cookie); 2848 thread_exit(); 2849 } 2850 2851 static int 2852 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 2853 { 2854 uint64_t val; 2855 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 2856 uint64_t dsobj = dmu_objset_id(drc->drc_os); 2857 uint64_t resume_obj, resume_off; 2858 2859 if (nvlist_lookup_uint64(begin_nvl, 2860 "resume_object", &resume_obj) != 0 || 2861 nvlist_lookup_uint64(begin_nvl, 2862 "resume_offset", &resume_off) != 0) { 2863 return (SET_ERROR(EINVAL)); 2864 } 2865 VERIFY0(zap_lookup(mos, dsobj, 2866 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2867 if (resume_obj != val) 2868 return (SET_ERROR(EINVAL)); 2869 VERIFY0(zap_lookup(mos, dsobj, 2870 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2871 if (resume_off != val) 2872 return (SET_ERROR(EINVAL)); 2873 2874 return (0); 2875 } 2876 2877 /* 2878 * Read in the stream's records, one by one, and apply them to the pool. There 2879 * are two threads involved; the thread that calls this function will spin up a 2880 * worker thread, read the records off the stream one by one, and issue 2881 * prefetches for any necessary indirect blocks. It will then push the records 2882 * onto an internal blocking queue. The worker thread will pull the records off 2883 * the queue, and actually write the data into the DMU. This way, the worker 2884 * thread doesn't have to wait for reads to complete, since everything it needs 2885 * (the indirect blocks) will be prefetched. 2886 * 2887 * NB: callers *must* call dmu_recv_end() if this succeeds. 2888 */ 2889 int 2890 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 2891 { 2892 int err = 0; 2893 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 2894 2895 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { 2896 uint64_t bytes = 0; 2897 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2898 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2899 sizeof (bytes), 1, &bytes); 2900 drc->drc_bytes_read += bytes; 2901 } 2902 2903 drc->drc_ignore_objlist = objlist_create(); 2904 2905 /* these were verified in dmu_recv_begin */ 2906 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2907 DMU_SUBSTREAM); 2908 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2909 2910 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2911 ASSERT0(drc->drc_os->os_encrypted && 2912 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 2913 2914 /* handle DSL encryption key payload */ 2915 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 2916 nvlist_t *keynvl = NULL; 2917 2918 ASSERT(drc->drc_os->os_encrypted); 2919 ASSERT(drc->drc_raw); 2920 2921 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 2922 &keynvl); 2923 if (err != 0) 2924 goto out; 2925 2926 /* 2927 * If this is a new dataset we set the key immediately. 2928 * Otherwise we don't want to change the key until we 2929 * are sure the rest of the receive succeeded so we stash 2930 * the keynvl away until then. 2931 */ 2932 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 2933 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 2934 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 2935 if (err != 0) 2936 goto out; 2937 2938 /* see comment in dmu_recv_end_sync() */ 2939 drc->drc_ivset_guid = 0; 2940 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 2941 &drc->drc_ivset_guid); 2942 2943 if (!drc->drc_newfs) 2944 drc->drc_keynvl = fnvlist_dup(keynvl); 2945 } 2946 2947 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2948 err = resume_check(drc, drc->drc_begin_nvl); 2949 if (err != 0) 2950 goto out; 2951 } 2952 2953 /* 2954 * If we failed before this point we will clean up any new resume 2955 * state that was created. Now that we've gotten past the initial 2956 * checks we are ok to retain that resume state. 2957 */ 2958 drc->drc_should_save = B_TRUE; 2959 2960 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 2961 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 2962 offsetof(struct receive_record_arg, node)); 2963 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 2964 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 2965 rwa->os = drc->drc_os; 2966 rwa->byteswap = drc->drc_byteswap; 2967 rwa->resumable = drc->drc_resumable; 2968 rwa->raw = drc->drc_raw; 2969 rwa->spill = drc->drc_spill; 2970 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 2971 rwa->os->os_raw_receive = drc->drc_raw; 2972 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 2973 offsetof(struct receive_record_arg, node.bqn_node)); 2974 2975 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 2976 TS_RUN, minclsyspri); 2977 /* 2978 * We're reading rwa->err without locks, which is safe since we are the 2979 * only reader, and the worker thread is the only writer. It's ok if we 2980 * miss a write for an iteration or two of the loop, since the writer 2981 * thread will keep freeing records we send it until we send it an eos 2982 * marker. 2983 * 2984 * We can leave this loop in 3 ways: First, if rwa->err is 2985 * non-zero. In that case, the writer thread will free the rrd we just 2986 * pushed. Second, if we're interrupted; in that case, either it's the 2987 * first loop and drc->drc_rrd was never allocated, or it's later, and 2988 * drc->drc_rrd has been handed off to the writer thread who will free 2989 * it. Finally, if receive_read_record fails or we're at the end of the 2990 * stream, then we free drc->drc_rrd and exit. 2991 */ 2992 while (rwa->err == 0) { 2993 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2994 err = SET_ERROR(EINTR); 2995 break; 2996 } 2997 2998 ASSERT3P(drc->drc_rrd, ==, NULL); 2999 drc->drc_rrd = drc->drc_next_rrd; 3000 drc->drc_next_rrd = NULL; 3001 /* Allocates and loads header into drc->drc_next_rrd */ 3002 err = receive_read_record(drc); 3003 3004 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 3005 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 3006 drc->drc_rrd = NULL; 3007 break; 3008 } 3009 3010 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3011 sizeof (struct receive_record_arg) + 3012 drc->drc_rrd->payload_size); 3013 drc->drc_rrd = NULL; 3014 } 3015 3016 ASSERT3P(drc->drc_rrd, ==, NULL); 3017 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3018 drc->drc_rrd->eos_marker = B_TRUE; 3019 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3020 3021 mutex_enter(&rwa->mutex); 3022 while (!rwa->done) { 3023 /* 3024 * We need to use cv_wait_sig() so that any process that may 3025 * be sleeping here can still fork. 3026 */ 3027 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3028 } 3029 mutex_exit(&rwa->mutex); 3030 3031 /* 3032 * If we are receiving a full stream as a clone, all object IDs which 3033 * are greater than the maximum ID referenced in the stream are 3034 * by definition unused and must be freed. 3035 */ 3036 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3037 uint64_t obj = rwa->max_object + 1; 3038 int free_err = 0; 3039 int next_err = 0; 3040 3041 while (next_err == 0) { 3042 free_err = dmu_free_long_object(rwa->os, obj); 3043 if (free_err != 0 && free_err != ENOENT) 3044 break; 3045 3046 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3047 } 3048 3049 if (err == 0) { 3050 if (free_err != 0 && free_err != ENOENT) 3051 err = free_err; 3052 else if (next_err != ESRCH) 3053 err = next_err; 3054 } 3055 } 3056 3057 cv_destroy(&rwa->cv); 3058 mutex_destroy(&rwa->mutex); 3059 bqueue_destroy(&rwa->q); 3060 list_destroy(&rwa->write_batch); 3061 if (err == 0) 3062 err = rwa->err; 3063 3064 out: 3065 /* 3066 * If we hit an error before we started the receive_writer_thread 3067 * we need to clean up the next_rrd we create by processing the 3068 * DRR_BEGIN record. 3069 */ 3070 if (drc->drc_next_rrd != NULL) 3071 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3072 3073 /* 3074 * The objset will be invalidated by dmu_recv_end() when we do 3075 * dsl_dataset_clone_swap_sync_impl(). 3076 */ 3077 drc->drc_os = NULL; 3078 3079 kmem_free(rwa, sizeof (*rwa)); 3080 nvlist_free(drc->drc_begin_nvl); 3081 3082 if (err != 0) { 3083 /* 3084 * Clean up references. If receive is not resumable, 3085 * destroy what we created, so we don't leave it in 3086 * the inconsistent state. 3087 */ 3088 dmu_recv_cleanup_ds(drc); 3089 nvlist_free(drc->drc_keynvl); 3090 } 3091 3092 objlist_destroy(drc->drc_ignore_objlist); 3093 drc->drc_ignore_objlist = NULL; 3094 *voffp = drc->drc_voff; 3095 return (err); 3096 } 3097 3098 static int 3099 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3100 { 3101 dmu_recv_cookie_t *drc = arg; 3102 dsl_pool_t *dp = dmu_tx_pool(tx); 3103 int error; 3104 3105 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3106 3107 if (!drc->drc_newfs) { 3108 dsl_dataset_t *origin_head; 3109 3110 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3111 if (error != 0) 3112 return (error); 3113 if (drc->drc_force) { 3114 /* 3115 * We will destroy any snapshots in tofs (i.e. before 3116 * origin_head) that are after the origin (which is 3117 * the snap before drc_ds, because drc_ds can not 3118 * have any snaps of its own). 3119 */ 3120 uint64_t obj; 3121 3122 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3123 while (obj != 3124 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3125 dsl_dataset_t *snap; 3126 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3127 &snap); 3128 if (error != 0) 3129 break; 3130 if (snap->ds_dir != origin_head->ds_dir) 3131 error = SET_ERROR(EINVAL); 3132 if (error == 0) { 3133 error = dsl_destroy_snapshot_check_impl( 3134 snap, B_FALSE); 3135 } 3136 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3137 dsl_dataset_rele(snap, FTAG); 3138 if (error != 0) 3139 break; 3140 } 3141 if (error != 0) { 3142 dsl_dataset_rele(origin_head, FTAG); 3143 return (error); 3144 } 3145 } 3146 if (drc->drc_keynvl != NULL) { 3147 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3148 drc->drc_keynvl, tx); 3149 if (error != 0) { 3150 dsl_dataset_rele(origin_head, FTAG); 3151 return (error); 3152 } 3153 } 3154 3155 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3156 origin_head, drc->drc_force, drc->drc_owner, tx); 3157 if (error != 0) { 3158 dsl_dataset_rele(origin_head, FTAG); 3159 return (error); 3160 } 3161 error = dsl_dataset_snapshot_check_impl(origin_head, 3162 drc->drc_tosnap, tx, B_TRUE, 1, 3163 drc->drc_cred, drc->drc_proc); 3164 dsl_dataset_rele(origin_head, FTAG); 3165 if (error != 0) 3166 return (error); 3167 3168 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3169 } else { 3170 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3171 drc->drc_tosnap, tx, B_TRUE, 1, 3172 drc->drc_cred, drc->drc_proc); 3173 } 3174 return (error); 3175 } 3176 3177 static void 3178 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3179 { 3180 dmu_recv_cookie_t *drc = arg; 3181 dsl_pool_t *dp = dmu_tx_pool(tx); 3182 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3183 uint64_t newsnapobj; 3184 3185 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3186 tx, "snap=%s", drc->drc_tosnap); 3187 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3188 3189 if (!drc->drc_newfs) { 3190 dsl_dataset_t *origin_head; 3191 3192 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3193 &origin_head)); 3194 3195 if (drc->drc_force) { 3196 /* 3197 * Destroy any snapshots of drc_tofs (origin_head) 3198 * after the origin (the snap before drc_ds). 3199 */ 3200 uint64_t obj; 3201 3202 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3203 while (obj != 3204 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3205 dsl_dataset_t *snap; 3206 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3207 &snap)); 3208 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3209 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3210 dsl_destroy_snapshot_sync_impl(snap, 3211 B_FALSE, tx); 3212 dsl_dataset_rele(snap, FTAG); 3213 } 3214 } 3215 if (drc->drc_keynvl != NULL) { 3216 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3217 drc->drc_keynvl, tx); 3218 nvlist_free(drc->drc_keynvl); 3219 drc->drc_keynvl = NULL; 3220 } 3221 3222 VERIFY3P(drc->drc_ds->ds_prev, ==, 3223 origin_head->ds_prev); 3224 3225 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3226 origin_head, tx); 3227 /* 3228 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3229 * so drc_os is no longer valid. 3230 */ 3231 drc->drc_os = NULL; 3232 3233 dsl_dataset_snapshot_sync_impl(origin_head, 3234 drc->drc_tosnap, tx); 3235 3236 /* set snapshot's creation time and guid */ 3237 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3238 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3239 drc->drc_drrb->drr_creation_time; 3240 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3241 drc->drc_drrb->drr_toguid; 3242 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3243 ~DS_FLAG_INCONSISTENT; 3244 3245 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3246 dsl_dataset_phys(origin_head)->ds_flags &= 3247 ~DS_FLAG_INCONSISTENT; 3248 3249 newsnapobj = 3250 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3251 3252 dsl_dataset_rele(origin_head, FTAG); 3253 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3254 3255 if (drc->drc_owner != NULL) 3256 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3257 } else { 3258 dsl_dataset_t *ds = drc->drc_ds; 3259 3260 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3261 3262 /* set snapshot's creation time and guid */ 3263 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3264 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3265 drc->drc_drrb->drr_creation_time; 3266 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3267 drc->drc_drrb->drr_toguid; 3268 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3269 ~DS_FLAG_INCONSISTENT; 3270 3271 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3272 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3273 if (dsl_dataset_has_resume_receive_state(ds)) { 3274 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3275 DS_FIELD_RESUME_FROMGUID, tx); 3276 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3277 DS_FIELD_RESUME_OBJECT, tx); 3278 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3279 DS_FIELD_RESUME_OFFSET, tx); 3280 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3281 DS_FIELD_RESUME_BYTES, tx); 3282 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3283 DS_FIELD_RESUME_TOGUID, tx); 3284 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3285 DS_FIELD_RESUME_TONAME, tx); 3286 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3287 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3288 } 3289 newsnapobj = 3290 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3291 } 3292 3293 /* 3294 * If this is a raw receive, the crypt_keydata nvlist will include 3295 * a to_ivset_guid for us to set on the new snapshot. This value 3296 * will override the value generated by the snapshot code. However, 3297 * this value may not be present, because older implementations of 3298 * the raw send code did not include this value, and we are still 3299 * allowed to receive them if the zfs_disable_ivset_guid_check 3300 * tunable is set, in which case we will leave the newly-generated 3301 * value. 3302 */ 3303 if (drc->drc_raw && drc->drc_ivset_guid != 0) { 3304 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3305 DMU_OT_DSL_DATASET, tx); 3306 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3307 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3308 &drc->drc_ivset_guid, tx)); 3309 } 3310 3311 /* 3312 * Release the hold from dmu_recv_begin. This must be done before 3313 * we return to open context, so that when we free the dataset's dnode 3314 * we can evict its bonus buffer. Since the dataset may be destroyed 3315 * at this point (and therefore won't have a valid pointer to the spa) 3316 * we release the key mapping manually here while we do have a valid 3317 * pointer, if it exists. 3318 */ 3319 if (!drc->drc_raw && encrypted) { 3320 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3321 drc->drc_ds->ds_object, drc->drc_ds); 3322 } 3323 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3324 drc->drc_ds = NULL; 3325 } 3326 3327 static int dmu_recv_end_modified_blocks = 3; 3328 3329 static int 3330 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3331 { 3332 #ifdef _KERNEL 3333 /* 3334 * We will be destroying the ds; make sure its origin is unmounted if 3335 * necessary. 3336 */ 3337 char name[ZFS_MAX_DATASET_NAME_LEN]; 3338 dsl_dataset_name(drc->drc_ds, name); 3339 zfs_destroy_unmount_origin(name); 3340 #endif 3341 3342 return (dsl_sync_task(drc->drc_tofs, 3343 dmu_recv_end_check, dmu_recv_end_sync, drc, 3344 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3345 } 3346 3347 static int 3348 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3349 { 3350 return (dsl_sync_task(drc->drc_tofs, 3351 dmu_recv_end_check, dmu_recv_end_sync, drc, 3352 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3353 } 3354 3355 int 3356 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3357 { 3358 int error; 3359 3360 drc->drc_owner = owner; 3361 3362 if (drc->drc_newfs) 3363 error = dmu_recv_new_end(drc); 3364 else 3365 error = dmu_recv_existing_end(drc); 3366 3367 if (error != 0) { 3368 dmu_recv_cleanup_ds(drc); 3369 nvlist_free(drc->drc_keynvl); 3370 } else { 3371 if (drc->drc_newfs) { 3372 zvol_create_minor(drc->drc_tofs); 3373 } 3374 char *snapname = kmem_asprintf("%s@%s", 3375 drc->drc_tofs, drc->drc_tosnap); 3376 zvol_create_minor(snapname); 3377 kmem_strfree(snapname); 3378 } 3379 return (error); 3380 } 3381 3382 /* 3383 * Return TRUE if this objset is currently being received into. 3384 */ 3385 boolean_t 3386 dmu_objset_is_receiving(objset_t *os) 3387 { 3388 return (os->os_dsl_dataset != NULL && 3389 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3390 } 3391 3392 /* BEGIN CSTYLED */ 3393 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW, 3394 "Maximum receive queue length"); 3395 3396 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW, 3397 "Receive queue fill fraction"); 3398 3399 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW, 3400 "Maximum amount of writes to batch into one transaction"); 3401 /* END CSTYLED */ 3402