1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2019 Datto Inc. 31 * Copyright (c) 2022 Axcient. 32 */ 33 34 #include <sys/arc.h> 35 #include <sys/spa_impl.h> 36 #include <sys/dmu.h> 37 #include <sys/dmu_impl.h> 38 #include <sys/dmu_send.h> 39 #include <sys/dmu_recv.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/dbuf.h> 42 #include <sys/dnode.h> 43 #include <sys/zfs_context.h> 44 #include <sys/dmu_objset.h> 45 #include <sys/dmu_traverse.h> 46 #include <sys/dsl_dataset.h> 47 #include <sys/dsl_dir.h> 48 #include <sys/dsl_prop.h> 49 #include <sys/dsl_pool.h> 50 #include <sys/dsl_synctask.h> 51 #include <sys/zfs_ioctl.h> 52 #include <sys/zap.h> 53 #include <sys/zvol.h> 54 #include <sys/zio_checksum.h> 55 #include <sys/zfs_znode.h> 56 #include <zfs_fletcher.h> 57 #include <sys/avl.h> 58 #include <sys/ddt.h> 59 #include <sys/zfs_onexit.h> 60 #include <sys/dsl_destroy.h> 61 #include <sys/blkptr.h> 62 #include <sys/dsl_bookmark.h> 63 #include <sys/zfeature.h> 64 #include <sys/bqueue.h> 65 #include <sys/objlist.h> 66 #ifdef _KERNEL 67 #include <sys/zfs_vfsops.h> 68 #endif 69 #include <sys/zfs_file.h> 70 71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE; 72 static uint_t zfs_recv_queue_ff = 20; 73 static uint_t zfs_recv_write_batch_size = 1024 * 1024; 74 static int zfs_recv_best_effort_corrective = 0; 75 76 static const void *const dmu_recv_tag = "dmu_recv_tag"; 77 const char *const recv_clone_name = "%recv"; 78 79 typedef enum { 80 ORNS_NO, 81 ORNS_YES, 82 ORNS_MAYBE 83 } or_need_sync_t; 84 85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len, 86 void *buf); 87 88 struct receive_record_arg { 89 dmu_replay_record_t header; 90 void *payload; /* Pointer to a buffer containing the payload */ 91 /* 92 * If the record is a WRITE or SPILL, pointer to the abd containing the 93 * payload. 94 */ 95 abd_t *abd; 96 int payload_size; 97 uint64_t bytes_read; /* bytes read from stream when record created */ 98 boolean_t eos_marker; /* Marks the end of the stream */ 99 bqueue_node_t node; 100 }; 101 102 struct receive_writer_arg { 103 objset_t *os; 104 boolean_t byteswap; 105 bqueue_t q; 106 107 /* 108 * These three members are used to signal to the main thread when 109 * we're done. 110 */ 111 kmutex_t mutex; 112 kcondvar_t cv; 113 boolean_t done; 114 115 int err; 116 const char *tofs; 117 boolean_t heal; 118 boolean_t resumable; 119 boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */ 120 boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */ 121 boolean_t full; /* this is a full send stream */ 122 uint64_t last_object; 123 uint64_t last_offset; 124 uint64_t max_object; /* highest object ID referenced in stream */ 125 uint64_t bytes_read; /* bytes read when current record created */ 126 127 list_t write_batch; 128 129 /* Encryption parameters for the last received DRR_OBJECT_RANGE */ 130 boolean_t or_crypt_params_present; 131 uint64_t or_firstobj; 132 uint64_t or_numslots; 133 uint8_t or_salt[ZIO_DATA_SALT_LEN]; 134 uint8_t or_iv[ZIO_DATA_IV_LEN]; 135 uint8_t or_mac[ZIO_DATA_MAC_LEN]; 136 boolean_t or_byteorder; 137 zio_t *heal_pio; 138 139 /* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */ 140 or_need_sync_t or_need_sync; 141 }; 142 143 typedef struct dmu_recv_begin_arg { 144 const char *drba_origin; 145 dmu_recv_cookie_t *drba_cookie; 146 cred_t *drba_cred; 147 proc_t *drba_proc; 148 dsl_crypto_params_t *drba_dcp; 149 } dmu_recv_begin_arg_t; 150 151 static void 152 byteswap_record(dmu_replay_record_t *drr) 153 { 154 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 155 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 156 drr->drr_type = BSWAP_32(drr->drr_type); 157 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 158 159 switch (drr->drr_type) { 160 case DRR_BEGIN: 161 DO64(drr_begin.drr_magic); 162 DO64(drr_begin.drr_versioninfo); 163 DO64(drr_begin.drr_creation_time); 164 DO32(drr_begin.drr_type); 165 DO32(drr_begin.drr_flags); 166 DO64(drr_begin.drr_toguid); 167 DO64(drr_begin.drr_fromguid); 168 break; 169 case DRR_OBJECT: 170 DO64(drr_object.drr_object); 171 DO32(drr_object.drr_type); 172 DO32(drr_object.drr_bonustype); 173 DO32(drr_object.drr_blksz); 174 DO32(drr_object.drr_bonuslen); 175 DO32(drr_object.drr_raw_bonuslen); 176 DO64(drr_object.drr_toguid); 177 DO64(drr_object.drr_maxblkid); 178 break; 179 case DRR_FREEOBJECTS: 180 DO64(drr_freeobjects.drr_firstobj); 181 DO64(drr_freeobjects.drr_numobjs); 182 DO64(drr_freeobjects.drr_toguid); 183 break; 184 case DRR_WRITE: 185 DO64(drr_write.drr_object); 186 DO32(drr_write.drr_type); 187 DO64(drr_write.drr_offset); 188 DO64(drr_write.drr_logical_size); 189 DO64(drr_write.drr_toguid); 190 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 191 DO64(drr_write.drr_key.ddk_prop); 192 DO64(drr_write.drr_compressed_size); 193 break; 194 case DRR_WRITE_EMBEDDED: 195 DO64(drr_write_embedded.drr_object); 196 DO64(drr_write_embedded.drr_offset); 197 DO64(drr_write_embedded.drr_length); 198 DO64(drr_write_embedded.drr_toguid); 199 DO32(drr_write_embedded.drr_lsize); 200 DO32(drr_write_embedded.drr_psize); 201 break; 202 case DRR_FREE: 203 DO64(drr_free.drr_object); 204 DO64(drr_free.drr_offset); 205 DO64(drr_free.drr_length); 206 DO64(drr_free.drr_toguid); 207 break; 208 case DRR_SPILL: 209 DO64(drr_spill.drr_object); 210 DO64(drr_spill.drr_length); 211 DO64(drr_spill.drr_toguid); 212 DO64(drr_spill.drr_compressed_size); 213 DO32(drr_spill.drr_type); 214 break; 215 case DRR_OBJECT_RANGE: 216 DO64(drr_object_range.drr_firstobj); 217 DO64(drr_object_range.drr_numslots); 218 DO64(drr_object_range.drr_toguid); 219 break; 220 case DRR_REDACT: 221 DO64(drr_redact.drr_object); 222 DO64(drr_redact.drr_offset); 223 DO64(drr_redact.drr_length); 224 DO64(drr_redact.drr_toguid); 225 break; 226 case DRR_END: 227 DO64(drr_end.drr_toguid); 228 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 229 break; 230 default: 231 break; 232 } 233 234 if (drr->drr_type != DRR_BEGIN) { 235 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 236 } 237 238 #undef DO64 239 #undef DO32 240 } 241 242 static boolean_t 243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid) 244 { 245 for (int i = 0; i < num_snaps; i++) { 246 if (snaps[i] == guid) 247 return (B_TRUE); 248 } 249 return (B_FALSE); 250 } 251 252 /* 253 * Check that the new stream we're trying to receive is redacted with respect to 254 * a subset of the snapshots that the origin was redacted with respect to. For 255 * the reasons behind this, see the man page on redacted zfs sends and receives. 256 */ 257 static boolean_t 258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps, 259 uint64_t *redact_snaps, uint64_t num_redact_snaps) 260 { 261 /* 262 * Short circuit the comparison; if we are redacted with respect to 263 * more snapshots than the origin, we can't be redacted with respect 264 * to a subset. 265 */ 266 if (num_redact_snaps > origin_num_snaps) { 267 return (B_FALSE); 268 } 269 270 for (int i = 0; i < num_redact_snaps; i++) { 271 if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 272 redact_snaps[i])) { 273 return (B_FALSE); 274 } 275 } 276 return (B_TRUE); 277 } 278 279 static boolean_t 280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin) 281 { 282 uint64_t *origin_snaps; 283 uint64_t origin_num_snaps; 284 dmu_recv_cookie_t *drc = drba->drba_cookie; 285 struct drr_begin *drrb = drc->drc_drrb; 286 int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 287 int err = 0; 288 boolean_t ret = B_TRUE; 289 uint64_t *redact_snaps; 290 uint_t numredactsnaps; 291 292 /* 293 * If this is a full send stream, we're safe no matter what. 294 */ 295 if (drrb->drr_fromguid == 0) 296 return (ret); 297 298 VERIFY(dsl_dataset_get_uint64_array_feature(origin, 299 SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps)); 300 301 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 302 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) == 303 0) { 304 /* 305 * If the send stream was sent from the redaction bookmark or 306 * the redacted version of the dataset, then we're safe. Verify 307 * that this is from the a compatible redaction bookmark or 308 * redacted dataset. 309 */ 310 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps, 311 redact_snaps, numredactsnaps)) { 312 err = EINVAL; 313 } 314 } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 315 /* 316 * If the stream is redacted, it must be redacted with respect 317 * to a subset of what the origin is redacted with respect to. 318 * See case number 2 in the zfs man page section on redacted zfs 319 * send. 320 */ 321 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl, 322 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps); 323 324 if (err != 0 || !compatible_redact_snaps(origin_snaps, 325 origin_num_snaps, redact_snaps, numredactsnaps)) { 326 err = EINVAL; 327 } 328 } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps, 329 drrb->drr_toguid)) { 330 /* 331 * If the stream isn't redacted but the origin is, this must be 332 * one of the snapshots the origin is redacted with respect to. 333 * See case number 1 in the zfs man page section on redacted zfs 334 * send. 335 */ 336 err = EINVAL; 337 } 338 339 if (err != 0) 340 ret = B_FALSE; 341 return (ret); 342 } 343 344 /* 345 * If we previously received a stream with --large-block, we don't support 346 * receiving an incremental on top of it without --large-block. This avoids 347 * forcing a read-modify-write or trying to re-aggregate a string of WRITE 348 * records. 349 */ 350 static int 351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags) 352 { 353 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) && 354 !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS)) 355 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH)); 356 return (0); 357 } 358 359 static int 360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 361 uint64_t fromguid, uint64_t featureflags) 362 { 363 uint64_t obj; 364 uint64_t children; 365 int error; 366 dsl_dataset_t *snap; 367 dsl_pool_t *dp = ds->ds_dir->dd_pool; 368 boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0; 369 boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0; 370 boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0; 371 372 /* Temporary clone name must not exist. */ 373 error = zap_lookup(dp->dp_meta_objset, 374 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 375 8, 1, &obj); 376 if (error != ENOENT) 377 return (error == 0 ? SET_ERROR(EBUSY) : error); 378 379 /* Resume state must not be set. */ 380 if (dsl_dataset_has_resume_receive_state(ds)) 381 return (SET_ERROR(EBUSY)); 382 383 /* New snapshot name must not exist if we're not healing it. */ 384 error = zap_lookup(dp->dp_meta_objset, 385 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 386 drba->drba_cookie->drc_tosnap, 8, 1, &obj); 387 if (drba->drba_cookie->drc_heal) { 388 if (error != 0) 389 return (error); 390 } else if (error != ENOENT) { 391 return (error == 0 ? SET_ERROR(EEXIST) : error); 392 } 393 394 /* Must not have children if receiving a ZVOL. */ 395 error = zap_count(dp->dp_meta_objset, 396 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children); 397 if (error != 0) 398 return (error); 399 if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS && 400 children > 0) 401 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 402 403 /* 404 * Check snapshot limit before receiving. We'll recheck again at the 405 * end, but might as well abort before receiving if we're already over 406 * the limit. 407 * 408 * Note that we do not check the file system limit with 409 * dsl_dir_fscount_check because the temporary %clones don't count 410 * against that limit. 411 */ 412 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 413 NULL, drba->drba_cred, drba->drba_proc); 414 if (error != 0) 415 return (error); 416 417 if (drba->drba_cookie->drc_heal) { 418 /* Encryption is incompatible with embedded data. */ 419 if (encrypted && embed) 420 return (SET_ERROR(EINVAL)); 421 422 /* Healing is not supported when in 'force' mode. */ 423 if (drba->drba_cookie->drc_force) 424 return (SET_ERROR(EINVAL)); 425 426 /* Must have keys loaded if doing encrypted non-raw recv. */ 427 if (encrypted && !raw) { 428 if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object, 429 NULL, NULL) != 0) 430 return (SET_ERROR(EACCES)); 431 } 432 433 error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap); 434 if (error != 0) 435 return (error); 436 437 /* 438 * When not doing best effort corrective recv healing can only 439 * be done if the send stream is for the same snapshot as the 440 * one we are trying to heal. 441 */ 442 if (zfs_recv_best_effort_corrective == 0 && 443 drba->drba_cookie->drc_drrb->drr_toguid != 444 dsl_dataset_phys(snap)->ds_guid) { 445 dsl_dataset_rele(snap, FTAG); 446 return (SET_ERROR(ENOTSUP)); 447 } 448 dsl_dataset_rele(snap, FTAG); 449 } else if (fromguid != 0) { 450 /* Sanity check the incremental recv */ 451 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 452 453 /* Can't perform a raw receive on top of a non-raw receive */ 454 if (!encrypted && raw) 455 return (SET_ERROR(EINVAL)); 456 457 /* Encryption is incompatible with embedded data */ 458 if (encrypted && embed) 459 return (SET_ERROR(EINVAL)); 460 461 /* Find snapshot in this dir that matches fromguid. */ 462 while (obj != 0) { 463 error = dsl_dataset_hold_obj(dp, obj, FTAG, 464 &snap); 465 if (error != 0) 466 return (SET_ERROR(ENODEV)); 467 if (snap->ds_dir != ds->ds_dir) { 468 dsl_dataset_rele(snap, FTAG); 469 return (SET_ERROR(ENODEV)); 470 } 471 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 472 break; 473 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 474 dsl_dataset_rele(snap, FTAG); 475 } 476 if (obj == 0) 477 return (SET_ERROR(ENODEV)); 478 479 if (drba->drba_cookie->drc_force) { 480 drba->drba_cookie->drc_fromsnapobj = obj; 481 } else { 482 /* 483 * If we are not forcing, there must be no 484 * changes since fromsnap. Raw sends have an 485 * additional constraint that requires that 486 * no "noop" snapshots exist between fromsnap 487 * and tosnap for the IVset checking code to 488 * work properly. 489 */ 490 if (dsl_dataset_modified_since_snap(ds, snap) || 491 (raw && 492 dsl_dataset_phys(ds)->ds_prev_snap_obj != 493 snap->ds_object)) { 494 dsl_dataset_rele(snap, FTAG); 495 return (SET_ERROR(ETXTBSY)); 496 } 497 drba->drba_cookie->drc_fromsnapobj = 498 ds->ds_prev->ds_object; 499 } 500 501 if (dsl_dataset_feature_is_active(snap, 502 SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba, 503 snap)) { 504 dsl_dataset_rele(snap, FTAG); 505 return (SET_ERROR(EINVAL)); 506 } 507 508 error = recv_check_large_blocks(snap, featureflags); 509 if (error != 0) { 510 dsl_dataset_rele(snap, FTAG); 511 return (error); 512 } 513 514 dsl_dataset_rele(snap, FTAG); 515 } else { 516 /* If full and not healing then must be forced. */ 517 if (!drba->drba_cookie->drc_force) 518 return (SET_ERROR(EEXIST)); 519 520 /* 521 * We don't support using zfs recv -F to blow away 522 * encrypted filesystems. This would require the 523 * dsl dir to point to the old encryption key and 524 * the new one at the same time during the receive. 525 */ 526 if ((!encrypted && raw) || encrypted) 527 return (SET_ERROR(EINVAL)); 528 529 /* 530 * Perform the same encryption checks we would if 531 * we were creating a new dataset from scratch. 532 */ 533 if (!raw) { 534 boolean_t will_encrypt; 535 536 error = dmu_objset_create_crypt_check( 537 ds->ds_dir->dd_parent, drba->drba_dcp, 538 &will_encrypt); 539 if (error != 0) 540 return (error); 541 542 if (will_encrypt && embed) 543 return (SET_ERROR(EINVAL)); 544 } 545 } 546 547 return (0); 548 } 549 550 /* 551 * Check that any feature flags used in the data stream we're receiving are 552 * supported by the pool we are receiving into. 553 * 554 * Note that some of the features we explicitly check here have additional 555 * (implicit) features they depend on, but those dependencies are enforced 556 * through the zfeature_register() calls declaring the features that we 557 * explicitly check. 558 */ 559 static int 560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa) 561 { 562 /* 563 * Check if there are any unsupported feature flags. 564 */ 565 if (!DMU_STREAM_SUPPORTED(featureflags)) { 566 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE)); 567 } 568 569 /* Verify pool version supports SA if SA_SPILL feature set */ 570 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 571 spa_version(spa) < SPA_VERSION_SA) 572 return (SET_ERROR(ENOTSUP)); 573 574 /* 575 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks, 576 * and large_dnodes in the stream can only be used if those pool 577 * features are enabled because we don't attempt to decompress / 578 * un-embed / un-mooch / split up the blocks / dnodes during the 579 * receive process. 580 */ 581 if ((featureflags & DMU_BACKUP_FEATURE_LZ4) && 582 !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) 583 return (SET_ERROR(ENOTSUP)); 584 if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) && 585 !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) 586 return (SET_ERROR(ENOTSUP)); 587 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 588 !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) 589 return (SET_ERROR(ENOTSUP)); 590 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 591 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 592 return (SET_ERROR(ENOTSUP)); 593 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) && 594 !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 595 return (SET_ERROR(ENOTSUP)); 596 597 /* 598 * Receiving redacted streams requires that redacted datasets are 599 * enabled. 600 */ 601 if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) && 602 !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS)) 603 return (SET_ERROR(ENOTSUP)); 604 605 return (0); 606 } 607 608 static int 609 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 610 { 611 dmu_recv_begin_arg_t *drba = arg; 612 dsl_pool_t *dp = dmu_tx_pool(tx); 613 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 614 uint64_t fromguid = drrb->drr_fromguid; 615 int flags = drrb->drr_flags; 616 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 617 int error; 618 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 619 dsl_dataset_t *ds; 620 const char *tofs = drba->drba_cookie->drc_tofs; 621 622 /* already checked */ 623 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 624 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 625 626 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 627 DMU_COMPOUNDSTREAM || 628 drrb->drr_type >= DMU_OST_NUMTYPES || 629 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 630 return (SET_ERROR(EINVAL)); 631 632 error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa); 633 if (error != 0) 634 return (error); 635 636 /* Resumable receives require extensible datasets */ 637 if (drba->drba_cookie->drc_resumable && 638 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 639 return (SET_ERROR(ENOTSUP)); 640 641 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 642 /* raw receives require the encryption feature */ 643 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) 644 return (SET_ERROR(ENOTSUP)); 645 646 /* embedded data is incompatible with encryption and raw recv */ 647 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 648 return (SET_ERROR(EINVAL)); 649 650 /* raw receives require spill block allocation flag */ 651 if (!(flags & DRR_FLAG_SPILL_BLOCK)) 652 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 653 } else { 654 /* 655 * We support unencrypted datasets below encrypted ones now, 656 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing 657 * with a dataset we may encrypt. 658 */ 659 if (drba->drba_dcp == NULL || 660 drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) { 661 dsflags |= DS_HOLD_FLAG_DECRYPT; 662 } 663 } 664 665 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 666 if (error == 0) { 667 /* target fs already exists; recv into temp clone */ 668 669 /* Can't recv a clone into an existing fs */ 670 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 671 dsl_dataset_rele_flags(ds, dsflags, FTAG); 672 return (SET_ERROR(EINVAL)); 673 } 674 675 error = recv_begin_check_existing_impl(drba, ds, fromguid, 676 featureflags); 677 dsl_dataset_rele_flags(ds, dsflags, FTAG); 678 } else if (error == ENOENT) { 679 /* target fs does not exist; must be a full backup or clone */ 680 char buf[ZFS_MAX_DATASET_NAME_LEN]; 681 objset_t *os; 682 683 /* healing recv must be done "into" an existing snapshot */ 684 if (drba->drba_cookie->drc_heal == B_TRUE) 685 return (SET_ERROR(ENOTSUP)); 686 687 /* 688 * If it's a non-clone incremental, we are missing the 689 * target fs, so fail the recv. 690 */ 691 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) || 692 drba->drba_origin)) 693 return (SET_ERROR(ENOENT)); 694 695 /* 696 * If we're receiving a full send as a clone, and it doesn't 697 * contain all the necessary free records and freeobject 698 * records, reject it. 699 */ 700 if (fromguid == 0 && drba->drba_origin != NULL && 701 !(flags & DRR_FLAG_FREERECORDS)) 702 return (SET_ERROR(EINVAL)); 703 704 /* Open the parent of tofs */ 705 ASSERT3U(strlen(tofs), <, sizeof (buf)); 706 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 707 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 708 if (error != 0) 709 return (error); 710 711 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 712 drba->drba_origin == NULL) { 713 boolean_t will_encrypt; 714 715 /* 716 * Check that we aren't breaking any encryption rules 717 * and that we have all the parameters we need to 718 * create an encrypted dataset if necessary. If we are 719 * making an encrypted dataset the stream can't have 720 * embedded data. 721 */ 722 error = dmu_objset_create_crypt_check(ds->ds_dir, 723 drba->drba_dcp, &will_encrypt); 724 if (error != 0) { 725 dsl_dataset_rele(ds, FTAG); 726 return (error); 727 } 728 729 if (will_encrypt && 730 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 731 dsl_dataset_rele(ds, FTAG); 732 return (SET_ERROR(EINVAL)); 733 } 734 } 735 736 /* 737 * Check filesystem and snapshot limits before receiving. We'll 738 * recheck snapshot limits again at the end (we create the 739 * filesystems and increment those counts during begin_sync). 740 */ 741 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 742 ZFS_PROP_FILESYSTEM_LIMIT, NULL, 743 drba->drba_cred, drba->drba_proc); 744 if (error != 0) { 745 dsl_dataset_rele(ds, FTAG); 746 return (error); 747 } 748 749 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 750 ZFS_PROP_SNAPSHOT_LIMIT, NULL, 751 drba->drba_cred, drba->drba_proc); 752 if (error != 0) { 753 dsl_dataset_rele(ds, FTAG); 754 return (error); 755 } 756 757 /* can't recv below anything but filesystems (eg. no ZVOLs) */ 758 error = dmu_objset_from_ds(ds, &os); 759 if (error != 0) { 760 dsl_dataset_rele(ds, FTAG); 761 return (error); 762 } 763 if (dmu_objset_type(os) != DMU_OST_ZFS) { 764 dsl_dataset_rele(ds, FTAG); 765 return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); 766 } 767 768 if (drba->drba_origin != NULL) { 769 dsl_dataset_t *origin; 770 error = dsl_dataset_hold_flags(dp, drba->drba_origin, 771 dsflags, FTAG, &origin); 772 if (error != 0) { 773 dsl_dataset_rele(ds, FTAG); 774 return (error); 775 } 776 if (!origin->ds_is_snapshot) { 777 dsl_dataset_rele_flags(origin, dsflags, FTAG); 778 dsl_dataset_rele(ds, FTAG); 779 return (SET_ERROR(EINVAL)); 780 } 781 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 782 fromguid != 0) { 783 dsl_dataset_rele_flags(origin, dsflags, FTAG); 784 dsl_dataset_rele(ds, FTAG); 785 return (SET_ERROR(ENODEV)); 786 } 787 788 if (origin->ds_dir->dd_crypto_obj != 0 && 789 (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) { 790 dsl_dataset_rele_flags(origin, dsflags, FTAG); 791 dsl_dataset_rele(ds, FTAG); 792 return (SET_ERROR(EINVAL)); 793 } 794 795 /* 796 * If the origin is redacted we need to verify that this 797 * send stream can safely be received on top of the 798 * origin. 799 */ 800 if (dsl_dataset_feature_is_active(origin, 801 SPA_FEATURE_REDACTED_DATASETS)) { 802 if (!redact_check(drba, origin)) { 803 dsl_dataset_rele_flags(origin, dsflags, 804 FTAG); 805 dsl_dataset_rele_flags(ds, dsflags, 806 FTAG); 807 return (SET_ERROR(EINVAL)); 808 } 809 } 810 811 error = recv_check_large_blocks(ds, featureflags); 812 if (error != 0) { 813 dsl_dataset_rele_flags(origin, dsflags, FTAG); 814 dsl_dataset_rele_flags(ds, dsflags, FTAG); 815 return (error); 816 } 817 818 dsl_dataset_rele_flags(origin, dsflags, FTAG); 819 } 820 821 dsl_dataset_rele(ds, FTAG); 822 error = 0; 823 } 824 return (error); 825 } 826 827 static void 828 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 829 { 830 dmu_recv_begin_arg_t *drba = arg; 831 dsl_pool_t *dp = dmu_tx_pool(tx); 832 objset_t *mos = dp->dp_meta_objset; 833 dmu_recv_cookie_t *drc = drba->drba_cookie; 834 struct drr_begin *drrb = drc->drc_drrb; 835 const char *tofs = drc->drc_tofs; 836 uint64_t featureflags = drc->drc_featureflags; 837 dsl_dataset_t *ds, *newds; 838 objset_t *os; 839 uint64_t dsobj; 840 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 841 int error; 842 uint64_t crflags = 0; 843 dsl_crypto_params_t dummy_dcp = { 0 }; 844 dsl_crypto_params_t *dcp = drba->drba_dcp; 845 846 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 847 crflags |= DS_FLAG_CI_DATASET; 848 849 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0) 850 dsflags |= DS_HOLD_FLAG_DECRYPT; 851 852 /* 853 * Raw, non-incremental recvs always use a dummy dcp with 854 * the raw cmd set. Raw incremental recvs do not use a dcp 855 * since the encryption parameters are already set in stone. 856 */ 857 if (dcp == NULL && drrb->drr_fromguid == 0 && 858 drba->drba_origin == NULL) { 859 ASSERT3P(dcp, ==, NULL); 860 dcp = &dummy_dcp; 861 862 if (featureflags & DMU_BACKUP_FEATURE_RAW) 863 dcp->cp_cmd = DCP_CMD_RAW_RECV; 864 } 865 866 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 867 if (error == 0) { 868 /* Create temporary clone unless we're doing corrective recv */ 869 dsl_dataset_t *snap = NULL; 870 871 if (drba->drba_cookie->drc_fromsnapobj != 0) { 872 VERIFY0(dsl_dataset_hold_obj(dp, 873 drba->drba_cookie->drc_fromsnapobj, FTAG, &snap)); 874 ASSERT3P(dcp, ==, NULL); 875 } 876 if (drc->drc_heal) { 877 /* When healing we want to use the provided snapshot */ 878 VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap, 879 &dsobj)); 880 } else { 881 dsobj = dsl_dataset_create_sync(ds->ds_dir, 882 recv_clone_name, snap, crflags, drba->drba_cred, 883 dcp, tx); 884 } 885 if (drba->drba_cookie->drc_fromsnapobj != 0) 886 dsl_dataset_rele(snap, FTAG); 887 dsl_dataset_rele_flags(ds, dsflags, FTAG); 888 } else { 889 dsl_dir_t *dd; 890 const char *tail; 891 dsl_dataset_t *origin = NULL; 892 893 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 894 895 if (drba->drba_origin != NULL) { 896 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 897 FTAG, &origin)); 898 ASSERT3P(dcp, ==, NULL); 899 } 900 901 /* Create new dataset. */ 902 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1, 903 origin, crflags, drba->drba_cred, dcp, tx); 904 if (origin != NULL) 905 dsl_dataset_rele(origin, FTAG); 906 dsl_dir_rele(dd, FTAG); 907 drc->drc_newfs = B_TRUE; 908 } 909 VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag, 910 &newds)); 911 if (dsl_dataset_feature_is_active(newds, 912 SPA_FEATURE_REDACTED_DATASETS)) { 913 /* 914 * If the origin dataset is redacted, the child will be redacted 915 * when we create it. We clear the new dataset's 916 * redaction info; if it should be redacted, we'll fill 917 * in its information later. 918 */ 919 dsl_dataset_deactivate_feature(newds, 920 SPA_FEATURE_REDACTED_DATASETS, tx); 921 } 922 VERIFY0(dmu_objset_from_ds(newds, &os)); 923 924 if (drc->drc_resumable) { 925 dsl_dataset_zapify(newds, tx); 926 if (drrb->drr_fromguid != 0) { 927 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 928 8, 1, &drrb->drr_fromguid, tx)); 929 } 930 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 931 8, 1, &drrb->drr_toguid, tx)); 932 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 933 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 934 uint64_t one = 1; 935 uint64_t zero = 0; 936 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 937 8, 1, &one, tx)); 938 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 939 8, 1, &zero, tx)); 940 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 941 8, 1, &zero, tx)); 942 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) { 943 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK, 944 8, 1, &one, tx)); 945 } 946 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) { 947 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 948 8, 1, &one, tx)); 949 } 950 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) { 951 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK, 952 8, 1, &one, tx)); 953 } 954 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 955 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK, 956 8, 1, &one, tx)); 957 } 958 959 uint64_t *redact_snaps; 960 uint_t numredactsnaps; 961 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 962 BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, 963 &numredactsnaps) == 0) { 964 VERIFY0(zap_add(mos, dsobj, 965 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, 966 sizeof (*redact_snaps), numredactsnaps, 967 redact_snaps, tx)); 968 } 969 } 970 971 /* 972 * Usually the os->os_encrypted value is tied to the presence of a 973 * DSL Crypto Key object in the dd. However, that will not be received 974 * until dmu_recv_stream(), so we set the value manually for now. 975 */ 976 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 977 os->os_encrypted = B_TRUE; 978 drba->drba_cookie->drc_raw = B_TRUE; 979 } 980 981 if (featureflags & DMU_BACKUP_FEATURE_REDACTED) { 982 uint64_t *redact_snaps; 983 uint_t numredactsnaps; 984 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl, 985 BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps)); 986 dsl_dataset_activate_redaction(newds, redact_snaps, 987 numredactsnaps, tx); 988 } 989 990 dmu_buf_will_dirty(newds->ds_dbuf, tx); 991 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 992 993 /* 994 * If we actually created a non-clone, we need to create the objset 995 * in our new dataset. If this is a raw send we postpone this until 996 * dmu_recv_stream() so that we can allocate the metadnode with the 997 * properties from the DRR_BEGIN payload. 998 */ 999 rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG); 1000 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) && 1001 (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 && 1002 !drc->drc_heal) { 1003 (void) dmu_objset_create_impl(dp->dp_spa, 1004 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1005 } 1006 rrw_exit(&newds->ds_bp_rwlock, FTAG); 1007 1008 drba->drba_cookie->drc_ds = newds; 1009 drba->drba_cookie->drc_os = os; 1010 1011 spa_history_log_internal_ds(newds, "receive", tx, " "); 1012 } 1013 1014 static int 1015 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1016 { 1017 dmu_recv_begin_arg_t *drba = arg; 1018 dmu_recv_cookie_t *drc = drba->drba_cookie; 1019 dsl_pool_t *dp = dmu_tx_pool(tx); 1020 struct drr_begin *drrb = drc->drc_drrb; 1021 int error; 1022 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1023 dsl_dataset_t *ds; 1024 const char *tofs = drc->drc_tofs; 1025 1026 /* already checked */ 1027 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1028 ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING); 1029 1030 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1031 DMU_COMPOUNDSTREAM || 1032 drrb->drr_type >= DMU_OST_NUMTYPES) 1033 return (SET_ERROR(EINVAL)); 1034 1035 /* 1036 * This is mostly a sanity check since we should have already done these 1037 * checks during a previous attempt to receive the data. 1038 */ 1039 error = recv_begin_check_feature_flags_impl(drc->drc_featureflags, 1040 dp->dp_spa); 1041 if (error != 0) 1042 return (error); 1043 1044 /* 6 extra bytes for /%recv */ 1045 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1046 1047 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1048 tofs, recv_clone_name); 1049 1050 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 1051 /* raw receives require spill block allocation flag */ 1052 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)) 1053 return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING)); 1054 } else { 1055 dsflags |= DS_HOLD_FLAG_DECRYPT; 1056 } 1057 1058 boolean_t recvexist = B_TRUE; 1059 if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) { 1060 /* %recv does not exist; continue in tofs */ 1061 recvexist = B_FALSE; 1062 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds); 1063 if (error != 0) 1064 return (error); 1065 } 1066 1067 /* 1068 * Resume of full/newfs recv on existing dataset should be done with 1069 * force flag 1070 */ 1071 if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) { 1072 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1073 return (SET_ERROR(ZFS_ERR_RESUME_EXISTS)); 1074 } 1075 1076 /* check that ds is marked inconsistent */ 1077 if (!DS_IS_INCONSISTENT(ds)) { 1078 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1079 return (SET_ERROR(EINVAL)); 1080 } 1081 1082 /* check that there is resuming data, and that the toguid matches */ 1083 if (!dsl_dataset_is_zapified(ds)) { 1084 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1085 return (SET_ERROR(EINVAL)); 1086 } 1087 uint64_t val; 1088 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1089 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1090 if (error != 0 || drrb->drr_toguid != val) { 1091 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1092 return (SET_ERROR(EINVAL)); 1093 } 1094 1095 /* 1096 * Check if the receive is still running. If so, it will be owned. 1097 * Note that nothing else can own the dataset (e.g. after the receive 1098 * fails) because it will be marked inconsistent. 1099 */ 1100 if (dsl_dataset_has_owner(ds)) { 1101 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1102 return (SET_ERROR(EBUSY)); 1103 } 1104 1105 /* There should not be any snapshots of this fs yet. */ 1106 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1107 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1108 return (SET_ERROR(EINVAL)); 1109 } 1110 1111 /* 1112 * Note: resume point will be checked when we process the first WRITE 1113 * record. 1114 */ 1115 1116 /* check that the origin matches */ 1117 val = 0; 1118 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1119 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1120 if (drrb->drr_fromguid != val) { 1121 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1122 return (SET_ERROR(EINVAL)); 1123 } 1124 1125 if (ds->ds_prev != NULL && drrb->drr_fromguid != 0) 1126 drc->drc_fromsnapobj = ds->ds_prev->ds_object; 1127 1128 /* 1129 * If we're resuming, and the send is redacted, then the original send 1130 * must have been redacted, and must have been redacted with respect to 1131 * the same snapshots. 1132 */ 1133 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) { 1134 uint64_t num_ds_redact_snaps; 1135 uint64_t *ds_redact_snaps; 1136 1137 uint_t num_stream_redact_snaps; 1138 uint64_t *stream_redact_snaps; 1139 1140 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl, 1141 BEGINNV_REDACT_SNAPS, &stream_redact_snaps, 1142 &num_stream_redact_snaps) != 0) { 1143 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1144 return (SET_ERROR(EINVAL)); 1145 } 1146 1147 if (!dsl_dataset_get_uint64_array_feature(ds, 1148 SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps, 1149 &ds_redact_snaps)) { 1150 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1151 return (SET_ERROR(EINVAL)); 1152 } 1153 1154 for (int i = 0; i < num_ds_redact_snaps; i++) { 1155 if (!redact_snaps_contains(ds_redact_snaps, 1156 num_ds_redact_snaps, stream_redact_snaps[i])) { 1157 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1158 return (SET_ERROR(EINVAL)); 1159 } 1160 } 1161 } 1162 1163 error = recv_check_large_blocks(ds, drc->drc_featureflags); 1164 if (error != 0) { 1165 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1166 return (error); 1167 } 1168 1169 dsl_dataset_rele_flags(ds, dsflags, FTAG); 1170 return (0); 1171 } 1172 1173 static void 1174 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1175 { 1176 dmu_recv_begin_arg_t *drba = arg; 1177 dsl_pool_t *dp = dmu_tx_pool(tx); 1178 const char *tofs = drba->drba_cookie->drc_tofs; 1179 uint64_t featureflags = drba->drba_cookie->drc_featureflags; 1180 dsl_dataset_t *ds; 1181 ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE; 1182 /* 6 extra bytes for /%recv */ 1183 char recvname[ZFS_MAX_DATASET_NAME_LEN + 6]; 1184 1185 (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs, 1186 recv_clone_name); 1187 1188 if (featureflags & DMU_BACKUP_FEATURE_RAW) { 1189 drba->drba_cookie->drc_raw = B_TRUE; 1190 } else { 1191 dsflags |= DS_HOLD_FLAG_DECRYPT; 1192 } 1193 1194 if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds) 1195 != 0) { 1196 /* %recv does not exist; continue in tofs */ 1197 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag, 1198 &ds)); 1199 drba->drba_cookie->drc_newfs = B_TRUE; 1200 } 1201 1202 ASSERT(DS_IS_INCONSISTENT(ds)); 1203 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 1204 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) || 1205 drba->drba_cookie->drc_raw); 1206 rrw_exit(&ds->ds_bp_rwlock, FTAG); 1207 1208 drba->drba_cookie->drc_ds = ds; 1209 VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os)); 1210 drba->drba_cookie->drc_should_save = B_TRUE; 1211 1212 spa_history_log_internal_ds(ds, "resume receive", tx, " "); 1213 } 1214 1215 /* 1216 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1217 * succeeds; otherwise we will leak the holds on the datasets. 1218 */ 1219 int 1220 dmu_recv_begin(const char *tofs, const char *tosnap, 1221 dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal, 1222 boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args, 1223 const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp, 1224 offset_t *voffp) 1225 { 1226 dmu_recv_begin_arg_t drba = { 0 }; 1227 int err = 0; 1228 1229 memset(drc, 0, sizeof (dmu_recv_cookie_t)); 1230 drc->drc_drr_begin = drr_begin; 1231 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1232 drc->drc_tosnap = tosnap; 1233 drc->drc_tofs = tofs; 1234 drc->drc_force = force; 1235 drc->drc_heal = heal; 1236 drc->drc_resumable = resumable; 1237 drc->drc_cred = CRED(); 1238 drc->drc_proc = curproc; 1239 drc->drc_clone = (origin != NULL); 1240 1241 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1242 drc->drc_byteswap = B_TRUE; 1243 (void) fletcher_4_incremental_byteswap(drr_begin, 1244 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1245 byteswap_record(drr_begin); 1246 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1247 (void) fletcher_4_incremental_native(drr_begin, 1248 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1249 } else { 1250 return (SET_ERROR(EINVAL)); 1251 } 1252 1253 drc->drc_fp = fp; 1254 drc->drc_voff = *voffp; 1255 drc->drc_featureflags = 1256 DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 1257 1258 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 1259 1260 /* 1261 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace 1262 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard 1263 * upper limit. Systems with less than 1GB of RAM will see a lower 1264 * limit from `arc_all_memory() / 4`. 1265 */ 1266 if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4))) 1267 return (E2BIG); 1268 1269 1270 if (payloadlen != 0) { 1271 void *payload = vmem_alloc(payloadlen, KM_SLEEP); 1272 /* 1273 * For compatibility with recursive send streams, we don't do 1274 * this here if the stream could be part of a package. Instead, 1275 * we'll do it in dmu_recv_stream. If we pull the next header 1276 * too early, and it's the END record, we break the `recv_skip` 1277 * logic. 1278 */ 1279 1280 err = receive_read_payload_and_next_header(drc, payloadlen, 1281 payload); 1282 if (err != 0) { 1283 vmem_free(payload, payloadlen); 1284 return (err); 1285 } 1286 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl, 1287 KM_SLEEP); 1288 vmem_free(payload, payloadlen); 1289 if (err != 0) { 1290 kmem_free(drc->drc_next_rrd, 1291 sizeof (*drc->drc_next_rrd)); 1292 return (err); 1293 } 1294 } 1295 1296 if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK) 1297 drc->drc_spill = B_TRUE; 1298 1299 drba.drba_origin = origin; 1300 drba.drba_cookie = drc; 1301 drba.drba_cred = CRED(); 1302 drba.drba_proc = curproc; 1303 1304 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 1305 err = dsl_sync_task(tofs, 1306 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1307 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1308 } else { 1309 /* 1310 * For non-raw, non-incremental, non-resuming receives the 1311 * user can specify encryption parameters on the command line 1312 * with "zfs recv -o". For these receives we create a dcp and 1313 * pass it to the sync task. Creating the dcp will implicitly 1314 * remove the encryption params from the localprops nvlist, 1315 * which avoids errors when trying to set these normally 1316 * read-only properties. Any other kind of receive that 1317 * attempts to set these properties will fail as a result. 1318 */ 1319 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1320 DMU_BACKUP_FEATURE_RAW) == 0 && 1321 origin == NULL && drc->drc_drrb->drr_fromguid == 0) { 1322 err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 1323 localprops, hidden_args, &drba.drba_dcp); 1324 } 1325 1326 if (err == 0) { 1327 err = dsl_sync_task(tofs, 1328 dmu_recv_begin_check, dmu_recv_begin_sync, 1329 &drba, 5, ZFS_SPACE_CHECK_NORMAL); 1330 dsl_crypto_params_free(drba.drba_dcp, !!err); 1331 } 1332 } 1333 1334 if (err != 0) { 1335 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 1336 nvlist_free(drc->drc_begin_nvl); 1337 } 1338 return (err); 1339 } 1340 1341 /* 1342 * Holds data need for corrective recv callback 1343 */ 1344 typedef struct cr_cb_data { 1345 uint64_t size; 1346 zbookmark_phys_t zb; 1347 spa_t *spa; 1348 } cr_cb_data_t; 1349 1350 static void 1351 corrective_read_done(zio_t *zio) 1352 { 1353 cr_cb_data_t *data = zio->io_private; 1354 /* Corruption corrected; update error log if needed */ 1355 if (zio->io_error == 0) { 1356 spa_remove_error(data->spa, &data->zb, 1357 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 1358 } 1359 kmem_free(data, sizeof (cr_cb_data_t)); 1360 abd_free(zio->io_abd); 1361 } 1362 1363 /* 1364 * zio_rewrite the data pointed to by bp with the data from the rrd's abd. 1365 */ 1366 static int 1367 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw, 1368 struct receive_record_arg *rrd, blkptr_t *bp) 1369 { 1370 int err; 1371 zio_t *io; 1372 zbookmark_phys_t zb; 1373 dnode_t *dn; 1374 abd_t *abd = rrd->abd; 1375 zio_cksum_t bp_cksum = bp->blk_cksum; 1376 zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY | 1377 ZIO_FLAG_CANFAIL; 1378 1379 if (rwa->raw) 1380 flags |= ZIO_FLAG_RAW; 1381 1382 err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn); 1383 if (err != 0) 1384 return (err); 1385 SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0, 1386 dbuf_whichblock(dn, 0, drrw->drr_offset)); 1387 dnode_rele(dn, FTAG); 1388 1389 if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) { 1390 /* Decompress the stream data */ 1391 abd_t *dabd = abd_alloc_linear( 1392 drrw->drr_logical_size, B_FALSE); 1393 err = zio_decompress_data(drrw->drr_compressiontype, 1394 abd, dabd, abd_get_size(abd), 1395 abd_get_size(dabd), NULL); 1396 1397 if (err != 0) { 1398 abd_free(dabd); 1399 return (err); 1400 } 1401 /* Swap in the newly decompressed data into the abd */ 1402 abd_free(abd); 1403 abd = dabd; 1404 } 1405 1406 if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 1407 /* Recompress the data */ 1408 abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp), 1409 B_FALSE); 1410 uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp), 1411 abd, &cabd, abd_get_size(abd), 1412 rwa->os->os_complevel); 1413 abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize); 1414 /* Swap in newly compressed data into the abd */ 1415 abd_free(abd); 1416 abd = cabd; 1417 flags |= ZIO_FLAG_RAW_COMPRESS; 1418 } 1419 1420 /* 1421 * The stream is not encrypted but the data on-disk is. 1422 * We need to re-encrypt the buf using the same 1423 * encryption type, salt, iv, and mac that was used to encrypt 1424 * the block previosly. 1425 */ 1426 if (!rwa->raw && BP_USES_CRYPT(bp)) { 1427 dsl_dataset_t *ds; 1428 dsl_crypto_key_t *dck = NULL; 1429 uint8_t salt[ZIO_DATA_SALT_LEN]; 1430 uint8_t iv[ZIO_DATA_IV_LEN]; 1431 uint8_t mac[ZIO_DATA_MAC_LEN]; 1432 boolean_t no_crypt = B_FALSE; 1433 dsl_pool_t *dp = dmu_objset_pool(rwa->os); 1434 abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE); 1435 1436 zio_crypt_decode_params_bp(bp, salt, iv); 1437 zio_crypt_decode_mac_bp(bp, mac); 1438 1439 dsl_pool_config_enter(dp, FTAG); 1440 err = dsl_dataset_hold_flags(dp, rwa->tofs, 1441 DS_HOLD_FLAG_DECRYPT, FTAG, &ds); 1442 if (err != 0) { 1443 dsl_pool_config_exit(dp, FTAG); 1444 abd_free(eabd); 1445 return (SET_ERROR(EACCES)); 1446 } 1447 1448 /* Look up the key from the spa's keystore */ 1449 err = spa_keystore_lookup_key(rwa->os->os_spa, 1450 zb.zb_objset, FTAG, &dck); 1451 if (err != 0) { 1452 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, 1453 FTAG); 1454 dsl_pool_config_exit(dp, FTAG); 1455 abd_free(eabd); 1456 return (SET_ERROR(EACCES)); 1457 } 1458 1459 err = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 1460 BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, 1461 mac, abd_get_size(abd), abd, eabd, &no_crypt); 1462 1463 spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG); 1464 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG); 1465 dsl_pool_config_exit(dp, FTAG); 1466 1467 ASSERT0(no_crypt); 1468 if (err != 0) { 1469 abd_free(eabd); 1470 return (err); 1471 } 1472 /* Swap in the newly encrypted data into the abd */ 1473 abd_free(abd); 1474 abd = eabd; 1475 1476 /* 1477 * We want to prevent zio_rewrite() from trying to 1478 * encrypt the data again 1479 */ 1480 flags |= ZIO_FLAG_RAW_ENCRYPT; 1481 } 1482 rrd->abd = abd; 1483 1484 io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp, 1485 abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, 1486 &zb); 1487 1488 ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) || 1489 abd_get_size(abd) == BP_GET_PSIZE(bp)); 1490 1491 /* compute new bp checksum value and make sure it matches the old one */ 1492 zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd)); 1493 if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) { 1494 zio_destroy(io); 1495 if (zfs_recv_best_effort_corrective != 0) 1496 return (0); 1497 return (SET_ERROR(ECKSUM)); 1498 } 1499 1500 /* Correct the corruption in place */ 1501 err = zio_wait(io); 1502 if (err == 0) { 1503 cr_cb_data_t *cb_data = 1504 kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP); 1505 cb_data->spa = rwa->os->os_spa; 1506 cb_data->size = drrw->drr_logical_size; 1507 cb_data->zb = zb; 1508 /* Test if healing worked by re-reading the bp */ 1509 err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp, 1510 abd_alloc_for_io(drrw->drr_logical_size, B_FALSE), 1511 drrw->drr_logical_size, corrective_read_done, 1512 cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL)); 1513 } 1514 if (err != 0 && zfs_recv_best_effort_corrective != 0) 1515 err = 0; 1516 1517 return (err); 1518 } 1519 1520 static int 1521 receive_read(dmu_recv_cookie_t *drc, int len, void *buf) 1522 { 1523 int done = 0; 1524 1525 /* 1526 * The code doesn't rely on this (lengths being multiples of 8). See 1527 * comment in dump_bytes. 1528 */ 1529 ASSERT(len % 8 == 0 || 1530 (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0); 1531 1532 while (done < len) { 1533 ssize_t resid = len - done; 1534 zfs_file_t *fp = drc->drc_fp; 1535 int err = zfs_file_read(fp, (char *)buf + done, 1536 len - done, &resid); 1537 if (err == 0 && resid == len - done) { 1538 /* 1539 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates 1540 * that the receive was interrupted and can 1541 * potentially be resumed. 1542 */ 1543 err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); 1544 } 1545 drc->drc_voff += len - done - resid; 1546 done = len - resid; 1547 if (err != 0) 1548 return (err); 1549 } 1550 1551 drc->drc_bytes_read += len; 1552 1553 ASSERT3U(done, ==, len); 1554 return (0); 1555 } 1556 1557 static inline uint8_t 1558 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1559 { 1560 if (bonus_type == DMU_OT_SA) { 1561 return (1); 1562 } else { 1563 return (1 + 1564 ((DN_OLD_MAX_BONUSLEN - 1565 MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT)); 1566 } 1567 } 1568 1569 static void 1570 save_resume_state(struct receive_writer_arg *rwa, 1571 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1572 { 1573 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1574 1575 if (!rwa->resumable) 1576 return; 1577 1578 /* 1579 * We use ds_resume_bytes[] != 0 to indicate that we need to 1580 * update this on disk, so it must not be 0. 1581 */ 1582 ASSERT(rwa->bytes_read != 0); 1583 1584 /* 1585 * We only resume from write records, which have a valid 1586 * (non-meta-dnode) object number. 1587 */ 1588 ASSERT(object != 0); 1589 1590 /* 1591 * For resuming to work correctly, we must receive records in order, 1592 * sorted by object,offset. This is checked by the callers, but 1593 * assert it here for good measure. 1594 */ 1595 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1596 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1597 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1598 ASSERT3U(rwa->bytes_read, >=, 1599 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1600 1601 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1602 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1603 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1604 } 1605 1606 static int 1607 receive_object_is_same_generation(objset_t *os, uint64_t object, 1608 dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type, 1609 const void *new_bonus, boolean_t *samegenp) 1610 { 1611 zfs_file_info_t zoi; 1612 int err; 1613 1614 dmu_buf_t *old_bonus_dbuf; 1615 err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf); 1616 if (err != 0) 1617 return (err); 1618 err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data, 1619 &zoi); 1620 dmu_buf_rele(old_bonus_dbuf, FTAG); 1621 if (err != 0) 1622 return (err); 1623 uint64_t old_gen = zoi.zfi_generation; 1624 1625 err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi); 1626 if (err != 0) 1627 return (err); 1628 uint64_t new_gen = zoi.zfi_generation; 1629 1630 *samegenp = (old_gen == new_gen); 1631 return (0); 1632 } 1633 1634 static int 1635 receive_handle_existing_object(const struct receive_writer_arg *rwa, 1636 const struct drr_object *drro, const dmu_object_info_t *doi, 1637 const void *bonus_data, 1638 uint64_t *object_to_hold, uint32_t *new_blksz) 1639 { 1640 uint32_t indblksz = drro->drr_indblkshift ? 1641 1ULL << drro->drr_indblkshift : 0; 1642 int nblkptr = deduce_nblkptr(drro->drr_bonustype, 1643 drro->drr_bonuslen); 1644 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1645 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1646 boolean_t do_free_range = B_FALSE; 1647 int err; 1648 1649 *object_to_hold = drro->drr_object; 1650 1651 /* nblkptr should be bounded by the bonus size and type */ 1652 if (rwa->raw && nblkptr != drro->drr_nblkptr) 1653 return (SET_ERROR(EINVAL)); 1654 1655 /* 1656 * After the previous send stream, the sending system may 1657 * have freed this object, and then happened to re-allocate 1658 * this object number in a later txg. In this case, we are 1659 * receiving a different logical file, and the block size may 1660 * appear to be different. i.e. we may have a different 1661 * block size for this object than what the send stream says. 1662 * In this case we need to remove the object's contents, 1663 * so that its structure can be changed and then its contents 1664 * entirely replaced by subsequent WRITE records. 1665 * 1666 * If this is a -L (--large-block) incremental stream, and 1667 * the previous stream was not -L, the block size may appear 1668 * to increase. i.e. we may have a smaller block size for 1669 * this object than what the send stream says. In this case 1670 * we need to keep the object's contents and block size 1671 * intact, so that we don't lose parts of the object's 1672 * contents that are not changed by this incremental send 1673 * stream. 1674 * 1675 * We can distinguish between the two above cases by using 1676 * the ZPL's generation number (see 1677 * receive_object_is_same_generation()). However, we only 1678 * want to rely on the generation number when absolutely 1679 * necessary, because with raw receives, the generation is 1680 * encrypted. We also want to minimize dependence on the 1681 * ZPL, so that other types of datasets can also be received 1682 * (e.g. ZVOLs, although note that ZVOLS currently do not 1683 * reallocate their objects or change their structure). 1684 * Therefore, we check a number of different cases where we 1685 * know it is safe to discard the object's contents, before 1686 * using the ZPL's generation number to make the above 1687 * distinction. 1688 */ 1689 if (drro->drr_blksz != doi->doi_data_block_size) { 1690 if (rwa->raw) { 1691 /* 1692 * RAW streams always have large blocks, so 1693 * we are sure that the data is not needed 1694 * due to changing --large-block to be on. 1695 * Which is fortunate since the bonus buffer 1696 * (which contains the ZPL generation) is 1697 * encrypted, and the key might not be 1698 * loaded. 1699 */ 1700 do_free_range = B_TRUE; 1701 } else if (rwa->full) { 1702 /* 1703 * This is a full send stream, so it always 1704 * replaces what we have. Even if the 1705 * generation numbers happen to match, this 1706 * can not actually be the same logical file. 1707 * This is relevant when receiving a full 1708 * send as a clone. 1709 */ 1710 do_free_range = B_TRUE; 1711 } else if (drro->drr_type != 1712 DMU_OT_PLAIN_FILE_CONTENTS || 1713 doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) { 1714 /* 1715 * PLAIN_FILE_CONTENTS are the only type of 1716 * objects that have ever been stored with 1717 * large blocks, so we don't need the special 1718 * logic below. ZAP blocks can shrink (when 1719 * there's only one block), so we don't want 1720 * to hit the error below about block size 1721 * only increasing. 1722 */ 1723 do_free_range = B_TRUE; 1724 } else if (doi->doi_max_offset <= 1725 doi->doi_data_block_size) { 1726 /* 1727 * There is only one block. We can free it, 1728 * because its contents will be replaced by a 1729 * WRITE record. This can not be the no-L -> 1730 * -L case, because the no-L case would have 1731 * resulted in multiple blocks. If we 1732 * supported -L -> no-L, it would not be safe 1733 * to free the file's contents. Fortunately, 1734 * that is not allowed (see 1735 * recv_check_large_blocks()). 1736 */ 1737 do_free_range = B_TRUE; 1738 } else { 1739 boolean_t is_same_gen; 1740 err = receive_object_is_same_generation(rwa->os, 1741 drro->drr_object, doi->doi_bonus_type, 1742 drro->drr_bonustype, bonus_data, &is_same_gen); 1743 if (err != 0) 1744 return (SET_ERROR(EINVAL)); 1745 1746 if (is_same_gen) { 1747 /* 1748 * This is the same logical file, and 1749 * the block size must be increasing. 1750 * It could only decrease if 1751 * --large-block was changed to be 1752 * off, which is checked in 1753 * recv_check_large_blocks(). 1754 */ 1755 if (drro->drr_blksz <= 1756 doi->doi_data_block_size) 1757 return (SET_ERROR(EINVAL)); 1758 /* 1759 * We keep the existing blocksize and 1760 * contents. 1761 */ 1762 *new_blksz = 1763 doi->doi_data_block_size; 1764 } else { 1765 do_free_range = B_TRUE; 1766 } 1767 } 1768 } 1769 1770 /* nblkptr can only decrease if the object was reallocated */ 1771 if (nblkptr < doi->doi_nblkptr) 1772 do_free_range = B_TRUE; 1773 1774 /* number of slots can only change on reallocation */ 1775 if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) 1776 do_free_range = B_TRUE; 1777 1778 /* 1779 * For raw sends we also check a few other fields to 1780 * ensure we are preserving the objset structure exactly 1781 * as it was on the receive side: 1782 * - A changed indirect block size 1783 * - A smaller nlevels 1784 */ 1785 if (rwa->raw) { 1786 if (indblksz != doi->doi_metadata_block_size) 1787 do_free_range = B_TRUE; 1788 if (drro->drr_nlevels < doi->doi_indirection) 1789 do_free_range = B_TRUE; 1790 } 1791 1792 if (do_free_range) { 1793 err = dmu_free_long_range(rwa->os, drro->drr_object, 1794 0, DMU_OBJECT_END); 1795 if (err != 0) 1796 return (SET_ERROR(EINVAL)); 1797 } 1798 1799 /* 1800 * The dmu does not currently support decreasing nlevels or changing 1801 * indirect block size if there is already one, same as changing the 1802 * number of of dnode slots on an object. For non-raw sends this 1803 * does not matter and the new object can just use the previous one's 1804 * parameters. For raw sends, however, the structure of the received 1805 * dnode (including indirects and dnode slots) must match that of the 1806 * send side. Therefore, instead of using dmu_object_reclaim(), we 1807 * must free the object completely and call dmu_object_claim_dnsize() 1808 * instead. 1809 */ 1810 if ((rwa->raw && ((doi->doi_indirection > 1 && 1811 indblksz != doi->doi_metadata_block_size) || 1812 drro->drr_nlevels < doi->doi_indirection)) || 1813 dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) { 1814 err = dmu_free_long_object(rwa->os, drro->drr_object); 1815 if (err != 0) 1816 return (SET_ERROR(EINVAL)); 1817 1818 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1819 *object_to_hold = DMU_NEW_OBJECT; 1820 } 1821 1822 /* 1823 * For raw receives, free everything beyond the new incoming 1824 * maxblkid. Normally this would be done with a DRR_FREE 1825 * record that would come after this DRR_OBJECT record is 1826 * processed. However, for raw receives we manually set the 1827 * maxblkid from the drr_maxblkid and so we must first free 1828 * everything above that blkid to ensure the DMU is always 1829 * consistent with itself. We will never free the first block 1830 * of the object here because a maxblkid of 0 could indicate 1831 * an object with a single block or one with no blocks. This 1832 * free may be skipped when dmu_free_long_range() was called 1833 * above since it covers the entire object's contents. 1834 */ 1835 if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) { 1836 err = dmu_free_long_range(rwa->os, drro->drr_object, 1837 (drro->drr_maxblkid + 1) * doi->doi_data_block_size, 1838 DMU_OBJECT_END); 1839 if (err != 0) 1840 return (SET_ERROR(EINVAL)); 1841 } 1842 return (0); 1843 } 1844 1845 noinline static int 1846 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1847 void *data) 1848 { 1849 dmu_object_info_t doi; 1850 dmu_tx_t *tx; 1851 int err; 1852 uint32_t new_blksz = drro->drr_blksz; 1853 uint8_t dn_slots = drro->drr_dn_slots != 0 ? 1854 drro->drr_dn_slots : DNODE_MIN_SLOTS; 1855 1856 if (drro->drr_type == DMU_OT_NONE || 1857 !DMU_OT_IS_VALID(drro->drr_type) || 1858 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1859 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1860 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1861 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1862 drro->drr_blksz < SPA_MINBLOCKSIZE || 1863 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1864 drro->drr_bonuslen > 1865 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) || 1866 dn_slots > 1867 (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) { 1868 return (SET_ERROR(EINVAL)); 1869 } 1870 1871 if (rwa->raw) { 1872 /* 1873 * We should have received a DRR_OBJECT_RANGE record 1874 * containing this block and stored it in rwa. 1875 */ 1876 if (drro->drr_object < rwa->or_firstobj || 1877 drro->drr_object >= rwa->or_firstobj + rwa->or_numslots || 1878 drro->drr_raw_bonuslen < drro->drr_bonuslen || 1879 drro->drr_indblkshift > SPA_MAXBLOCKSHIFT || 1880 drro->drr_nlevels > DN_MAX_LEVELS || 1881 drro->drr_nblkptr > DN_MAX_NBLKPTR || 1882 DN_SLOTS_TO_BONUSLEN(dn_slots) < 1883 drro->drr_raw_bonuslen) 1884 return (SET_ERROR(EINVAL)); 1885 } else { 1886 /* 1887 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN 1888 * record indicates this by setting DRR_FLAG_SPILL_BLOCK. 1889 */ 1890 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) || 1891 (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) { 1892 return (SET_ERROR(EINVAL)); 1893 } 1894 1895 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 || 1896 drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) { 1897 return (SET_ERROR(EINVAL)); 1898 } 1899 } 1900 1901 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1902 1903 if (err != 0 && err != ENOENT && err != EEXIST) 1904 return (SET_ERROR(EINVAL)); 1905 1906 if (drro->drr_object > rwa->max_object) 1907 rwa->max_object = drro->drr_object; 1908 1909 /* 1910 * If we are losing blkptrs or changing the block size this must 1911 * be a new file instance. We must clear out the previous file 1912 * contents before we can change this type of metadata in the dnode. 1913 * Raw receives will also check that the indirect structure of the 1914 * dnode hasn't changed. 1915 */ 1916 uint64_t object_to_hold; 1917 if (err == 0) { 1918 err = receive_handle_existing_object(rwa, drro, &doi, data, 1919 &object_to_hold, &new_blksz); 1920 if (err != 0) 1921 return (err); 1922 } else if (err == EEXIST) { 1923 /* 1924 * The object requested is currently an interior slot of a 1925 * multi-slot dnode. This will be resolved when the next txg 1926 * is synced out, since the send stream will have told us 1927 * to free this slot when we freed the associated dnode 1928 * earlier in the stream. 1929 */ 1930 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1931 1932 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT) 1933 return (SET_ERROR(EINVAL)); 1934 1935 /* object was freed and we are about to allocate a new one */ 1936 object_to_hold = DMU_NEW_OBJECT; 1937 } else { 1938 /* 1939 * If the only record in this range so far was DRR_FREEOBJECTS 1940 * with at least one actually freed object, it's possible that 1941 * the block will now be converted to a hole. We need to wait 1942 * for the txg to sync to prevent races. 1943 */ 1944 if (rwa->or_need_sync == ORNS_YES) 1945 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1946 1947 /* object is free and we are about to allocate a new one */ 1948 object_to_hold = DMU_NEW_OBJECT; 1949 } 1950 1951 /* Only relevant for the first object in the range */ 1952 rwa->or_need_sync = ORNS_NO; 1953 1954 /* 1955 * If this is a multi-slot dnode there is a chance that this 1956 * object will expand into a slot that is already used by 1957 * another object from the previous snapshot. We must free 1958 * these objects before we attempt to allocate the new dnode. 1959 */ 1960 if (dn_slots > 1) { 1961 boolean_t need_sync = B_FALSE; 1962 1963 for (uint64_t slot = drro->drr_object + 1; 1964 slot < drro->drr_object + dn_slots; 1965 slot++) { 1966 dmu_object_info_t slot_doi; 1967 1968 err = dmu_object_info(rwa->os, slot, &slot_doi); 1969 if (err == ENOENT || err == EEXIST) 1970 continue; 1971 else if (err != 0) 1972 return (err); 1973 1974 err = dmu_free_long_object(rwa->os, slot); 1975 if (err != 0) 1976 return (err); 1977 1978 need_sync = B_TRUE; 1979 } 1980 1981 if (need_sync) 1982 txg_wait_synced(dmu_objset_pool(rwa->os), 0); 1983 } 1984 1985 tx = dmu_tx_create(rwa->os); 1986 dmu_tx_hold_bonus(tx, object_to_hold); 1987 dmu_tx_hold_write(tx, object_to_hold, 0, 0); 1988 err = dmu_tx_assign(tx, TXG_WAIT); 1989 if (err != 0) { 1990 dmu_tx_abort(tx); 1991 return (err); 1992 } 1993 1994 if (object_to_hold == DMU_NEW_OBJECT) { 1995 /* Currently free, wants to be allocated */ 1996 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object, 1997 drro->drr_type, new_blksz, 1998 drro->drr_bonustype, drro->drr_bonuslen, 1999 dn_slots << DNODE_SHIFT, tx); 2000 } else if (drro->drr_type != doi.doi_type || 2001 new_blksz != doi.doi_data_block_size || 2002 drro->drr_bonustype != doi.doi_bonus_type || 2003 drro->drr_bonuslen != doi.doi_bonus_size) { 2004 /* Currently allocated, but with different properties */ 2005 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object, 2006 drro->drr_type, new_blksz, 2007 drro->drr_bonustype, drro->drr_bonuslen, 2008 dn_slots << DNODE_SHIFT, rwa->spill ? 2009 DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx); 2010 } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) { 2011 /* 2012 * Currently allocated, the existing version of this object 2013 * may reference a spill block that is no longer allocated 2014 * at the source and needs to be freed. 2015 */ 2016 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx); 2017 } 2018 2019 if (err != 0) { 2020 dmu_tx_commit(tx); 2021 return (SET_ERROR(EINVAL)); 2022 } 2023 2024 if (rwa->or_crypt_params_present) { 2025 /* 2026 * Set the crypt params for the buffer associated with this 2027 * range of dnodes. This causes the blkptr_t to have the 2028 * same crypt params (byteorder, salt, iv, mac) as on the 2029 * sending side. 2030 * 2031 * Since we are committing this tx now, it is possible for 2032 * the dnode block to end up on-disk with the incorrect MAC, 2033 * if subsequent objects in this block are received in a 2034 * different txg. However, since the dataset is marked as 2035 * inconsistent, no code paths will do a non-raw read (or 2036 * decrypt the block / verify the MAC). The receive code and 2037 * scrub code can safely do raw reads and verify the 2038 * checksum. They don't need to verify the MAC. 2039 */ 2040 dmu_buf_t *db = NULL; 2041 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE; 2042 2043 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os), 2044 offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT); 2045 if (err != 0) { 2046 dmu_tx_commit(tx); 2047 return (SET_ERROR(EINVAL)); 2048 } 2049 2050 dmu_buf_set_crypt_params(db, rwa->or_byteorder, 2051 rwa->or_salt, rwa->or_iv, rwa->or_mac, tx); 2052 2053 dmu_buf_rele(db, FTAG); 2054 2055 rwa->or_crypt_params_present = B_FALSE; 2056 } 2057 2058 dmu_object_set_checksum(rwa->os, drro->drr_object, 2059 drro->drr_checksumtype, tx); 2060 dmu_object_set_compress(rwa->os, drro->drr_object, 2061 drro->drr_compress, tx); 2062 2063 /* handle more restrictive dnode structuring for raw recvs */ 2064 if (rwa->raw) { 2065 /* 2066 * Set the indirect block size, block shift, nlevels. 2067 * This will not fail because we ensured all of the 2068 * blocks were freed earlier if this is a new object. 2069 * For non-new objects block size and indirect block 2070 * shift cannot change and nlevels can only increase. 2071 */ 2072 ASSERT3U(new_blksz, ==, drro->drr_blksz); 2073 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object, 2074 drro->drr_blksz, drro->drr_indblkshift, tx)); 2075 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object, 2076 drro->drr_nlevels, tx)); 2077 2078 /* 2079 * Set the maxblkid. This will always succeed because 2080 * we freed all blocks beyond the new maxblkid above. 2081 */ 2082 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object, 2083 drro->drr_maxblkid, tx)); 2084 } 2085 2086 if (data != NULL) { 2087 dmu_buf_t *db; 2088 dnode_t *dn; 2089 uint32_t flags = DMU_READ_NO_PREFETCH; 2090 2091 if (rwa->raw) 2092 flags |= DMU_READ_NO_DECRYPT; 2093 2094 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn)); 2095 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags)); 2096 2097 dmu_buf_will_dirty(db, tx); 2098 2099 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2100 memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro)); 2101 2102 /* 2103 * Raw bonus buffers have their byteorder determined by the 2104 * DRR_OBJECT_RANGE record. 2105 */ 2106 if (rwa->byteswap && !rwa->raw) { 2107 dmu_object_byteswap_t byteswap = 2108 DMU_OT_BYTESWAP(drro->drr_bonustype); 2109 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2110 DRR_OBJECT_PAYLOAD_SIZE(drro)); 2111 } 2112 dmu_buf_rele(db, FTAG); 2113 dnode_rele(dn, FTAG); 2114 } 2115 2116 /* 2117 * If the receive fails, we want the resume stream to start with the 2118 * same record that we last successfully received. There is no way to 2119 * request resume from the object record, but we can benefit from the 2120 * fact that sender always sends object record before anything else, 2121 * after which it will "resend" data at offset 0 and resume normally. 2122 */ 2123 save_resume_state(rwa, drro->drr_object, 0, tx); 2124 2125 dmu_tx_commit(tx); 2126 2127 return (0); 2128 } 2129 2130 noinline static int 2131 receive_freeobjects(struct receive_writer_arg *rwa, 2132 struct drr_freeobjects *drrfo) 2133 { 2134 uint64_t obj; 2135 int next_err = 0; 2136 2137 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2138 return (SET_ERROR(EINVAL)); 2139 2140 for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj; 2141 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && 2142 obj < DN_MAX_OBJECT && next_err == 0; 2143 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2144 dmu_object_info_t doi; 2145 int err; 2146 2147 err = dmu_object_info(rwa->os, obj, &doi); 2148 if (err == ENOENT) 2149 continue; 2150 else if (err != 0) 2151 return (err); 2152 2153 err = dmu_free_long_object(rwa->os, obj); 2154 2155 if (err != 0) 2156 return (err); 2157 2158 if (rwa->or_need_sync == ORNS_MAYBE) 2159 rwa->or_need_sync = ORNS_YES; 2160 } 2161 if (next_err != ESRCH) 2162 return (next_err); 2163 return (0); 2164 } 2165 2166 /* 2167 * Note: if this fails, the caller will clean up any records left on the 2168 * rwa->write_batch list. 2169 */ 2170 static int 2171 flush_write_batch_impl(struct receive_writer_arg *rwa) 2172 { 2173 dnode_t *dn; 2174 int err; 2175 2176 if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0) 2177 return (SET_ERROR(EINVAL)); 2178 2179 struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch); 2180 struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write; 2181 2182 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2183 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2184 2185 ASSERT3U(rwa->last_object, ==, last_drrw->drr_object); 2186 ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset); 2187 2188 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2189 dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset, 2190 last_drrw->drr_offset - first_drrw->drr_offset + 2191 last_drrw->drr_logical_size); 2192 err = dmu_tx_assign(tx, TXG_WAIT); 2193 if (err != 0) { 2194 dmu_tx_abort(tx); 2195 dnode_rele(dn, FTAG); 2196 return (err); 2197 } 2198 2199 struct receive_record_arg *rrd; 2200 while ((rrd = list_head(&rwa->write_batch)) != NULL) { 2201 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2202 abd_t *abd = rrd->abd; 2203 2204 ASSERT3U(drrw->drr_object, ==, rwa->last_object); 2205 2206 if (drrw->drr_logical_size != dn->dn_datablksz) { 2207 /* 2208 * The WRITE record is larger than the object's block 2209 * size. We must be receiving an incremental 2210 * large-block stream into a dataset that previously did 2211 * a non-large-block receive. Lightweight writes must 2212 * be exactly one block, so we need to decompress the 2213 * data (if compressed) and do a normal dmu_write(). 2214 */ 2215 ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz); 2216 if (DRR_WRITE_COMPRESSED(drrw)) { 2217 abd_t *decomp_abd = 2218 abd_alloc_linear(drrw->drr_logical_size, 2219 B_FALSE); 2220 2221 err = zio_decompress_data( 2222 drrw->drr_compressiontype, 2223 abd, decomp_abd, 2224 abd_get_size(abd), 2225 abd_get_size(decomp_abd), NULL); 2226 2227 if (err == 0) { 2228 dmu_write_by_dnode(dn, 2229 drrw->drr_offset, 2230 drrw->drr_logical_size, 2231 abd_to_buf(decomp_abd), tx); 2232 } 2233 abd_free(decomp_abd); 2234 } else { 2235 dmu_write_by_dnode(dn, 2236 drrw->drr_offset, 2237 drrw->drr_logical_size, 2238 abd_to_buf(abd), tx); 2239 } 2240 if (err == 0) 2241 abd_free(abd); 2242 } else { 2243 zio_prop_t zp = {0}; 2244 dmu_write_policy(rwa->os, dn, 0, 0, &zp); 2245 2246 zio_flag_t zio_flags = 0; 2247 2248 if (rwa->raw) { 2249 zp.zp_encrypt = B_TRUE; 2250 zp.zp_compress = drrw->drr_compressiontype; 2251 zp.zp_byteorder = ZFS_HOST_BYTEORDER ^ 2252 !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^ 2253 rwa->byteswap; 2254 memcpy(zp.zp_salt, drrw->drr_salt, 2255 ZIO_DATA_SALT_LEN); 2256 memcpy(zp.zp_iv, drrw->drr_iv, 2257 ZIO_DATA_IV_LEN); 2258 memcpy(zp.zp_mac, drrw->drr_mac, 2259 ZIO_DATA_MAC_LEN); 2260 if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) { 2261 zp.zp_nopwrite = B_FALSE; 2262 zp.zp_copies = MIN(zp.zp_copies, 2263 SPA_DVAS_PER_BP - 1); 2264 } 2265 zio_flags |= ZIO_FLAG_RAW; 2266 } else if (DRR_WRITE_COMPRESSED(drrw)) { 2267 ASSERT3U(drrw->drr_compressed_size, >, 0); 2268 ASSERT3U(drrw->drr_logical_size, >=, 2269 drrw->drr_compressed_size); 2270 zp.zp_compress = drrw->drr_compressiontype; 2271 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 2272 } else if (rwa->byteswap) { 2273 /* 2274 * Note: compressed blocks never need to be 2275 * byteswapped, because WRITE records for 2276 * metadata blocks are never compressed. The 2277 * exception is raw streams, which are written 2278 * in the original byteorder, and the byteorder 2279 * bit is preserved in the BP by setting 2280 * zp_byteorder above. 2281 */ 2282 dmu_object_byteswap_t byteswap = 2283 DMU_OT_BYTESWAP(drrw->drr_type); 2284 dmu_ot_byteswap[byteswap].ob_func( 2285 abd_to_buf(abd), 2286 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2287 } 2288 2289 /* 2290 * Since this data can't be read until the receive 2291 * completes, we can do a "lightweight" write for 2292 * improved performance. 2293 */ 2294 err = dmu_lightweight_write_by_dnode(dn, 2295 drrw->drr_offset, abd, &zp, zio_flags, tx); 2296 } 2297 2298 if (err != 0) { 2299 /* 2300 * This rrd is left on the list, so the caller will 2301 * free it (and the abd). 2302 */ 2303 break; 2304 } 2305 2306 /* 2307 * Note: If the receive fails, we want the resume stream to 2308 * start with the same record that we last successfully 2309 * received (as opposed to the next record), so that we can 2310 * verify that we are resuming from the correct location. 2311 */ 2312 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2313 2314 list_remove(&rwa->write_batch, rrd); 2315 kmem_free(rrd, sizeof (*rrd)); 2316 } 2317 2318 dmu_tx_commit(tx); 2319 dnode_rele(dn, FTAG); 2320 return (err); 2321 } 2322 2323 noinline static int 2324 flush_write_batch(struct receive_writer_arg *rwa) 2325 { 2326 if (list_is_empty(&rwa->write_batch)) 2327 return (0); 2328 int err = rwa->err; 2329 if (err == 0) 2330 err = flush_write_batch_impl(rwa); 2331 if (err != 0) { 2332 struct receive_record_arg *rrd; 2333 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) { 2334 abd_free(rrd->abd); 2335 kmem_free(rrd, sizeof (*rrd)); 2336 } 2337 } 2338 ASSERT(list_is_empty(&rwa->write_batch)); 2339 return (err); 2340 } 2341 2342 noinline static int 2343 receive_process_write_record(struct receive_writer_arg *rwa, 2344 struct receive_record_arg *rrd) 2345 { 2346 int err = 0; 2347 2348 ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE); 2349 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2350 2351 if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset || 2352 !DMU_OT_IS_VALID(drrw->drr_type)) 2353 return (SET_ERROR(EINVAL)); 2354 2355 if (rwa->heal) { 2356 blkptr_t *bp; 2357 dmu_buf_t *dbp; 2358 int flags = DB_RF_CANFAIL; 2359 2360 if (rwa->raw) 2361 flags |= DB_RF_NO_DECRYPT; 2362 2363 if (rwa->byteswap) { 2364 dmu_object_byteswap_t byteswap = 2365 DMU_OT_BYTESWAP(drrw->drr_type); 2366 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd), 2367 DRR_WRITE_PAYLOAD_SIZE(drrw)); 2368 } 2369 2370 err = dmu_buf_hold_noread(rwa->os, drrw->drr_object, 2371 drrw->drr_offset, FTAG, &dbp); 2372 if (err != 0) 2373 return (err); 2374 2375 /* Try to read the object to see if it needs healing */ 2376 err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags); 2377 /* 2378 * We only try to heal when dbuf_read() returns a ECKSUMs. 2379 * Other errors (even EIO) get returned to caller. 2380 * EIO indicates that the device is not present/accessible, 2381 * so writing to it will likely fail. 2382 * If the block is healthy, we don't want to overwrite it 2383 * unnecessarily. 2384 */ 2385 if (err != ECKSUM) { 2386 dmu_buf_rele(dbp, FTAG); 2387 return (err); 2388 } 2389 /* Make sure the on-disk block and recv record sizes match */ 2390 if (drrw->drr_logical_size != dbp->db_size) { 2391 err = ENOTSUP; 2392 dmu_buf_rele(dbp, FTAG); 2393 return (err); 2394 } 2395 /* Get the block pointer for the corrupted block */ 2396 bp = dmu_buf_get_blkptr(dbp); 2397 err = do_corrective_recv(rwa, drrw, rrd, bp); 2398 dmu_buf_rele(dbp, FTAG); 2399 return (err); 2400 } 2401 2402 /* 2403 * For resuming to work, records must be in increasing order 2404 * by (object, offset). 2405 */ 2406 if (drrw->drr_object < rwa->last_object || 2407 (drrw->drr_object == rwa->last_object && 2408 drrw->drr_offset < rwa->last_offset)) { 2409 return (SET_ERROR(EINVAL)); 2410 } 2411 2412 struct receive_record_arg *first_rrd = list_head(&rwa->write_batch); 2413 struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write; 2414 uint64_t batch_size = 2415 MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2); 2416 if (first_rrd != NULL && 2417 (drrw->drr_object != first_drrw->drr_object || 2418 drrw->drr_offset >= first_drrw->drr_offset + batch_size)) { 2419 err = flush_write_batch(rwa); 2420 if (err != 0) 2421 return (err); 2422 } 2423 2424 rwa->last_object = drrw->drr_object; 2425 rwa->last_offset = drrw->drr_offset; 2426 2427 if (rwa->last_object > rwa->max_object) 2428 rwa->max_object = rwa->last_object; 2429 2430 list_insert_tail(&rwa->write_batch, rrd); 2431 /* 2432 * Return EAGAIN to indicate that we will use this rrd again, 2433 * so the caller should not free it 2434 */ 2435 return (EAGAIN); 2436 } 2437 2438 static int 2439 receive_write_embedded(struct receive_writer_arg *rwa, 2440 struct drr_write_embedded *drrwe, void *data) 2441 { 2442 dmu_tx_t *tx; 2443 int err; 2444 2445 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2446 return (SET_ERROR(EINVAL)); 2447 2448 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2449 return (SET_ERROR(EINVAL)); 2450 2451 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2452 return (SET_ERROR(EINVAL)); 2453 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2454 return (SET_ERROR(EINVAL)); 2455 if (rwa->raw) 2456 return (SET_ERROR(EINVAL)); 2457 2458 if (drrwe->drr_object > rwa->max_object) 2459 rwa->max_object = drrwe->drr_object; 2460 2461 tx = dmu_tx_create(rwa->os); 2462 2463 dmu_tx_hold_write(tx, drrwe->drr_object, 2464 drrwe->drr_offset, drrwe->drr_length); 2465 err = dmu_tx_assign(tx, TXG_WAIT); 2466 if (err != 0) { 2467 dmu_tx_abort(tx); 2468 return (err); 2469 } 2470 2471 dmu_write_embedded(rwa->os, drrwe->drr_object, 2472 drrwe->drr_offset, data, drrwe->drr_etype, 2473 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2474 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2475 2476 /* See comment in restore_write. */ 2477 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2478 dmu_tx_commit(tx); 2479 return (0); 2480 } 2481 2482 static int 2483 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2484 abd_t *abd) 2485 { 2486 dmu_buf_t *db, *db_spill; 2487 int err; 2488 2489 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2490 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2491 return (SET_ERROR(EINVAL)); 2492 2493 /* 2494 * This is an unmodified spill block which was added to the stream 2495 * to resolve an issue with incorrectly removing spill blocks. It 2496 * should be ignored by current versions of the code which support 2497 * the DRR_FLAG_SPILL_BLOCK flag. 2498 */ 2499 if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) { 2500 abd_free(abd); 2501 return (0); 2502 } 2503 2504 if (rwa->raw) { 2505 if (!DMU_OT_IS_VALID(drrs->drr_type) || 2506 drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS || 2507 drrs->drr_compressed_size == 0) 2508 return (SET_ERROR(EINVAL)); 2509 } 2510 2511 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2512 return (SET_ERROR(EINVAL)); 2513 2514 if (drrs->drr_object > rwa->max_object) 2515 rwa->max_object = drrs->drr_object; 2516 2517 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2518 if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG, 2519 &db_spill)) != 0) { 2520 dmu_buf_rele(db, FTAG); 2521 return (err); 2522 } 2523 2524 dmu_tx_t *tx = dmu_tx_create(rwa->os); 2525 2526 dmu_tx_hold_spill(tx, db->db_object); 2527 2528 err = dmu_tx_assign(tx, TXG_WAIT); 2529 if (err != 0) { 2530 dmu_buf_rele(db, FTAG); 2531 dmu_buf_rele(db_spill, FTAG); 2532 dmu_tx_abort(tx); 2533 return (err); 2534 } 2535 2536 /* 2537 * Spill blocks may both grow and shrink. When a change in size 2538 * occurs any existing dbuf must be updated to match the logical 2539 * size of the provided arc_buf_t. 2540 */ 2541 if (db_spill->db_size != drrs->drr_length) { 2542 dmu_buf_will_fill(db_spill, tx, B_FALSE); 2543 VERIFY0(dbuf_spill_set_blksz(db_spill, 2544 drrs->drr_length, tx)); 2545 } 2546 2547 arc_buf_t *abuf; 2548 if (rwa->raw) { 2549 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ 2550 !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^ 2551 rwa->byteswap; 2552 2553 abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os), 2554 drrs->drr_object, byteorder, drrs->drr_salt, 2555 drrs->drr_iv, drrs->drr_mac, drrs->drr_type, 2556 drrs->drr_compressed_size, drrs->drr_length, 2557 drrs->drr_compressiontype, 0); 2558 } else { 2559 abuf = arc_loan_buf(dmu_objset_spa(rwa->os), 2560 DMU_OT_IS_METADATA(drrs->drr_type), 2561 drrs->drr_length); 2562 if (rwa->byteswap) { 2563 dmu_object_byteswap_t byteswap = 2564 DMU_OT_BYTESWAP(drrs->drr_type); 2565 dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd), 2566 DRR_SPILL_PAYLOAD_SIZE(drrs)); 2567 } 2568 } 2569 2570 memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs)); 2571 abd_free(abd); 2572 dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx); 2573 2574 dmu_buf_rele(db, FTAG); 2575 dmu_buf_rele(db_spill, FTAG); 2576 2577 dmu_tx_commit(tx); 2578 return (0); 2579 } 2580 2581 noinline static int 2582 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2583 { 2584 int err; 2585 2586 if (drrf->drr_length != -1ULL && 2587 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2588 return (SET_ERROR(EINVAL)); 2589 2590 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2591 return (SET_ERROR(EINVAL)); 2592 2593 if (drrf->drr_object > rwa->max_object) 2594 rwa->max_object = drrf->drr_object; 2595 2596 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2597 drrf->drr_offset, drrf->drr_length); 2598 2599 return (err); 2600 } 2601 2602 static int 2603 receive_object_range(struct receive_writer_arg *rwa, 2604 struct drr_object_range *drror) 2605 { 2606 /* 2607 * By default, we assume this block is in our native format 2608 * (ZFS_HOST_BYTEORDER). We then take into account whether 2609 * the send stream is byteswapped (rwa->byteswap). Finally, 2610 * we need to byteswap again if this particular block was 2611 * in non-native format on the send side. 2612 */ 2613 boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^ 2614 !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags); 2615 2616 /* 2617 * Since dnode block sizes are constant, we should not need to worry 2618 * about making sure that the dnode block size is the same on the 2619 * sending and receiving sides for the time being. For non-raw sends, 2620 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE 2621 * record at all). Raw sends require this record type because the 2622 * encryption parameters are used to protect an entire block of bonus 2623 * buffers. If the size of dnode blocks ever becomes variable, 2624 * handling will need to be added to ensure that dnode block sizes 2625 * match on the sending and receiving side. 2626 */ 2627 if (drror->drr_numslots != DNODES_PER_BLOCK || 2628 P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 || 2629 !rwa->raw) 2630 return (SET_ERROR(EINVAL)); 2631 2632 if (drror->drr_firstobj > rwa->max_object) 2633 rwa->max_object = drror->drr_firstobj; 2634 2635 /* 2636 * The DRR_OBJECT_RANGE handling must be deferred to receive_object() 2637 * so that the block of dnodes is not written out when it's empty, 2638 * and converted to a HOLE BP. 2639 */ 2640 rwa->or_crypt_params_present = B_TRUE; 2641 rwa->or_firstobj = drror->drr_firstobj; 2642 rwa->or_numslots = drror->drr_numslots; 2643 memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN); 2644 memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN); 2645 memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN); 2646 rwa->or_byteorder = byteorder; 2647 2648 rwa->or_need_sync = ORNS_MAYBE; 2649 2650 return (0); 2651 } 2652 2653 /* 2654 * Until we have the ability to redact large ranges of data efficiently, we 2655 * process these records as frees. 2656 */ 2657 noinline static int 2658 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr) 2659 { 2660 struct drr_free drrf = {0}; 2661 drrf.drr_length = drrr->drr_length; 2662 drrf.drr_object = drrr->drr_object; 2663 drrf.drr_offset = drrr->drr_offset; 2664 drrf.drr_toguid = drrr->drr_toguid; 2665 return (receive_free(rwa, &drrf)); 2666 } 2667 2668 /* used to destroy the drc_ds on error */ 2669 static void 2670 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2671 { 2672 dsl_dataset_t *ds = drc->drc_ds; 2673 ds_hold_flags_t dsflags; 2674 2675 dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT; 2676 /* 2677 * Wait for the txg sync before cleaning up the receive. For 2678 * resumable receives, this ensures that our resume state has 2679 * been written out to disk. For raw receives, this ensures 2680 * that the user accounting code will not attempt to do anything 2681 * after we stopped receiving the dataset. 2682 */ 2683 txg_wait_synced(ds->ds_dir->dd_pool, 0); 2684 ds->ds_objset->os_raw_receive = B_FALSE; 2685 2686 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG); 2687 if (drc->drc_resumable && drc->drc_should_save && 2688 !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) { 2689 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2690 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2691 } else { 2692 char name[ZFS_MAX_DATASET_NAME_LEN]; 2693 rrw_exit(&ds->ds_bp_rwlock, FTAG); 2694 dsl_dataset_name(ds, name); 2695 dsl_dataset_disown(ds, dsflags, dmu_recv_tag); 2696 if (!drc->drc_heal) 2697 (void) dsl_destroy_head(name); 2698 } 2699 } 2700 2701 static void 2702 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf) 2703 { 2704 if (drc->drc_byteswap) { 2705 (void) fletcher_4_incremental_byteswap(buf, len, 2706 &drc->drc_cksum); 2707 } else { 2708 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum); 2709 } 2710 } 2711 2712 /* 2713 * Read the payload into a buffer of size len, and update the current record's 2714 * payload field. 2715 * Allocate drc->drc_next_rrd and read the next record's header into 2716 * drc->drc_next_rrd->header. 2717 * Verify checksum of payload and next record. 2718 */ 2719 static int 2720 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf) 2721 { 2722 int err; 2723 2724 if (len != 0) { 2725 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2726 err = receive_read(drc, len, buf); 2727 if (err != 0) 2728 return (err); 2729 receive_cksum(drc, len, buf); 2730 2731 /* note: rrd is NULL when reading the begin record's payload */ 2732 if (drc->drc_rrd != NULL) { 2733 drc->drc_rrd->payload = buf; 2734 drc->drc_rrd->payload_size = len; 2735 drc->drc_rrd->bytes_read = drc->drc_bytes_read; 2736 } 2737 } else { 2738 ASSERT3P(buf, ==, NULL); 2739 } 2740 2741 drc->drc_prev_cksum = drc->drc_cksum; 2742 2743 drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP); 2744 err = receive_read(drc, sizeof (drc->drc_next_rrd->header), 2745 &drc->drc_next_rrd->header); 2746 drc->drc_next_rrd->bytes_read = drc->drc_bytes_read; 2747 2748 if (err != 0) { 2749 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2750 drc->drc_next_rrd = NULL; 2751 return (err); 2752 } 2753 if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) { 2754 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2755 drc->drc_next_rrd = NULL; 2756 return (SET_ERROR(EINVAL)); 2757 } 2758 2759 /* 2760 * Note: checksum is of everything up to but not including the 2761 * checksum itself. 2762 */ 2763 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2764 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2765 receive_cksum(drc, 2766 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2767 &drc->drc_next_rrd->header); 2768 2769 zio_cksum_t cksum_orig = 2770 drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2771 zio_cksum_t *cksump = 2772 &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum; 2773 2774 if (drc->drc_byteswap) 2775 byteswap_record(&drc->drc_next_rrd->header); 2776 2777 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2778 !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) { 2779 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 2780 drc->drc_next_rrd = NULL; 2781 return (SET_ERROR(ECKSUM)); 2782 } 2783 2784 receive_cksum(drc, sizeof (cksum_orig), &cksum_orig); 2785 2786 return (0); 2787 } 2788 2789 /* 2790 * Issue the prefetch reads for any necessary indirect blocks. 2791 * 2792 * We use the object ignore list to tell us whether or not to issue prefetches 2793 * for a given object. We do this for both correctness (in case the blocksize 2794 * of an object has changed) and performance (if the object doesn't exist, don't 2795 * needlessly try to issue prefetches). We also trim the list as we go through 2796 * the stream to prevent it from growing to an unbounded size. 2797 * 2798 * The object numbers within will always be in sorted order, and any write 2799 * records we see will also be in sorted order, but they're not sorted with 2800 * respect to each other (i.e. we can get several object records before 2801 * receiving each object's write records). As a result, once we've reached a 2802 * given object number, we can safely remove any reference to lower object 2803 * numbers in the ignore list. In practice, we receive up to 32 object records 2804 * before receiving write records, so the list can have up to 32 nodes in it. 2805 */ 2806 static void 2807 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset, 2808 uint64_t length) 2809 { 2810 if (!objlist_exists(drc->drc_ignore_objlist, object)) { 2811 dmu_prefetch(drc->drc_os, object, 1, offset, length, 2812 ZIO_PRIORITY_SYNC_READ); 2813 } 2814 } 2815 2816 /* 2817 * Read records off the stream, issuing any necessary prefetches. 2818 */ 2819 static int 2820 receive_read_record(dmu_recv_cookie_t *drc) 2821 { 2822 int err; 2823 2824 switch (drc->drc_rrd->header.drr_type) { 2825 case DRR_OBJECT: 2826 { 2827 struct drr_object *drro = 2828 &drc->drc_rrd->header.drr_u.drr_object; 2829 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro); 2830 void *buf = NULL; 2831 dmu_object_info_t doi; 2832 2833 if (size != 0) 2834 buf = kmem_zalloc(size, KM_SLEEP); 2835 2836 err = receive_read_payload_and_next_header(drc, size, buf); 2837 if (err != 0) { 2838 kmem_free(buf, size); 2839 return (err); 2840 } 2841 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi); 2842 /* 2843 * See receive_read_prefetch for an explanation why we're 2844 * storing this object in the ignore_obj_list. 2845 */ 2846 if (err == ENOENT || err == EEXIST || 2847 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2848 objlist_insert(drc->drc_ignore_objlist, 2849 drro->drr_object); 2850 err = 0; 2851 } 2852 return (err); 2853 } 2854 case DRR_FREEOBJECTS: 2855 { 2856 err = receive_read_payload_and_next_header(drc, 0, NULL); 2857 return (err); 2858 } 2859 case DRR_WRITE: 2860 { 2861 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write; 2862 int size = DRR_WRITE_PAYLOAD_SIZE(drrw); 2863 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2864 err = receive_read_payload_and_next_header(drc, size, 2865 abd_to_buf(abd)); 2866 if (err != 0) { 2867 abd_free(abd); 2868 return (err); 2869 } 2870 drc->drc_rrd->abd = abd; 2871 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset, 2872 drrw->drr_logical_size); 2873 return (err); 2874 } 2875 case DRR_WRITE_EMBEDDED: 2876 { 2877 struct drr_write_embedded *drrwe = 2878 &drc->drc_rrd->header.drr_u.drr_write_embedded; 2879 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2880 void *buf = kmem_zalloc(size, KM_SLEEP); 2881 2882 err = receive_read_payload_and_next_header(drc, size, buf); 2883 if (err != 0) { 2884 kmem_free(buf, size); 2885 return (err); 2886 } 2887 2888 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset, 2889 drrwe->drr_length); 2890 return (err); 2891 } 2892 case DRR_FREE: 2893 case DRR_REDACT: 2894 { 2895 /* 2896 * It might be beneficial to prefetch indirect blocks here, but 2897 * we don't really have the data to decide for sure. 2898 */ 2899 err = receive_read_payload_and_next_header(drc, 0, NULL); 2900 return (err); 2901 } 2902 case DRR_END: 2903 { 2904 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end; 2905 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum, 2906 drre->drr_checksum)) 2907 return (SET_ERROR(ECKSUM)); 2908 return (0); 2909 } 2910 case DRR_SPILL: 2911 { 2912 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill; 2913 int size = DRR_SPILL_PAYLOAD_SIZE(drrs); 2914 abd_t *abd = abd_alloc_linear(size, B_FALSE); 2915 err = receive_read_payload_and_next_header(drc, size, 2916 abd_to_buf(abd)); 2917 if (err != 0) 2918 abd_free(abd); 2919 else 2920 drc->drc_rrd->abd = abd; 2921 return (err); 2922 } 2923 case DRR_OBJECT_RANGE: 2924 { 2925 err = receive_read_payload_and_next_header(drc, 0, NULL); 2926 return (err); 2927 2928 } 2929 default: 2930 return (SET_ERROR(EINVAL)); 2931 } 2932 } 2933 2934 2935 2936 static void 2937 dprintf_drr(struct receive_record_arg *rrd, int err) 2938 { 2939 #ifdef ZFS_DEBUG 2940 switch (rrd->header.drr_type) { 2941 case DRR_OBJECT: 2942 { 2943 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2944 dprintf("drr_type = OBJECT obj = %llu type = %u " 2945 "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u " 2946 "compress = %u dn_slots = %u err = %d\n", 2947 (u_longlong_t)drro->drr_object, drro->drr_type, 2948 drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen, 2949 drro->drr_checksumtype, drro->drr_compress, 2950 drro->drr_dn_slots, err); 2951 break; 2952 } 2953 case DRR_FREEOBJECTS: 2954 { 2955 struct drr_freeobjects *drrfo = 2956 &rrd->header.drr_u.drr_freeobjects; 2957 dprintf("drr_type = FREEOBJECTS firstobj = %llu " 2958 "numobjs = %llu err = %d\n", 2959 (u_longlong_t)drrfo->drr_firstobj, 2960 (u_longlong_t)drrfo->drr_numobjs, err); 2961 break; 2962 } 2963 case DRR_WRITE: 2964 { 2965 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2966 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu " 2967 "lsize = %llu cksumtype = %u flags = %u " 2968 "compress = %u psize = %llu err = %d\n", 2969 (u_longlong_t)drrw->drr_object, drrw->drr_type, 2970 (u_longlong_t)drrw->drr_offset, 2971 (u_longlong_t)drrw->drr_logical_size, 2972 drrw->drr_checksumtype, drrw->drr_flags, 2973 drrw->drr_compressiontype, 2974 (u_longlong_t)drrw->drr_compressed_size, err); 2975 break; 2976 } 2977 case DRR_WRITE_BYREF: 2978 { 2979 struct drr_write_byref *drrwbr = 2980 &rrd->header.drr_u.drr_write_byref; 2981 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu " 2982 "length = %llu toguid = %llx refguid = %llx " 2983 "refobject = %llu refoffset = %llu cksumtype = %u " 2984 "flags = %u err = %d\n", 2985 (u_longlong_t)drrwbr->drr_object, 2986 (u_longlong_t)drrwbr->drr_offset, 2987 (u_longlong_t)drrwbr->drr_length, 2988 (u_longlong_t)drrwbr->drr_toguid, 2989 (u_longlong_t)drrwbr->drr_refguid, 2990 (u_longlong_t)drrwbr->drr_refobject, 2991 (u_longlong_t)drrwbr->drr_refoffset, 2992 drrwbr->drr_checksumtype, drrwbr->drr_flags, err); 2993 break; 2994 } 2995 case DRR_WRITE_EMBEDDED: 2996 { 2997 struct drr_write_embedded *drrwe = 2998 &rrd->header.drr_u.drr_write_embedded; 2999 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu " 3000 "length = %llu compress = %u etype = %u lsize = %u " 3001 "psize = %u err = %d\n", 3002 (u_longlong_t)drrwe->drr_object, 3003 (u_longlong_t)drrwe->drr_offset, 3004 (u_longlong_t)drrwe->drr_length, 3005 drrwe->drr_compression, drrwe->drr_etype, 3006 drrwe->drr_lsize, drrwe->drr_psize, err); 3007 break; 3008 } 3009 case DRR_FREE: 3010 { 3011 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 3012 dprintf("drr_type = FREE obj = %llu offset = %llu " 3013 "length = %lld err = %d\n", 3014 (u_longlong_t)drrf->drr_object, 3015 (u_longlong_t)drrf->drr_offset, 3016 (longlong_t)drrf->drr_length, 3017 err); 3018 break; 3019 } 3020 case DRR_SPILL: 3021 { 3022 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3023 dprintf("drr_type = SPILL obj = %llu length = %llu " 3024 "err = %d\n", (u_longlong_t)drrs->drr_object, 3025 (u_longlong_t)drrs->drr_length, err); 3026 break; 3027 } 3028 case DRR_OBJECT_RANGE: 3029 { 3030 struct drr_object_range *drror = 3031 &rrd->header.drr_u.drr_object_range; 3032 dprintf("drr_type = OBJECT_RANGE firstobj = %llu " 3033 "numslots = %llu flags = %u err = %d\n", 3034 (u_longlong_t)drror->drr_firstobj, 3035 (u_longlong_t)drror->drr_numslots, 3036 drror->drr_flags, err); 3037 break; 3038 } 3039 default: 3040 return; 3041 } 3042 #endif 3043 } 3044 3045 /* 3046 * Commit the records to the pool. 3047 */ 3048 static int 3049 receive_process_record(struct receive_writer_arg *rwa, 3050 struct receive_record_arg *rrd) 3051 { 3052 int err; 3053 3054 /* Processing in order, therefore bytes_read should be increasing. */ 3055 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 3056 rwa->bytes_read = rrd->bytes_read; 3057 3058 /* We can only heal write records; other ones get ignored */ 3059 if (rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3060 if (rrd->abd != NULL) { 3061 abd_free(rrd->abd); 3062 rrd->abd = NULL; 3063 } else if (rrd->payload != NULL) { 3064 kmem_free(rrd->payload, rrd->payload_size); 3065 rrd->payload = NULL; 3066 } 3067 return (0); 3068 } 3069 3070 if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) { 3071 err = flush_write_batch(rwa); 3072 if (err != 0) { 3073 if (rrd->abd != NULL) { 3074 abd_free(rrd->abd); 3075 rrd->abd = NULL; 3076 rrd->payload = NULL; 3077 } else if (rrd->payload != NULL) { 3078 kmem_free(rrd->payload, rrd->payload_size); 3079 rrd->payload = NULL; 3080 } 3081 3082 return (err); 3083 } 3084 } 3085 3086 switch (rrd->header.drr_type) { 3087 case DRR_OBJECT: 3088 { 3089 struct drr_object *drro = &rrd->header.drr_u.drr_object; 3090 err = receive_object(rwa, drro, rrd->payload); 3091 kmem_free(rrd->payload, rrd->payload_size); 3092 rrd->payload = NULL; 3093 break; 3094 } 3095 case DRR_FREEOBJECTS: 3096 { 3097 struct drr_freeobjects *drrfo = 3098 &rrd->header.drr_u.drr_freeobjects; 3099 err = receive_freeobjects(rwa, drrfo); 3100 break; 3101 } 3102 case DRR_WRITE: 3103 { 3104 err = receive_process_write_record(rwa, rrd); 3105 if (rwa->heal) { 3106 /* 3107 * If healing - always free the abd after processing 3108 */ 3109 abd_free(rrd->abd); 3110 rrd->abd = NULL; 3111 } else if (err != EAGAIN) { 3112 /* 3113 * On success, a non-healing 3114 * receive_process_write_record() returns 3115 * EAGAIN to indicate that we do not want to free 3116 * the rrd or arc_buf. 3117 */ 3118 ASSERT(err != 0); 3119 abd_free(rrd->abd); 3120 rrd->abd = NULL; 3121 } 3122 break; 3123 } 3124 case DRR_WRITE_EMBEDDED: 3125 { 3126 struct drr_write_embedded *drrwe = 3127 &rrd->header.drr_u.drr_write_embedded; 3128 err = receive_write_embedded(rwa, drrwe, rrd->payload); 3129 kmem_free(rrd->payload, rrd->payload_size); 3130 rrd->payload = NULL; 3131 break; 3132 } 3133 case DRR_FREE: 3134 { 3135 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 3136 err = receive_free(rwa, drrf); 3137 break; 3138 } 3139 case DRR_SPILL: 3140 { 3141 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 3142 err = receive_spill(rwa, drrs, rrd->abd); 3143 if (err != 0) 3144 abd_free(rrd->abd); 3145 rrd->abd = NULL; 3146 rrd->payload = NULL; 3147 break; 3148 } 3149 case DRR_OBJECT_RANGE: 3150 { 3151 struct drr_object_range *drror = 3152 &rrd->header.drr_u.drr_object_range; 3153 err = receive_object_range(rwa, drror); 3154 break; 3155 } 3156 case DRR_REDACT: 3157 { 3158 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact; 3159 err = receive_redact(rwa, drrr); 3160 break; 3161 } 3162 default: 3163 err = (SET_ERROR(EINVAL)); 3164 } 3165 3166 if (err != 0) 3167 dprintf_drr(rrd, err); 3168 3169 return (err); 3170 } 3171 3172 /* 3173 * dmu_recv_stream's worker thread; pull records off the queue, and then call 3174 * receive_process_record When we're done, signal the main thread and exit. 3175 */ 3176 static __attribute__((noreturn)) void 3177 receive_writer_thread(void *arg) 3178 { 3179 struct receive_writer_arg *rwa = arg; 3180 struct receive_record_arg *rrd; 3181 fstrans_cookie_t cookie = spl_fstrans_mark(); 3182 3183 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 3184 rrd = bqueue_dequeue(&rwa->q)) { 3185 /* 3186 * If there's an error, the main thread will stop putting things 3187 * on the queue, but we need to clear everything in it before we 3188 * can exit. 3189 */ 3190 int err = 0; 3191 if (rwa->err == 0) { 3192 err = receive_process_record(rwa, rrd); 3193 } else if (rrd->abd != NULL) { 3194 abd_free(rrd->abd); 3195 rrd->abd = NULL; 3196 rrd->payload = NULL; 3197 } else if (rrd->payload != NULL) { 3198 kmem_free(rrd->payload, rrd->payload_size); 3199 rrd->payload = NULL; 3200 } 3201 /* 3202 * EAGAIN indicates that this record has been saved (on 3203 * raw->write_batch), and will be used again, so we don't 3204 * free it. 3205 * When healing data we always need to free the record. 3206 */ 3207 if (err != EAGAIN || rwa->heal) { 3208 if (rwa->err == 0) 3209 rwa->err = err; 3210 kmem_free(rrd, sizeof (*rrd)); 3211 } 3212 } 3213 kmem_free(rrd, sizeof (*rrd)); 3214 3215 if (rwa->heal) { 3216 zio_wait(rwa->heal_pio); 3217 } else { 3218 int err = flush_write_batch(rwa); 3219 if (rwa->err == 0) 3220 rwa->err = err; 3221 } 3222 mutex_enter(&rwa->mutex); 3223 rwa->done = B_TRUE; 3224 cv_signal(&rwa->cv); 3225 mutex_exit(&rwa->mutex); 3226 spl_fstrans_unmark(cookie); 3227 thread_exit(); 3228 } 3229 3230 static int 3231 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl) 3232 { 3233 uint64_t val; 3234 objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset; 3235 uint64_t dsobj = dmu_objset_id(drc->drc_os); 3236 uint64_t resume_obj, resume_off; 3237 3238 if (nvlist_lookup_uint64(begin_nvl, 3239 "resume_object", &resume_obj) != 0 || 3240 nvlist_lookup_uint64(begin_nvl, 3241 "resume_offset", &resume_off) != 0) { 3242 return (SET_ERROR(EINVAL)); 3243 } 3244 VERIFY0(zap_lookup(mos, dsobj, 3245 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 3246 if (resume_obj != val) 3247 return (SET_ERROR(EINVAL)); 3248 VERIFY0(zap_lookup(mos, dsobj, 3249 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 3250 if (resume_off != val) 3251 return (SET_ERROR(EINVAL)); 3252 3253 return (0); 3254 } 3255 3256 /* 3257 * Read in the stream's records, one by one, and apply them to the pool. There 3258 * are two threads involved; the thread that calls this function will spin up a 3259 * worker thread, read the records off the stream one by one, and issue 3260 * prefetches for any necessary indirect blocks. It will then push the records 3261 * onto an internal blocking queue. The worker thread will pull the records off 3262 * the queue, and actually write the data into the DMU. This way, the worker 3263 * thread doesn't have to wait for reads to complete, since everything it needs 3264 * (the indirect blocks) will be prefetched. 3265 * 3266 * NB: callers *must* call dmu_recv_end() if this succeeds. 3267 */ 3268 int 3269 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp) 3270 { 3271 int err = 0; 3272 struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP); 3273 3274 if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) { 3275 uint64_t bytes = 0; 3276 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 3277 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 3278 sizeof (bytes), 1, &bytes); 3279 drc->drc_bytes_read += bytes; 3280 } 3281 3282 drc->drc_ignore_objlist = objlist_create(); 3283 3284 /* these were verified in dmu_recv_begin */ 3285 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 3286 DMU_SUBSTREAM); 3287 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 3288 3289 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 3290 ASSERT0(drc->drc_os->os_encrypted && 3291 (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)); 3292 3293 /* handle DSL encryption key payload */ 3294 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) { 3295 nvlist_t *keynvl = NULL; 3296 3297 ASSERT(drc->drc_os->os_encrypted); 3298 ASSERT(drc->drc_raw); 3299 3300 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata", 3301 &keynvl); 3302 if (err != 0) 3303 goto out; 3304 3305 if (!drc->drc_heal) { 3306 /* 3307 * If this is a new dataset we set the key immediately. 3308 * Otherwise we don't want to change the key until we 3309 * are sure the rest of the receive succeeded so we 3310 * stash the keynvl away until then. 3311 */ 3312 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa), 3313 drc->drc_ds->ds_object, drc->drc_fromsnapobj, 3314 drc->drc_drrb->drr_type, keynvl, drc->drc_newfs); 3315 if (err != 0) 3316 goto out; 3317 } 3318 3319 /* see comment in dmu_recv_end_sync() */ 3320 drc->drc_ivset_guid = 0; 3321 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid", 3322 &drc->drc_ivset_guid); 3323 3324 if (!drc->drc_newfs) 3325 drc->drc_keynvl = fnvlist_dup(keynvl); 3326 } 3327 3328 if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) { 3329 err = resume_check(drc, drc->drc_begin_nvl); 3330 if (err != 0) 3331 goto out; 3332 } 3333 3334 /* 3335 * For compatibility with recursive send streams, we do this here, 3336 * rather than in dmu_recv_begin. If we pull the next header too 3337 * early, and it's the END record, we break the `recv_skip` logic. 3338 */ 3339 if (drc->drc_drr_begin->drr_payloadlen == 0) { 3340 err = receive_read_payload_and_next_header(drc, 0, NULL); 3341 if (err != 0) 3342 goto out; 3343 } 3344 3345 /* 3346 * If we failed before this point we will clean up any new resume 3347 * state that was created. Now that we've gotten past the initial 3348 * checks we are ok to retain that resume state. 3349 */ 3350 drc->drc_should_save = B_TRUE; 3351 3352 (void) bqueue_init(&rwa->q, zfs_recv_queue_ff, 3353 MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize), 3354 offsetof(struct receive_record_arg, node)); 3355 cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL); 3356 mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL); 3357 rwa->os = drc->drc_os; 3358 rwa->byteswap = drc->drc_byteswap; 3359 rwa->heal = drc->drc_heal; 3360 rwa->tofs = drc->drc_tofs; 3361 rwa->resumable = drc->drc_resumable; 3362 rwa->raw = drc->drc_raw; 3363 rwa->spill = drc->drc_spill; 3364 rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0); 3365 rwa->os->os_raw_receive = drc->drc_raw; 3366 if (drc->drc_heal) { 3367 rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL, 3368 ZIO_FLAG_GODFATHER); 3369 } 3370 list_create(&rwa->write_batch, sizeof (struct receive_record_arg), 3371 offsetof(struct receive_record_arg, node.bqn_node)); 3372 3373 (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc, 3374 TS_RUN, minclsyspri); 3375 /* 3376 * We're reading rwa->err without locks, which is safe since we are the 3377 * only reader, and the worker thread is the only writer. It's ok if we 3378 * miss a write for an iteration or two of the loop, since the writer 3379 * thread will keep freeing records we send it until we send it an eos 3380 * marker. 3381 * 3382 * We can leave this loop in 3 ways: First, if rwa->err is 3383 * non-zero. In that case, the writer thread will free the rrd we just 3384 * pushed. Second, if we're interrupted; in that case, either it's the 3385 * first loop and drc->drc_rrd was never allocated, or it's later, and 3386 * drc->drc_rrd has been handed off to the writer thread who will free 3387 * it. Finally, if receive_read_record fails or we're at the end of the 3388 * stream, then we free drc->drc_rrd and exit. 3389 */ 3390 while (rwa->err == 0) { 3391 if (issig()) { 3392 err = SET_ERROR(EINTR); 3393 break; 3394 } 3395 3396 ASSERT3P(drc->drc_rrd, ==, NULL); 3397 drc->drc_rrd = drc->drc_next_rrd; 3398 drc->drc_next_rrd = NULL; 3399 /* Allocates and loads header into drc->drc_next_rrd */ 3400 err = receive_read_record(drc); 3401 3402 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) { 3403 kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd)); 3404 drc->drc_rrd = NULL; 3405 break; 3406 } 3407 3408 bqueue_enqueue(&rwa->q, drc->drc_rrd, 3409 sizeof (struct receive_record_arg) + 3410 drc->drc_rrd->payload_size); 3411 drc->drc_rrd = NULL; 3412 } 3413 3414 ASSERT3P(drc->drc_rrd, ==, NULL); 3415 drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP); 3416 drc->drc_rrd->eos_marker = B_TRUE; 3417 bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1); 3418 3419 mutex_enter(&rwa->mutex); 3420 while (!rwa->done) { 3421 /* 3422 * We need to use cv_wait_sig() so that any process that may 3423 * be sleeping here can still fork. 3424 */ 3425 (void) cv_wait_sig(&rwa->cv, &rwa->mutex); 3426 } 3427 mutex_exit(&rwa->mutex); 3428 3429 /* 3430 * If we are receiving a full stream as a clone, all object IDs which 3431 * are greater than the maximum ID referenced in the stream are 3432 * by definition unused and must be freed. 3433 */ 3434 if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) { 3435 uint64_t obj = rwa->max_object + 1; 3436 int free_err = 0; 3437 int next_err = 0; 3438 3439 while (next_err == 0) { 3440 free_err = dmu_free_long_object(rwa->os, obj); 3441 if (free_err != 0 && free_err != ENOENT) 3442 break; 3443 3444 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0); 3445 } 3446 3447 if (err == 0) { 3448 if (free_err != 0 && free_err != ENOENT) 3449 err = free_err; 3450 else if (next_err != ESRCH) 3451 err = next_err; 3452 } 3453 } 3454 3455 cv_destroy(&rwa->cv); 3456 mutex_destroy(&rwa->mutex); 3457 bqueue_destroy(&rwa->q); 3458 list_destroy(&rwa->write_batch); 3459 if (err == 0) 3460 err = rwa->err; 3461 3462 out: 3463 /* 3464 * If we hit an error before we started the receive_writer_thread 3465 * we need to clean up the next_rrd we create by processing the 3466 * DRR_BEGIN record. 3467 */ 3468 if (drc->drc_next_rrd != NULL) 3469 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd)); 3470 3471 /* 3472 * The objset will be invalidated by dmu_recv_end() when we do 3473 * dsl_dataset_clone_swap_sync_impl(). 3474 */ 3475 drc->drc_os = NULL; 3476 3477 kmem_free(rwa, sizeof (*rwa)); 3478 nvlist_free(drc->drc_begin_nvl); 3479 3480 if (err != 0) { 3481 /* 3482 * Clean up references. If receive is not resumable, 3483 * destroy what we created, so we don't leave it in 3484 * the inconsistent state. 3485 */ 3486 dmu_recv_cleanup_ds(drc); 3487 nvlist_free(drc->drc_keynvl); 3488 } 3489 3490 objlist_destroy(drc->drc_ignore_objlist); 3491 drc->drc_ignore_objlist = NULL; 3492 *voffp = drc->drc_voff; 3493 return (err); 3494 } 3495 3496 static int 3497 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 3498 { 3499 dmu_recv_cookie_t *drc = arg; 3500 dsl_pool_t *dp = dmu_tx_pool(tx); 3501 int error; 3502 3503 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 3504 3505 if (drc->drc_heal) { 3506 error = 0; 3507 } else if (!drc->drc_newfs) { 3508 dsl_dataset_t *origin_head; 3509 3510 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 3511 if (error != 0) 3512 return (error); 3513 if (drc->drc_force) { 3514 /* 3515 * We will destroy any snapshots in tofs (i.e. before 3516 * origin_head) that are after the origin (which is 3517 * the snap before drc_ds, because drc_ds can not 3518 * have any snaps of its own). 3519 */ 3520 uint64_t obj; 3521 3522 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3523 while (obj != 3524 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3525 dsl_dataset_t *snap; 3526 error = dsl_dataset_hold_obj(dp, obj, FTAG, 3527 &snap); 3528 if (error != 0) 3529 break; 3530 if (snap->ds_dir != origin_head->ds_dir) 3531 error = SET_ERROR(EINVAL); 3532 if (error == 0) { 3533 error = dsl_destroy_snapshot_check_impl( 3534 snap, B_FALSE); 3535 } 3536 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3537 dsl_dataset_rele(snap, FTAG); 3538 if (error != 0) 3539 break; 3540 } 3541 if (error != 0) { 3542 dsl_dataset_rele(origin_head, FTAG); 3543 return (error); 3544 } 3545 } 3546 if (drc->drc_keynvl != NULL) { 3547 error = dsl_crypto_recv_raw_key_check(drc->drc_ds, 3548 drc->drc_keynvl, tx); 3549 if (error != 0) { 3550 dsl_dataset_rele(origin_head, FTAG); 3551 return (error); 3552 } 3553 } 3554 3555 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 3556 origin_head, drc->drc_force, drc->drc_owner, tx); 3557 if (error != 0) { 3558 dsl_dataset_rele(origin_head, FTAG); 3559 return (error); 3560 } 3561 error = dsl_dataset_snapshot_check_impl(origin_head, 3562 drc->drc_tosnap, tx, B_TRUE, 1, 3563 drc->drc_cred, drc->drc_proc); 3564 dsl_dataset_rele(origin_head, FTAG); 3565 if (error != 0) 3566 return (error); 3567 3568 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 3569 } else { 3570 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 3571 drc->drc_tosnap, tx, B_TRUE, 1, 3572 drc->drc_cred, drc->drc_proc); 3573 } 3574 return (error); 3575 } 3576 3577 static void 3578 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 3579 { 3580 dmu_recv_cookie_t *drc = arg; 3581 dsl_pool_t *dp = dmu_tx_pool(tx); 3582 boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0; 3583 uint64_t newsnapobj = 0; 3584 3585 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 3586 tx, "snap=%s", drc->drc_tosnap); 3587 drc->drc_ds->ds_objset->os_raw_receive = B_FALSE; 3588 3589 if (drc->drc_heal) { 3590 if (drc->drc_keynvl != NULL) { 3591 nvlist_free(drc->drc_keynvl); 3592 drc->drc_keynvl = NULL; 3593 } 3594 } else if (!drc->drc_newfs) { 3595 dsl_dataset_t *origin_head; 3596 3597 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 3598 &origin_head)); 3599 3600 if (drc->drc_force) { 3601 /* 3602 * Destroy any snapshots of drc_tofs (origin_head) 3603 * after the origin (the snap before drc_ds). 3604 */ 3605 uint64_t obj; 3606 3607 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3608 while (obj != 3609 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 3610 dsl_dataset_t *snap; 3611 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 3612 &snap)); 3613 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 3614 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 3615 dsl_destroy_snapshot_sync_impl(snap, 3616 B_FALSE, tx); 3617 dsl_dataset_rele(snap, FTAG); 3618 } 3619 } 3620 if (drc->drc_keynvl != NULL) { 3621 dsl_crypto_recv_raw_key_sync(drc->drc_ds, 3622 drc->drc_keynvl, tx); 3623 nvlist_free(drc->drc_keynvl); 3624 drc->drc_keynvl = NULL; 3625 } 3626 3627 VERIFY3P(drc->drc_ds->ds_prev, ==, 3628 origin_head->ds_prev); 3629 3630 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3631 origin_head, tx); 3632 /* 3633 * The objset was evicted by dsl_dataset_clone_swap_sync_impl, 3634 * so drc_os is no longer valid. 3635 */ 3636 drc->drc_os = NULL; 3637 3638 dsl_dataset_snapshot_sync_impl(origin_head, 3639 drc->drc_tosnap, tx); 3640 3641 /* set snapshot's creation time and guid */ 3642 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3643 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3644 drc->drc_drrb->drr_creation_time; 3645 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3646 drc->drc_drrb->drr_toguid; 3647 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3648 ~DS_FLAG_INCONSISTENT; 3649 3650 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3651 dsl_dataset_phys(origin_head)->ds_flags &= 3652 ~DS_FLAG_INCONSISTENT; 3653 3654 newsnapobj = 3655 dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 3656 3657 dsl_dataset_rele(origin_head, FTAG); 3658 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3659 3660 if (drc->drc_owner != NULL) 3661 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3662 } else { 3663 dsl_dataset_t *ds = drc->drc_ds; 3664 3665 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3666 3667 /* set snapshot's creation time and guid */ 3668 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3669 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3670 drc->drc_drrb->drr_creation_time; 3671 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3672 drc->drc_drrb->drr_toguid; 3673 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3674 ~DS_FLAG_INCONSISTENT; 3675 3676 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3677 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3678 if (dsl_dataset_has_resume_receive_state(ds)) { 3679 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3680 DS_FIELD_RESUME_FROMGUID, tx); 3681 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3682 DS_FIELD_RESUME_OBJECT, tx); 3683 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3684 DS_FIELD_RESUME_OFFSET, tx); 3685 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3686 DS_FIELD_RESUME_BYTES, tx); 3687 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3688 DS_FIELD_RESUME_TOGUID, tx); 3689 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3690 DS_FIELD_RESUME_TONAME, tx); 3691 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3692 DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx); 3693 } 3694 newsnapobj = 3695 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3696 } 3697 3698 /* 3699 * If this is a raw receive, the crypt_keydata nvlist will include 3700 * a to_ivset_guid for us to set on the new snapshot. This value 3701 * will override the value generated by the snapshot code. However, 3702 * this value may not be present, because older implementations of 3703 * the raw send code did not include this value, and we are still 3704 * allowed to receive them if the zfs_disable_ivset_guid_check 3705 * tunable is set, in which case we will leave the newly-generated 3706 * value. 3707 */ 3708 if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) { 3709 dmu_object_zapify(dp->dp_meta_objset, newsnapobj, 3710 DMU_OT_DSL_DATASET, tx); 3711 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj, 3712 DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1, 3713 &drc->drc_ivset_guid, tx)); 3714 } 3715 3716 /* 3717 * Release the hold from dmu_recv_begin. This must be done before 3718 * we return to open context, so that when we free the dataset's dnode 3719 * we can evict its bonus buffer. Since the dataset may be destroyed 3720 * at this point (and therefore won't have a valid pointer to the spa) 3721 * we release the key mapping manually here while we do have a valid 3722 * pointer, if it exists. 3723 */ 3724 if (!drc->drc_raw && encrypted) { 3725 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa, 3726 drc->drc_ds->ds_object, drc->drc_ds); 3727 } 3728 dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag); 3729 drc->drc_ds = NULL; 3730 } 3731 3732 static int dmu_recv_end_modified_blocks = 3; 3733 3734 static int 3735 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3736 { 3737 #ifdef _KERNEL 3738 /* 3739 * We will be destroying the ds; make sure its origin is unmounted if 3740 * necessary. 3741 */ 3742 char name[ZFS_MAX_DATASET_NAME_LEN]; 3743 dsl_dataset_name(drc->drc_ds, name); 3744 zfs_destroy_unmount_origin(name); 3745 #endif 3746 3747 return (dsl_sync_task(drc->drc_tofs, 3748 dmu_recv_end_check, dmu_recv_end_sync, drc, 3749 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3750 } 3751 3752 static int 3753 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3754 { 3755 return (dsl_sync_task(drc->drc_tofs, 3756 dmu_recv_end_check, dmu_recv_end_sync, drc, 3757 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL)); 3758 } 3759 3760 int 3761 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3762 { 3763 int error; 3764 3765 drc->drc_owner = owner; 3766 3767 if (drc->drc_newfs) 3768 error = dmu_recv_new_end(drc); 3769 else 3770 error = dmu_recv_existing_end(drc); 3771 3772 if (error != 0) { 3773 dmu_recv_cleanup_ds(drc); 3774 nvlist_free(drc->drc_keynvl); 3775 } else if (!drc->drc_heal) { 3776 if (drc->drc_newfs) { 3777 zvol_create_minor(drc->drc_tofs); 3778 } 3779 char *snapname = kmem_asprintf("%s@%s", 3780 drc->drc_tofs, drc->drc_tosnap); 3781 zvol_create_minor(snapname); 3782 kmem_strfree(snapname); 3783 } 3784 return (error); 3785 } 3786 3787 /* 3788 * Return TRUE if this objset is currently being received into. 3789 */ 3790 boolean_t 3791 dmu_objset_is_receiving(objset_t *os) 3792 { 3793 return (os->os_dsl_dataset != NULL && 3794 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3795 } 3796 3797 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW, 3798 "Maximum receive queue length"); 3799 3800 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW, 3801 "Receive queue fill fraction"); 3802 3803 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW, 3804 "Maximum amount of writes to batch into one transaction"); 3805 3806 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW, 3807 "Ignore errors during corrective receive"); 3808 /* END CSTYLED */ 3809