xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_recv.c (revision 044f94adff55f13130f03c0c170fa879c8febb5b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  * Copyright (c) 2019 Datto Inc.
31  * Copyright (c) 2022 Axcient.
32  */
33 
34 #include <sys/arc.h>
35 #include <sys/spa_impl.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_impl.h>
38 #include <sys/dmu_send.h>
39 #include <sys/dmu_recv.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dbuf.h>
42 #include <sys/dnode.h>
43 #include <sys/zfs_context.h>
44 #include <sys/dmu_objset.h>
45 #include <sys/dmu_traverse.h>
46 #include <sys/dsl_dataset.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_pool.h>
50 #include <sys/dsl_synctask.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/zap.h>
53 #include <sys/zvol.h>
54 #include <sys/zio_checksum.h>
55 #include <sys/zfs_znode.h>
56 #include <zfs_fletcher.h>
57 #include <sys/avl.h>
58 #include <sys/ddt.h>
59 #include <sys/zfs_onexit.h>
60 #include <sys/dsl_destroy.h>
61 #include <sys/blkptr.h>
62 #include <sys/dsl_bookmark.h>
63 #include <sys/zfeature.h>
64 #include <sys/bqueue.h>
65 #include <sys/objlist.h>
66 #ifdef _KERNEL
67 #include <sys/zfs_vfsops.h>
68 #endif
69 #include <sys/zfs_file.h>
70 
71 static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
72 static uint_t zfs_recv_queue_ff = 20;
73 static uint_t zfs_recv_write_batch_size = 1024 * 1024;
74 static int zfs_recv_best_effort_corrective = 0;
75 
76 static const void *const dmu_recv_tag = "dmu_recv_tag";
77 const char *const recv_clone_name = "%recv";
78 
79 typedef enum {
80 	ORNS_NO,
81 	ORNS_YES,
82 	ORNS_MAYBE
83 } or_need_sync_t;
84 
85 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
86     void *buf);
87 
88 struct receive_record_arg {
89 	dmu_replay_record_t header;
90 	void *payload; /* Pointer to a buffer containing the payload */
91 	/*
92 	 * If the record is a WRITE or SPILL, pointer to the abd containing the
93 	 * payload.
94 	 */
95 	abd_t *abd;
96 	int payload_size;
97 	uint64_t bytes_read; /* bytes read from stream when record created */
98 	boolean_t eos_marker; /* Marks the end of the stream */
99 	bqueue_node_t node;
100 };
101 
102 struct receive_writer_arg {
103 	objset_t *os;
104 	boolean_t byteswap;
105 	bqueue_t q;
106 
107 	/*
108 	 * These three members are used to signal to the main thread when
109 	 * we're done.
110 	 */
111 	kmutex_t mutex;
112 	kcondvar_t cv;
113 	boolean_t done;
114 
115 	int err;
116 	const char *tofs;
117 	boolean_t heal;
118 	boolean_t resumable;
119 	boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
120 	boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
121 	boolean_t full;  /* this is a full send stream */
122 	uint64_t last_object;
123 	uint64_t last_offset;
124 	uint64_t max_object; /* highest object ID referenced in stream */
125 	uint64_t bytes_read; /* bytes read when current record created */
126 
127 	list_t write_batch;
128 
129 	/* Encryption parameters for the last received DRR_OBJECT_RANGE */
130 	boolean_t or_crypt_params_present;
131 	uint64_t or_firstobj;
132 	uint64_t or_numslots;
133 	uint8_t or_salt[ZIO_DATA_SALT_LEN];
134 	uint8_t or_iv[ZIO_DATA_IV_LEN];
135 	uint8_t or_mac[ZIO_DATA_MAC_LEN];
136 	boolean_t or_byteorder;
137 	zio_t *heal_pio;
138 
139 	/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
140 	or_need_sync_t or_need_sync;
141 };
142 
143 typedef struct dmu_recv_begin_arg {
144 	const char *drba_origin;
145 	dmu_recv_cookie_t *drba_cookie;
146 	cred_t *drba_cred;
147 	proc_t *drba_proc;
148 	dsl_crypto_params_t *drba_dcp;
149 } dmu_recv_begin_arg_t;
150 
151 static void
152 byteswap_record(dmu_replay_record_t *drr)
153 {
154 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
155 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
156 	drr->drr_type = BSWAP_32(drr->drr_type);
157 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
158 
159 	switch (drr->drr_type) {
160 	case DRR_BEGIN:
161 		DO64(drr_begin.drr_magic);
162 		DO64(drr_begin.drr_versioninfo);
163 		DO64(drr_begin.drr_creation_time);
164 		DO32(drr_begin.drr_type);
165 		DO32(drr_begin.drr_flags);
166 		DO64(drr_begin.drr_toguid);
167 		DO64(drr_begin.drr_fromguid);
168 		break;
169 	case DRR_OBJECT:
170 		DO64(drr_object.drr_object);
171 		DO32(drr_object.drr_type);
172 		DO32(drr_object.drr_bonustype);
173 		DO32(drr_object.drr_blksz);
174 		DO32(drr_object.drr_bonuslen);
175 		DO32(drr_object.drr_raw_bonuslen);
176 		DO64(drr_object.drr_toguid);
177 		DO64(drr_object.drr_maxblkid);
178 		break;
179 	case DRR_FREEOBJECTS:
180 		DO64(drr_freeobjects.drr_firstobj);
181 		DO64(drr_freeobjects.drr_numobjs);
182 		DO64(drr_freeobjects.drr_toguid);
183 		break;
184 	case DRR_WRITE:
185 		DO64(drr_write.drr_object);
186 		DO32(drr_write.drr_type);
187 		DO64(drr_write.drr_offset);
188 		DO64(drr_write.drr_logical_size);
189 		DO64(drr_write.drr_toguid);
190 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
191 		DO64(drr_write.drr_key.ddk_prop);
192 		DO64(drr_write.drr_compressed_size);
193 		break;
194 	case DRR_WRITE_EMBEDDED:
195 		DO64(drr_write_embedded.drr_object);
196 		DO64(drr_write_embedded.drr_offset);
197 		DO64(drr_write_embedded.drr_length);
198 		DO64(drr_write_embedded.drr_toguid);
199 		DO32(drr_write_embedded.drr_lsize);
200 		DO32(drr_write_embedded.drr_psize);
201 		break;
202 	case DRR_FREE:
203 		DO64(drr_free.drr_object);
204 		DO64(drr_free.drr_offset);
205 		DO64(drr_free.drr_length);
206 		DO64(drr_free.drr_toguid);
207 		break;
208 	case DRR_SPILL:
209 		DO64(drr_spill.drr_object);
210 		DO64(drr_spill.drr_length);
211 		DO64(drr_spill.drr_toguid);
212 		DO64(drr_spill.drr_compressed_size);
213 		DO32(drr_spill.drr_type);
214 		break;
215 	case DRR_OBJECT_RANGE:
216 		DO64(drr_object_range.drr_firstobj);
217 		DO64(drr_object_range.drr_numslots);
218 		DO64(drr_object_range.drr_toguid);
219 		break;
220 	case DRR_REDACT:
221 		DO64(drr_redact.drr_object);
222 		DO64(drr_redact.drr_offset);
223 		DO64(drr_redact.drr_length);
224 		DO64(drr_redact.drr_toguid);
225 		break;
226 	case DRR_END:
227 		DO64(drr_end.drr_toguid);
228 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
229 		break;
230 	default:
231 		break;
232 	}
233 
234 	if (drr->drr_type != DRR_BEGIN) {
235 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
236 	}
237 
238 #undef DO64
239 #undef DO32
240 }
241 
242 static boolean_t
243 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
244 {
245 	for (int i = 0; i < num_snaps; i++) {
246 		if (snaps[i] == guid)
247 			return (B_TRUE);
248 	}
249 	return (B_FALSE);
250 }
251 
252 /*
253  * Check that the new stream we're trying to receive is redacted with respect to
254  * a subset of the snapshots that the origin was redacted with respect to.  For
255  * the reasons behind this, see the man page on redacted zfs sends and receives.
256  */
257 static boolean_t
258 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
259     uint64_t *redact_snaps, uint64_t num_redact_snaps)
260 {
261 	/*
262 	 * Short circuit the comparison; if we are redacted with respect to
263 	 * more snapshots than the origin, we can't be redacted with respect
264 	 * to a subset.
265 	 */
266 	if (num_redact_snaps > origin_num_snaps) {
267 		return (B_FALSE);
268 	}
269 
270 	for (int i = 0; i < num_redact_snaps; i++) {
271 		if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
272 		    redact_snaps[i])) {
273 			return (B_FALSE);
274 		}
275 	}
276 	return (B_TRUE);
277 }
278 
279 static boolean_t
280 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
281 {
282 	uint64_t *origin_snaps;
283 	uint64_t origin_num_snaps;
284 	dmu_recv_cookie_t *drc = drba->drba_cookie;
285 	struct drr_begin *drrb = drc->drc_drrb;
286 	int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
287 	int err = 0;
288 	boolean_t ret = B_TRUE;
289 	uint64_t *redact_snaps;
290 	uint_t numredactsnaps;
291 
292 	/*
293 	 * If this is a full send stream, we're safe no matter what.
294 	 */
295 	if (drrb->drr_fromguid == 0)
296 		return (ret);
297 
298 	VERIFY(dsl_dataset_get_uint64_array_feature(origin,
299 	    SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
300 
301 	if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
302 	    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
303 	    0) {
304 		/*
305 		 * If the send stream was sent from the redaction bookmark or
306 		 * the redacted version of the dataset, then we're safe.  Verify
307 		 * that this is from the a compatible redaction bookmark or
308 		 * redacted dataset.
309 		 */
310 		if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
311 		    redact_snaps, numredactsnaps)) {
312 			err = EINVAL;
313 		}
314 	} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
315 		/*
316 		 * If the stream is redacted, it must be redacted with respect
317 		 * to a subset of what the origin is redacted with respect to.
318 		 * See case number 2 in the zfs man page section on redacted zfs
319 		 * send.
320 		 */
321 		err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
322 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
323 
324 		if (err != 0 || !compatible_redact_snaps(origin_snaps,
325 		    origin_num_snaps, redact_snaps, numredactsnaps)) {
326 			err = EINVAL;
327 		}
328 	} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
329 	    drrb->drr_toguid)) {
330 		/*
331 		 * If the stream isn't redacted but the origin is, this must be
332 		 * one of the snapshots the origin is redacted with respect to.
333 		 * See case number 1 in the zfs man page section on redacted zfs
334 		 * send.
335 		 */
336 		err = EINVAL;
337 	}
338 
339 	if (err != 0)
340 		ret = B_FALSE;
341 	return (ret);
342 }
343 
344 /*
345  * If we previously received a stream with --large-block, we don't support
346  * receiving an incremental on top of it without --large-block.  This avoids
347  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
348  * records.
349  */
350 static int
351 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
352 {
353 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
354 	    !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
355 		return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
356 	return (0);
357 }
358 
359 static int
360 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
361     uint64_t fromguid, uint64_t featureflags)
362 {
363 	uint64_t obj;
364 	uint64_t children;
365 	int error;
366 	dsl_dataset_t *snap;
367 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
368 	boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
369 	boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
370 	boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
371 
372 	/* Temporary clone name must not exist. */
373 	error = zap_lookup(dp->dp_meta_objset,
374 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
375 	    8, 1, &obj);
376 	if (error != ENOENT)
377 		return (error == 0 ? SET_ERROR(EBUSY) : error);
378 
379 	/* Resume state must not be set. */
380 	if (dsl_dataset_has_resume_receive_state(ds))
381 		return (SET_ERROR(EBUSY));
382 
383 	/* New snapshot name must not exist if we're not healing it. */
384 	error = zap_lookup(dp->dp_meta_objset,
385 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
386 	    drba->drba_cookie->drc_tosnap, 8, 1, &obj);
387 	if (drba->drba_cookie->drc_heal) {
388 		if (error != 0)
389 			return (error);
390 	} else if (error != ENOENT) {
391 		return (error == 0 ? SET_ERROR(EEXIST) : error);
392 	}
393 
394 	/* Must not have children if receiving a ZVOL. */
395 	error = zap_count(dp->dp_meta_objset,
396 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
397 	if (error != 0)
398 		return (error);
399 	if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
400 	    children > 0)
401 		return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
402 
403 	/*
404 	 * Check snapshot limit before receiving. We'll recheck again at the
405 	 * end, but might as well abort before receiving if we're already over
406 	 * the limit.
407 	 *
408 	 * Note that we do not check the file system limit with
409 	 * dsl_dir_fscount_check because the temporary %clones don't count
410 	 * against that limit.
411 	 */
412 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
413 	    NULL, drba->drba_cred, drba->drba_proc);
414 	if (error != 0)
415 		return (error);
416 
417 	if (drba->drba_cookie->drc_heal) {
418 		/* Encryption is incompatible with embedded data. */
419 		if (encrypted && embed)
420 			return (SET_ERROR(EINVAL));
421 
422 		/* Healing is not supported when in 'force' mode. */
423 		if (drba->drba_cookie->drc_force)
424 			return (SET_ERROR(EINVAL));
425 
426 		/* Must have keys loaded if doing encrypted non-raw recv. */
427 		if (encrypted && !raw) {
428 			if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
429 			    NULL, NULL) != 0)
430 				return (SET_ERROR(EACCES));
431 		}
432 
433 		error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
434 		if (error != 0)
435 			return (error);
436 
437 		/*
438 		 * When not doing best effort corrective recv healing can only
439 		 * be done if the send stream is for the same snapshot as the
440 		 * one we are trying to heal.
441 		 */
442 		if (zfs_recv_best_effort_corrective == 0 &&
443 		    drba->drba_cookie->drc_drrb->drr_toguid !=
444 		    dsl_dataset_phys(snap)->ds_guid) {
445 			dsl_dataset_rele(snap, FTAG);
446 			return (SET_ERROR(ENOTSUP));
447 		}
448 		dsl_dataset_rele(snap, FTAG);
449 	} else if (fromguid != 0) {
450 		/* Sanity check the incremental recv */
451 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
452 
453 		/* Can't perform a raw receive on top of a non-raw receive */
454 		if (!encrypted && raw)
455 			return (SET_ERROR(EINVAL));
456 
457 		/* Encryption is incompatible with embedded data */
458 		if (encrypted && embed)
459 			return (SET_ERROR(EINVAL));
460 
461 		/* Find snapshot in this dir that matches fromguid. */
462 		while (obj != 0) {
463 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
464 			    &snap);
465 			if (error != 0)
466 				return (SET_ERROR(ENODEV));
467 			if (snap->ds_dir != ds->ds_dir) {
468 				dsl_dataset_rele(snap, FTAG);
469 				return (SET_ERROR(ENODEV));
470 			}
471 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
472 				break;
473 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
474 			dsl_dataset_rele(snap, FTAG);
475 		}
476 		if (obj == 0)
477 			return (SET_ERROR(ENODEV));
478 
479 		if (drba->drba_cookie->drc_force) {
480 			drba->drba_cookie->drc_fromsnapobj = obj;
481 		} else {
482 			/*
483 			 * If we are not forcing, there must be no
484 			 * changes since fromsnap. Raw sends have an
485 			 * additional constraint that requires that
486 			 * no "noop" snapshots exist between fromsnap
487 			 * and tosnap for the IVset checking code to
488 			 * work properly.
489 			 */
490 			if (dsl_dataset_modified_since_snap(ds, snap) ||
491 			    (raw &&
492 			    dsl_dataset_phys(ds)->ds_prev_snap_obj !=
493 			    snap->ds_object)) {
494 				dsl_dataset_rele(snap, FTAG);
495 				return (SET_ERROR(ETXTBSY));
496 			}
497 			drba->drba_cookie->drc_fromsnapobj =
498 			    ds->ds_prev->ds_object;
499 		}
500 
501 		if (dsl_dataset_feature_is_active(snap,
502 		    SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
503 		    snap)) {
504 			dsl_dataset_rele(snap, FTAG);
505 			return (SET_ERROR(EINVAL));
506 		}
507 
508 		error = recv_check_large_blocks(snap, featureflags);
509 		if (error != 0) {
510 			dsl_dataset_rele(snap, FTAG);
511 			return (error);
512 		}
513 
514 		dsl_dataset_rele(snap, FTAG);
515 	} else {
516 		/* If full and not healing then must be forced. */
517 		if (!drba->drba_cookie->drc_force)
518 			return (SET_ERROR(EEXIST));
519 
520 		/*
521 		 * We don't support using zfs recv -F to blow away
522 		 * encrypted filesystems. This would require the
523 		 * dsl dir to point to the old encryption key and
524 		 * the new one at the same time during the receive.
525 		 */
526 		if ((!encrypted && raw) || encrypted)
527 			return (SET_ERROR(EINVAL));
528 
529 		/*
530 		 * Perform the same encryption checks we would if
531 		 * we were creating a new dataset from scratch.
532 		 */
533 		if (!raw) {
534 			boolean_t will_encrypt;
535 
536 			error = dmu_objset_create_crypt_check(
537 			    ds->ds_dir->dd_parent, drba->drba_dcp,
538 			    &will_encrypt);
539 			if (error != 0)
540 				return (error);
541 
542 			if (will_encrypt && embed)
543 				return (SET_ERROR(EINVAL));
544 		}
545 	}
546 
547 	return (0);
548 }
549 
550 /*
551  * Check that any feature flags used in the data stream we're receiving are
552  * supported by the pool we are receiving into.
553  *
554  * Note that some of the features we explicitly check here have additional
555  * (implicit) features they depend on, but those dependencies are enforced
556  * through the zfeature_register() calls declaring the features that we
557  * explicitly check.
558  */
559 static int
560 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
561 {
562 	/*
563 	 * Check if there are any unsupported feature flags.
564 	 */
565 	if (!DMU_STREAM_SUPPORTED(featureflags)) {
566 		return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
567 	}
568 
569 	/* Verify pool version supports SA if SA_SPILL feature set */
570 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
571 	    spa_version(spa) < SPA_VERSION_SA)
572 		return (SET_ERROR(ENOTSUP));
573 
574 	/*
575 	 * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
576 	 * and large_dnodes in the stream can only be used if those pool
577 	 * features are enabled because we don't attempt to decompress /
578 	 * un-embed / un-mooch / split up the blocks / dnodes during the
579 	 * receive process.
580 	 */
581 	if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
582 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
583 		return (SET_ERROR(ENOTSUP));
584 	if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
585 	    !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
586 		return (SET_ERROR(ENOTSUP));
587 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
588 	    !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
589 		return (SET_ERROR(ENOTSUP));
590 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
591 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
592 		return (SET_ERROR(ENOTSUP));
593 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
594 	    !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
595 		return (SET_ERROR(ENOTSUP));
596 
597 	/*
598 	 * Receiving redacted streams requires that redacted datasets are
599 	 * enabled.
600 	 */
601 	if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
602 	    !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
603 		return (SET_ERROR(ENOTSUP));
604 
605 	return (0);
606 }
607 
608 static int
609 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
610 {
611 	dmu_recv_begin_arg_t *drba = arg;
612 	dsl_pool_t *dp = dmu_tx_pool(tx);
613 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
614 	uint64_t fromguid = drrb->drr_fromguid;
615 	int flags = drrb->drr_flags;
616 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
617 	int error;
618 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
619 	dsl_dataset_t *ds;
620 	const char *tofs = drba->drba_cookie->drc_tofs;
621 
622 	/* already checked */
623 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
624 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
625 
626 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
627 	    DMU_COMPOUNDSTREAM ||
628 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
629 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
630 		return (SET_ERROR(EINVAL));
631 
632 	error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
633 	if (error != 0)
634 		return (error);
635 
636 	/* Resumable receives require extensible datasets */
637 	if (drba->drba_cookie->drc_resumable &&
638 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
639 		return (SET_ERROR(ENOTSUP));
640 
641 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
642 		/* raw receives require the encryption feature */
643 		if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
644 			return (SET_ERROR(ENOTSUP));
645 
646 		/* embedded data is incompatible with encryption and raw recv */
647 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
648 			return (SET_ERROR(EINVAL));
649 
650 		/* raw receives require spill block allocation flag */
651 		if (!(flags & DRR_FLAG_SPILL_BLOCK))
652 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
653 	} else {
654 		/*
655 		 * We support unencrypted datasets below encrypted ones now,
656 		 * so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
657 		 * with a dataset we may encrypt.
658 		 */
659 		if (drba->drba_dcp == NULL ||
660 		    drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
661 			dsflags |= DS_HOLD_FLAG_DECRYPT;
662 		}
663 	}
664 
665 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
666 	if (error == 0) {
667 		/* target fs already exists; recv into temp clone */
668 
669 		/* Can't recv a clone into an existing fs */
670 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
671 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
672 			return (SET_ERROR(EINVAL));
673 		}
674 
675 		error = recv_begin_check_existing_impl(drba, ds, fromguid,
676 		    featureflags);
677 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
678 	} else if (error == ENOENT) {
679 		/* target fs does not exist; must be a full backup or clone */
680 		char buf[ZFS_MAX_DATASET_NAME_LEN];
681 		objset_t *os;
682 
683 		/* healing recv must be done "into" an existing snapshot */
684 		if (drba->drba_cookie->drc_heal == B_TRUE)
685 			return (SET_ERROR(ENOTSUP));
686 
687 		/*
688 		 * If it's a non-clone incremental, we are missing the
689 		 * target fs, so fail the recv.
690 		 */
691 		if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
692 		    drba->drba_origin))
693 			return (SET_ERROR(ENOENT));
694 
695 		/*
696 		 * If we're receiving a full send as a clone, and it doesn't
697 		 * contain all the necessary free records and freeobject
698 		 * records, reject it.
699 		 */
700 		if (fromguid == 0 && drba->drba_origin != NULL &&
701 		    !(flags & DRR_FLAG_FREERECORDS))
702 			return (SET_ERROR(EINVAL));
703 
704 		/* Open the parent of tofs */
705 		ASSERT3U(strlen(tofs), <, sizeof (buf));
706 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
707 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
708 		if (error != 0)
709 			return (error);
710 
711 		if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
712 		    drba->drba_origin == NULL) {
713 			boolean_t will_encrypt;
714 
715 			/*
716 			 * Check that we aren't breaking any encryption rules
717 			 * and that we have all the parameters we need to
718 			 * create an encrypted dataset if necessary. If we are
719 			 * making an encrypted dataset the stream can't have
720 			 * embedded data.
721 			 */
722 			error = dmu_objset_create_crypt_check(ds->ds_dir,
723 			    drba->drba_dcp, &will_encrypt);
724 			if (error != 0) {
725 				dsl_dataset_rele(ds, FTAG);
726 				return (error);
727 			}
728 
729 			if (will_encrypt &&
730 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
731 				dsl_dataset_rele(ds, FTAG);
732 				return (SET_ERROR(EINVAL));
733 			}
734 		}
735 
736 		/*
737 		 * Check filesystem and snapshot limits before receiving. We'll
738 		 * recheck snapshot limits again at the end (we create the
739 		 * filesystems and increment those counts during begin_sync).
740 		 */
741 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
742 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL,
743 		    drba->drba_cred, drba->drba_proc);
744 		if (error != 0) {
745 			dsl_dataset_rele(ds, FTAG);
746 			return (error);
747 		}
748 
749 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
750 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL,
751 		    drba->drba_cred, drba->drba_proc);
752 		if (error != 0) {
753 			dsl_dataset_rele(ds, FTAG);
754 			return (error);
755 		}
756 
757 		/* can't recv below anything but filesystems (eg. no ZVOLs) */
758 		error = dmu_objset_from_ds(ds, &os);
759 		if (error != 0) {
760 			dsl_dataset_rele(ds, FTAG);
761 			return (error);
762 		}
763 		if (dmu_objset_type(os) != DMU_OST_ZFS) {
764 			dsl_dataset_rele(ds, FTAG);
765 			return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
766 		}
767 
768 		if (drba->drba_origin != NULL) {
769 			dsl_dataset_t *origin;
770 			error = dsl_dataset_hold_flags(dp, drba->drba_origin,
771 			    dsflags, FTAG, &origin);
772 			if (error != 0) {
773 				dsl_dataset_rele(ds, FTAG);
774 				return (error);
775 			}
776 			if (!origin->ds_is_snapshot) {
777 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
778 				dsl_dataset_rele(ds, FTAG);
779 				return (SET_ERROR(EINVAL));
780 			}
781 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
782 			    fromguid != 0) {
783 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
784 				dsl_dataset_rele(ds, FTAG);
785 				return (SET_ERROR(ENODEV));
786 			}
787 
788 			if (origin->ds_dir->dd_crypto_obj != 0 &&
789 			    (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
790 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
791 				dsl_dataset_rele(ds, FTAG);
792 				return (SET_ERROR(EINVAL));
793 			}
794 
795 			/*
796 			 * If the origin is redacted we need to verify that this
797 			 * send stream can safely be received on top of the
798 			 * origin.
799 			 */
800 			if (dsl_dataset_feature_is_active(origin,
801 			    SPA_FEATURE_REDACTED_DATASETS)) {
802 				if (!redact_check(drba, origin)) {
803 					dsl_dataset_rele_flags(origin, dsflags,
804 					    FTAG);
805 					dsl_dataset_rele_flags(ds, dsflags,
806 					    FTAG);
807 					return (SET_ERROR(EINVAL));
808 				}
809 			}
810 
811 			error = recv_check_large_blocks(ds, featureflags);
812 			if (error != 0) {
813 				dsl_dataset_rele_flags(origin, dsflags, FTAG);
814 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
815 				return (error);
816 			}
817 
818 			dsl_dataset_rele_flags(origin, dsflags, FTAG);
819 		}
820 
821 		dsl_dataset_rele(ds, FTAG);
822 		error = 0;
823 	}
824 	return (error);
825 }
826 
827 static void
828 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
829 {
830 	dmu_recv_begin_arg_t *drba = arg;
831 	dsl_pool_t *dp = dmu_tx_pool(tx);
832 	objset_t *mos = dp->dp_meta_objset;
833 	dmu_recv_cookie_t *drc = drba->drba_cookie;
834 	struct drr_begin *drrb = drc->drc_drrb;
835 	const char *tofs = drc->drc_tofs;
836 	uint64_t featureflags = drc->drc_featureflags;
837 	dsl_dataset_t *ds, *newds;
838 	objset_t *os;
839 	uint64_t dsobj;
840 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
841 	int error;
842 	uint64_t crflags = 0;
843 	dsl_crypto_params_t dummy_dcp = { 0 };
844 	dsl_crypto_params_t *dcp = drba->drba_dcp;
845 
846 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
847 		crflags |= DS_FLAG_CI_DATASET;
848 
849 	if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
850 		dsflags |= DS_HOLD_FLAG_DECRYPT;
851 
852 	/*
853 	 * Raw, non-incremental recvs always use a dummy dcp with
854 	 * the raw cmd set. Raw incremental recvs do not use a dcp
855 	 * since the encryption parameters are already set in stone.
856 	 */
857 	if (dcp == NULL && drrb->drr_fromguid == 0 &&
858 	    drba->drba_origin == NULL) {
859 		ASSERT3P(dcp, ==, NULL);
860 		dcp = &dummy_dcp;
861 
862 		if (featureflags & DMU_BACKUP_FEATURE_RAW)
863 			dcp->cp_cmd = DCP_CMD_RAW_RECV;
864 	}
865 
866 	error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
867 	if (error == 0) {
868 		/* Create temporary clone unless we're doing corrective recv */
869 		dsl_dataset_t *snap = NULL;
870 
871 		if (drba->drba_cookie->drc_fromsnapobj != 0) {
872 			VERIFY0(dsl_dataset_hold_obj(dp,
873 			    drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
874 			ASSERT3P(dcp, ==, NULL);
875 		}
876 		if (drc->drc_heal) {
877 			/* When healing we want to use the provided snapshot */
878 			VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
879 			    &dsobj));
880 		} else {
881 			dsobj = dsl_dataset_create_sync(ds->ds_dir,
882 			    recv_clone_name, snap, crflags, drba->drba_cred,
883 			    dcp, tx);
884 		}
885 		if (drba->drba_cookie->drc_fromsnapobj != 0)
886 			dsl_dataset_rele(snap, FTAG);
887 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
888 	} else {
889 		dsl_dir_t *dd;
890 		const char *tail;
891 		dsl_dataset_t *origin = NULL;
892 
893 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
894 
895 		if (drba->drba_origin != NULL) {
896 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
897 			    FTAG, &origin));
898 			ASSERT3P(dcp, ==, NULL);
899 		}
900 
901 		/* Create new dataset. */
902 		dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
903 		    origin, crflags, drba->drba_cred, dcp, tx);
904 		if (origin != NULL)
905 			dsl_dataset_rele(origin, FTAG);
906 		dsl_dir_rele(dd, FTAG);
907 		drc->drc_newfs = B_TRUE;
908 	}
909 	VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
910 	    &newds));
911 	if (dsl_dataset_feature_is_active(newds,
912 	    SPA_FEATURE_REDACTED_DATASETS)) {
913 		/*
914 		 * If the origin dataset is redacted, the child will be redacted
915 		 * when we create it.  We clear the new dataset's
916 		 * redaction info; if it should be redacted, we'll fill
917 		 * in its information later.
918 		 */
919 		dsl_dataset_deactivate_feature(newds,
920 		    SPA_FEATURE_REDACTED_DATASETS, tx);
921 	}
922 	VERIFY0(dmu_objset_from_ds(newds, &os));
923 
924 	if (drc->drc_resumable) {
925 		dsl_dataset_zapify(newds, tx);
926 		if (drrb->drr_fromguid != 0) {
927 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
928 			    8, 1, &drrb->drr_fromguid, tx));
929 		}
930 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
931 		    8, 1, &drrb->drr_toguid, tx));
932 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
933 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
934 		uint64_t one = 1;
935 		uint64_t zero = 0;
936 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
937 		    8, 1, &one, tx));
938 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
939 		    8, 1, &zero, tx));
940 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
941 		    8, 1, &zero, tx));
942 		if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
943 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
944 			    8, 1, &one, tx));
945 		}
946 		if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
947 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
948 			    8, 1, &one, tx));
949 		}
950 		if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
951 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
952 			    8, 1, &one, tx));
953 		}
954 		if (featureflags & DMU_BACKUP_FEATURE_RAW) {
955 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
956 			    8, 1, &one, tx));
957 		}
958 
959 		uint64_t *redact_snaps;
960 		uint_t numredactsnaps;
961 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
962 		    BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
963 		    &numredactsnaps) == 0) {
964 			VERIFY0(zap_add(mos, dsobj,
965 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
966 			    sizeof (*redact_snaps), numredactsnaps,
967 			    redact_snaps, tx));
968 		}
969 	}
970 
971 	/*
972 	 * Usually the os->os_encrypted value is tied to the presence of a
973 	 * DSL Crypto Key object in the dd. However, that will not be received
974 	 * until dmu_recv_stream(), so we set the value manually for now.
975 	 */
976 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
977 		os->os_encrypted = B_TRUE;
978 		drba->drba_cookie->drc_raw = B_TRUE;
979 	}
980 
981 	if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
982 		uint64_t *redact_snaps;
983 		uint_t numredactsnaps;
984 		VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
985 		    BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
986 		dsl_dataset_activate_redaction(newds, redact_snaps,
987 		    numredactsnaps, tx);
988 	}
989 
990 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
991 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
992 
993 	/*
994 	 * If we actually created a non-clone, we need to create the objset
995 	 * in our new dataset. If this is a raw send we postpone this until
996 	 * dmu_recv_stream() so that we can allocate the metadnode with the
997 	 * properties from the DRR_BEGIN payload.
998 	 */
999 	rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
1000 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
1001 	    (featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
1002 	    !drc->drc_heal) {
1003 		(void) dmu_objset_create_impl(dp->dp_spa,
1004 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1005 	}
1006 	rrw_exit(&newds->ds_bp_rwlock, FTAG);
1007 
1008 	drba->drba_cookie->drc_ds = newds;
1009 	drba->drba_cookie->drc_os = os;
1010 
1011 	spa_history_log_internal_ds(newds, "receive", tx, " ");
1012 }
1013 
1014 static int
1015 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1016 {
1017 	dmu_recv_begin_arg_t *drba = arg;
1018 	dmu_recv_cookie_t *drc = drba->drba_cookie;
1019 	dsl_pool_t *dp = dmu_tx_pool(tx);
1020 	struct drr_begin *drrb = drc->drc_drrb;
1021 	int error;
1022 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1023 	dsl_dataset_t *ds;
1024 	const char *tofs = drc->drc_tofs;
1025 
1026 	/* already checked */
1027 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1028 	ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
1029 
1030 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1031 	    DMU_COMPOUNDSTREAM ||
1032 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1033 		return (SET_ERROR(EINVAL));
1034 
1035 	/*
1036 	 * This is mostly a sanity check since we should have already done these
1037 	 * checks during a previous attempt to receive the data.
1038 	 */
1039 	error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
1040 	    dp->dp_spa);
1041 	if (error != 0)
1042 		return (error);
1043 
1044 	/* 6 extra bytes for /%recv */
1045 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1046 
1047 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1048 	    tofs, recv_clone_name);
1049 
1050 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
1051 		/* raw receives require spill block allocation flag */
1052 		if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
1053 			return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
1054 	} else {
1055 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1056 	}
1057 
1058 	boolean_t recvexist = B_TRUE;
1059 	if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
1060 		/* %recv does not exist; continue in tofs */
1061 		recvexist = B_FALSE;
1062 		error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1063 		if (error != 0)
1064 			return (error);
1065 	}
1066 
1067 	/*
1068 	 * Resume of full/newfs recv on existing dataset should be done with
1069 	 * force flag
1070 	 */
1071 	if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
1072 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1073 		return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
1074 	}
1075 
1076 	/* check that ds is marked inconsistent */
1077 	if (!DS_IS_INCONSISTENT(ds)) {
1078 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079 		return (SET_ERROR(EINVAL));
1080 	}
1081 
1082 	/* check that there is resuming data, and that the toguid matches */
1083 	if (!dsl_dataset_is_zapified(ds)) {
1084 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1085 		return (SET_ERROR(EINVAL));
1086 	}
1087 	uint64_t val;
1088 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1089 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1090 	if (error != 0 || drrb->drr_toguid != val) {
1091 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1092 		return (SET_ERROR(EINVAL));
1093 	}
1094 
1095 	/*
1096 	 * Check if the receive is still running.  If so, it will be owned.
1097 	 * Note that nothing else can own the dataset (e.g. after the receive
1098 	 * fails) because it will be marked inconsistent.
1099 	 */
1100 	if (dsl_dataset_has_owner(ds)) {
1101 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1102 		return (SET_ERROR(EBUSY));
1103 	}
1104 
1105 	/* There should not be any snapshots of this fs yet. */
1106 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1107 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1108 		return (SET_ERROR(EINVAL));
1109 	}
1110 
1111 	/*
1112 	 * Note: resume point will be checked when we process the first WRITE
1113 	 * record.
1114 	 */
1115 
1116 	/* check that the origin matches */
1117 	val = 0;
1118 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1119 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1120 	if (drrb->drr_fromguid != val) {
1121 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1122 		return (SET_ERROR(EINVAL));
1123 	}
1124 
1125 	if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1126 		drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1127 
1128 	/*
1129 	 * If we're resuming, and the send is redacted, then the original send
1130 	 * must have been redacted, and must have been redacted with respect to
1131 	 * the same snapshots.
1132 	 */
1133 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1134 		uint64_t num_ds_redact_snaps;
1135 		uint64_t *ds_redact_snaps;
1136 
1137 		uint_t num_stream_redact_snaps;
1138 		uint64_t *stream_redact_snaps;
1139 
1140 		if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1141 		    BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1142 		    &num_stream_redact_snaps) != 0) {
1143 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1144 			return (SET_ERROR(EINVAL));
1145 		}
1146 
1147 		if (!dsl_dataset_get_uint64_array_feature(ds,
1148 		    SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1149 		    &ds_redact_snaps)) {
1150 			dsl_dataset_rele_flags(ds, dsflags, FTAG);
1151 			return (SET_ERROR(EINVAL));
1152 		}
1153 
1154 		for (int i = 0; i < num_ds_redact_snaps; i++) {
1155 			if (!redact_snaps_contains(ds_redact_snaps,
1156 			    num_ds_redact_snaps, stream_redact_snaps[i])) {
1157 				dsl_dataset_rele_flags(ds, dsflags, FTAG);
1158 				return (SET_ERROR(EINVAL));
1159 			}
1160 		}
1161 	}
1162 
1163 	error = recv_check_large_blocks(ds, drc->drc_featureflags);
1164 	if (error != 0) {
1165 		dsl_dataset_rele_flags(ds, dsflags, FTAG);
1166 		return (error);
1167 	}
1168 
1169 	dsl_dataset_rele_flags(ds, dsflags, FTAG);
1170 	return (0);
1171 }
1172 
1173 static void
1174 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1175 {
1176 	dmu_recv_begin_arg_t *drba = arg;
1177 	dsl_pool_t *dp = dmu_tx_pool(tx);
1178 	const char *tofs = drba->drba_cookie->drc_tofs;
1179 	uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1180 	dsl_dataset_t *ds;
1181 	ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
1182 	/* 6 extra bytes for /%recv */
1183 	char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1184 
1185 	(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1186 	    recv_clone_name);
1187 
1188 	if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1189 		drba->drba_cookie->drc_raw = B_TRUE;
1190 	} else {
1191 		dsflags |= DS_HOLD_FLAG_DECRYPT;
1192 	}
1193 
1194 	if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1195 	    != 0) {
1196 		/* %recv does not exist; continue in tofs */
1197 		VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1198 		    &ds));
1199 		drba->drba_cookie->drc_newfs = B_TRUE;
1200 	}
1201 
1202 	ASSERT(DS_IS_INCONSISTENT(ds));
1203 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1204 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1205 	    drba->drba_cookie->drc_raw);
1206 	rrw_exit(&ds->ds_bp_rwlock, FTAG);
1207 
1208 	drba->drba_cookie->drc_ds = ds;
1209 	VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1210 	drba->drba_cookie->drc_should_save = B_TRUE;
1211 
1212 	spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1213 }
1214 
1215 /*
1216  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1217  * succeeds; otherwise we will leak the holds on the datasets.
1218  */
1219 int
1220 dmu_recv_begin(const char *tofs, const char *tosnap,
1221     dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
1222     boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
1223     const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
1224     offset_t *voffp)
1225 {
1226 	dmu_recv_begin_arg_t drba = { 0 };
1227 	int err = 0;
1228 
1229 	memset(drc, 0, sizeof (dmu_recv_cookie_t));
1230 	drc->drc_drr_begin = drr_begin;
1231 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1232 	drc->drc_tosnap = tosnap;
1233 	drc->drc_tofs = tofs;
1234 	drc->drc_force = force;
1235 	drc->drc_heal = heal;
1236 	drc->drc_resumable = resumable;
1237 	drc->drc_cred = CRED();
1238 	drc->drc_proc = curproc;
1239 	drc->drc_clone = (origin != NULL);
1240 
1241 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1242 		drc->drc_byteswap = B_TRUE;
1243 		(void) fletcher_4_incremental_byteswap(drr_begin,
1244 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1245 		byteswap_record(drr_begin);
1246 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1247 		(void) fletcher_4_incremental_native(drr_begin,
1248 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1249 	} else {
1250 		return (SET_ERROR(EINVAL));
1251 	}
1252 
1253 	drc->drc_fp = fp;
1254 	drc->drc_voff = *voffp;
1255 	drc->drc_featureflags =
1256 	    DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1257 
1258 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1259 
1260 	/*
1261 	 * Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
1262 	 * configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
1263 	 * upper limit. Systems with less than 1GB of RAM will see a lower
1264 	 * limit from `arc_all_memory() / 4`.
1265 	 */
1266 	if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
1267 		return (E2BIG);
1268 
1269 
1270 	if (payloadlen != 0) {
1271 		void *payload = vmem_alloc(payloadlen, KM_SLEEP);
1272 		/*
1273 		 * For compatibility with recursive send streams, we don't do
1274 		 * this here if the stream could be part of a package. Instead,
1275 		 * we'll do it in dmu_recv_stream. If we pull the next header
1276 		 * too early, and it's the END record, we break the `recv_skip`
1277 		 * logic.
1278 		 */
1279 
1280 		err = receive_read_payload_and_next_header(drc, payloadlen,
1281 		    payload);
1282 		if (err != 0) {
1283 			vmem_free(payload, payloadlen);
1284 			return (err);
1285 		}
1286 		err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1287 		    KM_SLEEP);
1288 		vmem_free(payload, payloadlen);
1289 		if (err != 0) {
1290 			kmem_free(drc->drc_next_rrd,
1291 			    sizeof (*drc->drc_next_rrd));
1292 			return (err);
1293 		}
1294 	}
1295 
1296 	if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1297 		drc->drc_spill = B_TRUE;
1298 
1299 	drba.drba_origin = origin;
1300 	drba.drba_cookie = drc;
1301 	drba.drba_cred = CRED();
1302 	drba.drba_proc = curproc;
1303 
1304 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1305 		err = dsl_sync_task(tofs,
1306 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1307 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1308 	} else {
1309 		/*
1310 		 * For non-raw, non-incremental, non-resuming receives the
1311 		 * user can specify encryption parameters on the command line
1312 		 * with "zfs recv -o". For these receives we create a dcp and
1313 		 * pass it to the sync task. Creating the dcp will implicitly
1314 		 * remove the encryption params from the localprops nvlist,
1315 		 * which avoids errors when trying to set these normally
1316 		 * read-only properties. Any other kind of receive that
1317 		 * attempts to set these properties will fail as a result.
1318 		 */
1319 		if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1320 		    DMU_BACKUP_FEATURE_RAW) == 0 &&
1321 		    origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1322 			err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1323 			    localprops, hidden_args, &drba.drba_dcp);
1324 		}
1325 
1326 		if (err == 0) {
1327 			err = dsl_sync_task(tofs,
1328 			    dmu_recv_begin_check, dmu_recv_begin_sync,
1329 			    &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1330 			dsl_crypto_params_free(drba.drba_dcp, !!err);
1331 		}
1332 	}
1333 
1334 	if (err != 0) {
1335 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1336 		nvlist_free(drc->drc_begin_nvl);
1337 	}
1338 	return (err);
1339 }
1340 
1341 /*
1342  * Holds data need for corrective recv callback
1343  */
1344 typedef struct cr_cb_data {
1345 	uint64_t size;
1346 	zbookmark_phys_t zb;
1347 	spa_t *spa;
1348 } cr_cb_data_t;
1349 
1350 static void
1351 corrective_read_done(zio_t *zio)
1352 {
1353 	cr_cb_data_t *data = zio->io_private;
1354 	/* Corruption corrected; update error log if needed */
1355 	if (zio->io_error == 0) {
1356 		spa_remove_error(data->spa, &data->zb,
1357 		    BP_GET_LOGICAL_BIRTH(zio->io_bp));
1358 	}
1359 	kmem_free(data, sizeof (cr_cb_data_t));
1360 	abd_free(zio->io_abd);
1361 }
1362 
1363 /*
1364  * zio_rewrite the data pointed to by bp with the data from the rrd's abd.
1365  */
1366 static int
1367 do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
1368     struct receive_record_arg *rrd, blkptr_t *bp)
1369 {
1370 	int err;
1371 	zio_t *io;
1372 	zbookmark_phys_t zb;
1373 	dnode_t *dn;
1374 	abd_t *abd = rrd->abd;
1375 	zio_cksum_t bp_cksum = bp->blk_cksum;
1376 	zio_flag_t flags = ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_RETRY |
1377 	    ZIO_FLAG_CANFAIL;
1378 
1379 	if (rwa->raw)
1380 		flags |= ZIO_FLAG_RAW;
1381 
1382 	err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
1383 	if (err != 0)
1384 		return (err);
1385 	SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
1386 	    dbuf_whichblock(dn, 0, drrw->drr_offset));
1387 	dnode_rele(dn, FTAG);
1388 
1389 	if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
1390 		/* Decompress the stream data */
1391 		abd_t *dabd = abd_alloc_linear(
1392 		    drrw->drr_logical_size, B_FALSE);
1393 		err = zio_decompress_data(drrw->drr_compressiontype,
1394 		    abd, dabd, abd_get_size(abd),
1395 		    abd_get_size(dabd), NULL);
1396 
1397 		if (err != 0) {
1398 			abd_free(dabd);
1399 			return (err);
1400 		}
1401 		/* Swap in the newly decompressed data into the abd */
1402 		abd_free(abd);
1403 		abd = dabd;
1404 	}
1405 
1406 	if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
1407 		/* Recompress the data */
1408 		abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
1409 		    B_FALSE);
1410 		uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
1411 		    abd, &cabd, abd_get_size(abd),
1412 		    rwa->os->os_complevel);
1413 		abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
1414 		/* Swap in newly compressed data into the abd */
1415 		abd_free(abd);
1416 		abd = cabd;
1417 		flags |= ZIO_FLAG_RAW_COMPRESS;
1418 	}
1419 
1420 	/*
1421 	 * The stream is not encrypted but the data on-disk is.
1422 	 * We need to re-encrypt the buf using the same
1423 	 * encryption type, salt, iv, and mac that was used to encrypt
1424 	 * the block previosly.
1425 	 */
1426 	if (!rwa->raw && BP_USES_CRYPT(bp)) {
1427 		dsl_dataset_t *ds;
1428 		dsl_crypto_key_t *dck = NULL;
1429 		uint8_t salt[ZIO_DATA_SALT_LEN];
1430 		uint8_t iv[ZIO_DATA_IV_LEN];
1431 		uint8_t mac[ZIO_DATA_MAC_LEN];
1432 		boolean_t no_crypt = B_FALSE;
1433 		dsl_pool_t *dp = dmu_objset_pool(rwa->os);
1434 		abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
1435 
1436 		zio_crypt_decode_params_bp(bp, salt, iv);
1437 		zio_crypt_decode_mac_bp(bp, mac);
1438 
1439 		dsl_pool_config_enter(dp, FTAG);
1440 		err = dsl_dataset_hold_flags(dp, rwa->tofs,
1441 		    DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
1442 		if (err != 0) {
1443 			dsl_pool_config_exit(dp, FTAG);
1444 			abd_free(eabd);
1445 			return (SET_ERROR(EACCES));
1446 		}
1447 
1448 		/* Look up the key from the spa's keystore */
1449 		err = spa_keystore_lookup_key(rwa->os->os_spa,
1450 		    zb.zb_objset, FTAG, &dck);
1451 		if (err != 0) {
1452 			dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
1453 			    FTAG);
1454 			dsl_pool_config_exit(dp, FTAG);
1455 			abd_free(eabd);
1456 			return (SET_ERROR(EACCES));
1457 		}
1458 
1459 		err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
1460 		    BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
1461 		    mac, abd_get_size(abd), abd, eabd, &no_crypt);
1462 
1463 		spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
1464 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1465 		dsl_pool_config_exit(dp, FTAG);
1466 
1467 		ASSERT0(no_crypt);
1468 		if (err != 0) {
1469 			abd_free(eabd);
1470 			return (err);
1471 		}
1472 		/* Swap in the newly encrypted data into the abd */
1473 		abd_free(abd);
1474 		abd = eabd;
1475 
1476 		/*
1477 		 * We want to prevent zio_rewrite() from trying to
1478 		 * encrypt the data again
1479 		 */
1480 		flags |= ZIO_FLAG_RAW_ENCRYPT;
1481 	}
1482 	rrd->abd = abd;
1483 
1484 	io = zio_rewrite(NULL, rwa->os->os_spa, BP_GET_LOGICAL_BIRTH(bp), bp,
1485 	    abd, BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags,
1486 	    &zb);
1487 
1488 	ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
1489 	    abd_get_size(abd) == BP_GET_PSIZE(bp));
1490 
1491 	/* compute new bp checksum value and make sure it matches the old one */
1492 	zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
1493 	if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
1494 		zio_destroy(io);
1495 		if (zfs_recv_best_effort_corrective != 0)
1496 			return (0);
1497 		return (SET_ERROR(ECKSUM));
1498 	}
1499 
1500 	/* Correct the corruption in place */
1501 	err = zio_wait(io);
1502 	if (err == 0) {
1503 		cr_cb_data_t *cb_data =
1504 		    kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
1505 		cb_data->spa = rwa->os->os_spa;
1506 		cb_data->size = drrw->drr_logical_size;
1507 		cb_data->zb = zb;
1508 		/* Test if healing worked by re-reading the bp */
1509 		err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
1510 		    abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
1511 		    drrw->drr_logical_size, corrective_read_done,
1512 		    cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
1513 	}
1514 	if (err != 0 && zfs_recv_best_effort_corrective != 0)
1515 		err = 0;
1516 
1517 	return (err);
1518 }
1519 
1520 static int
1521 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1522 {
1523 	int done = 0;
1524 
1525 	/*
1526 	 * The code doesn't rely on this (lengths being multiples of 8).  See
1527 	 * comment in dump_bytes.
1528 	 */
1529 	ASSERT(len % 8 == 0 ||
1530 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1531 
1532 	while (done < len) {
1533 		ssize_t resid = len - done;
1534 		zfs_file_t *fp = drc->drc_fp;
1535 		int err = zfs_file_read(fp, (char *)buf + done,
1536 		    len - done, &resid);
1537 		if (err == 0 && resid == len - done) {
1538 			/*
1539 			 * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1540 			 * that the receive was interrupted and can
1541 			 * potentially be resumed.
1542 			 */
1543 			err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1544 		}
1545 		drc->drc_voff += len - done - resid;
1546 		done = len - resid;
1547 		if (err != 0)
1548 			return (err);
1549 	}
1550 
1551 	drc->drc_bytes_read += len;
1552 
1553 	ASSERT3U(done, ==, len);
1554 	return (0);
1555 }
1556 
1557 static inline uint8_t
1558 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1559 {
1560 	if (bonus_type == DMU_OT_SA) {
1561 		return (1);
1562 	} else {
1563 		return (1 +
1564 		    ((DN_OLD_MAX_BONUSLEN -
1565 		    MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1566 	}
1567 }
1568 
1569 static void
1570 save_resume_state(struct receive_writer_arg *rwa,
1571     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1572 {
1573 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1574 
1575 	if (!rwa->resumable)
1576 		return;
1577 
1578 	/*
1579 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1580 	 * update this on disk, so it must not be 0.
1581 	 */
1582 	ASSERT(rwa->bytes_read != 0);
1583 
1584 	/*
1585 	 * We only resume from write records, which have a valid
1586 	 * (non-meta-dnode) object number.
1587 	 */
1588 	ASSERT(object != 0);
1589 
1590 	/*
1591 	 * For resuming to work correctly, we must receive records in order,
1592 	 * sorted by object,offset.  This is checked by the callers, but
1593 	 * assert it here for good measure.
1594 	 */
1595 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1596 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1597 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1598 	ASSERT3U(rwa->bytes_read, >=,
1599 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1600 
1601 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1602 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1603 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1604 }
1605 
1606 static int
1607 receive_object_is_same_generation(objset_t *os, uint64_t object,
1608     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1609     const void *new_bonus, boolean_t *samegenp)
1610 {
1611 	zfs_file_info_t zoi;
1612 	int err;
1613 
1614 	dmu_buf_t *old_bonus_dbuf;
1615 	err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1616 	if (err != 0)
1617 		return (err);
1618 	err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1619 	    &zoi);
1620 	dmu_buf_rele(old_bonus_dbuf, FTAG);
1621 	if (err != 0)
1622 		return (err);
1623 	uint64_t old_gen = zoi.zfi_generation;
1624 
1625 	err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1626 	if (err != 0)
1627 		return (err);
1628 	uint64_t new_gen = zoi.zfi_generation;
1629 
1630 	*samegenp = (old_gen == new_gen);
1631 	return (0);
1632 }
1633 
1634 static int
1635 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1636     const struct drr_object *drro, const dmu_object_info_t *doi,
1637     const void *bonus_data,
1638     uint64_t *object_to_hold, uint32_t *new_blksz)
1639 {
1640 	uint32_t indblksz = drro->drr_indblkshift ?
1641 	    1ULL << drro->drr_indblkshift : 0;
1642 	int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1643 	    drro->drr_bonuslen);
1644 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1645 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1646 	boolean_t do_free_range = B_FALSE;
1647 	int err;
1648 
1649 	*object_to_hold = drro->drr_object;
1650 
1651 	/* nblkptr should be bounded by the bonus size and type */
1652 	if (rwa->raw && nblkptr != drro->drr_nblkptr)
1653 		return (SET_ERROR(EINVAL));
1654 
1655 	/*
1656 	 * After the previous send stream, the sending system may
1657 	 * have freed this object, and then happened to re-allocate
1658 	 * this object number in a later txg. In this case, we are
1659 	 * receiving a different logical file, and the block size may
1660 	 * appear to be different.  i.e. we may have a different
1661 	 * block size for this object than what the send stream says.
1662 	 * In this case we need to remove the object's contents,
1663 	 * so that its structure can be changed and then its contents
1664 	 * entirely replaced by subsequent WRITE records.
1665 	 *
1666 	 * If this is a -L (--large-block) incremental stream, and
1667 	 * the previous stream was not -L, the block size may appear
1668 	 * to increase.  i.e. we may have a smaller block size for
1669 	 * this object than what the send stream says.  In this case
1670 	 * we need to keep the object's contents and block size
1671 	 * intact, so that we don't lose parts of the object's
1672 	 * contents that are not changed by this incremental send
1673 	 * stream.
1674 	 *
1675 	 * We can distinguish between the two above cases by using
1676 	 * the ZPL's generation number (see
1677 	 * receive_object_is_same_generation()).  However, we only
1678 	 * want to rely on the generation number when absolutely
1679 	 * necessary, because with raw receives, the generation is
1680 	 * encrypted.  We also want to minimize dependence on the
1681 	 * ZPL, so that other types of datasets can also be received
1682 	 * (e.g. ZVOLs, although note that ZVOLS currently do not
1683 	 * reallocate their objects or change their structure).
1684 	 * Therefore, we check a number of different cases where we
1685 	 * know it is safe to discard the object's contents, before
1686 	 * using the ZPL's generation number to make the above
1687 	 * distinction.
1688 	 */
1689 	if (drro->drr_blksz != doi->doi_data_block_size) {
1690 		if (rwa->raw) {
1691 			/*
1692 			 * RAW streams always have large blocks, so
1693 			 * we are sure that the data is not needed
1694 			 * due to changing --large-block to be on.
1695 			 * Which is fortunate since the bonus buffer
1696 			 * (which contains the ZPL generation) is
1697 			 * encrypted, and the key might not be
1698 			 * loaded.
1699 			 */
1700 			do_free_range = B_TRUE;
1701 		} else if (rwa->full) {
1702 			/*
1703 			 * This is a full send stream, so it always
1704 			 * replaces what we have.  Even if the
1705 			 * generation numbers happen to match, this
1706 			 * can not actually be the same logical file.
1707 			 * This is relevant when receiving a full
1708 			 * send as a clone.
1709 			 */
1710 			do_free_range = B_TRUE;
1711 		} else if (drro->drr_type !=
1712 		    DMU_OT_PLAIN_FILE_CONTENTS ||
1713 		    doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1714 			/*
1715 			 * PLAIN_FILE_CONTENTS are the only type of
1716 			 * objects that have ever been stored with
1717 			 * large blocks, so we don't need the special
1718 			 * logic below.  ZAP blocks can shrink (when
1719 			 * there's only one block), so we don't want
1720 			 * to hit the error below about block size
1721 			 * only increasing.
1722 			 */
1723 			do_free_range = B_TRUE;
1724 		} else if (doi->doi_max_offset <=
1725 		    doi->doi_data_block_size) {
1726 			/*
1727 			 * There is only one block.  We can free it,
1728 			 * because its contents will be replaced by a
1729 			 * WRITE record.  This can not be the no-L ->
1730 			 * -L case, because the no-L case would have
1731 			 * resulted in multiple blocks.  If we
1732 			 * supported -L -> no-L, it would not be safe
1733 			 * to free the file's contents.  Fortunately,
1734 			 * that is not allowed (see
1735 			 * recv_check_large_blocks()).
1736 			 */
1737 			do_free_range = B_TRUE;
1738 		} else {
1739 			boolean_t is_same_gen;
1740 			err = receive_object_is_same_generation(rwa->os,
1741 			    drro->drr_object, doi->doi_bonus_type,
1742 			    drro->drr_bonustype, bonus_data, &is_same_gen);
1743 			if (err != 0)
1744 				return (SET_ERROR(EINVAL));
1745 
1746 			if (is_same_gen) {
1747 				/*
1748 				 * This is the same logical file, and
1749 				 * the block size must be increasing.
1750 				 * It could only decrease if
1751 				 * --large-block was changed to be
1752 				 * off, which is checked in
1753 				 * recv_check_large_blocks().
1754 				 */
1755 				if (drro->drr_blksz <=
1756 				    doi->doi_data_block_size)
1757 					return (SET_ERROR(EINVAL));
1758 				/*
1759 				 * We keep the existing blocksize and
1760 				 * contents.
1761 				 */
1762 				*new_blksz =
1763 				    doi->doi_data_block_size;
1764 			} else {
1765 				do_free_range = B_TRUE;
1766 			}
1767 		}
1768 	}
1769 
1770 	/* nblkptr can only decrease if the object was reallocated */
1771 	if (nblkptr < doi->doi_nblkptr)
1772 		do_free_range = B_TRUE;
1773 
1774 	/* number of slots can only change on reallocation */
1775 	if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1776 		do_free_range = B_TRUE;
1777 
1778 	/*
1779 	 * For raw sends we also check a few other fields to
1780 	 * ensure we are preserving the objset structure exactly
1781 	 * as it was on the receive side:
1782 	 *     - A changed indirect block size
1783 	 *     - A smaller nlevels
1784 	 */
1785 	if (rwa->raw) {
1786 		if (indblksz != doi->doi_metadata_block_size)
1787 			do_free_range = B_TRUE;
1788 		if (drro->drr_nlevels < doi->doi_indirection)
1789 			do_free_range = B_TRUE;
1790 	}
1791 
1792 	if (do_free_range) {
1793 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1794 		    0, DMU_OBJECT_END);
1795 		if (err != 0)
1796 			return (SET_ERROR(EINVAL));
1797 	}
1798 
1799 	/*
1800 	 * The dmu does not currently support decreasing nlevels or changing
1801 	 * indirect block size if there is already one, same as changing the
1802 	 * number of of dnode slots on an object.  For non-raw sends this
1803 	 * does not matter and the new object can just use the previous one's
1804 	 * parameters.  For raw sends, however, the structure of the received
1805 	 * dnode (including indirects and dnode slots) must match that of the
1806 	 * send side.  Therefore, instead of using dmu_object_reclaim(), we
1807 	 * must free the object completely and call dmu_object_claim_dnsize()
1808 	 * instead.
1809 	 */
1810 	if ((rwa->raw && ((doi->doi_indirection > 1 &&
1811 	    indblksz != doi->doi_metadata_block_size) ||
1812 	    drro->drr_nlevels < doi->doi_indirection)) ||
1813 	    dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1814 		err = dmu_free_long_object(rwa->os, drro->drr_object);
1815 		if (err != 0)
1816 			return (SET_ERROR(EINVAL));
1817 
1818 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1819 		*object_to_hold = DMU_NEW_OBJECT;
1820 	}
1821 
1822 	/*
1823 	 * For raw receives, free everything beyond the new incoming
1824 	 * maxblkid. Normally this would be done with a DRR_FREE
1825 	 * record that would come after this DRR_OBJECT record is
1826 	 * processed. However, for raw receives we manually set the
1827 	 * maxblkid from the drr_maxblkid and so we must first free
1828 	 * everything above that blkid to ensure the DMU is always
1829 	 * consistent with itself. We will never free the first block
1830 	 * of the object here because a maxblkid of 0 could indicate
1831 	 * an object with a single block or one with no blocks. This
1832 	 * free may be skipped when dmu_free_long_range() was called
1833 	 * above since it covers the entire object's contents.
1834 	 */
1835 	if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1836 		err = dmu_free_long_range(rwa->os, drro->drr_object,
1837 		    (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1838 		    DMU_OBJECT_END);
1839 		if (err != 0)
1840 			return (SET_ERROR(EINVAL));
1841 	}
1842 	return (0);
1843 }
1844 
1845 noinline static int
1846 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1847     void *data)
1848 {
1849 	dmu_object_info_t doi;
1850 	dmu_tx_t *tx;
1851 	int err;
1852 	uint32_t new_blksz = drro->drr_blksz;
1853 	uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1854 	    drro->drr_dn_slots : DNODE_MIN_SLOTS;
1855 
1856 	if (drro->drr_type == DMU_OT_NONE ||
1857 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1858 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1859 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1860 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1861 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1862 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1863 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1864 	    drro->drr_bonuslen >
1865 	    DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1866 	    dn_slots >
1867 	    (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1868 		return (SET_ERROR(EINVAL));
1869 	}
1870 
1871 	if (rwa->raw) {
1872 		/*
1873 		 * We should have received a DRR_OBJECT_RANGE record
1874 		 * containing this block and stored it in rwa.
1875 		 */
1876 		if (drro->drr_object < rwa->or_firstobj ||
1877 		    drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1878 		    drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1879 		    drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1880 		    drro->drr_nlevels > DN_MAX_LEVELS ||
1881 		    drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1882 		    DN_SLOTS_TO_BONUSLEN(dn_slots) <
1883 		    drro->drr_raw_bonuslen)
1884 			return (SET_ERROR(EINVAL));
1885 	} else {
1886 		/*
1887 		 * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1888 		 * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1889 		 */
1890 		if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1891 		    (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1892 			return (SET_ERROR(EINVAL));
1893 		}
1894 
1895 		if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1896 		    drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1897 			return (SET_ERROR(EINVAL));
1898 		}
1899 	}
1900 
1901 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1902 
1903 	if (err != 0 && err != ENOENT && err != EEXIST)
1904 		return (SET_ERROR(EINVAL));
1905 
1906 	if (drro->drr_object > rwa->max_object)
1907 		rwa->max_object = drro->drr_object;
1908 
1909 	/*
1910 	 * If we are losing blkptrs or changing the block size this must
1911 	 * be a new file instance.  We must clear out the previous file
1912 	 * contents before we can change this type of metadata in the dnode.
1913 	 * Raw receives will also check that the indirect structure of the
1914 	 * dnode hasn't changed.
1915 	 */
1916 	uint64_t object_to_hold;
1917 	if (err == 0) {
1918 		err = receive_handle_existing_object(rwa, drro, &doi, data,
1919 		    &object_to_hold, &new_blksz);
1920 		if (err != 0)
1921 			return (err);
1922 	} else if (err == EEXIST) {
1923 		/*
1924 		 * The object requested is currently an interior slot of a
1925 		 * multi-slot dnode. This will be resolved when the next txg
1926 		 * is synced out, since the send stream will have told us
1927 		 * to free this slot when we freed the associated dnode
1928 		 * earlier in the stream.
1929 		 */
1930 		txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1931 
1932 		if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1933 			return (SET_ERROR(EINVAL));
1934 
1935 		/* object was freed and we are about to allocate a new one */
1936 		object_to_hold = DMU_NEW_OBJECT;
1937 	} else {
1938 		/*
1939 		 * If the only record in this range so far was DRR_FREEOBJECTS
1940 		 * with at least one actually freed object, it's possible that
1941 		 * the block will now be converted to a hole. We need to wait
1942 		 * for the txg to sync to prevent races.
1943 		 */
1944 		if (rwa->or_need_sync == ORNS_YES)
1945 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1946 
1947 		/* object is free and we are about to allocate a new one */
1948 		object_to_hold = DMU_NEW_OBJECT;
1949 	}
1950 
1951 	/* Only relevant for the first object in the range */
1952 	rwa->or_need_sync = ORNS_NO;
1953 
1954 	/*
1955 	 * If this is a multi-slot dnode there is a chance that this
1956 	 * object will expand into a slot that is already used by
1957 	 * another object from the previous snapshot. We must free
1958 	 * these objects before we attempt to allocate the new dnode.
1959 	 */
1960 	if (dn_slots > 1) {
1961 		boolean_t need_sync = B_FALSE;
1962 
1963 		for (uint64_t slot = drro->drr_object + 1;
1964 		    slot < drro->drr_object + dn_slots;
1965 		    slot++) {
1966 			dmu_object_info_t slot_doi;
1967 
1968 			err = dmu_object_info(rwa->os, slot, &slot_doi);
1969 			if (err == ENOENT || err == EEXIST)
1970 				continue;
1971 			else if (err != 0)
1972 				return (err);
1973 
1974 			err = dmu_free_long_object(rwa->os, slot);
1975 			if (err != 0)
1976 				return (err);
1977 
1978 			need_sync = B_TRUE;
1979 		}
1980 
1981 		if (need_sync)
1982 			txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1983 	}
1984 
1985 	tx = dmu_tx_create(rwa->os);
1986 	dmu_tx_hold_bonus(tx, object_to_hold);
1987 	dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1988 	err = dmu_tx_assign(tx, TXG_WAIT);
1989 	if (err != 0) {
1990 		dmu_tx_abort(tx);
1991 		return (err);
1992 	}
1993 
1994 	if (object_to_hold == DMU_NEW_OBJECT) {
1995 		/* Currently free, wants to be allocated */
1996 		err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1997 		    drro->drr_type, new_blksz,
1998 		    drro->drr_bonustype, drro->drr_bonuslen,
1999 		    dn_slots << DNODE_SHIFT, tx);
2000 	} else if (drro->drr_type != doi.doi_type ||
2001 	    new_blksz != doi.doi_data_block_size ||
2002 	    drro->drr_bonustype != doi.doi_bonus_type ||
2003 	    drro->drr_bonuslen != doi.doi_bonus_size) {
2004 		/* Currently allocated, but with different properties */
2005 		err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
2006 		    drro->drr_type, new_blksz,
2007 		    drro->drr_bonustype, drro->drr_bonuslen,
2008 		    dn_slots << DNODE_SHIFT, rwa->spill ?
2009 		    DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
2010 	} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
2011 		/*
2012 		 * Currently allocated, the existing version of this object
2013 		 * may reference a spill block that is no longer allocated
2014 		 * at the source and needs to be freed.
2015 		 */
2016 		err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
2017 	}
2018 
2019 	if (err != 0) {
2020 		dmu_tx_commit(tx);
2021 		return (SET_ERROR(EINVAL));
2022 	}
2023 
2024 	if (rwa->or_crypt_params_present) {
2025 		/*
2026 		 * Set the crypt params for the buffer associated with this
2027 		 * range of dnodes.  This causes the blkptr_t to have the
2028 		 * same crypt params (byteorder, salt, iv, mac) as on the
2029 		 * sending side.
2030 		 *
2031 		 * Since we are committing this tx now, it is possible for
2032 		 * the dnode block to end up on-disk with the incorrect MAC,
2033 		 * if subsequent objects in this block are received in a
2034 		 * different txg.  However, since the dataset is marked as
2035 		 * inconsistent, no code paths will do a non-raw read (or
2036 		 * decrypt the block / verify the MAC). The receive code and
2037 		 * scrub code can safely do raw reads and verify the
2038 		 * checksum.  They don't need to verify the MAC.
2039 		 */
2040 		dmu_buf_t *db = NULL;
2041 		uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
2042 
2043 		err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
2044 		    offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
2045 		if (err != 0) {
2046 			dmu_tx_commit(tx);
2047 			return (SET_ERROR(EINVAL));
2048 		}
2049 
2050 		dmu_buf_set_crypt_params(db, rwa->or_byteorder,
2051 		    rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
2052 
2053 		dmu_buf_rele(db, FTAG);
2054 
2055 		rwa->or_crypt_params_present = B_FALSE;
2056 	}
2057 
2058 	dmu_object_set_checksum(rwa->os, drro->drr_object,
2059 	    drro->drr_checksumtype, tx);
2060 	dmu_object_set_compress(rwa->os, drro->drr_object,
2061 	    drro->drr_compress, tx);
2062 
2063 	/* handle more restrictive dnode structuring for raw recvs */
2064 	if (rwa->raw) {
2065 		/*
2066 		 * Set the indirect block size, block shift, nlevels.
2067 		 * This will not fail because we ensured all of the
2068 		 * blocks were freed earlier if this is a new object.
2069 		 * For non-new objects block size and indirect block
2070 		 * shift cannot change and nlevels can only increase.
2071 		 */
2072 		ASSERT3U(new_blksz, ==, drro->drr_blksz);
2073 		VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
2074 		    drro->drr_blksz, drro->drr_indblkshift, tx));
2075 		VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
2076 		    drro->drr_nlevels, tx));
2077 
2078 		/*
2079 		 * Set the maxblkid. This will always succeed because
2080 		 * we freed all blocks beyond the new maxblkid above.
2081 		 */
2082 		VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
2083 		    drro->drr_maxblkid, tx));
2084 	}
2085 
2086 	if (data != NULL) {
2087 		dmu_buf_t *db;
2088 		dnode_t *dn;
2089 		uint32_t flags = DMU_READ_NO_PREFETCH;
2090 
2091 		if (rwa->raw)
2092 			flags |= DMU_READ_NO_DECRYPT;
2093 
2094 		VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
2095 		VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
2096 
2097 		dmu_buf_will_dirty(db, tx);
2098 
2099 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2100 		memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
2101 
2102 		/*
2103 		 * Raw bonus buffers have their byteorder determined by the
2104 		 * DRR_OBJECT_RANGE record.
2105 		 */
2106 		if (rwa->byteswap && !rwa->raw) {
2107 			dmu_object_byteswap_t byteswap =
2108 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2109 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2110 			    DRR_OBJECT_PAYLOAD_SIZE(drro));
2111 		}
2112 		dmu_buf_rele(db, FTAG);
2113 		dnode_rele(dn, FTAG);
2114 	}
2115 
2116 	/*
2117 	 * If the receive fails, we want the resume stream to start with the
2118 	 * same record that we last successfully received. There is no way to
2119 	 * request resume from the object record, but we can benefit from the
2120 	 * fact that sender always sends object record before anything else,
2121 	 * after which it will "resend" data at offset 0 and resume normally.
2122 	 */
2123 	save_resume_state(rwa, drro->drr_object, 0, tx);
2124 
2125 	dmu_tx_commit(tx);
2126 
2127 	return (0);
2128 }
2129 
2130 noinline static int
2131 receive_freeobjects(struct receive_writer_arg *rwa,
2132     struct drr_freeobjects *drrfo)
2133 {
2134 	uint64_t obj;
2135 	int next_err = 0;
2136 
2137 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2138 		return (SET_ERROR(EINVAL));
2139 
2140 	for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
2141 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
2142 	    obj < DN_MAX_OBJECT && next_err == 0;
2143 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2144 		dmu_object_info_t doi;
2145 		int err;
2146 
2147 		err = dmu_object_info(rwa->os, obj, &doi);
2148 		if (err == ENOENT)
2149 			continue;
2150 		else if (err != 0)
2151 			return (err);
2152 
2153 		err = dmu_free_long_object(rwa->os, obj);
2154 
2155 		if (err != 0)
2156 			return (err);
2157 
2158 		if (rwa->or_need_sync == ORNS_MAYBE)
2159 			rwa->or_need_sync = ORNS_YES;
2160 	}
2161 	if (next_err != ESRCH)
2162 		return (next_err);
2163 	return (0);
2164 }
2165 
2166 /*
2167  * Note: if this fails, the caller will clean up any records left on the
2168  * rwa->write_batch list.
2169  */
2170 static int
2171 flush_write_batch_impl(struct receive_writer_arg *rwa)
2172 {
2173 	dnode_t *dn;
2174 	int err;
2175 
2176 	if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
2177 		return (SET_ERROR(EINVAL));
2178 
2179 	struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
2180 	struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
2181 
2182 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2183 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2184 
2185 	ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
2186 	ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
2187 
2188 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2189 	dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
2190 	    last_drrw->drr_offset - first_drrw->drr_offset +
2191 	    last_drrw->drr_logical_size);
2192 	err = dmu_tx_assign(tx, TXG_WAIT);
2193 	if (err != 0) {
2194 		dmu_tx_abort(tx);
2195 		dnode_rele(dn, FTAG);
2196 		return (err);
2197 	}
2198 
2199 	struct receive_record_arg *rrd;
2200 	while ((rrd = list_head(&rwa->write_batch)) != NULL) {
2201 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2202 		abd_t *abd = rrd->abd;
2203 
2204 		ASSERT3U(drrw->drr_object, ==, rwa->last_object);
2205 
2206 		if (drrw->drr_logical_size != dn->dn_datablksz) {
2207 			/*
2208 			 * The WRITE record is larger than the object's block
2209 			 * size.  We must be receiving an incremental
2210 			 * large-block stream into a dataset that previously did
2211 			 * a non-large-block receive.  Lightweight writes must
2212 			 * be exactly one block, so we need to decompress the
2213 			 * data (if compressed) and do a normal dmu_write().
2214 			 */
2215 			ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
2216 			if (DRR_WRITE_COMPRESSED(drrw)) {
2217 				abd_t *decomp_abd =
2218 				    abd_alloc_linear(drrw->drr_logical_size,
2219 				    B_FALSE);
2220 
2221 				err = zio_decompress_data(
2222 				    drrw->drr_compressiontype,
2223 				    abd, decomp_abd,
2224 				    abd_get_size(abd),
2225 				    abd_get_size(decomp_abd), NULL);
2226 
2227 				if (err == 0) {
2228 					dmu_write_by_dnode(dn,
2229 					    drrw->drr_offset,
2230 					    drrw->drr_logical_size,
2231 					    abd_to_buf(decomp_abd), tx);
2232 				}
2233 				abd_free(decomp_abd);
2234 			} else {
2235 				dmu_write_by_dnode(dn,
2236 				    drrw->drr_offset,
2237 				    drrw->drr_logical_size,
2238 				    abd_to_buf(abd), tx);
2239 			}
2240 			if (err == 0)
2241 				abd_free(abd);
2242 		} else {
2243 			zio_prop_t zp = {0};
2244 			dmu_write_policy(rwa->os, dn, 0, 0, &zp);
2245 
2246 			zio_flag_t zio_flags = 0;
2247 
2248 			if (rwa->raw) {
2249 				zp.zp_encrypt = B_TRUE;
2250 				zp.zp_compress = drrw->drr_compressiontype;
2251 				zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
2252 				    !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2253 				    rwa->byteswap;
2254 				memcpy(zp.zp_salt, drrw->drr_salt,
2255 				    ZIO_DATA_SALT_LEN);
2256 				memcpy(zp.zp_iv, drrw->drr_iv,
2257 				    ZIO_DATA_IV_LEN);
2258 				memcpy(zp.zp_mac, drrw->drr_mac,
2259 				    ZIO_DATA_MAC_LEN);
2260 				if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
2261 					zp.zp_nopwrite = B_FALSE;
2262 					zp.zp_copies = MIN(zp.zp_copies,
2263 					    SPA_DVAS_PER_BP - 1);
2264 				}
2265 				zio_flags |= ZIO_FLAG_RAW;
2266 			} else if (DRR_WRITE_COMPRESSED(drrw)) {
2267 				ASSERT3U(drrw->drr_compressed_size, >, 0);
2268 				ASSERT3U(drrw->drr_logical_size, >=,
2269 				    drrw->drr_compressed_size);
2270 				zp.zp_compress = drrw->drr_compressiontype;
2271 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2272 			} else if (rwa->byteswap) {
2273 				/*
2274 				 * Note: compressed blocks never need to be
2275 				 * byteswapped, because WRITE records for
2276 				 * metadata blocks are never compressed. The
2277 				 * exception is raw streams, which are written
2278 				 * in the original byteorder, and the byteorder
2279 				 * bit is preserved in the BP by setting
2280 				 * zp_byteorder above.
2281 				 */
2282 				dmu_object_byteswap_t byteswap =
2283 				    DMU_OT_BYTESWAP(drrw->drr_type);
2284 				dmu_ot_byteswap[byteswap].ob_func(
2285 				    abd_to_buf(abd),
2286 				    DRR_WRITE_PAYLOAD_SIZE(drrw));
2287 			}
2288 
2289 			/*
2290 			 * Since this data can't be read until the receive
2291 			 * completes, we can do a "lightweight" write for
2292 			 * improved performance.
2293 			 */
2294 			err = dmu_lightweight_write_by_dnode(dn,
2295 			    drrw->drr_offset, abd, &zp, zio_flags, tx);
2296 		}
2297 
2298 		if (err != 0) {
2299 			/*
2300 			 * This rrd is left on the list, so the caller will
2301 			 * free it (and the abd).
2302 			 */
2303 			break;
2304 		}
2305 
2306 		/*
2307 		 * Note: If the receive fails, we want the resume stream to
2308 		 * start with the same record that we last successfully
2309 		 * received (as opposed to the next record), so that we can
2310 		 * verify that we are resuming from the correct location.
2311 		 */
2312 		save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2313 
2314 		list_remove(&rwa->write_batch, rrd);
2315 		kmem_free(rrd, sizeof (*rrd));
2316 	}
2317 
2318 	dmu_tx_commit(tx);
2319 	dnode_rele(dn, FTAG);
2320 	return (err);
2321 }
2322 
2323 noinline static int
2324 flush_write_batch(struct receive_writer_arg *rwa)
2325 {
2326 	if (list_is_empty(&rwa->write_batch))
2327 		return (0);
2328 	int err = rwa->err;
2329 	if (err == 0)
2330 		err = flush_write_batch_impl(rwa);
2331 	if (err != 0) {
2332 		struct receive_record_arg *rrd;
2333 		while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
2334 			abd_free(rrd->abd);
2335 			kmem_free(rrd, sizeof (*rrd));
2336 		}
2337 	}
2338 	ASSERT(list_is_empty(&rwa->write_batch));
2339 	return (err);
2340 }
2341 
2342 noinline static int
2343 receive_process_write_record(struct receive_writer_arg *rwa,
2344     struct receive_record_arg *rrd)
2345 {
2346 	int err = 0;
2347 
2348 	ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2349 	struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2350 
2351 	if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2352 	    !DMU_OT_IS_VALID(drrw->drr_type))
2353 		return (SET_ERROR(EINVAL));
2354 
2355 	if (rwa->heal) {
2356 		blkptr_t *bp;
2357 		dmu_buf_t *dbp;
2358 		int flags = DB_RF_CANFAIL;
2359 
2360 		if (rwa->raw)
2361 			flags |= DB_RF_NO_DECRYPT;
2362 
2363 		if (rwa->byteswap) {
2364 			dmu_object_byteswap_t byteswap =
2365 			    DMU_OT_BYTESWAP(drrw->drr_type);
2366 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
2367 			    DRR_WRITE_PAYLOAD_SIZE(drrw));
2368 		}
2369 
2370 		err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
2371 		    drrw->drr_offset, FTAG, &dbp);
2372 		if (err != 0)
2373 			return (err);
2374 
2375 		/* Try to read the object to see if it needs healing */
2376 		err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
2377 		/*
2378 		 * We only try to heal when dbuf_read() returns a ECKSUMs.
2379 		 * Other errors (even EIO) get returned to caller.
2380 		 * EIO indicates that the device is not present/accessible,
2381 		 * so writing to it will likely fail.
2382 		 * If the block is healthy, we don't want to overwrite it
2383 		 * unnecessarily.
2384 		 */
2385 		if (err != ECKSUM) {
2386 			dmu_buf_rele(dbp, FTAG);
2387 			return (err);
2388 		}
2389 		/* Make sure the on-disk block and recv record sizes match */
2390 		if (drrw->drr_logical_size != dbp->db_size) {
2391 			err = ENOTSUP;
2392 			dmu_buf_rele(dbp, FTAG);
2393 			return (err);
2394 		}
2395 		/* Get the block pointer for the corrupted block */
2396 		bp = dmu_buf_get_blkptr(dbp);
2397 		err = do_corrective_recv(rwa, drrw, rrd, bp);
2398 		dmu_buf_rele(dbp, FTAG);
2399 		return (err);
2400 	}
2401 
2402 	/*
2403 	 * For resuming to work, records must be in increasing order
2404 	 * by (object, offset).
2405 	 */
2406 	if (drrw->drr_object < rwa->last_object ||
2407 	    (drrw->drr_object == rwa->last_object &&
2408 	    drrw->drr_offset < rwa->last_offset)) {
2409 		return (SET_ERROR(EINVAL));
2410 	}
2411 
2412 	struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2413 	struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2414 	uint64_t batch_size =
2415 	    MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2416 	if (first_rrd != NULL &&
2417 	    (drrw->drr_object != first_drrw->drr_object ||
2418 	    drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2419 		err = flush_write_batch(rwa);
2420 		if (err != 0)
2421 			return (err);
2422 	}
2423 
2424 	rwa->last_object = drrw->drr_object;
2425 	rwa->last_offset = drrw->drr_offset;
2426 
2427 	if (rwa->last_object > rwa->max_object)
2428 		rwa->max_object = rwa->last_object;
2429 
2430 	list_insert_tail(&rwa->write_batch, rrd);
2431 	/*
2432 	 * Return EAGAIN to indicate that we will use this rrd again,
2433 	 * so the caller should not free it
2434 	 */
2435 	return (EAGAIN);
2436 }
2437 
2438 static int
2439 receive_write_embedded(struct receive_writer_arg *rwa,
2440     struct drr_write_embedded *drrwe, void *data)
2441 {
2442 	dmu_tx_t *tx;
2443 	int err;
2444 
2445 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2446 		return (SET_ERROR(EINVAL));
2447 
2448 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2449 		return (SET_ERROR(EINVAL));
2450 
2451 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2452 		return (SET_ERROR(EINVAL));
2453 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2454 		return (SET_ERROR(EINVAL));
2455 	if (rwa->raw)
2456 		return (SET_ERROR(EINVAL));
2457 
2458 	if (drrwe->drr_object > rwa->max_object)
2459 		rwa->max_object = drrwe->drr_object;
2460 
2461 	tx = dmu_tx_create(rwa->os);
2462 
2463 	dmu_tx_hold_write(tx, drrwe->drr_object,
2464 	    drrwe->drr_offset, drrwe->drr_length);
2465 	err = dmu_tx_assign(tx, TXG_WAIT);
2466 	if (err != 0) {
2467 		dmu_tx_abort(tx);
2468 		return (err);
2469 	}
2470 
2471 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2472 	    drrwe->drr_offset, data, drrwe->drr_etype,
2473 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2474 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2475 
2476 	/* See comment in restore_write. */
2477 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2478 	dmu_tx_commit(tx);
2479 	return (0);
2480 }
2481 
2482 static int
2483 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2484     abd_t *abd)
2485 {
2486 	dmu_buf_t *db, *db_spill;
2487 	int err;
2488 
2489 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2490 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2491 		return (SET_ERROR(EINVAL));
2492 
2493 	/*
2494 	 * This is an unmodified spill block which was added to the stream
2495 	 * to resolve an issue with incorrectly removing spill blocks.  It
2496 	 * should be ignored by current versions of the code which support
2497 	 * the DRR_FLAG_SPILL_BLOCK flag.
2498 	 */
2499 	if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2500 		abd_free(abd);
2501 		return (0);
2502 	}
2503 
2504 	if (rwa->raw) {
2505 		if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2506 		    drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2507 		    drrs->drr_compressed_size == 0)
2508 			return (SET_ERROR(EINVAL));
2509 	}
2510 
2511 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2512 		return (SET_ERROR(EINVAL));
2513 
2514 	if (drrs->drr_object > rwa->max_object)
2515 		rwa->max_object = drrs->drr_object;
2516 
2517 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2518 	if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2519 	    &db_spill)) != 0) {
2520 		dmu_buf_rele(db, FTAG);
2521 		return (err);
2522 	}
2523 
2524 	dmu_tx_t *tx = dmu_tx_create(rwa->os);
2525 
2526 	dmu_tx_hold_spill(tx, db->db_object);
2527 
2528 	err = dmu_tx_assign(tx, TXG_WAIT);
2529 	if (err != 0) {
2530 		dmu_buf_rele(db, FTAG);
2531 		dmu_buf_rele(db_spill, FTAG);
2532 		dmu_tx_abort(tx);
2533 		return (err);
2534 	}
2535 
2536 	/*
2537 	 * Spill blocks may both grow and shrink.  When a change in size
2538 	 * occurs any existing dbuf must be updated to match the logical
2539 	 * size of the provided arc_buf_t.
2540 	 */
2541 	if (db_spill->db_size != drrs->drr_length) {
2542 		dmu_buf_will_fill(db_spill, tx, B_FALSE);
2543 		VERIFY0(dbuf_spill_set_blksz(db_spill,
2544 		    drrs->drr_length, tx));
2545 	}
2546 
2547 	arc_buf_t *abuf;
2548 	if (rwa->raw) {
2549 		boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2550 		    !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2551 		    rwa->byteswap;
2552 
2553 		abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
2554 		    drrs->drr_object, byteorder, drrs->drr_salt,
2555 		    drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2556 		    drrs->drr_compressed_size, drrs->drr_length,
2557 		    drrs->drr_compressiontype, 0);
2558 	} else {
2559 		abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
2560 		    DMU_OT_IS_METADATA(drrs->drr_type),
2561 		    drrs->drr_length);
2562 		if (rwa->byteswap) {
2563 			dmu_object_byteswap_t byteswap =
2564 			    DMU_OT_BYTESWAP(drrs->drr_type);
2565 			dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
2566 			    DRR_SPILL_PAYLOAD_SIZE(drrs));
2567 		}
2568 	}
2569 
2570 	memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
2571 	abd_free(abd);
2572 	dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2573 
2574 	dmu_buf_rele(db, FTAG);
2575 	dmu_buf_rele(db_spill, FTAG);
2576 
2577 	dmu_tx_commit(tx);
2578 	return (0);
2579 }
2580 
2581 noinline static int
2582 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2583 {
2584 	int err;
2585 
2586 	if (drrf->drr_length != -1ULL &&
2587 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2588 		return (SET_ERROR(EINVAL));
2589 
2590 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2591 		return (SET_ERROR(EINVAL));
2592 
2593 	if (drrf->drr_object > rwa->max_object)
2594 		rwa->max_object = drrf->drr_object;
2595 
2596 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2597 	    drrf->drr_offset, drrf->drr_length);
2598 
2599 	return (err);
2600 }
2601 
2602 static int
2603 receive_object_range(struct receive_writer_arg *rwa,
2604     struct drr_object_range *drror)
2605 {
2606 	/*
2607 	 * By default, we assume this block is in our native format
2608 	 * (ZFS_HOST_BYTEORDER). We then take into account whether
2609 	 * the send stream is byteswapped (rwa->byteswap). Finally,
2610 	 * we need to byteswap again if this particular block was
2611 	 * in non-native format on the send side.
2612 	 */
2613 	boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2614 	    !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2615 
2616 	/*
2617 	 * Since dnode block sizes are constant, we should not need to worry
2618 	 * about making sure that the dnode block size is the same on the
2619 	 * sending and receiving sides for the time being. For non-raw sends,
2620 	 * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2621 	 * record at all). Raw sends require this record type because the
2622 	 * encryption parameters are used to protect an entire block of bonus
2623 	 * buffers. If the size of dnode blocks ever becomes variable,
2624 	 * handling will need to be added to ensure that dnode block sizes
2625 	 * match on the sending and receiving side.
2626 	 */
2627 	if (drror->drr_numslots != DNODES_PER_BLOCK ||
2628 	    P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2629 	    !rwa->raw)
2630 		return (SET_ERROR(EINVAL));
2631 
2632 	if (drror->drr_firstobj > rwa->max_object)
2633 		rwa->max_object = drror->drr_firstobj;
2634 
2635 	/*
2636 	 * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2637 	 * so that the block of dnodes is not written out when it's empty,
2638 	 * and converted to a HOLE BP.
2639 	 */
2640 	rwa->or_crypt_params_present = B_TRUE;
2641 	rwa->or_firstobj = drror->drr_firstobj;
2642 	rwa->or_numslots = drror->drr_numslots;
2643 	memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
2644 	memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
2645 	memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
2646 	rwa->or_byteorder = byteorder;
2647 
2648 	rwa->or_need_sync = ORNS_MAYBE;
2649 
2650 	return (0);
2651 }
2652 
2653 /*
2654  * Until we have the ability to redact large ranges of data efficiently, we
2655  * process these records as frees.
2656  */
2657 noinline static int
2658 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2659 {
2660 	struct drr_free drrf = {0};
2661 	drrf.drr_length = drrr->drr_length;
2662 	drrf.drr_object = drrr->drr_object;
2663 	drrf.drr_offset = drrr->drr_offset;
2664 	drrf.drr_toguid = drrr->drr_toguid;
2665 	return (receive_free(rwa, &drrf));
2666 }
2667 
2668 /* used to destroy the drc_ds on error */
2669 static void
2670 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2671 {
2672 	dsl_dataset_t *ds = drc->drc_ds;
2673 	ds_hold_flags_t dsflags;
2674 
2675 	dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
2676 	/*
2677 	 * Wait for the txg sync before cleaning up the receive. For
2678 	 * resumable receives, this ensures that our resume state has
2679 	 * been written out to disk. For raw receives, this ensures
2680 	 * that the user accounting code will not attempt to do anything
2681 	 * after we stopped receiving the dataset.
2682 	 */
2683 	txg_wait_synced(ds->ds_dir->dd_pool, 0);
2684 	ds->ds_objset->os_raw_receive = B_FALSE;
2685 
2686 	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2687 	if (drc->drc_resumable && drc->drc_should_save &&
2688 	    !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2689 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2690 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2691 	} else {
2692 		char name[ZFS_MAX_DATASET_NAME_LEN];
2693 		rrw_exit(&ds->ds_bp_rwlock, FTAG);
2694 		dsl_dataset_name(ds, name);
2695 		dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2696 		if (!drc->drc_heal)
2697 			(void) dsl_destroy_head(name);
2698 	}
2699 }
2700 
2701 static void
2702 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2703 {
2704 	if (drc->drc_byteswap) {
2705 		(void) fletcher_4_incremental_byteswap(buf, len,
2706 		    &drc->drc_cksum);
2707 	} else {
2708 		(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2709 	}
2710 }
2711 
2712 /*
2713  * Read the payload into a buffer of size len, and update the current record's
2714  * payload field.
2715  * Allocate drc->drc_next_rrd and read the next record's header into
2716  * drc->drc_next_rrd->header.
2717  * Verify checksum of payload and next record.
2718  */
2719 static int
2720 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2721 {
2722 	int err;
2723 
2724 	if (len != 0) {
2725 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2726 		err = receive_read(drc, len, buf);
2727 		if (err != 0)
2728 			return (err);
2729 		receive_cksum(drc, len, buf);
2730 
2731 		/* note: rrd is NULL when reading the begin record's payload */
2732 		if (drc->drc_rrd != NULL) {
2733 			drc->drc_rrd->payload = buf;
2734 			drc->drc_rrd->payload_size = len;
2735 			drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2736 		}
2737 	} else {
2738 		ASSERT3P(buf, ==, NULL);
2739 	}
2740 
2741 	drc->drc_prev_cksum = drc->drc_cksum;
2742 
2743 	drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2744 	err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2745 	    &drc->drc_next_rrd->header);
2746 	drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2747 
2748 	if (err != 0) {
2749 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2750 		drc->drc_next_rrd = NULL;
2751 		return (err);
2752 	}
2753 	if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2754 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2755 		drc->drc_next_rrd = NULL;
2756 		return (SET_ERROR(EINVAL));
2757 	}
2758 
2759 	/*
2760 	 * Note: checksum is of everything up to but not including the
2761 	 * checksum itself.
2762 	 */
2763 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2764 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2765 	receive_cksum(drc,
2766 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2767 	    &drc->drc_next_rrd->header);
2768 
2769 	zio_cksum_t cksum_orig =
2770 	    drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2771 	zio_cksum_t *cksump =
2772 	    &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2773 
2774 	if (drc->drc_byteswap)
2775 		byteswap_record(&drc->drc_next_rrd->header);
2776 
2777 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2778 	    !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2779 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2780 		drc->drc_next_rrd = NULL;
2781 		return (SET_ERROR(ECKSUM));
2782 	}
2783 
2784 	receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2785 
2786 	return (0);
2787 }
2788 
2789 /*
2790  * Issue the prefetch reads for any necessary indirect blocks.
2791  *
2792  * We use the object ignore list to tell us whether or not to issue prefetches
2793  * for a given object.  We do this for both correctness (in case the blocksize
2794  * of an object has changed) and performance (if the object doesn't exist, don't
2795  * needlessly try to issue prefetches).  We also trim the list as we go through
2796  * the stream to prevent it from growing to an unbounded size.
2797  *
2798  * The object numbers within will always be in sorted order, and any write
2799  * records we see will also be in sorted order, but they're not sorted with
2800  * respect to each other (i.e. we can get several object records before
2801  * receiving each object's write records).  As a result, once we've reached a
2802  * given object number, we can safely remove any reference to lower object
2803  * numbers in the ignore list. In practice, we receive up to 32 object records
2804  * before receiving write records, so the list can have up to 32 nodes in it.
2805  */
2806 static void
2807 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2808     uint64_t length)
2809 {
2810 	if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2811 		dmu_prefetch(drc->drc_os, object, 1, offset, length,
2812 		    ZIO_PRIORITY_SYNC_READ);
2813 	}
2814 }
2815 
2816 /*
2817  * Read records off the stream, issuing any necessary prefetches.
2818  */
2819 static int
2820 receive_read_record(dmu_recv_cookie_t *drc)
2821 {
2822 	int err;
2823 
2824 	switch (drc->drc_rrd->header.drr_type) {
2825 	case DRR_OBJECT:
2826 	{
2827 		struct drr_object *drro =
2828 		    &drc->drc_rrd->header.drr_u.drr_object;
2829 		uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2830 		void *buf = NULL;
2831 		dmu_object_info_t doi;
2832 
2833 		if (size != 0)
2834 			buf = kmem_zalloc(size, KM_SLEEP);
2835 
2836 		err = receive_read_payload_and_next_header(drc, size, buf);
2837 		if (err != 0) {
2838 			kmem_free(buf, size);
2839 			return (err);
2840 		}
2841 		err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2842 		/*
2843 		 * See receive_read_prefetch for an explanation why we're
2844 		 * storing this object in the ignore_obj_list.
2845 		 */
2846 		if (err == ENOENT || err == EEXIST ||
2847 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2848 			objlist_insert(drc->drc_ignore_objlist,
2849 			    drro->drr_object);
2850 			err = 0;
2851 		}
2852 		return (err);
2853 	}
2854 	case DRR_FREEOBJECTS:
2855 	{
2856 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2857 		return (err);
2858 	}
2859 	case DRR_WRITE:
2860 	{
2861 		struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2862 		int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
2863 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2864 		err = receive_read_payload_and_next_header(drc, size,
2865 		    abd_to_buf(abd));
2866 		if (err != 0) {
2867 			abd_free(abd);
2868 			return (err);
2869 		}
2870 		drc->drc_rrd->abd = abd;
2871 		receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2872 		    drrw->drr_logical_size);
2873 		return (err);
2874 	}
2875 	case DRR_WRITE_EMBEDDED:
2876 	{
2877 		struct drr_write_embedded *drrwe =
2878 		    &drc->drc_rrd->header.drr_u.drr_write_embedded;
2879 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2880 		void *buf = kmem_zalloc(size, KM_SLEEP);
2881 
2882 		err = receive_read_payload_and_next_header(drc, size, buf);
2883 		if (err != 0) {
2884 			kmem_free(buf, size);
2885 			return (err);
2886 		}
2887 
2888 		receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2889 		    drrwe->drr_length);
2890 		return (err);
2891 	}
2892 	case DRR_FREE:
2893 	case DRR_REDACT:
2894 	{
2895 		/*
2896 		 * It might be beneficial to prefetch indirect blocks here, but
2897 		 * we don't really have the data to decide for sure.
2898 		 */
2899 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2900 		return (err);
2901 	}
2902 	case DRR_END:
2903 	{
2904 		struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2905 		if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2906 		    drre->drr_checksum))
2907 			return (SET_ERROR(ECKSUM));
2908 		return (0);
2909 	}
2910 	case DRR_SPILL:
2911 	{
2912 		struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2913 		int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
2914 		abd_t *abd = abd_alloc_linear(size, B_FALSE);
2915 		err = receive_read_payload_and_next_header(drc, size,
2916 		    abd_to_buf(abd));
2917 		if (err != 0)
2918 			abd_free(abd);
2919 		else
2920 			drc->drc_rrd->abd = abd;
2921 		return (err);
2922 	}
2923 	case DRR_OBJECT_RANGE:
2924 	{
2925 		err = receive_read_payload_and_next_header(drc, 0, NULL);
2926 		return (err);
2927 
2928 	}
2929 	default:
2930 		return (SET_ERROR(EINVAL));
2931 	}
2932 }
2933 
2934 
2935 
2936 static void
2937 dprintf_drr(struct receive_record_arg *rrd, int err)
2938 {
2939 #ifdef ZFS_DEBUG
2940 	switch (rrd->header.drr_type) {
2941 	case DRR_OBJECT:
2942 	{
2943 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2944 		dprintf("drr_type = OBJECT obj = %llu type = %u "
2945 		    "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2946 		    "compress = %u dn_slots = %u err = %d\n",
2947 		    (u_longlong_t)drro->drr_object, drro->drr_type,
2948 		    drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
2949 		    drro->drr_checksumtype, drro->drr_compress,
2950 		    drro->drr_dn_slots, err);
2951 		break;
2952 	}
2953 	case DRR_FREEOBJECTS:
2954 	{
2955 		struct drr_freeobjects *drrfo =
2956 		    &rrd->header.drr_u.drr_freeobjects;
2957 		dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2958 		    "numobjs = %llu err = %d\n",
2959 		    (u_longlong_t)drrfo->drr_firstobj,
2960 		    (u_longlong_t)drrfo->drr_numobjs, err);
2961 		break;
2962 	}
2963 	case DRR_WRITE:
2964 	{
2965 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2966 		dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2967 		    "lsize = %llu cksumtype = %u flags = %u "
2968 		    "compress = %u psize = %llu err = %d\n",
2969 		    (u_longlong_t)drrw->drr_object, drrw->drr_type,
2970 		    (u_longlong_t)drrw->drr_offset,
2971 		    (u_longlong_t)drrw->drr_logical_size,
2972 		    drrw->drr_checksumtype, drrw->drr_flags,
2973 		    drrw->drr_compressiontype,
2974 		    (u_longlong_t)drrw->drr_compressed_size, err);
2975 		break;
2976 	}
2977 	case DRR_WRITE_BYREF:
2978 	{
2979 		struct drr_write_byref *drrwbr =
2980 		    &rrd->header.drr_u.drr_write_byref;
2981 		dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2982 		    "length = %llu toguid = %llx refguid = %llx "
2983 		    "refobject = %llu refoffset = %llu cksumtype = %u "
2984 		    "flags = %u err = %d\n",
2985 		    (u_longlong_t)drrwbr->drr_object,
2986 		    (u_longlong_t)drrwbr->drr_offset,
2987 		    (u_longlong_t)drrwbr->drr_length,
2988 		    (u_longlong_t)drrwbr->drr_toguid,
2989 		    (u_longlong_t)drrwbr->drr_refguid,
2990 		    (u_longlong_t)drrwbr->drr_refobject,
2991 		    (u_longlong_t)drrwbr->drr_refoffset,
2992 		    drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
2993 		break;
2994 	}
2995 	case DRR_WRITE_EMBEDDED:
2996 	{
2997 		struct drr_write_embedded *drrwe =
2998 		    &rrd->header.drr_u.drr_write_embedded;
2999 		dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
3000 		    "length = %llu compress = %u etype = %u lsize = %u "
3001 		    "psize = %u err = %d\n",
3002 		    (u_longlong_t)drrwe->drr_object,
3003 		    (u_longlong_t)drrwe->drr_offset,
3004 		    (u_longlong_t)drrwe->drr_length,
3005 		    drrwe->drr_compression, drrwe->drr_etype,
3006 		    drrwe->drr_lsize, drrwe->drr_psize, err);
3007 		break;
3008 	}
3009 	case DRR_FREE:
3010 	{
3011 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3012 		dprintf("drr_type = FREE obj = %llu offset = %llu "
3013 		    "length = %lld err = %d\n",
3014 		    (u_longlong_t)drrf->drr_object,
3015 		    (u_longlong_t)drrf->drr_offset,
3016 		    (longlong_t)drrf->drr_length,
3017 		    err);
3018 		break;
3019 	}
3020 	case DRR_SPILL:
3021 	{
3022 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3023 		dprintf("drr_type = SPILL obj = %llu length = %llu "
3024 		    "err = %d\n", (u_longlong_t)drrs->drr_object,
3025 		    (u_longlong_t)drrs->drr_length, err);
3026 		break;
3027 	}
3028 	case DRR_OBJECT_RANGE:
3029 	{
3030 		struct drr_object_range *drror =
3031 		    &rrd->header.drr_u.drr_object_range;
3032 		dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
3033 		    "numslots = %llu flags = %u err = %d\n",
3034 		    (u_longlong_t)drror->drr_firstobj,
3035 		    (u_longlong_t)drror->drr_numslots,
3036 		    drror->drr_flags, err);
3037 		break;
3038 	}
3039 	default:
3040 		return;
3041 	}
3042 #endif
3043 }
3044 
3045 /*
3046  * Commit the records to the pool.
3047  */
3048 static int
3049 receive_process_record(struct receive_writer_arg *rwa,
3050     struct receive_record_arg *rrd)
3051 {
3052 	int err;
3053 
3054 	/* Processing in order, therefore bytes_read should be increasing. */
3055 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
3056 	rwa->bytes_read = rrd->bytes_read;
3057 
3058 	/* We can only heal write records; other ones get ignored */
3059 	if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3060 		if (rrd->abd != NULL) {
3061 			abd_free(rrd->abd);
3062 			rrd->abd = NULL;
3063 		} else if (rrd->payload != NULL) {
3064 			kmem_free(rrd->payload, rrd->payload_size);
3065 			rrd->payload = NULL;
3066 		}
3067 		return (0);
3068 	}
3069 
3070 	if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
3071 		err = flush_write_batch(rwa);
3072 		if (err != 0) {
3073 			if (rrd->abd != NULL) {
3074 				abd_free(rrd->abd);
3075 				rrd->abd = NULL;
3076 				rrd->payload = NULL;
3077 			} else if (rrd->payload != NULL) {
3078 				kmem_free(rrd->payload, rrd->payload_size);
3079 				rrd->payload = NULL;
3080 			}
3081 
3082 			return (err);
3083 		}
3084 	}
3085 
3086 	switch (rrd->header.drr_type) {
3087 	case DRR_OBJECT:
3088 	{
3089 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
3090 		err = receive_object(rwa, drro, rrd->payload);
3091 		kmem_free(rrd->payload, rrd->payload_size);
3092 		rrd->payload = NULL;
3093 		break;
3094 	}
3095 	case DRR_FREEOBJECTS:
3096 	{
3097 		struct drr_freeobjects *drrfo =
3098 		    &rrd->header.drr_u.drr_freeobjects;
3099 		err = receive_freeobjects(rwa, drrfo);
3100 		break;
3101 	}
3102 	case DRR_WRITE:
3103 	{
3104 		err = receive_process_write_record(rwa, rrd);
3105 		if (rwa->heal) {
3106 			/*
3107 			 * If healing - always free the abd after processing
3108 			 */
3109 			abd_free(rrd->abd);
3110 			rrd->abd = NULL;
3111 		} else if (err != EAGAIN) {
3112 			/*
3113 			 * On success, a non-healing
3114 			 * receive_process_write_record() returns
3115 			 * EAGAIN to indicate that we do not want to free
3116 			 * the rrd or arc_buf.
3117 			 */
3118 			ASSERT(err != 0);
3119 			abd_free(rrd->abd);
3120 			rrd->abd = NULL;
3121 		}
3122 		break;
3123 	}
3124 	case DRR_WRITE_EMBEDDED:
3125 	{
3126 		struct drr_write_embedded *drrwe =
3127 		    &rrd->header.drr_u.drr_write_embedded;
3128 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
3129 		kmem_free(rrd->payload, rrd->payload_size);
3130 		rrd->payload = NULL;
3131 		break;
3132 	}
3133 	case DRR_FREE:
3134 	{
3135 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
3136 		err = receive_free(rwa, drrf);
3137 		break;
3138 	}
3139 	case DRR_SPILL:
3140 	{
3141 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
3142 		err = receive_spill(rwa, drrs, rrd->abd);
3143 		if (err != 0)
3144 			abd_free(rrd->abd);
3145 		rrd->abd = NULL;
3146 		rrd->payload = NULL;
3147 		break;
3148 	}
3149 	case DRR_OBJECT_RANGE:
3150 	{
3151 		struct drr_object_range *drror =
3152 		    &rrd->header.drr_u.drr_object_range;
3153 		err = receive_object_range(rwa, drror);
3154 		break;
3155 	}
3156 	case DRR_REDACT:
3157 	{
3158 		struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
3159 		err = receive_redact(rwa, drrr);
3160 		break;
3161 	}
3162 	default:
3163 		err = (SET_ERROR(EINVAL));
3164 	}
3165 
3166 	if (err != 0)
3167 		dprintf_drr(rrd, err);
3168 
3169 	return (err);
3170 }
3171 
3172 /*
3173  * dmu_recv_stream's worker thread; pull records off the queue, and then call
3174  * receive_process_record  When we're done, signal the main thread and exit.
3175  */
3176 static __attribute__((noreturn)) void
3177 receive_writer_thread(void *arg)
3178 {
3179 	struct receive_writer_arg *rwa = arg;
3180 	struct receive_record_arg *rrd;
3181 	fstrans_cookie_t cookie = spl_fstrans_mark();
3182 
3183 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
3184 	    rrd = bqueue_dequeue(&rwa->q)) {
3185 		/*
3186 		 * If there's an error, the main thread will stop putting things
3187 		 * on the queue, but we need to clear everything in it before we
3188 		 * can exit.
3189 		 */
3190 		int err = 0;
3191 		if (rwa->err == 0) {
3192 			err = receive_process_record(rwa, rrd);
3193 		} else if (rrd->abd != NULL) {
3194 			abd_free(rrd->abd);
3195 			rrd->abd = NULL;
3196 			rrd->payload = NULL;
3197 		} else if (rrd->payload != NULL) {
3198 			kmem_free(rrd->payload, rrd->payload_size);
3199 			rrd->payload = NULL;
3200 		}
3201 		/*
3202 		 * EAGAIN indicates that this record has been saved (on
3203 		 * raw->write_batch), and will be used again, so we don't
3204 		 * free it.
3205 		 * When healing data we always need to free the record.
3206 		 */
3207 		if (err != EAGAIN || rwa->heal) {
3208 			if (rwa->err == 0)
3209 				rwa->err = err;
3210 			kmem_free(rrd, sizeof (*rrd));
3211 		}
3212 	}
3213 	kmem_free(rrd, sizeof (*rrd));
3214 
3215 	if (rwa->heal) {
3216 		zio_wait(rwa->heal_pio);
3217 	} else {
3218 		int err = flush_write_batch(rwa);
3219 		if (rwa->err == 0)
3220 			rwa->err = err;
3221 	}
3222 	mutex_enter(&rwa->mutex);
3223 	rwa->done = B_TRUE;
3224 	cv_signal(&rwa->cv);
3225 	mutex_exit(&rwa->mutex);
3226 	spl_fstrans_unmark(cookie);
3227 	thread_exit();
3228 }
3229 
3230 static int
3231 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
3232 {
3233 	uint64_t val;
3234 	objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
3235 	uint64_t dsobj = dmu_objset_id(drc->drc_os);
3236 	uint64_t resume_obj, resume_off;
3237 
3238 	if (nvlist_lookup_uint64(begin_nvl,
3239 	    "resume_object", &resume_obj) != 0 ||
3240 	    nvlist_lookup_uint64(begin_nvl,
3241 	    "resume_offset", &resume_off) != 0) {
3242 		return (SET_ERROR(EINVAL));
3243 	}
3244 	VERIFY0(zap_lookup(mos, dsobj,
3245 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
3246 	if (resume_obj != val)
3247 		return (SET_ERROR(EINVAL));
3248 	VERIFY0(zap_lookup(mos, dsobj,
3249 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
3250 	if (resume_off != val)
3251 		return (SET_ERROR(EINVAL));
3252 
3253 	return (0);
3254 }
3255 
3256 /*
3257  * Read in the stream's records, one by one, and apply them to the pool.  There
3258  * are two threads involved; the thread that calls this function will spin up a
3259  * worker thread, read the records off the stream one by one, and issue
3260  * prefetches for any necessary indirect blocks.  It will then push the records
3261  * onto an internal blocking queue.  The worker thread will pull the records off
3262  * the queue, and actually write the data into the DMU.  This way, the worker
3263  * thread doesn't have to wait for reads to complete, since everything it needs
3264  * (the indirect blocks) will be prefetched.
3265  *
3266  * NB: callers *must* call dmu_recv_end() if this succeeds.
3267  */
3268 int
3269 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
3270 {
3271 	int err = 0;
3272 	struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
3273 
3274 	if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
3275 		uint64_t bytes = 0;
3276 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
3277 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
3278 		    sizeof (bytes), 1, &bytes);
3279 		drc->drc_bytes_read += bytes;
3280 	}
3281 
3282 	drc->drc_ignore_objlist = objlist_create();
3283 
3284 	/* these were verified in dmu_recv_begin */
3285 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
3286 	    DMU_SUBSTREAM);
3287 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
3288 
3289 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
3290 	ASSERT0(drc->drc_os->os_encrypted &&
3291 	    (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
3292 
3293 	/* handle DSL encryption key payload */
3294 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
3295 		nvlist_t *keynvl = NULL;
3296 
3297 		ASSERT(drc->drc_os->os_encrypted);
3298 		ASSERT(drc->drc_raw);
3299 
3300 		err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
3301 		    &keynvl);
3302 		if (err != 0)
3303 			goto out;
3304 
3305 		if (!drc->drc_heal) {
3306 			/*
3307 			 * If this is a new dataset we set the key immediately.
3308 			 * Otherwise we don't want to change the key until we
3309 			 * are sure the rest of the receive succeeded so we
3310 			 * stash the keynvl away until then.
3311 			 */
3312 			err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
3313 			    drc->drc_ds->ds_object, drc->drc_fromsnapobj,
3314 			    drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
3315 			if (err != 0)
3316 				goto out;
3317 		}
3318 
3319 		/* see comment in dmu_recv_end_sync() */
3320 		drc->drc_ivset_guid = 0;
3321 		(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
3322 		    &drc->drc_ivset_guid);
3323 
3324 		if (!drc->drc_newfs)
3325 			drc->drc_keynvl = fnvlist_dup(keynvl);
3326 	}
3327 
3328 	if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
3329 		err = resume_check(drc, drc->drc_begin_nvl);
3330 		if (err != 0)
3331 			goto out;
3332 	}
3333 
3334 	/*
3335 	 * For compatibility with recursive send streams, we do this here,
3336 	 * rather than in dmu_recv_begin. If we pull the next header too
3337 	 * early, and it's the END record, we break the `recv_skip` logic.
3338 	 */
3339 	if (drc->drc_drr_begin->drr_payloadlen == 0) {
3340 		err = receive_read_payload_and_next_header(drc, 0, NULL);
3341 		if (err != 0)
3342 			goto out;
3343 	}
3344 
3345 	/*
3346 	 * If we failed before this point we will clean up any new resume
3347 	 * state that was created. Now that we've gotten past the initial
3348 	 * checks we are ok to retain that resume state.
3349 	 */
3350 	drc->drc_should_save = B_TRUE;
3351 
3352 	(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
3353 	    MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
3354 	    offsetof(struct receive_record_arg, node));
3355 	cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
3356 	mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
3357 	rwa->os = drc->drc_os;
3358 	rwa->byteswap = drc->drc_byteswap;
3359 	rwa->heal = drc->drc_heal;
3360 	rwa->tofs = drc->drc_tofs;
3361 	rwa->resumable = drc->drc_resumable;
3362 	rwa->raw = drc->drc_raw;
3363 	rwa->spill = drc->drc_spill;
3364 	rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
3365 	rwa->os->os_raw_receive = drc->drc_raw;
3366 	if (drc->drc_heal) {
3367 		rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
3368 		    ZIO_FLAG_GODFATHER);
3369 	}
3370 	list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
3371 	    offsetof(struct receive_record_arg, node.bqn_node));
3372 
3373 	(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
3374 	    TS_RUN, minclsyspri);
3375 	/*
3376 	 * We're reading rwa->err without locks, which is safe since we are the
3377 	 * only reader, and the worker thread is the only writer.  It's ok if we
3378 	 * miss a write for an iteration or two of the loop, since the writer
3379 	 * thread will keep freeing records we send it until we send it an eos
3380 	 * marker.
3381 	 *
3382 	 * We can leave this loop in 3 ways:  First, if rwa->err is
3383 	 * non-zero.  In that case, the writer thread will free the rrd we just
3384 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
3385 	 * first loop and drc->drc_rrd was never allocated, or it's later, and
3386 	 * drc->drc_rrd has been handed off to the writer thread who will free
3387 	 * it.  Finally, if receive_read_record fails or we're at the end of the
3388 	 * stream, then we free drc->drc_rrd and exit.
3389 	 */
3390 	while (rwa->err == 0) {
3391 		if (issig()) {
3392 			err = SET_ERROR(EINTR);
3393 			break;
3394 		}
3395 
3396 		ASSERT3P(drc->drc_rrd, ==, NULL);
3397 		drc->drc_rrd = drc->drc_next_rrd;
3398 		drc->drc_next_rrd = NULL;
3399 		/* Allocates and loads header into drc->drc_next_rrd */
3400 		err = receive_read_record(drc);
3401 
3402 		if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
3403 			kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
3404 			drc->drc_rrd = NULL;
3405 			break;
3406 		}
3407 
3408 		bqueue_enqueue(&rwa->q, drc->drc_rrd,
3409 		    sizeof (struct receive_record_arg) +
3410 		    drc->drc_rrd->payload_size);
3411 		drc->drc_rrd = NULL;
3412 	}
3413 
3414 	ASSERT3P(drc->drc_rrd, ==, NULL);
3415 	drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3416 	drc->drc_rrd->eos_marker = B_TRUE;
3417 	bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3418 
3419 	mutex_enter(&rwa->mutex);
3420 	while (!rwa->done) {
3421 		/*
3422 		 * We need to use cv_wait_sig() so that any process that may
3423 		 * be sleeping here can still fork.
3424 		 */
3425 		(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3426 	}
3427 	mutex_exit(&rwa->mutex);
3428 
3429 	/*
3430 	 * If we are receiving a full stream as a clone, all object IDs which
3431 	 * are greater than the maximum ID referenced in the stream are
3432 	 * by definition unused and must be freed.
3433 	 */
3434 	if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3435 		uint64_t obj = rwa->max_object + 1;
3436 		int free_err = 0;
3437 		int next_err = 0;
3438 
3439 		while (next_err == 0) {
3440 			free_err = dmu_free_long_object(rwa->os, obj);
3441 			if (free_err != 0 && free_err != ENOENT)
3442 				break;
3443 
3444 			next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3445 		}
3446 
3447 		if (err == 0) {
3448 			if (free_err != 0 && free_err != ENOENT)
3449 				err = free_err;
3450 			else if (next_err != ESRCH)
3451 				err = next_err;
3452 		}
3453 	}
3454 
3455 	cv_destroy(&rwa->cv);
3456 	mutex_destroy(&rwa->mutex);
3457 	bqueue_destroy(&rwa->q);
3458 	list_destroy(&rwa->write_batch);
3459 	if (err == 0)
3460 		err = rwa->err;
3461 
3462 out:
3463 	/*
3464 	 * If we hit an error before we started the receive_writer_thread
3465 	 * we need to clean up the next_rrd we create by processing the
3466 	 * DRR_BEGIN record.
3467 	 */
3468 	if (drc->drc_next_rrd != NULL)
3469 		kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3470 
3471 	/*
3472 	 * The objset will be invalidated by dmu_recv_end() when we do
3473 	 * dsl_dataset_clone_swap_sync_impl().
3474 	 */
3475 	drc->drc_os = NULL;
3476 
3477 	kmem_free(rwa, sizeof (*rwa));
3478 	nvlist_free(drc->drc_begin_nvl);
3479 
3480 	if (err != 0) {
3481 		/*
3482 		 * Clean up references. If receive is not resumable,
3483 		 * destroy what we created, so we don't leave it in
3484 		 * the inconsistent state.
3485 		 */
3486 		dmu_recv_cleanup_ds(drc);
3487 		nvlist_free(drc->drc_keynvl);
3488 	}
3489 
3490 	objlist_destroy(drc->drc_ignore_objlist);
3491 	drc->drc_ignore_objlist = NULL;
3492 	*voffp = drc->drc_voff;
3493 	return (err);
3494 }
3495 
3496 static int
3497 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3498 {
3499 	dmu_recv_cookie_t *drc = arg;
3500 	dsl_pool_t *dp = dmu_tx_pool(tx);
3501 	int error;
3502 
3503 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3504 
3505 	if (drc->drc_heal) {
3506 		error = 0;
3507 	} else if (!drc->drc_newfs) {
3508 		dsl_dataset_t *origin_head;
3509 
3510 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3511 		if (error != 0)
3512 			return (error);
3513 		if (drc->drc_force) {
3514 			/*
3515 			 * We will destroy any snapshots in tofs (i.e. before
3516 			 * origin_head) that are after the origin (which is
3517 			 * the snap before drc_ds, because drc_ds can not
3518 			 * have any snaps of its own).
3519 			 */
3520 			uint64_t obj;
3521 
3522 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3523 			while (obj !=
3524 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3525 				dsl_dataset_t *snap;
3526 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
3527 				    &snap);
3528 				if (error != 0)
3529 					break;
3530 				if (snap->ds_dir != origin_head->ds_dir)
3531 					error = SET_ERROR(EINVAL);
3532 				if (error == 0)  {
3533 					error = dsl_destroy_snapshot_check_impl(
3534 					    snap, B_FALSE);
3535 				}
3536 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3537 				dsl_dataset_rele(snap, FTAG);
3538 				if (error != 0)
3539 					break;
3540 			}
3541 			if (error != 0) {
3542 				dsl_dataset_rele(origin_head, FTAG);
3543 				return (error);
3544 			}
3545 		}
3546 		if (drc->drc_keynvl != NULL) {
3547 			error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3548 			    drc->drc_keynvl, tx);
3549 			if (error != 0) {
3550 				dsl_dataset_rele(origin_head, FTAG);
3551 				return (error);
3552 			}
3553 		}
3554 
3555 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3556 		    origin_head, drc->drc_force, drc->drc_owner, tx);
3557 		if (error != 0) {
3558 			dsl_dataset_rele(origin_head, FTAG);
3559 			return (error);
3560 		}
3561 		error = dsl_dataset_snapshot_check_impl(origin_head,
3562 		    drc->drc_tosnap, tx, B_TRUE, 1,
3563 		    drc->drc_cred, drc->drc_proc);
3564 		dsl_dataset_rele(origin_head, FTAG);
3565 		if (error != 0)
3566 			return (error);
3567 
3568 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3569 	} else {
3570 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3571 		    drc->drc_tosnap, tx, B_TRUE, 1,
3572 		    drc->drc_cred, drc->drc_proc);
3573 	}
3574 	return (error);
3575 }
3576 
3577 static void
3578 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3579 {
3580 	dmu_recv_cookie_t *drc = arg;
3581 	dsl_pool_t *dp = dmu_tx_pool(tx);
3582 	boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3583 	uint64_t newsnapobj = 0;
3584 
3585 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3586 	    tx, "snap=%s", drc->drc_tosnap);
3587 	drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3588 
3589 	if (drc->drc_heal) {
3590 		if (drc->drc_keynvl != NULL) {
3591 			nvlist_free(drc->drc_keynvl);
3592 			drc->drc_keynvl = NULL;
3593 		}
3594 	} else if (!drc->drc_newfs) {
3595 		dsl_dataset_t *origin_head;
3596 
3597 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3598 		    &origin_head));
3599 
3600 		if (drc->drc_force) {
3601 			/*
3602 			 * Destroy any snapshots of drc_tofs (origin_head)
3603 			 * after the origin (the snap before drc_ds).
3604 			 */
3605 			uint64_t obj;
3606 
3607 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3608 			while (obj !=
3609 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3610 				dsl_dataset_t *snap;
3611 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3612 				    &snap));
3613 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3614 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3615 				dsl_destroy_snapshot_sync_impl(snap,
3616 				    B_FALSE, tx);
3617 				dsl_dataset_rele(snap, FTAG);
3618 			}
3619 		}
3620 		if (drc->drc_keynvl != NULL) {
3621 			dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3622 			    drc->drc_keynvl, tx);
3623 			nvlist_free(drc->drc_keynvl);
3624 			drc->drc_keynvl = NULL;
3625 		}
3626 
3627 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3628 		    origin_head->ds_prev);
3629 
3630 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3631 		    origin_head, tx);
3632 		/*
3633 		 * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3634 		 * so drc_os is no longer valid.
3635 		 */
3636 		drc->drc_os = NULL;
3637 
3638 		dsl_dataset_snapshot_sync_impl(origin_head,
3639 		    drc->drc_tosnap, tx);
3640 
3641 		/* set snapshot's creation time and guid */
3642 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3643 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3644 		    drc->drc_drrb->drr_creation_time;
3645 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3646 		    drc->drc_drrb->drr_toguid;
3647 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3648 		    ~DS_FLAG_INCONSISTENT;
3649 
3650 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3651 		dsl_dataset_phys(origin_head)->ds_flags &=
3652 		    ~DS_FLAG_INCONSISTENT;
3653 
3654 		newsnapobj =
3655 		    dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3656 
3657 		dsl_dataset_rele(origin_head, FTAG);
3658 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3659 
3660 		if (drc->drc_owner != NULL)
3661 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3662 	} else {
3663 		dsl_dataset_t *ds = drc->drc_ds;
3664 
3665 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3666 
3667 		/* set snapshot's creation time and guid */
3668 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3669 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3670 		    drc->drc_drrb->drr_creation_time;
3671 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3672 		    drc->drc_drrb->drr_toguid;
3673 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3674 		    ~DS_FLAG_INCONSISTENT;
3675 
3676 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3677 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3678 		if (dsl_dataset_has_resume_receive_state(ds)) {
3679 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3680 			    DS_FIELD_RESUME_FROMGUID, tx);
3681 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3682 			    DS_FIELD_RESUME_OBJECT, tx);
3683 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3684 			    DS_FIELD_RESUME_OFFSET, tx);
3685 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3686 			    DS_FIELD_RESUME_BYTES, tx);
3687 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3688 			    DS_FIELD_RESUME_TOGUID, tx);
3689 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3690 			    DS_FIELD_RESUME_TONAME, tx);
3691 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3692 			    DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3693 		}
3694 		newsnapobj =
3695 		    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3696 	}
3697 
3698 	/*
3699 	 * If this is a raw receive, the crypt_keydata nvlist will include
3700 	 * a to_ivset_guid for us to set on the new snapshot. This value
3701 	 * will override the value generated by the snapshot code. However,
3702 	 * this value may not be present, because older implementations of
3703 	 * the raw send code did not include this value, and we are still
3704 	 * allowed to receive them if the zfs_disable_ivset_guid_check
3705 	 * tunable is set, in which case we will leave the newly-generated
3706 	 * value.
3707 	 */
3708 	if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
3709 		dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3710 		    DMU_OT_DSL_DATASET, tx);
3711 		VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3712 		    DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3713 		    &drc->drc_ivset_guid, tx));
3714 	}
3715 
3716 	/*
3717 	 * Release the hold from dmu_recv_begin.  This must be done before
3718 	 * we return to open context, so that when we free the dataset's dnode
3719 	 * we can evict its bonus buffer. Since the dataset may be destroyed
3720 	 * at this point (and therefore won't have a valid pointer to the spa)
3721 	 * we release the key mapping manually here while we do have a valid
3722 	 * pointer, if it exists.
3723 	 */
3724 	if (!drc->drc_raw && encrypted) {
3725 		(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3726 		    drc->drc_ds->ds_object, drc->drc_ds);
3727 	}
3728 	dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3729 	drc->drc_ds = NULL;
3730 }
3731 
3732 static int dmu_recv_end_modified_blocks = 3;
3733 
3734 static int
3735 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3736 {
3737 #ifdef _KERNEL
3738 	/*
3739 	 * We will be destroying the ds; make sure its origin is unmounted if
3740 	 * necessary.
3741 	 */
3742 	char name[ZFS_MAX_DATASET_NAME_LEN];
3743 	dsl_dataset_name(drc->drc_ds, name);
3744 	zfs_destroy_unmount_origin(name);
3745 #endif
3746 
3747 	return (dsl_sync_task(drc->drc_tofs,
3748 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3749 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3750 }
3751 
3752 static int
3753 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3754 {
3755 	return (dsl_sync_task(drc->drc_tofs,
3756 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3757 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3758 }
3759 
3760 int
3761 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3762 {
3763 	int error;
3764 
3765 	drc->drc_owner = owner;
3766 
3767 	if (drc->drc_newfs)
3768 		error = dmu_recv_new_end(drc);
3769 	else
3770 		error = dmu_recv_existing_end(drc);
3771 
3772 	if (error != 0) {
3773 		dmu_recv_cleanup_ds(drc);
3774 		nvlist_free(drc->drc_keynvl);
3775 	} else if (!drc->drc_heal) {
3776 		if (drc->drc_newfs) {
3777 			zvol_create_minor(drc->drc_tofs);
3778 		}
3779 		char *snapname = kmem_asprintf("%s@%s",
3780 		    drc->drc_tofs, drc->drc_tosnap);
3781 		zvol_create_minor(snapname);
3782 		kmem_strfree(snapname);
3783 	}
3784 	return (error);
3785 }
3786 
3787 /*
3788  * Return TRUE if this objset is currently being received into.
3789  */
3790 boolean_t
3791 dmu_objset_is_receiving(objset_t *os)
3792 {
3793 	return (os->os_dsl_dataset != NULL &&
3794 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3795 }
3796 
3797 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
3798 	"Maximum receive queue length");
3799 
3800 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
3801 	"Receive queue fill fraction");
3802 
3803 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
3804 	"Maximum amount of writes to batch into one transaction");
3805 
3806 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
3807 	"Ignore errors during corrective receive");
3808 /* END CSTYLED */
3809