xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_object.c (revision 221622ec0c8e184dd1ea7e1f77fb45d2d32cb6e2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
24  * Copyright 2014 HybridCluster. All rights reserved.
25  */
26 
27 #include <sys/dbuf.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_objset.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dnode.h>
33 #include <sys/zap.h>
34 #include <sys/zfeature.h>
35 #include <sys/dsl_dataset.h>
36 
37 /*
38  * Each of the concurrent object allocators will grab
39  * 2^dmu_object_alloc_chunk_shift dnode slots at a time.  The default is to
40  * grab 128 slots, which is 4 blocks worth.  This was experimentally
41  * determined to be the lowest value that eliminates the measurable effect
42  * of lock contention from this code path.
43  */
44 int dmu_object_alloc_chunk_shift = 7;
45 
46 static uint64_t
47 dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
48     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
49     int dnodesize, dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
50 {
51 	uint64_t object;
52 	uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
53 	    (DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
54 	dnode_t *dn = NULL;
55 	int dn_slots = dnodesize >> DNODE_SHIFT;
56 	boolean_t restarted = B_FALSE;
57 	uint64_t *cpuobj = NULL;
58 	int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
59 	int error;
60 
61 	cpuobj = &os->os_obj_next_percpu[CPU_SEQID_UNSTABLE %
62 	    os->os_obj_next_percpu_len];
63 
64 	if (dn_slots == 0) {
65 		dn_slots = DNODE_MIN_SLOTS;
66 	} else {
67 		ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
68 		ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
69 	}
70 
71 	/*
72 	 * The "chunk" of dnodes that is assigned to a CPU-specific
73 	 * allocator needs to be at least one block's worth, to avoid
74 	 * lock contention on the dbuf.  It can be at most one L1 block's
75 	 * worth, so that the "rescan after polishing off a L1's worth"
76 	 * logic below will be sure to kick in.
77 	 */
78 	if (dnodes_per_chunk < DNODES_PER_BLOCK)
79 		dnodes_per_chunk = DNODES_PER_BLOCK;
80 	if (dnodes_per_chunk > L1_dnode_count)
81 		dnodes_per_chunk = L1_dnode_count;
82 
83 	/*
84 	 * The caller requested the dnode be returned as a performance
85 	 * optimization in order to avoid releasing the hold only to
86 	 * immediately reacquire it.  Since they caller is responsible
87 	 * for releasing the hold they must provide the tag.
88 	 */
89 	if (allocated_dnode != NULL) {
90 		ASSERT3P(tag, !=, NULL);
91 	} else {
92 		ASSERT3P(tag, ==, NULL);
93 		tag = FTAG;
94 	}
95 
96 	object = *cpuobj;
97 	for (;;) {
98 		/*
99 		 * If we finished a chunk of dnodes, get a new one from
100 		 * the global allocator.
101 		 */
102 		if ((P2PHASE(object, dnodes_per_chunk) == 0) ||
103 		    (P2PHASE(object + dn_slots - 1, dnodes_per_chunk) <
104 		    dn_slots)) {
105 			DNODE_STAT_BUMP(dnode_alloc_next_chunk);
106 			mutex_enter(&os->os_obj_lock);
107 			ASSERT0(P2PHASE(os->os_obj_next_chunk,
108 			    dnodes_per_chunk));
109 			object = os->os_obj_next_chunk;
110 
111 			/*
112 			 * Each time we polish off a L1 bp worth of dnodes
113 			 * (2^12 objects), move to another L1 bp that's
114 			 * still reasonably sparse (at most 1/4 full). Look
115 			 * from the beginning at most once per txg. If we
116 			 * still can't allocate from that L1 block, search
117 			 * for an empty L0 block, which will quickly skip
118 			 * to the end of the metadnode if no nearby L0
119 			 * blocks are empty. This fallback avoids a
120 			 * pathology where full dnode blocks containing
121 			 * large dnodes appear sparse because they have a
122 			 * low blk_fill, leading to many failed allocation
123 			 * attempts. In the long term a better mechanism to
124 			 * search for sparse metadnode regions, such as
125 			 * spacemaps, could be implemented.
126 			 *
127 			 * os_scan_dnodes is set during txg sync if enough
128 			 * objects have been freed since the previous
129 			 * rescan to justify backfilling again.
130 			 *
131 			 * Note that dmu_traverse depends on the behavior
132 			 * that we use multiple blocks of the dnode object
133 			 * before going back to reuse objects.  Any change
134 			 * to this algorithm should preserve that property
135 			 * or find another solution to the issues described
136 			 * in traverse_visitbp.
137 			 */
138 			if (P2PHASE(object, L1_dnode_count) == 0) {
139 				uint64_t offset;
140 				uint64_t blkfill;
141 				int minlvl;
142 				if (os->os_rescan_dnodes) {
143 					offset = 0;
144 					os->os_rescan_dnodes = B_FALSE;
145 				} else {
146 					offset = object << DNODE_SHIFT;
147 				}
148 				blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
149 				minlvl = restarted ? 1 : 2;
150 				restarted = B_TRUE;
151 				error = dnode_next_offset(DMU_META_DNODE(os),
152 				    DNODE_FIND_HOLE, &offset, minlvl,
153 				    blkfill, 0);
154 				if (error == 0) {
155 					object = offset >> DNODE_SHIFT;
156 				}
157 			}
158 			/*
159 			 * Note: if "restarted", we may find a L0 that
160 			 * is not suitably aligned.
161 			 */
162 			os->os_obj_next_chunk =
163 			    P2ALIGN(object, dnodes_per_chunk) +
164 			    dnodes_per_chunk;
165 			(void) atomic_swap_64(cpuobj, object);
166 			mutex_exit(&os->os_obj_lock);
167 		}
168 
169 		/*
170 		 * The value of (*cpuobj) before adding dn_slots is the object
171 		 * ID assigned to us.  The value afterwards is the object ID
172 		 * assigned to whoever wants to do an allocation next.
173 		 */
174 		object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots;
175 
176 		/*
177 		 * XXX We should check for an i/o error here and return
178 		 * up to our caller.  Actually we should pre-read it in
179 		 * dmu_tx_assign(), but there is currently no mechanism
180 		 * to do so.
181 		 */
182 		error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
183 		    dn_slots, tag, &dn);
184 		if (error == 0) {
185 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
186 			/*
187 			 * Another thread could have allocated it; check
188 			 * again now that we have the struct lock.
189 			 */
190 			if (dn->dn_type == DMU_OT_NONE) {
191 				dnode_allocate(dn, ot, blocksize,
192 				    indirect_blockshift, bonustype,
193 				    bonuslen, dn_slots, tx);
194 				rw_exit(&dn->dn_struct_rwlock);
195 				dmu_tx_add_new_object(tx, dn);
196 
197 				/*
198 				 * Caller requested the allocated dnode be
199 				 * returned and is responsible for the hold.
200 				 */
201 				if (allocated_dnode != NULL)
202 					*allocated_dnode = dn;
203 				else
204 					dnode_rele(dn, tag);
205 
206 				return (object);
207 			}
208 			rw_exit(&dn->dn_struct_rwlock);
209 			dnode_rele(dn, tag);
210 			DNODE_STAT_BUMP(dnode_alloc_race);
211 		}
212 
213 		/*
214 		 * Skip to next known valid starting point on error.  This
215 		 * is the start of the next block of dnodes.
216 		 */
217 		if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
218 			object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
219 			DNODE_STAT_BUMP(dnode_alloc_next_block);
220 		}
221 		(void) atomic_swap_64(cpuobj, object);
222 	}
223 }
224 
225 uint64_t
226 dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
227     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
228 {
229 	return dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
230 	    bonuslen, 0, NULL, NULL, tx);
231 }
232 
233 uint64_t
234 dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
235     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
236     dmu_tx_t *tx)
237 {
238 	return dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
239 	    bonustype, bonuslen, 0, NULL, NULL, tx);
240 }
241 
242 uint64_t
243 dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
244     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
245 {
246 	return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
247 	    bonuslen, dnodesize, NULL, NULL, tx));
248 }
249 
250 /*
251  * Allocate a new object and return a pointer to the newly allocated dnode
252  * via the allocated_dnode argument.  The returned dnode will be held and
253  * the caller is responsible for releasing the hold by calling dnode_rele().
254  */
255 uint64_t
256 dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot, int blocksize,
257     int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
258     int dnodesize, dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
259 {
260 	return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
261 	    bonustype, bonuslen, dnodesize, allocated_dnode, tag, tx));
262 }
263 
264 int
265 dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
266     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
267 {
268 	return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
269 	    bonuslen, 0, tx));
270 }
271 
272 int
273 dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
274     int blocksize, dmu_object_type_t bonustype, int bonuslen,
275     int dnodesize, dmu_tx_t *tx)
276 {
277 	dnode_t *dn;
278 	int dn_slots = dnodesize >> DNODE_SHIFT;
279 	int err;
280 
281 	if (dn_slots == 0)
282 		dn_slots = DNODE_MIN_SLOTS;
283 	ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
284 	ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
285 
286 	if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
287 		return (SET_ERROR(EBADF));
288 
289 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
290 	    FTAG, &dn);
291 	if (err)
292 		return (err);
293 
294 	dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
295 	dmu_tx_add_new_object(tx, dn);
296 
297 	dnode_rele(dn, FTAG);
298 
299 	return (0);
300 }
301 
302 int
303 dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
304     int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
305 {
306 	return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
307 	    bonuslen, DNODE_MIN_SIZE, B_FALSE, tx));
308 }
309 
310 int
311 dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
312     int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
313     boolean_t keep_spill, dmu_tx_t *tx)
314 {
315 	dnode_t *dn;
316 	int dn_slots = dnodesize >> DNODE_SHIFT;
317 	int err;
318 
319 	if (dn_slots == 0)
320 		dn_slots = DNODE_MIN_SLOTS;
321 
322 	if (object == DMU_META_DNODE_OBJECT)
323 		return (SET_ERROR(EBADF));
324 
325 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
326 	    FTAG, &dn);
327 	if (err)
328 		return (err);
329 
330 	dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots,
331 	    keep_spill, tx);
332 
333 	dnode_rele(dn, FTAG);
334 	return (err);
335 }
336 
337 int
338 dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
339 {
340 	dnode_t *dn;
341 	int err;
342 
343 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
344 	    FTAG, &dn);
345 	if (err)
346 		return (err);
347 
348 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
349 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
350 		dbuf_rm_spill(dn, tx);
351 		dnode_rm_spill(dn, tx);
352 	}
353 	rw_exit(&dn->dn_struct_rwlock);
354 
355 	dnode_rele(dn, FTAG);
356 	return (err);
357 }
358 
359 int
360 dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
361 {
362 	dnode_t *dn;
363 	int err;
364 
365 	ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
366 
367 	err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
368 	    FTAG, &dn);
369 	if (err)
370 		return (err);
371 
372 	ASSERT(dn->dn_type != DMU_OT_NONE);
373 	/*
374 	 * If we don't create this free range, we'll leak indirect blocks when
375 	 * we get to freeing the dnode in syncing context.
376 	 */
377 	dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
378 	dnode_free(dn, tx);
379 	dnode_rele(dn, FTAG);
380 
381 	return (0);
382 }
383 
384 /*
385  * Return (in *objectp) the next object which is allocated (or a hole)
386  * after *object, taking into account only objects that may have been modified
387  * after the specified txg.
388  */
389 int
390 dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
391 {
392 	uint64_t offset;
393 	uint64_t start_obj;
394 	struct dsl_dataset *ds = os->os_dsl_dataset;
395 	int error;
396 
397 	if (*objectp == 0) {
398 		start_obj = 1;
399 	} else if (ds && dsl_dataset_feature_is_active(ds,
400 	    SPA_FEATURE_LARGE_DNODE)) {
401 		uint64_t i = *objectp + 1;
402 		uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1);
403 		dmu_object_info_t doi;
404 
405 		/*
406 		 * Scan through the remaining meta dnode block.  The contents
407 		 * of each slot in the block are known so it can be quickly
408 		 * checked.  If the block is exhausted without a match then
409 		 * hand off to dnode_next_offset() for further scanning.
410 		 */
411 		while (i <= last_obj) {
412 			error = dmu_object_info(os, i, &doi);
413 			if (error == ENOENT) {
414 				if (hole) {
415 					*objectp = i;
416 					return (0);
417 				} else {
418 					i++;
419 				}
420 			} else if (error == EEXIST) {
421 				i++;
422 			} else if (error == 0) {
423 				if (hole) {
424 					i += doi.doi_dnodesize >> DNODE_SHIFT;
425 				} else {
426 					*objectp = i;
427 					return (0);
428 				}
429 			} else {
430 				return (error);
431 			}
432 		}
433 
434 		start_obj = i;
435 	} else {
436 		start_obj = *objectp + 1;
437 	}
438 
439 	offset = start_obj << DNODE_SHIFT;
440 
441 	error = dnode_next_offset(DMU_META_DNODE(os),
442 	    (hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
443 
444 	*objectp = offset >> DNODE_SHIFT;
445 
446 	return (error);
447 }
448 
449 /*
450  * Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
451  * refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
452  *
453  * Only for use from syncing context, on MOS objects.
454  */
455 void
456 dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
457     dmu_tx_t *tx)
458 {
459 	dnode_t *dn;
460 
461 	ASSERT(dmu_tx_is_syncing(tx));
462 
463 	VERIFY0(dnode_hold(mos, object, FTAG, &dn));
464 	if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
465 		dnode_rele(dn, FTAG);
466 		return;
467 	}
468 	ASSERT3U(dn->dn_type, ==, old_type);
469 	ASSERT0(dn->dn_maxblkid);
470 
471 	/*
472 	 * We must initialize the ZAP data before changing the type,
473 	 * so that concurrent calls to *_is_zapified() can determine if
474 	 * the object has been completely zapified by checking the type.
475 	 */
476 	mzap_create_impl(dn, 0, 0, tx);
477 
478 	dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
479 	    DMU_OTN_ZAP_METADATA;
480 	dnode_setdirty(dn, tx);
481 	dnode_rele(dn, FTAG);
482 
483 	spa_feature_incr(dmu_objset_spa(mos),
484 	    SPA_FEATURE_EXTENSIBLE_DATASET, tx);
485 }
486 
487 void
488 dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
489 {
490 	dnode_t *dn;
491 	dmu_object_type_t t;
492 
493 	ASSERT(dmu_tx_is_syncing(tx));
494 
495 	VERIFY0(dnode_hold(mos, object, FTAG, &dn));
496 	t = dn->dn_type;
497 	dnode_rele(dn, FTAG);
498 
499 	if (t == DMU_OTN_ZAP_METADATA) {
500 		spa_feature_decr(dmu_objset_spa(mos),
501 		    SPA_FEATURE_EXTENSIBLE_DATASET, tx);
502 	}
503 	VERIFY0(dmu_object_free(mos, object, tx));
504 }
505 
506 EXPORT_SYMBOL(dmu_object_alloc);
507 EXPORT_SYMBOL(dmu_object_alloc_ibs);
508 EXPORT_SYMBOL(dmu_object_alloc_dnsize);
509 EXPORT_SYMBOL(dmu_object_alloc_hold);
510 EXPORT_SYMBOL(dmu_object_claim);
511 EXPORT_SYMBOL(dmu_object_claim_dnsize);
512 EXPORT_SYMBOL(dmu_object_reclaim);
513 EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
514 EXPORT_SYMBOL(dmu_object_rm_spill);
515 EXPORT_SYMBOL(dmu_object_free);
516 EXPORT_SYMBOL(dmu_object_next);
517 EXPORT_SYMBOL(dmu_object_zapify);
518 EXPORT_SYMBOL(dmu_object_free_zapified);
519 
520 /* BEGIN CSTYLED */
521 ZFS_MODULE_PARAM(zfs, , dmu_object_alloc_chunk_shift, INT, ZMOD_RW,
522 	"CPU-specific allocator grabs 2^N objects at once");
523 /* END CSTYLED */
524