1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dbuf.h> 37 #include <sys/dnode.h> 38 #include <sys/zfs_context.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dmu_traverse.h> 41 #include <sys/dsl_dataset.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_synctask.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dmu_zfetch.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/zio_compress.h> 51 #include <sys/sa.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/trace_zfs.h> 55 #include <sys/zfs_racct.h> 56 #include <sys/zfs_rlock.h> 57 #ifdef _KERNEL 58 #include <sys/vmsystm.h> 59 #include <sys/zfs_znode.h> 60 #endif 61 62 /* 63 * Enable/disable nopwrite feature. 64 */ 65 int zfs_nopwrite_enabled = 1; 66 67 /* 68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 69 * one TXG. After this threshold is crossed, additional dirty blocks from frees 70 * will wait until the next TXG. 71 * A value of zero will disable this throttle. 72 */ 73 unsigned long zfs_per_txg_dirty_frees_percent = 5; 74 75 /* 76 * Enable/disable forcing txg sync when dirty in dmu_offset_next. 77 */ 78 int zfs_dmu_offset_next_sync = 0; 79 80 /* 81 * Limit the amount we can prefetch with one call to this amount. This 82 * helps to limit the amount of memory that can be used by prefetching. 83 * Larger objects should be prefetched a bit at a time. 84 */ 85 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 86 87 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 88 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 89 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 90 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 91 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 93 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 94 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 95 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 96 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 97 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 98 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 99 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 100 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 101 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 102 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 103 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 104 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 105 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 106 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 107 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 108 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 109 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 110 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 111 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 112 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 113 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 114 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 115 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 117 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 118 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 119 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 120 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 121 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 122 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 123 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 124 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 125 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 127 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 128 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 129 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 131 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 132 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 134 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 135 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 136 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 137 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 138 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 139 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 140 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 141 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 142 }; 143 144 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 145 { byteswap_uint8_array, "uint8" }, 146 { byteswap_uint16_array, "uint16" }, 147 { byteswap_uint32_array, "uint32" }, 148 { byteswap_uint64_array, "uint64" }, 149 { zap_byteswap, "zap" }, 150 { dnode_buf_byteswap, "dnode" }, 151 { dmu_objset_byteswap, "objset" }, 152 { zfs_znode_byteswap, "znode" }, 153 { zfs_oldacl_byteswap, "oldacl" }, 154 { zfs_acl_byteswap, "acl" } 155 }; 156 157 static int 158 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 159 void *tag, dmu_buf_t **dbp) 160 { 161 uint64_t blkid; 162 dmu_buf_impl_t *db; 163 164 rw_enter(&dn->dn_struct_rwlock, RW_READER); 165 blkid = dbuf_whichblock(dn, 0, offset); 166 db = dbuf_hold(dn, blkid, tag); 167 rw_exit(&dn->dn_struct_rwlock); 168 169 if (db == NULL) { 170 *dbp = NULL; 171 return (SET_ERROR(EIO)); 172 } 173 174 *dbp = &db->db; 175 return (0); 176 } 177 int 178 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 179 void *tag, dmu_buf_t **dbp) 180 { 181 dnode_t *dn; 182 uint64_t blkid; 183 dmu_buf_impl_t *db; 184 int err; 185 186 err = dnode_hold(os, object, FTAG, &dn); 187 if (err) 188 return (err); 189 rw_enter(&dn->dn_struct_rwlock, RW_READER); 190 blkid = dbuf_whichblock(dn, 0, offset); 191 db = dbuf_hold(dn, blkid, tag); 192 rw_exit(&dn->dn_struct_rwlock); 193 dnode_rele(dn, FTAG); 194 195 if (db == NULL) { 196 *dbp = NULL; 197 return (SET_ERROR(EIO)); 198 } 199 200 *dbp = &db->db; 201 return (err); 202 } 203 204 int 205 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 206 void *tag, dmu_buf_t **dbp, int flags) 207 { 208 int err; 209 int db_flags = DB_RF_CANFAIL; 210 211 if (flags & DMU_READ_NO_PREFETCH) 212 db_flags |= DB_RF_NOPREFETCH; 213 if (flags & DMU_READ_NO_DECRYPT) 214 db_flags |= DB_RF_NO_DECRYPT; 215 216 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 217 if (err == 0) { 218 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 219 err = dbuf_read(db, NULL, db_flags); 220 if (err != 0) { 221 dbuf_rele(db, tag); 222 *dbp = NULL; 223 } 224 } 225 226 return (err); 227 } 228 229 int 230 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 231 void *tag, dmu_buf_t **dbp, int flags) 232 { 233 int err; 234 int db_flags = DB_RF_CANFAIL; 235 236 if (flags & DMU_READ_NO_PREFETCH) 237 db_flags |= DB_RF_NOPREFETCH; 238 if (flags & DMU_READ_NO_DECRYPT) 239 db_flags |= DB_RF_NO_DECRYPT; 240 241 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 242 if (err == 0) { 243 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 244 err = dbuf_read(db, NULL, db_flags); 245 if (err != 0) { 246 dbuf_rele(db, tag); 247 *dbp = NULL; 248 } 249 } 250 251 return (err); 252 } 253 254 int 255 dmu_bonus_max(void) 256 { 257 return (DN_OLD_MAX_BONUSLEN); 258 } 259 260 int 261 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 262 { 263 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 264 dnode_t *dn; 265 int error; 266 267 DB_DNODE_ENTER(db); 268 dn = DB_DNODE(db); 269 270 if (dn->dn_bonus != db) { 271 error = SET_ERROR(EINVAL); 272 } else if (newsize < 0 || newsize > db_fake->db_size) { 273 error = SET_ERROR(EINVAL); 274 } else { 275 dnode_setbonuslen(dn, newsize, tx); 276 error = 0; 277 } 278 279 DB_DNODE_EXIT(db); 280 return (error); 281 } 282 283 int 284 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 285 { 286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 287 dnode_t *dn; 288 int error; 289 290 DB_DNODE_ENTER(db); 291 dn = DB_DNODE(db); 292 293 if (!DMU_OT_IS_VALID(type)) { 294 error = SET_ERROR(EINVAL); 295 } else if (dn->dn_bonus != db) { 296 error = SET_ERROR(EINVAL); 297 } else { 298 dnode_setbonus_type(dn, type, tx); 299 error = 0; 300 } 301 302 DB_DNODE_EXIT(db); 303 return (error); 304 } 305 306 dmu_object_type_t 307 dmu_get_bonustype(dmu_buf_t *db_fake) 308 { 309 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 310 dnode_t *dn; 311 dmu_object_type_t type; 312 313 DB_DNODE_ENTER(db); 314 dn = DB_DNODE(db); 315 type = dn->dn_bonustype; 316 DB_DNODE_EXIT(db); 317 318 return (type); 319 } 320 321 int 322 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 323 { 324 dnode_t *dn; 325 int error; 326 327 error = dnode_hold(os, object, FTAG, &dn); 328 dbuf_rm_spill(dn, tx); 329 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 330 dnode_rm_spill(dn, tx); 331 rw_exit(&dn->dn_struct_rwlock); 332 dnode_rele(dn, FTAG); 333 return (error); 334 } 335 336 /* 337 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 338 * has not yet been allocated a new bonus dbuf a will be allocated. 339 * Returns ENOENT, EIO, or 0. 340 */ 341 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp, 342 uint32_t flags) 343 { 344 dmu_buf_impl_t *db; 345 int error; 346 uint32_t db_flags = DB_RF_MUST_SUCCEED; 347 348 if (flags & DMU_READ_NO_PREFETCH) 349 db_flags |= DB_RF_NOPREFETCH; 350 if (flags & DMU_READ_NO_DECRYPT) 351 db_flags |= DB_RF_NO_DECRYPT; 352 353 rw_enter(&dn->dn_struct_rwlock, RW_READER); 354 if (dn->dn_bonus == NULL) { 355 rw_exit(&dn->dn_struct_rwlock); 356 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 357 if (dn->dn_bonus == NULL) 358 dbuf_create_bonus(dn); 359 } 360 db = dn->dn_bonus; 361 362 /* as long as the bonus buf is held, the dnode will be held */ 363 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 364 VERIFY(dnode_add_ref(dn, db)); 365 atomic_inc_32(&dn->dn_dbufs_count); 366 } 367 368 /* 369 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 370 * hold and incrementing the dbuf count to ensure that dnode_move() sees 371 * a dnode hold for every dbuf. 372 */ 373 rw_exit(&dn->dn_struct_rwlock); 374 375 error = dbuf_read(db, NULL, db_flags); 376 if (error) { 377 dnode_evict_bonus(dn); 378 dbuf_rele(db, tag); 379 *dbp = NULL; 380 return (error); 381 } 382 383 *dbp = &db->db; 384 return (0); 385 } 386 387 int 388 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 389 { 390 dnode_t *dn; 391 int error; 392 393 error = dnode_hold(os, object, FTAG, &dn); 394 if (error) 395 return (error); 396 397 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 398 dnode_rele(dn, FTAG); 399 400 return (error); 401 } 402 403 /* 404 * returns ENOENT, EIO, or 0. 405 * 406 * This interface will allocate a blank spill dbuf when a spill blk 407 * doesn't already exist on the dnode. 408 * 409 * if you only want to find an already existing spill db, then 410 * dmu_spill_hold_existing() should be used. 411 */ 412 int 413 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 414 { 415 dmu_buf_impl_t *db = NULL; 416 int err; 417 418 if ((flags & DB_RF_HAVESTRUCT) == 0) 419 rw_enter(&dn->dn_struct_rwlock, RW_READER); 420 421 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 422 423 if ((flags & DB_RF_HAVESTRUCT) == 0) 424 rw_exit(&dn->dn_struct_rwlock); 425 426 if (db == NULL) { 427 *dbp = NULL; 428 return (SET_ERROR(EIO)); 429 } 430 err = dbuf_read(db, NULL, flags); 431 if (err == 0) 432 *dbp = &db->db; 433 else { 434 dbuf_rele(db, tag); 435 *dbp = NULL; 436 } 437 return (err); 438 } 439 440 int 441 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 442 { 443 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 444 dnode_t *dn; 445 int err; 446 447 DB_DNODE_ENTER(db); 448 dn = DB_DNODE(db); 449 450 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 451 err = SET_ERROR(EINVAL); 452 } else { 453 rw_enter(&dn->dn_struct_rwlock, RW_READER); 454 455 if (!dn->dn_have_spill) { 456 err = SET_ERROR(ENOENT); 457 } else { 458 err = dmu_spill_hold_by_dnode(dn, 459 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 460 } 461 462 rw_exit(&dn->dn_struct_rwlock); 463 } 464 465 DB_DNODE_EXIT(db); 466 return (err); 467 } 468 469 int 470 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag, 471 dmu_buf_t **dbp) 472 { 473 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 474 dnode_t *dn; 475 int err; 476 uint32_t db_flags = DB_RF_CANFAIL; 477 478 if (flags & DMU_READ_NO_DECRYPT) 479 db_flags |= DB_RF_NO_DECRYPT; 480 481 DB_DNODE_ENTER(db); 482 dn = DB_DNODE(db); 483 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 484 DB_DNODE_EXIT(db); 485 486 return (err); 487 } 488 489 /* 490 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 491 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 492 * and can induce severe lock contention when writing to several files 493 * whose dnodes are in the same block. 494 */ 495 int 496 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 497 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 498 { 499 dmu_buf_t **dbp; 500 uint64_t blkid, nblks, i; 501 uint32_t dbuf_flags; 502 int err; 503 zio_t *zio = NULL; 504 505 ASSERT(length <= DMU_MAX_ACCESS); 506 507 /* 508 * Note: We directly notify the prefetch code of this read, so that 509 * we can tell it about the multi-block read. dbuf_read() only knows 510 * about the one block it is accessing. 511 */ 512 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 513 DB_RF_NOPREFETCH; 514 515 rw_enter(&dn->dn_struct_rwlock, RW_READER); 516 if (dn->dn_datablkshift) { 517 int blkshift = dn->dn_datablkshift; 518 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 519 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 520 } else { 521 if (offset + length > dn->dn_datablksz) { 522 zfs_panic_recover("zfs: accessing past end of object " 523 "%llx/%llx (size=%u access=%llu+%llu)", 524 (longlong_t)dn->dn_objset-> 525 os_dsl_dataset->ds_object, 526 (longlong_t)dn->dn_object, dn->dn_datablksz, 527 (longlong_t)offset, (longlong_t)length); 528 rw_exit(&dn->dn_struct_rwlock); 529 return (SET_ERROR(EIO)); 530 } 531 nblks = 1; 532 } 533 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 534 535 if (read) 536 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, 537 ZIO_FLAG_CANFAIL); 538 blkid = dbuf_whichblock(dn, 0, offset); 539 for (i = 0; i < nblks; i++) { 540 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 541 if (db == NULL) { 542 rw_exit(&dn->dn_struct_rwlock); 543 dmu_buf_rele_array(dbp, nblks, tag); 544 if (read) 545 zio_nowait(zio); 546 return (SET_ERROR(EIO)); 547 } 548 549 /* initiate async i/o */ 550 if (read) 551 (void) dbuf_read(db, zio, dbuf_flags); 552 dbp[i] = &db->db; 553 } 554 555 if (!read) 556 zfs_racct_write(length, nblks); 557 558 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 559 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 560 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 561 read && DNODE_IS_CACHEABLE(dn), B_TRUE); 562 } 563 rw_exit(&dn->dn_struct_rwlock); 564 565 if (read) { 566 /* wait for async read i/o */ 567 err = zio_wait(zio); 568 if (err) { 569 dmu_buf_rele_array(dbp, nblks, tag); 570 return (err); 571 } 572 573 /* wait for other io to complete */ 574 for (i = 0; i < nblks; i++) { 575 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 576 mutex_enter(&db->db_mtx); 577 while (db->db_state == DB_READ || 578 db->db_state == DB_FILL) 579 cv_wait(&db->db_changed, &db->db_mtx); 580 if (db->db_state == DB_UNCACHED) 581 err = SET_ERROR(EIO); 582 mutex_exit(&db->db_mtx); 583 if (err) { 584 dmu_buf_rele_array(dbp, nblks, tag); 585 return (err); 586 } 587 } 588 } 589 590 *numbufsp = nblks; 591 *dbpp = dbp; 592 return (0); 593 } 594 595 static int 596 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 597 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 598 { 599 dnode_t *dn; 600 int err; 601 602 err = dnode_hold(os, object, FTAG, &dn); 603 if (err) 604 return (err); 605 606 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 607 numbufsp, dbpp, DMU_READ_PREFETCH); 608 609 dnode_rele(dn, FTAG); 610 611 return (err); 612 } 613 614 int 615 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 616 uint64_t length, boolean_t read, void *tag, int *numbufsp, 617 dmu_buf_t ***dbpp) 618 { 619 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 620 dnode_t *dn; 621 int err; 622 623 DB_DNODE_ENTER(db); 624 dn = DB_DNODE(db); 625 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 626 numbufsp, dbpp, DMU_READ_PREFETCH); 627 DB_DNODE_EXIT(db); 628 629 return (err); 630 } 631 632 void 633 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 634 { 635 int i; 636 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 637 638 if (numbufs == 0) 639 return; 640 641 for (i = 0; i < numbufs; i++) { 642 if (dbp[i]) 643 dbuf_rele(dbp[i], tag); 644 } 645 646 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 647 } 648 649 /* 650 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 651 * indirect blocks prefetched will be those that point to the blocks containing 652 * the data starting at offset, and continuing to offset + len. 653 * 654 * Note that if the indirect blocks above the blocks being prefetched are not 655 * in cache, they will be asynchronously read in. 656 */ 657 void 658 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 659 uint64_t len, zio_priority_t pri) 660 { 661 dnode_t *dn; 662 uint64_t blkid; 663 int nblks, err; 664 665 if (len == 0) { /* they're interested in the bonus buffer */ 666 dn = DMU_META_DNODE(os); 667 668 if (object == 0 || object >= DN_MAX_OBJECT) 669 return; 670 671 rw_enter(&dn->dn_struct_rwlock, RW_READER); 672 blkid = dbuf_whichblock(dn, level, 673 object * sizeof (dnode_phys_t)); 674 dbuf_prefetch(dn, level, blkid, pri, 0); 675 rw_exit(&dn->dn_struct_rwlock); 676 return; 677 } 678 679 /* 680 * See comment before the definition of dmu_prefetch_max. 681 */ 682 len = MIN(len, dmu_prefetch_max); 683 684 /* 685 * XXX - Note, if the dnode for the requested object is not 686 * already cached, we will do a *synchronous* read in the 687 * dnode_hold() call. The same is true for any indirects. 688 */ 689 err = dnode_hold(os, object, FTAG, &dn); 690 if (err != 0) 691 return; 692 693 /* 694 * offset + len - 1 is the last byte we want to prefetch for, and offset 695 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 696 * last block we want to prefetch, and dbuf_whichblock(dn, level, 697 * offset) is the first. Then the number we need to prefetch is the 698 * last - first + 1. 699 */ 700 rw_enter(&dn->dn_struct_rwlock, RW_READER); 701 if (level > 0 || dn->dn_datablkshift != 0) { 702 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 703 dbuf_whichblock(dn, level, offset) + 1; 704 } else { 705 nblks = (offset < dn->dn_datablksz); 706 } 707 708 if (nblks != 0) { 709 blkid = dbuf_whichblock(dn, level, offset); 710 for (int i = 0; i < nblks; i++) 711 dbuf_prefetch(dn, level, blkid + i, pri, 0); 712 } 713 rw_exit(&dn->dn_struct_rwlock); 714 715 dnode_rele(dn, FTAG); 716 } 717 718 /* 719 * Get the next "chunk" of file data to free. We traverse the file from 720 * the end so that the file gets shorter over time (if we crashes in the 721 * middle, this will leave us in a better state). We find allocated file 722 * data by simply searching the allocated level 1 indirects. 723 * 724 * On input, *start should be the first offset that does not need to be 725 * freed (e.g. "offset + length"). On return, *start will be the first 726 * offset that should be freed and l1blks is set to the number of level 1 727 * indirect blocks found within the chunk. 728 */ 729 static int 730 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 731 { 732 uint64_t blks; 733 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 734 /* bytes of data covered by a level-1 indirect block */ 735 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 736 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 737 738 ASSERT3U(minimum, <=, *start); 739 740 /* 741 * Check if we can free the entire range assuming that all of the 742 * L1 blocks in this range have data. If we can, we use this 743 * worst case value as an estimate so we can avoid having to look 744 * at the object's actual data. 745 */ 746 uint64_t total_l1blks = 747 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 748 iblkrange; 749 if (total_l1blks <= maxblks) { 750 *l1blks = total_l1blks; 751 *start = minimum; 752 return (0); 753 } 754 ASSERT(ISP2(iblkrange)); 755 756 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 757 int err; 758 759 /* 760 * dnode_next_offset(BACKWARDS) will find an allocated L1 761 * indirect block at or before the input offset. We must 762 * decrement *start so that it is at the end of the region 763 * to search. 764 */ 765 (*start)--; 766 767 err = dnode_next_offset(dn, 768 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 769 770 /* if there are no indirect blocks before start, we are done */ 771 if (err == ESRCH) { 772 *start = minimum; 773 break; 774 } else if (err != 0) { 775 *l1blks = blks; 776 return (err); 777 } 778 779 /* set start to the beginning of this L1 indirect */ 780 *start = P2ALIGN(*start, iblkrange); 781 } 782 if (*start < minimum) 783 *start = minimum; 784 *l1blks = blks; 785 786 return (0); 787 } 788 789 /* 790 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 791 * otherwise return false. 792 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 793 */ 794 /*ARGSUSED*/ 795 static boolean_t 796 dmu_objset_zfs_unmounting(objset_t *os) 797 { 798 #ifdef _KERNEL 799 if (dmu_objset_type(os) == DMU_OST_ZFS) 800 return (zfs_get_vfs_flag_unmounted(os)); 801 #endif 802 return (B_FALSE); 803 } 804 805 static int 806 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 807 uint64_t length) 808 { 809 uint64_t object_size; 810 int err; 811 uint64_t dirty_frees_threshold; 812 dsl_pool_t *dp = dmu_objset_pool(os); 813 814 if (dn == NULL) 815 return (SET_ERROR(EINVAL)); 816 817 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 818 if (offset >= object_size) 819 return (0); 820 821 if (zfs_per_txg_dirty_frees_percent <= 100) 822 dirty_frees_threshold = 823 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 824 else 825 dirty_frees_threshold = zfs_dirty_data_max / 20; 826 827 if (length == DMU_OBJECT_END || offset + length > object_size) 828 length = object_size - offset; 829 830 while (length != 0) { 831 uint64_t chunk_end, chunk_begin, chunk_len; 832 uint64_t l1blks; 833 dmu_tx_t *tx; 834 835 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 836 return (SET_ERROR(EINTR)); 837 838 chunk_end = chunk_begin = offset + length; 839 840 /* move chunk_begin backwards to the beginning of this chunk */ 841 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 842 if (err) 843 return (err); 844 ASSERT3U(chunk_begin, >=, offset); 845 ASSERT3U(chunk_begin, <=, chunk_end); 846 847 chunk_len = chunk_end - chunk_begin; 848 849 tx = dmu_tx_create(os); 850 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 851 852 /* 853 * Mark this transaction as typically resulting in a net 854 * reduction in space used. 855 */ 856 dmu_tx_mark_netfree(tx); 857 err = dmu_tx_assign(tx, TXG_WAIT); 858 if (err) { 859 dmu_tx_abort(tx); 860 return (err); 861 } 862 863 uint64_t txg = dmu_tx_get_txg(tx); 864 865 mutex_enter(&dp->dp_lock); 866 uint64_t long_free_dirty = 867 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 868 mutex_exit(&dp->dp_lock); 869 870 /* 871 * To avoid filling up a TXG with just frees, wait for 872 * the next TXG to open before freeing more chunks if 873 * we have reached the threshold of frees. 874 */ 875 if (dirty_frees_threshold != 0 && 876 long_free_dirty >= dirty_frees_threshold) { 877 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 878 dmu_tx_commit(tx); 879 txg_wait_open(dp, 0, B_TRUE); 880 continue; 881 } 882 883 /* 884 * In order to prevent unnecessary write throttling, for each 885 * TXG, we track the cumulative size of L1 blocks being dirtied 886 * in dnode_free_range() below. We compare this number to a 887 * tunable threshold, past which we prevent new L1 dirty freeing 888 * blocks from being added into the open TXG. See 889 * dmu_free_long_range_impl() for details. The threshold 890 * prevents write throttle activation due to dirty freeing L1 891 * blocks taking up a large percentage of zfs_dirty_data_max. 892 */ 893 mutex_enter(&dp->dp_lock); 894 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 895 l1blks << dn->dn_indblkshift; 896 mutex_exit(&dp->dp_lock); 897 DTRACE_PROBE3(free__long__range, 898 uint64_t, long_free_dirty, uint64_t, chunk_len, 899 uint64_t, txg); 900 dnode_free_range(dn, chunk_begin, chunk_len, tx); 901 902 dmu_tx_commit(tx); 903 904 length -= chunk_len; 905 } 906 return (0); 907 } 908 909 int 910 dmu_free_long_range(objset_t *os, uint64_t object, 911 uint64_t offset, uint64_t length) 912 { 913 dnode_t *dn; 914 int err; 915 916 err = dnode_hold(os, object, FTAG, &dn); 917 if (err != 0) 918 return (err); 919 err = dmu_free_long_range_impl(os, dn, offset, length); 920 921 /* 922 * It is important to zero out the maxblkid when freeing the entire 923 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 924 * will take the fast path, and (b) dnode_reallocate() can verify 925 * that the entire file has been freed. 926 */ 927 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 928 dn->dn_maxblkid = 0; 929 930 dnode_rele(dn, FTAG); 931 return (err); 932 } 933 934 int 935 dmu_free_long_object(objset_t *os, uint64_t object) 936 { 937 dmu_tx_t *tx; 938 int err; 939 940 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 941 if (err != 0) 942 return (err); 943 944 tx = dmu_tx_create(os); 945 dmu_tx_hold_bonus(tx, object); 946 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 947 dmu_tx_mark_netfree(tx); 948 err = dmu_tx_assign(tx, TXG_WAIT); 949 if (err == 0) { 950 if (err == 0) 951 err = dmu_object_free(os, object, tx); 952 953 dmu_tx_commit(tx); 954 } else { 955 dmu_tx_abort(tx); 956 } 957 958 return (err); 959 } 960 961 int 962 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 963 uint64_t size, dmu_tx_t *tx) 964 { 965 dnode_t *dn; 966 int err = dnode_hold(os, object, FTAG, &dn); 967 if (err) 968 return (err); 969 ASSERT(offset < UINT64_MAX); 970 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 971 dnode_free_range(dn, offset, size, tx); 972 dnode_rele(dn, FTAG); 973 return (0); 974 } 975 976 static int 977 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 978 void *buf, uint32_t flags) 979 { 980 dmu_buf_t **dbp; 981 int numbufs, err = 0; 982 983 /* 984 * Deal with odd block sizes, where there can't be data past the first 985 * block. If we ever do the tail block optimization, we will need to 986 * handle that here as well. 987 */ 988 if (dn->dn_maxblkid == 0) { 989 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 990 MIN(size, dn->dn_datablksz - offset); 991 bzero((char *)buf + newsz, size - newsz); 992 size = newsz; 993 } 994 995 while (size > 0) { 996 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 997 int i; 998 999 /* 1000 * NB: we could do this block-at-a-time, but it's nice 1001 * to be reading in parallel. 1002 */ 1003 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1004 TRUE, FTAG, &numbufs, &dbp, flags); 1005 if (err) 1006 break; 1007 1008 for (i = 0; i < numbufs; i++) { 1009 uint64_t tocpy; 1010 int64_t bufoff; 1011 dmu_buf_t *db = dbp[i]; 1012 1013 ASSERT(size > 0); 1014 1015 bufoff = offset - db->db_offset; 1016 tocpy = MIN(db->db_size - bufoff, size); 1017 1018 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1019 1020 offset += tocpy; 1021 size -= tocpy; 1022 buf = (char *)buf + tocpy; 1023 } 1024 dmu_buf_rele_array(dbp, numbufs, FTAG); 1025 } 1026 return (err); 1027 } 1028 1029 int 1030 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1031 void *buf, uint32_t flags) 1032 { 1033 dnode_t *dn; 1034 int err; 1035 1036 err = dnode_hold(os, object, FTAG, &dn); 1037 if (err != 0) 1038 return (err); 1039 1040 err = dmu_read_impl(dn, offset, size, buf, flags); 1041 dnode_rele(dn, FTAG); 1042 return (err); 1043 } 1044 1045 int 1046 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1047 uint32_t flags) 1048 { 1049 return (dmu_read_impl(dn, offset, size, buf, flags)); 1050 } 1051 1052 static void 1053 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1054 const void *buf, dmu_tx_t *tx) 1055 { 1056 int i; 1057 1058 for (i = 0; i < numbufs; i++) { 1059 uint64_t tocpy; 1060 int64_t bufoff; 1061 dmu_buf_t *db = dbp[i]; 1062 1063 ASSERT(size > 0); 1064 1065 bufoff = offset - db->db_offset; 1066 tocpy = MIN(db->db_size - bufoff, size); 1067 1068 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1069 1070 if (tocpy == db->db_size) 1071 dmu_buf_will_fill(db, tx); 1072 else 1073 dmu_buf_will_dirty(db, tx); 1074 1075 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1076 1077 if (tocpy == db->db_size) 1078 dmu_buf_fill_done(db, tx); 1079 1080 offset += tocpy; 1081 size -= tocpy; 1082 buf = (char *)buf + tocpy; 1083 } 1084 } 1085 1086 void 1087 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1088 const void *buf, dmu_tx_t *tx) 1089 { 1090 dmu_buf_t **dbp; 1091 int numbufs; 1092 1093 if (size == 0) 1094 return; 1095 1096 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1097 FALSE, FTAG, &numbufs, &dbp)); 1098 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1099 dmu_buf_rele_array(dbp, numbufs, FTAG); 1100 } 1101 1102 /* 1103 * Note: Lustre is an external consumer of this interface. 1104 */ 1105 void 1106 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1107 const void *buf, dmu_tx_t *tx) 1108 { 1109 dmu_buf_t **dbp; 1110 int numbufs; 1111 1112 if (size == 0) 1113 return; 1114 1115 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1116 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1117 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1118 dmu_buf_rele_array(dbp, numbufs, FTAG); 1119 } 1120 1121 void 1122 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1123 dmu_tx_t *tx) 1124 { 1125 dmu_buf_t **dbp; 1126 int numbufs, i; 1127 1128 if (size == 0) 1129 return; 1130 1131 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1132 FALSE, FTAG, &numbufs, &dbp)); 1133 1134 for (i = 0; i < numbufs; i++) { 1135 dmu_buf_t *db = dbp[i]; 1136 1137 dmu_buf_will_not_fill(db, tx); 1138 } 1139 dmu_buf_rele_array(dbp, numbufs, FTAG); 1140 } 1141 1142 void 1143 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1144 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1145 int compressed_size, int byteorder, dmu_tx_t *tx) 1146 { 1147 dmu_buf_t *db; 1148 1149 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1150 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1151 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1152 FTAG, &db)); 1153 1154 dmu_buf_write_embedded(db, 1155 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1156 uncompressed_size, compressed_size, byteorder, tx); 1157 1158 dmu_buf_rele(db, FTAG); 1159 } 1160 1161 void 1162 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1163 dmu_tx_t *tx) 1164 { 1165 int numbufs, i; 1166 dmu_buf_t **dbp; 1167 1168 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1169 &numbufs, &dbp)); 1170 for (i = 0; i < numbufs; i++) 1171 dmu_buf_redact(dbp[i], tx); 1172 dmu_buf_rele_array(dbp, numbufs, FTAG); 1173 } 1174 1175 #ifdef _KERNEL 1176 int 1177 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size) 1178 { 1179 dmu_buf_t **dbp; 1180 int numbufs, i, err; 1181 1182 /* 1183 * NB: we could do this block-at-a-time, but it's nice 1184 * to be reading in parallel. 1185 */ 1186 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1187 TRUE, FTAG, &numbufs, &dbp, 0); 1188 if (err) 1189 return (err); 1190 1191 for (i = 0; i < numbufs; i++) { 1192 uint64_t tocpy; 1193 int64_t bufoff; 1194 dmu_buf_t *db = dbp[i]; 1195 1196 ASSERT(size > 0); 1197 1198 bufoff = zfs_uio_offset(uio) - db->db_offset; 1199 tocpy = MIN(db->db_size - bufoff, size); 1200 1201 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, 1202 UIO_READ, uio); 1203 1204 if (err) 1205 break; 1206 1207 size -= tocpy; 1208 } 1209 dmu_buf_rele_array(dbp, numbufs, FTAG); 1210 1211 return (err); 1212 } 1213 1214 /* 1215 * Read 'size' bytes into the uio buffer. 1216 * From object zdb->db_object. 1217 * Starting at zfs_uio_offset(uio). 1218 * 1219 * If the caller already has a dbuf in the target object 1220 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1221 * because we don't have to find the dnode_t for the object. 1222 */ 1223 int 1224 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size) 1225 { 1226 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1227 dnode_t *dn; 1228 int err; 1229 1230 if (size == 0) 1231 return (0); 1232 1233 DB_DNODE_ENTER(db); 1234 dn = DB_DNODE(db); 1235 err = dmu_read_uio_dnode(dn, uio, size); 1236 DB_DNODE_EXIT(db); 1237 1238 return (err); 1239 } 1240 1241 /* 1242 * Read 'size' bytes into the uio buffer. 1243 * From the specified object 1244 * Starting at offset zfs_uio_offset(uio). 1245 */ 1246 int 1247 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size) 1248 { 1249 dnode_t *dn; 1250 int err; 1251 1252 if (size == 0) 1253 return (0); 1254 1255 err = dnode_hold(os, object, FTAG, &dn); 1256 if (err) 1257 return (err); 1258 1259 err = dmu_read_uio_dnode(dn, uio, size); 1260 1261 dnode_rele(dn, FTAG); 1262 1263 return (err); 1264 } 1265 1266 int 1267 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) 1268 { 1269 dmu_buf_t **dbp; 1270 int numbufs; 1271 int err = 0; 1272 int i; 1273 1274 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1275 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1276 if (err) 1277 return (err); 1278 1279 for (i = 0; i < numbufs; i++) { 1280 uint64_t tocpy; 1281 int64_t bufoff; 1282 dmu_buf_t *db = dbp[i]; 1283 1284 ASSERT(size > 0); 1285 1286 bufoff = zfs_uio_offset(uio) - db->db_offset; 1287 tocpy = MIN(db->db_size - bufoff, size); 1288 1289 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1290 1291 if (tocpy == db->db_size) 1292 dmu_buf_will_fill(db, tx); 1293 else 1294 dmu_buf_will_dirty(db, tx); 1295 1296 /* 1297 * XXX zfs_uiomove could block forever (eg.nfs-backed 1298 * pages). There needs to be a uiolockdown() function 1299 * to lock the pages in memory, so that zfs_uiomove won't 1300 * block. 1301 */ 1302 err = zfs_uio_fault_move((char *)db->db_data + bufoff, 1303 tocpy, UIO_WRITE, uio); 1304 1305 if (tocpy == db->db_size) 1306 dmu_buf_fill_done(db, tx); 1307 1308 if (err) 1309 break; 1310 1311 size -= tocpy; 1312 } 1313 1314 dmu_buf_rele_array(dbp, numbufs, FTAG); 1315 return (err); 1316 } 1317 1318 /* 1319 * Write 'size' bytes from the uio buffer. 1320 * To object zdb->db_object. 1321 * Starting at offset zfs_uio_offset(uio). 1322 * 1323 * If the caller already has a dbuf in the target object 1324 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1325 * because we don't have to find the dnode_t for the object. 1326 */ 1327 int 1328 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, 1329 dmu_tx_t *tx) 1330 { 1331 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1332 dnode_t *dn; 1333 int err; 1334 1335 if (size == 0) 1336 return (0); 1337 1338 DB_DNODE_ENTER(db); 1339 dn = DB_DNODE(db); 1340 err = dmu_write_uio_dnode(dn, uio, size, tx); 1341 DB_DNODE_EXIT(db); 1342 1343 return (err); 1344 } 1345 1346 /* 1347 * Write 'size' bytes from the uio buffer. 1348 * To the specified object. 1349 * Starting at offset zfs_uio_offset(uio). 1350 */ 1351 int 1352 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, 1353 dmu_tx_t *tx) 1354 { 1355 dnode_t *dn; 1356 int err; 1357 1358 if (size == 0) 1359 return (0); 1360 1361 err = dnode_hold(os, object, FTAG, &dn); 1362 if (err) 1363 return (err); 1364 1365 err = dmu_write_uio_dnode(dn, uio, size, tx); 1366 1367 dnode_rele(dn, FTAG); 1368 1369 return (err); 1370 } 1371 #endif /* _KERNEL */ 1372 1373 /* 1374 * Allocate a loaned anonymous arc buffer. 1375 */ 1376 arc_buf_t * 1377 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1378 { 1379 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1380 1381 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1382 } 1383 1384 /* 1385 * Free a loaned arc buffer. 1386 */ 1387 void 1388 dmu_return_arcbuf(arc_buf_t *buf) 1389 { 1390 arc_return_buf(buf, FTAG); 1391 arc_buf_destroy(buf, FTAG); 1392 } 1393 1394 /* 1395 * A "lightweight" write is faster than a regular write (e.g. 1396 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the 1397 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the 1398 * data can not be read or overwritten until the transaction's txg has been 1399 * synced. This makes it appropriate for workloads that are known to be 1400 * (temporarily) write-only, like "zfs receive". 1401 * 1402 * A single block is written, starting at the specified offset in bytes. If 1403 * the call is successful, it returns 0 and the provided abd has been 1404 * consumed (the caller should not free it). 1405 */ 1406 int 1407 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, 1408 const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx) 1409 { 1410 dbuf_dirty_record_t *dr = 1411 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); 1412 if (dr == NULL) 1413 return (SET_ERROR(EIO)); 1414 dr->dt.dll.dr_abd = abd; 1415 dr->dt.dll.dr_props = *zp; 1416 dr->dt.dll.dr_flags = flags; 1417 return (0); 1418 } 1419 1420 /* 1421 * When possible directly assign passed loaned arc buffer to a dbuf. 1422 * If this is not possible copy the contents of passed arc buf via 1423 * dmu_write(). 1424 */ 1425 int 1426 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1427 dmu_tx_t *tx) 1428 { 1429 dmu_buf_impl_t *db; 1430 objset_t *os = dn->dn_objset; 1431 uint64_t object = dn->dn_object; 1432 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1433 uint64_t blkid; 1434 1435 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1436 blkid = dbuf_whichblock(dn, 0, offset); 1437 db = dbuf_hold(dn, blkid, FTAG); 1438 if (db == NULL) 1439 return (SET_ERROR(EIO)); 1440 rw_exit(&dn->dn_struct_rwlock); 1441 1442 /* 1443 * We can only assign if the offset is aligned and the arc buf is the 1444 * same size as the dbuf. 1445 */ 1446 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1447 zfs_racct_write(blksz, 1); 1448 dbuf_assign_arcbuf(db, buf, tx); 1449 dbuf_rele(db, FTAG); 1450 } else { 1451 /* compressed bufs must always be assignable to their dbuf */ 1452 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1453 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1454 1455 dbuf_rele(db, FTAG); 1456 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1457 dmu_return_arcbuf(buf); 1458 } 1459 1460 return (0); 1461 } 1462 1463 int 1464 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1465 dmu_tx_t *tx) 1466 { 1467 int err; 1468 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1469 1470 DB_DNODE_ENTER(dbuf); 1471 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1472 DB_DNODE_EXIT(dbuf); 1473 1474 return (err); 1475 } 1476 1477 typedef struct { 1478 dbuf_dirty_record_t *dsa_dr; 1479 dmu_sync_cb_t *dsa_done; 1480 zgd_t *dsa_zgd; 1481 dmu_tx_t *dsa_tx; 1482 } dmu_sync_arg_t; 1483 1484 /* ARGSUSED */ 1485 static void 1486 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1487 { 1488 dmu_sync_arg_t *dsa = varg; 1489 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1490 blkptr_t *bp = zio->io_bp; 1491 1492 if (zio->io_error == 0) { 1493 if (BP_IS_HOLE(bp)) { 1494 /* 1495 * A block of zeros may compress to a hole, but the 1496 * block size still needs to be known for replay. 1497 */ 1498 BP_SET_LSIZE(bp, db->db_size); 1499 } else if (!BP_IS_EMBEDDED(bp)) { 1500 ASSERT(BP_GET_LEVEL(bp) == 0); 1501 BP_SET_FILL(bp, 1); 1502 } 1503 } 1504 } 1505 1506 static void 1507 dmu_sync_late_arrival_ready(zio_t *zio) 1508 { 1509 dmu_sync_ready(zio, NULL, zio->io_private); 1510 } 1511 1512 /* ARGSUSED */ 1513 static void 1514 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1515 { 1516 dmu_sync_arg_t *dsa = varg; 1517 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1518 dmu_buf_impl_t *db = dr->dr_dbuf; 1519 zgd_t *zgd = dsa->dsa_zgd; 1520 1521 /* 1522 * Record the vdev(s) backing this blkptr so they can be flushed after 1523 * the writes for the lwb have completed. 1524 */ 1525 if (zio->io_error == 0) { 1526 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1527 } 1528 1529 mutex_enter(&db->db_mtx); 1530 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1531 if (zio->io_error == 0) { 1532 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1533 if (dr->dt.dl.dr_nopwrite) { 1534 blkptr_t *bp = zio->io_bp; 1535 blkptr_t *bp_orig = &zio->io_bp_orig; 1536 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1537 1538 ASSERT(BP_EQUAL(bp, bp_orig)); 1539 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1540 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1541 VERIFY(zio_checksum_table[chksum].ci_flags & 1542 ZCHECKSUM_FLAG_NOPWRITE); 1543 } 1544 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1545 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1546 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1547 1548 /* 1549 * Old style holes are filled with all zeros, whereas 1550 * new-style holes maintain their lsize, type, level, 1551 * and birth time (see zio_write_compress). While we 1552 * need to reset the BP_SET_LSIZE() call that happened 1553 * in dmu_sync_ready for old style holes, we do *not* 1554 * want to wipe out the information contained in new 1555 * style holes. Thus, only zero out the block pointer if 1556 * it's an old style hole. 1557 */ 1558 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1559 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1560 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1561 } else { 1562 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1563 } 1564 cv_broadcast(&db->db_changed); 1565 mutex_exit(&db->db_mtx); 1566 1567 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1568 1569 kmem_free(dsa, sizeof (*dsa)); 1570 } 1571 1572 static void 1573 dmu_sync_late_arrival_done(zio_t *zio) 1574 { 1575 blkptr_t *bp = zio->io_bp; 1576 dmu_sync_arg_t *dsa = zio->io_private; 1577 zgd_t *zgd = dsa->dsa_zgd; 1578 1579 if (zio->io_error == 0) { 1580 /* 1581 * Record the vdev(s) backing this blkptr so they can be 1582 * flushed after the writes for the lwb have completed. 1583 */ 1584 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1585 1586 if (!BP_IS_HOLE(bp)) { 1587 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1588 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1589 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1590 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1591 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1592 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1593 } 1594 } 1595 1596 dmu_tx_commit(dsa->dsa_tx); 1597 1598 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1599 1600 abd_free(zio->io_abd); 1601 kmem_free(dsa, sizeof (*dsa)); 1602 } 1603 1604 static int 1605 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1606 zio_prop_t *zp, zbookmark_phys_t *zb) 1607 { 1608 dmu_sync_arg_t *dsa; 1609 dmu_tx_t *tx; 1610 1611 tx = dmu_tx_create(os); 1612 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1613 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1614 dmu_tx_abort(tx); 1615 /* Make zl_get_data do txg_waited_synced() */ 1616 return (SET_ERROR(EIO)); 1617 } 1618 1619 /* 1620 * In order to prevent the zgd's lwb from being free'd prior to 1621 * dmu_sync_late_arrival_done() being called, we have to ensure 1622 * the lwb's "max txg" takes this tx's txg into account. 1623 */ 1624 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1625 1626 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1627 dsa->dsa_dr = NULL; 1628 dsa->dsa_done = done; 1629 dsa->dsa_zgd = zgd; 1630 dsa->dsa_tx = tx; 1631 1632 /* 1633 * Since we are currently syncing this txg, it's nontrivial to 1634 * determine what BP to nopwrite against, so we disable nopwrite. 1635 * 1636 * When syncing, the db_blkptr is initially the BP of the previous 1637 * txg. We can not nopwrite against it because it will be changed 1638 * (this is similar to the non-late-arrival case where the dbuf is 1639 * dirty in a future txg). 1640 * 1641 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1642 * We can not nopwrite against it because although the BP will not 1643 * (typically) be changed, the data has not yet been persisted to this 1644 * location. 1645 * 1646 * Finally, when dbuf_write_done() is called, it is theoretically 1647 * possible to always nopwrite, because the data that was written in 1648 * this txg is the same data that we are trying to write. However we 1649 * would need to check that this dbuf is not dirty in any future 1650 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1651 * don't nopwrite in this case. 1652 */ 1653 zp->zp_nopwrite = B_FALSE; 1654 1655 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1656 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1657 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1658 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1659 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1660 1661 return (0); 1662 } 1663 1664 /* 1665 * Intent log support: sync the block associated with db to disk. 1666 * N.B. and XXX: the caller is responsible for making sure that the 1667 * data isn't changing while dmu_sync() is writing it. 1668 * 1669 * Return values: 1670 * 1671 * EEXIST: this txg has already been synced, so there's nothing to do. 1672 * The caller should not log the write. 1673 * 1674 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1675 * The caller should not log the write. 1676 * 1677 * EALREADY: this block is already in the process of being synced. 1678 * The caller should track its progress (somehow). 1679 * 1680 * EIO: could not do the I/O. 1681 * The caller should do a txg_wait_synced(). 1682 * 1683 * 0: the I/O has been initiated. 1684 * The caller should log this blkptr in the done callback. 1685 * It is possible that the I/O will fail, in which case 1686 * the error will be reported to the done callback and 1687 * propagated to pio from zio_done(). 1688 */ 1689 int 1690 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1691 { 1692 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1693 objset_t *os = db->db_objset; 1694 dsl_dataset_t *ds = os->os_dsl_dataset; 1695 dbuf_dirty_record_t *dr, *dr_next; 1696 dmu_sync_arg_t *dsa; 1697 zbookmark_phys_t zb; 1698 zio_prop_t zp; 1699 dnode_t *dn; 1700 1701 ASSERT(pio != NULL); 1702 ASSERT(txg != 0); 1703 1704 SET_BOOKMARK(&zb, ds->ds_object, 1705 db->db.db_object, db->db_level, db->db_blkid); 1706 1707 DB_DNODE_ENTER(db); 1708 dn = DB_DNODE(db); 1709 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1710 DB_DNODE_EXIT(db); 1711 1712 /* 1713 * If we're frozen (running ziltest), we always need to generate a bp. 1714 */ 1715 if (txg > spa_freeze_txg(os->os_spa)) 1716 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1717 1718 /* 1719 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1720 * and us. If we determine that this txg is not yet syncing, 1721 * but it begins to sync a moment later, that's OK because the 1722 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1723 */ 1724 mutex_enter(&db->db_mtx); 1725 1726 if (txg <= spa_last_synced_txg(os->os_spa)) { 1727 /* 1728 * This txg has already synced. There's nothing to do. 1729 */ 1730 mutex_exit(&db->db_mtx); 1731 return (SET_ERROR(EEXIST)); 1732 } 1733 1734 if (txg <= spa_syncing_txg(os->os_spa)) { 1735 /* 1736 * This txg is currently syncing, so we can't mess with 1737 * the dirty record anymore; just write a new log block. 1738 */ 1739 mutex_exit(&db->db_mtx); 1740 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1741 } 1742 1743 dr = dbuf_find_dirty_eq(db, txg); 1744 1745 if (dr == NULL) { 1746 /* 1747 * There's no dr for this dbuf, so it must have been freed. 1748 * There's no need to log writes to freed blocks, so we're done. 1749 */ 1750 mutex_exit(&db->db_mtx); 1751 return (SET_ERROR(ENOENT)); 1752 } 1753 1754 dr_next = list_next(&db->db_dirty_records, dr); 1755 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1756 1757 if (db->db_blkptr != NULL) { 1758 /* 1759 * We need to fill in zgd_bp with the current blkptr so that 1760 * the nopwrite code can check if we're writing the same 1761 * data that's already on disk. We can only nopwrite if we 1762 * are sure that after making the copy, db_blkptr will not 1763 * change until our i/o completes. We ensure this by 1764 * holding the db_mtx, and only allowing nopwrite if the 1765 * block is not already dirty (see below). This is verified 1766 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1767 * not changed. 1768 */ 1769 *zgd->zgd_bp = *db->db_blkptr; 1770 } 1771 1772 /* 1773 * Assume the on-disk data is X, the current syncing data (in 1774 * txg - 1) is Y, and the current in-memory data is Z (currently 1775 * in dmu_sync). 1776 * 1777 * We usually want to perform a nopwrite if X and Z are the 1778 * same. However, if Y is different (i.e. the BP is going to 1779 * change before this write takes effect), then a nopwrite will 1780 * be incorrect - we would override with X, which could have 1781 * been freed when Y was written. 1782 * 1783 * (Note that this is not a concern when we are nop-writing from 1784 * syncing context, because X and Y must be identical, because 1785 * all previous txgs have been synced.) 1786 * 1787 * Therefore, we disable nopwrite if the current BP could change 1788 * before this TXG. There are two ways it could change: by 1789 * being dirty (dr_next is non-NULL), or by being freed 1790 * (dnode_block_freed()). This behavior is verified by 1791 * zio_done(), which VERIFYs that the override BP is identical 1792 * to the on-disk BP. 1793 */ 1794 DB_DNODE_ENTER(db); 1795 dn = DB_DNODE(db); 1796 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1797 zp.zp_nopwrite = B_FALSE; 1798 DB_DNODE_EXIT(db); 1799 1800 ASSERT(dr->dr_txg == txg); 1801 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1802 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1803 /* 1804 * We have already issued a sync write for this buffer, 1805 * or this buffer has already been synced. It could not 1806 * have been dirtied since, or we would have cleared the state. 1807 */ 1808 mutex_exit(&db->db_mtx); 1809 return (SET_ERROR(EALREADY)); 1810 } 1811 1812 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1813 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1814 mutex_exit(&db->db_mtx); 1815 1816 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1817 dsa->dsa_dr = dr; 1818 dsa->dsa_done = done; 1819 dsa->dsa_zgd = zgd; 1820 dsa->dsa_tx = NULL; 1821 1822 zio_nowait(arc_write(pio, os->os_spa, txg, 1823 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1824 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1825 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1826 1827 return (0); 1828 } 1829 1830 int 1831 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1832 { 1833 dnode_t *dn; 1834 int err; 1835 1836 err = dnode_hold(os, object, FTAG, &dn); 1837 if (err) 1838 return (err); 1839 err = dnode_set_nlevels(dn, nlevels, tx); 1840 dnode_rele(dn, FTAG); 1841 return (err); 1842 } 1843 1844 int 1845 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1846 dmu_tx_t *tx) 1847 { 1848 dnode_t *dn; 1849 int err; 1850 1851 err = dnode_hold(os, object, FTAG, &dn); 1852 if (err) 1853 return (err); 1854 err = dnode_set_blksz(dn, size, ibs, tx); 1855 dnode_rele(dn, FTAG); 1856 return (err); 1857 } 1858 1859 int 1860 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 1861 dmu_tx_t *tx) 1862 { 1863 dnode_t *dn; 1864 int err; 1865 1866 err = dnode_hold(os, object, FTAG, &dn); 1867 if (err) 1868 return (err); 1869 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1870 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 1871 rw_exit(&dn->dn_struct_rwlock); 1872 dnode_rele(dn, FTAG); 1873 return (0); 1874 } 1875 1876 void 1877 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1878 dmu_tx_t *tx) 1879 { 1880 dnode_t *dn; 1881 1882 /* 1883 * Send streams include each object's checksum function. This 1884 * check ensures that the receiving system can understand the 1885 * checksum function transmitted. 1886 */ 1887 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1888 1889 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1890 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1891 dn->dn_checksum = checksum; 1892 dnode_setdirty(dn, tx); 1893 dnode_rele(dn, FTAG); 1894 } 1895 1896 void 1897 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1898 dmu_tx_t *tx) 1899 { 1900 dnode_t *dn; 1901 1902 /* 1903 * Send streams include each object's compression function. This 1904 * check ensures that the receiving system can understand the 1905 * compression function transmitted. 1906 */ 1907 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1908 1909 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1910 dn->dn_compress = compress; 1911 dnode_setdirty(dn, tx); 1912 dnode_rele(dn, FTAG); 1913 } 1914 1915 /* 1916 * When the "redundant_metadata" property is set to "most", only indirect 1917 * blocks of this level and higher will have an additional ditto block. 1918 */ 1919 int zfs_redundant_metadata_most_ditto_level = 2; 1920 1921 void 1922 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1923 { 1924 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1925 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1926 (wp & WP_SPILL)); 1927 enum zio_checksum checksum = os->os_checksum; 1928 enum zio_compress compress = os->os_compress; 1929 uint8_t complevel = os->os_complevel; 1930 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1931 boolean_t dedup = B_FALSE; 1932 boolean_t nopwrite = B_FALSE; 1933 boolean_t dedup_verify = os->os_dedup_verify; 1934 boolean_t encrypt = B_FALSE; 1935 int copies = os->os_copies; 1936 1937 /* 1938 * We maintain different write policies for each of the following 1939 * types of data: 1940 * 1. metadata 1941 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1942 * 3. all other level 0 blocks 1943 */ 1944 if (ismd) { 1945 /* 1946 * XXX -- we should design a compression algorithm 1947 * that specializes in arrays of bps. 1948 */ 1949 compress = zio_compress_select(os->os_spa, 1950 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1951 1952 /* 1953 * Metadata always gets checksummed. If the data 1954 * checksum is multi-bit correctable, and it's not a 1955 * ZBT-style checksum, then it's suitable for metadata 1956 * as well. Otherwise, the metadata checksum defaults 1957 * to fletcher4. 1958 */ 1959 if (!(zio_checksum_table[checksum].ci_flags & 1960 ZCHECKSUM_FLAG_METADATA) || 1961 (zio_checksum_table[checksum].ci_flags & 1962 ZCHECKSUM_FLAG_EMBEDDED)) 1963 checksum = ZIO_CHECKSUM_FLETCHER_4; 1964 1965 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1966 (os->os_redundant_metadata == 1967 ZFS_REDUNDANT_METADATA_MOST && 1968 (level >= zfs_redundant_metadata_most_ditto_level || 1969 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1970 copies++; 1971 } else if (wp & WP_NOFILL) { 1972 ASSERT(level == 0); 1973 1974 /* 1975 * If we're writing preallocated blocks, we aren't actually 1976 * writing them so don't set any policy properties. These 1977 * blocks are currently only used by an external subsystem 1978 * outside of zfs (i.e. dump) and not written by the zio 1979 * pipeline. 1980 */ 1981 compress = ZIO_COMPRESS_OFF; 1982 checksum = ZIO_CHECKSUM_OFF; 1983 } else { 1984 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1985 compress); 1986 complevel = zio_complevel_select(os->os_spa, compress, 1987 complevel, complevel); 1988 1989 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1990 zio_checksum_select(dn->dn_checksum, checksum) : 1991 dedup_checksum; 1992 1993 /* 1994 * Determine dedup setting. If we are in dmu_sync(), 1995 * we won't actually dedup now because that's all 1996 * done in syncing context; but we do want to use the 1997 * dedup checksum. If the checksum is not strong 1998 * enough to ensure unique signatures, force 1999 * dedup_verify. 2000 */ 2001 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2002 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2003 if (!(zio_checksum_table[checksum].ci_flags & 2004 ZCHECKSUM_FLAG_DEDUP)) 2005 dedup_verify = B_TRUE; 2006 } 2007 2008 /* 2009 * Enable nopwrite if we have secure enough checksum 2010 * algorithm (see comment in zio_nop_write) and 2011 * compression is enabled. We don't enable nopwrite if 2012 * dedup is enabled as the two features are mutually 2013 * exclusive. 2014 */ 2015 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2016 ZCHECKSUM_FLAG_NOPWRITE) && 2017 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2018 } 2019 2020 /* 2021 * All objects in an encrypted objset are protected from modification 2022 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2023 * in the bp, so we cannot use all copies. Encrypted objects are also 2024 * not subject to nopwrite since writing the same data will still 2025 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2026 * to avoid ambiguity in the dedup code since the DDT does not store 2027 * object types. 2028 */ 2029 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2030 encrypt = B_TRUE; 2031 2032 if (DMU_OT_IS_ENCRYPTED(type)) { 2033 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2034 nopwrite = B_FALSE; 2035 } else { 2036 dedup = B_FALSE; 2037 } 2038 2039 if (level <= 0 && 2040 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2041 compress = ZIO_COMPRESS_EMPTY; 2042 } 2043 } 2044 2045 zp->zp_compress = compress; 2046 zp->zp_complevel = complevel; 2047 zp->zp_checksum = checksum; 2048 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2049 zp->zp_level = level; 2050 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2051 zp->zp_dedup = dedup; 2052 zp->zp_dedup_verify = dedup && dedup_verify; 2053 zp->zp_nopwrite = nopwrite; 2054 zp->zp_encrypt = encrypt; 2055 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2056 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN); 2057 bzero(zp->zp_iv, ZIO_DATA_IV_LEN); 2058 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN); 2059 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2060 os->os_zpl_special_smallblock : 0; 2061 2062 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2063 } 2064 2065 /* 2066 * This function is only called from zfs_holey_common() for zpl_llseek() 2067 * in order to determine the location of holes. In order to accurately 2068 * report holes all dirty data must be synced to disk. This causes extremely 2069 * poor performance when seeking for holes in a dirty file. As a compromise, 2070 * only provide hole data when the dnode is clean. When a dnode is dirty 2071 * report the dnode as having no holes which is always a safe thing to do. 2072 */ 2073 int 2074 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2075 { 2076 dnode_t *dn; 2077 int i, err; 2078 boolean_t clean = B_TRUE; 2079 2080 err = dnode_hold(os, object, FTAG, &dn); 2081 if (err) 2082 return (err); 2083 2084 /* 2085 * Check if dnode is dirty 2086 */ 2087 for (i = 0; i < TXG_SIZE; i++) { 2088 if (multilist_link_active(&dn->dn_dirty_link[i])) { 2089 clean = B_FALSE; 2090 break; 2091 } 2092 } 2093 2094 /* 2095 * If compatibility option is on, sync any current changes before 2096 * we go trundling through the block pointers. 2097 */ 2098 if (!clean && zfs_dmu_offset_next_sync) { 2099 clean = B_TRUE; 2100 dnode_rele(dn, FTAG); 2101 txg_wait_synced(dmu_objset_pool(os), 0); 2102 err = dnode_hold(os, object, FTAG, &dn); 2103 if (err) 2104 return (err); 2105 } 2106 2107 if (clean) 2108 err = dnode_next_offset(dn, 2109 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2110 else 2111 err = SET_ERROR(EBUSY); 2112 2113 dnode_rele(dn, FTAG); 2114 2115 return (err); 2116 } 2117 2118 void 2119 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2120 { 2121 dnode_phys_t *dnp = dn->dn_phys; 2122 2123 doi->doi_data_block_size = dn->dn_datablksz; 2124 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2125 1ULL << dn->dn_indblkshift : 0; 2126 doi->doi_type = dn->dn_type; 2127 doi->doi_bonus_type = dn->dn_bonustype; 2128 doi->doi_bonus_size = dn->dn_bonuslen; 2129 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2130 doi->doi_indirection = dn->dn_nlevels; 2131 doi->doi_checksum = dn->dn_checksum; 2132 doi->doi_compress = dn->dn_compress; 2133 doi->doi_nblkptr = dn->dn_nblkptr; 2134 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2135 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2136 doi->doi_fill_count = 0; 2137 for (int i = 0; i < dnp->dn_nblkptr; i++) 2138 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2139 } 2140 2141 void 2142 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2143 { 2144 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2145 mutex_enter(&dn->dn_mtx); 2146 2147 __dmu_object_info_from_dnode(dn, doi); 2148 2149 mutex_exit(&dn->dn_mtx); 2150 rw_exit(&dn->dn_struct_rwlock); 2151 } 2152 2153 /* 2154 * Get information on a DMU object. 2155 * If doi is NULL, just indicates whether the object exists. 2156 */ 2157 int 2158 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2159 { 2160 dnode_t *dn; 2161 int err = dnode_hold(os, object, FTAG, &dn); 2162 2163 if (err) 2164 return (err); 2165 2166 if (doi != NULL) 2167 dmu_object_info_from_dnode(dn, doi); 2168 2169 dnode_rele(dn, FTAG); 2170 return (0); 2171 } 2172 2173 /* 2174 * As above, but faster; can be used when you have a held dbuf in hand. 2175 */ 2176 void 2177 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2178 { 2179 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2180 2181 DB_DNODE_ENTER(db); 2182 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2183 DB_DNODE_EXIT(db); 2184 } 2185 2186 /* 2187 * Faster still when you only care about the size. 2188 */ 2189 void 2190 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2191 u_longlong_t *nblk512) 2192 { 2193 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2194 dnode_t *dn; 2195 2196 DB_DNODE_ENTER(db); 2197 dn = DB_DNODE(db); 2198 2199 *blksize = dn->dn_datablksz; 2200 /* add in number of slots used for the dnode itself */ 2201 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2202 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2203 DB_DNODE_EXIT(db); 2204 } 2205 2206 void 2207 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2208 { 2209 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2210 dnode_t *dn; 2211 2212 DB_DNODE_ENTER(db); 2213 dn = DB_DNODE(db); 2214 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2215 DB_DNODE_EXIT(db); 2216 } 2217 2218 void 2219 byteswap_uint64_array(void *vbuf, size_t size) 2220 { 2221 uint64_t *buf = vbuf; 2222 size_t count = size >> 3; 2223 int i; 2224 2225 ASSERT((size & 7) == 0); 2226 2227 for (i = 0; i < count; i++) 2228 buf[i] = BSWAP_64(buf[i]); 2229 } 2230 2231 void 2232 byteswap_uint32_array(void *vbuf, size_t size) 2233 { 2234 uint32_t *buf = vbuf; 2235 size_t count = size >> 2; 2236 int i; 2237 2238 ASSERT((size & 3) == 0); 2239 2240 for (i = 0; i < count; i++) 2241 buf[i] = BSWAP_32(buf[i]); 2242 } 2243 2244 void 2245 byteswap_uint16_array(void *vbuf, size_t size) 2246 { 2247 uint16_t *buf = vbuf; 2248 size_t count = size >> 1; 2249 int i; 2250 2251 ASSERT((size & 1) == 0); 2252 2253 for (i = 0; i < count; i++) 2254 buf[i] = BSWAP_16(buf[i]); 2255 } 2256 2257 /* ARGSUSED */ 2258 void 2259 byteswap_uint8_array(void *vbuf, size_t size) 2260 { 2261 } 2262 2263 void 2264 dmu_init(void) 2265 { 2266 abd_init(); 2267 zfs_dbgmsg_init(); 2268 sa_cache_init(); 2269 dmu_objset_init(); 2270 dnode_init(); 2271 zfetch_init(); 2272 dmu_tx_init(); 2273 l2arc_init(); 2274 arc_init(); 2275 dbuf_init(); 2276 } 2277 2278 void 2279 dmu_fini(void) 2280 { 2281 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2282 l2arc_fini(); 2283 dmu_tx_fini(); 2284 zfetch_fini(); 2285 dbuf_fini(); 2286 dnode_fini(); 2287 dmu_objset_fini(); 2288 sa_cache_fini(); 2289 zfs_dbgmsg_fini(); 2290 abd_fini(); 2291 } 2292 2293 EXPORT_SYMBOL(dmu_bonus_hold); 2294 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2295 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2296 EXPORT_SYMBOL(dmu_buf_rele_array); 2297 EXPORT_SYMBOL(dmu_prefetch); 2298 EXPORT_SYMBOL(dmu_free_range); 2299 EXPORT_SYMBOL(dmu_free_long_range); 2300 EXPORT_SYMBOL(dmu_free_long_object); 2301 EXPORT_SYMBOL(dmu_read); 2302 EXPORT_SYMBOL(dmu_read_by_dnode); 2303 EXPORT_SYMBOL(dmu_write); 2304 EXPORT_SYMBOL(dmu_write_by_dnode); 2305 EXPORT_SYMBOL(dmu_prealloc); 2306 EXPORT_SYMBOL(dmu_object_info); 2307 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2308 EXPORT_SYMBOL(dmu_object_info_from_db); 2309 EXPORT_SYMBOL(dmu_object_size_from_db); 2310 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2311 EXPORT_SYMBOL(dmu_object_set_nlevels); 2312 EXPORT_SYMBOL(dmu_object_set_blocksize); 2313 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2314 EXPORT_SYMBOL(dmu_object_set_checksum); 2315 EXPORT_SYMBOL(dmu_object_set_compress); 2316 EXPORT_SYMBOL(dmu_offset_next); 2317 EXPORT_SYMBOL(dmu_write_policy); 2318 EXPORT_SYMBOL(dmu_sync); 2319 EXPORT_SYMBOL(dmu_request_arcbuf); 2320 EXPORT_SYMBOL(dmu_return_arcbuf); 2321 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2322 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2323 EXPORT_SYMBOL(dmu_buf_hold); 2324 EXPORT_SYMBOL(dmu_ot); 2325 2326 /* BEGIN CSTYLED */ 2327 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2328 "Enable NOP writes"); 2329 2330 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW, 2331 "Percentage of dirtied blocks from frees in one TXG"); 2332 2333 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2334 "Enable forcing txg sync to find holes"); 2335 2336 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW, 2337 "Limit one prefetch call to this size"); 2338 /* END CSTYLED */ 2339