xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision ee21ee1572d40a3b74f18638dae38c1a9ad1e9e3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
57 #ifdef _KERNEL
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
60 #endif
61 
62 /*
63  * Enable/disable nopwrite feature.
64  */
65 int zfs_nopwrite_enabled = 1;
66 
67 /*
68  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69  * one TXG. After this threshold is crossed, additional dirty blocks from frees
70  * will wait until the next TXG.
71  * A value of zero will disable this throttle.
72  */
73 unsigned long zfs_per_txg_dirty_frees_percent = 5;
74 
75 /*
76  * Enable/disable forcing txg sync when dirty in dmu_offset_next.
77  */
78 int zfs_dmu_offset_next_sync = 0;
79 
80 /*
81  * Limit the amount we can prefetch with one call to this amount.  This
82  * helps to limit the amount of memory that can be used by prefetching.
83  * Larger objects should be prefetched a bit at a time.
84  */
85 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
86 
87 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
88 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
89 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
90 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
91 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
92 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
93 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
94 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
95 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
96 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
97 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
98 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
99 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
100 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
101 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
102 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
103 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
104 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
105 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
106 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
107 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
108 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
109 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
110 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
111 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
112 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
113 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
114 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
115 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
116 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
117 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
118 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
120 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
121 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
122 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
123 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
124 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
125 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
128 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
129 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
132 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
136 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
137 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
139 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
141 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
142 };
143 
144 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
145 	{	byteswap_uint8_array,	"uint8"		},
146 	{	byteswap_uint16_array,	"uint16"	},
147 	{	byteswap_uint32_array,	"uint32"	},
148 	{	byteswap_uint64_array,	"uint64"	},
149 	{	zap_byteswap,		"zap"		},
150 	{	dnode_buf_byteswap,	"dnode"		},
151 	{	dmu_objset_byteswap,	"objset"	},
152 	{	zfs_znode_byteswap,	"znode"		},
153 	{	zfs_oldacl_byteswap,	"oldacl"	},
154 	{	zfs_acl_byteswap,	"acl"		}
155 };
156 
157 static int
158 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
159     void *tag, dmu_buf_t **dbp)
160 {
161 	uint64_t blkid;
162 	dmu_buf_impl_t *db;
163 
164 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
165 	blkid = dbuf_whichblock(dn, 0, offset);
166 	db = dbuf_hold(dn, blkid, tag);
167 	rw_exit(&dn->dn_struct_rwlock);
168 
169 	if (db == NULL) {
170 		*dbp = NULL;
171 		return (SET_ERROR(EIO));
172 	}
173 
174 	*dbp = &db->db;
175 	return (0);
176 }
177 int
178 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
179     void *tag, dmu_buf_t **dbp)
180 {
181 	dnode_t *dn;
182 	uint64_t blkid;
183 	dmu_buf_impl_t *db;
184 	int err;
185 
186 	err = dnode_hold(os, object, FTAG, &dn);
187 	if (err)
188 		return (err);
189 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
190 	blkid = dbuf_whichblock(dn, 0, offset);
191 	db = dbuf_hold(dn, blkid, tag);
192 	rw_exit(&dn->dn_struct_rwlock);
193 	dnode_rele(dn, FTAG);
194 
195 	if (db == NULL) {
196 		*dbp = NULL;
197 		return (SET_ERROR(EIO));
198 	}
199 
200 	*dbp = &db->db;
201 	return (err);
202 }
203 
204 int
205 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
206     void *tag, dmu_buf_t **dbp, int flags)
207 {
208 	int err;
209 	int db_flags = DB_RF_CANFAIL;
210 
211 	if (flags & DMU_READ_NO_PREFETCH)
212 		db_flags |= DB_RF_NOPREFETCH;
213 	if (flags & DMU_READ_NO_DECRYPT)
214 		db_flags |= DB_RF_NO_DECRYPT;
215 
216 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
217 	if (err == 0) {
218 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
219 		err = dbuf_read(db, NULL, db_flags);
220 		if (err != 0) {
221 			dbuf_rele(db, tag);
222 			*dbp = NULL;
223 		}
224 	}
225 
226 	return (err);
227 }
228 
229 int
230 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
231     void *tag, dmu_buf_t **dbp, int flags)
232 {
233 	int err;
234 	int db_flags = DB_RF_CANFAIL;
235 
236 	if (flags & DMU_READ_NO_PREFETCH)
237 		db_flags |= DB_RF_NOPREFETCH;
238 	if (flags & DMU_READ_NO_DECRYPT)
239 		db_flags |= DB_RF_NO_DECRYPT;
240 
241 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
242 	if (err == 0) {
243 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
244 		err = dbuf_read(db, NULL, db_flags);
245 		if (err != 0) {
246 			dbuf_rele(db, tag);
247 			*dbp = NULL;
248 		}
249 	}
250 
251 	return (err);
252 }
253 
254 int
255 dmu_bonus_max(void)
256 {
257 	return (DN_OLD_MAX_BONUSLEN);
258 }
259 
260 int
261 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
262 {
263 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
264 	dnode_t *dn;
265 	int error;
266 
267 	DB_DNODE_ENTER(db);
268 	dn = DB_DNODE(db);
269 
270 	if (dn->dn_bonus != db) {
271 		error = SET_ERROR(EINVAL);
272 	} else if (newsize < 0 || newsize > db_fake->db_size) {
273 		error = SET_ERROR(EINVAL);
274 	} else {
275 		dnode_setbonuslen(dn, newsize, tx);
276 		error = 0;
277 	}
278 
279 	DB_DNODE_EXIT(db);
280 	return (error);
281 }
282 
283 int
284 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
285 {
286 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
287 	dnode_t *dn;
288 	int error;
289 
290 	DB_DNODE_ENTER(db);
291 	dn = DB_DNODE(db);
292 
293 	if (!DMU_OT_IS_VALID(type)) {
294 		error = SET_ERROR(EINVAL);
295 	} else if (dn->dn_bonus != db) {
296 		error = SET_ERROR(EINVAL);
297 	} else {
298 		dnode_setbonus_type(dn, type, tx);
299 		error = 0;
300 	}
301 
302 	DB_DNODE_EXIT(db);
303 	return (error);
304 }
305 
306 dmu_object_type_t
307 dmu_get_bonustype(dmu_buf_t *db_fake)
308 {
309 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
310 	dnode_t *dn;
311 	dmu_object_type_t type;
312 
313 	DB_DNODE_ENTER(db);
314 	dn = DB_DNODE(db);
315 	type = dn->dn_bonustype;
316 	DB_DNODE_EXIT(db);
317 
318 	return (type);
319 }
320 
321 int
322 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
323 {
324 	dnode_t *dn;
325 	int error;
326 
327 	error = dnode_hold(os, object, FTAG, &dn);
328 	dbuf_rm_spill(dn, tx);
329 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
330 	dnode_rm_spill(dn, tx);
331 	rw_exit(&dn->dn_struct_rwlock);
332 	dnode_rele(dn, FTAG);
333 	return (error);
334 }
335 
336 /*
337  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
338  * has not yet been allocated a new bonus dbuf a will be allocated.
339  * Returns ENOENT, EIO, or 0.
340  */
341 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
342     uint32_t flags)
343 {
344 	dmu_buf_impl_t *db;
345 	int error;
346 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
347 
348 	if (flags & DMU_READ_NO_PREFETCH)
349 		db_flags |= DB_RF_NOPREFETCH;
350 	if (flags & DMU_READ_NO_DECRYPT)
351 		db_flags |= DB_RF_NO_DECRYPT;
352 
353 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
354 	if (dn->dn_bonus == NULL) {
355 		rw_exit(&dn->dn_struct_rwlock);
356 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
357 		if (dn->dn_bonus == NULL)
358 			dbuf_create_bonus(dn);
359 	}
360 	db = dn->dn_bonus;
361 
362 	/* as long as the bonus buf is held, the dnode will be held */
363 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
364 		VERIFY(dnode_add_ref(dn, db));
365 		atomic_inc_32(&dn->dn_dbufs_count);
366 	}
367 
368 	/*
369 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371 	 * a dnode hold for every dbuf.
372 	 */
373 	rw_exit(&dn->dn_struct_rwlock);
374 
375 	error = dbuf_read(db, NULL, db_flags);
376 	if (error) {
377 		dnode_evict_bonus(dn);
378 		dbuf_rele(db, tag);
379 		*dbp = NULL;
380 		return (error);
381 	}
382 
383 	*dbp = &db->db;
384 	return (0);
385 }
386 
387 int
388 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
389 {
390 	dnode_t *dn;
391 	int error;
392 
393 	error = dnode_hold(os, object, FTAG, &dn);
394 	if (error)
395 		return (error);
396 
397 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
398 	dnode_rele(dn, FTAG);
399 
400 	return (error);
401 }
402 
403 /*
404  * returns ENOENT, EIO, or 0.
405  *
406  * This interface will allocate a blank spill dbuf when a spill blk
407  * doesn't already exist on the dnode.
408  *
409  * if you only want to find an already existing spill db, then
410  * dmu_spill_hold_existing() should be used.
411  */
412 int
413 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
414 {
415 	dmu_buf_impl_t *db = NULL;
416 	int err;
417 
418 	if ((flags & DB_RF_HAVESTRUCT) == 0)
419 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
420 
421 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
422 
423 	if ((flags & DB_RF_HAVESTRUCT) == 0)
424 		rw_exit(&dn->dn_struct_rwlock);
425 
426 	if (db == NULL) {
427 		*dbp = NULL;
428 		return (SET_ERROR(EIO));
429 	}
430 	err = dbuf_read(db, NULL, flags);
431 	if (err == 0)
432 		*dbp = &db->db;
433 	else {
434 		dbuf_rele(db, tag);
435 		*dbp = NULL;
436 	}
437 	return (err);
438 }
439 
440 int
441 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
442 {
443 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
444 	dnode_t *dn;
445 	int err;
446 
447 	DB_DNODE_ENTER(db);
448 	dn = DB_DNODE(db);
449 
450 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
451 		err = SET_ERROR(EINVAL);
452 	} else {
453 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
454 
455 		if (!dn->dn_have_spill) {
456 			err = SET_ERROR(ENOENT);
457 		} else {
458 			err = dmu_spill_hold_by_dnode(dn,
459 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
460 		}
461 
462 		rw_exit(&dn->dn_struct_rwlock);
463 	}
464 
465 	DB_DNODE_EXIT(db);
466 	return (err);
467 }
468 
469 int
470 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
471     dmu_buf_t **dbp)
472 {
473 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
474 	dnode_t *dn;
475 	int err;
476 	uint32_t db_flags = DB_RF_CANFAIL;
477 
478 	if (flags & DMU_READ_NO_DECRYPT)
479 		db_flags |= DB_RF_NO_DECRYPT;
480 
481 	DB_DNODE_ENTER(db);
482 	dn = DB_DNODE(db);
483 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
484 	DB_DNODE_EXIT(db);
485 
486 	return (err);
487 }
488 
489 /*
490  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
491  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
492  * and can induce severe lock contention when writing to several files
493  * whose dnodes are in the same block.
494  */
495 int
496 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
497     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
498 {
499 	dmu_buf_t **dbp;
500 	uint64_t blkid, nblks, i;
501 	uint32_t dbuf_flags;
502 	int err;
503 	zio_t *zio = NULL;
504 
505 	ASSERT(length <= DMU_MAX_ACCESS);
506 
507 	/*
508 	 * Note: We directly notify the prefetch code of this read, so that
509 	 * we can tell it about the multi-block read.  dbuf_read() only knows
510 	 * about the one block it is accessing.
511 	 */
512 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
513 	    DB_RF_NOPREFETCH;
514 
515 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
516 	if (dn->dn_datablkshift) {
517 		int blkshift = dn->dn_datablkshift;
518 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
519 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
520 	} else {
521 		if (offset + length > dn->dn_datablksz) {
522 			zfs_panic_recover("zfs: accessing past end of object "
523 			    "%llx/%llx (size=%u access=%llu+%llu)",
524 			    (longlong_t)dn->dn_objset->
525 			    os_dsl_dataset->ds_object,
526 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
527 			    (longlong_t)offset, (longlong_t)length);
528 			rw_exit(&dn->dn_struct_rwlock);
529 			return (SET_ERROR(EIO));
530 		}
531 		nblks = 1;
532 	}
533 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
534 
535 	if (read)
536 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
537 		    ZIO_FLAG_CANFAIL);
538 	blkid = dbuf_whichblock(dn, 0, offset);
539 	for (i = 0; i < nblks; i++) {
540 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
541 		if (db == NULL) {
542 			rw_exit(&dn->dn_struct_rwlock);
543 			dmu_buf_rele_array(dbp, nblks, tag);
544 			if (read)
545 				zio_nowait(zio);
546 			return (SET_ERROR(EIO));
547 		}
548 
549 		/* initiate async i/o */
550 		if (read)
551 			(void) dbuf_read(db, zio, dbuf_flags);
552 		dbp[i] = &db->db;
553 	}
554 
555 	if (!read)
556 		zfs_racct_write(length, nblks);
557 
558 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
559 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
560 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
561 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
562 	}
563 	rw_exit(&dn->dn_struct_rwlock);
564 
565 	if (read) {
566 		/* wait for async read i/o */
567 		err = zio_wait(zio);
568 		if (err) {
569 			dmu_buf_rele_array(dbp, nblks, tag);
570 			return (err);
571 		}
572 
573 		/* wait for other io to complete */
574 		for (i = 0; i < nblks; i++) {
575 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
576 			mutex_enter(&db->db_mtx);
577 			while (db->db_state == DB_READ ||
578 			    db->db_state == DB_FILL)
579 				cv_wait(&db->db_changed, &db->db_mtx);
580 			if (db->db_state == DB_UNCACHED)
581 				err = SET_ERROR(EIO);
582 			mutex_exit(&db->db_mtx);
583 			if (err) {
584 				dmu_buf_rele_array(dbp, nblks, tag);
585 				return (err);
586 			}
587 		}
588 	}
589 
590 	*numbufsp = nblks;
591 	*dbpp = dbp;
592 	return (0);
593 }
594 
595 static int
596 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
597     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
598 {
599 	dnode_t *dn;
600 	int err;
601 
602 	err = dnode_hold(os, object, FTAG, &dn);
603 	if (err)
604 		return (err);
605 
606 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
607 	    numbufsp, dbpp, DMU_READ_PREFETCH);
608 
609 	dnode_rele(dn, FTAG);
610 
611 	return (err);
612 }
613 
614 int
615 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
616     uint64_t length, boolean_t read, void *tag, int *numbufsp,
617     dmu_buf_t ***dbpp)
618 {
619 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
620 	dnode_t *dn;
621 	int err;
622 
623 	DB_DNODE_ENTER(db);
624 	dn = DB_DNODE(db);
625 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
626 	    numbufsp, dbpp, DMU_READ_PREFETCH);
627 	DB_DNODE_EXIT(db);
628 
629 	return (err);
630 }
631 
632 void
633 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
634 {
635 	int i;
636 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
637 
638 	if (numbufs == 0)
639 		return;
640 
641 	for (i = 0; i < numbufs; i++) {
642 		if (dbp[i])
643 			dbuf_rele(dbp[i], tag);
644 	}
645 
646 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
647 }
648 
649 /*
650  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
651  * indirect blocks prefetched will be those that point to the blocks containing
652  * the data starting at offset, and continuing to offset + len.
653  *
654  * Note that if the indirect blocks above the blocks being prefetched are not
655  * in cache, they will be asynchronously read in.
656  */
657 void
658 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
659     uint64_t len, zio_priority_t pri)
660 {
661 	dnode_t *dn;
662 	uint64_t blkid;
663 	int nblks, err;
664 
665 	if (len == 0) {  /* they're interested in the bonus buffer */
666 		dn = DMU_META_DNODE(os);
667 
668 		if (object == 0 || object >= DN_MAX_OBJECT)
669 			return;
670 
671 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
672 		blkid = dbuf_whichblock(dn, level,
673 		    object * sizeof (dnode_phys_t));
674 		dbuf_prefetch(dn, level, blkid, pri, 0);
675 		rw_exit(&dn->dn_struct_rwlock);
676 		return;
677 	}
678 
679 	/*
680 	 * See comment before the definition of dmu_prefetch_max.
681 	 */
682 	len = MIN(len, dmu_prefetch_max);
683 
684 	/*
685 	 * XXX - Note, if the dnode for the requested object is not
686 	 * already cached, we will do a *synchronous* read in the
687 	 * dnode_hold() call.  The same is true for any indirects.
688 	 */
689 	err = dnode_hold(os, object, FTAG, &dn);
690 	if (err != 0)
691 		return;
692 
693 	/*
694 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
695 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
696 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
697 	 * offset)  is the first.  Then the number we need to prefetch is the
698 	 * last - first + 1.
699 	 */
700 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
701 	if (level > 0 || dn->dn_datablkshift != 0) {
702 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
703 		    dbuf_whichblock(dn, level, offset) + 1;
704 	} else {
705 		nblks = (offset < dn->dn_datablksz);
706 	}
707 
708 	if (nblks != 0) {
709 		blkid = dbuf_whichblock(dn, level, offset);
710 		for (int i = 0; i < nblks; i++)
711 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
712 	}
713 	rw_exit(&dn->dn_struct_rwlock);
714 
715 	dnode_rele(dn, FTAG);
716 }
717 
718 /*
719  * Get the next "chunk" of file data to free.  We traverse the file from
720  * the end so that the file gets shorter over time (if we crashes in the
721  * middle, this will leave us in a better state).  We find allocated file
722  * data by simply searching the allocated level 1 indirects.
723  *
724  * On input, *start should be the first offset that does not need to be
725  * freed (e.g. "offset + length").  On return, *start will be the first
726  * offset that should be freed and l1blks is set to the number of level 1
727  * indirect blocks found within the chunk.
728  */
729 static int
730 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
731 {
732 	uint64_t blks;
733 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
734 	/* bytes of data covered by a level-1 indirect block */
735 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
736 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
737 
738 	ASSERT3U(minimum, <=, *start);
739 
740 	/*
741 	 * Check if we can free the entire range assuming that all of the
742 	 * L1 blocks in this range have data. If we can, we use this
743 	 * worst case value as an estimate so we can avoid having to look
744 	 * at the object's actual data.
745 	 */
746 	uint64_t total_l1blks =
747 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
748 	    iblkrange;
749 	if (total_l1blks <= maxblks) {
750 		*l1blks = total_l1blks;
751 		*start = minimum;
752 		return (0);
753 	}
754 	ASSERT(ISP2(iblkrange));
755 
756 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
757 		int err;
758 
759 		/*
760 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
761 		 * indirect block at or before the input offset.  We must
762 		 * decrement *start so that it is at the end of the region
763 		 * to search.
764 		 */
765 		(*start)--;
766 
767 		err = dnode_next_offset(dn,
768 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
769 
770 		/* if there are no indirect blocks before start, we are done */
771 		if (err == ESRCH) {
772 			*start = minimum;
773 			break;
774 		} else if (err != 0) {
775 			*l1blks = blks;
776 			return (err);
777 		}
778 
779 		/* set start to the beginning of this L1 indirect */
780 		*start = P2ALIGN(*start, iblkrange);
781 	}
782 	if (*start < minimum)
783 		*start = minimum;
784 	*l1blks = blks;
785 
786 	return (0);
787 }
788 
789 /*
790  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
791  * otherwise return false.
792  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
793  */
794 /*ARGSUSED*/
795 static boolean_t
796 dmu_objset_zfs_unmounting(objset_t *os)
797 {
798 #ifdef _KERNEL
799 	if (dmu_objset_type(os) == DMU_OST_ZFS)
800 		return (zfs_get_vfs_flag_unmounted(os));
801 #endif
802 	return (B_FALSE);
803 }
804 
805 static int
806 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
807     uint64_t length)
808 {
809 	uint64_t object_size;
810 	int err;
811 	uint64_t dirty_frees_threshold;
812 	dsl_pool_t *dp = dmu_objset_pool(os);
813 
814 	if (dn == NULL)
815 		return (SET_ERROR(EINVAL));
816 
817 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
818 	if (offset >= object_size)
819 		return (0);
820 
821 	if (zfs_per_txg_dirty_frees_percent <= 100)
822 		dirty_frees_threshold =
823 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
824 	else
825 		dirty_frees_threshold = zfs_dirty_data_max / 20;
826 
827 	if (length == DMU_OBJECT_END || offset + length > object_size)
828 		length = object_size - offset;
829 
830 	while (length != 0) {
831 		uint64_t chunk_end, chunk_begin, chunk_len;
832 		uint64_t l1blks;
833 		dmu_tx_t *tx;
834 
835 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
836 			return (SET_ERROR(EINTR));
837 
838 		chunk_end = chunk_begin = offset + length;
839 
840 		/* move chunk_begin backwards to the beginning of this chunk */
841 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
842 		if (err)
843 			return (err);
844 		ASSERT3U(chunk_begin, >=, offset);
845 		ASSERT3U(chunk_begin, <=, chunk_end);
846 
847 		chunk_len = chunk_end - chunk_begin;
848 
849 		tx = dmu_tx_create(os);
850 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
851 
852 		/*
853 		 * Mark this transaction as typically resulting in a net
854 		 * reduction in space used.
855 		 */
856 		dmu_tx_mark_netfree(tx);
857 		err = dmu_tx_assign(tx, TXG_WAIT);
858 		if (err) {
859 			dmu_tx_abort(tx);
860 			return (err);
861 		}
862 
863 		uint64_t txg = dmu_tx_get_txg(tx);
864 
865 		mutex_enter(&dp->dp_lock);
866 		uint64_t long_free_dirty =
867 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
868 		mutex_exit(&dp->dp_lock);
869 
870 		/*
871 		 * To avoid filling up a TXG with just frees, wait for
872 		 * the next TXG to open before freeing more chunks if
873 		 * we have reached the threshold of frees.
874 		 */
875 		if (dirty_frees_threshold != 0 &&
876 		    long_free_dirty >= dirty_frees_threshold) {
877 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
878 			dmu_tx_commit(tx);
879 			txg_wait_open(dp, 0, B_TRUE);
880 			continue;
881 		}
882 
883 		/*
884 		 * In order to prevent unnecessary write throttling, for each
885 		 * TXG, we track the cumulative size of L1 blocks being dirtied
886 		 * in dnode_free_range() below. We compare this number to a
887 		 * tunable threshold, past which we prevent new L1 dirty freeing
888 		 * blocks from being added into the open TXG. See
889 		 * dmu_free_long_range_impl() for details. The threshold
890 		 * prevents write throttle activation due to dirty freeing L1
891 		 * blocks taking up a large percentage of zfs_dirty_data_max.
892 		 */
893 		mutex_enter(&dp->dp_lock);
894 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
895 		    l1blks << dn->dn_indblkshift;
896 		mutex_exit(&dp->dp_lock);
897 		DTRACE_PROBE3(free__long__range,
898 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
899 		    uint64_t, txg);
900 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
901 
902 		dmu_tx_commit(tx);
903 
904 		length -= chunk_len;
905 	}
906 	return (0);
907 }
908 
909 int
910 dmu_free_long_range(objset_t *os, uint64_t object,
911     uint64_t offset, uint64_t length)
912 {
913 	dnode_t *dn;
914 	int err;
915 
916 	err = dnode_hold(os, object, FTAG, &dn);
917 	if (err != 0)
918 		return (err);
919 	err = dmu_free_long_range_impl(os, dn, offset, length);
920 
921 	/*
922 	 * It is important to zero out the maxblkid when freeing the entire
923 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
924 	 * will take the fast path, and (b) dnode_reallocate() can verify
925 	 * that the entire file has been freed.
926 	 */
927 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
928 		dn->dn_maxblkid = 0;
929 
930 	dnode_rele(dn, FTAG);
931 	return (err);
932 }
933 
934 int
935 dmu_free_long_object(objset_t *os, uint64_t object)
936 {
937 	dmu_tx_t *tx;
938 	int err;
939 
940 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
941 	if (err != 0)
942 		return (err);
943 
944 	tx = dmu_tx_create(os);
945 	dmu_tx_hold_bonus(tx, object);
946 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
947 	dmu_tx_mark_netfree(tx);
948 	err = dmu_tx_assign(tx, TXG_WAIT);
949 	if (err == 0) {
950 		if (err == 0)
951 			err = dmu_object_free(os, object, tx);
952 
953 		dmu_tx_commit(tx);
954 	} else {
955 		dmu_tx_abort(tx);
956 	}
957 
958 	return (err);
959 }
960 
961 int
962 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
963     uint64_t size, dmu_tx_t *tx)
964 {
965 	dnode_t *dn;
966 	int err = dnode_hold(os, object, FTAG, &dn);
967 	if (err)
968 		return (err);
969 	ASSERT(offset < UINT64_MAX);
970 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
971 	dnode_free_range(dn, offset, size, tx);
972 	dnode_rele(dn, FTAG);
973 	return (0);
974 }
975 
976 static int
977 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
978     void *buf, uint32_t flags)
979 {
980 	dmu_buf_t **dbp;
981 	int numbufs, err = 0;
982 
983 	/*
984 	 * Deal with odd block sizes, where there can't be data past the first
985 	 * block.  If we ever do the tail block optimization, we will need to
986 	 * handle that here as well.
987 	 */
988 	if (dn->dn_maxblkid == 0) {
989 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
990 		    MIN(size, dn->dn_datablksz - offset);
991 		bzero((char *)buf + newsz, size - newsz);
992 		size = newsz;
993 	}
994 
995 	while (size > 0) {
996 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
997 		int i;
998 
999 		/*
1000 		 * NB: we could do this block-at-a-time, but it's nice
1001 		 * to be reading in parallel.
1002 		 */
1003 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1004 		    TRUE, FTAG, &numbufs, &dbp, flags);
1005 		if (err)
1006 			break;
1007 
1008 		for (i = 0; i < numbufs; i++) {
1009 			uint64_t tocpy;
1010 			int64_t bufoff;
1011 			dmu_buf_t *db = dbp[i];
1012 
1013 			ASSERT(size > 0);
1014 
1015 			bufoff = offset - db->db_offset;
1016 			tocpy = MIN(db->db_size - bufoff, size);
1017 
1018 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1019 
1020 			offset += tocpy;
1021 			size -= tocpy;
1022 			buf = (char *)buf + tocpy;
1023 		}
1024 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1025 	}
1026 	return (err);
1027 }
1028 
1029 int
1030 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1031     void *buf, uint32_t flags)
1032 {
1033 	dnode_t *dn;
1034 	int err;
1035 
1036 	err = dnode_hold(os, object, FTAG, &dn);
1037 	if (err != 0)
1038 		return (err);
1039 
1040 	err = dmu_read_impl(dn, offset, size, buf, flags);
1041 	dnode_rele(dn, FTAG);
1042 	return (err);
1043 }
1044 
1045 int
1046 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1047     uint32_t flags)
1048 {
1049 	return (dmu_read_impl(dn, offset, size, buf, flags));
1050 }
1051 
1052 static void
1053 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1054     const void *buf, dmu_tx_t *tx)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < numbufs; i++) {
1059 		uint64_t tocpy;
1060 		int64_t bufoff;
1061 		dmu_buf_t *db = dbp[i];
1062 
1063 		ASSERT(size > 0);
1064 
1065 		bufoff = offset - db->db_offset;
1066 		tocpy = MIN(db->db_size - bufoff, size);
1067 
1068 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1069 
1070 		if (tocpy == db->db_size)
1071 			dmu_buf_will_fill(db, tx);
1072 		else
1073 			dmu_buf_will_dirty(db, tx);
1074 
1075 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1076 
1077 		if (tocpy == db->db_size)
1078 			dmu_buf_fill_done(db, tx);
1079 
1080 		offset += tocpy;
1081 		size -= tocpy;
1082 		buf = (char *)buf + tocpy;
1083 	}
1084 }
1085 
1086 void
1087 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1088     const void *buf, dmu_tx_t *tx)
1089 {
1090 	dmu_buf_t **dbp;
1091 	int numbufs;
1092 
1093 	if (size == 0)
1094 		return;
1095 
1096 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1097 	    FALSE, FTAG, &numbufs, &dbp));
1098 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1099 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1100 }
1101 
1102 /*
1103  * Note: Lustre is an external consumer of this interface.
1104  */
1105 void
1106 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1107     const void *buf, dmu_tx_t *tx)
1108 {
1109 	dmu_buf_t **dbp;
1110 	int numbufs;
1111 
1112 	if (size == 0)
1113 		return;
1114 
1115 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1116 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1117 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1118 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1119 }
1120 
1121 void
1122 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1123     dmu_tx_t *tx)
1124 {
1125 	dmu_buf_t **dbp;
1126 	int numbufs, i;
1127 
1128 	if (size == 0)
1129 		return;
1130 
1131 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1132 	    FALSE, FTAG, &numbufs, &dbp));
1133 
1134 	for (i = 0; i < numbufs; i++) {
1135 		dmu_buf_t *db = dbp[i];
1136 
1137 		dmu_buf_will_not_fill(db, tx);
1138 	}
1139 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1140 }
1141 
1142 void
1143 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1144     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1145     int compressed_size, int byteorder, dmu_tx_t *tx)
1146 {
1147 	dmu_buf_t *db;
1148 
1149 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1150 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1151 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1152 	    FTAG, &db));
1153 
1154 	dmu_buf_write_embedded(db,
1155 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1156 	    uncompressed_size, compressed_size, byteorder, tx);
1157 
1158 	dmu_buf_rele(db, FTAG);
1159 }
1160 
1161 void
1162 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1163     dmu_tx_t *tx)
1164 {
1165 	int numbufs, i;
1166 	dmu_buf_t **dbp;
1167 
1168 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1169 	    &numbufs, &dbp));
1170 	for (i = 0; i < numbufs; i++)
1171 		dmu_buf_redact(dbp[i], tx);
1172 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1173 }
1174 
1175 #ifdef _KERNEL
1176 int
1177 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1178 {
1179 	dmu_buf_t **dbp;
1180 	int numbufs, i, err;
1181 
1182 	/*
1183 	 * NB: we could do this block-at-a-time, but it's nice
1184 	 * to be reading in parallel.
1185 	 */
1186 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1187 	    TRUE, FTAG, &numbufs, &dbp, 0);
1188 	if (err)
1189 		return (err);
1190 
1191 	for (i = 0; i < numbufs; i++) {
1192 		uint64_t tocpy;
1193 		int64_t bufoff;
1194 		dmu_buf_t *db = dbp[i];
1195 
1196 		ASSERT(size > 0);
1197 
1198 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1199 		tocpy = MIN(db->db_size - bufoff, size);
1200 
1201 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1202 		    UIO_READ, uio);
1203 
1204 		if (err)
1205 			break;
1206 
1207 		size -= tocpy;
1208 	}
1209 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1210 
1211 	return (err);
1212 }
1213 
1214 /*
1215  * Read 'size' bytes into the uio buffer.
1216  * From object zdb->db_object.
1217  * Starting at zfs_uio_offset(uio).
1218  *
1219  * If the caller already has a dbuf in the target object
1220  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1221  * because we don't have to find the dnode_t for the object.
1222  */
1223 int
1224 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1225 {
1226 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1227 	dnode_t *dn;
1228 	int err;
1229 
1230 	if (size == 0)
1231 		return (0);
1232 
1233 	DB_DNODE_ENTER(db);
1234 	dn = DB_DNODE(db);
1235 	err = dmu_read_uio_dnode(dn, uio, size);
1236 	DB_DNODE_EXIT(db);
1237 
1238 	return (err);
1239 }
1240 
1241 /*
1242  * Read 'size' bytes into the uio buffer.
1243  * From the specified object
1244  * Starting at offset zfs_uio_offset(uio).
1245  */
1246 int
1247 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1248 {
1249 	dnode_t *dn;
1250 	int err;
1251 
1252 	if (size == 0)
1253 		return (0);
1254 
1255 	err = dnode_hold(os, object, FTAG, &dn);
1256 	if (err)
1257 		return (err);
1258 
1259 	err = dmu_read_uio_dnode(dn, uio, size);
1260 
1261 	dnode_rele(dn, FTAG);
1262 
1263 	return (err);
1264 }
1265 
1266 int
1267 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1268 {
1269 	dmu_buf_t **dbp;
1270 	int numbufs;
1271 	int err = 0;
1272 	int i;
1273 
1274 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1275 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1276 	if (err)
1277 		return (err);
1278 
1279 	for (i = 0; i < numbufs; i++) {
1280 		uint64_t tocpy;
1281 		int64_t bufoff;
1282 		dmu_buf_t *db = dbp[i];
1283 
1284 		ASSERT(size > 0);
1285 
1286 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1287 		tocpy = MIN(db->db_size - bufoff, size);
1288 
1289 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1290 
1291 		if (tocpy == db->db_size)
1292 			dmu_buf_will_fill(db, tx);
1293 		else
1294 			dmu_buf_will_dirty(db, tx);
1295 
1296 		/*
1297 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1298 		 * pages).  There needs to be a uiolockdown() function
1299 		 * to lock the pages in memory, so that zfs_uiomove won't
1300 		 * block.
1301 		 */
1302 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1303 		    tocpy, UIO_WRITE, uio);
1304 
1305 		if (tocpy == db->db_size)
1306 			dmu_buf_fill_done(db, tx);
1307 
1308 		if (err)
1309 			break;
1310 
1311 		size -= tocpy;
1312 	}
1313 
1314 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1315 	return (err);
1316 }
1317 
1318 /*
1319  * Write 'size' bytes from the uio buffer.
1320  * To object zdb->db_object.
1321  * Starting at offset zfs_uio_offset(uio).
1322  *
1323  * If the caller already has a dbuf in the target object
1324  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1325  * because we don't have to find the dnode_t for the object.
1326  */
1327 int
1328 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1329     dmu_tx_t *tx)
1330 {
1331 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1332 	dnode_t *dn;
1333 	int err;
1334 
1335 	if (size == 0)
1336 		return (0);
1337 
1338 	DB_DNODE_ENTER(db);
1339 	dn = DB_DNODE(db);
1340 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1341 	DB_DNODE_EXIT(db);
1342 
1343 	return (err);
1344 }
1345 
1346 /*
1347  * Write 'size' bytes from the uio buffer.
1348  * To the specified object.
1349  * Starting at offset zfs_uio_offset(uio).
1350  */
1351 int
1352 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1353     dmu_tx_t *tx)
1354 {
1355 	dnode_t *dn;
1356 	int err;
1357 
1358 	if (size == 0)
1359 		return (0);
1360 
1361 	err = dnode_hold(os, object, FTAG, &dn);
1362 	if (err)
1363 		return (err);
1364 
1365 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1366 
1367 	dnode_rele(dn, FTAG);
1368 
1369 	return (err);
1370 }
1371 #endif /* _KERNEL */
1372 
1373 /*
1374  * Allocate a loaned anonymous arc buffer.
1375  */
1376 arc_buf_t *
1377 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1378 {
1379 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1380 
1381 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1382 }
1383 
1384 /*
1385  * Free a loaned arc buffer.
1386  */
1387 void
1388 dmu_return_arcbuf(arc_buf_t *buf)
1389 {
1390 	arc_return_buf(buf, FTAG);
1391 	arc_buf_destroy(buf, FTAG);
1392 }
1393 
1394 /*
1395  * A "lightweight" write is faster than a regular write (e.g.
1396  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1397  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1398  * data can not be read or overwritten until the transaction's txg has been
1399  * synced.  This makes it appropriate for workloads that are known to be
1400  * (temporarily) write-only, like "zfs receive".
1401  *
1402  * A single block is written, starting at the specified offset in bytes.  If
1403  * the call is successful, it returns 0 and the provided abd has been
1404  * consumed (the caller should not free it).
1405  */
1406 int
1407 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1408     const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1409 {
1410 	dbuf_dirty_record_t *dr =
1411 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1412 	if (dr == NULL)
1413 		return (SET_ERROR(EIO));
1414 	dr->dt.dll.dr_abd = abd;
1415 	dr->dt.dll.dr_props = *zp;
1416 	dr->dt.dll.dr_flags = flags;
1417 	return (0);
1418 }
1419 
1420 /*
1421  * When possible directly assign passed loaned arc buffer to a dbuf.
1422  * If this is not possible copy the contents of passed arc buf via
1423  * dmu_write().
1424  */
1425 int
1426 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1427     dmu_tx_t *tx)
1428 {
1429 	dmu_buf_impl_t *db;
1430 	objset_t *os = dn->dn_objset;
1431 	uint64_t object = dn->dn_object;
1432 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1433 	uint64_t blkid;
1434 
1435 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1436 	blkid = dbuf_whichblock(dn, 0, offset);
1437 	db = dbuf_hold(dn, blkid, FTAG);
1438 	if (db == NULL)
1439 		return (SET_ERROR(EIO));
1440 	rw_exit(&dn->dn_struct_rwlock);
1441 
1442 	/*
1443 	 * We can only assign if the offset is aligned and the arc buf is the
1444 	 * same size as the dbuf.
1445 	 */
1446 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1447 		zfs_racct_write(blksz, 1);
1448 		dbuf_assign_arcbuf(db, buf, tx);
1449 		dbuf_rele(db, FTAG);
1450 	} else {
1451 		/* compressed bufs must always be assignable to their dbuf */
1452 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1453 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1454 
1455 		dbuf_rele(db, FTAG);
1456 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1457 		dmu_return_arcbuf(buf);
1458 	}
1459 
1460 	return (0);
1461 }
1462 
1463 int
1464 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1465     dmu_tx_t *tx)
1466 {
1467 	int err;
1468 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1469 
1470 	DB_DNODE_ENTER(dbuf);
1471 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1472 	DB_DNODE_EXIT(dbuf);
1473 
1474 	return (err);
1475 }
1476 
1477 typedef struct {
1478 	dbuf_dirty_record_t	*dsa_dr;
1479 	dmu_sync_cb_t		*dsa_done;
1480 	zgd_t			*dsa_zgd;
1481 	dmu_tx_t		*dsa_tx;
1482 } dmu_sync_arg_t;
1483 
1484 /* ARGSUSED */
1485 static void
1486 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1487 {
1488 	dmu_sync_arg_t *dsa = varg;
1489 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1490 	blkptr_t *bp = zio->io_bp;
1491 
1492 	if (zio->io_error == 0) {
1493 		if (BP_IS_HOLE(bp)) {
1494 			/*
1495 			 * A block of zeros may compress to a hole, but the
1496 			 * block size still needs to be known for replay.
1497 			 */
1498 			BP_SET_LSIZE(bp, db->db_size);
1499 		} else if (!BP_IS_EMBEDDED(bp)) {
1500 			ASSERT(BP_GET_LEVEL(bp) == 0);
1501 			BP_SET_FILL(bp, 1);
1502 		}
1503 	}
1504 }
1505 
1506 static void
1507 dmu_sync_late_arrival_ready(zio_t *zio)
1508 {
1509 	dmu_sync_ready(zio, NULL, zio->io_private);
1510 }
1511 
1512 /* ARGSUSED */
1513 static void
1514 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1515 {
1516 	dmu_sync_arg_t *dsa = varg;
1517 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1518 	dmu_buf_impl_t *db = dr->dr_dbuf;
1519 	zgd_t *zgd = dsa->dsa_zgd;
1520 
1521 	/*
1522 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1523 	 * the writes for the lwb have completed.
1524 	 */
1525 	if (zio->io_error == 0) {
1526 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1527 	}
1528 
1529 	mutex_enter(&db->db_mtx);
1530 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1531 	if (zio->io_error == 0) {
1532 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1533 		if (dr->dt.dl.dr_nopwrite) {
1534 			blkptr_t *bp = zio->io_bp;
1535 			blkptr_t *bp_orig = &zio->io_bp_orig;
1536 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1537 
1538 			ASSERT(BP_EQUAL(bp, bp_orig));
1539 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1540 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1541 			VERIFY(zio_checksum_table[chksum].ci_flags &
1542 			    ZCHECKSUM_FLAG_NOPWRITE);
1543 		}
1544 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1545 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1546 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1547 
1548 		/*
1549 		 * Old style holes are filled with all zeros, whereas
1550 		 * new-style holes maintain their lsize, type, level,
1551 		 * and birth time (see zio_write_compress). While we
1552 		 * need to reset the BP_SET_LSIZE() call that happened
1553 		 * in dmu_sync_ready for old style holes, we do *not*
1554 		 * want to wipe out the information contained in new
1555 		 * style holes. Thus, only zero out the block pointer if
1556 		 * it's an old style hole.
1557 		 */
1558 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1559 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1560 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1561 	} else {
1562 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1563 	}
1564 	cv_broadcast(&db->db_changed);
1565 	mutex_exit(&db->db_mtx);
1566 
1567 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1568 
1569 	kmem_free(dsa, sizeof (*dsa));
1570 }
1571 
1572 static void
1573 dmu_sync_late_arrival_done(zio_t *zio)
1574 {
1575 	blkptr_t *bp = zio->io_bp;
1576 	dmu_sync_arg_t *dsa = zio->io_private;
1577 	zgd_t *zgd = dsa->dsa_zgd;
1578 
1579 	if (zio->io_error == 0) {
1580 		/*
1581 		 * Record the vdev(s) backing this blkptr so they can be
1582 		 * flushed after the writes for the lwb have completed.
1583 		 */
1584 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1585 
1586 		if (!BP_IS_HOLE(bp)) {
1587 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1588 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1589 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1590 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1591 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1592 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1593 		}
1594 	}
1595 
1596 	dmu_tx_commit(dsa->dsa_tx);
1597 
1598 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1599 
1600 	abd_free(zio->io_abd);
1601 	kmem_free(dsa, sizeof (*dsa));
1602 }
1603 
1604 static int
1605 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1606     zio_prop_t *zp, zbookmark_phys_t *zb)
1607 {
1608 	dmu_sync_arg_t *dsa;
1609 	dmu_tx_t *tx;
1610 
1611 	tx = dmu_tx_create(os);
1612 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1613 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1614 		dmu_tx_abort(tx);
1615 		/* Make zl_get_data do txg_waited_synced() */
1616 		return (SET_ERROR(EIO));
1617 	}
1618 
1619 	/*
1620 	 * In order to prevent the zgd's lwb from being free'd prior to
1621 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1622 	 * the lwb's "max txg" takes this tx's txg into account.
1623 	 */
1624 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1625 
1626 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1627 	dsa->dsa_dr = NULL;
1628 	dsa->dsa_done = done;
1629 	dsa->dsa_zgd = zgd;
1630 	dsa->dsa_tx = tx;
1631 
1632 	/*
1633 	 * Since we are currently syncing this txg, it's nontrivial to
1634 	 * determine what BP to nopwrite against, so we disable nopwrite.
1635 	 *
1636 	 * When syncing, the db_blkptr is initially the BP of the previous
1637 	 * txg.  We can not nopwrite against it because it will be changed
1638 	 * (this is similar to the non-late-arrival case where the dbuf is
1639 	 * dirty in a future txg).
1640 	 *
1641 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1642 	 * We can not nopwrite against it because although the BP will not
1643 	 * (typically) be changed, the data has not yet been persisted to this
1644 	 * location.
1645 	 *
1646 	 * Finally, when dbuf_write_done() is called, it is theoretically
1647 	 * possible to always nopwrite, because the data that was written in
1648 	 * this txg is the same data that we are trying to write.  However we
1649 	 * would need to check that this dbuf is not dirty in any future
1650 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1651 	 * don't nopwrite in this case.
1652 	 */
1653 	zp->zp_nopwrite = B_FALSE;
1654 
1655 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1656 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1657 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1658 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1659 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1660 
1661 	return (0);
1662 }
1663 
1664 /*
1665  * Intent log support: sync the block associated with db to disk.
1666  * N.B. and XXX: the caller is responsible for making sure that the
1667  * data isn't changing while dmu_sync() is writing it.
1668  *
1669  * Return values:
1670  *
1671  *	EEXIST: this txg has already been synced, so there's nothing to do.
1672  *		The caller should not log the write.
1673  *
1674  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1675  *		The caller should not log the write.
1676  *
1677  *	EALREADY: this block is already in the process of being synced.
1678  *		The caller should track its progress (somehow).
1679  *
1680  *	EIO: could not do the I/O.
1681  *		The caller should do a txg_wait_synced().
1682  *
1683  *	0: the I/O has been initiated.
1684  *		The caller should log this blkptr in the done callback.
1685  *		It is possible that the I/O will fail, in which case
1686  *		the error will be reported to the done callback and
1687  *		propagated to pio from zio_done().
1688  */
1689 int
1690 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1691 {
1692 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1693 	objset_t *os = db->db_objset;
1694 	dsl_dataset_t *ds = os->os_dsl_dataset;
1695 	dbuf_dirty_record_t *dr, *dr_next;
1696 	dmu_sync_arg_t *dsa;
1697 	zbookmark_phys_t zb;
1698 	zio_prop_t zp;
1699 	dnode_t *dn;
1700 
1701 	ASSERT(pio != NULL);
1702 	ASSERT(txg != 0);
1703 
1704 	SET_BOOKMARK(&zb, ds->ds_object,
1705 	    db->db.db_object, db->db_level, db->db_blkid);
1706 
1707 	DB_DNODE_ENTER(db);
1708 	dn = DB_DNODE(db);
1709 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1710 	DB_DNODE_EXIT(db);
1711 
1712 	/*
1713 	 * If we're frozen (running ziltest), we always need to generate a bp.
1714 	 */
1715 	if (txg > spa_freeze_txg(os->os_spa))
1716 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1717 
1718 	/*
1719 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1720 	 * and us.  If we determine that this txg is not yet syncing,
1721 	 * but it begins to sync a moment later, that's OK because the
1722 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1723 	 */
1724 	mutex_enter(&db->db_mtx);
1725 
1726 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1727 		/*
1728 		 * This txg has already synced.  There's nothing to do.
1729 		 */
1730 		mutex_exit(&db->db_mtx);
1731 		return (SET_ERROR(EEXIST));
1732 	}
1733 
1734 	if (txg <= spa_syncing_txg(os->os_spa)) {
1735 		/*
1736 		 * This txg is currently syncing, so we can't mess with
1737 		 * the dirty record anymore; just write a new log block.
1738 		 */
1739 		mutex_exit(&db->db_mtx);
1740 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1741 	}
1742 
1743 	dr = dbuf_find_dirty_eq(db, txg);
1744 
1745 	if (dr == NULL) {
1746 		/*
1747 		 * There's no dr for this dbuf, so it must have been freed.
1748 		 * There's no need to log writes to freed blocks, so we're done.
1749 		 */
1750 		mutex_exit(&db->db_mtx);
1751 		return (SET_ERROR(ENOENT));
1752 	}
1753 
1754 	dr_next = list_next(&db->db_dirty_records, dr);
1755 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1756 
1757 	if (db->db_blkptr != NULL) {
1758 		/*
1759 		 * We need to fill in zgd_bp with the current blkptr so that
1760 		 * the nopwrite code can check if we're writing the same
1761 		 * data that's already on disk.  We can only nopwrite if we
1762 		 * are sure that after making the copy, db_blkptr will not
1763 		 * change until our i/o completes.  We ensure this by
1764 		 * holding the db_mtx, and only allowing nopwrite if the
1765 		 * block is not already dirty (see below).  This is verified
1766 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1767 		 * not changed.
1768 		 */
1769 		*zgd->zgd_bp = *db->db_blkptr;
1770 	}
1771 
1772 	/*
1773 	 * Assume the on-disk data is X, the current syncing data (in
1774 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1775 	 * in dmu_sync).
1776 	 *
1777 	 * We usually want to perform a nopwrite if X and Z are the
1778 	 * same.  However, if Y is different (i.e. the BP is going to
1779 	 * change before this write takes effect), then a nopwrite will
1780 	 * be incorrect - we would override with X, which could have
1781 	 * been freed when Y was written.
1782 	 *
1783 	 * (Note that this is not a concern when we are nop-writing from
1784 	 * syncing context, because X and Y must be identical, because
1785 	 * all previous txgs have been synced.)
1786 	 *
1787 	 * Therefore, we disable nopwrite if the current BP could change
1788 	 * before this TXG.  There are two ways it could change: by
1789 	 * being dirty (dr_next is non-NULL), or by being freed
1790 	 * (dnode_block_freed()).  This behavior is verified by
1791 	 * zio_done(), which VERIFYs that the override BP is identical
1792 	 * to the on-disk BP.
1793 	 */
1794 	DB_DNODE_ENTER(db);
1795 	dn = DB_DNODE(db);
1796 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1797 		zp.zp_nopwrite = B_FALSE;
1798 	DB_DNODE_EXIT(db);
1799 
1800 	ASSERT(dr->dr_txg == txg);
1801 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1802 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1803 		/*
1804 		 * We have already issued a sync write for this buffer,
1805 		 * or this buffer has already been synced.  It could not
1806 		 * have been dirtied since, or we would have cleared the state.
1807 		 */
1808 		mutex_exit(&db->db_mtx);
1809 		return (SET_ERROR(EALREADY));
1810 	}
1811 
1812 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1813 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1814 	mutex_exit(&db->db_mtx);
1815 
1816 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1817 	dsa->dsa_dr = dr;
1818 	dsa->dsa_done = done;
1819 	dsa->dsa_zgd = zgd;
1820 	dsa->dsa_tx = NULL;
1821 
1822 	zio_nowait(arc_write(pio, os->os_spa, txg,
1823 	    zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1824 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1825 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1826 
1827 	return (0);
1828 }
1829 
1830 int
1831 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1832 {
1833 	dnode_t *dn;
1834 	int err;
1835 
1836 	err = dnode_hold(os, object, FTAG, &dn);
1837 	if (err)
1838 		return (err);
1839 	err = dnode_set_nlevels(dn, nlevels, tx);
1840 	dnode_rele(dn, FTAG);
1841 	return (err);
1842 }
1843 
1844 int
1845 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1846     dmu_tx_t *tx)
1847 {
1848 	dnode_t *dn;
1849 	int err;
1850 
1851 	err = dnode_hold(os, object, FTAG, &dn);
1852 	if (err)
1853 		return (err);
1854 	err = dnode_set_blksz(dn, size, ibs, tx);
1855 	dnode_rele(dn, FTAG);
1856 	return (err);
1857 }
1858 
1859 int
1860 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1861     dmu_tx_t *tx)
1862 {
1863 	dnode_t *dn;
1864 	int err;
1865 
1866 	err = dnode_hold(os, object, FTAG, &dn);
1867 	if (err)
1868 		return (err);
1869 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1870 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1871 	rw_exit(&dn->dn_struct_rwlock);
1872 	dnode_rele(dn, FTAG);
1873 	return (0);
1874 }
1875 
1876 void
1877 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1878     dmu_tx_t *tx)
1879 {
1880 	dnode_t *dn;
1881 
1882 	/*
1883 	 * Send streams include each object's checksum function.  This
1884 	 * check ensures that the receiving system can understand the
1885 	 * checksum function transmitted.
1886 	 */
1887 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1888 
1889 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1890 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1891 	dn->dn_checksum = checksum;
1892 	dnode_setdirty(dn, tx);
1893 	dnode_rele(dn, FTAG);
1894 }
1895 
1896 void
1897 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1898     dmu_tx_t *tx)
1899 {
1900 	dnode_t *dn;
1901 
1902 	/*
1903 	 * Send streams include each object's compression function.  This
1904 	 * check ensures that the receiving system can understand the
1905 	 * compression function transmitted.
1906 	 */
1907 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1908 
1909 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1910 	dn->dn_compress = compress;
1911 	dnode_setdirty(dn, tx);
1912 	dnode_rele(dn, FTAG);
1913 }
1914 
1915 /*
1916  * When the "redundant_metadata" property is set to "most", only indirect
1917  * blocks of this level and higher will have an additional ditto block.
1918  */
1919 int zfs_redundant_metadata_most_ditto_level = 2;
1920 
1921 void
1922 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1923 {
1924 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1925 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1926 	    (wp & WP_SPILL));
1927 	enum zio_checksum checksum = os->os_checksum;
1928 	enum zio_compress compress = os->os_compress;
1929 	uint8_t complevel = os->os_complevel;
1930 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1931 	boolean_t dedup = B_FALSE;
1932 	boolean_t nopwrite = B_FALSE;
1933 	boolean_t dedup_verify = os->os_dedup_verify;
1934 	boolean_t encrypt = B_FALSE;
1935 	int copies = os->os_copies;
1936 
1937 	/*
1938 	 * We maintain different write policies for each of the following
1939 	 * types of data:
1940 	 *	 1. metadata
1941 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1942 	 *	 3. all other level 0 blocks
1943 	 */
1944 	if (ismd) {
1945 		/*
1946 		 * XXX -- we should design a compression algorithm
1947 		 * that specializes in arrays of bps.
1948 		 */
1949 		compress = zio_compress_select(os->os_spa,
1950 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1951 
1952 		/*
1953 		 * Metadata always gets checksummed.  If the data
1954 		 * checksum is multi-bit correctable, and it's not a
1955 		 * ZBT-style checksum, then it's suitable for metadata
1956 		 * as well.  Otherwise, the metadata checksum defaults
1957 		 * to fletcher4.
1958 		 */
1959 		if (!(zio_checksum_table[checksum].ci_flags &
1960 		    ZCHECKSUM_FLAG_METADATA) ||
1961 		    (zio_checksum_table[checksum].ci_flags &
1962 		    ZCHECKSUM_FLAG_EMBEDDED))
1963 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1964 
1965 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1966 		    (os->os_redundant_metadata ==
1967 		    ZFS_REDUNDANT_METADATA_MOST &&
1968 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1969 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1970 			copies++;
1971 	} else if (wp & WP_NOFILL) {
1972 		ASSERT(level == 0);
1973 
1974 		/*
1975 		 * If we're writing preallocated blocks, we aren't actually
1976 		 * writing them so don't set any policy properties.  These
1977 		 * blocks are currently only used by an external subsystem
1978 		 * outside of zfs (i.e. dump) and not written by the zio
1979 		 * pipeline.
1980 		 */
1981 		compress = ZIO_COMPRESS_OFF;
1982 		checksum = ZIO_CHECKSUM_OFF;
1983 	} else {
1984 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1985 		    compress);
1986 		complevel = zio_complevel_select(os->os_spa, compress,
1987 		    complevel, complevel);
1988 
1989 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1990 		    zio_checksum_select(dn->dn_checksum, checksum) :
1991 		    dedup_checksum;
1992 
1993 		/*
1994 		 * Determine dedup setting.  If we are in dmu_sync(),
1995 		 * we won't actually dedup now because that's all
1996 		 * done in syncing context; but we do want to use the
1997 		 * dedup checksum.  If the checksum is not strong
1998 		 * enough to ensure unique signatures, force
1999 		 * dedup_verify.
2000 		 */
2001 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2002 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2003 			if (!(zio_checksum_table[checksum].ci_flags &
2004 			    ZCHECKSUM_FLAG_DEDUP))
2005 				dedup_verify = B_TRUE;
2006 		}
2007 
2008 		/*
2009 		 * Enable nopwrite if we have secure enough checksum
2010 		 * algorithm (see comment in zio_nop_write) and
2011 		 * compression is enabled.  We don't enable nopwrite if
2012 		 * dedup is enabled as the two features are mutually
2013 		 * exclusive.
2014 		 */
2015 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2016 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2017 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2018 	}
2019 
2020 	/*
2021 	 * All objects in an encrypted objset are protected from modification
2022 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2023 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2024 	 * not subject to nopwrite since writing the same data will still
2025 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2026 	 * to avoid ambiguity in the dedup code since the DDT does not store
2027 	 * object types.
2028 	 */
2029 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2030 		encrypt = B_TRUE;
2031 
2032 		if (DMU_OT_IS_ENCRYPTED(type)) {
2033 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2034 			nopwrite = B_FALSE;
2035 		} else {
2036 			dedup = B_FALSE;
2037 		}
2038 
2039 		if (level <= 0 &&
2040 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2041 			compress = ZIO_COMPRESS_EMPTY;
2042 		}
2043 	}
2044 
2045 	zp->zp_compress = compress;
2046 	zp->zp_complevel = complevel;
2047 	zp->zp_checksum = checksum;
2048 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2049 	zp->zp_level = level;
2050 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2051 	zp->zp_dedup = dedup;
2052 	zp->zp_dedup_verify = dedup && dedup_verify;
2053 	zp->zp_nopwrite = nopwrite;
2054 	zp->zp_encrypt = encrypt;
2055 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2056 	bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2057 	bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2058 	bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2059 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2060 	    os->os_zpl_special_smallblock : 0;
2061 
2062 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2063 }
2064 
2065 /*
2066  * This function is only called from zfs_holey_common() for zpl_llseek()
2067  * in order to determine the location of holes.  In order to accurately
2068  * report holes all dirty data must be synced to disk.  This causes extremely
2069  * poor performance when seeking for holes in a dirty file.  As a compromise,
2070  * only provide hole data when the dnode is clean.  When a dnode is dirty
2071  * report the dnode as having no holes which is always a safe thing to do.
2072  */
2073 int
2074 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2075 {
2076 	dnode_t *dn;
2077 	int i, err;
2078 	boolean_t clean = B_TRUE;
2079 
2080 	err = dnode_hold(os, object, FTAG, &dn);
2081 	if (err)
2082 		return (err);
2083 
2084 	/*
2085 	 * Check if dnode is dirty
2086 	 */
2087 	for (i = 0; i < TXG_SIZE; i++) {
2088 		if (multilist_link_active(&dn->dn_dirty_link[i])) {
2089 			clean = B_FALSE;
2090 			break;
2091 		}
2092 	}
2093 
2094 	/*
2095 	 * If compatibility option is on, sync any current changes before
2096 	 * we go trundling through the block pointers.
2097 	 */
2098 	if (!clean && zfs_dmu_offset_next_sync) {
2099 		clean = B_TRUE;
2100 		dnode_rele(dn, FTAG);
2101 		txg_wait_synced(dmu_objset_pool(os), 0);
2102 		err = dnode_hold(os, object, FTAG, &dn);
2103 		if (err)
2104 			return (err);
2105 	}
2106 
2107 	if (clean)
2108 		err = dnode_next_offset(dn,
2109 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2110 	else
2111 		err = SET_ERROR(EBUSY);
2112 
2113 	dnode_rele(dn, FTAG);
2114 
2115 	return (err);
2116 }
2117 
2118 void
2119 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2120 {
2121 	dnode_phys_t *dnp = dn->dn_phys;
2122 
2123 	doi->doi_data_block_size = dn->dn_datablksz;
2124 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2125 	    1ULL << dn->dn_indblkshift : 0;
2126 	doi->doi_type = dn->dn_type;
2127 	doi->doi_bonus_type = dn->dn_bonustype;
2128 	doi->doi_bonus_size = dn->dn_bonuslen;
2129 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2130 	doi->doi_indirection = dn->dn_nlevels;
2131 	doi->doi_checksum = dn->dn_checksum;
2132 	doi->doi_compress = dn->dn_compress;
2133 	doi->doi_nblkptr = dn->dn_nblkptr;
2134 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2135 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2136 	doi->doi_fill_count = 0;
2137 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2138 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2139 }
2140 
2141 void
2142 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2143 {
2144 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2145 	mutex_enter(&dn->dn_mtx);
2146 
2147 	__dmu_object_info_from_dnode(dn, doi);
2148 
2149 	mutex_exit(&dn->dn_mtx);
2150 	rw_exit(&dn->dn_struct_rwlock);
2151 }
2152 
2153 /*
2154  * Get information on a DMU object.
2155  * If doi is NULL, just indicates whether the object exists.
2156  */
2157 int
2158 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2159 {
2160 	dnode_t *dn;
2161 	int err = dnode_hold(os, object, FTAG, &dn);
2162 
2163 	if (err)
2164 		return (err);
2165 
2166 	if (doi != NULL)
2167 		dmu_object_info_from_dnode(dn, doi);
2168 
2169 	dnode_rele(dn, FTAG);
2170 	return (0);
2171 }
2172 
2173 /*
2174  * As above, but faster; can be used when you have a held dbuf in hand.
2175  */
2176 void
2177 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2178 {
2179 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2180 
2181 	DB_DNODE_ENTER(db);
2182 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2183 	DB_DNODE_EXIT(db);
2184 }
2185 
2186 /*
2187  * Faster still when you only care about the size.
2188  */
2189 void
2190 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2191     u_longlong_t *nblk512)
2192 {
2193 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2194 	dnode_t *dn;
2195 
2196 	DB_DNODE_ENTER(db);
2197 	dn = DB_DNODE(db);
2198 
2199 	*blksize = dn->dn_datablksz;
2200 	/* add in number of slots used for the dnode itself */
2201 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2202 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2203 	DB_DNODE_EXIT(db);
2204 }
2205 
2206 void
2207 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2208 {
2209 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2210 	dnode_t *dn;
2211 
2212 	DB_DNODE_ENTER(db);
2213 	dn = DB_DNODE(db);
2214 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2215 	DB_DNODE_EXIT(db);
2216 }
2217 
2218 void
2219 byteswap_uint64_array(void *vbuf, size_t size)
2220 {
2221 	uint64_t *buf = vbuf;
2222 	size_t count = size >> 3;
2223 	int i;
2224 
2225 	ASSERT((size & 7) == 0);
2226 
2227 	for (i = 0; i < count; i++)
2228 		buf[i] = BSWAP_64(buf[i]);
2229 }
2230 
2231 void
2232 byteswap_uint32_array(void *vbuf, size_t size)
2233 {
2234 	uint32_t *buf = vbuf;
2235 	size_t count = size >> 2;
2236 	int i;
2237 
2238 	ASSERT((size & 3) == 0);
2239 
2240 	for (i = 0; i < count; i++)
2241 		buf[i] = BSWAP_32(buf[i]);
2242 }
2243 
2244 void
2245 byteswap_uint16_array(void *vbuf, size_t size)
2246 {
2247 	uint16_t *buf = vbuf;
2248 	size_t count = size >> 1;
2249 	int i;
2250 
2251 	ASSERT((size & 1) == 0);
2252 
2253 	for (i = 0; i < count; i++)
2254 		buf[i] = BSWAP_16(buf[i]);
2255 }
2256 
2257 /* ARGSUSED */
2258 void
2259 byteswap_uint8_array(void *vbuf, size_t size)
2260 {
2261 }
2262 
2263 void
2264 dmu_init(void)
2265 {
2266 	abd_init();
2267 	zfs_dbgmsg_init();
2268 	sa_cache_init();
2269 	dmu_objset_init();
2270 	dnode_init();
2271 	zfetch_init();
2272 	dmu_tx_init();
2273 	l2arc_init();
2274 	arc_init();
2275 	dbuf_init();
2276 }
2277 
2278 void
2279 dmu_fini(void)
2280 {
2281 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2282 	l2arc_fini();
2283 	dmu_tx_fini();
2284 	zfetch_fini();
2285 	dbuf_fini();
2286 	dnode_fini();
2287 	dmu_objset_fini();
2288 	sa_cache_fini();
2289 	zfs_dbgmsg_fini();
2290 	abd_fini();
2291 }
2292 
2293 EXPORT_SYMBOL(dmu_bonus_hold);
2294 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2295 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2296 EXPORT_SYMBOL(dmu_buf_rele_array);
2297 EXPORT_SYMBOL(dmu_prefetch);
2298 EXPORT_SYMBOL(dmu_free_range);
2299 EXPORT_SYMBOL(dmu_free_long_range);
2300 EXPORT_SYMBOL(dmu_free_long_object);
2301 EXPORT_SYMBOL(dmu_read);
2302 EXPORT_SYMBOL(dmu_read_by_dnode);
2303 EXPORT_SYMBOL(dmu_write);
2304 EXPORT_SYMBOL(dmu_write_by_dnode);
2305 EXPORT_SYMBOL(dmu_prealloc);
2306 EXPORT_SYMBOL(dmu_object_info);
2307 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2308 EXPORT_SYMBOL(dmu_object_info_from_db);
2309 EXPORT_SYMBOL(dmu_object_size_from_db);
2310 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2311 EXPORT_SYMBOL(dmu_object_set_nlevels);
2312 EXPORT_SYMBOL(dmu_object_set_blocksize);
2313 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2314 EXPORT_SYMBOL(dmu_object_set_checksum);
2315 EXPORT_SYMBOL(dmu_object_set_compress);
2316 EXPORT_SYMBOL(dmu_offset_next);
2317 EXPORT_SYMBOL(dmu_write_policy);
2318 EXPORT_SYMBOL(dmu_sync);
2319 EXPORT_SYMBOL(dmu_request_arcbuf);
2320 EXPORT_SYMBOL(dmu_return_arcbuf);
2321 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2322 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2323 EXPORT_SYMBOL(dmu_buf_hold);
2324 EXPORT_SYMBOL(dmu_ot);
2325 
2326 /* BEGIN CSTYLED */
2327 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2328 	"Enable NOP writes");
2329 
2330 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2331 	"Percentage of dirtied blocks from frees in one TXG");
2332 
2333 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2334 	"Enable forcing txg sync to find holes");
2335 
2336 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2337 	"Limit one prefetch call to this size");
2338 /* END CSTYLED */
2339