xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision cc1a53bc1aea0675d64e9547cdca241612906592)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
57 #ifdef _KERNEL
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
60 #endif
61 
62 /*
63  * Enable/disable nopwrite feature.
64  */
65 static int zfs_nopwrite_enabled = 1;
66 
67 /*
68  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69  * one TXG. After this threshold is crossed, additional dirty blocks from frees
70  * will wait until the next TXG.
71  * A value of zero will disable this throttle.
72  */
73 static unsigned long zfs_per_txg_dirty_frees_percent = 5;
74 
75 /*
76  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
77  * By default this is enabled to ensure accurate hole reporting, it can result
78  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
79  * Disabling this option will result in holes never being reported in dirty
80  * files which is always safe.
81  */
82 static int zfs_dmu_offset_next_sync = 1;
83 
84 /*
85  * Limit the amount we can prefetch with one call to this amount.  This
86  * helps to limit the amount of memory that can be used by prefetching.
87  * Larger objects should be prefetched a bit at a time.
88  */
89 static int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
90 
91 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
92 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
93 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
94 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
95 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
96 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
97 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
98 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
99 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
100 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
101 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
102 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
103 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
104 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
105 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
106 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
107 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
108 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
109 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
110 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
111 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
112 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
113 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
115 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
116 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
117 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
118 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
121 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
122 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
123 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
124 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
125 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
126 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
127 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
128 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
129 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
132 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
133 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
136 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
137 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
141 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
142 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
143 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
144 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
145 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
146 };
147 
148 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
149 	{	byteswap_uint8_array,	"uint8"		},
150 	{	byteswap_uint16_array,	"uint16"	},
151 	{	byteswap_uint32_array,	"uint32"	},
152 	{	byteswap_uint64_array,	"uint64"	},
153 	{	zap_byteswap,		"zap"		},
154 	{	dnode_buf_byteswap,	"dnode"		},
155 	{	dmu_objset_byteswap,	"objset"	},
156 	{	zfs_znode_byteswap,	"znode"		},
157 	{	zfs_oldacl_byteswap,	"oldacl"	},
158 	{	zfs_acl_byteswap,	"acl"		}
159 };
160 
161 static int
162 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
163     void *tag, dmu_buf_t **dbp)
164 {
165 	uint64_t blkid;
166 	dmu_buf_impl_t *db;
167 
168 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
169 	blkid = dbuf_whichblock(dn, 0, offset);
170 	db = dbuf_hold(dn, blkid, tag);
171 	rw_exit(&dn->dn_struct_rwlock);
172 
173 	if (db == NULL) {
174 		*dbp = NULL;
175 		return (SET_ERROR(EIO));
176 	}
177 
178 	*dbp = &db->db;
179 	return (0);
180 }
181 int
182 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
183     void *tag, dmu_buf_t **dbp)
184 {
185 	dnode_t *dn;
186 	uint64_t blkid;
187 	dmu_buf_impl_t *db;
188 	int err;
189 
190 	err = dnode_hold(os, object, FTAG, &dn);
191 	if (err)
192 		return (err);
193 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
194 	blkid = dbuf_whichblock(dn, 0, offset);
195 	db = dbuf_hold(dn, blkid, tag);
196 	rw_exit(&dn->dn_struct_rwlock);
197 	dnode_rele(dn, FTAG);
198 
199 	if (db == NULL) {
200 		*dbp = NULL;
201 		return (SET_ERROR(EIO));
202 	}
203 
204 	*dbp = &db->db;
205 	return (err);
206 }
207 
208 int
209 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
210     void *tag, dmu_buf_t **dbp, int flags)
211 {
212 	int err;
213 	int db_flags = DB_RF_CANFAIL;
214 
215 	if (flags & DMU_READ_NO_PREFETCH)
216 		db_flags |= DB_RF_NOPREFETCH;
217 	if (flags & DMU_READ_NO_DECRYPT)
218 		db_flags |= DB_RF_NO_DECRYPT;
219 
220 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
221 	if (err == 0) {
222 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
223 		err = dbuf_read(db, NULL, db_flags);
224 		if (err != 0) {
225 			dbuf_rele(db, tag);
226 			*dbp = NULL;
227 		}
228 	}
229 
230 	return (err);
231 }
232 
233 int
234 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
235     void *tag, dmu_buf_t **dbp, int flags)
236 {
237 	int err;
238 	int db_flags = DB_RF_CANFAIL;
239 
240 	if (flags & DMU_READ_NO_PREFETCH)
241 		db_flags |= DB_RF_NOPREFETCH;
242 	if (flags & DMU_READ_NO_DECRYPT)
243 		db_flags |= DB_RF_NO_DECRYPT;
244 
245 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
246 	if (err == 0) {
247 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
248 		err = dbuf_read(db, NULL, db_flags);
249 		if (err != 0) {
250 			dbuf_rele(db, tag);
251 			*dbp = NULL;
252 		}
253 	}
254 
255 	return (err);
256 }
257 
258 int
259 dmu_bonus_max(void)
260 {
261 	return (DN_OLD_MAX_BONUSLEN);
262 }
263 
264 int
265 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
266 {
267 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
268 	dnode_t *dn;
269 	int error;
270 
271 	DB_DNODE_ENTER(db);
272 	dn = DB_DNODE(db);
273 
274 	if (dn->dn_bonus != db) {
275 		error = SET_ERROR(EINVAL);
276 	} else if (newsize < 0 || newsize > db_fake->db_size) {
277 		error = SET_ERROR(EINVAL);
278 	} else {
279 		dnode_setbonuslen(dn, newsize, tx);
280 		error = 0;
281 	}
282 
283 	DB_DNODE_EXIT(db);
284 	return (error);
285 }
286 
287 int
288 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
289 {
290 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
291 	dnode_t *dn;
292 	int error;
293 
294 	DB_DNODE_ENTER(db);
295 	dn = DB_DNODE(db);
296 
297 	if (!DMU_OT_IS_VALID(type)) {
298 		error = SET_ERROR(EINVAL);
299 	} else if (dn->dn_bonus != db) {
300 		error = SET_ERROR(EINVAL);
301 	} else {
302 		dnode_setbonus_type(dn, type, tx);
303 		error = 0;
304 	}
305 
306 	DB_DNODE_EXIT(db);
307 	return (error);
308 }
309 
310 dmu_object_type_t
311 dmu_get_bonustype(dmu_buf_t *db_fake)
312 {
313 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
314 	dnode_t *dn;
315 	dmu_object_type_t type;
316 
317 	DB_DNODE_ENTER(db);
318 	dn = DB_DNODE(db);
319 	type = dn->dn_bonustype;
320 	DB_DNODE_EXIT(db);
321 
322 	return (type);
323 }
324 
325 int
326 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
327 {
328 	dnode_t *dn;
329 	int error;
330 
331 	error = dnode_hold(os, object, FTAG, &dn);
332 	dbuf_rm_spill(dn, tx);
333 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
334 	dnode_rm_spill(dn, tx);
335 	rw_exit(&dn->dn_struct_rwlock);
336 	dnode_rele(dn, FTAG);
337 	return (error);
338 }
339 
340 /*
341  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
342  * has not yet been allocated a new bonus dbuf a will be allocated.
343  * Returns ENOENT, EIO, or 0.
344  */
345 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
346     uint32_t flags)
347 {
348 	dmu_buf_impl_t *db;
349 	int error;
350 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
351 
352 	if (flags & DMU_READ_NO_PREFETCH)
353 		db_flags |= DB_RF_NOPREFETCH;
354 	if (flags & DMU_READ_NO_DECRYPT)
355 		db_flags |= DB_RF_NO_DECRYPT;
356 
357 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
358 	if (dn->dn_bonus == NULL) {
359 		rw_exit(&dn->dn_struct_rwlock);
360 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
361 		if (dn->dn_bonus == NULL)
362 			dbuf_create_bonus(dn);
363 	}
364 	db = dn->dn_bonus;
365 
366 	/* as long as the bonus buf is held, the dnode will be held */
367 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
368 		VERIFY(dnode_add_ref(dn, db));
369 		atomic_inc_32(&dn->dn_dbufs_count);
370 	}
371 
372 	/*
373 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
374 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
375 	 * a dnode hold for every dbuf.
376 	 */
377 	rw_exit(&dn->dn_struct_rwlock);
378 
379 	error = dbuf_read(db, NULL, db_flags);
380 	if (error) {
381 		dnode_evict_bonus(dn);
382 		dbuf_rele(db, tag);
383 		*dbp = NULL;
384 		return (error);
385 	}
386 
387 	*dbp = &db->db;
388 	return (0);
389 }
390 
391 int
392 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
393 {
394 	dnode_t *dn;
395 	int error;
396 
397 	error = dnode_hold(os, object, FTAG, &dn);
398 	if (error)
399 		return (error);
400 
401 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
402 	dnode_rele(dn, FTAG);
403 
404 	return (error);
405 }
406 
407 /*
408  * returns ENOENT, EIO, or 0.
409  *
410  * This interface will allocate a blank spill dbuf when a spill blk
411  * doesn't already exist on the dnode.
412  *
413  * if you only want to find an already existing spill db, then
414  * dmu_spill_hold_existing() should be used.
415  */
416 int
417 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
418 {
419 	dmu_buf_impl_t *db = NULL;
420 	int err;
421 
422 	if ((flags & DB_RF_HAVESTRUCT) == 0)
423 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
424 
425 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
426 
427 	if ((flags & DB_RF_HAVESTRUCT) == 0)
428 		rw_exit(&dn->dn_struct_rwlock);
429 
430 	if (db == NULL) {
431 		*dbp = NULL;
432 		return (SET_ERROR(EIO));
433 	}
434 	err = dbuf_read(db, NULL, flags);
435 	if (err == 0)
436 		*dbp = &db->db;
437 	else {
438 		dbuf_rele(db, tag);
439 		*dbp = NULL;
440 	}
441 	return (err);
442 }
443 
444 int
445 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
446 {
447 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
448 	dnode_t *dn;
449 	int err;
450 
451 	DB_DNODE_ENTER(db);
452 	dn = DB_DNODE(db);
453 
454 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
455 		err = SET_ERROR(EINVAL);
456 	} else {
457 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
458 
459 		if (!dn->dn_have_spill) {
460 			err = SET_ERROR(ENOENT);
461 		} else {
462 			err = dmu_spill_hold_by_dnode(dn,
463 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
464 		}
465 
466 		rw_exit(&dn->dn_struct_rwlock);
467 	}
468 
469 	DB_DNODE_EXIT(db);
470 	return (err);
471 }
472 
473 int
474 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
475     dmu_buf_t **dbp)
476 {
477 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
478 	dnode_t *dn;
479 	int err;
480 	uint32_t db_flags = DB_RF_CANFAIL;
481 
482 	if (flags & DMU_READ_NO_DECRYPT)
483 		db_flags |= DB_RF_NO_DECRYPT;
484 
485 	DB_DNODE_ENTER(db);
486 	dn = DB_DNODE(db);
487 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
488 	DB_DNODE_EXIT(db);
489 
490 	return (err);
491 }
492 
493 /*
494  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
495  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
496  * and can induce severe lock contention when writing to several files
497  * whose dnodes are in the same block.
498  */
499 int
500 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
501     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
502 {
503 	dmu_buf_t **dbp;
504 	zstream_t *zs = NULL;
505 	uint64_t blkid, nblks, i;
506 	uint32_t dbuf_flags;
507 	int err;
508 	zio_t *zio = NULL;
509 	boolean_t missed = B_FALSE;
510 
511 	ASSERT(length <= DMU_MAX_ACCESS);
512 
513 	/*
514 	 * Note: We directly notify the prefetch code of this read, so that
515 	 * we can tell it about the multi-block read.  dbuf_read() only knows
516 	 * about the one block it is accessing.
517 	 */
518 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
519 	    DB_RF_NOPREFETCH;
520 
521 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
522 	if (dn->dn_datablkshift) {
523 		int blkshift = dn->dn_datablkshift;
524 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
525 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
526 	} else {
527 		if (offset + length > dn->dn_datablksz) {
528 			zfs_panic_recover("zfs: accessing past end of object "
529 			    "%llx/%llx (size=%u access=%llu+%llu)",
530 			    (longlong_t)dn->dn_objset->
531 			    os_dsl_dataset->ds_object,
532 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
533 			    (longlong_t)offset, (longlong_t)length);
534 			rw_exit(&dn->dn_struct_rwlock);
535 			return (SET_ERROR(EIO));
536 		}
537 		nblks = 1;
538 	}
539 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
540 
541 	if (read)
542 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
543 		    ZIO_FLAG_CANFAIL);
544 	blkid = dbuf_whichblock(dn, 0, offset);
545 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
546 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
547 		/*
548 		 * Prepare the zfetch before initiating the demand reads, so
549 		 * that if multiple threads block on same indirect block, we
550 		 * base predictions on the original less racy request order.
551 		 */
552 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
553 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
554 	}
555 	for (i = 0; i < nblks; i++) {
556 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
557 		if (db == NULL) {
558 			if (zs)
559 				dmu_zfetch_run(zs, missed, B_TRUE);
560 			rw_exit(&dn->dn_struct_rwlock);
561 			dmu_buf_rele_array(dbp, nblks, tag);
562 			if (read)
563 				zio_nowait(zio);
564 			return (SET_ERROR(EIO));
565 		}
566 
567 		/*
568 		 * Initiate async demand data read.
569 		 * We check the db_state after calling dbuf_read() because
570 		 * (1) dbuf_read() may change the state to CACHED due to a
571 		 * hit in the ARC, and (2) on a cache miss, a child will
572 		 * have been added to "zio" but not yet completed, so the
573 		 * state will not yet be CACHED.
574 		 */
575 		if (read) {
576 			(void) dbuf_read(db, zio, dbuf_flags);
577 			if (db->db_state != DB_CACHED)
578 				missed = B_TRUE;
579 		}
580 		dbp[i] = &db->db;
581 	}
582 
583 	if (!read)
584 		zfs_racct_write(length, nblks);
585 
586 	if (zs)
587 		dmu_zfetch_run(zs, missed, B_TRUE);
588 	rw_exit(&dn->dn_struct_rwlock);
589 
590 	if (read) {
591 		/* wait for async read i/o */
592 		err = zio_wait(zio);
593 		if (err) {
594 			dmu_buf_rele_array(dbp, nblks, tag);
595 			return (err);
596 		}
597 
598 		/* wait for other io to complete */
599 		for (i = 0; i < nblks; i++) {
600 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
601 			mutex_enter(&db->db_mtx);
602 			while (db->db_state == DB_READ ||
603 			    db->db_state == DB_FILL)
604 				cv_wait(&db->db_changed, &db->db_mtx);
605 			if (db->db_state == DB_UNCACHED)
606 				err = SET_ERROR(EIO);
607 			mutex_exit(&db->db_mtx);
608 			if (err) {
609 				dmu_buf_rele_array(dbp, nblks, tag);
610 				return (err);
611 			}
612 		}
613 	}
614 
615 	*numbufsp = nblks;
616 	*dbpp = dbp;
617 	return (0);
618 }
619 
620 int
621 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
622     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
623 {
624 	dnode_t *dn;
625 	int err;
626 
627 	err = dnode_hold(os, object, FTAG, &dn);
628 	if (err)
629 		return (err);
630 
631 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
632 	    numbufsp, dbpp, DMU_READ_PREFETCH);
633 
634 	dnode_rele(dn, FTAG);
635 
636 	return (err);
637 }
638 
639 int
640 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
641     uint64_t length, boolean_t read, void *tag, int *numbufsp,
642     dmu_buf_t ***dbpp)
643 {
644 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
645 	dnode_t *dn;
646 	int err;
647 
648 	DB_DNODE_ENTER(db);
649 	dn = DB_DNODE(db);
650 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
651 	    numbufsp, dbpp, DMU_READ_PREFETCH);
652 	DB_DNODE_EXIT(db);
653 
654 	return (err);
655 }
656 
657 void
658 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
659 {
660 	int i;
661 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
662 
663 	if (numbufs == 0)
664 		return;
665 
666 	for (i = 0; i < numbufs; i++) {
667 		if (dbp[i])
668 			dbuf_rele(dbp[i], tag);
669 	}
670 
671 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
672 }
673 
674 /*
675  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
676  * indirect blocks prefetched will be those that point to the blocks containing
677  * the data starting at offset, and continuing to offset + len.
678  *
679  * Note that if the indirect blocks above the blocks being prefetched are not
680  * in cache, they will be asynchronously read in.
681  */
682 void
683 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
684     uint64_t len, zio_priority_t pri)
685 {
686 	dnode_t *dn;
687 	uint64_t blkid;
688 	int nblks, err;
689 
690 	if (len == 0) {  /* they're interested in the bonus buffer */
691 		dn = DMU_META_DNODE(os);
692 
693 		if (object == 0 || object >= DN_MAX_OBJECT)
694 			return;
695 
696 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
697 		blkid = dbuf_whichblock(dn, level,
698 		    object * sizeof (dnode_phys_t));
699 		dbuf_prefetch(dn, level, blkid, pri, 0);
700 		rw_exit(&dn->dn_struct_rwlock);
701 		return;
702 	}
703 
704 	/*
705 	 * See comment before the definition of dmu_prefetch_max.
706 	 */
707 	len = MIN(len, dmu_prefetch_max);
708 
709 	/*
710 	 * XXX - Note, if the dnode for the requested object is not
711 	 * already cached, we will do a *synchronous* read in the
712 	 * dnode_hold() call.  The same is true for any indirects.
713 	 */
714 	err = dnode_hold(os, object, FTAG, &dn);
715 	if (err != 0)
716 		return;
717 
718 	/*
719 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
720 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
721 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
722 	 * offset)  is the first.  Then the number we need to prefetch is the
723 	 * last - first + 1.
724 	 */
725 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
726 	if (level > 0 || dn->dn_datablkshift != 0) {
727 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
728 		    dbuf_whichblock(dn, level, offset) + 1;
729 	} else {
730 		nblks = (offset < dn->dn_datablksz);
731 	}
732 
733 	if (nblks != 0) {
734 		blkid = dbuf_whichblock(dn, level, offset);
735 		for (int i = 0; i < nblks; i++)
736 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
737 	}
738 	rw_exit(&dn->dn_struct_rwlock);
739 
740 	dnode_rele(dn, FTAG);
741 }
742 
743 /*
744  * Get the next "chunk" of file data to free.  We traverse the file from
745  * the end so that the file gets shorter over time (if we crashes in the
746  * middle, this will leave us in a better state).  We find allocated file
747  * data by simply searching the allocated level 1 indirects.
748  *
749  * On input, *start should be the first offset that does not need to be
750  * freed (e.g. "offset + length").  On return, *start will be the first
751  * offset that should be freed and l1blks is set to the number of level 1
752  * indirect blocks found within the chunk.
753  */
754 static int
755 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
756 {
757 	uint64_t blks;
758 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
759 	/* bytes of data covered by a level-1 indirect block */
760 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
761 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
762 
763 	ASSERT3U(minimum, <=, *start);
764 
765 	/*
766 	 * Check if we can free the entire range assuming that all of the
767 	 * L1 blocks in this range have data. If we can, we use this
768 	 * worst case value as an estimate so we can avoid having to look
769 	 * at the object's actual data.
770 	 */
771 	uint64_t total_l1blks =
772 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
773 	    iblkrange;
774 	if (total_l1blks <= maxblks) {
775 		*l1blks = total_l1blks;
776 		*start = minimum;
777 		return (0);
778 	}
779 	ASSERT(ISP2(iblkrange));
780 
781 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
782 		int err;
783 
784 		/*
785 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
786 		 * indirect block at or before the input offset.  We must
787 		 * decrement *start so that it is at the end of the region
788 		 * to search.
789 		 */
790 		(*start)--;
791 
792 		err = dnode_next_offset(dn,
793 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
794 
795 		/* if there are no indirect blocks before start, we are done */
796 		if (err == ESRCH) {
797 			*start = minimum;
798 			break;
799 		} else if (err != 0) {
800 			*l1blks = blks;
801 			return (err);
802 		}
803 
804 		/* set start to the beginning of this L1 indirect */
805 		*start = P2ALIGN(*start, iblkrange);
806 	}
807 	if (*start < minimum)
808 		*start = minimum;
809 	*l1blks = blks;
810 
811 	return (0);
812 }
813 
814 /*
815  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
816  * otherwise return false.
817  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
818  */
819 static boolean_t
820 dmu_objset_zfs_unmounting(objset_t *os)
821 {
822 #ifdef _KERNEL
823 	if (dmu_objset_type(os) == DMU_OST_ZFS)
824 		return (zfs_get_vfs_flag_unmounted(os));
825 #else
826 	(void) os;
827 #endif
828 	return (B_FALSE);
829 }
830 
831 static int
832 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
833     uint64_t length)
834 {
835 	uint64_t object_size;
836 	int err;
837 	uint64_t dirty_frees_threshold;
838 	dsl_pool_t *dp = dmu_objset_pool(os);
839 
840 	if (dn == NULL)
841 		return (SET_ERROR(EINVAL));
842 
843 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
844 	if (offset >= object_size)
845 		return (0);
846 
847 	if (zfs_per_txg_dirty_frees_percent <= 100)
848 		dirty_frees_threshold =
849 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
850 	else
851 		dirty_frees_threshold = zfs_dirty_data_max / 20;
852 
853 	if (length == DMU_OBJECT_END || offset + length > object_size)
854 		length = object_size - offset;
855 
856 	while (length != 0) {
857 		uint64_t chunk_end, chunk_begin, chunk_len;
858 		uint64_t l1blks;
859 		dmu_tx_t *tx;
860 
861 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
862 			return (SET_ERROR(EINTR));
863 
864 		chunk_end = chunk_begin = offset + length;
865 
866 		/* move chunk_begin backwards to the beginning of this chunk */
867 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
868 		if (err)
869 			return (err);
870 		ASSERT3U(chunk_begin, >=, offset);
871 		ASSERT3U(chunk_begin, <=, chunk_end);
872 
873 		chunk_len = chunk_end - chunk_begin;
874 
875 		tx = dmu_tx_create(os);
876 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
877 
878 		/*
879 		 * Mark this transaction as typically resulting in a net
880 		 * reduction in space used.
881 		 */
882 		dmu_tx_mark_netfree(tx);
883 		err = dmu_tx_assign(tx, TXG_WAIT);
884 		if (err) {
885 			dmu_tx_abort(tx);
886 			return (err);
887 		}
888 
889 		uint64_t txg = dmu_tx_get_txg(tx);
890 
891 		mutex_enter(&dp->dp_lock);
892 		uint64_t long_free_dirty =
893 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
894 		mutex_exit(&dp->dp_lock);
895 
896 		/*
897 		 * To avoid filling up a TXG with just frees, wait for
898 		 * the next TXG to open before freeing more chunks if
899 		 * we have reached the threshold of frees.
900 		 */
901 		if (dirty_frees_threshold != 0 &&
902 		    long_free_dirty >= dirty_frees_threshold) {
903 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
904 			dmu_tx_commit(tx);
905 			txg_wait_open(dp, 0, B_TRUE);
906 			continue;
907 		}
908 
909 		/*
910 		 * In order to prevent unnecessary write throttling, for each
911 		 * TXG, we track the cumulative size of L1 blocks being dirtied
912 		 * in dnode_free_range() below. We compare this number to a
913 		 * tunable threshold, past which we prevent new L1 dirty freeing
914 		 * blocks from being added into the open TXG. See
915 		 * dmu_free_long_range_impl() for details. The threshold
916 		 * prevents write throttle activation due to dirty freeing L1
917 		 * blocks taking up a large percentage of zfs_dirty_data_max.
918 		 */
919 		mutex_enter(&dp->dp_lock);
920 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
921 		    l1blks << dn->dn_indblkshift;
922 		mutex_exit(&dp->dp_lock);
923 		DTRACE_PROBE3(free__long__range,
924 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
925 		    uint64_t, txg);
926 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
927 
928 		dmu_tx_commit(tx);
929 
930 		length -= chunk_len;
931 	}
932 	return (0);
933 }
934 
935 int
936 dmu_free_long_range(objset_t *os, uint64_t object,
937     uint64_t offset, uint64_t length)
938 {
939 	dnode_t *dn;
940 	int err;
941 
942 	err = dnode_hold(os, object, FTAG, &dn);
943 	if (err != 0)
944 		return (err);
945 	err = dmu_free_long_range_impl(os, dn, offset, length);
946 
947 	/*
948 	 * It is important to zero out the maxblkid when freeing the entire
949 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
950 	 * will take the fast path, and (b) dnode_reallocate() can verify
951 	 * that the entire file has been freed.
952 	 */
953 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
954 		dn->dn_maxblkid = 0;
955 
956 	dnode_rele(dn, FTAG);
957 	return (err);
958 }
959 
960 int
961 dmu_free_long_object(objset_t *os, uint64_t object)
962 {
963 	dmu_tx_t *tx;
964 	int err;
965 
966 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
967 	if (err != 0)
968 		return (err);
969 
970 	tx = dmu_tx_create(os);
971 	dmu_tx_hold_bonus(tx, object);
972 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
973 	dmu_tx_mark_netfree(tx);
974 	err = dmu_tx_assign(tx, TXG_WAIT);
975 	if (err == 0) {
976 		err = dmu_object_free(os, object, tx);
977 		dmu_tx_commit(tx);
978 	} else {
979 		dmu_tx_abort(tx);
980 	}
981 
982 	return (err);
983 }
984 
985 int
986 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
987     uint64_t size, dmu_tx_t *tx)
988 {
989 	dnode_t *dn;
990 	int err = dnode_hold(os, object, FTAG, &dn);
991 	if (err)
992 		return (err);
993 	ASSERT(offset < UINT64_MAX);
994 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
995 	dnode_free_range(dn, offset, size, tx);
996 	dnode_rele(dn, FTAG);
997 	return (0);
998 }
999 
1000 static int
1001 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1002     void *buf, uint32_t flags)
1003 {
1004 	dmu_buf_t **dbp;
1005 	int numbufs, err = 0;
1006 
1007 	/*
1008 	 * Deal with odd block sizes, where there can't be data past the first
1009 	 * block.  If we ever do the tail block optimization, we will need to
1010 	 * handle that here as well.
1011 	 */
1012 	if (dn->dn_maxblkid == 0) {
1013 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1014 		    MIN(size, dn->dn_datablksz - offset);
1015 		memset((char *)buf + newsz, 0, size - newsz);
1016 		size = newsz;
1017 	}
1018 
1019 	while (size > 0) {
1020 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1021 		int i;
1022 
1023 		/*
1024 		 * NB: we could do this block-at-a-time, but it's nice
1025 		 * to be reading in parallel.
1026 		 */
1027 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1028 		    TRUE, FTAG, &numbufs, &dbp, flags);
1029 		if (err)
1030 			break;
1031 
1032 		for (i = 0; i < numbufs; i++) {
1033 			uint64_t tocpy;
1034 			int64_t bufoff;
1035 			dmu_buf_t *db = dbp[i];
1036 
1037 			ASSERT(size > 0);
1038 
1039 			bufoff = offset - db->db_offset;
1040 			tocpy = MIN(db->db_size - bufoff, size);
1041 
1042 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1043 
1044 			offset += tocpy;
1045 			size -= tocpy;
1046 			buf = (char *)buf + tocpy;
1047 		}
1048 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1049 	}
1050 	return (err);
1051 }
1052 
1053 int
1054 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1055     void *buf, uint32_t flags)
1056 {
1057 	dnode_t *dn;
1058 	int err;
1059 
1060 	err = dnode_hold(os, object, FTAG, &dn);
1061 	if (err != 0)
1062 		return (err);
1063 
1064 	err = dmu_read_impl(dn, offset, size, buf, flags);
1065 	dnode_rele(dn, FTAG);
1066 	return (err);
1067 }
1068 
1069 int
1070 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1071     uint32_t flags)
1072 {
1073 	return (dmu_read_impl(dn, offset, size, buf, flags));
1074 }
1075 
1076 static void
1077 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1078     const void *buf, dmu_tx_t *tx)
1079 {
1080 	int i;
1081 
1082 	for (i = 0; i < numbufs; i++) {
1083 		uint64_t tocpy;
1084 		int64_t bufoff;
1085 		dmu_buf_t *db = dbp[i];
1086 
1087 		ASSERT(size > 0);
1088 
1089 		bufoff = offset - db->db_offset;
1090 		tocpy = MIN(db->db_size - bufoff, size);
1091 
1092 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1093 
1094 		if (tocpy == db->db_size)
1095 			dmu_buf_will_fill(db, tx);
1096 		else
1097 			dmu_buf_will_dirty(db, tx);
1098 
1099 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1100 
1101 		if (tocpy == db->db_size)
1102 			dmu_buf_fill_done(db, tx);
1103 
1104 		offset += tocpy;
1105 		size -= tocpy;
1106 		buf = (char *)buf + tocpy;
1107 	}
1108 }
1109 
1110 void
1111 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1112     const void *buf, dmu_tx_t *tx)
1113 {
1114 	dmu_buf_t **dbp;
1115 	int numbufs;
1116 
1117 	if (size == 0)
1118 		return;
1119 
1120 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1121 	    FALSE, FTAG, &numbufs, &dbp));
1122 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1123 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1124 }
1125 
1126 /*
1127  * Note: Lustre is an external consumer of this interface.
1128  */
1129 void
1130 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1131     const void *buf, dmu_tx_t *tx)
1132 {
1133 	dmu_buf_t **dbp;
1134 	int numbufs;
1135 
1136 	if (size == 0)
1137 		return;
1138 
1139 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1140 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1141 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1142 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1143 }
1144 
1145 void
1146 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1147     dmu_tx_t *tx)
1148 {
1149 	dmu_buf_t **dbp;
1150 	int numbufs, i;
1151 
1152 	if (size == 0)
1153 		return;
1154 
1155 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1156 	    FALSE, FTAG, &numbufs, &dbp));
1157 
1158 	for (i = 0; i < numbufs; i++) {
1159 		dmu_buf_t *db = dbp[i];
1160 
1161 		dmu_buf_will_not_fill(db, tx);
1162 	}
1163 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1164 }
1165 
1166 void
1167 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1168     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1169     int compressed_size, int byteorder, dmu_tx_t *tx)
1170 {
1171 	dmu_buf_t *db;
1172 
1173 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1174 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1175 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1176 	    FTAG, &db));
1177 
1178 	dmu_buf_write_embedded(db,
1179 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1180 	    uncompressed_size, compressed_size, byteorder, tx);
1181 
1182 	dmu_buf_rele(db, FTAG);
1183 }
1184 
1185 void
1186 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1187     dmu_tx_t *tx)
1188 {
1189 	int numbufs, i;
1190 	dmu_buf_t **dbp;
1191 
1192 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1193 	    &numbufs, &dbp));
1194 	for (i = 0; i < numbufs; i++)
1195 		dmu_buf_redact(dbp[i], tx);
1196 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1197 }
1198 
1199 #ifdef _KERNEL
1200 int
1201 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1202 {
1203 	dmu_buf_t **dbp;
1204 	int numbufs, i, err;
1205 
1206 	/*
1207 	 * NB: we could do this block-at-a-time, but it's nice
1208 	 * to be reading in parallel.
1209 	 */
1210 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1211 	    TRUE, FTAG, &numbufs, &dbp, 0);
1212 	if (err)
1213 		return (err);
1214 
1215 	for (i = 0; i < numbufs; i++) {
1216 		uint64_t tocpy;
1217 		int64_t bufoff;
1218 		dmu_buf_t *db = dbp[i];
1219 
1220 		ASSERT(size > 0);
1221 
1222 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1223 		tocpy = MIN(db->db_size - bufoff, size);
1224 
1225 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1226 		    UIO_READ, uio);
1227 
1228 		if (err)
1229 			break;
1230 
1231 		size -= tocpy;
1232 	}
1233 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1234 
1235 	return (err);
1236 }
1237 
1238 /*
1239  * Read 'size' bytes into the uio buffer.
1240  * From object zdb->db_object.
1241  * Starting at zfs_uio_offset(uio).
1242  *
1243  * If the caller already has a dbuf in the target object
1244  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1245  * because we don't have to find the dnode_t for the object.
1246  */
1247 int
1248 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1249 {
1250 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1251 	dnode_t *dn;
1252 	int err;
1253 
1254 	if (size == 0)
1255 		return (0);
1256 
1257 	DB_DNODE_ENTER(db);
1258 	dn = DB_DNODE(db);
1259 	err = dmu_read_uio_dnode(dn, uio, size);
1260 	DB_DNODE_EXIT(db);
1261 
1262 	return (err);
1263 }
1264 
1265 /*
1266  * Read 'size' bytes into the uio buffer.
1267  * From the specified object
1268  * Starting at offset zfs_uio_offset(uio).
1269  */
1270 int
1271 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1272 {
1273 	dnode_t *dn;
1274 	int err;
1275 
1276 	if (size == 0)
1277 		return (0);
1278 
1279 	err = dnode_hold(os, object, FTAG, &dn);
1280 	if (err)
1281 		return (err);
1282 
1283 	err = dmu_read_uio_dnode(dn, uio, size);
1284 
1285 	dnode_rele(dn, FTAG);
1286 
1287 	return (err);
1288 }
1289 
1290 int
1291 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1292 {
1293 	dmu_buf_t **dbp;
1294 	int numbufs;
1295 	int err = 0;
1296 	int i;
1297 
1298 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1299 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1300 	if (err)
1301 		return (err);
1302 
1303 	for (i = 0; i < numbufs; i++) {
1304 		uint64_t tocpy;
1305 		int64_t bufoff;
1306 		dmu_buf_t *db = dbp[i];
1307 
1308 		ASSERT(size > 0);
1309 
1310 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1311 		tocpy = MIN(db->db_size - bufoff, size);
1312 
1313 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1314 
1315 		if (tocpy == db->db_size)
1316 			dmu_buf_will_fill(db, tx);
1317 		else
1318 			dmu_buf_will_dirty(db, tx);
1319 
1320 		/*
1321 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1322 		 * pages).  There needs to be a uiolockdown() function
1323 		 * to lock the pages in memory, so that zfs_uiomove won't
1324 		 * block.
1325 		 */
1326 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1327 		    tocpy, UIO_WRITE, uio);
1328 
1329 		if (tocpy == db->db_size)
1330 			dmu_buf_fill_done(db, tx);
1331 
1332 		if (err)
1333 			break;
1334 
1335 		size -= tocpy;
1336 	}
1337 
1338 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1339 	return (err);
1340 }
1341 
1342 /*
1343  * Write 'size' bytes from the uio buffer.
1344  * To object zdb->db_object.
1345  * Starting at offset zfs_uio_offset(uio).
1346  *
1347  * If the caller already has a dbuf in the target object
1348  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1349  * because we don't have to find the dnode_t for the object.
1350  */
1351 int
1352 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1353     dmu_tx_t *tx)
1354 {
1355 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1356 	dnode_t *dn;
1357 	int err;
1358 
1359 	if (size == 0)
1360 		return (0);
1361 
1362 	DB_DNODE_ENTER(db);
1363 	dn = DB_DNODE(db);
1364 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1365 	DB_DNODE_EXIT(db);
1366 
1367 	return (err);
1368 }
1369 
1370 /*
1371  * Write 'size' bytes from the uio buffer.
1372  * To the specified object.
1373  * Starting at offset zfs_uio_offset(uio).
1374  */
1375 int
1376 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1377     dmu_tx_t *tx)
1378 {
1379 	dnode_t *dn;
1380 	int err;
1381 
1382 	if (size == 0)
1383 		return (0);
1384 
1385 	err = dnode_hold(os, object, FTAG, &dn);
1386 	if (err)
1387 		return (err);
1388 
1389 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1390 
1391 	dnode_rele(dn, FTAG);
1392 
1393 	return (err);
1394 }
1395 #endif /* _KERNEL */
1396 
1397 /*
1398  * Allocate a loaned anonymous arc buffer.
1399  */
1400 arc_buf_t *
1401 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1402 {
1403 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1404 
1405 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1406 }
1407 
1408 /*
1409  * Free a loaned arc buffer.
1410  */
1411 void
1412 dmu_return_arcbuf(arc_buf_t *buf)
1413 {
1414 	arc_return_buf(buf, FTAG);
1415 	arc_buf_destroy(buf, FTAG);
1416 }
1417 
1418 /*
1419  * A "lightweight" write is faster than a regular write (e.g.
1420  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1421  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1422  * data can not be read or overwritten until the transaction's txg has been
1423  * synced.  This makes it appropriate for workloads that are known to be
1424  * (temporarily) write-only, like "zfs receive".
1425  *
1426  * A single block is written, starting at the specified offset in bytes.  If
1427  * the call is successful, it returns 0 and the provided abd has been
1428  * consumed (the caller should not free it).
1429  */
1430 int
1431 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1432     const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1433 {
1434 	dbuf_dirty_record_t *dr =
1435 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1436 	if (dr == NULL)
1437 		return (SET_ERROR(EIO));
1438 	dr->dt.dll.dr_abd = abd;
1439 	dr->dt.dll.dr_props = *zp;
1440 	dr->dt.dll.dr_flags = flags;
1441 	return (0);
1442 }
1443 
1444 /*
1445  * When possible directly assign passed loaned arc buffer to a dbuf.
1446  * If this is not possible copy the contents of passed arc buf via
1447  * dmu_write().
1448  */
1449 int
1450 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1451     dmu_tx_t *tx)
1452 {
1453 	dmu_buf_impl_t *db;
1454 	objset_t *os = dn->dn_objset;
1455 	uint64_t object = dn->dn_object;
1456 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1457 	uint64_t blkid;
1458 
1459 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1460 	blkid = dbuf_whichblock(dn, 0, offset);
1461 	db = dbuf_hold(dn, blkid, FTAG);
1462 	if (db == NULL)
1463 		return (SET_ERROR(EIO));
1464 	rw_exit(&dn->dn_struct_rwlock);
1465 
1466 	/*
1467 	 * We can only assign if the offset is aligned and the arc buf is the
1468 	 * same size as the dbuf.
1469 	 */
1470 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1471 		zfs_racct_write(blksz, 1);
1472 		dbuf_assign_arcbuf(db, buf, tx);
1473 		dbuf_rele(db, FTAG);
1474 	} else {
1475 		/* compressed bufs must always be assignable to their dbuf */
1476 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1477 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1478 
1479 		dbuf_rele(db, FTAG);
1480 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1481 		dmu_return_arcbuf(buf);
1482 	}
1483 
1484 	return (0);
1485 }
1486 
1487 int
1488 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1489     dmu_tx_t *tx)
1490 {
1491 	int err;
1492 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1493 
1494 	DB_DNODE_ENTER(dbuf);
1495 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1496 	DB_DNODE_EXIT(dbuf);
1497 
1498 	return (err);
1499 }
1500 
1501 typedef struct {
1502 	dbuf_dirty_record_t	*dsa_dr;
1503 	dmu_sync_cb_t		*dsa_done;
1504 	zgd_t			*dsa_zgd;
1505 	dmu_tx_t		*dsa_tx;
1506 } dmu_sync_arg_t;
1507 
1508 static void
1509 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1510 {
1511 	(void) buf;
1512 	dmu_sync_arg_t *dsa = varg;
1513 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1514 	blkptr_t *bp = zio->io_bp;
1515 
1516 	if (zio->io_error == 0) {
1517 		if (BP_IS_HOLE(bp)) {
1518 			/*
1519 			 * A block of zeros may compress to a hole, but the
1520 			 * block size still needs to be known for replay.
1521 			 */
1522 			BP_SET_LSIZE(bp, db->db_size);
1523 		} else if (!BP_IS_EMBEDDED(bp)) {
1524 			ASSERT(BP_GET_LEVEL(bp) == 0);
1525 			BP_SET_FILL(bp, 1);
1526 		}
1527 	}
1528 }
1529 
1530 static void
1531 dmu_sync_late_arrival_ready(zio_t *zio)
1532 {
1533 	dmu_sync_ready(zio, NULL, zio->io_private);
1534 }
1535 
1536 static void
1537 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1538 {
1539 	(void) buf;
1540 	dmu_sync_arg_t *dsa = varg;
1541 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1542 	dmu_buf_impl_t *db = dr->dr_dbuf;
1543 	zgd_t *zgd = dsa->dsa_zgd;
1544 
1545 	/*
1546 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1547 	 * the writes for the lwb have completed.
1548 	 */
1549 	if (zio->io_error == 0) {
1550 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1551 	}
1552 
1553 	mutex_enter(&db->db_mtx);
1554 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1555 	if (zio->io_error == 0) {
1556 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1557 		if (dr->dt.dl.dr_nopwrite) {
1558 			blkptr_t *bp = zio->io_bp;
1559 			blkptr_t *bp_orig = &zio->io_bp_orig;
1560 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1561 
1562 			ASSERT(BP_EQUAL(bp, bp_orig));
1563 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1564 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1565 			VERIFY(zio_checksum_table[chksum].ci_flags &
1566 			    ZCHECKSUM_FLAG_NOPWRITE);
1567 		}
1568 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1569 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1570 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1571 
1572 		/*
1573 		 * Old style holes are filled with all zeros, whereas
1574 		 * new-style holes maintain their lsize, type, level,
1575 		 * and birth time (see zio_write_compress). While we
1576 		 * need to reset the BP_SET_LSIZE() call that happened
1577 		 * in dmu_sync_ready for old style holes, we do *not*
1578 		 * want to wipe out the information contained in new
1579 		 * style holes. Thus, only zero out the block pointer if
1580 		 * it's an old style hole.
1581 		 */
1582 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1583 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1584 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1585 	} else {
1586 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1587 	}
1588 	cv_broadcast(&db->db_changed);
1589 	mutex_exit(&db->db_mtx);
1590 
1591 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1592 
1593 	kmem_free(dsa, sizeof (*dsa));
1594 }
1595 
1596 static void
1597 dmu_sync_late_arrival_done(zio_t *zio)
1598 {
1599 	blkptr_t *bp = zio->io_bp;
1600 	dmu_sync_arg_t *dsa = zio->io_private;
1601 	zgd_t *zgd = dsa->dsa_zgd;
1602 
1603 	if (zio->io_error == 0) {
1604 		/*
1605 		 * Record the vdev(s) backing this blkptr so they can be
1606 		 * flushed after the writes for the lwb have completed.
1607 		 */
1608 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1609 
1610 		if (!BP_IS_HOLE(bp)) {
1611 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1612 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1613 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1614 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1615 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1616 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1617 		}
1618 	}
1619 
1620 	dmu_tx_commit(dsa->dsa_tx);
1621 
1622 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1623 
1624 	abd_free(zio->io_abd);
1625 	kmem_free(dsa, sizeof (*dsa));
1626 }
1627 
1628 static int
1629 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1630     zio_prop_t *zp, zbookmark_phys_t *zb)
1631 {
1632 	dmu_sync_arg_t *dsa;
1633 	dmu_tx_t *tx;
1634 
1635 	tx = dmu_tx_create(os);
1636 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1637 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1638 		dmu_tx_abort(tx);
1639 		/* Make zl_get_data do txg_waited_synced() */
1640 		return (SET_ERROR(EIO));
1641 	}
1642 
1643 	/*
1644 	 * In order to prevent the zgd's lwb from being free'd prior to
1645 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1646 	 * the lwb's "max txg" takes this tx's txg into account.
1647 	 */
1648 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1649 
1650 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1651 	dsa->dsa_dr = NULL;
1652 	dsa->dsa_done = done;
1653 	dsa->dsa_zgd = zgd;
1654 	dsa->dsa_tx = tx;
1655 
1656 	/*
1657 	 * Since we are currently syncing this txg, it's nontrivial to
1658 	 * determine what BP to nopwrite against, so we disable nopwrite.
1659 	 *
1660 	 * When syncing, the db_blkptr is initially the BP of the previous
1661 	 * txg.  We can not nopwrite against it because it will be changed
1662 	 * (this is similar to the non-late-arrival case where the dbuf is
1663 	 * dirty in a future txg).
1664 	 *
1665 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1666 	 * We can not nopwrite against it because although the BP will not
1667 	 * (typically) be changed, the data has not yet been persisted to this
1668 	 * location.
1669 	 *
1670 	 * Finally, when dbuf_write_done() is called, it is theoretically
1671 	 * possible to always nopwrite, because the data that was written in
1672 	 * this txg is the same data that we are trying to write.  However we
1673 	 * would need to check that this dbuf is not dirty in any future
1674 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1675 	 * don't nopwrite in this case.
1676 	 */
1677 	zp->zp_nopwrite = B_FALSE;
1678 
1679 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1680 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1681 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1682 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1683 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1684 
1685 	return (0);
1686 }
1687 
1688 /*
1689  * Intent log support: sync the block associated with db to disk.
1690  * N.B. and XXX: the caller is responsible for making sure that the
1691  * data isn't changing while dmu_sync() is writing it.
1692  *
1693  * Return values:
1694  *
1695  *	EEXIST: this txg has already been synced, so there's nothing to do.
1696  *		The caller should not log the write.
1697  *
1698  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1699  *		The caller should not log the write.
1700  *
1701  *	EALREADY: this block is already in the process of being synced.
1702  *		The caller should track its progress (somehow).
1703  *
1704  *	EIO: could not do the I/O.
1705  *		The caller should do a txg_wait_synced().
1706  *
1707  *	0: the I/O has been initiated.
1708  *		The caller should log this blkptr in the done callback.
1709  *		It is possible that the I/O will fail, in which case
1710  *		the error will be reported to the done callback and
1711  *		propagated to pio from zio_done().
1712  */
1713 int
1714 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1715 {
1716 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1717 	objset_t *os = db->db_objset;
1718 	dsl_dataset_t *ds = os->os_dsl_dataset;
1719 	dbuf_dirty_record_t *dr, *dr_next;
1720 	dmu_sync_arg_t *dsa;
1721 	zbookmark_phys_t zb;
1722 	zio_prop_t zp;
1723 	dnode_t *dn;
1724 
1725 	ASSERT(pio != NULL);
1726 	ASSERT(txg != 0);
1727 
1728 	SET_BOOKMARK(&zb, ds->ds_object,
1729 	    db->db.db_object, db->db_level, db->db_blkid);
1730 
1731 	DB_DNODE_ENTER(db);
1732 	dn = DB_DNODE(db);
1733 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1734 	DB_DNODE_EXIT(db);
1735 
1736 	/*
1737 	 * If we're frozen (running ziltest), we always need to generate a bp.
1738 	 */
1739 	if (txg > spa_freeze_txg(os->os_spa))
1740 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1741 
1742 	/*
1743 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1744 	 * and us.  If we determine that this txg is not yet syncing,
1745 	 * but it begins to sync a moment later, that's OK because the
1746 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1747 	 */
1748 	mutex_enter(&db->db_mtx);
1749 
1750 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1751 		/*
1752 		 * This txg has already synced.  There's nothing to do.
1753 		 */
1754 		mutex_exit(&db->db_mtx);
1755 		return (SET_ERROR(EEXIST));
1756 	}
1757 
1758 	if (txg <= spa_syncing_txg(os->os_spa)) {
1759 		/*
1760 		 * This txg is currently syncing, so we can't mess with
1761 		 * the dirty record anymore; just write a new log block.
1762 		 */
1763 		mutex_exit(&db->db_mtx);
1764 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1765 	}
1766 
1767 	dr = dbuf_find_dirty_eq(db, txg);
1768 
1769 	if (dr == NULL) {
1770 		/*
1771 		 * There's no dr for this dbuf, so it must have been freed.
1772 		 * There's no need to log writes to freed blocks, so we're done.
1773 		 */
1774 		mutex_exit(&db->db_mtx);
1775 		return (SET_ERROR(ENOENT));
1776 	}
1777 
1778 	dr_next = list_next(&db->db_dirty_records, dr);
1779 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1780 
1781 	if (db->db_blkptr != NULL) {
1782 		/*
1783 		 * We need to fill in zgd_bp with the current blkptr so that
1784 		 * the nopwrite code can check if we're writing the same
1785 		 * data that's already on disk.  We can only nopwrite if we
1786 		 * are sure that after making the copy, db_blkptr will not
1787 		 * change until our i/o completes.  We ensure this by
1788 		 * holding the db_mtx, and only allowing nopwrite if the
1789 		 * block is not already dirty (see below).  This is verified
1790 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1791 		 * not changed.
1792 		 */
1793 		*zgd->zgd_bp = *db->db_blkptr;
1794 	}
1795 
1796 	/*
1797 	 * Assume the on-disk data is X, the current syncing data (in
1798 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1799 	 * in dmu_sync).
1800 	 *
1801 	 * We usually want to perform a nopwrite if X and Z are the
1802 	 * same.  However, if Y is different (i.e. the BP is going to
1803 	 * change before this write takes effect), then a nopwrite will
1804 	 * be incorrect - we would override with X, which could have
1805 	 * been freed when Y was written.
1806 	 *
1807 	 * (Note that this is not a concern when we are nop-writing from
1808 	 * syncing context, because X and Y must be identical, because
1809 	 * all previous txgs have been synced.)
1810 	 *
1811 	 * Therefore, we disable nopwrite if the current BP could change
1812 	 * before this TXG.  There are two ways it could change: by
1813 	 * being dirty (dr_next is non-NULL), or by being freed
1814 	 * (dnode_block_freed()).  This behavior is verified by
1815 	 * zio_done(), which VERIFYs that the override BP is identical
1816 	 * to the on-disk BP.
1817 	 */
1818 	DB_DNODE_ENTER(db);
1819 	dn = DB_DNODE(db);
1820 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1821 		zp.zp_nopwrite = B_FALSE;
1822 	DB_DNODE_EXIT(db);
1823 
1824 	ASSERT(dr->dr_txg == txg);
1825 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1826 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1827 		/*
1828 		 * We have already issued a sync write for this buffer,
1829 		 * or this buffer has already been synced.  It could not
1830 		 * have been dirtied since, or we would have cleared the state.
1831 		 */
1832 		mutex_exit(&db->db_mtx);
1833 		return (SET_ERROR(EALREADY));
1834 	}
1835 
1836 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1837 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1838 	mutex_exit(&db->db_mtx);
1839 
1840 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1841 	dsa->dsa_dr = dr;
1842 	dsa->dsa_done = done;
1843 	dsa->dsa_zgd = zgd;
1844 	dsa->dsa_tx = NULL;
1845 
1846 	zio_nowait(arc_write(pio, os->os_spa, txg,
1847 	    zgd->zgd_bp, dr->dt.dl.dr_data, dbuf_is_l2cacheable(db),
1848 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1849 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1850 
1851 	return (0);
1852 }
1853 
1854 int
1855 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1856 {
1857 	dnode_t *dn;
1858 	int err;
1859 
1860 	err = dnode_hold(os, object, FTAG, &dn);
1861 	if (err)
1862 		return (err);
1863 	err = dnode_set_nlevels(dn, nlevels, tx);
1864 	dnode_rele(dn, FTAG);
1865 	return (err);
1866 }
1867 
1868 int
1869 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1870     dmu_tx_t *tx)
1871 {
1872 	dnode_t *dn;
1873 	int err;
1874 
1875 	err = dnode_hold(os, object, FTAG, &dn);
1876 	if (err)
1877 		return (err);
1878 	err = dnode_set_blksz(dn, size, ibs, tx);
1879 	dnode_rele(dn, FTAG);
1880 	return (err);
1881 }
1882 
1883 int
1884 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1885     dmu_tx_t *tx)
1886 {
1887 	dnode_t *dn;
1888 	int err;
1889 
1890 	err = dnode_hold(os, object, FTAG, &dn);
1891 	if (err)
1892 		return (err);
1893 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1894 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1895 	rw_exit(&dn->dn_struct_rwlock);
1896 	dnode_rele(dn, FTAG);
1897 	return (0);
1898 }
1899 
1900 void
1901 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1902     dmu_tx_t *tx)
1903 {
1904 	dnode_t *dn;
1905 
1906 	/*
1907 	 * Send streams include each object's checksum function.  This
1908 	 * check ensures that the receiving system can understand the
1909 	 * checksum function transmitted.
1910 	 */
1911 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1912 
1913 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1914 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1915 	dn->dn_checksum = checksum;
1916 	dnode_setdirty(dn, tx);
1917 	dnode_rele(dn, FTAG);
1918 }
1919 
1920 void
1921 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1922     dmu_tx_t *tx)
1923 {
1924 	dnode_t *dn;
1925 
1926 	/*
1927 	 * Send streams include each object's compression function.  This
1928 	 * check ensures that the receiving system can understand the
1929 	 * compression function transmitted.
1930 	 */
1931 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1932 
1933 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1934 	dn->dn_compress = compress;
1935 	dnode_setdirty(dn, tx);
1936 	dnode_rele(dn, FTAG);
1937 }
1938 
1939 /*
1940  * When the "redundant_metadata" property is set to "most", only indirect
1941  * blocks of this level and higher will have an additional ditto block.
1942  */
1943 static const int zfs_redundant_metadata_most_ditto_level = 2;
1944 
1945 void
1946 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1947 {
1948 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1949 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1950 	    (wp & WP_SPILL));
1951 	enum zio_checksum checksum = os->os_checksum;
1952 	enum zio_compress compress = os->os_compress;
1953 	uint8_t complevel = os->os_complevel;
1954 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1955 	boolean_t dedup = B_FALSE;
1956 	boolean_t nopwrite = B_FALSE;
1957 	boolean_t dedup_verify = os->os_dedup_verify;
1958 	boolean_t encrypt = B_FALSE;
1959 	int copies = os->os_copies;
1960 
1961 	/*
1962 	 * We maintain different write policies for each of the following
1963 	 * types of data:
1964 	 *	 1. metadata
1965 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1966 	 *	 3. all other level 0 blocks
1967 	 */
1968 	if (ismd) {
1969 		/*
1970 		 * XXX -- we should design a compression algorithm
1971 		 * that specializes in arrays of bps.
1972 		 */
1973 		compress = zio_compress_select(os->os_spa,
1974 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1975 
1976 		/*
1977 		 * Metadata always gets checksummed.  If the data
1978 		 * checksum is multi-bit correctable, and it's not a
1979 		 * ZBT-style checksum, then it's suitable for metadata
1980 		 * as well.  Otherwise, the metadata checksum defaults
1981 		 * to fletcher4.
1982 		 */
1983 		if (!(zio_checksum_table[checksum].ci_flags &
1984 		    ZCHECKSUM_FLAG_METADATA) ||
1985 		    (zio_checksum_table[checksum].ci_flags &
1986 		    ZCHECKSUM_FLAG_EMBEDDED))
1987 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1988 
1989 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1990 		    (os->os_redundant_metadata ==
1991 		    ZFS_REDUNDANT_METADATA_MOST &&
1992 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1993 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1994 			copies++;
1995 	} else if (wp & WP_NOFILL) {
1996 		ASSERT(level == 0);
1997 
1998 		/*
1999 		 * If we're writing preallocated blocks, we aren't actually
2000 		 * writing them so don't set any policy properties.  These
2001 		 * blocks are currently only used by an external subsystem
2002 		 * outside of zfs (i.e. dump) and not written by the zio
2003 		 * pipeline.
2004 		 */
2005 		compress = ZIO_COMPRESS_OFF;
2006 		checksum = ZIO_CHECKSUM_OFF;
2007 	} else {
2008 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2009 		    compress);
2010 		complevel = zio_complevel_select(os->os_spa, compress,
2011 		    complevel, complevel);
2012 
2013 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2014 		    zio_checksum_select(dn->dn_checksum, checksum) :
2015 		    dedup_checksum;
2016 
2017 		/*
2018 		 * Determine dedup setting.  If we are in dmu_sync(),
2019 		 * we won't actually dedup now because that's all
2020 		 * done in syncing context; but we do want to use the
2021 		 * dedup checksum.  If the checksum is not strong
2022 		 * enough to ensure unique signatures, force
2023 		 * dedup_verify.
2024 		 */
2025 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2026 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2027 			if (!(zio_checksum_table[checksum].ci_flags &
2028 			    ZCHECKSUM_FLAG_DEDUP))
2029 				dedup_verify = B_TRUE;
2030 		}
2031 
2032 		/*
2033 		 * Enable nopwrite if we have secure enough checksum
2034 		 * algorithm (see comment in zio_nop_write) and
2035 		 * compression is enabled.  We don't enable nopwrite if
2036 		 * dedup is enabled as the two features are mutually
2037 		 * exclusive.
2038 		 */
2039 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2040 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2041 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2042 	}
2043 
2044 	/*
2045 	 * All objects in an encrypted objset are protected from modification
2046 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2047 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2048 	 * not subject to nopwrite since writing the same data will still
2049 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2050 	 * to avoid ambiguity in the dedup code since the DDT does not store
2051 	 * object types.
2052 	 */
2053 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2054 		encrypt = B_TRUE;
2055 
2056 		if (DMU_OT_IS_ENCRYPTED(type)) {
2057 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2058 			nopwrite = B_FALSE;
2059 		} else {
2060 			dedup = B_FALSE;
2061 		}
2062 
2063 		if (level <= 0 &&
2064 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2065 			compress = ZIO_COMPRESS_EMPTY;
2066 		}
2067 	}
2068 
2069 	zp->zp_compress = compress;
2070 	zp->zp_complevel = complevel;
2071 	zp->zp_checksum = checksum;
2072 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2073 	zp->zp_level = level;
2074 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2075 	zp->zp_dedup = dedup;
2076 	zp->zp_dedup_verify = dedup && dedup_verify;
2077 	zp->zp_nopwrite = nopwrite;
2078 	zp->zp_encrypt = encrypt;
2079 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2080 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2081 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2082 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2083 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2084 	    os->os_zpl_special_smallblock : 0;
2085 
2086 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2087 }
2088 
2089 /*
2090  * This function is only called from zfs_holey_common() for zpl_llseek()
2091  * in order to determine the location of holes.  In order to accurately
2092  * report holes all dirty data must be synced to disk.  This causes extremely
2093  * poor performance when seeking for holes in a dirty file.  As a compromise,
2094  * only provide hole data when the dnode is clean.  When a dnode is dirty
2095  * report the dnode as having no holes which is always a safe thing to do.
2096  */
2097 int
2098 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2099 {
2100 	dnode_t *dn;
2101 	int err;
2102 
2103 restart:
2104 	err = dnode_hold(os, object, FTAG, &dn);
2105 	if (err)
2106 		return (err);
2107 
2108 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2109 
2110 	if (dnode_is_dirty(dn)) {
2111 		/*
2112 		 * If the zfs_dmu_offset_next_sync module option is enabled
2113 		 * then strict hole reporting has been requested.  Dirty
2114 		 * dnodes must be synced to disk to accurately report all
2115 		 * holes.  When disabled dirty dnodes are reported to not
2116 		 * have any holes which is always safe.
2117 		 *
2118 		 * When called by zfs_holey_common() the zp->z_rangelock
2119 		 * is held to prevent zfs_write() and mmap writeback from
2120 		 * re-dirtying the dnode after txg_wait_synced().
2121 		 */
2122 		if (zfs_dmu_offset_next_sync) {
2123 			rw_exit(&dn->dn_struct_rwlock);
2124 			dnode_rele(dn, FTAG);
2125 			txg_wait_synced(dmu_objset_pool(os), 0);
2126 			goto restart;
2127 		}
2128 
2129 		err = SET_ERROR(EBUSY);
2130 	} else {
2131 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2132 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2133 	}
2134 
2135 	rw_exit(&dn->dn_struct_rwlock);
2136 	dnode_rele(dn, FTAG);
2137 
2138 	return (err);
2139 }
2140 
2141 void
2142 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2143 {
2144 	dnode_phys_t *dnp = dn->dn_phys;
2145 
2146 	doi->doi_data_block_size = dn->dn_datablksz;
2147 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2148 	    1ULL << dn->dn_indblkshift : 0;
2149 	doi->doi_type = dn->dn_type;
2150 	doi->doi_bonus_type = dn->dn_bonustype;
2151 	doi->doi_bonus_size = dn->dn_bonuslen;
2152 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2153 	doi->doi_indirection = dn->dn_nlevels;
2154 	doi->doi_checksum = dn->dn_checksum;
2155 	doi->doi_compress = dn->dn_compress;
2156 	doi->doi_nblkptr = dn->dn_nblkptr;
2157 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2158 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2159 	doi->doi_fill_count = 0;
2160 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2161 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2162 }
2163 
2164 void
2165 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2166 {
2167 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2168 	mutex_enter(&dn->dn_mtx);
2169 
2170 	__dmu_object_info_from_dnode(dn, doi);
2171 
2172 	mutex_exit(&dn->dn_mtx);
2173 	rw_exit(&dn->dn_struct_rwlock);
2174 }
2175 
2176 /*
2177  * Get information on a DMU object.
2178  * If doi is NULL, just indicates whether the object exists.
2179  */
2180 int
2181 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2182 {
2183 	dnode_t *dn;
2184 	int err = dnode_hold(os, object, FTAG, &dn);
2185 
2186 	if (err)
2187 		return (err);
2188 
2189 	if (doi != NULL)
2190 		dmu_object_info_from_dnode(dn, doi);
2191 
2192 	dnode_rele(dn, FTAG);
2193 	return (0);
2194 }
2195 
2196 /*
2197  * As above, but faster; can be used when you have a held dbuf in hand.
2198  */
2199 void
2200 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2201 {
2202 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2203 
2204 	DB_DNODE_ENTER(db);
2205 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2206 	DB_DNODE_EXIT(db);
2207 }
2208 
2209 /*
2210  * Faster still when you only care about the size.
2211  */
2212 void
2213 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2214     u_longlong_t *nblk512)
2215 {
2216 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2217 	dnode_t *dn;
2218 
2219 	DB_DNODE_ENTER(db);
2220 	dn = DB_DNODE(db);
2221 
2222 	*blksize = dn->dn_datablksz;
2223 	/* add in number of slots used for the dnode itself */
2224 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2225 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2226 	DB_DNODE_EXIT(db);
2227 }
2228 
2229 void
2230 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2231 {
2232 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2233 	dnode_t *dn;
2234 
2235 	DB_DNODE_ENTER(db);
2236 	dn = DB_DNODE(db);
2237 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2238 	DB_DNODE_EXIT(db);
2239 }
2240 
2241 void
2242 byteswap_uint64_array(void *vbuf, size_t size)
2243 {
2244 	uint64_t *buf = vbuf;
2245 	size_t count = size >> 3;
2246 	int i;
2247 
2248 	ASSERT((size & 7) == 0);
2249 
2250 	for (i = 0; i < count; i++)
2251 		buf[i] = BSWAP_64(buf[i]);
2252 }
2253 
2254 void
2255 byteswap_uint32_array(void *vbuf, size_t size)
2256 {
2257 	uint32_t *buf = vbuf;
2258 	size_t count = size >> 2;
2259 	int i;
2260 
2261 	ASSERT((size & 3) == 0);
2262 
2263 	for (i = 0; i < count; i++)
2264 		buf[i] = BSWAP_32(buf[i]);
2265 }
2266 
2267 void
2268 byteswap_uint16_array(void *vbuf, size_t size)
2269 {
2270 	uint16_t *buf = vbuf;
2271 	size_t count = size >> 1;
2272 	int i;
2273 
2274 	ASSERT((size & 1) == 0);
2275 
2276 	for (i = 0; i < count; i++)
2277 		buf[i] = BSWAP_16(buf[i]);
2278 }
2279 
2280 void
2281 byteswap_uint8_array(void *vbuf, size_t size)
2282 {
2283 	(void) vbuf, (void) size;
2284 }
2285 
2286 void
2287 dmu_init(void)
2288 {
2289 	abd_init();
2290 	zfs_dbgmsg_init();
2291 	sa_cache_init();
2292 	dmu_objset_init();
2293 	dnode_init();
2294 	zfetch_init();
2295 	dmu_tx_init();
2296 	l2arc_init();
2297 	arc_init();
2298 	dbuf_init();
2299 }
2300 
2301 void
2302 dmu_fini(void)
2303 {
2304 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2305 	l2arc_fini();
2306 	dmu_tx_fini();
2307 	zfetch_fini();
2308 	dbuf_fini();
2309 	dnode_fini();
2310 	dmu_objset_fini();
2311 	sa_cache_fini();
2312 	zfs_dbgmsg_fini();
2313 	abd_fini();
2314 }
2315 
2316 EXPORT_SYMBOL(dmu_bonus_hold);
2317 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2318 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2319 EXPORT_SYMBOL(dmu_buf_rele_array);
2320 EXPORT_SYMBOL(dmu_prefetch);
2321 EXPORT_SYMBOL(dmu_free_range);
2322 EXPORT_SYMBOL(dmu_free_long_range);
2323 EXPORT_SYMBOL(dmu_free_long_object);
2324 EXPORT_SYMBOL(dmu_read);
2325 EXPORT_SYMBOL(dmu_read_by_dnode);
2326 EXPORT_SYMBOL(dmu_write);
2327 EXPORT_SYMBOL(dmu_write_by_dnode);
2328 EXPORT_SYMBOL(dmu_prealloc);
2329 EXPORT_SYMBOL(dmu_object_info);
2330 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2331 EXPORT_SYMBOL(dmu_object_info_from_db);
2332 EXPORT_SYMBOL(dmu_object_size_from_db);
2333 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2334 EXPORT_SYMBOL(dmu_object_set_nlevels);
2335 EXPORT_SYMBOL(dmu_object_set_blocksize);
2336 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2337 EXPORT_SYMBOL(dmu_object_set_checksum);
2338 EXPORT_SYMBOL(dmu_object_set_compress);
2339 EXPORT_SYMBOL(dmu_offset_next);
2340 EXPORT_SYMBOL(dmu_write_policy);
2341 EXPORT_SYMBOL(dmu_sync);
2342 EXPORT_SYMBOL(dmu_request_arcbuf);
2343 EXPORT_SYMBOL(dmu_return_arcbuf);
2344 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2345 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2346 EXPORT_SYMBOL(dmu_buf_hold);
2347 EXPORT_SYMBOL(dmu_ot);
2348 
2349 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2350 	"Enable NOP writes");
2351 
2352 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2353 	"Percentage of dirtied blocks from frees in one TXG");
2354 
2355 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2356 	"Enable forcing txg sync to find holes");
2357 
2358 /* CSTYLED */
2359 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2360 	"Limit one prefetch call to this size");
2361