xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32  */
33 
34 #include <sys/dmu.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_synctask.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dmu_zfetch.h>
48 #include <sys/zfs_ioctl.h>
49 #include <sys/zap.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zio_compress.h>
52 #include <sys/sa.h>
53 #include <sys/zfeature.h>
54 #include <sys/abd.h>
55 #include <sys/trace_zfs.h>
56 #include <sys/zfs_racct.h>
57 #include <sys/zfs_rlock.h>
58 #ifdef _KERNEL
59 #include <sys/vmsystm.h>
60 #include <sys/zfs_znode.h>
61 #endif
62 
63 /*
64  * Enable/disable nopwrite feature.
65  */
66 static int zfs_nopwrite_enabled = 1;
67 
68 /*
69  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
70  * one TXG. After this threshold is crossed, additional dirty blocks from frees
71  * will wait until the next TXG.
72  * A value of zero will disable this throttle.
73  */
74 static uint_t zfs_per_txg_dirty_frees_percent = 30;
75 
76 /*
77  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
78  * By default this is enabled to ensure accurate hole reporting, it can result
79  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
80  * Disabling this option will result in holes never being reported in dirty
81  * files which is always safe.
82  */
83 static int zfs_dmu_offset_next_sync = 1;
84 
85 /*
86  * Limit the amount we can prefetch with one call to this amount.  This
87  * helps to limit the amount of memory that can be used by prefetching.
88  * Larger objects should be prefetched a bit at a time.
89  */
90 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
91 
92 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
93 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
94 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
95 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
96 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
97 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
98 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
99 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
100 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
101 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
102 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
103 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
104 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
105 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
106 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
107 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
108 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
109 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
110 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
111 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
112 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
113 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
114 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
115 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
116 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
117 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
118 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
119 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
121 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
122 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
123 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
124 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
125 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
126 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
127 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
128 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
129 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
130 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
131 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
132 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
134 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
136 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
137 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
141 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
142 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
143 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
144 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
146 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
147 };
148 
149 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
150 	{	byteswap_uint8_array,	"uint8"		},
151 	{	byteswap_uint16_array,	"uint16"	},
152 	{	byteswap_uint32_array,	"uint32"	},
153 	{	byteswap_uint64_array,	"uint64"	},
154 	{	zap_byteswap,		"zap"		},
155 	{	dnode_buf_byteswap,	"dnode"		},
156 	{	dmu_objset_byteswap,	"objset"	},
157 	{	zfs_znode_byteswap,	"znode"		},
158 	{	zfs_oldacl_byteswap,	"oldacl"	},
159 	{	zfs_acl_byteswap,	"acl"		}
160 };
161 
162 static int
163 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
164     const void *tag, dmu_buf_t **dbp)
165 {
166 	uint64_t blkid;
167 	dmu_buf_impl_t *db;
168 
169 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
170 	blkid = dbuf_whichblock(dn, 0, offset);
171 	db = dbuf_hold(dn, blkid, tag);
172 	rw_exit(&dn->dn_struct_rwlock);
173 
174 	if (db == NULL) {
175 		*dbp = NULL;
176 		return (SET_ERROR(EIO));
177 	}
178 
179 	*dbp = &db->db;
180 	return (0);
181 }
182 int
183 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
184     const void *tag, dmu_buf_t **dbp)
185 {
186 	dnode_t *dn;
187 	uint64_t blkid;
188 	dmu_buf_impl_t *db;
189 	int err;
190 
191 	err = dnode_hold(os, object, FTAG, &dn);
192 	if (err)
193 		return (err);
194 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
195 	blkid = dbuf_whichblock(dn, 0, offset);
196 	db = dbuf_hold(dn, blkid, tag);
197 	rw_exit(&dn->dn_struct_rwlock);
198 	dnode_rele(dn, FTAG);
199 
200 	if (db == NULL) {
201 		*dbp = NULL;
202 		return (SET_ERROR(EIO));
203 	}
204 
205 	*dbp = &db->db;
206 	return (err);
207 }
208 
209 int
210 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
211     const void *tag, dmu_buf_t **dbp, int flags)
212 {
213 	int err;
214 	int db_flags = DB_RF_CANFAIL;
215 
216 	if (flags & DMU_READ_NO_PREFETCH)
217 		db_flags |= DB_RF_NOPREFETCH;
218 	if (flags & DMU_READ_NO_DECRYPT)
219 		db_flags |= DB_RF_NO_DECRYPT;
220 
221 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
222 	if (err == 0) {
223 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
224 		err = dbuf_read(db, NULL, db_flags);
225 		if (err != 0) {
226 			dbuf_rele(db, tag);
227 			*dbp = NULL;
228 		}
229 	}
230 
231 	return (err);
232 }
233 
234 int
235 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
236     const void *tag, dmu_buf_t **dbp, int flags)
237 {
238 	int err;
239 	int db_flags = DB_RF_CANFAIL;
240 
241 	if (flags & DMU_READ_NO_PREFETCH)
242 		db_flags |= DB_RF_NOPREFETCH;
243 	if (flags & DMU_READ_NO_DECRYPT)
244 		db_flags |= DB_RF_NO_DECRYPT;
245 
246 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
247 	if (err == 0) {
248 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
249 		err = dbuf_read(db, NULL, db_flags);
250 		if (err != 0) {
251 			dbuf_rele(db, tag);
252 			*dbp = NULL;
253 		}
254 	}
255 
256 	return (err);
257 }
258 
259 int
260 dmu_bonus_max(void)
261 {
262 	return (DN_OLD_MAX_BONUSLEN);
263 }
264 
265 int
266 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
267 {
268 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
269 	dnode_t *dn;
270 	int error;
271 
272 	DB_DNODE_ENTER(db);
273 	dn = DB_DNODE(db);
274 
275 	if (dn->dn_bonus != db) {
276 		error = SET_ERROR(EINVAL);
277 	} else if (newsize < 0 || newsize > db_fake->db_size) {
278 		error = SET_ERROR(EINVAL);
279 	} else {
280 		dnode_setbonuslen(dn, newsize, tx);
281 		error = 0;
282 	}
283 
284 	DB_DNODE_EXIT(db);
285 	return (error);
286 }
287 
288 int
289 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
290 {
291 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
292 	dnode_t *dn;
293 	int error;
294 
295 	DB_DNODE_ENTER(db);
296 	dn = DB_DNODE(db);
297 
298 	if (!DMU_OT_IS_VALID(type)) {
299 		error = SET_ERROR(EINVAL);
300 	} else if (dn->dn_bonus != db) {
301 		error = SET_ERROR(EINVAL);
302 	} else {
303 		dnode_setbonus_type(dn, type, tx);
304 		error = 0;
305 	}
306 
307 	DB_DNODE_EXIT(db);
308 	return (error);
309 }
310 
311 dmu_object_type_t
312 dmu_get_bonustype(dmu_buf_t *db_fake)
313 {
314 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
315 	dnode_t *dn;
316 	dmu_object_type_t type;
317 
318 	DB_DNODE_ENTER(db);
319 	dn = DB_DNODE(db);
320 	type = dn->dn_bonustype;
321 	DB_DNODE_EXIT(db);
322 
323 	return (type);
324 }
325 
326 int
327 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
328 {
329 	dnode_t *dn;
330 	int error;
331 
332 	error = dnode_hold(os, object, FTAG, &dn);
333 	dbuf_rm_spill(dn, tx);
334 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
335 	dnode_rm_spill(dn, tx);
336 	rw_exit(&dn->dn_struct_rwlock);
337 	dnode_rele(dn, FTAG);
338 	return (error);
339 }
340 
341 /*
342  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
343  * has not yet been allocated a new bonus dbuf a will be allocated.
344  * Returns ENOENT, EIO, or 0.
345  */
346 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
347     uint32_t flags)
348 {
349 	dmu_buf_impl_t *db;
350 	int error;
351 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
352 
353 	if (flags & DMU_READ_NO_PREFETCH)
354 		db_flags |= DB_RF_NOPREFETCH;
355 	if (flags & DMU_READ_NO_DECRYPT)
356 		db_flags |= DB_RF_NO_DECRYPT;
357 
358 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
359 	if (dn->dn_bonus == NULL) {
360 		rw_exit(&dn->dn_struct_rwlock);
361 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
362 		if (dn->dn_bonus == NULL)
363 			dbuf_create_bonus(dn);
364 	}
365 	db = dn->dn_bonus;
366 
367 	/* as long as the bonus buf is held, the dnode will be held */
368 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
369 		VERIFY(dnode_add_ref(dn, db));
370 		atomic_inc_32(&dn->dn_dbufs_count);
371 	}
372 
373 	/*
374 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
375 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
376 	 * a dnode hold for every dbuf.
377 	 */
378 	rw_exit(&dn->dn_struct_rwlock);
379 
380 	error = dbuf_read(db, NULL, db_flags);
381 	if (error) {
382 		dnode_evict_bonus(dn);
383 		dbuf_rele(db, tag);
384 		*dbp = NULL;
385 		return (error);
386 	}
387 
388 	*dbp = &db->db;
389 	return (0);
390 }
391 
392 int
393 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
394 {
395 	dnode_t *dn;
396 	int error;
397 
398 	error = dnode_hold(os, object, FTAG, &dn);
399 	if (error)
400 		return (error);
401 
402 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
403 	dnode_rele(dn, FTAG);
404 
405 	return (error);
406 }
407 
408 /*
409  * returns ENOENT, EIO, or 0.
410  *
411  * This interface will allocate a blank spill dbuf when a spill blk
412  * doesn't already exist on the dnode.
413  *
414  * if you only want to find an already existing spill db, then
415  * dmu_spill_hold_existing() should be used.
416  */
417 int
418 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
419     dmu_buf_t **dbp)
420 {
421 	dmu_buf_impl_t *db = NULL;
422 	int err;
423 
424 	if ((flags & DB_RF_HAVESTRUCT) == 0)
425 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
426 
427 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
428 
429 	if ((flags & DB_RF_HAVESTRUCT) == 0)
430 		rw_exit(&dn->dn_struct_rwlock);
431 
432 	if (db == NULL) {
433 		*dbp = NULL;
434 		return (SET_ERROR(EIO));
435 	}
436 	err = dbuf_read(db, NULL, flags);
437 	if (err == 0)
438 		*dbp = &db->db;
439 	else {
440 		dbuf_rele(db, tag);
441 		*dbp = NULL;
442 	}
443 	return (err);
444 }
445 
446 int
447 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
448 {
449 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
450 	dnode_t *dn;
451 	int err;
452 
453 	DB_DNODE_ENTER(db);
454 	dn = DB_DNODE(db);
455 
456 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
457 		err = SET_ERROR(EINVAL);
458 	} else {
459 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
460 
461 		if (!dn->dn_have_spill) {
462 			err = SET_ERROR(ENOENT);
463 		} else {
464 			err = dmu_spill_hold_by_dnode(dn,
465 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
466 		}
467 
468 		rw_exit(&dn->dn_struct_rwlock);
469 	}
470 
471 	DB_DNODE_EXIT(db);
472 	return (err);
473 }
474 
475 int
476 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
477     dmu_buf_t **dbp)
478 {
479 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
480 	dnode_t *dn;
481 	int err;
482 	uint32_t db_flags = DB_RF_CANFAIL;
483 
484 	if (flags & DMU_READ_NO_DECRYPT)
485 		db_flags |= DB_RF_NO_DECRYPT;
486 
487 	DB_DNODE_ENTER(db);
488 	dn = DB_DNODE(db);
489 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
490 	DB_DNODE_EXIT(db);
491 
492 	return (err);
493 }
494 
495 /*
496  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
497  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
498  * and can induce severe lock contention when writing to several files
499  * whose dnodes are in the same block.
500  */
501 int
502 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
503     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
504     uint32_t flags)
505 {
506 	dmu_buf_t **dbp;
507 	zstream_t *zs = NULL;
508 	uint64_t blkid, nblks, i;
509 	uint32_t dbuf_flags;
510 	int err;
511 	zio_t *zio = NULL;
512 	boolean_t missed = B_FALSE;
513 
514 	ASSERT(length <= DMU_MAX_ACCESS);
515 
516 	/*
517 	 * Note: We directly notify the prefetch code of this read, so that
518 	 * we can tell it about the multi-block read.  dbuf_read() only knows
519 	 * about the one block it is accessing.
520 	 */
521 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
522 	    DB_RF_NOPREFETCH;
523 
524 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
525 		dbuf_flags |= DB_RF_NO_DECRYPT;
526 
527 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
528 	if (dn->dn_datablkshift) {
529 		int blkshift = dn->dn_datablkshift;
530 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
531 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
532 	} else {
533 		if (offset + length > dn->dn_datablksz) {
534 			zfs_panic_recover("zfs: accessing past end of object "
535 			    "%llx/%llx (size=%u access=%llu+%llu)",
536 			    (longlong_t)dn->dn_objset->
537 			    os_dsl_dataset->ds_object,
538 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
539 			    (longlong_t)offset, (longlong_t)length);
540 			rw_exit(&dn->dn_struct_rwlock);
541 			return (SET_ERROR(EIO));
542 		}
543 		nblks = 1;
544 	}
545 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
546 
547 	if (read)
548 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
549 		    ZIO_FLAG_CANFAIL);
550 	blkid = dbuf_whichblock(dn, 0, offset);
551 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
552 	    length <= zfetch_array_rd_sz) {
553 		/*
554 		 * Prepare the zfetch before initiating the demand reads, so
555 		 * that if multiple threads block on same indirect block, we
556 		 * base predictions on the original less racy request order.
557 		 */
558 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
559 		    B_TRUE);
560 	}
561 	for (i = 0; i < nblks; i++) {
562 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
563 		if (db == NULL) {
564 			if (zs)
565 				dmu_zfetch_run(zs, missed, B_TRUE);
566 			rw_exit(&dn->dn_struct_rwlock);
567 			dmu_buf_rele_array(dbp, nblks, tag);
568 			if (read)
569 				zio_nowait(zio);
570 			return (SET_ERROR(EIO));
571 		}
572 
573 		/*
574 		 * Initiate async demand data read.
575 		 * We check the db_state after calling dbuf_read() because
576 		 * (1) dbuf_read() may change the state to CACHED due to a
577 		 * hit in the ARC, and (2) on a cache miss, a child will
578 		 * have been added to "zio" but not yet completed, so the
579 		 * state will not yet be CACHED.
580 		 */
581 		if (read) {
582 			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
583 			    offset + length < db->db.db_offset +
584 			    db->db.db_size) {
585 				if (offset <= db->db.db_offset)
586 					dbuf_flags |= DB_RF_PARTIAL_FIRST;
587 				else
588 					dbuf_flags |= DB_RF_PARTIAL_MORE;
589 			}
590 			(void) dbuf_read(db, zio, dbuf_flags);
591 			if (db->db_state != DB_CACHED)
592 				missed = B_TRUE;
593 		}
594 		dbp[i] = &db->db;
595 	}
596 
597 	if (!read)
598 		zfs_racct_write(length, nblks);
599 
600 	if (zs)
601 		dmu_zfetch_run(zs, missed, B_TRUE);
602 	rw_exit(&dn->dn_struct_rwlock);
603 
604 	if (read) {
605 		/* wait for async read i/o */
606 		err = zio_wait(zio);
607 		if (err) {
608 			dmu_buf_rele_array(dbp, nblks, tag);
609 			return (err);
610 		}
611 
612 		/* wait for other io to complete */
613 		for (i = 0; i < nblks; i++) {
614 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
615 			mutex_enter(&db->db_mtx);
616 			while (db->db_state == DB_READ ||
617 			    db->db_state == DB_FILL)
618 				cv_wait(&db->db_changed, &db->db_mtx);
619 			if (db->db_state == DB_UNCACHED)
620 				err = SET_ERROR(EIO);
621 			mutex_exit(&db->db_mtx);
622 			if (err) {
623 				dmu_buf_rele_array(dbp, nblks, tag);
624 				return (err);
625 			}
626 		}
627 	}
628 
629 	*numbufsp = nblks;
630 	*dbpp = dbp;
631 	return (0);
632 }
633 
634 int
635 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
636     uint64_t length, int read, const void *tag, int *numbufsp,
637     dmu_buf_t ***dbpp)
638 {
639 	dnode_t *dn;
640 	int err;
641 
642 	err = dnode_hold(os, object, FTAG, &dn);
643 	if (err)
644 		return (err);
645 
646 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
647 	    numbufsp, dbpp, DMU_READ_PREFETCH);
648 
649 	dnode_rele(dn, FTAG);
650 
651 	return (err);
652 }
653 
654 int
655 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
656     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
657     dmu_buf_t ***dbpp)
658 {
659 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
660 	dnode_t *dn;
661 	int err;
662 
663 	DB_DNODE_ENTER(db);
664 	dn = DB_DNODE(db);
665 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
666 	    numbufsp, dbpp, DMU_READ_PREFETCH);
667 	DB_DNODE_EXIT(db);
668 
669 	return (err);
670 }
671 
672 void
673 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
674 {
675 	int i;
676 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
677 
678 	if (numbufs == 0)
679 		return;
680 
681 	for (i = 0; i < numbufs; i++) {
682 		if (dbp[i])
683 			dbuf_rele(dbp[i], tag);
684 	}
685 
686 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
687 }
688 
689 /*
690  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
691  * indirect blocks prefetched will be those that point to the blocks containing
692  * the data starting at offset, and continuing to offset + len.
693  *
694  * Note that if the indirect blocks above the blocks being prefetched are not
695  * in cache, they will be asynchronously read in.
696  */
697 void
698 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
699     uint64_t len, zio_priority_t pri)
700 {
701 	dnode_t *dn;
702 	uint64_t blkid;
703 	int nblks, err;
704 
705 	if (len == 0) {  /* they're interested in the bonus buffer */
706 		dn = DMU_META_DNODE(os);
707 
708 		if (object == 0 || object >= DN_MAX_OBJECT)
709 			return;
710 
711 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
712 		blkid = dbuf_whichblock(dn, level,
713 		    object * sizeof (dnode_phys_t));
714 		dbuf_prefetch(dn, level, blkid, pri, 0);
715 		rw_exit(&dn->dn_struct_rwlock);
716 		return;
717 	}
718 
719 	/*
720 	 * See comment before the definition of dmu_prefetch_max.
721 	 */
722 	len = MIN(len, dmu_prefetch_max);
723 
724 	/*
725 	 * XXX - Note, if the dnode for the requested object is not
726 	 * already cached, we will do a *synchronous* read in the
727 	 * dnode_hold() call.  The same is true for any indirects.
728 	 */
729 	err = dnode_hold(os, object, FTAG, &dn);
730 	if (err != 0)
731 		return;
732 
733 	/*
734 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
735 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
736 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
737 	 * offset)  is the first.  Then the number we need to prefetch is the
738 	 * last - first + 1.
739 	 */
740 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
741 	if (level > 0 || dn->dn_datablkshift != 0) {
742 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
743 		    dbuf_whichblock(dn, level, offset) + 1;
744 	} else {
745 		nblks = (offset < dn->dn_datablksz);
746 	}
747 
748 	if (nblks != 0) {
749 		blkid = dbuf_whichblock(dn, level, offset);
750 		for (int i = 0; i < nblks; i++)
751 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
752 	}
753 	rw_exit(&dn->dn_struct_rwlock);
754 
755 	dnode_rele(dn, FTAG);
756 }
757 
758 /*
759  * Get the next "chunk" of file data to free.  We traverse the file from
760  * the end so that the file gets shorter over time (if we crashes in the
761  * middle, this will leave us in a better state).  We find allocated file
762  * data by simply searching the allocated level 1 indirects.
763  *
764  * On input, *start should be the first offset that does not need to be
765  * freed (e.g. "offset + length").  On return, *start will be the first
766  * offset that should be freed and l1blks is set to the number of level 1
767  * indirect blocks found within the chunk.
768  */
769 static int
770 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
771 {
772 	uint64_t blks;
773 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
774 	/* bytes of data covered by a level-1 indirect block */
775 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
776 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
777 
778 	ASSERT3U(minimum, <=, *start);
779 
780 	/*
781 	 * Check if we can free the entire range assuming that all of the
782 	 * L1 blocks in this range have data. If we can, we use this
783 	 * worst case value as an estimate so we can avoid having to look
784 	 * at the object's actual data.
785 	 */
786 	uint64_t total_l1blks =
787 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
788 	    iblkrange;
789 	if (total_l1blks <= maxblks) {
790 		*l1blks = total_l1blks;
791 		*start = minimum;
792 		return (0);
793 	}
794 	ASSERT(ISP2(iblkrange));
795 
796 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
797 		int err;
798 
799 		/*
800 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
801 		 * indirect block at or before the input offset.  We must
802 		 * decrement *start so that it is at the end of the region
803 		 * to search.
804 		 */
805 		(*start)--;
806 
807 		err = dnode_next_offset(dn,
808 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
809 
810 		/* if there are no indirect blocks before start, we are done */
811 		if (err == ESRCH) {
812 			*start = minimum;
813 			break;
814 		} else if (err != 0) {
815 			*l1blks = blks;
816 			return (err);
817 		}
818 
819 		/* set start to the beginning of this L1 indirect */
820 		*start = P2ALIGN(*start, iblkrange);
821 	}
822 	if (*start < minimum)
823 		*start = minimum;
824 	*l1blks = blks;
825 
826 	return (0);
827 }
828 
829 /*
830  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
831  * otherwise return false.
832  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
833  */
834 static boolean_t
835 dmu_objset_zfs_unmounting(objset_t *os)
836 {
837 #ifdef _KERNEL
838 	if (dmu_objset_type(os) == DMU_OST_ZFS)
839 		return (zfs_get_vfs_flag_unmounted(os));
840 #else
841 	(void) os;
842 #endif
843 	return (B_FALSE);
844 }
845 
846 static int
847 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
848     uint64_t length)
849 {
850 	uint64_t object_size;
851 	int err;
852 	uint64_t dirty_frees_threshold;
853 	dsl_pool_t *dp = dmu_objset_pool(os);
854 
855 	if (dn == NULL)
856 		return (SET_ERROR(EINVAL));
857 
858 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
859 	if (offset >= object_size)
860 		return (0);
861 
862 	if (zfs_per_txg_dirty_frees_percent <= 100)
863 		dirty_frees_threshold =
864 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
865 	else
866 		dirty_frees_threshold = zfs_dirty_data_max / 20;
867 
868 	if (length == DMU_OBJECT_END || offset + length > object_size)
869 		length = object_size - offset;
870 
871 	while (length != 0) {
872 		uint64_t chunk_end, chunk_begin, chunk_len;
873 		uint64_t l1blks;
874 		dmu_tx_t *tx;
875 
876 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
877 			return (SET_ERROR(EINTR));
878 
879 		chunk_end = chunk_begin = offset + length;
880 
881 		/* move chunk_begin backwards to the beginning of this chunk */
882 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
883 		if (err)
884 			return (err);
885 		ASSERT3U(chunk_begin, >=, offset);
886 		ASSERT3U(chunk_begin, <=, chunk_end);
887 
888 		chunk_len = chunk_end - chunk_begin;
889 
890 		tx = dmu_tx_create(os);
891 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
892 
893 		/*
894 		 * Mark this transaction as typically resulting in a net
895 		 * reduction in space used.
896 		 */
897 		dmu_tx_mark_netfree(tx);
898 		err = dmu_tx_assign(tx, TXG_WAIT);
899 		if (err) {
900 			dmu_tx_abort(tx);
901 			return (err);
902 		}
903 
904 		uint64_t txg = dmu_tx_get_txg(tx);
905 
906 		mutex_enter(&dp->dp_lock);
907 		uint64_t long_free_dirty =
908 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
909 		mutex_exit(&dp->dp_lock);
910 
911 		/*
912 		 * To avoid filling up a TXG with just frees, wait for
913 		 * the next TXG to open before freeing more chunks if
914 		 * we have reached the threshold of frees.
915 		 */
916 		if (dirty_frees_threshold != 0 &&
917 		    long_free_dirty >= dirty_frees_threshold) {
918 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
919 			dmu_tx_commit(tx);
920 			txg_wait_open(dp, 0, B_TRUE);
921 			continue;
922 		}
923 
924 		/*
925 		 * In order to prevent unnecessary write throttling, for each
926 		 * TXG, we track the cumulative size of L1 blocks being dirtied
927 		 * in dnode_free_range() below. We compare this number to a
928 		 * tunable threshold, past which we prevent new L1 dirty freeing
929 		 * blocks from being added into the open TXG. See
930 		 * dmu_free_long_range_impl() for details. The threshold
931 		 * prevents write throttle activation due to dirty freeing L1
932 		 * blocks taking up a large percentage of zfs_dirty_data_max.
933 		 */
934 		mutex_enter(&dp->dp_lock);
935 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
936 		    l1blks << dn->dn_indblkshift;
937 		mutex_exit(&dp->dp_lock);
938 		DTRACE_PROBE3(free__long__range,
939 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
940 		    uint64_t, txg);
941 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
942 
943 		dmu_tx_commit(tx);
944 
945 		length -= chunk_len;
946 	}
947 	return (0);
948 }
949 
950 int
951 dmu_free_long_range(objset_t *os, uint64_t object,
952     uint64_t offset, uint64_t length)
953 {
954 	dnode_t *dn;
955 	int err;
956 
957 	err = dnode_hold(os, object, FTAG, &dn);
958 	if (err != 0)
959 		return (err);
960 	err = dmu_free_long_range_impl(os, dn, offset, length);
961 
962 	/*
963 	 * It is important to zero out the maxblkid when freeing the entire
964 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
965 	 * will take the fast path, and (b) dnode_reallocate() can verify
966 	 * that the entire file has been freed.
967 	 */
968 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
969 		dn->dn_maxblkid = 0;
970 
971 	dnode_rele(dn, FTAG);
972 	return (err);
973 }
974 
975 int
976 dmu_free_long_object(objset_t *os, uint64_t object)
977 {
978 	dmu_tx_t *tx;
979 	int err;
980 
981 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
982 	if (err != 0)
983 		return (err);
984 
985 	tx = dmu_tx_create(os);
986 	dmu_tx_hold_bonus(tx, object);
987 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
988 	dmu_tx_mark_netfree(tx);
989 	err = dmu_tx_assign(tx, TXG_WAIT);
990 	if (err == 0) {
991 		err = dmu_object_free(os, object, tx);
992 		dmu_tx_commit(tx);
993 	} else {
994 		dmu_tx_abort(tx);
995 	}
996 
997 	return (err);
998 }
999 
1000 int
1001 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1002     uint64_t size, dmu_tx_t *tx)
1003 {
1004 	dnode_t *dn;
1005 	int err = dnode_hold(os, object, FTAG, &dn);
1006 	if (err)
1007 		return (err);
1008 	ASSERT(offset < UINT64_MAX);
1009 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1010 	dnode_free_range(dn, offset, size, tx);
1011 	dnode_rele(dn, FTAG);
1012 	return (0);
1013 }
1014 
1015 static int
1016 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1017     void *buf, uint32_t flags)
1018 {
1019 	dmu_buf_t **dbp;
1020 	int numbufs, err = 0;
1021 
1022 	/*
1023 	 * Deal with odd block sizes, where there can't be data past the first
1024 	 * block.  If we ever do the tail block optimization, we will need to
1025 	 * handle that here as well.
1026 	 */
1027 	if (dn->dn_maxblkid == 0) {
1028 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1029 		    MIN(size, dn->dn_datablksz - offset);
1030 		memset((char *)buf + newsz, 0, size - newsz);
1031 		size = newsz;
1032 	}
1033 
1034 	while (size > 0) {
1035 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1036 		int i;
1037 
1038 		/*
1039 		 * NB: we could do this block-at-a-time, but it's nice
1040 		 * to be reading in parallel.
1041 		 */
1042 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1043 		    TRUE, FTAG, &numbufs, &dbp, flags);
1044 		if (err)
1045 			break;
1046 
1047 		for (i = 0; i < numbufs; i++) {
1048 			uint64_t tocpy;
1049 			int64_t bufoff;
1050 			dmu_buf_t *db = dbp[i];
1051 
1052 			ASSERT(size > 0);
1053 
1054 			bufoff = offset - db->db_offset;
1055 			tocpy = MIN(db->db_size - bufoff, size);
1056 
1057 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1058 
1059 			offset += tocpy;
1060 			size -= tocpy;
1061 			buf = (char *)buf + tocpy;
1062 		}
1063 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1064 	}
1065 	return (err);
1066 }
1067 
1068 int
1069 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1070     void *buf, uint32_t flags)
1071 {
1072 	dnode_t *dn;
1073 	int err;
1074 
1075 	err = dnode_hold(os, object, FTAG, &dn);
1076 	if (err != 0)
1077 		return (err);
1078 
1079 	err = dmu_read_impl(dn, offset, size, buf, flags);
1080 	dnode_rele(dn, FTAG);
1081 	return (err);
1082 }
1083 
1084 int
1085 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1086     uint32_t flags)
1087 {
1088 	return (dmu_read_impl(dn, offset, size, buf, flags));
1089 }
1090 
1091 static void
1092 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1093     const void *buf, dmu_tx_t *tx)
1094 {
1095 	int i;
1096 
1097 	for (i = 0; i < numbufs; i++) {
1098 		uint64_t tocpy;
1099 		int64_t bufoff;
1100 		dmu_buf_t *db = dbp[i];
1101 
1102 		ASSERT(size > 0);
1103 
1104 		bufoff = offset - db->db_offset;
1105 		tocpy = MIN(db->db_size - bufoff, size);
1106 
1107 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1108 
1109 		if (tocpy == db->db_size)
1110 			dmu_buf_will_fill(db, tx);
1111 		else
1112 			dmu_buf_will_dirty(db, tx);
1113 
1114 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1115 
1116 		if (tocpy == db->db_size)
1117 			dmu_buf_fill_done(db, tx);
1118 
1119 		offset += tocpy;
1120 		size -= tocpy;
1121 		buf = (char *)buf + tocpy;
1122 	}
1123 }
1124 
1125 void
1126 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1127     const void *buf, dmu_tx_t *tx)
1128 {
1129 	dmu_buf_t **dbp;
1130 	int numbufs;
1131 
1132 	if (size == 0)
1133 		return;
1134 
1135 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1136 	    FALSE, FTAG, &numbufs, &dbp));
1137 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1138 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1139 }
1140 
1141 /*
1142  * Note: Lustre is an external consumer of this interface.
1143  */
1144 void
1145 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1146     const void *buf, dmu_tx_t *tx)
1147 {
1148 	dmu_buf_t **dbp;
1149 	int numbufs;
1150 
1151 	if (size == 0)
1152 		return;
1153 
1154 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1155 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1156 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1157 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1158 }
1159 
1160 void
1161 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1162     dmu_tx_t *tx)
1163 {
1164 	dmu_buf_t **dbp;
1165 	int numbufs, i;
1166 
1167 	if (size == 0)
1168 		return;
1169 
1170 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1171 	    FALSE, FTAG, &numbufs, &dbp));
1172 
1173 	for (i = 0; i < numbufs; i++) {
1174 		dmu_buf_t *db = dbp[i];
1175 
1176 		dmu_buf_will_not_fill(db, tx);
1177 	}
1178 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1179 }
1180 
1181 void
1182 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1183     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1184     int compressed_size, int byteorder, dmu_tx_t *tx)
1185 {
1186 	dmu_buf_t *db;
1187 
1188 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1189 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1190 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1191 	    FTAG, &db));
1192 
1193 	dmu_buf_write_embedded(db,
1194 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1195 	    uncompressed_size, compressed_size, byteorder, tx);
1196 
1197 	dmu_buf_rele(db, FTAG);
1198 }
1199 
1200 void
1201 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1202     dmu_tx_t *tx)
1203 {
1204 	int numbufs, i;
1205 	dmu_buf_t **dbp;
1206 
1207 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1208 	    &numbufs, &dbp));
1209 	for (i = 0; i < numbufs; i++)
1210 		dmu_buf_redact(dbp[i], tx);
1211 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1212 }
1213 
1214 #ifdef _KERNEL
1215 int
1216 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1217 {
1218 	dmu_buf_t **dbp;
1219 	int numbufs, i, err;
1220 
1221 	/*
1222 	 * NB: we could do this block-at-a-time, but it's nice
1223 	 * to be reading in parallel.
1224 	 */
1225 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1226 	    TRUE, FTAG, &numbufs, &dbp, 0);
1227 	if (err)
1228 		return (err);
1229 
1230 	for (i = 0; i < numbufs; i++) {
1231 		uint64_t tocpy;
1232 		int64_t bufoff;
1233 		dmu_buf_t *db = dbp[i];
1234 
1235 		ASSERT(size > 0);
1236 
1237 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1238 		tocpy = MIN(db->db_size - bufoff, size);
1239 
1240 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1241 		    UIO_READ, uio);
1242 
1243 		if (err)
1244 			break;
1245 
1246 		size -= tocpy;
1247 	}
1248 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1249 
1250 	return (err);
1251 }
1252 
1253 /*
1254  * Read 'size' bytes into the uio buffer.
1255  * From object zdb->db_object.
1256  * Starting at zfs_uio_offset(uio).
1257  *
1258  * If the caller already has a dbuf in the target object
1259  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1260  * because we don't have to find the dnode_t for the object.
1261  */
1262 int
1263 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1264 {
1265 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1266 	dnode_t *dn;
1267 	int err;
1268 
1269 	if (size == 0)
1270 		return (0);
1271 
1272 	DB_DNODE_ENTER(db);
1273 	dn = DB_DNODE(db);
1274 	err = dmu_read_uio_dnode(dn, uio, size);
1275 	DB_DNODE_EXIT(db);
1276 
1277 	return (err);
1278 }
1279 
1280 /*
1281  * Read 'size' bytes into the uio buffer.
1282  * From the specified object
1283  * Starting at offset zfs_uio_offset(uio).
1284  */
1285 int
1286 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1287 {
1288 	dnode_t *dn;
1289 	int err;
1290 
1291 	if (size == 0)
1292 		return (0);
1293 
1294 	err = dnode_hold(os, object, FTAG, &dn);
1295 	if (err)
1296 		return (err);
1297 
1298 	err = dmu_read_uio_dnode(dn, uio, size);
1299 
1300 	dnode_rele(dn, FTAG);
1301 
1302 	return (err);
1303 }
1304 
1305 int
1306 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1307 {
1308 	dmu_buf_t **dbp;
1309 	int numbufs;
1310 	int err = 0;
1311 	int i;
1312 
1313 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1314 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1315 	if (err)
1316 		return (err);
1317 
1318 	for (i = 0; i < numbufs; i++) {
1319 		uint64_t tocpy;
1320 		int64_t bufoff;
1321 		dmu_buf_t *db = dbp[i];
1322 
1323 		ASSERT(size > 0);
1324 
1325 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1326 		tocpy = MIN(db->db_size - bufoff, size);
1327 
1328 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1329 
1330 		if (tocpy == db->db_size)
1331 			dmu_buf_will_fill(db, tx);
1332 		else
1333 			dmu_buf_will_dirty(db, tx);
1334 
1335 		/*
1336 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1337 		 * pages).  There needs to be a uiolockdown() function
1338 		 * to lock the pages in memory, so that zfs_uiomove won't
1339 		 * block.
1340 		 */
1341 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1342 		    tocpy, UIO_WRITE, uio);
1343 
1344 		if (tocpy == db->db_size)
1345 			dmu_buf_fill_done(db, tx);
1346 
1347 		if (err)
1348 			break;
1349 
1350 		size -= tocpy;
1351 	}
1352 
1353 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1354 	return (err);
1355 }
1356 
1357 /*
1358  * Write 'size' bytes from the uio buffer.
1359  * To object zdb->db_object.
1360  * Starting at offset zfs_uio_offset(uio).
1361  *
1362  * If the caller already has a dbuf in the target object
1363  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1364  * because we don't have to find the dnode_t for the object.
1365  */
1366 int
1367 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1368     dmu_tx_t *tx)
1369 {
1370 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1371 	dnode_t *dn;
1372 	int err;
1373 
1374 	if (size == 0)
1375 		return (0);
1376 
1377 	DB_DNODE_ENTER(db);
1378 	dn = DB_DNODE(db);
1379 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1380 	DB_DNODE_EXIT(db);
1381 
1382 	return (err);
1383 }
1384 
1385 /*
1386  * Write 'size' bytes from the uio buffer.
1387  * To the specified object.
1388  * Starting at offset zfs_uio_offset(uio).
1389  */
1390 int
1391 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1392     dmu_tx_t *tx)
1393 {
1394 	dnode_t *dn;
1395 	int err;
1396 
1397 	if (size == 0)
1398 		return (0);
1399 
1400 	err = dnode_hold(os, object, FTAG, &dn);
1401 	if (err)
1402 		return (err);
1403 
1404 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1405 
1406 	dnode_rele(dn, FTAG);
1407 
1408 	return (err);
1409 }
1410 #endif /* _KERNEL */
1411 
1412 /*
1413  * Allocate a loaned anonymous arc buffer.
1414  */
1415 arc_buf_t *
1416 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1417 {
1418 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1419 
1420 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1421 }
1422 
1423 /*
1424  * Free a loaned arc buffer.
1425  */
1426 void
1427 dmu_return_arcbuf(arc_buf_t *buf)
1428 {
1429 	arc_return_buf(buf, FTAG);
1430 	arc_buf_destroy(buf, FTAG);
1431 }
1432 
1433 /*
1434  * A "lightweight" write is faster than a regular write (e.g.
1435  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1436  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1437  * data can not be read or overwritten until the transaction's txg has been
1438  * synced.  This makes it appropriate for workloads that are known to be
1439  * (temporarily) write-only, like "zfs receive".
1440  *
1441  * A single block is written, starting at the specified offset in bytes.  If
1442  * the call is successful, it returns 0 and the provided abd has been
1443  * consumed (the caller should not free it).
1444  */
1445 int
1446 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1447     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1448 {
1449 	dbuf_dirty_record_t *dr =
1450 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1451 	if (dr == NULL)
1452 		return (SET_ERROR(EIO));
1453 	dr->dt.dll.dr_abd = abd;
1454 	dr->dt.dll.dr_props = *zp;
1455 	dr->dt.dll.dr_flags = flags;
1456 	return (0);
1457 }
1458 
1459 /*
1460  * When possible directly assign passed loaned arc buffer to a dbuf.
1461  * If this is not possible copy the contents of passed arc buf via
1462  * dmu_write().
1463  */
1464 int
1465 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1466     dmu_tx_t *tx)
1467 {
1468 	dmu_buf_impl_t *db;
1469 	objset_t *os = dn->dn_objset;
1470 	uint64_t object = dn->dn_object;
1471 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1472 	uint64_t blkid;
1473 
1474 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1475 	blkid = dbuf_whichblock(dn, 0, offset);
1476 	db = dbuf_hold(dn, blkid, FTAG);
1477 	if (db == NULL)
1478 		return (SET_ERROR(EIO));
1479 	rw_exit(&dn->dn_struct_rwlock);
1480 
1481 	/*
1482 	 * We can only assign if the offset is aligned and the arc buf is the
1483 	 * same size as the dbuf.
1484 	 */
1485 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1486 		zfs_racct_write(blksz, 1);
1487 		dbuf_assign_arcbuf(db, buf, tx);
1488 		dbuf_rele(db, FTAG);
1489 	} else {
1490 		/* compressed bufs must always be assignable to their dbuf */
1491 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1492 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1493 
1494 		dbuf_rele(db, FTAG);
1495 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1496 		dmu_return_arcbuf(buf);
1497 	}
1498 
1499 	return (0);
1500 }
1501 
1502 int
1503 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1504     dmu_tx_t *tx)
1505 {
1506 	int err;
1507 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1508 
1509 	DB_DNODE_ENTER(dbuf);
1510 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1511 	DB_DNODE_EXIT(dbuf);
1512 
1513 	return (err);
1514 }
1515 
1516 typedef struct {
1517 	dbuf_dirty_record_t	*dsa_dr;
1518 	dmu_sync_cb_t		*dsa_done;
1519 	zgd_t			*dsa_zgd;
1520 	dmu_tx_t		*dsa_tx;
1521 } dmu_sync_arg_t;
1522 
1523 static void
1524 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1525 {
1526 	(void) buf;
1527 	dmu_sync_arg_t *dsa = varg;
1528 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1529 	blkptr_t *bp = zio->io_bp;
1530 
1531 	if (zio->io_error == 0) {
1532 		if (BP_IS_HOLE(bp)) {
1533 			/*
1534 			 * A block of zeros may compress to a hole, but the
1535 			 * block size still needs to be known for replay.
1536 			 */
1537 			BP_SET_LSIZE(bp, db->db_size);
1538 		} else if (!BP_IS_EMBEDDED(bp)) {
1539 			ASSERT(BP_GET_LEVEL(bp) == 0);
1540 			BP_SET_FILL(bp, 1);
1541 		}
1542 	}
1543 }
1544 
1545 static void
1546 dmu_sync_late_arrival_ready(zio_t *zio)
1547 {
1548 	dmu_sync_ready(zio, NULL, zio->io_private);
1549 }
1550 
1551 static void
1552 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1553 {
1554 	(void) buf;
1555 	dmu_sync_arg_t *dsa = varg;
1556 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1557 	dmu_buf_impl_t *db = dr->dr_dbuf;
1558 	zgd_t *zgd = dsa->dsa_zgd;
1559 
1560 	/*
1561 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1562 	 * the writes for the lwb have completed.
1563 	 */
1564 	if (zio->io_error == 0) {
1565 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1566 	}
1567 
1568 	mutex_enter(&db->db_mtx);
1569 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1570 	if (zio->io_error == 0) {
1571 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1572 		if (dr->dt.dl.dr_nopwrite) {
1573 			blkptr_t *bp = zio->io_bp;
1574 			blkptr_t *bp_orig = &zio->io_bp_orig;
1575 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1576 
1577 			ASSERT(BP_EQUAL(bp, bp_orig));
1578 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1579 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1580 			VERIFY(zio_checksum_table[chksum].ci_flags &
1581 			    ZCHECKSUM_FLAG_NOPWRITE);
1582 		}
1583 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1584 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1585 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1586 
1587 		/*
1588 		 * Old style holes are filled with all zeros, whereas
1589 		 * new-style holes maintain their lsize, type, level,
1590 		 * and birth time (see zio_write_compress). While we
1591 		 * need to reset the BP_SET_LSIZE() call that happened
1592 		 * in dmu_sync_ready for old style holes, we do *not*
1593 		 * want to wipe out the information contained in new
1594 		 * style holes. Thus, only zero out the block pointer if
1595 		 * it's an old style hole.
1596 		 */
1597 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1598 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1599 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1600 	} else {
1601 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1602 	}
1603 	cv_broadcast(&db->db_changed);
1604 	mutex_exit(&db->db_mtx);
1605 
1606 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1607 
1608 	kmem_free(dsa, sizeof (*dsa));
1609 }
1610 
1611 static void
1612 dmu_sync_late_arrival_done(zio_t *zio)
1613 {
1614 	blkptr_t *bp = zio->io_bp;
1615 	dmu_sync_arg_t *dsa = zio->io_private;
1616 	zgd_t *zgd = dsa->dsa_zgd;
1617 
1618 	if (zio->io_error == 0) {
1619 		/*
1620 		 * Record the vdev(s) backing this blkptr so they can be
1621 		 * flushed after the writes for the lwb have completed.
1622 		 */
1623 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1624 
1625 		if (!BP_IS_HOLE(bp)) {
1626 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1627 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1628 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1629 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1630 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1631 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1632 		}
1633 	}
1634 
1635 	dmu_tx_commit(dsa->dsa_tx);
1636 
1637 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1638 
1639 	abd_free(zio->io_abd);
1640 	kmem_free(dsa, sizeof (*dsa));
1641 }
1642 
1643 static int
1644 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1645     zio_prop_t *zp, zbookmark_phys_t *zb)
1646 {
1647 	dmu_sync_arg_t *dsa;
1648 	dmu_tx_t *tx;
1649 
1650 	tx = dmu_tx_create(os);
1651 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1652 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1653 		dmu_tx_abort(tx);
1654 		/* Make zl_get_data do txg_waited_synced() */
1655 		return (SET_ERROR(EIO));
1656 	}
1657 
1658 	/*
1659 	 * In order to prevent the zgd's lwb from being free'd prior to
1660 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1661 	 * the lwb's "max txg" takes this tx's txg into account.
1662 	 */
1663 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1664 
1665 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1666 	dsa->dsa_dr = NULL;
1667 	dsa->dsa_done = done;
1668 	dsa->dsa_zgd = zgd;
1669 	dsa->dsa_tx = tx;
1670 
1671 	/*
1672 	 * Since we are currently syncing this txg, it's nontrivial to
1673 	 * determine what BP to nopwrite against, so we disable nopwrite.
1674 	 *
1675 	 * When syncing, the db_blkptr is initially the BP of the previous
1676 	 * txg.  We can not nopwrite against it because it will be changed
1677 	 * (this is similar to the non-late-arrival case where the dbuf is
1678 	 * dirty in a future txg).
1679 	 *
1680 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1681 	 * We can not nopwrite against it because although the BP will not
1682 	 * (typically) be changed, the data has not yet been persisted to this
1683 	 * location.
1684 	 *
1685 	 * Finally, when dbuf_write_done() is called, it is theoretically
1686 	 * possible to always nopwrite, because the data that was written in
1687 	 * this txg is the same data that we are trying to write.  However we
1688 	 * would need to check that this dbuf is not dirty in any future
1689 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1690 	 * don't nopwrite in this case.
1691 	 */
1692 	zp->zp_nopwrite = B_FALSE;
1693 
1694 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1695 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1696 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1697 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1698 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1699 
1700 	return (0);
1701 }
1702 
1703 /*
1704  * Intent log support: sync the block associated with db to disk.
1705  * N.B. and XXX: the caller is responsible for making sure that the
1706  * data isn't changing while dmu_sync() is writing it.
1707  *
1708  * Return values:
1709  *
1710  *	EEXIST: this txg has already been synced, so there's nothing to do.
1711  *		The caller should not log the write.
1712  *
1713  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1714  *		The caller should not log the write.
1715  *
1716  *	EALREADY: this block is already in the process of being synced.
1717  *		The caller should track its progress (somehow).
1718  *
1719  *	EIO: could not do the I/O.
1720  *		The caller should do a txg_wait_synced().
1721  *
1722  *	0: the I/O has been initiated.
1723  *		The caller should log this blkptr in the done callback.
1724  *		It is possible that the I/O will fail, in which case
1725  *		the error will be reported to the done callback and
1726  *		propagated to pio from zio_done().
1727  */
1728 int
1729 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1730 {
1731 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1732 	objset_t *os = db->db_objset;
1733 	dsl_dataset_t *ds = os->os_dsl_dataset;
1734 	dbuf_dirty_record_t *dr, *dr_next;
1735 	dmu_sync_arg_t *dsa;
1736 	zbookmark_phys_t zb;
1737 	zio_prop_t zp;
1738 	dnode_t *dn;
1739 
1740 	ASSERT(pio != NULL);
1741 	ASSERT(txg != 0);
1742 
1743 	SET_BOOKMARK(&zb, ds->ds_object,
1744 	    db->db.db_object, db->db_level, db->db_blkid);
1745 
1746 	DB_DNODE_ENTER(db);
1747 	dn = DB_DNODE(db);
1748 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1749 	DB_DNODE_EXIT(db);
1750 
1751 	/*
1752 	 * If we're frozen (running ziltest), we always need to generate a bp.
1753 	 */
1754 	if (txg > spa_freeze_txg(os->os_spa))
1755 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1756 
1757 	/*
1758 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1759 	 * and us.  If we determine that this txg is not yet syncing,
1760 	 * but it begins to sync a moment later, that's OK because the
1761 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1762 	 */
1763 	mutex_enter(&db->db_mtx);
1764 
1765 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1766 		/*
1767 		 * This txg has already synced.  There's nothing to do.
1768 		 */
1769 		mutex_exit(&db->db_mtx);
1770 		return (SET_ERROR(EEXIST));
1771 	}
1772 
1773 	if (txg <= spa_syncing_txg(os->os_spa)) {
1774 		/*
1775 		 * This txg is currently syncing, so we can't mess with
1776 		 * the dirty record anymore; just write a new log block.
1777 		 */
1778 		mutex_exit(&db->db_mtx);
1779 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1780 	}
1781 
1782 	dr = dbuf_find_dirty_eq(db, txg);
1783 
1784 	if (dr == NULL) {
1785 		/*
1786 		 * There's no dr for this dbuf, so it must have been freed.
1787 		 * There's no need to log writes to freed blocks, so we're done.
1788 		 */
1789 		mutex_exit(&db->db_mtx);
1790 		return (SET_ERROR(ENOENT));
1791 	}
1792 
1793 	dr_next = list_next(&db->db_dirty_records, dr);
1794 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1795 
1796 	if (db->db_blkptr != NULL) {
1797 		/*
1798 		 * We need to fill in zgd_bp with the current blkptr so that
1799 		 * the nopwrite code can check if we're writing the same
1800 		 * data that's already on disk.  We can only nopwrite if we
1801 		 * are sure that after making the copy, db_blkptr will not
1802 		 * change until our i/o completes.  We ensure this by
1803 		 * holding the db_mtx, and only allowing nopwrite if the
1804 		 * block is not already dirty (see below).  This is verified
1805 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1806 		 * not changed.
1807 		 */
1808 		*zgd->zgd_bp = *db->db_blkptr;
1809 	}
1810 
1811 	/*
1812 	 * Assume the on-disk data is X, the current syncing data (in
1813 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1814 	 * in dmu_sync).
1815 	 *
1816 	 * We usually want to perform a nopwrite if X and Z are the
1817 	 * same.  However, if Y is different (i.e. the BP is going to
1818 	 * change before this write takes effect), then a nopwrite will
1819 	 * be incorrect - we would override with X, which could have
1820 	 * been freed when Y was written.
1821 	 *
1822 	 * (Note that this is not a concern when we are nop-writing from
1823 	 * syncing context, because X and Y must be identical, because
1824 	 * all previous txgs have been synced.)
1825 	 *
1826 	 * Therefore, we disable nopwrite if the current BP could change
1827 	 * before this TXG.  There are two ways it could change: by
1828 	 * being dirty (dr_next is non-NULL), or by being freed
1829 	 * (dnode_block_freed()).  This behavior is verified by
1830 	 * zio_done(), which VERIFYs that the override BP is identical
1831 	 * to the on-disk BP.
1832 	 */
1833 	DB_DNODE_ENTER(db);
1834 	dn = DB_DNODE(db);
1835 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1836 		zp.zp_nopwrite = B_FALSE;
1837 	DB_DNODE_EXIT(db);
1838 
1839 	ASSERT(dr->dr_txg == txg);
1840 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1841 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1842 		/*
1843 		 * We have already issued a sync write for this buffer,
1844 		 * or this buffer has already been synced.  It could not
1845 		 * have been dirtied since, or we would have cleared the state.
1846 		 */
1847 		mutex_exit(&db->db_mtx);
1848 		return (SET_ERROR(EALREADY));
1849 	}
1850 
1851 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1852 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1853 	mutex_exit(&db->db_mtx);
1854 
1855 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1856 	dsa->dsa_dr = dr;
1857 	dsa->dsa_done = done;
1858 	dsa->dsa_zgd = zgd;
1859 	dsa->dsa_tx = NULL;
1860 
1861 	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1862 	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
1863 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1864 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1865 
1866 	return (0);
1867 }
1868 
1869 int
1870 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1871 {
1872 	dnode_t *dn;
1873 	int err;
1874 
1875 	err = dnode_hold(os, object, FTAG, &dn);
1876 	if (err)
1877 		return (err);
1878 	err = dnode_set_nlevels(dn, nlevels, tx);
1879 	dnode_rele(dn, FTAG);
1880 	return (err);
1881 }
1882 
1883 int
1884 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1885     dmu_tx_t *tx)
1886 {
1887 	dnode_t *dn;
1888 	int err;
1889 
1890 	err = dnode_hold(os, object, FTAG, &dn);
1891 	if (err)
1892 		return (err);
1893 	err = dnode_set_blksz(dn, size, ibs, tx);
1894 	dnode_rele(dn, FTAG);
1895 	return (err);
1896 }
1897 
1898 int
1899 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1900     dmu_tx_t *tx)
1901 {
1902 	dnode_t *dn;
1903 	int err;
1904 
1905 	err = dnode_hold(os, object, FTAG, &dn);
1906 	if (err)
1907 		return (err);
1908 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1909 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1910 	rw_exit(&dn->dn_struct_rwlock);
1911 	dnode_rele(dn, FTAG);
1912 	return (0);
1913 }
1914 
1915 void
1916 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1917     dmu_tx_t *tx)
1918 {
1919 	dnode_t *dn;
1920 
1921 	/*
1922 	 * Send streams include each object's checksum function.  This
1923 	 * check ensures that the receiving system can understand the
1924 	 * checksum function transmitted.
1925 	 */
1926 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1927 
1928 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1929 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1930 	dn->dn_checksum = checksum;
1931 	dnode_setdirty(dn, tx);
1932 	dnode_rele(dn, FTAG);
1933 }
1934 
1935 void
1936 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1937     dmu_tx_t *tx)
1938 {
1939 	dnode_t *dn;
1940 
1941 	/*
1942 	 * Send streams include each object's compression function.  This
1943 	 * check ensures that the receiving system can understand the
1944 	 * compression function transmitted.
1945 	 */
1946 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1947 
1948 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1949 	dn->dn_compress = compress;
1950 	dnode_setdirty(dn, tx);
1951 	dnode_rele(dn, FTAG);
1952 }
1953 
1954 /*
1955  * When the "redundant_metadata" property is set to "most", only indirect
1956  * blocks of this level and higher will have an additional ditto block.
1957  */
1958 static const int zfs_redundant_metadata_most_ditto_level = 2;
1959 
1960 void
1961 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1962 {
1963 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1964 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1965 	    (wp & WP_SPILL));
1966 	enum zio_checksum checksum = os->os_checksum;
1967 	enum zio_compress compress = os->os_compress;
1968 	uint8_t complevel = os->os_complevel;
1969 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1970 	boolean_t dedup = B_FALSE;
1971 	boolean_t nopwrite = B_FALSE;
1972 	boolean_t dedup_verify = os->os_dedup_verify;
1973 	boolean_t encrypt = B_FALSE;
1974 	int copies = os->os_copies;
1975 
1976 	/*
1977 	 * We maintain different write policies for each of the following
1978 	 * types of data:
1979 	 *	 1. metadata
1980 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1981 	 *	 3. all other level 0 blocks
1982 	 */
1983 	if (ismd) {
1984 		/*
1985 		 * XXX -- we should design a compression algorithm
1986 		 * that specializes in arrays of bps.
1987 		 */
1988 		compress = zio_compress_select(os->os_spa,
1989 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1990 
1991 		/*
1992 		 * Metadata always gets checksummed.  If the data
1993 		 * checksum is multi-bit correctable, and it's not a
1994 		 * ZBT-style checksum, then it's suitable for metadata
1995 		 * as well.  Otherwise, the metadata checksum defaults
1996 		 * to fletcher4.
1997 		 */
1998 		if (!(zio_checksum_table[checksum].ci_flags &
1999 		    ZCHECKSUM_FLAG_METADATA) ||
2000 		    (zio_checksum_table[checksum].ci_flags &
2001 		    ZCHECKSUM_FLAG_EMBEDDED))
2002 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2003 
2004 		switch (os->os_redundant_metadata) {
2005 		case ZFS_REDUNDANT_METADATA_ALL:
2006 			copies++;
2007 			break;
2008 		case ZFS_REDUNDANT_METADATA_MOST:
2009 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2010 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2011 				copies++;
2012 			break;
2013 		case ZFS_REDUNDANT_METADATA_SOME:
2014 			if (DMU_OT_IS_CRITICAL(type))
2015 				copies++;
2016 			break;
2017 		case ZFS_REDUNDANT_METADATA_NONE:
2018 			break;
2019 		}
2020 	} else if (wp & WP_NOFILL) {
2021 		ASSERT(level == 0);
2022 
2023 		/*
2024 		 * If we're writing preallocated blocks, we aren't actually
2025 		 * writing them so don't set any policy properties.  These
2026 		 * blocks are currently only used by an external subsystem
2027 		 * outside of zfs (i.e. dump) and not written by the zio
2028 		 * pipeline.
2029 		 */
2030 		compress = ZIO_COMPRESS_OFF;
2031 		checksum = ZIO_CHECKSUM_OFF;
2032 	} else {
2033 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2034 		    compress);
2035 		complevel = zio_complevel_select(os->os_spa, compress,
2036 		    complevel, complevel);
2037 
2038 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2039 		    zio_checksum_select(dn->dn_checksum, checksum) :
2040 		    dedup_checksum;
2041 
2042 		/*
2043 		 * Determine dedup setting.  If we are in dmu_sync(),
2044 		 * we won't actually dedup now because that's all
2045 		 * done in syncing context; but we do want to use the
2046 		 * dedup checksum.  If the checksum is not strong
2047 		 * enough to ensure unique signatures, force
2048 		 * dedup_verify.
2049 		 */
2050 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2051 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2052 			if (!(zio_checksum_table[checksum].ci_flags &
2053 			    ZCHECKSUM_FLAG_DEDUP))
2054 				dedup_verify = B_TRUE;
2055 		}
2056 
2057 		/*
2058 		 * Enable nopwrite if we have secure enough checksum
2059 		 * algorithm (see comment in zio_nop_write) and
2060 		 * compression is enabled.  We don't enable nopwrite if
2061 		 * dedup is enabled as the two features are mutually
2062 		 * exclusive.
2063 		 */
2064 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2065 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2066 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2067 	}
2068 
2069 	/*
2070 	 * All objects in an encrypted objset are protected from modification
2071 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2072 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2073 	 * not subject to nopwrite since writing the same data will still
2074 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2075 	 * to avoid ambiguity in the dedup code since the DDT does not store
2076 	 * object types.
2077 	 */
2078 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2079 		encrypt = B_TRUE;
2080 
2081 		if (DMU_OT_IS_ENCRYPTED(type)) {
2082 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2083 			nopwrite = B_FALSE;
2084 		} else {
2085 			dedup = B_FALSE;
2086 		}
2087 
2088 		if (level <= 0 &&
2089 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2090 			compress = ZIO_COMPRESS_EMPTY;
2091 		}
2092 	}
2093 
2094 	zp->zp_compress = compress;
2095 	zp->zp_complevel = complevel;
2096 	zp->zp_checksum = checksum;
2097 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2098 	zp->zp_level = level;
2099 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2100 	zp->zp_dedup = dedup;
2101 	zp->zp_dedup_verify = dedup && dedup_verify;
2102 	zp->zp_nopwrite = nopwrite;
2103 	zp->zp_encrypt = encrypt;
2104 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2105 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2106 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2107 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2108 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2109 	    os->os_zpl_special_smallblock : 0;
2110 
2111 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2112 }
2113 
2114 /*
2115  * This function is only called from zfs_holey_common() for zpl_llseek()
2116  * in order to determine the location of holes.  In order to accurately
2117  * report holes all dirty data must be synced to disk.  This causes extremely
2118  * poor performance when seeking for holes in a dirty file.  As a compromise,
2119  * only provide hole data when the dnode is clean.  When a dnode is dirty
2120  * report the dnode as having no holes which is always a safe thing to do.
2121  */
2122 int
2123 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2124 {
2125 	dnode_t *dn;
2126 	int err;
2127 
2128 restart:
2129 	err = dnode_hold(os, object, FTAG, &dn);
2130 	if (err)
2131 		return (err);
2132 
2133 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2134 
2135 	if (dnode_is_dirty(dn)) {
2136 		/*
2137 		 * If the zfs_dmu_offset_next_sync module option is enabled
2138 		 * then strict hole reporting has been requested.  Dirty
2139 		 * dnodes must be synced to disk to accurately report all
2140 		 * holes.  When disabled dirty dnodes are reported to not
2141 		 * have any holes which is always safe.
2142 		 *
2143 		 * When called by zfs_holey_common() the zp->z_rangelock
2144 		 * is held to prevent zfs_write() and mmap writeback from
2145 		 * re-dirtying the dnode after txg_wait_synced().
2146 		 */
2147 		if (zfs_dmu_offset_next_sync) {
2148 			rw_exit(&dn->dn_struct_rwlock);
2149 			dnode_rele(dn, FTAG);
2150 			txg_wait_synced(dmu_objset_pool(os), 0);
2151 			goto restart;
2152 		}
2153 
2154 		err = SET_ERROR(EBUSY);
2155 	} else {
2156 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2157 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2158 	}
2159 
2160 	rw_exit(&dn->dn_struct_rwlock);
2161 	dnode_rele(dn, FTAG);
2162 
2163 	return (err);
2164 }
2165 
2166 void
2167 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2168 {
2169 	dnode_phys_t *dnp = dn->dn_phys;
2170 
2171 	doi->doi_data_block_size = dn->dn_datablksz;
2172 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2173 	    1ULL << dn->dn_indblkshift : 0;
2174 	doi->doi_type = dn->dn_type;
2175 	doi->doi_bonus_type = dn->dn_bonustype;
2176 	doi->doi_bonus_size = dn->dn_bonuslen;
2177 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2178 	doi->doi_indirection = dn->dn_nlevels;
2179 	doi->doi_checksum = dn->dn_checksum;
2180 	doi->doi_compress = dn->dn_compress;
2181 	doi->doi_nblkptr = dn->dn_nblkptr;
2182 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2183 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2184 	doi->doi_fill_count = 0;
2185 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2186 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2187 }
2188 
2189 void
2190 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2191 {
2192 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2193 	mutex_enter(&dn->dn_mtx);
2194 
2195 	__dmu_object_info_from_dnode(dn, doi);
2196 
2197 	mutex_exit(&dn->dn_mtx);
2198 	rw_exit(&dn->dn_struct_rwlock);
2199 }
2200 
2201 /*
2202  * Get information on a DMU object.
2203  * If doi is NULL, just indicates whether the object exists.
2204  */
2205 int
2206 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2207 {
2208 	dnode_t *dn;
2209 	int err = dnode_hold(os, object, FTAG, &dn);
2210 
2211 	if (err)
2212 		return (err);
2213 
2214 	if (doi != NULL)
2215 		dmu_object_info_from_dnode(dn, doi);
2216 
2217 	dnode_rele(dn, FTAG);
2218 	return (0);
2219 }
2220 
2221 /*
2222  * As above, but faster; can be used when you have a held dbuf in hand.
2223  */
2224 void
2225 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2226 {
2227 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2228 
2229 	DB_DNODE_ENTER(db);
2230 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2231 	DB_DNODE_EXIT(db);
2232 }
2233 
2234 /*
2235  * Faster still when you only care about the size.
2236  */
2237 void
2238 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2239     u_longlong_t *nblk512)
2240 {
2241 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2242 	dnode_t *dn;
2243 
2244 	DB_DNODE_ENTER(db);
2245 	dn = DB_DNODE(db);
2246 
2247 	*blksize = dn->dn_datablksz;
2248 	/* add in number of slots used for the dnode itself */
2249 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2250 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2251 	DB_DNODE_EXIT(db);
2252 }
2253 
2254 void
2255 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2256 {
2257 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2258 	dnode_t *dn;
2259 
2260 	DB_DNODE_ENTER(db);
2261 	dn = DB_DNODE(db);
2262 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2263 	DB_DNODE_EXIT(db);
2264 }
2265 
2266 void
2267 byteswap_uint64_array(void *vbuf, size_t size)
2268 {
2269 	uint64_t *buf = vbuf;
2270 	size_t count = size >> 3;
2271 	int i;
2272 
2273 	ASSERT((size & 7) == 0);
2274 
2275 	for (i = 0; i < count; i++)
2276 		buf[i] = BSWAP_64(buf[i]);
2277 }
2278 
2279 void
2280 byteswap_uint32_array(void *vbuf, size_t size)
2281 {
2282 	uint32_t *buf = vbuf;
2283 	size_t count = size >> 2;
2284 	int i;
2285 
2286 	ASSERT((size & 3) == 0);
2287 
2288 	for (i = 0; i < count; i++)
2289 		buf[i] = BSWAP_32(buf[i]);
2290 }
2291 
2292 void
2293 byteswap_uint16_array(void *vbuf, size_t size)
2294 {
2295 	uint16_t *buf = vbuf;
2296 	size_t count = size >> 1;
2297 	int i;
2298 
2299 	ASSERT((size & 1) == 0);
2300 
2301 	for (i = 0; i < count; i++)
2302 		buf[i] = BSWAP_16(buf[i]);
2303 }
2304 
2305 void
2306 byteswap_uint8_array(void *vbuf, size_t size)
2307 {
2308 	(void) vbuf, (void) size;
2309 }
2310 
2311 void
2312 dmu_init(void)
2313 {
2314 	abd_init();
2315 	zfs_dbgmsg_init();
2316 	sa_cache_init();
2317 	dmu_objset_init();
2318 	dnode_init();
2319 	zfetch_init();
2320 	dmu_tx_init();
2321 	l2arc_init();
2322 	arc_init();
2323 	dbuf_init();
2324 }
2325 
2326 void
2327 dmu_fini(void)
2328 {
2329 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2330 	l2arc_fini();
2331 	dmu_tx_fini();
2332 	zfetch_fini();
2333 	dbuf_fini();
2334 	dnode_fini();
2335 	dmu_objset_fini();
2336 	sa_cache_fini();
2337 	zfs_dbgmsg_fini();
2338 	abd_fini();
2339 }
2340 
2341 EXPORT_SYMBOL(dmu_bonus_hold);
2342 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2343 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2344 EXPORT_SYMBOL(dmu_buf_rele_array);
2345 EXPORT_SYMBOL(dmu_prefetch);
2346 EXPORT_SYMBOL(dmu_free_range);
2347 EXPORT_SYMBOL(dmu_free_long_range);
2348 EXPORT_SYMBOL(dmu_free_long_object);
2349 EXPORT_SYMBOL(dmu_read);
2350 EXPORT_SYMBOL(dmu_read_by_dnode);
2351 EXPORT_SYMBOL(dmu_write);
2352 EXPORT_SYMBOL(dmu_write_by_dnode);
2353 EXPORT_SYMBOL(dmu_prealloc);
2354 EXPORT_SYMBOL(dmu_object_info);
2355 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2356 EXPORT_SYMBOL(dmu_object_info_from_db);
2357 EXPORT_SYMBOL(dmu_object_size_from_db);
2358 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2359 EXPORT_SYMBOL(dmu_object_set_nlevels);
2360 EXPORT_SYMBOL(dmu_object_set_blocksize);
2361 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2362 EXPORT_SYMBOL(dmu_object_set_checksum);
2363 EXPORT_SYMBOL(dmu_object_set_compress);
2364 EXPORT_SYMBOL(dmu_offset_next);
2365 EXPORT_SYMBOL(dmu_write_policy);
2366 EXPORT_SYMBOL(dmu_sync);
2367 EXPORT_SYMBOL(dmu_request_arcbuf);
2368 EXPORT_SYMBOL(dmu_return_arcbuf);
2369 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2370 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2371 EXPORT_SYMBOL(dmu_buf_hold);
2372 EXPORT_SYMBOL(dmu_ot);
2373 
2374 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2375 	"Enable NOP writes");
2376 
2377 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2378 	"Percentage of dirtied blocks from frees in one TXG");
2379 
2380 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2381 	"Enable forcing txg sync to find holes");
2382 
2383 /* CSTYLED */
2384 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2385 	"Limit one prefetch call to this size");
2386