1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dbuf.h> 37 #include <sys/dnode.h> 38 #include <sys/zfs_context.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dmu_traverse.h> 41 #include <sys/dsl_dataset.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_synctask.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dmu_zfetch.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/zio_compress.h> 51 #include <sys/sa.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/trace_zfs.h> 55 #include <sys/zfs_racct.h> 56 #include <sys/zfs_rlock.h> 57 #ifdef _KERNEL 58 #include <sys/vmsystm.h> 59 #include <sys/zfs_znode.h> 60 #endif 61 62 /* 63 * Enable/disable nopwrite feature. 64 */ 65 static int zfs_nopwrite_enabled = 1; 66 67 /* 68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 69 * one TXG. After this threshold is crossed, additional dirty blocks from frees 70 * will wait until the next TXG. 71 * A value of zero will disable this throttle. 72 */ 73 static unsigned long zfs_per_txg_dirty_frees_percent = 30; 74 75 /* 76 * Enable/disable forcing txg sync when dirty checking for holes with lseek(). 77 * By default this is enabled to ensure accurate hole reporting, it can result 78 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads. 79 * Disabling this option will result in holes never being reported in dirty 80 * files which is always safe. 81 */ 82 static int zfs_dmu_offset_next_sync = 1; 83 84 /* 85 * Limit the amount we can prefetch with one call to this amount. This 86 * helps to limit the amount of memory that can be used by prefetching. 87 * Larger objects should be prefetched a bit at a time. 88 */ 89 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 90 91 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 92 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 93 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 94 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 95 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 96 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 97 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 98 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 99 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 100 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 101 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 102 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 103 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 104 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 105 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 106 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 107 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 108 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 109 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 110 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 111 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 112 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 113 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 114 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 115 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 117 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 118 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 119 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 121 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 122 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 123 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 125 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 126 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 127 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 128 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 129 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 131 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 133 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 134 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 136 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 137 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 140 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 141 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 142 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 143 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 144 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 145 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 146 }; 147 148 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 149 { byteswap_uint8_array, "uint8" }, 150 { byteswap_uint16_array, "uint16" }, 151 { byteswap_uint32_array, "uint32" }, 152 { byteswap_uint64_array, "uint64" }, 153 { zap_byteswap, "zap" }, 154 { dnode_buf_byteswap, "dnode" }, 155 { dmu_objset_byteswap, "objset" }, 156 { zfs_znode_byteswap, "znode" }, 157 { zfs_oldacl_byteswap, "oldacl" }, 158 { zfs_acl_byteswap, "acl" } 159 }; 160 161 static int 162 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 163 const void *tag, dmu_buf_t **dbp) 164 { 165 uint64_t blkid; 166 dmu_buf_impl_t *db; 167 168 rw_enter(&dn->dn_struct_rwlock, RW_READER); 169 blkid = dbuf_whichblock(dn, 0, offset); 170 db = dbuf_hold(dn, blkid, tag); 171 rw_exit(&dn->dn_struct_rwlock); 172 173 if (db == NULL) { 174 *dbp = NULL; 175 return (SET_ERROR(EIO)); 176 } 177 178 *dbp = &db->db; 179 return (0); 180 } 181 int 182 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 183 const void *tag, dmu_buf_t **dbp) 184 { 185 dnode_t *dn; 186 uint64_t blkid; 187 dmu_buf_impl_t *db; 188 int err; 189 190 err = dnode_hold(os, object, FTAG, &dn); 191 if (err) 192 return (err); 193 rw_enter(&dn->dn_struct_rwlock, RW_READER); 194 blkid = dbuf_whichblock(dn, 0, offset); 195 db = dbuf_hold(dn, blkid, tag); 196 rw_exit(&dn->dn_struct_rwlock); 197 dnode_rele(dn, FTAG); 198 199 if (db == NULL) { 200 *dbp = NULL; 201 return (SET_ERROR(EIO)); 202 } 203 204 *dbp = &db->db; 205 return (err); 206 } 207 208 int 209 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 210 const void *tag, dmu_buf_t **dbp, int flags) 211 { 212 int err; 213 int db_flags = DB_RF_CANFAIL; 214 215 if (flags & DMU_READ_NO_PREFETCH) 216 db_flags |= DB_RF_NOPREFETCH; 217 if (flags & DMU_READ_NO_DECRYPT) 218 db_flags |= DB_RF_NO_DECRYPT; 219 220 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 221 if (err == 0) { 222 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 223 err = dbuf_read(db, NULL, db_flags); 224 if (err != 0) { 225 dbuf_rele(db, tag); 226 *dbp = NULL; 227 } 228 } 229 230 return (err); 231 } 232 233 int 234 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 235 const void *tag, dmu_buf_t **dbp, int flags) 236 { 237 int err; 238 int db_flags = DB_RF_CANFAIL; 239 240 if (flags & DMU_READ_NO_PREFETCH) 241 db_flags |= DB_RF_NOPREFETCH; 242 if (flags & DMU_READ_NO_DECRYPT) 243 db_flags |= DB_RF_NO_DECRYPT; 244 245 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 246 if (err == 0) { 247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 248 err = dbuf_read(db, NULL, db_flags); 249 if (err != 0) { 250 dbuf_rele(db, tag); 251 *dbp = NULL; 252 } 253 } 254 255 return (err); 256 } 257 258 int 259 dmu_bonus_max(void) 260 { 261 return (DN_OLD_MAX_BONUSLEN); 262 } 263 264 int 265 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 266 { 267 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 268 dnode_t *dn; 269 int error; 270 271 DB_DNODE_ENTER(db); 272 dn = DB_DNODE(db); 273 274 if (dn->dn_bonus != db) { 275 error = SET_ERROR(EINVAL); 276 } else if (newsize < 0 || newsize > db_fake->db_size) { 277 error = SET_ERROR(EINVAL); 278 } else { 279 dnode_setbonuslen(dn, newsize, tx); 280 error = 0; 281 } 282 283 DB_DNODE_EXIT(db); 284 return (error); 285 } 286 287 int 288 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 289 { 290 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 291 dnode_t *dn; 292 int error; 293 294 DB_DNODE_ENTER(db); 295 dn = DB_DNODE(db); 296 297 if (!DMU_OT_IS_VALID(type)) { 298 error = SET_ERROR(EINVAL); 299 } else if (dn->dn_bonus != db) { 300 error = SET_ERROR(EINVAL); 301 } else { 302 dnode_setbonus_type(dn, type, tx); 303 error = 0; 304 } 305 306 DB_DNODE_EXIT(db); 307 return (error); 308 } 309 310 dmu_object_type_t 311 dmu_get_bonustype(dmu_buf_t *db_fake) 312 { 313 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 314 dnode_t *dn; 315 dmu_object_type_t type; 316 317 DB_DNODE_ENTER(db); 318 dn = DB_DNODE(db); 319 type = dn->dn_bonustype; 320 DB_DNODE_EXIT(db); 321 322 return (type); 323 } 324 325 int 326 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 327 { 328 dnode_t *dn; 329 int error; 330 331 error = dnode_hold(os, object, FTAG, &dn); 332 dbuf_rm_spill(dn, tx); 333 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 334 dnode_rm_spill(dn, tx); 335 rw_exit(&dn->dn_struct_rwlock); 336 dnode_rele(dn, FTAG); 337 return (error); 338 } 339 340 /* 341 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 342 * has not yet been allocated a new bonus dbuf a will be allocated. 343 * Returns ENOENT, EIO, or 0. 344 */ 345 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, 346 uint32_t flags) 347 { 348 dmu_buf_impl_t *db; 349 int error; 350 uint32_t db_flags = DB_RF_MUST_SUCCEED; 351 352 if (flags & DMU_READ_NO_PREFETCH) 353 db_flags |= DB_RF_NOPREFETCH; 354 if (flags & DMU_READ_NO_DECRYPT) 355 db_flags |= DB_RF_NO_DECRYPT; 356 357 rw_enter(&dn->dn_struct_rwlock, RW_READER); 358 if (dn->dn_bonus == NULL) { 359 rw_exit(&dn->dn_struct_rwlock); 360 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 361 if (dn->dn_bonus == NULL) 362 dbuf_create_bonus(dn); 363 } 364 db = dn->dn_bonus; 365 366 /* as long as the bonus buf is held, the dnode will be held */ 367 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 368 VERIFY(dnode_add_ref(dn, db)); 369 atomic_inc_32(&dn->dn_dbufs_count); 370 } 371 372 /* 373 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 374 * hold and incrementing the dbuf count to ensure that dnode_move() sees 375 * a dnode hold for every dbuf. 376 */ 377 rw_exit(&dn->dn_struct_rwlock); 378 379 error = dbuf_read(db, NULL, db_flags); 380 if (error) { 381 dnode_evict_bonus(dn); 382 dbuf_rele(db, tag); 383 *dbp = NULL; 384 return (error); 385 } 386 387 *dbp = &db->db; 388 return (0); 389 } 390 391 int 392 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp) 393 { 394 dnode_t *dn; 395 int error; 396 397 error = dnode_hold(os, object, FTAG, &dn); 398 if (error) 399 return (error); 400 401 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 402 dnode_rele(dn, FTAG); 403 404 return (error); 405 } 406 407 /* 408 * returns ENOENT, EIO, or 0. 409 * 410 * This interface will allocate a blank spill dbuf when a spill blk 411 * doesn't already exist on the dnode. 412 * 413 * if you only want to find an already existing spill db, then 414 * dmu_spill_hold_existing() should be used. 415 */ 416 int 417 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag, 418 dmu_buf_t **dbp) 419 { 420 dmu_buf_impl_t *db = NULL; 421 int err; 422 423 if ((flags & DB_RF_HAVESTRUCT) == 0) 424 rw_enter(&dn->dn_struct_rwlock, RW_READER); 425 426 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 427 428 if ((flags & DB_RF_HAVESTRUCT) == 0) 429 rw_exit(&dn->dn_struct_rwlock); 430 431 if (db == NULL) { 432 *dbp = NULL; 433 return (SET_ERROR(EIO)); 434 } 435 err = dbuf_read(db, NULL, flags); 436 if (err == 0) 437 *dbp = &db->db; 438 else { 439 dbuf_rele(db, tag); 440 *dbp = NULL; 441 } 442 return (err); 443 } 444 445 int 446 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp) 447 { 448 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 449 dnode_t *dn; 450 int err; 451 452 DB_DNODE_ENTER(db); 453 dn = DB_DNODE(db); 454 455 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 456 err = SET_ERROR(EINVAL); 457 } else { 458 rw_enter(&dn->dn_struct_rwlock, RW_READER); 459 460 if (!dn->dn_have_spill) { 461 err = SET_ERROR(ENOENT); 462 } else { 463 err = dmu_spill_hold_by_dnode(dn, 464 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 465 } 466 467 rw_exit(&dn->dn_struct_rwlock); 468 } 469 470 DB_DNODE_EXIT(db); 471 return (err); 472 } 473 474 int 475 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, 476 dmu_buf_t **dbp) 477 { 478 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 479 dnode_t *dn; 480 int err; 481 uint32_t db_flags = DB_RF_CANFAIL; 482 483 if (flags & DMU_READ_NO_DECRYPT) 484 db_flags |= DB_RF_NO_DECRYPT; 485 486 DB_DNODE_ENTER(db); 487 dn = DB_DNODE(db); 488 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 489 DB_DNODE_EXIT(db); 490 491 return (err); 492 } 493 494 /* 495 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 496 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 497 * and can induce severe lock contention when writing to several files 498 * whose dnodes are in the same block. 499 */ 500 int 501 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 502 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp, 503 uint32_t flags) 504 { 505 dmu_buf_t **dbp; 506 zstream_t *zs = NULL; 507 uint64_t blkid, nblks, i; 508 uint32_t dbuf_flags; 509 int err; 510 zio_t *zio = NULL; 511 boolean_t missed = B_FALSE; 512 513 ASSERT(length <= DMU_MAX_ACCESS); 514 515 /* 516 * Note: We directly notify the prefetch code of this read, so that 517 * we can tell it about the multi-block read. dbuf_read() only knows 518 * about the one block it is accessing. 519 */ 520 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 521 DB_RF_NOPREFETCH; 522 523 if ((flags & DMU_READ_NO_DECRYPT) != 0) 524 dbuf_flags |= DB_RF_NO_DECRYPT; 525 526 rw_enter(&dn->dn_struct_rwlock, RW_READER); 527 if (dn->dn_datablkshift) { 528 int blkshift = dn->dn_datablkshift; 529 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 530 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 531 } else { 532 if (offset + length > dn->dn_datablksz) { 533 zfs_panic_recover("zfs: accessing past end of object " 534 "%llx/%llx (size=%u access=%llu+%llu)", 535 (longlong_t)dn->dn_objset-> 536 os_dsl_dataset->ds_object, 537 (longlong_t)dn->dn_object, dn->dn_datablksz, 538 (longlong_t)offset, (longlong_t)length); 539 rw_exit(&dn->dn_struct_rwlock); 540 return (SET_ERROR(EIO)); 541 } 542 nblks = 1; 543 } 544 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 545 546 if (read) 547 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, 548 ZIO_FLAG_CANFAIL); 549 blkid = dbuf_whichblock(dn, 0, offset); 550 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 551 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 552 /* 553 * Prepare the zfetch before initiating the demand reads, so 554 * that if multiple threads block on same indirect block, we 555 * base predictions on the original less racy request order. 556 */ 557 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, 558 read && DNODE_IS_CACHEABLE(dn), B_TRUE); 559 } 560 for (i = 0; i < nblks; i++) { 561 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 562 if (db == NULL) { 563 if (zs) 564 dmu_zfetch_run(zs, missed, B_TRUE); 565 rw_exit(&dn->dn_struct_rwlock); 566 dmu_buf_rele_array(dbp, nblks, tag); 567 if (read) 568 zio_nowait(zio); 569 return (SET_ERROR(EIO)); 570 } 571 572 /* 573 * Initiate async demand data read. 574 * We check the db_state after calling dbuf_read() because 575 * (1) dbuf_read() may change the state to CACHED due to a 576 * hit in the ARC, and (2) on a cache miss, a child will 577 * have been added to "zio" but not yet completed, so the 578 * state will not yet be CACHED. 579 */ 580 if (read) { 581 (void) dbuf_read(db, zio, dbuf_flags); 582 if (db->db_state != DB_CACHED) 583 missed = B_TRUE; 584 } 585 dbp[i] = &db->db; 586 } 587 588 if (!read) 589 zfs_racct_write(length, nblks); 590 591 if (zs) 592 dmu_zfetch_run(zs, missed, B_TRUE); 593 rw_exit(&dn->dn_struct_rwlock); 594 595 if (read) { 596 /* wait for async read i/o */ 597 err = zio_wait(zio); 598 if (err) { 599 dmu_buf_rele_array(dbp, nblks, tag); 600 return (err); 601 } 602 603 /* wait for other io to complete */ 604 for (i = 0; i < nblks; i++) { 605 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 606 mutex_enter(&db->db_mtx); 607 while (db->db_state == DB_READ || 608 db->db_state == DB_FILL) 609 cv_wait(&db->db_changed, &db->db_mtx); 610 if (db->db_state == DB_UNCACHED) 611 err = SET_ERROR(EIO); 612 mutex_exit(&db->db_mtx); 613 if (err) { 614 dmu_buf_rele_array(dbp, nblks, tag); 615 return (err); 616 } 617 } 618 } 619 620 *numbufsp = nblks; 621 *dbpp = dbp; 622 return (0); 623 } 624 625 int 626 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 627 uint64_t length, int read, const void *tag, int *numbufsp, 628 dmu_buf_t ***dbpp) 629 { 630 dnode_t *dn; 631 int err; 632 633 err = dnode_hold(os, object, FTAG, &dn); 634 if (err) 635 return (err); 636 637 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 638 numbufsp, dbpp, DMU_READ_PREFETCH); 639 640 dnode_rele(dn, FTAG); 641 642 return (err); 643 } 644 645 int 646 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 647 uint64_t length, boolean_t read, const void *tag, int *numbufsp, 648 dmu_buf_t ***dbpp) 649 { 650 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 651 dnode_t *dn; 652 int err; 653 654 DB_DNODE_ENTER(db); 655 dn = DB_DNODE(db); 656 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 657 numbufsp, dbpp, DMU_READ_PREFETCH); 658 DB_DNODE_EXIT(db); 659 660 return (err); 661 } 662 663 void 664 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag) 665 { 666 int i; 667 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 668 669 if (numbufs == 0) 670 return; 671 672 for (i = 0; i < numbufs; i++) { 673 if (dbp[i]) 674 dbuf_rele(dbp[i], tag); 675 } 676 677 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 678 } 679 680 /* 681 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 682 * indirect blocks prefetched will be those that point to the blocks containing 683 * the data starting at offset, and continuing to offset + len. 684 * 685 * Note that if the indirect blocks above the blocks being prefetched are not 686 * in cache, they will be asynchronously read in. 687 */ 688 void 689 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 690 uint64_t len, zio_priority_t pri) 691 { 692 dnode_t *dn; 693 uint64_t blkid; 694 int nblks, err; 695 696 if (len == 0) { /* they're interested in the bonus buffer */ 697 dn = DMU_META_DNODE(os); 698 699 if (object == 0 || object >= DN_MAX_OBJECT) 700 return; 701 702 rw_enter(&dn->dn_struct_rwlock, RW_READER); 703 blkid = dbuf_whichblock(dn, level, 704 object * sizeof (dnode_phys_t)); 705 dbuf_prefetch(dn, level, blkid, pri, 0); 706 rw_exit(&dn->dn_struct_rwlock); 707 return; 708 } 709 710 /* 711 * See comment before the definition of dmu_prefetch_max. 712 */ 713 len = MIN(len, dmu_prefetch_max); 714 715 /* 716 * XXX - Note, if the dnode for the requested object is not 717 * already cached, we will do a *synchronous* read in the 718 * dnode_hold() call. The same is true for any indirects. 719 */ 720 err = dnode_hold(os, object, FTAG, &dn); 721 if (err != 0) 722 return; 723 724 /* 725 * offset + len - 1 is the last byte we want to prefetch for, and offset 726 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 727 * last block we want to prefetch, and dbuf_whichblock(dn, level, 728 * offset) is the first. Then the number we need to prefetch is the 729 * last - first + 1. 730 */ 731 rw_enter(&dn->dn_struct_rwlock, RW_READER); 732 if (level > 0 || dn->dn_datablkshift != 0) { 733 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 734 dbuf_whichblock(dn, level, offset) + 1; 735 } else { 736 nblks = (offset < dn->dn_datablksz); 737 } 738 739 if (nblks != 0) { 740 blkid = dbuf_whichblock(dn, level, offset); 741 for (int i = 0; i < nblks; i++) 742 dbuf_prefetch(dn, level, blkid + i, pri, 0); 743 } 744 rw_exit(&dn->dn_struct_rwlock); 745 746 dnode_rele(dn, FTAG); 747 } 748 749 /* 750 * Get the next "chunk" of file data to free. We traverse the file from 751 * the end so that the file gets shorter over time (if we crashes in the 752 * middle, this will leave us in a better state). We find allocated file 753 * data by simply searching the allocated level 1 indirects. 754 * 755 * On input, *start should be the first offset that does not need to be 756 * freed (e.g. "offset + length"). On return, *start will be the first 757 * offset that should be freed and l1blks is set to the number of level 1 758 * indirect blocks found within the chunk. 759 */ 760 static int 761 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 762 { 763 uint64_t blks; 764 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 765 /* bytes of data covered by a level-1 indirect block */ 766 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 767 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 768 769 ASSERT3U(minimum, <=, *start); 770 771 /* 772 * Check if we can free the entire range assuming that all of the 773 * L1 blocks in this range have data. If we can, we use this 774 * worst case value as an estimate so we can avoid having to look 775 * at the object's actual data. 776 */ 777 uint64_t total_l1blks = 778 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 779 iblkrange; 780 if (total_l1blks <= maxblks) { 781 *l1blks = total_l1blks; 782 *start = minimum; 783 return (0); 784 } 785 ASSERT(ISP2(iblkrange)); 786 787 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 788 int err; 789 790 /* 791 * dnode_next_offset(BACKWARDS) will find an allocated L1 792 * indirect block at or before the input offset. We must 793 * decrement *start so that it is at the end of the region 794 * to search. 795 */ 796 (*start)--; 797 798 err = dnode_next_offset(dn, 799 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 800 801 /* if there are no indirect blocks before start, we are done */ 802 if (err == ESRCH) { 803 *start = minimum; 804 break; 805 } else if (err != 0) { 806 *l1blks = blks; 807 return (err); 808 } 809 810 /* set start to the beginning of this L1 indirect */ 811 *start = P2ALIGN(*start, iblkrange); 812 } 813 if (*start < minimum) 814 *start = minimum; 815 *l1blks = blks; 816 817 return (0); 818 } 819 820 /* 821 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 822 * otherwise return false. 823 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 824 */ 825 static boolean_t 826 dmu_objset_zfs_unmounting(objset_t *os) 827 { 828 #ifdef _KERNEL 829 if (dmu_objset_type(os) == DMU_OST_ZFS) 830 return (zfs_get_vfs_flag_unmounted(os)); 831 #else 832 (void) os; 833 #endif 834 return (B_FALSE); 835 } 836 837 static int 838 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 839 uint64_t length) 840 { 841 uint64_t object_size; 842 int err; 843 uint64_t dirty_frees_threshold; 844 dsl_pool_t *dp = dmu_objset_pool(os); 845 846 if (dn == NULL) 847 return (SET_ERROR(EINVAL)); 848 849 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 850 if (offset >= object_size) 851 return (0); 852 853 if (zfs_per_txg_dirty_frees_percent <= 100) 854 dirty_frees_threshold = 855 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 856 else 857 dirty_frees_threshold = zfs_dirty_data_max / 20; 858 859 if (length == DMU_OBJECT_END || offset + length > object_size) 860 length = object_size - offset; 861 862 while (length != 0) { 863 uint64_t chunk_end, chunk_begin, chunk_len; 864 uint64_t l1blks; 865 dmu_tx_t *tx; 866 867 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 868 return (SET_ERROR(EINTR)); 869 870 chunk_end = chunk_begin = offset + length; 871 872 /* move chunk_begin backwards to the beginning of this chunk */ 873 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 874 if (err) 875 return (err); 876 ASSERT3U(chunk_begin, >=, offset); 877 ASSERT3U(chunk_begin, <=, chunk_end); 878 879 chunk_len = chunk_end - chunk_begin; 880 881 tx = dmu_tx_create(os); 882 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 883 884 /* 885 * Mark this transaction as typically resulting in a net 886 * reduction in space used. 887 */ 888 dmu_tx_mark_netfree(tx); 889 err = dmu_tx_assign(tx, TXG_WAIT); 890 if (err) { 891 dmu_tx_abort(tx); 892 return (err); 893 } 894 895 uint64_t txg = dmu_tx_get_txg(tx); 896 897 mutex_enter(&dp->dp_lock); 898 uint64_t long_free_dirty = 899 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 900 mutex_exit(&dp->dp_lock); 901 902 /* 903 * To avoid filling up a TXG with just frees, wait for 904 * the next TXG to open before freeing more chunks if 905 * we have reached the threshold of frees. 906 */ 907 if (dirty_frees_threshold != 0 && 908 long_free_dirty >= dirty_frees_threshold) { 909 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 910 dmu_tx_commit(tx); 911 txg_wait_open(dp, 0, B_TRUE); 912 continue; 913 } 914 915 /* 916 * In order to prevent unnecessary write throttling, for each 917 * TXG, we track the cumulative size of L1 blocks being dirtied 918 * in dnode_free_range() below. We compare this number to a 919 * tunable threshold, past which we prevent new L1 dirty freeing 920 * blocks from being added into the open TXG. See 921 * dmu_free_long_range_impl() for details. The threshold 922 * prevents write throttle activation due to dirty freeing L1 923 * blocks taking up a large percentage of zfs_dirty_data_max. 924 */ 925 mutex_enter(&dp->dp_lock); 926 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 927 l1blks << dn->dn_indblkshift; 928 mutex_exit(&dp->dp_lock); 929 DTRACE_PROBE3(free__long__range, 930 uint64_t, long_free_dirty, uint64_t, chunk_len, 931 uint64_t, txg); 932 dnode_free_range(dn, chunk_begin, chunk_len, tx); 933 934 dmu_tx_commit(tx); 935 936 length -= chunk_len; 937 } 938 return (0); 939 } 940 941 int 942 dmu_free_long_range(objset_t *os, uint64_t object, 943 uint64_t offset, uint64_t length) 944 { 945 dnode_t *dn; 946 int err; 947 948 err = dnode_hold(os, object, FTAG, &dn); 949 if (err != 0) 950 return (err); 951 err = dmu_free_long_range_impl(os, dn, offset, length); 952 953 /* 954 * It is important to zero out the maxblkid when freeing the entire 955 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 956 * will take the fast path, and (b) dnode_reallocate() can verify 957 * that the entire file has been freed. 958 */ 959 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 960 dn->dn_maxblkid = 0; 961 962 dnode_rele(dn, FTAG); 963 return (err); 964 } 965 966 int 967 dmu_free_long_object(objset_t *os, uint64_t object) 968 { 969 dmu_tx_t *tx; 970 int err; 971 972 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 973 if (err != 0) 974 return (err); 975 976 tx = dmu_tx_create(os); 977 dmu_tx_hold_bonus(tx, object); 978 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 979 dmu_tx_mark_netfree(tx); 980 err = dmu_tx_assign(tx, TXG_WAIT); 981 if (err == 0) { 982 err = dmu_object_free(os, object, tx); 983 dmu_tx_commit(tx); 984 } else { 985 dmu_tx_abort(tx); 986 } 987 988 return (err); 989 } 990 991 int 992 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 993 uint64_t size, dmu_tx_t *tx) 994 { 995 dnode_t *dn; 996 int err = dnode_hold(os, object, FTAG, &dn); 997 if (err) 998 return (err); 999 ASSERT(offset < UINT64_MAX); 1000 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 1001 dnode_free_range(dn, offset, size, tx); 1002 dnode_rele(dn, FTAG); 1003 return (0); 1004 } 1005 1006 static int 1007 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 1008 void *buf, uint32_t flags) 1009 { 1010 dmu_buf_t **dbp; 1011 int numbufs, err = 0; 1012 1013 /* 1014 * Deal with odd block sizes, where there can't be data past the first 1015 * block. If we ever do the tail block optimization, we will need to 1016 * handle that here as well. 1017 */ 1018 if (dn->dn_maxblkid == 0) { 1019 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 1020 MIN(size, dn->dn_datablksz - offset); 1021 memset((char *)buf + newsz, 0, size - newsz); 1022 size = newsz; 1023 } 1024 1025 while (size > 0) { 1026 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 1027 int i; 1028 1029 /* 1030 * NB: we could do this block-at-a-time, but it's nice 1031 * to be reading in parallel. 1032 */ 1033 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1034 TRUE, FTAG, &numbufs, &dbp, flags); 1035 if (err) 1036 break; 1037 1038 for (i = 0; i < numbufs; i++) { 1039 uint64_t tocpy; 1040 int64_t bufoff; 1041 dmu_buf_t *db = dbp[i]; 1042 1043 ASSERT(size > 0); 1044 1045 bufoff = offset - db->db_offset; 1046 tocpy = MIN(db->db_size - bufoff, size); 1047 1048 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1049 1050 offset += tocpy; 1051 size -= tocpy; 1052 buf = (char *)buf + tocpy; 1053 } 1054 dmu_buf_rele_array(dbp, numbufs, FTAG); 1055 } 1056 return (err); 1057 } 1058 1059 int 1060 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1061 void *buf, uint32_t flags) 1062 { 1063 dnode_t *dn; 1064 int err; 1065 1066 err = dnode_hold(os, object, FTAG, &dn); 1067 if (err != 0) 1068 return (err); 1069 1070 err = dmu_read_impl(dn, offset, size, buf, flags); 1071 dnode_rele(dn, FTAG); 1072 return (err); 1073 } 1074 1075 int 1076 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1077 uint32_t flags) 1078 { 1079 return (dmu_read_impl(dn, offset, size, buf, flags)); 1080 } 1081 1082 static void 1083 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1084 const void *buf, dmu_tx_t *tx) 1085 { 1086 int i; 1087 1088 for (i = 0; i < numbufs; i++) { 1089 uint64_t tocpy; 1090 int64_t bufoff; 1091 dmu_buf_t *db = dbp[i]; 1092 1093 ASSERT(size > 0); 1094 1095 bufoff = offset - db->db_offset; 1096 tocpy = MIN(db->db_size - bufoff, size); 1097 1098 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1099 1100 if (tocpy == db->db_size) 1101 dmu_buf_will_fill(db, tx); 1102 else 1103 dmu_buf_will_dirty(db, tx); 1104 1105 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1106 1107 if (tocpy == db->db_size) 1108 dmu_buf_fill_done(db, tx); 1109 1110 offset += tocpy; 1111 size -= tocpy; 1112 buf = (char *)buf + tocpy; 1113 } 1114 } 1115 1116 void 1117 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1118 const void *buf, dmu_tx_t *tx) 1119 { 1120 dmu_buf_t **dbp; 1121 int numbufs; 1122 1123 if (size == 0) 1124 return; 1125 1126 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1127 FALSE, FTAG, &numbufs, &dbp)); 1128 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1129 dmu_buf_rele_array(dbp, numbufs, FTAG); 1130 } 1131 1132 /* 1133 * Note: Lustre is an external consumer of this interface. 1134 */ 1135 void 1136 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1137 const void *buf, dmu_tx_t *tx) 1138 { 1139 dmu_buf_t **dbp; 1140 int numbufs; 1141 1142 if (size == 0) 1143 return; 1144 1145 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1146 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1147 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1148 dmu_buf_rele_array(dbp, numbufs, FTAG); 1149 } 1150 1151 void 1152 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1153 dmu_tx_t *tx) 1154 { 1155 dmu_buf_t **dbp; 1156 int numbufs, i; 1157 1158 if (size == 0) 1159 return; 1160 1161 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1162 FALSE, FTAG, &numbufs, &dbp)); 1163 1164 for (i = 0; i < numbufs; i++) { 1165 dmu_buf_t *db = dbp[i]; 1166 1167 dmu_buf_will_not_fill(db, tx); 1168 } 1169 dmu_buf_rele_array(dbp, numbufs, FTAG); 1170 } 1171 1172 void 1173 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1174 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1175 int compressed_size, int byteorder, dmu_tx_t *tx) 1176 { 1177 dmu_buf_t *db; 1178 1179 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1180 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1181 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1182 FTAG, &db)); 1183 1184 dmu_buf_write_embedded(db, 1185 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1186 uncompressed_size, compressed_size, byteorder, tx); 1187 1188 dmu_buf_rele(db, FTAG); 1189 } 1190 1191 void 1192 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1193 dmu_tx_t *tx) 1194 { 1195 int numbufs, i; 1196 dmu_buf_t **dbp; 1197 1198 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1199 &numbufs, &dbp)); 1200 for (i = 0; i < numbufs; i++) 1201 dmu_buf_redact(dbp[i], tx); 1202 dmu_buf_rele_array(dbp, numbufs, FTAG); 1203 } 1204 1205 #ifdef _KERNEL 1206 int 1207 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size) 1208 { 1209 dmu_buf_t **dbp; 1210 int numbufs, i, err; 1211 1212 /* 1213 * NB: we could do this block-at-a-time, but it's nice 1214 * to be reading in parallel. 1215 */ 1216 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1217 TRUE, FTAG, &numbufs, &dbp, 0); 1218 if (err) 1219 return (err); 1220 1221 for (i = 0; i < numbufs; i++) { 1222 uint64_t tocpy; 1223 int64_t bufoff; 1224 dmu_buf_t *db = dbp[i]; 1225 1226 ASSERT(size > 0); 1227 1228 bufoff = zfs_uio_offset(uio) - db->db_offset; 1229 tocpy = MIN(db->db_size - bufoff, size); 1230 1231 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, 1232 UIO_READ, uio); 1233 1234 if (err) 1235 break; 1236 1237 size -= tocpy; 1238 } 1239 dmu_buf_rele_array(dbp, numbufs, FTAG); 1240 1241 return (err); 1242 } 1243 1244 /* 1245 * Read 'size' bytes into the uio buffer. 1246 * From object zdb->db_object. 1247 * Starting at zfs_uio_offset(uio). 1248 * 1249 * If the caller already has a dbuf in the target object 1250 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1251 * because we don't have to find the dnode_t for the object. 1252 */ 1253 int 1254 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size) 1255 { 1256 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1257 dnode_t *dn; 1258 int err; 1259 1260 if (size == 0) 1261 return (0); 1262 1263 DB_DNODE_ENTER(db); 1264 dn = DB_DNODE(db); 1265 err = dmu_read_uio_dnode(dn, uio, size); 1266 DB_DNODE_EXIT(db); 1267 1268 return (err); 1269 } 1270 1271 /* 1272 * Read 'size' bytes into the uio buffer. 1273 * From the specified object 1274 * Starting at offset zfs_uio_offset(uio). 1275 */ 1276 int 1277 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size) 1278 { 1279 dnode_t *dn; 1280 int err; 1281 1282 if (size == 0) 1283 return (0); 1284 1285 err = dnode_hold(os, object, FTAG, &dn); 1286 if (err) 1287 return (err); 1288 1289 err = dmu_read_uio_dnode(dn, uio, size); 1290 1291 dnode_rele(dn, FTAG); 1292 1293 return (err); 1294 } 1295 1296 int 1297 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) 1298 { 1299 dmu_buf_t **dbp; 1300 int numbufs; 1301 int err = 0; 1302 int i; 1303 1304 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1305 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1306 if (err) 1307 return (err); 1308 1309 for (i = 0; i < numbufs; i++) { 1310 uint64_t tocpy; 1311 int64_t bufoff; 1312 dmu_buf_t *db = dbp[i]; 1313 1314 ASSERT(size > 0); 1315 1316 bufoff = zfs_uio_offset(uio) - db->db_offset; 1317 tocpy = MIN(db->db_size - bufoff, size); 1318 1319 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1320 1321 if (tocpy == db->db_size) 1322 dmu_buf_will_fill(db, tx); 1323 else 1324 dmu_buf_will_dirty(db, tx); 1325 1326 /* 1327 * XXX zfs_uiomove could block forever (eg.nfs-backed 1328 * pages). There needs to be a uiolockdown() function 1329 * to lock the pages in memory, so that zfs_uiomove won't 1330 * block. 1331 */ 1332 err = zfs_uio_fault_move((char *)db->db_data + bufoff, 1333 tocpy, UIO_WRITE, uio); 1334 1335 if (tocpy == db->db_size) 1336 dmu_buf_fill_done(db, tx); 1337 1338 if (err) 1339 break; 1340 1341 size -= tocpy; 1342 } 1343 1344 dmu_buf_rele_array(dbp, numbufs, FTAG); 1345 return (err); 1346 } 1347 1348 /* 1349 * Write 'size' bytes from the uio buffer. 1350 * To object zdb->db_object. 1351 * Starting at offset zfs_uio_offset(uio). 1352 * 1353 * If the caller already has a dbuf in the target object 1354 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1355 * because we don't have to find the dnode_t for the object. 1356 */ 1357 int 1358 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, 1359 dmu_tx_t *tx) 1360 { 1361 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1362 dnode_t *dn; 1363 int err; 1364 1365 if (size == 0) 1366 return (0); 1367 1368 DB_DNODE_ENTER(db); 1369 dn = DB_DNODE(db); 1370 err = dmu_write_uio_dnode(dn, uio, size, tx); 1371 DB_DNODE_EXIT(db); 1372 1373 return (err); 1374 } 1375 1376 /* 1377 * Write 'size' bytes from the uio buffer. 1378 * To the specified object. 1379 * Starting at offset zfs_uio_offset(uio). 1380 */ 1381 int 1382 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, 1383 dmu_tx_t *tx) 1384 { 1385 dnode_t *dn; 1386 int err; 1387 1388 if (size == 0) 1389 return (0); 1390 1391 err = dnode_hold(os, object, FTAG, &dn); 1392 if (err) 1393 return (err); 1394 1395 err = dmu_write_uio_dnode(dn, uio, size, tx); 1396 1397 dnode_rele(dn, FTAG); 1398 1399 return (err); 1400 } 1401 #endif /* _KERNEL */ 1402 1403 /* 1404 * Allocate a loaned anonymous arc buffer. 1405 */ 1406 arc_buf_t * 1407 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1408 { 1409 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1410 1411 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1412 } 1413 1414 /* 1415 * Free a loaned arc buffer. 1416 */ 1417 void 1418 dmu_return_arcbuf(arc_buf_t *buf) 1419 { 1420 arc_return_buf(buf, FTAG); 1421 arc_buf_destroy(buf, FTAG); 1422 } 1423 1424 /* 1425 * A "lightweight" write is faster than a regular write (e.g. 1426 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the 1427 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the 1428 * data can not be read or overwritten until the transaction's txg has been 1429 * synced. This makes it appropriate for workloads that are known to be 1430 * (temporarily) write-only, like "zfs receive". 1431 * 1432 * A single block is written, starting at the specified offset in bytes. If 1433 * the call is successful, it returns 0 and the provided abd has been 1434 * consumed (the caller should not free it). 1435 */ 1436 int 1437 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, 1438 const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx) 1439 { 1440 dbuf_dirty_record_t *dr = 1441 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); 1442 if (dr == NULL) 1443 return (SET_ERROR(EIO)); 1444 dr->dt.dll.dr_abd = abd; 1445 dr->dt.dll.dr_props = *zp; 1446 dr->dt.dll.dr_flags = flags; 1447 return (0); 1448 } 1449 1450 /* 1451 * When possible directly assign passed loaned arc buffer to a dbuf. 1452 * If this is not possible copy the contents of passed arc buf via 1453 * dmu_write(). 1454 */ 1455 int 1456 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1457 dmu_tx_t *tx) 1458 { 1459 dmu_buf_impl_t *db; 1460 objset_t *os = dn->dn_objset; 1461 uint64_t object = dn->dn_object; 1462 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1463 uint64_t blkid; 1464 1465 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1466 blkid = dbuf_whichblock(dn, 0, offset); 1467 db = dbuf_hold(dn, blkid, FTAG); 1468 if (db == NULL) 1469 return (SET_ERROR(EIO)); 1470 rw_exit(&dn->dn_struct_rwlock); 1471 1472 /* 1473 * We can only assign if the offset is aligned and the arc buf is the 1474 * same size as the dbuf. 1475 */ 1476 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1477 zfs_racct_write(blksz, 1); 1478 dbuf_assign_arcbuf(db, buf, tx); 1479 dbuf_rele(db, FTAG); 1480 } else { 1481 /* compressed bufs must always be assignable to their dbuf */ 1482 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1483 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1484 1485 dbuf_rele(db, FTAG); 1486 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1487 dmu_return_arcbuf(buf); 1488 } 1489 1490 return (0); 1491 } 1492 1493 int 1494 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1495 dmu_tx_t *tx) 1496 { 1497 int err; 1498 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1499 1500 DB_DNODE_ENTER(dbuf); 1501 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1502 DB_DNODE_EXIT(dbuf); 1503 1504 return (err); 1505 } 1506 1507 typedef struct { 1508 dbuf_dirty_record_t *dsa_dr; 1509 dmu_sync_cb_t *dsa_done; 1510 zgd_t *dsa_zgd; 1511 dmu_tx_t *dsa_tx; 1512 } dmu_sync_arg_t; 1513 1514 static void 1515 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1516 { 1517 (void) buf; 1518 dmu_sync_arg_t *dsa = varg; 1519 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1520 blkptr_t *bp = zio->io_bp; 1521 1522 if (zio->io_error == 0) { 1523 if (BP_IS_HOLE(bp)) { 1524 /* 1525 * A block of zeros may compress to a hole, but the 1526 * block size still needs to be known for replay. 1527 */ 1528 BP_SET_LSIZE(bp, db->db_size); 1529 } else if (!BP_IS_EMBEDDED(bp)) { 1530 ASSERT(BP_GET_LEVEL(bp) == 0); 1531 BP_SET_FILL(bp, 1); 1532 } 1533 } 1534 } 1535 1536 static void 1537 dmu_sync_late_arrival_ready(zio_t *zio) 1538 { 1539 dmu_sync_ready(zio, NULL, zio->io_private); 1540 } 1541 1542 static void 1543 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1544 { 1545 (void) buf; 1546 dmu_sync_arg_t *dsa = varg; 1547 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1548 dmu_buf_impl_t *db = dr->dr_dbuf; 1549 zgd_t *zgd = dsa->dsa_zgd; 1550 1551 /* 1552 * Record the vdev(s) backing this blkptr so they can be flushed after 1553 * the writes for the lwb have completed. 1554 */ 1555 if (zio->io_error == 0) { 1556 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1557 } 1558 1559 mutex_enter(&db->db_mtx); 1560 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1561 if (zio->io_error == 0) { 1562 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1563 if (dr->dt.dl.dr_nopwrite) { 1564 blkptr_t *bp = zio->io_bp; 1565 blkptr_t *bp_orig = &zio->io_bp_orig; 1566 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1567 1568 ASSERT(BP_EQUAL(bp, bp_orig)); 1569 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1570 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1571 VERIFY(zio_checksum_table[chksum].ci_flags & 1572 ZCHECKSUM_FLAG_NOPWRITE); 1573 } 1574 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1575 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1576 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1577 1578 /* 1579 * Old style holes are filled with all zeros, whereas 1580 * new-style holes maintain their lsize, type, level, 1581 * and birth time (see zio_write_compress). While we 1582 * need to reset the BP_SET_LSIZE() call that happened 1583 * in dmu_sync_ready for old style holes, we do *not* 1584 * want to wipe out the information contained in new 1585 * style holes. Thus, only zero out the block pointer if 1586 * it's an old style hole. 1587 */ 1588 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1589 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1590 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1591 } else { 1592 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1593 } 1594 cv_broadcast(&db->db_changed); 1595 mutex_exit(&db->db_mtx); 1596 1597 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1598 1599 kmem_free(dsa, sizeof (*dsa)); 1600 } 1601 1602 static void 1603 dmu_sync_late_arrival_done(zio_t *zio) 1604 { 1605 blkptr_t *bp = zio->io_bp; 1606 dmu_sync_arg_t *dsa = zio->io_private; 1607 zgd_t *zgd = dsa->dsa_zgd; 1608 1609 if (zio->io_error == 0) { 1610 /* 1611 * Record the vdev(s) backing this blkptr so they can be 1612 * flushed after the writes for the lwb have completed. 1613 */ 1614 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1615 1616 if (!BP_IS_HOLE(bp)) { 1617 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1618 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1619 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1620 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1621 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1622 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1623 } 1624 } 1625 1626 dmu_tx_commit(dsa->dsa_tx); 1627 1628 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1629 1630 abd_free(zio->io_abd); 1631 kmem_free(dsa, sizeof (*dsa)); 1632 } 1633 1634 static int 1635 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1636 zio_prop_t *zp, zbookmark_phys_t *zb) 1637 { 1638 dmu_sync_arg_t *dsa; 1639 dmu_tx_t *tx; 1640 1641 tx = dmu_tx_create(os); 1642 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1643 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1644 dmu_tx_abort(tx); 1645 /* Make zl_get_data do txg_waited_synced() */ 1646 return (SET_ERROR(EIO)); 1647 } 1648 1649 /* 1650 * In order to prevent the zgd's lwb from being free'd prior to 1651 * dmu_sync_late_arrival_done() being called, we have to ensure 1652 * the lwb's "max txg" takes this tx's txg into account. 1653 */ 1654 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1655 1656 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1657 dsa->dsa_dr = NULL; 1658 dsa->dsa_done = done; 1659 dsa->dsa_zgd = zgd; 1660 dsa->dsa_tx = tx; 1661 1662 /* 1663 * Since we are currently syncing this txg, it's nontrivial to 1664 * determine what BP to nopwrite against, so we disable nopwrite. 1665 * 1666 * When syncing, the db_blkptr is initially the BP of the previous 1667 * txg. We can not nopwrite against it because it will be changed 1668 * (this is similar to the non-late-arrival case where the dbuf is 1669 * dirty in a future txg). 1670 * 1671 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1672 * We can not nopwrite against it because although the BP will not 1673 * (typically) be changed, the data has not yet been persisted to this 1674 * location. 1675 * 1676 * Finally, when dbuf_write_done() is called, it is theoretically 1677 * possible to always nopwrite, because the data that was written in 1678 * this txg is the same data that we are trying to write. However we 1679 * would need to check that this dbuf is not dirty in any future 1680 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1681 * don't nopwrite in this case. 1682 */ 1683 zp->zp_nopwrite = B_FALSE; 1684 1685 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1686 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1687 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1688 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1689 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1690 1691 return (0); 1692 } 1693 1694 /* 1695 * Intent log support: sync the block associated with db to disk. 1696 * N.B. and XXX: the caller is responsible for making sure that the 1697 * data isn't changing while dmu_sync() is writing it. 1698 * 1699 * Return values: 1700 * 1701 * EEXIST: this txg has already been synced, so there's nothing to do. 1702 * The caller should not log the write. 1703 * 1704 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1705 * The caller should not log the write. 1706 * 1707 * EALREADY: this block is already in the process of being synced. 1708 * The caller should track its progress (somehow). 1709 * 1710 * EIO: could not do the I/O. 1711 * The caller should do a txg_wait_synced(). 1712 * 1713 * 0: the I/O has been initiated. 1714 * The caller should log this blkptr in the done callback. 1715 * It is possible that the I/O will fail, in which case 1716 * the error will be reported to the done callback and 1717 * propagated to pio from zio_done(). 1718 */ 1719 int 1720 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1721 { 1722 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1723 objset_t *os = db->db_objset; 1724 dsl_dataset_t *ds = os->os_dsl_dataset; 1725 dbuf_dirty_record_t *dr, *dr_next; 1726 dmu_sync_arg_t *dsa; 1727 zbookmark_phys_t zb; 1728 zio_prop_t zp; 1729 dnode_t *dn; 1730 1731 ASSERT(pio != NULL); 1732 ASSERT(txg != 0); 1733 1734 SET_BOOKMARK(&zb, ds->ds_object, 1735 db->db.db_object, db->db_level, db->db_blkid); 1736 1737 DB_DNODE_ENTER(db); 1738 dn = DB_DNODE(db); 1739 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1740 DB_DNODE_EXIT(db); 1741 1742 /* 1743 * If we're frozen (running ziltest), we always need to generate a bp. 1744 */ 1745 if (txg > spa_freeze_txg(os->os_spa)) 1746 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1747 1748 /* 1749 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1750 * and us. If we determine that this txg is not yet syncing, 1751 * but it begins to sync a moment later, that's OK because the 1752 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1753 */ 1754 mutex_enter(&db->db_mtx); 1755 1756 if (txg <= spa_last_synced_txg(os->os_spa)) { 1757 /* 1758 * This txg has already synced. There's nothing to do. 1759 */ 1760 mutex_exit(&db->db_mtx); 1761 return (SET_ERROR(EEXIST)); 1762 } 1763 1764 if (txg <= spa_syncing_txg(os->os_spa)) { 1765 /* 1766 * This txg is currently syncing, so we can't mess with 1767 * the dirty record anymore; just write a new log block. 1768 */ 1769 mutex_exit(&db->db_mtx); 1770 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1771 } 1772 1773 dr = dbuf_find_dirty_eq(db, txg); 1774 1775 if (dr == NULL) { 1776 /* 1777 * There's no dr for this dbuf, so it must have been freed. 1778 * There's no need to log writes to freed blocks, so we're done. 1779 */ 1780 mutex_exit(&db->db_mtx); 1781 return (SET_ERROR(ENOENT)); 1782 } 1783 1784 dr_next = list_next(&db->db_dirty_records, dr); 1785 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1786 1787 if (db->db_blkptr != NULL) { 1788 /* 1789 * We need to fill in zgd_bp with the current blkptr so that 1790 * the nopwrite code can check if we're writing the same 1791 * data that's already on disk. We can only nopwrite if we 1792 * are sure that after making the copy, db_blkptr will not 1793 * change until our i/o completes. We ensure this by 1794 * holding the db_mtx, and only allowing nopwrite if the 1795 * block is not already dirty (see below). This is verified 1796 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1797 * not changed. 1798 */ 1799 *zgd->zgd_bp = *db->db_blkptr; 1800 } 1801 1802 /* 1803 * Assume the on-disk data is X, the current syncing data (in 1804 * txg - 1) is Y, and the current in-memory data is Z (currently 1805 * in dmu_sync). 1806 * 1807 * We usually want to perform a nopwrite if X and Z are the 1808 * same. However, if Y is different (i.e. the BP is going to 1809 * change before this write takes effect), then a nopwrite will 1810 * be incorrect - we would override with X, which could have 1811 * been freed when Y was written. 1812 * 1813 * (Note that this is not a concern when we are nop-writing from 1814 * syncing context, because X and Y must be identical, because 1815 * all previous txgs have been synced.) 1816 * 1817 * Therefore, we disable nopwrite if the current BP could change 1818 * before this TXG. There are two ways it could change: by 1819 * being dirty (dr_next is non-NULL), or by being freed 1820 * (dnode_block_freed()). This behavior is verified by 1821 * zio_done(), which VERIFYs that the override BP is identical 1822 * to the on-disk BP. 1823 */ 1824 DB_DNODE_ENTER(db); 1825 dn = DB_DNODE(db); 1826 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1827 zp.zp_nopwrite = B_FALSE; 1828 DB_DNODE_EXIT(db); 1829 1830 ASSERT(dr->dr_txg == txg); 1831 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1832 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1833 /* 1834 * We have already issued a sync write for this buffer, 1835 * or this buffer has already been synced. It could not 1836 * have been dirtied since, or we would have cleared the state. 1837 */ 1838 mutex_exit(&db->db_mtx); 1839 return (SET_ERROR(EALREADY)); 1840 } 1841 1842 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1843 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1844 mutex_exit(&db->db_mtx); 1845 1846 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1847 dsa->dsa_dr = dr; 1848 dsa->dsa_done = done; 1849 dsa->dsa_zgd = zgd; 1850 dsa->dsa_tx = NULL; 1851 1852 zio_nowait(arc_write(pio, os->os_spa, txg, 1853 zgd->zgd_bp, dr->dt.dl.dr_data, dbuf_is_l2cacheable(db), 1854 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1855 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1856 1857 return (0); 1858 } 1859 1860 int 1861 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1862 { 1863 dnode_t *dn; 1864 int err; 1865 1866 err = dnode_hold(os, object, FTAG, &dn); 1867 if (err) 1868 return (err); 1869 err = dnode_set_nlevels(dn, nlevels, tx); 1870 dnode_rele(dn, FTAG); 1871 return (err); 1872 } 1873 1874 int 1875 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1876 dmu_tx_t *tx) 1877 { 1878 dnode_t *dn; 1879 int err; 1880 1881 err = dnode_hold(os, object, FTAG, &dn); 1882 if (err) 1883 return (err); 1884 err = dnode_set_blksz(dn, size, ibs, tx); 1885 dnode_rele(dn, FTAG); 1886 return (err); 1887 } 1888 1889 int 1890 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 1891 dmu_tx_t *tx) 1892 { 1893 dnode_t *dn; 1894 int err; 1895 1896 err = dnode_hold(os, object, FTAG, &dn); 1897 if (err) 1898 return (err); 1899 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1900 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 1901 rw_exit(&dn->dn_struct_rwlock); 1902 dnode_rele(dn, FTAG); 1903 return (0); 1904 } 1905 1906 void 1907 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1908 dmu_tx_t *tx) 1909 { 1910 dnode_t *dn; 1911 1912 /* 1913 * Send streams include each object's checksum function. This 1914 * check ensures that the receiving system can understand the 1915 * checksum function transmitted. 1916 */ 1917 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1918 1919 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1920 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1921 dn->dn_checksum = checksum; 1922 dnode_setdirty(dn, tx); 1923 dnode_rele(dn, FTAG); 1924 } 1925 1926 void 1927 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1928 dmu_tx_t *tx) 1929 { 1930 dnode_t *dn; 1931 1932 /* 1933 * Send streams include each object's compression function. This 1934 * check ensures that the receiving system can understand the 1935 * compression function transmitted. 1936 */ 1937 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1938 1939 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1940 dn->dn_compress = compress; 1941 dnode_setdirty(dn, tx); 1942 dnode_rele(dn, FTAG); 1943 } 1944 1945 /* 1946 * When the "redundant_metadata" property is set to "most", only indirect 1947 * blocks of this level and higher will have an additional ditto block. 1948 */ 1949 static const int zfs_redundant_metadata_most_ditto_level = 2; 1950 1951 void 1952 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1953 { 1954 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1955 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1956 (wp & WP_SPILL)); 1957 enum zio_checksum checksum = os->os_checksum; 1958 enum zio_compress compress = os->os_compress; 1959 uint8_t complevel = os->os_complevel; 1960 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1961 boolean_t dedup = B_FALSE; 1962 boolean_t nopwrite = B_FALSE; 1963 boolean_t dedup_verify = os->os_dedup_verify; 1964 boolean_t encrypt = B_FALSE; 1965 int copies = os->os_copies; 1966 1967 /* 1968 * We maintain different write policies for each of the following 1969 * types of data: 1970 * 1. metadata 1971 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1972 * 3. all other level 0 blocks 1973 */ 1974 if (ismd) { 1975 /* 1976 * XXX -- we should design a compression algorithm 1977 * that specializes in arrays of bps. 1978 */ 1979 compress = zio_compress_select(os->os_spa, 1980 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1981 1982 /* 1983 * Metadata always gets checksummed. If the data 1984 * checksum is multi-bit correctable, and it's not a 1985 * ZBT-style checksum, then it's suitable for metadata 1986 * as well. Otherwise, the metadata checksum defaults 1987 * to fletcher4. 1988 */ 1989 if (!(zio_checksum_table[checksum].ci_flags & 1990 ZCHECKSUM_FLAG_METADATA) || 1991 (zio_checksum_table[checksum].ci_flags & 1992 ZCHECKSUM_FLAG_EMBEDDED)) 1993 checksum = ZIO_CHECKSUM_FLETCHER_4; 1994 1995 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1996 (os->os_redundant_metadata == 1997 ZFS_REDUNDANT_METADATA_MOST && 1998 (level >= zfs_redundant_metadata_most_ditto_level || 1999 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 2000 copies++; 2001 } else if (wp & WP_NOFILL) { 2002 ASSERT(level == 0); 2003 2004 /* 2005 * If we're writing preallocated blocks, we aren't actually 2006 * writing them so don't set any policy properties. These 2007 * blocks are currently only used by an external subsystem 2008 * outside of zfs (i.e. dump) and not written by the zio 2009 * pipeline. 2010 */ 2011 compress = ZIO_COMPRESS_OFF; 2012 checksum = ZIO_CHECKSUM_OFF; 2013 } else { 2014 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2015 compress); 2016 complevel = zio_complevel_select(os->os_spa, compress, 2017 complevel, complevel); 2018 2019 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2020 zio_checksum_select(dn->dn_checksum, checksum) : 2021 dedup_checksum; 2022 2023 /* 2024 * Determine dedup setting. If we are in dmu_sync(), 2025 * we won't actually dedup now because that's all 2026 * done in syncing context; but we do want to use the 2027 * dedup checksum. If the checksum is not strong 2028 * enough to ensure unique signatures, force 2029 * dedup_verify. 2030 */ 2031 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2032 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2033 if (!(zio_checksum_table[checksum].ci_flags & 2034 ZCHECKSUM_FLAG_DEDUP)) 2035 dedup_verify = B_TRUE; 2036 } 2037 2038 /* 2039 * Enable nopwrite if we have secure enough checksum 2040 * algorithm (see comment in zio_nop_write) and 2041 * compression is enabled. We don't enable nopwrite if 2042 * dedup is enabled as the two features are mutually 2043 * exclusive. 2044 */ 2045 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2046 ZCHECKSUM_FLAG_NOPWRITE) && 2047 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2048 } 2049 2050 /* 2051 * All objects in an encrypted objset are protected from modification 2052 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2053 * in the bp, so we cannot use all copies. Encrypted objects are also 2054 * not subject to nopwrite since writing the same data will still 2055 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2056 * to avoid ambiguity in the dedup code since the DDT does not store 2057 * object types. 2058 */ 2059 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2060 encrypt = B_TRUE; 2061 2062 if (DMU_OT_IS_ENCRYPTED(type)) { 2063 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2064 nopwrite = B_FALSE; 2065 } else { 2066 dedup = B_FALSE; 2067 } 2068 2069 if (level <= 0 && 2070 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2071 compress = ZIO_COMPRESS_EMPTY; 2072 } 2073 } 2074 2075 zp->zp_compress = compress; 2076 zp->zp_complevel = complevel; 2077 zp->zp_checksum = checksum; 2078 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2079 zp->zp_level = level; 2080 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2081 zp->zp_dedup = dedup; 2082 zp->zp_dedup_verify = dedup && dedup_verify; 2083 zp->zp_nopwrite = nopwrite; 2084 zp->zp_encrypt = encrypt; 2085 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2086 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN); 2087 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN); 2088 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN); 2089 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2090 os->os_zpl_special_smallblock : 0; 2091 2092 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2093 } 2094 2095 /* 2096 * This function is only called from zfs_holey_common() for zpl_llseek() 2097 * in order to determine the location of holes. In order to accurately 2098 * report holes all dirty data must be synced to disk. This causes extremely 2099 * poor performance when seeking for holes in a dirty file. As a compromise, 2100 * only provide hole data when the dnode is clean. When a dnode is dirty 2101 * report the dnode as having no holes which is always a safe thing to do. 2102 */ 2103 int 2104 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2105 { 2106 dnode_t *dn; 2107 int err; 2108 2109 restart: 2110 err = dnode_hold(os, object, FTAG, &dn); 2111 if (err) 2112 return (err); 2113 2114 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2115 2116 if (dnode_is_dirty(dn)) { 2117 /* 2118 * If the zfs_dmu_offset_next_sync module option is enabled 2119 * then strict hole reporting has been requested. Dirty 2120 * dnodes must be synced to disk to accurately report all 2121 * holes. When disabled dirty dnodes are reported to not 2122 * have any holes which is always safe. 2123 * 2124 * When called by zfs_holey_common() the zp->z_rangelock 2125 * is held to prevent zfs_write() and mmap writeback from 2126 * re-dirtying the dnode after txg_wait_synced(). 2127 */ 2128 if (zfs_dmu_offset_next_sync) { 2129 rw_exit(&dn->dn_struct_rwlock); 2130 dnode_rele(dn, FTAG); 2131 txg_wait_synced(dmu_objset_pool(os), 0); 2132 goto restart; 2133 } 2134 2135 err = SET_ERROR(EBUSY); 2136 } else { 2137 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK | 2138 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2139 } 2140 2141 rw_exit(&dn->dn_struct_rwlock); 2142 dnode_rele(dn, FTAG); 2143 2144 return (err); 2145 } 2146 2147 void 2148 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2149 { 2150 dnode_phys_t *dnp = dn->dn_phys; 2151 2152 doi->doi_data_block_size = dn->dn_datablksz; 2153 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2154 1ULL << dn->dn_indblkshift : 0; 2155 doi->doi_type = dn->dn_type; 2156 doi->doi_bonus_type = dn->dn_bonustype; 2157 doi->doi_bonus_size = dn->dn_bonuslen; 2158 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2159 doi->doi_indirection = dn->dn_nlevels; 2160 doi->doi_checksum = dn->dn_checksum; 2161 doi->doi_compress = dn->dn_compress; 2162 doi->doi_nblkptr = dn->dn_nblkptr; 2163 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2164 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2165 doi->doi_fill_count = 0; 2166 for (int i = 0; i < dnp->dn_nblkptr; i++) 2167 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2168 } 2169 2170 void 2171 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2172 { 2173 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2174 mutex_enter(&dn->dn_mtx); 2175 2176 __dmu_object_info_from_dnode(dn, doi); 2177 2178 mutex_exit(&dn->dn_mtx); 2179 rw_exit(&dn->dn_struct_rwlock); 2180 } 2181 2182 /* 2183 * Get information on a DMU object. 2184 * If doi is NULL, just indicates whether the object exists. 2185 */ 2186 int 2187 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2188 { 2189 dnode_t *dn; 2190 int err = dnode_hold(os, object, FTAG, &dn); 2191 2192 if (err) 2193 return (err); 2194 2195 if (doi != NULL) 2196 dmu_object_info_from_dnode(dn, doi); 2197 2198 dnode_rele(dn, FTAG); 2199 return (0); 2200 } 2201 2202 /* 2203 * As above, but faster; can be used when you have a held dbuf in hand. 2204 */ 2205 void 2206 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2207 { 2208 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2209 2210 DB_DNODE_ENTER(db); 2211 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2212 DB_DNODE_EXIT(db); 2213 } 2214 2215 /* 2216 * Faster still when you only care about the size. 2217 */ 2218 void 2219 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2220 u_longlong_t *nblk512) 2221 { 2222 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2223 dnode_t *dn; 2224 2225 DB_DNODE_ENTER(db); 2226 dn = DB_DNODE(db); 2227 2228 *blksize = dn->dn_datablksz; 2229 /* add in number of slots used for the dnode itself */ 2230 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2231 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2232 DB_DNODE_EXIT(db); 2233 } 2234 2235 void 2236 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2237 { 2238 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2239 dnode_t *dn; 2240 2241 DB_DNODE_ENTER(db); 2242 dn = DB_DNODE(db); 2243 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2244 DB_DNODE_EXIT(db); 2245 } 2246 2247 void 2248 byteswap_uint64_array(void *vbuf, size_t size) 2249 { 2250 uint64_t *buf = vbuf; 2251 size_t count = size >> 3; 2252 int i; 2253 2254 ASSERT((size & 7) == 0); 2255 2256 for (i = 0; i < count; i++) 2257 buf[i] = BSWAP_64(buf[i]); 2258 } 2259 2260 void 2261 byteswap_uint32_array(void *vbuf, size_t size) 2262 { 2263 uint32_t *buf = vbuf; 2264 size_t count = size >> 2; 2265 int i; 2266 2267 ASSERT((size & 3) == 0); 2268 2269 for (i = 0; i < count; i++) 2270 buf[i] = BSWAP_32(buf[i]); 2271 } 2272 2273 void 2274 byteswap_uint16_array(void *vbuf, size_t size) 2275 { 2276 uint16_t *buf = vbuf; 2277 size_t count = size >> 1; 2278 int i; 2279 2280 ASSERT((size & 1) == 0); 2281 2282 for (i = 0; i < count; i++) 2283 buf[i] = BSWAP_16(buf[i]); 2284 } 2285 2286 void 2287 byteswap_uint8_array(void *vbuf, size_t size) 2288 { 2289 (void) vbuf, (void) size; 2290 } 2291 2292 void 2293 dmu_init(void) 2294 { 2295 abd_init(); 2296 zfs_dbgmsg_init(); 2297 sa_cache_init(); 2298 dmu_objset_init(); 2299 dnode_init(); 2300 zfetch_init(); 2301 dmu_tx_init(); 2302 l2arc_init(); 2303 arc_init(); 2304 dbuf_init(); 2305 } 2306 2307 void 2308 dmu_fini(void) 2309 { 2310 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2311 l2arc_fini(); 2312 dmu_tx_fini(); 2313 zfetch_fini(); 2314 dbuf_fini(); 2315 dnode_fini(); 2316 dmu_objset_fini(); 2317 sa_cache_fini(); 2318 zfs_dbgmsg_fini(); 2319 abd_fini(); 2320 } 2321 2322 EXPORT_SYMBOL(dmu_bonus_hold); 2323 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2324 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2325 EXPORT_SYMBOL(dmu_buf_rele_array); 2326 EXPORT_SYMBOL(dmu_prefetch); 2327 EXPORT_SYMBOL(dmu_free_range); 2328 EXPORT_SYMBOL(dmu_free_long_range); 2329 EXPORT_SYMBOL(dmu_free_long_object); 2330 EXPORT_SYMBOL(dmu_read); 2331 EXPORT_SYMBOL(dmu_read_by_dnode); 2332 EXPORT_SYMBOL(dmu_write); 2333 EXPORT_SYMBOL(dmu_write_by_dnode); 2334 EXPORT_SYMBOL(dmu_prealloc); 2335 EXPORT_SYMBOL(dmu_object_info); 2336 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2337 EXPORT_SYMBOL(dmu_object_info_from_db); 2338 EXPORT_SYMBOL(dmu_object_size_from_db); 2339 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2340 EXPORT_SYMBOL(dmu_object_set_nlevels); 2341 EXPORT_SYMBOL(dmu_object_set_blocksize); 2342 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2343 EXPORT_SYMBOL(dmu_object_set_checksum); 2344 EXPORT_SYMBOL(dmu_object_set_compress); 2345 EXPORT_SYMBOL(dmu_offset_next); 2346 EXPORT_SYMBOL(dmu_write_policy); 2347 EXPORT_SYMBOL(dmu_sync); 2348 EXPORT_SYMBOL(dmu_request_arcbuf); 2349 EXPORT_SYMBOL(dmu_return_arcbuf); 2350 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2351 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2352 EXPORT_SYMBOL(dmu_buf_hold); 2353 EXPORT_SYMBOL(dmu_ot); 2354 2355 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2356 "Enable NOP writes"); 2357 2358 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW, 2359 "Percentage of dirtied blocks from frees in one TXG"); 2360 2361 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2362 "Enable forcing txg sync to find holes"); 2363 2364 /* CSTYLED */ 2365 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW, 2366 "Limit one prefetch call to this size"); 2367