xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
33  */
34 
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dbuf.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
50 #include <sys/zap.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
53 #include <sys/sa.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/brt.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
60 #ifdef _KERNEL
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
63 #endif
64 
65 /*
66  * Enable/disable nopwrite feature.
67  */
68 static int zfs_nopwrite_enabled = 1;
69 
70 /*
71  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72  * one TXG. After this threshold is crossed, additional dirty blocks from frees
73  * will wait until the next TXG.
74  * A value of zero will disable this throttle.
75  */
76 static uint_t zfs_per_txg_dirty_frees_percent = 30;
77 
78 /*
79  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80  * By default this is enabled to ensure accurate hole reporting, it can result
81  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82  * Disabling this option will result in holes never being reported in dirty
83  * files which is always safe.
84  */
85 static int zfs_dmu_offset_next_sync = 1;
86 
87 /*
88  * Limit the amount we can prefetch with one call to this amount.  This
89  * helps to limit the amount of memory that can be used by prefetching.
90  * Larger objects should be prefetched a bit at a time.
91  */
92 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
93 
94 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
95 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
96 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
97 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
98 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
99 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
100 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
101 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
102 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
103 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
104 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
105 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
106 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
107 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
108 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
109 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
110 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
111 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
112 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
113 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
114 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
115 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
116 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
117 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
118 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
119 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
120 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
121 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
122 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
123 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
124 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
125 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
127 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
128 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
129 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
130 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
131 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
132 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
136 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
137 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
139 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
141 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
142 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
143 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
144 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
146 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
147 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
148 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
149 };
150 
151 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
152 	{	byteswap_uint8_array,	"uint8"		},
153 	{	byteswap_uint16_array,	"uint16"	},
154 	{	byteswap_uint32_array,	"uint32"	},
155 	{	byteswap_uint64_array,	"uint64"	},
156 	{	zap_byteswap,		"zap"		},
157 	{	dnode_buf_byteswap,	"dnode"		},
158 	{	dmu_objset_byteswap,	"objset"	},
159 	{	zfs_znode_byteswap,	"znode"		},
160 	{	zfs_oldacl_byteswap,	"oldacl"	},
161 	{	zfs_acl_byteswap,	"acl"		}
162 };
163 
164 static int
165 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
166     const void *tag, dmu_buf_t **dbp)
167 {
168 	uint64_t blkid;
169 	dmu_buf_impl_t *db;
170 
171 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
172 	blkid = dbuf_whichblock(dn, 0, offset);
173 	db = dbuf_hold(dn, blkid, tag);
174 	rw_exit(&dn->dn_struct_rwlock);
175 
176 	if (db == NULL) {
177 		*dbp = NULL;
178 		return (SET_ERROR(EIO));
179 	}
180 
181 	*dbp = &db->db;
182 	return (0);
183 }
184 int
185 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
186     const void *tag, dmu_buf_t **dbp)
187 {
188 	dnode_t *dn;
189 	uint64_t blkid;
190 	dmu_buf_impl_t *db;
191 	int err;
192 
193 	err = dnode_hold(os, object, FTAG, &dn);
194 	if (err)
195 		return (err);
196 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
197 	blkid = dbuf_whichblock(dn, 0, offset);
198 	db = dbuf_hold(dn, blkid, tag);
199 	rw_exit(&dn->dn_struct_rwlock);
200 	dnode_rele(dn, FTAG);
201 
202 	if (db == NULL) {
203 		*dbp = NULL;
204 		return (SET_ERROR(EIO));
205 	}
206 
207 	*dbp = &db->db;
208 	return (err);
209 }
210 
211 int
212 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
213     const void *tag, dmu_buf_t **dbp, int flags)
214 {
215 	int err;
216 	int db_flags = DB_RF_CANFAIL;
217 
218 	if (flags & DMU_READ_NO_PREFETCH)
219 		db_flags |= DB_RF_NOPREFETCH;
220 	if (flags & DMU_READ_NO_DECRYPT)
221 		db_flags |= DB_RF_NO_DECRYPT;
222 
223 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
224 	if (err == 0) {
225 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
226 		err = dbuf_read(db, NULL, db_flags);
227 		if (err != 0) {
228 			dbuf_rele(db, tag);
229 			*dbp = NULL;
230 		}
231 	}
232 
233 	return (err);
234 }
235 
236 int
237 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
238     const void *tag, dmu_buf_t **dbp, int flags)
239 {
240 	int err;
241 	int db_flags = DB_RF_CANFAIL;
242 
243 	if (flags & DMU_READ_NO_PREFETCH)
244 		db_flags |= DB_RF_NOPREFETCH;
245 	if (flags & DMU_READ_NO_DECRYPT)
246 		db_flags |= DB_RF_NO_DECRYPT;
247 
248 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
249 	if (err == 0) {
250 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
251 		err = dbuf_read(db, NULL, db_flags);
252 		if (err != 0) {
253 			dbuf_rele(db, tag);
254 			*dbp = NULL;
255 		}
256 	}
257 
258 	return (err);
259 }
260 
261 int
262 dmu_bonus_max(void)
263 {
264 	return (DN_OLD_MAX_BONUSLEN);
265 }
266 
267 int
268 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
269 {
270 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
271 	dnode_t *dn;
272 	int error;
273 
274 	DB_DNODE_ENTER(db);
275 	dn = DB_DNODE(db);
276 
277 	if (dn->dn_bonus != db) {
278 		error = SET_ERROR(EINVAL);
279 	} else if (newsize < 0 || newsize > db_fake->db_size) {
280 		error = SET_ERROR(EINVAL);
281 	} else {
282 		dnode_setbonuslen(dn, newsize, tx);
283 		error = 0;
284 	}
285 
286 	DB_DNODE_EXIT(db);
287 	return (error);
288 }
289 
290 int
291 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
292 {
293 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
294 	dnode_t *dn;
295 	int error;
296 
297 	DB_DNODE_ENTER(db);
298 	dn = DB_DNODE(db);
299 
300 	if (!DMU_OT_IS_VALID(type)) {
301 		error = SET_ERROR(EINVAL);
302 	} else if (dn->dn_bonus != db) {
303 		error = SET_ERROR(EINVAL);
304 	} else {
305 		dnode_setbonus_type(dn, type, tx);
306 		error = 0;
307 	}
308 
309 	DB_DNODE_EXIT(db);
310 	return (error);
311 }
312 
313 dmu_object_type_t
314 dmu_get_bonustype(dmu_buf_t *db_fake)
315 {
316 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
317 	dnode_t *dn;
318 	dmu_object_type_t type;
319 
320 	DB_DNODE_ENTER(db);
321 	dn = DB_DNODE(db);
322 	type = dn->dn_bonustype;
323 	DB_DNODE_EXIT(db);
324 
325 	return (type);
326 }
327 
328 int
329 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
330 {
331 	dnode_t *dn;
332 	int error;
333 
334 	error = dnode_hold(os, object, FTAG, &dn);
335 	dbuf_rm_spill(dn, tx);
336 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
337 	dnode_rm_spill(dn, tx);
338 	rw_exit(&dn->dn_struct_rwlock);
339 	dnode_rele(dn, FTAG);
340 	return (error);
341 }
342 
343 /*
344  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
345  * has not yet been allocated a new bonus dbuf a will be allocated.
346  * Returns ENOENT, EIO, or 0.
347  */
348 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
349     uint32_t flags)
350 {
351 	dmu_buf_impl_t *db;
352 	int error;
353 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
354 
355 	if (flags & DMU_READ_NO_PREFETCH)
356 		db_flags |= DB_RF_NOPREFETCH;
357 	if (flags & DMU_READ_NO_DECRYPT)
358 		db_flags |= DB_RF_NO_DECRYPT;
359 
360 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
361 	if (dn->dn_bonus == NULL) {
362 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
363 			rw_exit(&dn->dn_struct_rwlock);
364 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
365 		}
366 		if (dn->dn_bonus == NULL)
367 			dbuf_create_bonus(dn);
368 	}
369 	db = dn->dn_bonus;
370 
371 	/* as long as the bonus buf is held, the dnode will be held */
372 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
373 		VERIFY(dnode_add_ref(dn, db));
374 		atomic_inc_32(&dn->dn_dbufs_count);
375 	}
376 
377 	/*
378 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
379 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
380 	 * a dnode hold for every dbuf.
381 	 */
382 	rw_exit(&dn->dn_struct_rwlock);
383 
384 	error = dbuf_read(db, NULL, db_flags);
385 	if (error) {
386 		dnode_evict_bonus(dn);
387 		dbuf_rele(db, tag);
388 		*dbp = NULL;
389 		return (error);
390 	}
391 
392 	*dbp = &db->db;
393 	return (0);
394 }
395 
396 int
397 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
398 {
399 	dnode_t *dn;
400 	int error;
401 
402 	error = dnode_hold(os, object, FTAG, &dn);
403 	if (error)
404 		return (error);
405 
406 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
407 	dnode_rele(dn, FTAG);
408 
409 	return (error);
410 }
411 
412 /*
413  * returns ENOENT, EIO, or 0.
414  *
415  * This interface will allocate a blank spill dbuf when a spill blk
416  * doesn't already exist on the dnode.
417  *
418  * if you only want to find an already existing spill db, then
419  * dmu_spill_hold_existing() should be used.
420  */
421 int
422 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
423     dmu_buf_t **dbp)
424 {
425 	dmu_buf_impl_t *db = NULL;
426 	int err;
427 
428 	if ((flags & DB_RF_HAVESTRUCT) == 0)
429 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
430 
431 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
432 
433 	if ((flags & DB_RF_HAVESTRUCT) == 0)
434 		rw_exit(&dn->dn_struct_rwlock);
435 
436 	if (db == NULL) {
437 		*dbp = NULL;
438 		return (SET_ERROR(EIO));
439 	}
440 	err = dbuf_read(db, NULL, flags);
441 	if (err == 0)
442 		*dbp = &db->db;
443 	else {
444 		dbuf_rele(db, tag);
445 		*dbp = NULL;
446 	}
447 	return (err);
448 }
449 
450 int
451 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
452 {
453 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
454 	dnode_t *dn;
455 	int err;
456 
457 	DB_DNODE_ENTER(db);
458 	dn = DB_DNODE(db);
459 
460 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
461 		err = SET_ERROR(EINVAL);
462 	} else {
463 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
464 
465 		if (!dn->dn_have_spill) {
466 			err = SET_ERROR(ENOENT);
467 		} else {
468 			err = dmu_spill_hold_by_dnode(dn,
469 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
470 		}
471 
472 		rw_exit(&dn->dn_struct_rwlock);
473 	}
474 
475 	DB_DNODE_EXIT(db);
476 	return (err);
477 }
478 
479 int
480 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
481     dmu_buf_t **dbp)
482 {
483 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
484 	dnode_t *dn;
485 	int err;
486 	uint32_t db_flags = DB_RF_CANFAIL;
487 
488 	if (flags & DMU_READ_NO_DECRYPT)
489 		db_flags |= DB_RF_NO_DECRYPT;
490 
491 	DB_DNODE_ENTER(db);
492 	dn = DB_DNODE(db);
493 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
494 	DB_DNODE_EXIT(db);
495 
496 	return (err);
497 }
498 
499 /*
500  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
501  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
502  * and can induce severe lock contention when writing to several files
503  * whose dnodes are in the same block.
504  */
505 int
506 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
507     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
508     uint32_t flags)
509 {
510 	dmu_buf_t **dbp;
511 	zstream_t *zs = NULL;
512 	uint64_t blkid, nblks, i;
513 	uint32_t dbuf_flags;
514 	int err;
515 	zio_t *zio = NULL;
516 	boolean_t missed = B_FALSE;
517 
518 	ASSERT(!read || length <= DMU_MAX_ACCESS);
519 
520 	/*
521 	 * Note: We directly notify the prefetch code of this read, so that
522 	 * we can tell it about the multi-block read.  dbuf_read() only knows
523 	 * about the one block it is accessing.
524 	 */
525 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
526 	    DB_RF_NOPREFETCH;
527 
528 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
529 		dbuf_flags |= DB_RF_NO_DECRYPT;
530 
531 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
532 	if (dn->dn_datablkshift) {
533 		int blkshift = dn->dn_datablkshift;
534 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
535 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
536 	} else {
537 		if (offset + length > dn->dn_datablksz) {
538 			zfs_panic_recover("zfs: accessing past end of object "
539 			    "%llx/%llx (size=%u access=%llu+%llu)",
540 			    (longlong_t)dn->dn_objset->
541 			    os_dsl_dataset->ds_object,
542 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
543 			    (longlong_t)offset, (longlong_t)length);
544 			rw_exit(&dn->dn_struct_rwlock);
545 			return (SET_ERROR(EIO));
546 		}
547 		nblks = 1;
548 	}
549 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
550 
551 	if (read)
552 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
553 		    ZIO_FLAG_CANFAIL);
554 	blkid = dbuf_whichblock(dn, 0, offset);
555 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
556 	    length <= zfetch_array_rd_sz) {
557 		/*
558 		 * Prepare the zfetch before initiating the demand reads, so
559 		 * that if multiple threads block on same indirect block, we
560 		 * base predictions on the original less racy request order.
561 		 */
562 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
563 		    B_TRUE);
564 	}
565 	for (i = 0; i < nblks; i++) {
566 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
567 		if (db == NULL) {
568 			if (zs)
569 				dmu_zfetch_run(zs, missed, B_TRUE);
570 			rw_exit(&dn->dn_struct_rwlock);
571 			dmu_buf_rele_array(dbp, nblks, tag);
572 			if (read)
573 				zio_nowait(zio);
574 			return (SET_ERROR(EIO));
575 		}
576 
577 		/*
578 		 * Initiate async demand data read.
579 		 * We check the db_state after calling dbuf_read() because
580 		 * (1) dbuf_read() may change the state to CACHED due to a
581 		 * hit in the ARC, and (2) on a cache miss, a child will
582 		 * have been added to "zio" but not yet completed, so the
583 		 * state will not yet be CACHED.
584 		 */
585 		if (read) {
586 			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
587 			    offset + length < db->db.db_offset +
588 			    db->db.db_size) {
589 				if (offset <= db->db.db_offset)
590 					dbuf_flags |= DB_RF_PARTIAL_FIRST;
591 				else
592 					dbuf_flags |= DB_RF_PARTIAL_MORE;
593 			}
594 			(void) dbuf_read(db, zio, dbuf_flags);
595 			if (db->db_state != DB_CACHED)
596 				missed = B_TRUE;
597 		}
598 		dbp[i] = &db->db;
599 	}
600 
601 	if (!read)
602 		zfs_racct_write(length, nblks);
603 
604 	if (zs)
605 		dmu_zfetch_run(zs, missed, B_TRUE);
606 	rw_exit(&dn->dn_struct_rwlock);
607 
608 	if (read) {
609 		/* wait for async read i/o */
610 		err = zio_wait(zio);
611 		if (err) {
612 			dmu_buf_rele_array(dbp, nblks, tag);
613 			return (err);
614 		}
615 
616 		/* wait for other io to complete */
617 		for (i = 0; i < nblks; i++) {
618 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
619 			mutex_enter(&db->db_mtx);
620 			while (db->db_state == DB_READ ||
621 			    db->db_state == DB_FILL)
622 				cv_wait(&db->db_changed, &db->db_mtx);
623 			if (db->db_state == DB_UNCACHED)
624 				err = SET_ERROR(EIO);
625 			mutex_exit(&db->db_mtx);
626 			if (err) {
627 				dmu_buf_rele_array(dbp, nblks, tag);
628 				return (err);
629 			}
630 		}
631 	}
632 
633 	*numbufsp = nblks;
634 	*dbpp = dbp;
635 	return (0);
636 }
637 
638 int
639 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
640     uint64_t length, int read, const void *tag, int *numbufsp,
641     dmu_buf_t ***dbpp)
642 {
643 	dnode_t *dn;
644 	int err;
645 
646 	err = dnode_hold(os, object, FTAG, &dn);
647 	if (err)
648 		return (err);
649 
650 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
651 	    numbufsp, dbpp, DMU_READ_PREFETCH);
652 
653 	dnode_rele(dn, FTAG);
654 
655 	return (err);
656 }
657 
658 int
659 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
660     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
661     dmu_buf_t ***dbpp)
662 {
663 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
664 	dnode_t *dn;
665 	int err;
666 
667 	DB_DNODE_ENTER(db);
668 	dn = DB_DNODE(db);
669 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
670 	    numbufsp, dbpp, DMU_READ_PREFETCH);
671 	DB_DNODE_EXIT(db);
672 
673 	return (err);
674 }
675 
676 void
677 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
678 {
679 	int i;
680 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
681 
682 	if (numbufs == 0)
683 		return;
684 
685 	for (i = 0; i < numbufs; i++) {
686 		if (dbp[i])
687 			dbuf_rele(dbp[i], tag);
688 	}
689 
690 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
691 }
692 
693 /*
694  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
695  * indirect blocks prefetched will be those that point to the blocks containing
696  * the data starting at offset, and continuing to offset + len.
697  *
698  * Note that if the indirect blocks above the blocks being prefetched are not
699  * in cache, they will be asynchronously read in.
700  */
701 void
702 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
703     uint64_t len, zio_priority_t pri)
704 {
705 	dnode_t *dn;
706 	uint64_t blkid;
707 	int nblks, err;
708 
709 	if (len == 0) {  /* they're interested in the bonus buffer */
710 		dn = DMU_META_DNODE(os);
711 
712 		if (object == 0 || object >= DN_MAX_OBJECT)
713 			return;
714 
715 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
716 		blkid = dbuf_whichblock(dn, level,
717 		    object * sizeof (dnode_phys_t));
718 		dbuf_prefetch(dn, level, blkid, pri, 0);
719 		rw_exit(&dn->dn_struct_rwlock);
720 		return;
721 	}
722 
723 	/*
724 	 * See comment before the definition of dmu_prefetch_max.
725 	 */
726 	len = MIN(len, dmu_prefetch_max);
727 
728 	/*
729 	 * XXX - Note, if the dnode for the requested object is not
730 	 * already cached, we will do a *synchronous* read in the
731 	 * dnode_hold() call.  The same is true for any indirects.
732 	 */
733 	err = dnode_hold(os, object, FTAG, &dn);
734 	if (err != 0)
735 		return;
736 
737 	/*
738 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
739 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
740 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
741 	 * offset)  is the first.  Then the number we need to prefetch is the
742 	 * last - first + 1.
743 	 */
744 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
745 	if (level > 0 || dn->dn_datablkshift != 0) {
746 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
747 		    dbuf_whichblock(dn, level, offset) + 1;
748 	} else {
749 		nblks = (offset < dn->dn_datablksz);
750 	}
751 
752 	if (nblks != 0) {
753 		blkid = dbuf_whichblock(dn, level, offset);
754 		for (int i = 0; i < nblks; i++)
755 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
756 	}
757 	rw_exit(&dn->dn_struct_rwlock);
758 
759 	dnode_rele(dn, FTAG);
760 }
761 
762 /*
763  * Get the next "chunk" of file data to free.  We traverse the file from
764  * the end so that the file gets shorter over time (if we crashes in the
765  * middle, this will leave us in a better state).  We find allocated file
766  * data by simply searching the allocated level 1 indirects.
767  *
768  * On input, *start should be the first offset that does not need to be
769  * freed (e.g. "offset + length").  On return, *start will be the first
770  * offset that should be freed and l1blks is set to the number of level 1
771  * indirect blocks found within the chunk.
772  */
773 static int
774 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
775 {
776 	uint64_t blks;
777 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
778 	/* bytes of data covered by a level-1 indirect block */
779 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
780 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
781 
782 	ASSERT3U(minimum, <=, *start);
783 
784 	/*
785 	 * Check if we can free the entire range assuming that all of the
786 	 * L1 blocks in this range have data. If we can, we use this
787 	 * worst case value as an estimate so we can avoid having to look
788 	 * at the object's actual data.
789 	 */
790 	uint64_t total_l1blks =
791 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
792 	    iblkrange;
793 	if (total_l1blks <= maxblks) {
794 		*l1blks = total_l1blks;
795 		*start = minimum;
796 		return (0);
797 	}
798 	ASSERT(ISP2(iblkrange));
799 
800 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
801 		int err;
802 
803 		/*
804 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
805 		 * indirect block at or before the input offset.  We must
806 		 * decrement *start so that it is at the end of the region
807 		 * to search.
808 		 */
809 		(*start)--;
810 
811 		err = dnode_next_offset(dn,
812 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
813 
814 		/* if there are no indirect blocks before start, we are done */
815 		if (err == ESRCH) {
816 			*start = minimum;
817 			break;
818 		} else if (err != 0) {
819 			*l1blks = blks;
820 			return (err);
821 		}
822 
823 		/* set start to the beginning of this L1 indirect */
824 		*start = P2ALIGN(*start, iblkrange);
825 	}
826 	if (*start < minimum)
827 		*start = minimum;
828 	*l1blks = blks;
829 
830 	return (0);
831 }
832 
833 /*
834  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
835  * otherwise return false.
836  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
837  */
838 static boolean_t
839 dmu_objset_zfs_unmounting(objset_t *os)
840 {
841 #ifdef _KERNEL
842 	if (dmu_objset_type(os) == DMU_OST_ZFS)
843 		return (zfs_get_vfs_flag_unmounted(os));
844 #else
845 	(void) os;
846 #endif
847 	return (B_FALSE);
848 }
849 
850 static int
851 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
852     uint64_t length)
853 {
854 	uint64_t object_size;
855 	int err;
856 	uint64_t dirty_frees_threshold;
857 	dsl_pool_t *dp = dmu_objset_pool(os);
858 
859 	if (dn == NULL)
860 		return (SET_ERROR(EINVAL));
861 
862 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
863 	if (offset >= object_size)
864 		return (0);
865 
866 	if (zfs_per_txg_dirty_frees_percent <= 100)
867 		dirty_frees_threshold =
868 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
869 	else
870 		dirty_frees_threshold = zfs_dirty_data_max / 20;
871 
872 	if (length == DMU_OBJECT_END || offset + length > object_size)
873 		length = object_size - offset;
874 
875 	while (length != 0) {
876 		uint64_t chunk_end, chunk_begin, chunk_len;
877 		uint64_t l1blks;
878 		dmu_tx_t *tx;
879 
880 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
881 			return (SET_ERROR(EINTR));
882 
883 		chunk_end = chunk_begin = offset + length;
884 
885 		/* move chunk_begin backwards to the beginning of this chunk */
886 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
887 		if (err)
888 			return (err);
889 		ASSERT3U(chunk_begin, >=, offset);
890 		ASSERT3U(chunk_begin, <=, chunk_end);
891 
892 		chunk_len = chunk_end - chunk_begin;
893 
894 		tx = dmu_tx_create(os);
895 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
896 
897 		/*
898 		 * Mark this transaction as typically resulting in a net
899 		 * reduction in space used.
900 		 */
901 		dmu_tx_mark_netfree(tx);
902 		err = dmu_tx_assign(tx, TXG_WAIT);
903 		if (err) {
904 			dmu_tx_abort(tx);
905 			return (err);
906 		}
907 
908 		uint64_t txg = dmu_tx_get_txg(tx);
909 
910 		mutex_enter(&dp->dp_lock);
911 		uint64_t long_free_dirty =
912 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
913 		mutex_exit(&dp->dp_lock);
914 
915 		/*
916 		 * To avoid filling up a TXG with just frees, wait for
917 		 * the next TXG to open before freeing more chunks if
918 		 * we have reached the threshold of frees.
919 		 */
920 		if (dirty_frees_threshold != 0 &&
921 		    long_free_dirty >= dirty_frees_threshold) {
922 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
923 			dmu_tx_commit(tx);
924 			txg_wait_open(dp, 0, B_TRUE);
925 			continue;
926 		}
927 
928 		/*
929 		 * In order to prevent unnecessary write throttling, for each
930 		 * TXG, we track the cumulative size of L1 blocks being dirtied
931 		 * in dnode_free_range() below. We compare this number to a
932 		 * tunable threshold, past which we prevent new L1 dirty freeing
933 		 * blocks from being added into the open TXG. See
934 		 * dmu_free_long_range_impl() for details. The threshold
935 		 * prevents write throttle activation due to dirty freeing L1
936 		 * blocks taking up a large percentage of zfs_dirty_data_max.
937 		 */
938 		mutex_enter(&dp->dp_lock);
939 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
940 		    l1blks << dn->dn_indblkshift;
941 		mutex_exit(&dp->dp_lock);
942 		DTRACE_PROBE3(free__long__range,
943 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
944 		    uint64_t, txg);
945 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
946 
947 		dmu_tx_commit(tx);
948 
949 		length -= chunk_len;
950 	}
951 	return (0);
952 }
953 
954 int
955 dmu_free_long_range(objset_t *os, uint64_t object,
956     uint64_t offset, uint64_t length)
957 {
958 	dnode_t *dn;
959 	int err;
960 
961 	err = dnode_hold(os, object, FTAG, &dn);
962 	if (err != 0)
963 		return (err);
964 	err = dmu_free_long_range_impl(os, dn, offset, length);
965 
966 	/*
967 	 * It is important to zero out the maxblkid when freeing the entire
968 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
969 	 * will take the fast path, and (b) dnode_reallocate() can verify
970 	 * that the entire file has been freed.
971 	 */
972 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
973 		dn->dn_maxblkid = 0;
974 
975 	dnode_rele(dn, FTAG);
976 	return (err);
977 }
978 
979 int
980 dmu_free_long_object(objset_t *os, uint64_t object)
981 {
982 	dmu_tx_t *tx;
983 	int err;
984 
985 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
986 	if (err != 0)
987 		return (err);
988 
989 	tx = dmu_tx_create(os);
990 	dmu_tx_hold_bonus(tx, object);
991 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
992 	dmu_tx_mark_netfree(tx);
993 	err = dmu_tx_assign(tx, TXG_WAIT);
994 	if (err == 0) {
995 		err = dmu_object_free(os, object, tx);
996 		dmu_tx_commit(tx);
997 	} else {
998 		dmu_tx_abort(tx);
999 	}
1000 
1001 	return (err);
1002 }
1003 
1004 int
1005 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1006     uint64_t size, dmu_tx_t *tx)
1007 {
1008 	dnode_t *dn;
1009 	int err = dnode_hold(os, object, FTAG, &dn);
1010 	if (err)
1011 		return (err);
1012 	ASSERT(offset < UINT64_MAX);
1013 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1014 	dnode_free_range(dn, offset, size, tx);
1015 	dnode_rele(dn, FTAG);
1016 	return (0);
1017 }
1018 
1019 static int
1020 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1021     void *buf, uint32_t flags)
1022 {
1023 	dmu_buf_t **dbp;
1024 	int numbufs, err = 0;
1025 
1026 	/*
1027 	 * Deal with odd block sizes, where there can't be data past the first
1028 	 * block.  If we ever do the tail block optimization, we will need to
1029 	 * handle that here as well.
1030 	 */
1031 	if (dn->dn_maxblkid == 0) {
1032 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1033 		    MIN(size, dn->dn_datablksz - offset);
1034 		memset((char *)buf + newsz, 0, size - newsz);
1035 		size = newsz;
1036 	}
1037 
1038 	while (size > 0) {
1039 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1040 		int i;
1041 
1042 		/*
1043 		 * NB: we could do this block-at-a-time, but it's nice
1044 		 * to be reading in parallel.
1045 		 */
1046 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1047 		    TRUE, FTAG, &numbufs, &dbp, flags);
1048 		if (err)
1049 			break;
1050 
1051 		for (i = 0; i < numbufs; i++) {
1052 			uint64_t tocpy;
1053 			int64_t bufoff;
1054 			dmu_buf_t *db = dbp[i];
1055 
1056 			ASSERT(size > 0);
1057 
1058 			bufoff = offset - db->db_offset;
1059 			tocpy = MIN(db->db_size - bufoff, size);
1060 
1061 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1062 
1063 			offset += tocpy;
1064 			size -= tocpy;
1065 			buf = (char *)buf + tocpy;
1066 		}
1067 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1068 	}
1069 	return (err);
1070 }
1071 
1072 int
1073 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1074     void *buf, uint32_t flags)
1075 {
1076 	dnode_t *dn;
1077 	int err;
1078 
1079 	err = dnode_hold(os, object, FTAG, &dn);
1080 	if (err != 0)
1081 		return (err);
1082 
1083 	err = dmu_read_impl(dn, offset, size, buf, flags);
1084 	dnode_rele(dn, FTAG);
1085 	return (err);
1086 }
1087 
1088 int
1089 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1090     uint32_t flags)
1091 {
1092 	return (dmu_read_impl(dn, offset, size, buf, flags));
1093 }
1094 
1095 static void
1096 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1097     const void *buf, dmu_tx_t *tx)
1098 {
1099 	int i;
1100 
1101 	for (i = 0; i < numbufs; i++) {
1102 		uint64_t tocpy;
1103 		int64_t bufoff;
1104 		dmu_buf_t *db = dbp[i];
1105 
1106 		ASSERT(size > 0);
1107 
1108 		bufoff = offset - db->db_offset;
1109 		tocpy = MIN(db->db_size - bufoff, size);
1110 
1111 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1112 
1113 		if (tocpy == db->db_size)
1114 			dmu_buf_will_fill(db, tx);
1115 		else
1116 			dmu_buf_will_dirty(db, tx);
1117 
1118 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1119 
1120 		if (tocpy == db->db_size)
1121 			dmu_buf_fill_done(db, tx);
1122 
1123 		offset += tocpy;
1124 		size -= tocpy;
1125 		buf = (char *)buf + tocpy;
1126 	}
1127 }
1128 
1129 void
1130 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1131     const void *buf, dmu_tx_t *tx)
1132 {
1133 	dmu_buf_t **dbp;
1134 	int numbufs;
1135 
1136 	if (size == 0)
1137 		return;
1138 
1139 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1140 	    FALSE, FTAG, &numbufs, &dbp));
1141 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1142 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1143 }
1144 
1145 /*
1146  * Note: Lustre is an external consumer of this interface.
1147  */
1148 void
1149 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1150     const void *buf, dmu_tx_t *tx)
1151 {
1152 	dmu_buf_t **dbp;
1153 	int numbufs;
1154 
1155 	if (size == 0)
1156 		return;
1157 
1158 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1159 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1160 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1161 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1162 }
1163 
1164 void
1165 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1166     dmu_tx_t *tx)
1167 {
1168 	dmu_buf_t **dbp;
1169 	int numbufs, i;
1170 
1171 	if (size == 0)
1172 		return;
1173 
1174 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1175 	    FALSE, FTAG, &numbufs, &dbp));
1176 
1177 	for (i = 0; i < numbufs; i++) {
1178 		dmu_buf_t *db = dbp[i];
1179 
1180 		dmu_buf_will_not_fill(db, tx);
1181 	}
1182 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1183 }
1184 
1185 void
1186 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1187     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1188     int compressed_size, int byteorder, dmu_tx_t *tx)
1189 {
1190 	dmu_buf_t *db;
1191 
1192 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1193 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1194 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1195 	    FTAG, &db));
1196 
1197 	dmu_buf_write_embedded(db,
1198 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1199 	    uncompressed_size, compressed_size, byteorder, tx);
1200 
1201 	dmu_buf_rele(db, FTAG);
1202 }
1203 
1204 void
1205 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1206     dmu_tx_t *tx)
1207 {
1208 	int numbufs, i;
1209 	dmu_buf_t **dbp;
1210 
1211 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1212 	    &numbufs, &dbp));
1213 	for (i = 0; i < numbufs; i++)
1214 		dmu_buf_redact(dbp[i], tx);
1215 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1216 }
1217 
1218 #ifdef _KERNEL
1219 int
1220 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1221 {
1222 	dmu_buf_t **dbp;
1223 	int numbufs, i, err;
1224 
1225 	/*
1226 	 * NB: we could do this block-at-a-time, but it's nice
1227 	 * to be reading in parallel.
1228 	 */
1229 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1230 	    TRUE, FTAG, &numbufs, &dbp, 0);
1231 	if (err)
1232 		return (err);
1233 
1234 	for (i = 0; i < numbufs; i++) {
1235 		uint64_t tocpy;
1236 		int64_t bufoff;
1237 		dmu_buf_t *db = dbp[i];
1238 
1239 		ASSERT(size > 0);
1240 
1241 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1242 		tocpy = MIN(db->db_size - bufoff, size);
1243 
1244 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1245 		    UIO_READ, uio);
1246 
1247 		if (err)
1248 			break;
1249 
1250 		size -= tocpy;
1251 	}
1252 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1253 
1254 	return (err);
1255 }
1256 
1257 /*
1258  * Read 'size' bytes into the uio buffer.
1259  * From object zdb->db_object.
1260  * Starting at zfs_uio_offset(uio).
1261  *
1262  * If the caller already has a dbuf in the target object
1263  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1264  * because we don't have to find the dnode_t for the object.
1265  */
1266 int
1267 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1268 {
1269 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1270 	dnode_t *dn;
1271 	int err;
1272 
1273 	if (size == 0)
1274 		return (0);
1275 
1276 	DB_DNODE_ENTER(db);
1277 	dn = DB_DNODE(db);
1278 	err = dmu_read_uio_dnode(dn, uio, size);
1279 	DB_DNODE_EXIT(db);
1280 
1281 	return (err);
1282 }
1283 
1284 /*
1285  * Read 'size' bytes into the uio buffer.
1286  * From the specified object
1287  * Starting at offset zfs_uio_offset(uio).
1288  */
1289 int
1290 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1291 {
1292 	dnode_t *dn;
1293 	int err;
1294 
1295 	if (size == 0)
1296 		return (0);
1297 
1298 	err = dnode_hold(os, object, FTAG, &dn);
1299 	if (err)
1300 		return (err);
1301 
1302 	err = dmu_read_uio_dnode(dn, uio, size);
1303 
1304 	dnode_rele(dn, FTAG);
1305 
1306 	return (err);
1307 }
1308 
1309 int
1310 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1311 {
1312 	dmu_buf_t **dbp;
1313 	int numbufs;
1314 	int err = 0;
1315 	int i;
1316 
1317 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1318 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1319 	if (err)
1320 		return (err);
1321 
1322 	for (i = 0; i < numbufs; i++) {
1323 		uint64_t tocpy;
1324 		int64_t bufoff;
1325 		dmu_buf_t *db = dbp[i];
1326 
1327 		ASSERT(size > 0);
1328 
1329 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1330 		tocpy = MIN(db->db_size - bufoff, size);
1331 
1332 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1333 
1334 		if (tocpy == db->db_size)
1335 			dmu_buf_will_fill(db, tx);
1336 		else
1337 			dmu_buf_will_dirty(db, tx);
1338 
1339 		/*
1340 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1341 		 * pages).  There needs to be a uiolockdown() function
1342 		 * to lock the pages in memory, so that zfs_uiomove won't
1343 		 * block.
1344 		 */
1345 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1346 		    tocpy, UIO_WRITE, uio);
1347 
1348 		if (tocpy == db->db_size)
1349 			dmu_buf_fill_done(db, tx);
1350 
1351 		if (err)
1352 			break;
1353 
1354 		size -= tocpy;
1355 	}
1356 
1357 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1358 	return (err);
1359 }
1360 
1361 /*
1362  * Write 'size' bytes from the uio buffer.
1363  * To object zdb->db_object.
1364  * Starting at offset zfs_uio_offset(uio).
1365  *
1366  * If the caller already has a dbuf in the target object
1367  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1368  * because we don't have to find the dnode_t for the object.
1369  */
1370 int
1371 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1372     dmu_tx_t *tx)
1373 {
1374 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1375 	dnode_t *dn;
1376 	int err;
1377 
1378 	if (size == 0)
1379 		return (0);
1380 
1381 	DB_DNODE_ENTER(db);
1382 	dn = DB_DNODE(db);
1383 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1384 	DB_DNODE_EXIT(db);
1385 
1386 	return (err);
1387 }
1388 
1389 /*
1390  * Write 'size' bytes from the uio buffer.
1391  * To the specified object.
1392  * Starting at offset zfs_uio_offset(uio).
1393  */
1394 int
1395 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1396     dmu_tx_t *tx)
1397 {
1398 	dnode_t *dn;
1399 	int err;
1400 
1401 	if (size == 0)
1402 		return (0);
1403 
1404 	err = dnode_hold(os, object, FTAG, &dn);
1405 	if (err)
1406 		return (err);
1407 
1408 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1409 
1410 	dnode_rele(dn, FTAG);
1411 
1412 	return (err);
1413 }
1414 #endif /* _KERNEL */
1415 
1416 /*
1417  * Allocate a loaned anonymous arc buffer.
1418  */
1419 arc_buf_t *
1420 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1421 {
1422 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1423 
1424 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1425 }
1426 
1427 /*
1428  * Free a loaned arc buffer.
1429  */
1430 void
1431 dmu_return_arcbuf(arc_buf_t *buf)
1432 {
1433 	arc_return_buf(buf, FTAG);
1434 	arc_buf_destroy(buf, FTAG);
1435 }
1436 
1437 /*
1438  * A "lightweight" write is faster than a regular write (e.g.
1439  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1440  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1441  * data can not be read or overwritten until the transaction's txg has been
1442  * synced.  This makes it appropriate for workloads that are known to be
1443  * (temporarily) write-only, like "zfs receive".
1444  *
1445  * A single block is written, starting at the specified offset in bytes.  If
1446  * the call is successful, it returns 0 and the provided abd has been
1447  * consumed (the caller should not free it).
1448  */
1449 int
1450 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1451     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1452 {
1453 	dbuf_dirty_record_t *dr =
1454 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1455 	if (dr == NULL)
1456 		return (SET_ERROR(EIO));
1457 	dr->dt.dll.dr_abd = abd;
1458 	dr->dt.dll.dr_props = *zp;
1459 	dr->dt.dll.dr_flags = flags;
1460 	return (0);
1461 }
1462 
1463 /*
1464  * When possible directly assign passed loaned arc buffer to a dbuf.
1465  * If this is not possible copy the contents of passed arc buf via
1466  * dmu_write().
1467  */
1468 int
1469 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1470     dmu_tx_t *tx)
1471 {
1472 	dmu_buf_impl_t *db;
1473 	objset_t *os = dn->dn_objset;
1474 	uint64_t object = dn->dn_object;
1475 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1476 	uint64_t blkid;
1477 
1478 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1479 	blkid = dbuf_whichblock(dn, 0, offset);
1480 	db = dbuf_hold(dn, blkid, FTAG);
1481 	if (db == NULL)
1482 		return (SET_ERROR(EIO));
1483 	rw_exit(&dn->dn_struct_rwlock);
1484 
1485 	/*
1486 	 * We can only assign if the offset is aligned and the arc buf is the
1487 	 * same size as the dbuf.
1488 	 */
1489 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1490 		zfs_racct_write(blksz, 1);
1491 		dbuf_assign_arcbuf(db, buf, tx);
1492 		dbuf_rele(db, FTAG);
1493 	} else {
1494 		/* compressed bufs must always be assignable to their dbuf */
1495 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1496 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1497 
1498 		dbuf_rele(db, FTAG);
1499 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1500 		dmu_return_arcbuf(buf);
1501 	}
1502 
1503 	return (0);
1504 }
1505 
1506 int
1507 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1508     dmu_tx_t *tx)
1509 {
1510 	int err;
1511 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1512 
1513 	DB_DNODE_ENTER(dbuf);
1514 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1515 	DB_DNODE_EXIT(dbuf);
1516 
1517 	return (err);
1518 }
1519 
1520 typedef struct {
1521 	dbuf_dirty_record_t	*dsa_dr;
1522 	dmu_sync_cb_t		*dsa_done;
1523 	zgd_t			*dsa_zgd;
1524 	dmu_tx_t		*dsa_tx;
1525 } dmu_sync_arg_t;
1526 
1527 static void
1528 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1529 {
1530 	(void) buf;
1531 	dmu_sync_arg_t *dsa = varg;
1532 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1533 	blkptr_t *bp = zio->io_bp;
1534 
1535 	if (zio->io_error == 0) {
1536 		if (BP_IS_HOLE(bp)) {
1537 			/*
1538 			 * A block of zeros may compress to a hole, but the
1539 			 * block size still needs to be known for replay.
1540 			 */
1541 			BP_SET_LSIZE(bp, db->db_size);
1542 		} else if (!BP_IS_EMBEDDED(bp)) {
1543 			ASSERT(BP_GET_LEVEL(bp) == 0);
1544 			BP_SET_FILL(bp, 1);
1545 		}
1546 	}
1547 }
1548 
1549 static void
1550 dmu_sync_late_arrival_ready(zio_t *zio)
1551 {
1552 	dmu_sync_ready(zio, NULL, zio->io_private);
1553 }
1554 
1555 static void
1556 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1557 {
1558 	(void) buf;
1559 	dmu_sync_arg_t *dsa = varg;
1560 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1561 	dmu_buf_impl_t *db = dr->dr_dbuf;
1562 	zgd_t *zgd = dsa->dsa_zgd;
1563 
1564 	/*
1565 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1566 	 * the writes for the lwb have completed.
1567 	 */
1568 	if (zio->io_error == 0) {
1569 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1570 	}
1571 
1572 	mutex_enter(&db->db_mtx);
1573 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1574 	if (zio->io_error == 0) {
1575 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1576 		if (dr->dt.dl.dr_nopwrite) {
1577 			blkptr_t *bp = zio->io_bp;
1578 			blkptr_t *bp_orig = &zio->io_bp_orig;
1579 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1580 
1581 			ASSERT(BP_EQUAL(bp, bp_orig));
1582 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1583 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1584 			VERIFY(zio_checksum_table[chksum].ci_flags &
1585 			    ZCHECKSUM_FLAG_NOPWRITE);
1586 		}
1587 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1588 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1589 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1590 
1591 		/*
1592 		 * Old style holes are filled with all zeros, whereas
1593 		 * new-style holes maintain their lsize, type, level,
1594 		 * and birth time (see zio_write_compress). While we
1595 		 * need to reset the BP_SET_LSIZE() call that happened
1596 		 * in dmu_sync_ready for old style holes, we do *not*
1597 		 * want to wipe out the information contained in new
1598 		 * style holes. Thus, only zero out the block pointer if
1599 		 * it's an old style hole.
1600 		 */
1601 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1602 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1603 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1604 	} else {
1605 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1606 	}
1607 	cv_broadcast(&db->db_changed);
1608 	mutex_exit(&db->db_mtx);
1609 
1610 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1611 
1612 	kmem_free(dsa, sizeof (*dsa));
1613 }
1614 
1615 static void
1616 dmu_sync_late_arrival_done(zio_t *zio)
1617 {
1618 	blkptr_t *bp = zio->io_bp;
1619 	dmu_sync_arg_t *dsa = zio->io_private;
1620 	zgd_t *zgd = dsa->dsa_zgd;
1621 
1622 	if (zio->io_error == 0) {
1623 		/*
1624 		 * Record the vdev(s) backing this blkptr so they can be
1625 		 * flushed after the writes for the lwb have completed.
1626 		 */
1627 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1628 
1629 		if (!BP_IS_HOLE(bp)) {
1630 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1631 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1632 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1633 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1634 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1635 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1636 		}
1637 	}
1638 
1639 	dmu_tx_commit(dsa->dsa_tx);
1640 
1641 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1642 
1643 	abd_free(zio->io_abd);
1644 	kmem_free(dsa, sizeof (*dsa));
1645 }
1646 
1647 static int
1648 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1649     zio_prop_t *zp, zbookmark_phys_t *zb)
1650 {
1651 	dmu_sync_arg_t *dsa;
1652 	dmu_tx_t *tx;
1653 
1654 	tx = dmu_tx_create(os);
1655 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1656 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1657 		dmu_tx_abort(tx);
1658 		/* Make zl_get_data do txg_waited_synced() */
1659 		return (SET_ERROR(EIO));
1660 	}
1661 
1662 	/*
1663 	 * In order to prevent the zgd's lwb from being free'd prior to
1664 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1665 	 * the lwb's "max txg" takes this tx's txg into account.
1666 	 */
1667 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1668 
1669 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1670 	dsa->dsa_dr = NULL;
1671 	dsa->dsa_done = done;
1672 	dsa->dsa_zgd = zgd;
1673 	dsa->dsa_tx = tx;
1674 
1675 	/*
1676 	 * Since we are currently syncing this txg, it's nontrivial to
1677 	 * determine what BP to nopwrite against, so we disable nopwrite.
1678 	 *
1679 	 * When syncing, the db_blkptr is initially the BP of the previous
1680 	 * txg.  We can not nopwrite against it because it will be changed
1681 	 * (this is similar to the non-late-arrival case where the dbuf is
1682 	 * dirty in a future txg).
1683 	 *
1684 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1685 	 * We can not nopwrite against it because although the BP will not
1686 	 * (typically) be changed, the data has not yet been persisted to this
1687 	 * location.
1688 	 *
1689 	 * Finally, when dbuf_write_done() is called, it is theoretically
1690 	 * possible to always nopwrite, because the data that was written in
1691 	 * this txg is the same data that we are trying to write.  However we
1692 	 * would need to check that this dbuf is not dirty in any future
1693 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1694 	 * don't nopwrite in this case.
1695 	 */
1696 	zp->zp_nopwrite = B_FALSE;
1697 
1698 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1699 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1700 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1701 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
1702 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1703 
1704 	return (0);
1705 }
1706 
1707 /*
1708  * Intent log support: sync the block associated with db to disk.
1709  * N.B. and XXX: the caller is responsible for making sure that the
1710  * data isn't changing while dmu_sync() is writing it.
1711  *
1712  * Return values:
1713  *
1714  *	EEXIST: this txg has already been synced, so there's nothing to do.
1715  *		The caller should not log the write.
1716  *
1717  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1718  *		The caller should not log the write.
1719  *
1720  *	EALREADY: this block is already in the process of being synced.
1721  *		The caller should track its progress (somehow).
1722  *
1723  *	EIO: could not do the I/O.
1724  *		The caller should do a txg_wait_synced().
1725  *
1726  *	0: the I/O has been initiated.
1727  *		The caller should log this blkptr in the done callback.
1728  *		It is possible that the I/O will fail, in which case
1729  *		the error will be reported to the done callback and
1730  *		propagated to pio from zio_done().
1731  */
1732 int
1733 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1734 {
1735 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1736 	objset_t *os = db->db_objset;
1737 	dsl_dataset_t *ds = os->os_dsl_dataset;
1738 	dbuf_dirty_record_t *dr, *dr_next;
1739 	dmu_sync_arg_t *dsa;
1740 	zbookmark_phys_t zb;
1741 	zio_prop_t zp;
1742 	dnode_t *dn;
1743 
1744 	ASSERT(pio != NULL);
1745 	ASSERT(txg != 0);
1746 
1747 	SET_BOOKMARK(&zb, ds->ds_object,
1748 	    db->db.db_object, db->db_level, db->db_blkid);
1749 
1750 	DB_DNODE_ENTER(db);
1751 	dn = DB_DNODE(db);
1752 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1753 	DB_DNODE_EXIT(db);
1754 
1755 	/*
1756 	 * If we're frozen (running ziltest), we always need to generate a bp.
1757 	 */
1758 	if (txg > spa_freeze_txg(os->os_spa))
1759 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1760 
1761 	/*
1762 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1763 	 * and us.  If we determine that this txg is not yet syncing,
1764 	 * but it begins to sync a moment later, that's OK because the
1765 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1766 	 */
1767 	mutex_enter(&db->db_mtx);
1768 
1769 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1770 		/*
1771 		 * This txg has already synced.  There's nothing to do.
1772 		 */
1773 		mutex_exit(&db->db_mtx);
1774 		return (SET_ERROR(EEXIST));
1775 	}
1776 
1777 	if (txg <= spa_syncing_txg(os->os_spa)) {
1778 		/*
1779 		 * This txg is currently syncing, so we can't mess with
1780 		 * the dirty record anymore; just write a new log block.
1781 		 */
1782 		mutex_exit(&db->db_mtx);
1783 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1784 	}
1785 
1786 	dr = dbuf_find_dirty_eq(db, txg);
1787 
1788 	if (dr == NULL) {
1789 		/*
1790 		 * There's no dr for this dbuf, so it must have been freed.
1791 		 * There's no need to log writes to freed blocks, so we're done.
1792 		 */
1793 		mutex_exit(&db->db_mtx);
1794 		return (SET_ERROR(ENOENT));
1795 	}
1796 
1797 	dr_next = list_next(&db->db_dirty_records, dr);
1798 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1799 
1800 	if (db->db_blkptr != NULL) {
1801 		/*
1802 		 * We need to fill in zgd_bp with the current blkptr so that
1803 		 * the nopwrite code can check if we're writing the same
1804 		 * data that's already on disk.  We can only nopwrite if we
1805 		 * are sure that after making the copy, db_blkptr will not
1806 		 * change until our i/o completes.  We ensure this by
1807 		 * holding the db_mtx, and only allowing nopwrite if the
1808 		 * block is not already dirty (see below).  This is verified
1809 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1810 		 * not changed.
1811 		 */
1812 		*zgd->zgd_bp = *db->db_blkptr;
1813 	}
1814 
1815 	/*
1816 	 * Assume the on-disk data is X, the current syncing data (in
1817 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1818 	 * in dmu_sync).
1819 	 *
1820 	 * We usually want to perform a nopwrite if X and Z are the
1821 	 * same.  However, if Y is different (i.e. the BP is going to
1822 	 * change before this write takes effect), then a nopwrite will
1823 	 * be incorrect - we would override with X, which could have
1824 	 * been freed when Y was written.
1825 	 *
1826 	 * (Note that this is not a concern when we are nop-writing from
1827 	 * syncing context, because X and Y must be identical, because
1828 	 * all previous txgs have been synced.)
1829 	 *
1830 	 * Therefore, we disable nopwrite if the current BP could change
1831 	 * before this TXG.  There are two ways it could change: by
1832 	 * being dirty (dr_next is non-NULL), or by being freed
1833 	 * (dnode_block_freed()).  This behavior is verified by
1834 	 * zio_done(), which VERIFYs that the override BP is identical
1835 	 * to the on-disk BP.
1836 	 */
1837 	DB_DNODE_ENTER(db);
1838 	dn = DB_DNODE(db);
1839 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1840 		zp.zp_nopwrite = B_FALSE;
1841 	DB_DNODE_EXIT(db);
1842 
1843 	ASSERT(dr->dr_txg == txg);
1844 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1845 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1846 		/*
1847 		 * We have already issued a sync write for this buffer,
1848 		 * or this buffer has already been synced.  It could not
1849 		 * have been dirtied since, or we would have cleared the state.
1850 		 */
1851 		mutex_exit(&db->db_mtx);
1852 		return (SET_ERROR(EALREADY));
1853 	}
1854 
1855 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1856 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1857 	mutex_exit(&db->db_mtx);
1858 
1859 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1860 	dsa->dsa_dr = dr;
1861 	dsa->dsa_done = done;
1862 	dsa->dsa_zgd = zgd;
1863 	dsa->dsa_tx = NULL;
1864 
1865 	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1866 	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
1867 	    &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa,
1868 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1869 
1870 	return (0);
1871 }
1872 
1873 int
1874 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1875 {
1876 	dnode_t *dn;
1877 	int err;
1878 
1879 	err = dnode_hold(os, object, FTAG, &dn);
1880 	if (err)
1881 		return (err);
1882 	err = dnode_set_nlevels(dn, nlevels, tx);
1883 	dnode_rele(dn, FTAG);
1884 	return (err);
1885 }
1886 
1887 int
1888 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1889     dmu_tx_t *tx)
1890 {
1891 	dnode_t *dn;
1892 	int err;
1893 
1894 	err = dnode_hold(os, object, FTAG, &dn);
1895 	if (err)
1896 		return (err);
1897 	err = dnode_set_blksz(dn, size, ibs, tx);
1898 	dnode_rele(dn, FTAG);
1899 	return (err);
1900 }
1901 
1902 int
1903 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1904     dmu_tx_t *tx)
1905 {
1906 	dnode_t *dn;
1907 	int err;
1908 
1909 	err = dnode_hold(os, object, FTAG, &dn);
1910 	if (err)
1911 		return (err);
1912 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1913 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1914 	rw_exit(&dn->dn_struct_rwlock);
1915 	dnode_rele(dn, FTAG);
1916 	return (0);
1917 }
1918 
1919 void
1920 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1921     dmu_tx_t *tx)
1922 {
1923 	dnode_t *dn;
1924 
1925 	/*
1926 	 * Send streams include each object's checksum function.  This
1927 	 * check ensures that the receiving system can understand the
1928 	 * checksum function transmitted.
1929 	 */
1930 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1931 
1932 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1933 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1934 	dn->dn_checksum = checksum;
1935 	dnode_setdirty(dn, tx);
1936 	dnode_rele(dn, FTAG);
1937 }
1938 
1939 void
1940 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1941     dmu_tx_t *tx)
1942 {
1943 	dnode_t *dn;
1944 
1945 	/*
1946 	 * Send streams include each object's compression function.  This
1947 	 * check ensures that the receiving system can understand the
1948 	 * compression function transmitted.
1949 	 */
1950 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1951 
1952 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1953 	dn->dn_compress = compress;
1954 	dnode_setdirty(dn, tx);
1955 	dnode_rele(dn, FTAG);
1956 }
1957 
1958 /*
1959  * When the "redundant_metadata" property is set to "most", only indirect
1960  * blocks of this level and higher will have an additional ditto block.
1961  */
1962 static const int zfs_redundant_metadata_most_ditto_level = 2;
1963 
1964 void
1965 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1966 {
1967 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1968 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1969 	    (wp & WP_SPILL));
1970 	enum zio_checksum checksum = os->os_checksum;
1971 	enum zio_compress compress = os->os_compress;
1972 	uint8_t complevel = os->os_complevel;
1973 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1974 	boolean_t dedup = B_FALSE;
1975 	boolean_t nopwrite = B_FALSE;
1976 	boolean_t dedup_verify = os->os_dedup_verify;
1977 	boolean_t encrypt = B_FALSE;
1978 	int copies = os->os_copies;
1979 
1980 	/*
1981 	 * We maintain different write policies for each of the following
1982 	 * types of data:
1983 	 *	 1. metadata
1984 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1985 	 *	 3. all other level 0 blocks
1986 	 */
1987 	if (ismd) {
1988 		/*
1989 		 * XXX -- we should design a compression algorithm
1990 		 * that specializes in arrays of bps.
1991 		 */
1992 		compress = zio_compress_select(os->os_spa,
1993 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1994 
1995 		/*
1996 		 * Metadata always gets checksummed.  If the data
1997 		 * checksum is multi-bit correctable, and it's not a
1998 		 * ZBT-style checksum, then it's suitable for metadata
1999 		 * as well.  Otherwise, the metadata checksum defaults
2000 		 * to fletcher4.
2001 		 */
2002 		if (!(zio_checksum_table[checksum].ci_flags &
2003 		    ZCHECKSUM_FLAG_METADATA) ||
2004 		    (zio_checksum_table[checksum].ci_flags &
2005 		    ZCHECKSUM_FLAG_EMBEDDED))
2006 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2007 
2008 		switch (os->os_redundant_metadata) {
2009 		case ZFS_REDUNDANT_METADATA_ALL:
2010 			copies++;
2011 			break;
2012 		case ZFS_REDUNDANT_METADATA_MOST:
2013 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2014 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2015 				copies++;
2016 			break;
2017 		case ZFS_REDUNDANT_METADATA_SOME:
2018 			if (DMU_OT_IS_CRITICAL(type))
2019 				copies++;
2020 			break;
2021 		case ZFS_REDUNDANT_METADATA_NONE:
2022 			break;
2023 		}
2024 	} else if (wp & WP_NOFILL) {
2025 		ASSERT(level == 0);
2026 
2027 		/*
2028 		 * If we're writing preallocated blocks, we aren't actually
2029 		 * writing them so don't set any policy properties.  These
2030 		 * blocks are currently only used by an external subsystem
2031 		 * outside of zfs (i.e. dump) and not written by the zio
2032 		 * pipeline.
2033 		 */
2034 		compress = ZIO_COMPRESS_OFF;
2035 		checksum = ZIO_CHECKSUM_OFF;
2036 	} else {
2037 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2038 		    compress);
2039 		complevel = zio_complevel_select(os->os_spa, compress,
2040 		    complevel, complevel);
2041 
2042 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2043 		    zio_checksum_select(dn->dn_checksum, checksum) :
2044 		    dedup_checksum;
2045 
2046 		/*
2047 		 * Determine dedup setting.  If we are in dmu_sync(),
2048 		 * we won't actually dedup now because that's all
2049 		 * done in syncing context; but we do want to use the
2050 		 * dedup checksum.  If the checksum is not strong
2051 		 * enough to ensure unique signatures, force
2052 		 * dedup_verify.
2053 		 */
2054 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2055 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2056 			if (!(zio_checksum_table[checksum].ci_flags &
2057 			    ZCHECKSUM_FLAG_DEDUP))
2058 				dedup_verify = B_TRUE;
2059 		}
2060 
2061 		/*
2062 		 * Enable nopwrite if we have secure enough checksum
2063 		 * algorithm (see comment in zio_nop_write) and
2064 		 * compression is enabled.  We don't enable nopwrite if
2065 		 * dedup is enabled as the two features are mutually
2066 		 * exclusive.
2067 		 */
2068 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2069 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2070 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2071 	}
2072 
2073 	/*
2074 	 * All objects in an encrypted objset are protected from modification
2075 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2076 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2077 	 * not subject to nopwrite since writing the same data will still
2078 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2079 	 * to avoid ambiguity in the dedup code since the DDT does not store
2080 	 * object types.
2081 	 */
2082 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2083 		encrypt = B_TRUE;
2084 
2085 		if (DMU_OT_IS_ENCRYPTED(type)) {
2086 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2087 			nopwrite = B_FALSE;
2088 		} else {
2089 			dedup = B_FALSE;
2090 		}
2091 
2092 		if (level <= 0 &&
2093 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2094 			compress = ZIO_COMPRESS_EMPTY;
2095 		}
2096 	}
2097 
2098 	zp->zp_compress = compress;
2099 	zp->zp_complevel = complevel;
2100 	zp->zp_checksum = checksum;
2101 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2102 	zp->zp_level = level;
2103 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2104 	zp->zp_dedup = dedup;
2105 	zp->zp_dedup_verify = dedup && dedup_verify;
2106 	zp->zp_nopwrite = nopwrite;
2107 	zp->zp_encrypt = encrypt;
2108 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2109 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2110 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2111 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2112 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2113 	    os->os_zpl_special_smallblock : 0;
2114 
2115 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2116 }
2117 
2118 /*
2119  * Reports the location of data and holes in an object.  In order to
2120  * accurately report holes all dirty data must be synced to disk.  This
2121  * causes extremely poor performance when seeking for holes in a dirty file.
2122  * As a compromise, only provide hole data when the dnode is clean.  When
2123  * a dnode is dirty report the dnode as having no holes by returning EBUSY
2124  * which is always safe to do.
2125  */
2126 int
2127 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2128 {
2129 	dnode_t *dn;
2130 	int restarted = 0, err;
2131 
2132 restart:
2133 	err = dnode_hold(os, object, FTAG, &dn);
2134 	if (err)
2135 		return (err);
2136 
2137 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2138 
2139 	if (dnode_is_dirty(dn)) {
2140 		/*
2141 		 * If the zfs_dmu_offset_next_sync module option is enabled
2142 		 * then hole reporting has been requested.  Dirty dnodes
2143 		 * must be synced to disk to accurately report holes.
2144 		 *
2145 		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2146 		 * held by the caller only a single restart will be required.
2147 		 * We tolerate callers which do not hold the rangelock by
2148 		 * returning EBUSY and not reporting holes after one restart.
2149 		 */
2150 		if (zfs_dmu_offset_next_sync) {
2151 			rw_exit(&dn->dn_struct_rwlock);
2152 			dnode_rele(dn, FTAG);
2153 
2154 			if (restarted)
2155 				return (SET_ERROR(EBUSY));
2156 
2157 			txg_wait_synced(dmu_objset_pool(os), 0);
2158 			restarted = 1;
2159 			goto restart;
2160 		}
2161 
2162 		err = SET_ERROR(EBUSY);
2163 	} else {
2164 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2165 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2166 	}
2167 
2168 	rw_exit(&dn->dn_struct_rwlock);
2169 	dnode_rele(dn, FTAG);
2170 
2171 	return (err);
2172 }
2173 
2174 int
2175 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2176     blkptr_t *bps, size_t *nbpsp)
2177 {
2178 	dmu_buf_t **dbp, *dbuf;
2179 	dmu_buf_impl_t *db;
2180 	blkptr_t *bp;
2181 	int error, numbufs;
2182 
2183 	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2184 	    &numbufs, &dbp);
2185 	if (error != 0) {
2186 		if (error == ESRCH) {
2187 			error = SET_ERROR(ENXIO);
2188 		}
2189 		return (error);
2190 	}
2191 
2192 	ASSERT3U(numbufs, <=, *nbpsp);
2193 
2194 	for (int i = 0; i < numbufs; i++) {
2195 		dbuf = dbp[i];
2196 		db = (dmu_buf_impl_t *)dbuf;
2197 
2198 		mutex_enter(&db->db_mtx);
2199 
2200 		if (!list_is_empty(&db->db_dirty_records)) {
2201 			dbuf_dirty_record_t *dr;
2202 
2203 			dr = list_head(&db->db_dirty_records);
2204 			if (dr->dt.dl.dr_brtwrite) {
2205 				/*
2206 				 * This is very special case where we clone a
2207 				 * block and in the same transaction group we
2208 				 * read its BP (most likely to clone the clone).
2209 				 */
2210 				bp = &dr->dt.dl.dr_overridden_by;
2211 			} else {
2212 				/*
2213 				 * The block was modified in the same
2214 				 * transaction group.
2215 				 */
2216 				mutex_exit(&db->db_mtx);
2217 				error = SET_ERROR(EAGAIN);
2218 				goto out;
2219 			}
2220 		} else {
2221 			bp = db->db_blkptr;
2222 		}
2223 
2224 		mutex_exit(&db->db_mtx);
2225 
2226 		if (bp == NULL) {
2227 			/*
2228 			 * The block was created in this transaction group,
2229 			 * so it has no BP yet.
2230 			 */
2231 			error = SET_ERROR(EAGAIN);
2232 			goto out;
2233 		}
2234 		/*
2235 		 * Make sure we clone only data blocks.
2236 		 */
2237 		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2238 			error = SET_ERROR(EINVAL);
2239 			goto out;
2240 		}
2241 
2242 		bps[i] = *bp;
2243 	}
2244 
2245 	*nbpsp = numbufs;
2246 out:
2247 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2248 
2249 	return (error);
2250 }
2251 
2252 int
2253 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2254     dmu_tx_t *tx, const blkptr_t *bps, size_t nbps, boolean_t replay)
2255 {
2256 	spa_t *spa;
2257 	dmu_buf_t **dbp, *dbuf;
2258 	dmu_buf_impl_t *db;
2259 	struct dirty_leaf *dl;
2260 	dbuf_dirty_record_t *dr;
2261 	const blkptr_t *bp;
2262 	int error = 0, i, numbufs;
2263 
2264 	spa = os->os_spa;
2265 
2266 	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2267 	    &numbufs, &dbp));
2268 	ASSERT3U(nbps, ==, numbufs);
2269 
2270 	/*
2271 	 * Before we start cloning make sure that the dbufs sizes match new BPs
2272 	 * sizes. If they don't, that's a no-go, as we are not able to shrink
2273 	 * dbufs.
2274 	 */
2275 	for (i = 0; i < numbufs; i++) {
2276 		dbuf = dbp[i];
2277 		db = (dmu_buf_impl_t *)dbuf;
2278 		bp = &bps[i];
2279 
2280 		ASSERT0(db->db_level);
2281 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2282 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2283 
2284 		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2285 			error = SET_ERROR(EXDEV);
2286 			goto out;
2287 		}
2288 	}
2289 
2290 	for (i = 0; i < numbufs; i++) {
2291 		dbuf = dbp[i];
2292 		db = (dmu_buf_impl_t *)dbuf;
2293 		bp = &bps[i];
2294 
2295 		ASSERT0(db->db_level);
2296 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2297 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2298 		ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));
2299 
2300 		dmu_buf_will_clone(dbuf, tx);
2301 
2302 		mutex_enter(&db->db_mtx);
2303 
2304 		dr = list_head(&db->db_dirty_records);
2305 		VERIFY(dr != NULL);
2306 		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2307 		dl = &dr->dt.dl;
2308 		dl->dr_overridden_by = *bp;
2309 		dl->dr_brtwrite = B_TRUE;
2310 		dl->dr_override_state = DR_OVERRIDDEN;
2311 		if (BP_IS_HOLE(bp)) {
2312 			dl->dr_overridden_by.blk_birth = 0;
2313 			dl->dr_overridden_by.blk_phys_birth = 0;
2314 		} else {
2315 			dl->dr_overridden_by.blk_birth = dr->dr_txg;
2316 			if (!BP_IS_EMBEDDED(bp)) {
2317 				dl->dr_overridden_by.blk_phys_birth =
2318 				    BP_PHYSICAL_BIRTH(bp);
2319 			}
2320 		}
2321 
2322 		mutex_exit(&db->db_mtx);
2323 
2324 		/*
2325 		 * When data in embedded into BP there is no need to create
2326 		 * BRT entry as there is no data block. Just copy the BP as
2327 		 * it contains the data.
2328 		 * Also, when replaying ZIL we don't want to bump references
2329 		 * in the BRT as it was already done during ZIL claim.
2330 		 */
2331 		if (!replay && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2332 			brt_pending_add(spa, bp, tx);
2333 		}
2334 	}
2335 out:
2336 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2337 
2338 	return (error);
2339 }
2340 
2341 void
2342 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2343 {
2344 	dnode_phys_t *dnp = dn->dn_phys;
2345 
2346 	doi->doi_data_block_size = dn->dn_datablksz;
2347 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2348 	    1ULL << dn->dn_indblkshift : 0;
2349 	doi->doi_type = dn->dn_type;
2350 	doi->doi_bonus_type = dn->dn_bonustype;
2351 	doi->doi_bonus_size = dn->dn_bonuslen;
2352 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2353 	doi->doi_indirection = dn->dn_nlevels;
2354 	doi->doi_checksum = dn->dn_checksum;
2355 	doi->doi_compress = dn->dn_compress;
2356 	doi->doi_nblkptr = dn->dn_nblkptr;
2357 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2358 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2359 	doi->doi_fill_count = 0;
2360 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2361 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2362 }
2363 
2364 void
2365 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2366 {
2367 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2368 	mutex_enter(&dn->dn_mtx);
2369 
2370 	__dmu_object_info_from_dnode(dn, doi);
2371 
2372 	mutex_exit(&dn->dn_mtx);
2373 	rw_exit(&dn->dn_struct_rwlock);
2374 }
2375 
2376 /*
2377  * Get information on a DMU object.
2378  * If doi is NULL, just indicates whether the object exists.
2379  */
2380 int
2381 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2382 {
2383 	dnode_t *dn;
2384 	int err = dnode_hold(os, object, FTAG, &dn);
2385 
2386 	if (err)
2387 		return (err);
2388 
2389 	if (doi != NULL)
2390 		dmu_object_info_from_dnode(dn, doi);
2391 
2392 	dnode_rele(dn, FTAG);
2393 	return (0);
2394 }
2395 
2396 /*
2397  * As above, but faster; can be used when you have a held dbuf in hand.
2398  */
2399 void
2400 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2401 {
2402 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2403 
2404 	DB_DNODE_ENTER(db);
2405 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2406 	DB_DNODE_EXIT(db);
2407 }
2408 
2409 /*
2410  * Faster still when you only care about the size.
2411  */
2412 void
2413 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2414     u_longlong_t *nblk512)
2415 {
2416 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2417 	dnode_t *dn;
2418 
2419 	DB_DNODE_ENTER(db);
2420 	dn = DB_DNODE(db);
2421 
2422 	*blksize = dn->dn_datablksz;
2423 	/* add in number of slots used for the dnode itself */
2424 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2425 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2426 	DB_DNODE_EXIT(db);
2427 }
2428 
2429 void
2430 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2431 {
2432 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2433 	dnode_t *dn;
2434 
2435 	DB_DNODE_ENTER(db);
2436 	dn = DB_DNODE(db);
2437 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2438 	DB_DNODE_EXIT(db);
2439 }
2440 
2441 void
2442 byteswap_uint64_array(void *vbuf, size_t size)
2443 {
2444 	uint64_t *buf = vbuf;
2445 	size_t count = size >> 3;
2446 	int i;
2447 
2448 	ASSERT((size & 7) == 0);
2449 
2450 	for (i = 0; i < count; i++)
2451 		buf[i] = BSWAP_64(buf[i]);
2452 }
2453 
2454 void
2455 byteswap_uint32_array(void *vbuf, size_t size)
2456 {
2457 	uint32_t *buf = vbuf;
2458 	size_t count = size >> 2;
2459 	int i;
2460 
2461 	ASSERT((size & 3) == 0);
2462 
2463 	for (i = 0; i < count; i++)
2464 		buf[i] = BSWAP_32(buf[i]);
2465 }
2466 
2467 void
2468 byteswap_uint16_array(void *vbuf, size_t size)
2469 {
2470 	uint16_t *buf = vbuf;
2471 	size_t count = size >> 1;
2472 	int i;
2473 
2474 	ASSERT((size & 1) == 0);
2475 
2476 	for (i = 0; i < count; i++)
2477 		buf[i] = BSWAP_16(buf[i]);
2478 }
2479 
2480 void
2481 byteswap_uint8_array(void *vbuf, size_t size)
2482 {
2483 	(void) vbuf, (void) size;
2484 }
2485 
2486 void
2487 dmu_init(void)
2488 {
2489 	abd_init();
2490 	zfs_dbgmsg_init();
2491 	sa_cache_init();
2492 	dmu_objset_init();
2493 	dnode_init();
2494 	zfetch_init();
2495 	dmu_tx_init();
2496 	l2arc_init();
2497 	arc_init();
2498 	dbuf_init();
2499 }
2500 
2501 void
2502 dmu_fini(void)
2503 {
2504 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2505 	l2arc_fini();
2506 	dmu_tx_fini();
2507 	zfetch_fini();
2508 	dbuf_fini();
2509 	dnode_fini();
2510 	dmu_objset_fini();
2511 	sa_cache_fini();
2512 	zfs_dbgmsg_fini();
2513 	abd_fini();
2514 }
2515 
2516 EXPORT_SYMBOL(dmu_bonus_hold);
2517 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2518 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2519 EXPORT_SYMBOL(dmu_buf_rele_array);
2520 EXPORT_SYMBOL(dmu_prefetch);
2521 EXPORT_SYMBOL(dmu_free_range);
2522 EXPORT_SYMBOL(dmu_free_long_range);
2523 EXPORT_SYMBOL(dmu_free_long_object);
2524 EXPORT_SYMBOL(dmu_read);
2525 EXPORT_SYMBOL(dmu_read_by_dnode);
2526 EXPORT_SYMBOL(dmu_write);
2527 EXPORT_SYMBOL(dmu_write_by_dnode);
2528 EXPORT_SYMBOL(dmu_prealloc);
2529 EXPORT_SYMBOL(dmu_object_info);
2530 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2531 EXPORT_SYMBOL(dmu_object_info_from_db);
2532 EXPORT_SYMBOL(dmu_object_size_from_db);
2533 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2534 EXPORT_SYMBOL(dmu_object_set_nlevels);
2535 EXPORT_SYMBOL(dmu_object_set_blocksize);
2536 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2537 EXPORT_SYMBOL(dmu_object_set_checksum);
2538 EXPORT_SYMBOL(dmu_object_set_compress);
2539 EXPORT_SYMBOL(dmu_offset_next);
2540 EXPORT_SYMBOL(dmu_write_policy);
2541 EXPORT_SYMBOL(dmu_sync);
2542 EXPORT_SYMBOL(dmu_request_arcbuf);
2543 EXPORT_SYMBOL(dmu_return_arcbuf);
2544 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2545 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2546 EXPORT_SYMBOL(dmu_buf_hold);
2547 EXPORT_SYMBOL(dmu_ot);
2548 
2549 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2550 	"Enable NOP writes");
2551 
2552 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2553 	"Percentage of dirtied blocks from frees in one TXG");
2554 
2555 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2556 	"Enable forcing txg sync to find holes");
2557 
2558 /* CSTYLED */
2559 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2560 	"Limit one prefetch call to this size");
2561