1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dbuf.h> 37 #include <sys/dnode.h> 38 #include <sys/zfs_context.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dmu_traverse.h> 41 #include <sys/dsl_dataset.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_synctask.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dmu_zfetch.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/zio_compress.h> 51 #include <sys/sa.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/trace_zfs.h> 55 #include <sys/zfs_rlock.h> 56 #ifdef _KERNEL 57 #include <sys/vmsystm.h> 58 #include <sys/zfs_znode.h> 59 #endif 60 61 /* 62 * Enable/disable nopwrite feature. 63 */ 64 int zfs_nopwrite_enabled = 1; 65 66 /* 67 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 68 * one TXG. After this threshold is crossed, additional dirty blocks from frees 69 * will wait until the next TXG. 70 * A value of zero will disable this throttle. 71 */ 72 unsigned long zfs_per_txg_dirty_frees_percent = 5; 73 74 /* 75 * Enable/disable forcing txg sync when dirty in dmu_offset_next. 76 */ 77 int zfs_dmu_offset_next_sync = 0; 78 79 /* 80 * Limit the amount we can prefetch with one call to this amount. This 81 * helps to limit the amount of memory that can be used by prefetching. 82 * Larger objects should be prefetched a bit at a time. 83 */ 84 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 85 86 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 87 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 88 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 89 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 90 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 91 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 93 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 94 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 95 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 96 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 97 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 98 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 99 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 100 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 101 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 102 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 103 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 104 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 105 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 106 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 107 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 108 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 109 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 110 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 111 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 112 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 113 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 114 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 115 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 116 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 117 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 118 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 119 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 120 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 121 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 122 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 123 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 125 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 126 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 127 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 128 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 129 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 131 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 134 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 136 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 137 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 138 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 139 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 140 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 141 }; 142 143 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 144 { byteswap_uint8_array, "uint8" }, 145 { byteswap_uint16_array, "uint16" }, 146 { byteswap_uint32_array, "uint32" }, 147 { byteswap_uint64_array, "uint64" }, 148 { zap_byteswap, "zap" }, 149 { dnode_buf_byteswap, "dnode" }, 150 { dmu_objset_byteswap, "objset" }, 151 { zfs_znode_byteswap, "znode" }, 152 { zfs_oldacl_byteswap, "oldacl" }, 153 { zfs_acl_byteswap, "acl" } 154 }; 155 156 static int 157 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 158 void *tag, dmu_buf_t **dbp) 159 { 160 uint64_t blkid; 161 dmu_buf_impl_t *db; 162 163 rw_enter(&dn->dn_struct_rwlock, RW_READER); 164 blkid = dbuf_whichblock(dn, 0, offset); 165 db = dbuf_hold(dn, blkid, tag); 166 rw_exit(&dn->dn_struct_rwlock); 167 168 if (db == NULL) { 169 *dbp = NULL; 170 return (SET_ERROR(EIO)); 171 } 172 173 *dbp = &db->db; 174 return (0); 175 } 176 int 177 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 178 void *tag, dmu_buf_t **dbp) 179 { 180 dnode_t *dn; 181 uint64_t blkid; 182 dmu_buf_impl_t *db; 183 int err; 184 185 err = dnode_hold(os, object, FTAG, &dn); 186 if (err) 187 return (err); 188 rw_enter(&dn->dn_struct_rwlock, RW_READER); 189 blkid = dbuf_whichblock(dn, 0, offset); 190 db = dbuf_hold(dn, blkid, tag); 191 rw_exit(&dn->dn_struct_rwlock); 192 dnode_rele(dn, FTAG); 193 194 if (db == NULL) { 195 *dbp = NULL; 196 return (SET_ERROR(EIO)); 197 } 198 199 *dbp = &db->db; 200 return (err); 201 } 202 203 int 204 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 205 void *tag, dmu_buf_t **dbp, int flags) 206 { 207 int err; 208 int db_flags = DB_RF_CANFAIL; 209 210 if (flags & DMU_READ_NO_PREFETCH) 211 db_flags |= DB_RF_NOPREFETCH; 212 if (flags & DMU_READ_NO_DECRYPT) 213 db_flags |= DB_RF_NO_DECRYPT; 214 215 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 216 if (err == 0) { 217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 218 err = dbuf_read(db, NULL, db_flags); 219 if (err != 0) { 220 dbuf_rele(db, tag); 221 *dbp = NULL; 222 } 223 } 224 225 return (err); 226 } 227 228 int 229 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 230 void *tag, dmu_buf_t **dbp, int flags) 231 { 232 int err; 233 int db_flags = DB_RF_CANFAIL; 234 235 if (flags & DMU_READ_NO_PREFETCH) 236 db_flags |= DB_RF_NOPREFETCH; 237 if (flags & DMU_READ_NO_DECRYPT) 238 db_flags |= DB_RF_NO_DECRYPT; 239 240 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 241 if (err == 0) { 242 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 243 err = dbuf_read(db, NULL, db_flags); 244 if (err != 0) { 245 dbuf_rele(db, tag); 246 *dbp = NULL; 247 } 248 } 249 250 return (err); 251 } 252 253 int 254 dmu_bonus_max(void) 255 { 256 return (DN_OLD_MAX_BONUSLEN); 257 } 258 259 int 260 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 261 { 262 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 263 dnode_t *dn; 264 int error; 265 266 DB_DNODE_ENTER(db); 267 dn = DB_DNODE(db); 268 269 if (dn->dn_bonus != db) { 270 error = SET_ERROR(EINVAL); 271 } else if (newsize < 0 || newsize > db_fake->db_size) { 272 error = SET_ERROR(EINVAL); 273 } else { 274 dnode_setbonuslen(dn, newsize, tx); 275 error = 0; 276 } 277 278 DB_DNODE_EXIT(db); 279 return (error); 280 } 281 282 int 283 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 284 { 285 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 286 dnode_t *dn; 287 int error; 288 289 DB_DNODE_ENTER(db); 290 dn = DB_DNODE(db); 291 292 if (!DMU_OT_IS_VALID(type)) { 293 error = SET_ERROR(EINVAL); 294 } else if (dn->dn_bonus != db) { 295 error = SET_ERROR(EINVAL); 296 } else { 297 dnode_setbonus_type(dn, type, tx); 298 error = 0; 299 } 300 301 DB_DNODE_EXIT(db); 302 return (error); 303 } 304 305 dmu_object_type_t 306 dmu_get_bonustype(dmu_buf_t *db_fake) 307 { 308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 309 dnode_t *dn; 310 dmu_object_type_t type; 311 312 DB_DNODE_ENTER(db); 313 dn = DB_DNODE(db); 314 type = dn->dn_bonustype; 315 DB_DNODE_EXIT(db); 316 317 return (type); 318 } 319 320 int 321 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 322 { 323 dnode_t *dn; 324 int error; 325 326 error = dnode_hold(os, object, FTAG, &dn); 327 dbuf_rm_spill(dn, tx); 328 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 329 dnode_rm_spill(dn, tx); 330 rw_exit(&dn->dn_struct_rwlock); 331 dnode_rele(dn, FTAG); 332 return (error); 333 } 334 335 /* 336 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 337 * has not yet been allocated a new bonus dbuf a will be allocated. 338 * Returns ENOENT, EIO, or 0. 339 */ 340 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp, 341 uint32_t flags) 342 { 343 dmu_buf_impl_t *db; 344 int error; 345 uint32_t db_flags = DB_RF_MUST_SUCCEED; 346 347 if (flags & DMU_READ_NO_PREFETCH) 348 db_flags |= DB_RF_NOPREFETCH; 349 if (flags & DMU_READ_NO_DECRYPT) 350 db_flags |= DB_RF_NO_DECRYPT; 351 352 rw_enter(&dn->dn_struct_rwlock, RW_READER); 353 if (dn->dn_bonus == NULL) { 354 rw_exit(&dn->dn_struct_rwlock); 355 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 356 if (dn->dn_bonus == NULL) 357 dbuf_create_bonus(dn); 358 } 359 db = dn->dn_bonus; 360 361 /* as long as the bonus buf is held, the dnode will be held */ 362 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 363 VERIFY(dnode_add_ref(dn, db)); 364 atomic_inc_32(&dn->dn_dbufs_count); 365 } 366 367 /* 368 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 369 * hold and incrementing the dbuf count to ensure that dnode_move() sees 370 * a dnode hold for every dbuf. 371 */ 372 rw_exit(&dn->dn_struct_rwlock); 373 374 error = dbuf_read(db, NULL, db_flags); 375 if (error) { 376 dnode_evict_bonus(dn); 377 dbuf_rele(db, tag); 378 *dbp = NULL; 379 return (error); 380 } 381 382 *dbp = &db->db; 383 return (0); 384 } 385 386 int 387 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 388 { 389 dnode_t *dn; 390 int error; 391 392 error = dnode_hold(os, object, FTAG, &dn); 393 if (error) 394 return (error); 395 396 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 397 dnode_rele(dn, FTAG); 398 399 return (error); 400 } 401 402 /* 403 * returns ENOENT, EIO, or 0. 404 * 405 * This interface will allocate a blank spill dbuf when a spill blk 406 * doesn't already exist on the dnode. 407 * 408 * if you only want to find an already existing spill db, then 409 * dmu_spill_hold_existing() should be used. 410 */ 411 int 412 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 413 { 414 dmu_buf_impl_t *db = NULL; 415 int err; 416 417 if ((flags & DB_RF_HAVESTRUCT) == 0) 418 rw_enter(&dn->dn_struct_rwlock, RW_READER); 419 420 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 421 422 if ((flags & DB_RF_HAVESTRUCT) == 0) 423 rw_exit(&dn->dn_struct_rwlock); 424 425 if (db == NULL) { 426 *dbp = NULL; 427 return (SET_ERROR(EIO)); 428 } 429 err = dbuf_read(db, NULL, flags); 430 if (err == 0) 431 *dbp = &db->db; 432 else { 433 dbuf_rele(db, tag); 434 *dbp = NULL; 435 } 436 return (err); 437 } 438 439 int 440 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 441 { 442 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 443 dnode_t *dn; 444 int err; 445 446 DB_DNODE_ENTER(db); 447 dn = DB_DNODE(db); 448 449 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 450 err = SET_ERROR(EINVAL); 451 } else { 452 rw_enter(&dn->dn_struct_rwlock, RW_READER); 453 454 if (!dn->dn_have_spill) { 455 err = SET_ERROR(ENOENT); 456 } else { 457 err = dmu_spill_hold_by_dnode(dn, 458 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 459 } 460 461 rw_exit(&dn->dn_struct_rwlock); 462 } 463 464 DB_DNODE_EXIT(db); 465 return (err); 466 } 467 468 int 469 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag, 470 dmu_buf_t **dbp) 471 { 472 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 473 dnode_t *dn; 474 int err; 475 uint32_t db_flags = DB_RF_CANFAIL; 476 477 if (flags & DMU_READ_NO_DECRYPT) 478 db_flags |= DB_RF_NO_DECRYPT; 479 480 DB_DNODE_ENTER(db); 481 dn = DB_DNODE(db); 482 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 483 DB_DNODE_EXIT(db); 484 485 return (err); 486 } 487 488 /* 489 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 490 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 491 * and can induce severe lock contention when writing to several files 492 * whose dnodes are in the same block. 493 */ 494 int 495 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 496 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 497 { 498 dmu_buf_t **dbp; 499 uint64_t blkid, nblks, i; 500 uint32_t dbuf_flags; 501 int err; 502 zio_t *zio = NULL; 503 504 ASSERT(length <= DMU_MAX_ACCESS); 505 506 /* 507 * Note: We directly notify the prefetch code of this read, so that 508 * we can tell it about the multi-block read. dbuf_read() only knows 509 * about the one block it is accessing. 510 */ 511 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 512 DB_RF_NOPREFETCH; 513 514 rw_enter(&dn->dn_struct_rwlock, RW_READER); 515 if (dn->dn_datablkshift) { 516 int blkshift = dn->dn_datablkshift; 517 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 518 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 519 } else { 520 if (offset + length > dn->dn_datablksz) { 521 zfs_panic_recover("zfs: accessing past end of object " 522 "%llx/%llx (size=%u access=%llu+%llu)", 523 (longlong_t)dn->dn_objset-> 524 os_dsl_dataset->ds_object, 525 (longlong_t)dn->dn_object, dn->dn_datablksz, 526 (longlong_t)offset, (longlong_t)length); 527 rw_exit(&dn->dn_struct_rwlock); 528 return (SET_ERROR(EIO)); 529 } 530 nblks = 1; 531 } 532 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 533 534 if (read) 535 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, 536 ZIO_FLAG_CANFAIL); 537 blkid = dbuf_whichblock(dn, 0, offset); 538 for (i = 0; i < nblks; i++) { 539 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 540 if (db == NULL) { 541 rw_exit(&dn->dn_struct_rwlock); 542 dmu_buf_rele_array(dbp, nblks, tag); 543 if (read) 544 zio_nowait(zio); 545 return (SET_ERROR(EIO)); 546 } 547 548 /* initiate async i/o */ 549 if (read) 550 (void) dbuf_read(db, zio, dbuf_flags); 551 dbp[i] = &db->db; 552 } 553 554 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 555 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 556 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 557 read && DNODE_IS_CACHEABLE(dn), B_TRUE); 558 } 559 rw_exit(&dn->dn_struct_rwlock); 560 561 if (read) { 562 /* wait for async read i/o */ 563 err = zio_wait(zio); 564 if (err) { 565 dmu_buf_rele_array(dbp, nblks, tag); 566 return (err); 567 } 568 569 /* wait for other io to complete */ 570 for (i = 0; i < nblks; i++) { 571 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 572 mutex_enter(&db->db_mtx); 573 while (db->db_state == DB_READ || 574 db->db_state == DB_FILL) 575 cv_wait(&db->db_changed, &db->db_mtx); 576 if (db->db_state == DB_UNCACHED) 577 err = SET_ERROR(EIO); 578 mutex_exit(&db->db_mtx); 579 if (err) { 580 dmu_buf_rele_array(dbp, nblks, tag); 581 return (err); 582 } 583 } 584 } 585 586 *numbufsp = nblks; 587 *dbpp = dbp; 588 return (0); 589 } 590 591 static int 592 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 593 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 594 { 595 dnode_t *dn; 596 int err; 597 598 err = dnode_hold(os, object, FTAG, &dn); 599 if (err) 600 return (err); 601 602 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 603 numbufsp, dbpp, DMU_READ_PREFETCH); 604 605 dnode_rele(dn, FTAG); 606 607 return (err); 608 } 609 610 int 611 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 612 uint64_t length, boolean_t read, void *tag, int *numbufsp, 613 dmu_buf_t ***dbpp) 614 { 615 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 616 dnode_t *dn; 617 int err; 618 619 DB_DNODE_ENTER(db); 620 dn = DB_DNODE(db); 621 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 622 numbufsp, dbpp, DMU_READ_PREFETCH); 623 DB_DNODE_EXIT(db); 624 625 return (err); 626 } 627 628 void 629 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 630 { 631 int i; 632 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 633 634 if (numbufs == 0) 635 return; 636 637 for (i = 0; i < numbufs; i++) { 638 if (dbp[i]) 639 dbuf_rele(dbp[i], tag); 640 } 641 642 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 643 } 644 645 /* 646 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 647 * indirect blocks prefetched will be those that point to the blocks containing 648 * the data starting at offset, and continuing to offset + len. 649 * 650 * Note that if the indirect blocks above the blocks being prefetched are not 651 * in cache, they will be asynchronously read in. 652 */ 653 void 654 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 655 uint64_t len, zio_priority_t pri) 656 { 657 dnode_t *dn; 658 uint64_t blkid; 659 int nblks, err; 660 661 if (len == 0) { /* they're interested in the bonus buffer */ 662 dn = DMU_META_DNODE(os); 663 664 if (object == 0 || object >= DN_MAX_OBJECT) 665 return; 666 667 rw_enter(&dn->dn_struct_rwlock, RW_READER); 668 blkid = dbuf_whichblock(dn, level, 669 object * sizeof (dnode_phys_t)); 670 dbuf_prefetch(dn, level, blkid, pri, 0); 671 rw_exit(&dn->dn_struct_rwlock); 672 return; 673 } 674 675 /* 676 * See comment before the definition of dmu_prefetch_max. 677 */ 678 len = MIN(len, dmu_prefetch_max); 679 680 /* 681 * XXX - Note, if the dnode for the requested object is not 682 * already cached, we will do a *synchronous* read in the 683 * dnode_hold() call. The same is true for any indirects. 684 */ 685 err = dnode_hold(os, object, FTAG, &dn); 686 if (err != 0) 687 return; 688 689 /* 690 * offset + len - 1 is the last byte we want to prefetch for, and offset 691 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 692 * last block we want to prefetch, and dbuf_whichblock(dn, level, 693 * offset) is the first. Then the number we need to prefetch is the 694 * last - first + 1. 695 */ 696 rw_enter(&dn->dn_struct_rwlock, RW_READER); 697 if (level > 0 || dn->dn_datablkshift != 0) { 698 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 699 dbuf_whichblock(dn, level, offset) + 1; 700 } else { 701 nblks = (offset < dn->dn_datablksz); 702 } 703 704 if (nblks != 0) { 705 blkid = dbuf_whichblock(dn, level, offset); 706 for (int i = 0; i < nblks; i++) 707 dbuf_prefetch(dn, level, blkid + i, pri, 0); 708 } 709 rw_exit(&dn->dn_struct_rwlock); 710 711 dnode_rele(dn, FTAG); 712 } 713 714 /* 715 * Get the next "chunk" of file data to free. We traverse the file from 716 * the end so that the file gets shorter over time (if we crashes in the 717 * middle, this will leave us in a better state). We find allocated file 718 * data by simply searching the allocated level 1 indirects. 719 * 720 * On input, *start should be the first offset that does not need to be 721 * freed (e.g. "offset + length"). On return, *start will be the first 722 * offset that should be freed and l1blks is set to the number of level 1 723 * indirect blocks found within the chunk. 724 */ 725 static int 726 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 727 { 728 uint64_t blks; 729 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 730 /* bytes of data covered by a level-1 indirect block */ 731 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 732 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 733 734 ASSERT3U(minimum, <=, *start); 735 736 /* 737 * Check if we can free the entire range assuming that all of the 738 * L1 blocks in this range have data. If we can, we use this 739 * worst case value as an estimate so we can avoid having to look 740 * at the object's actual data. 741 */ 742 uint64_t total_l1blks = 743 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 744 iblkrange; 745 if (total_l1blks <= maxblks) { 746 *l1blks = total_l1blks; 747 *start = minimum; 748 return (0); 749 } 750 ASSERT(ISP2(iblkrange)); 751 752 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 753 int err; 754 755 /* 756 * dnode_next_offset(BACKWARDS) will find an allocated L1 757 * indirect block at or before the input offset. We must 758 * decrement *start so that it is at the end of the region 759 * to search. 760 */ 761 (*start)--; 762 763 err = dnode_next_offset(dn, 764 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 765 766 /* if there are no indirect blocks before start, we are done */ 767 if (err == ESRCH) { 768 *start = minimum; 769 break; 770 } else if (err != 0) { 771 *l1blks = blks; 772 return (err); 773 } 774 775 /* set start to the beginning of this L1 indirect */ 776 *start = P2ALIGN(*start, iblkrange); 777 } 778 if (*start < minimum) 779 *start = minimum; 780 *l1blks = blks; 781 782 return (0); 783 } 784 785 /* 786 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 787 * otherwise return false. 788 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 789 */ 790 /*ARGSUSED*/ 791 static boolean_t 792 dmu_objset_zfs_unmounting(objset_t *os) 793 { 794 #ifdef _KERNEL 795 if (dmu_objset_type(os) == DMU_OST_ZFS) 796 return (zfs_get_vfs_flag_unmounted(os)); 797 #endif 798 return (B_FALSE); 799 } 800 801 static int 802 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 803 uint64_t length) 804 { 805 uint64_t object_size; 806 int err; 807 uint64_t dirty_frees_threshold; 808 dsl_pool_t *dp = dmu_objset_pool(os); 809 810 if (dn == NULL) 811 return (SET_ERROR(EINVAL)); 812 813 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 814 if (offset >= object_size) 815 return (0); 816 817 if (zfs_per_txg_dirty_frees_percent <= 100) 818 dirty_frees_threshold = 819 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 820 else 821 dirty_frees_threshold = zfs_dirty_data_max / 20; 822 823 if (length == DMU_OBJECT_END || offset + length > object_size) 824 length = object_size - offset; 825 826 while (length != 0) { 827 uint64_t chunk_end, chunk_begin, chunk_len; 828 uint64_t l1blks; 829 dmu_tx_t *tx; 830 831 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 832 return (SET_ERROR(EINTR)); 833 834 chunk_end = chunk_begin = offset + length; 835 836 /* move chunk_begin backwards to the beginning of this chunk */ 837 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 838 if (err) 839 return (err); 840 ASSERT3U(chunk_begin, >=, offset); 841 ASSERT3U(chunk_begin, <=, chunk_end); 842 843 chunk_len = chunk_end - chunk_begin; 844 845 tx = dmu_tx_create(os); 846 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 847 848 /* 849 * Mark this transaction as typically resulting in a net 850 * reduction in space used. 851 */ 852 dmu_tx_mark_netfree(tx); 853 err = dmu_tx_assign(tx, TXG_WAIT); 854 if (err) { 855 dmu_tx_abort(tx); 856 return (err); 857 } 858 859 uint64_t txg = dmu_tx_get_txg(tx); 860 861 mutex_enter(&dp->dp_lock); 862 uint64_t long_free_dirty = 863 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 864 mutex_exit(&dp->dp_lock); 865 866 /* 867 * To avoid filling up a TXG with just frees, wait for 868 * the next TXG to open before freeing more chunks if 869 * we have reached the threshold of frees. 870 */ 871 if (dirty_frees_threshold != 0 && 872 long_free_dirty >= dirty_frees_threshold) { 873 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 874 dmu_tx_commit(tx); 875 txg_wait_open(dp, 0, B_TRUE); 876 continue; 877 } 878 879 /* 880 * In order to prevent unnecessary write throttling, for each 881 * TXG, we track the cumulative size of L1 blocks being dirtied 882 * in dnode_free_range() below. We compare this number to a 883 * tunable threshold, past which we prevent new L1 dirty freeing 884 * blocks from being added into the open TXG. See 885 * dmu_free_long_range_impl() for details. The threshold 886 * prevents write throttle activation due to dirty freeing L1 887 * blocks taking up a large percentage of zfs_dirty_data_max. 888 */ 889 mutex_enter(&dp->dp_lock); 890 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 891 l1blks << dn->dn_indblkshift; 892 mutex_exit(&dp->dp_lock); 893 DTRACE_PROBE3(free__long__range, 894 uint64_t, long_free_dirty, uint64_t, chunk_len, 895 uint64_t, txg); 896 dnode_free_range(dn, chunk_begin, chunk_len, tx); 897 898 dmu_tx_commit(tx); 899 900 length -= chunk_len; 901 } 902 return (0); 903 } 904 905 int 906 dmu_free_long_range(objset_t *os, uint64_t object, 907 uint64_t offset, uint64_t length) 908 { 909 dnode_t *dn; 910 int err; 911 912 err = dnode_hold(os, object, FTAG, &dn); 913 if (err != 0) 914 return (err); 915 err = dmu_free_long_range_impl(os, dn, offset, length); 916 917 /* 918 * It is important to zero out the maxblkid when freeing the entire 919 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 920 * will take the fast path, and (b) dnode_reallocate() can verify 921 * that the entire file has been freed. 922 */ 923 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 924 dn->dn_maxblkid = 0; 925 926 dnode_rele(dn, FTAG); 927 return (err); 928 } 929 930 int 931 dmu_free_long_object(objset_t *os, uint64_t object) 932 { 933 dmu_tx_t *tx; 934 int err; 935 936 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 937 if (err != 0) 938 return (err); 939 940 tx = dmu_tx_create(os); 941 dmu_tx_hold_bonus(tx, object); 942 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 943 dmu_tx_mark_netfree(tx); 944 err = dmu_tx_assign(tx, TXG_WAIT); 945 if (err == 0) { 946 if (err == 0) 947 err = dmu_object_free(os, object, tx); 948 949 dmu_tx_commit(tx); 950 } else { 951 dmu_tx_abort(tx); 952 } 953 954 return (err); 955 } 956 957 int 958 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 959 uint64_t size, dmu_tx_t *tx) 960 { 961 dnode_t *dn; 962 int err = dnode_hold(os, object, FTAG, &dn); 963 if (err) 964 return (err); 965 ASSERT(offset < UINT64_MAX); 966 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 967 dnode_free_range(dn, offset, size, tx); 968 dnode_rele(dn, FTAG); 969 return (0); 970 } 971 972 static int 973 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 974 void *buf, uint32_t flags) 975 { 976 dmu_buf_t **dbp; 977 int numbufs, err = 0; 978 979 /* 980 * Deal with odd block sizes, where there can't be data past the first 981 * block. If we ever do the tail block optimization, we will need to 982 * handle that here as well. 983 */ 984 if (dn->dn_maxblkid == 0) { 985 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 986 MIN(size, dn->dn_datablksz - offset); 987 bzero((char *)buf + newsz, size - newsz); 988 size = newsz; 989 } 990 991 while (size > 0) { 992 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 993 int i; 994 995 /* 996 * NB: we could do this block-at-a-time, but it's nice 997 * to be reading in parallel. 998 */ 999 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1000 TRUE, FTAG, &numbufs, &dbp, flags); 1001 if (err) 1002 break; 1003 1004 for (i = 0; i < numbufs; i++) { 1005 uint64_t tocpy; 1006 int64_t bufoff; 1007 dmu_buf_t *db = dbp[i]; 1008 1009 ASSERT(size > 0); 1010 1011 bufoff = offset - db->db_offset; 1012 tocpy = MIN(db->db_size - bufoff, size); 1013 1014 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1015 1016 offset += tocpy; 1017 size -= tocpy; 1018 buf = (char *)buf + tocpy; 1019 } 1020 dmu_buf_rele_array(dbp, numbufs, FTAG); 1021 } 1022 return (err); 1023 } 1024 1025 int 1026 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1027 void *buf, uint32_t flags) 1028 { 1029 dnode_t *dn; 1030 int err; 1031 1032 err = dnode_hold(os, object, FTAG, &dn); 1033 if (err != 0) 1034 return (err); 1035 1036 err = dmu_read_impl(dn, offset, size, buf, flags); 1037 dnode_rele(dn, FTAG); 1038 return (err); 1039 } 1040 1041 int 1042 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1043 uint32_t flags) 1044 { 1045 return (dmu_read_impl(dn, offset, size, buf, flags)); 1046 } 1047 1048 static void 1049 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1050 const void *buf, dmu_tx_t *tx) 1051 { 1052 int i; 1053 1054 for (i = 0; i < numbufs; i++) { 1055 uint64_t tocpy; 1056 int64_t bufoff; 1057 dmu_buf_t *db = dbp[i]; 1058 1059 ASSERT(size > 0); 1060 1061 bufoff = offset - db->db_offset; 1062 tocpy = MIN(db->db_size - bufoff, size); 1063 1064 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1065 1066 if (tocpy == db->db_size) 1067 dmu_buf_will_fill(db, tx); 1068 else 1069 dmu_buf_will_dirty(db, tx); 1070 1071 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1072 1073 if (tocpy == db->db_size) 1074 dmu_buf_fill_done(db, tx); 1075 1076 offset += tocpy; 1077 size -= tocpy; 1078 buf = (char *)buf + tocpy; 1079 } 1080 } 1081 1082 void 1083 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1084 const void *buf, dmu_tx_t *tx) 1085 { 1086 dmu_buf_t **dbp; 1087 int numbufs; 1088 1089 if (size == 0) 1090 return; 1091 1092 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1093 FALSE, FTAG, &numbufs, &dbp)); 1094 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1095 dmu_buf_rele_array(dbp, numbufs, FTAG); 1096 } 1097 1098 /* 1099 * Note: Lustre is an external consumer of this interface. 1100 */ 1101 void 1102 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1103 const void *buf, dmu_tx_t *tx) 1104 { 1105 dmu_buf_t **dbp; 1106 int numbufs; 1107 1108 if (size == 0) 1109 return; 1110 1111 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1112 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1113 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1114 dmu_buf_rele_array(dbp, numbufs, FTAG); 1115 } 1116 1117 void 1118 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1119 dmu_tx_t *tx) 1120 { 1121 dmu_buf_t **dbp; 1122 int numbufs, i; 1123 1124 if (size == 0) 1125 return; 1126 1127 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1128 FALSE, FTAG, &numbufs, &dbp)); 1129 1130 for (i = 0; i < numbufs; i++) { 1131 dmu_buf_t *db = dbp[i]; 1132 1133 dmu_buf_will_not_fill(db, tx); 1134 } 1135 dmu_buf_rele_array(dbp, numbufs, FTAG); 1136 } 1137 1138 void 1139 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1140 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1141 int compressed_size, int byteorder, dmu_tx_t *tx) 1142 { 1143 dmu_buf_t *db; 1144 1145 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1146 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1147 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1148 FTAG, &db)); 1149 1150 dmu_buf_write_embedded(db, 1151 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1152 uncompressed_size, compressed_size, byteorder, tx); 1153 1154 dmu_buf_rele(db, FTAG); 1155 } 1156 1157 void 1158 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1159 dmu_tx_t *tx) 1160 { 1161 int numbufs, i; 1162 dmu_buf_t **dbp; 1163 1164 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1165 &numbufs, &dbp)); 1166 for (i = 0; i < numbufs; i++) 1167 dmu_buf_redact(dbp[i], tx); 1168 dmu_buf_rele_array(dbp, numbufs, FTAG); 1169 } 1170 1171 #ifdef _KERNEL 1172 int 1173 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1174 { 1175 dmu_buf_t **dbp; 1176 int numbufs, i, err; 1177 1178 /* 1179 * NB: we could do this block-at-a-time, but it's nice 1180 * to be reading in parallel. 1181 */ 1182 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size, 1183 TRUE, FTAG, &numbufs, &dbp, 0); 1184 if (err) 1185 return (err); 1186 1187 for (i = 0; i < numbufs; i++) { 1188 uint64_t tocpy; 1189 int64_t bufoff; 1190 dmu_buf_t *db = dbp[i]; 1191 1192 ASSERT(size > 0); 1193 1194 bufoff = uio_offset(uio) - db->db_offset; 1195 tocpy = MIN(db->db_size - bufoff, size); 1196 1197 #ifdef __FreeBSD__ 1198 err = vn_io_fault_uiomove((char *)db->db_data + bufoff, 1199 tocpy, uio); 1200 #else 1201 err = uiomove((char *)db->db_data + bufoff, tocpy, 1202 UIO_READ, uio); 1203 #endif 1204 if (err) 1205 break; 1206 1207 size -= tocpy; 1208 } 1209 dmu_buf_rele_array(dbp, numbufs, FTAG); 1210 1211 return (err); 1212 } 1213 1214 /* 1215 * Read 'size' bytes into the uio buffer. 1216 * From object zdb->db_object. 1217 * Starting at offset uio->uio_loffset. 1218 * 1219 * If the caller already has a dbuf in the target object 1220 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1221 * because we don't have to find the dnode_t for the object. 1222 */ 1223 int 1224 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1225 { 1226 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1227 dnode_t *dn; 1228 int err; 1229 1230 if (size == 0) 1231 return (0); 1232 1233 DB_DNODE_ENTER(db); 1234 dn = DB_DNODE(db); 1235 err = dmu_read_uio_dnode(dn, uio, size); 1236 DB_DNODE_EXIT(db); 1237 1238 return (err); 1239 } 1240 1241 /* 1242 * Read 'size' bytes into the uio buffer. 1243 * From the specified object 1244 * Starting at offset uio->uio_loffset. 1245 */ 1246 int 1247 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1248 { 1249 dnode_t *dn; 1250 int err; 1251 1252 if (size == 0) 1253 return (0); 1254 1255 err = dnode_hold(os, object, FTAG, &dn); 1256 if (err) 1257 return (err); 1258 1259 err = dmu_read_uio_dnode(dn, uio, size); 1260 1261 dnode_rele(dn, FTAG); 1262 1263 return (err); 1264 } 1265 1266 int 1267 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1268 { 1269 dmu_buf_t **dbp; 1270 int numbufs; 1271 int err = 0; 1272 int i; 1273 1274 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size, 1275 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1276 if (err) 1277 return (err); 1278 1279 for (i = 0; i < numbufs; i++) { 1280 uint64_t tocpy; 1281 int64_t bufoff; 1282 dmu_buf_t *db = dbp[i]; 1283 1284 ASSERT(size > 0); 1285 1286 bufoff = uio_offset(uio) - db->db_offset; 1287 tocpy = MIN(db->db_size - bufoff, size); 1288 1289 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1290 1291 if (tocpy == db->db_size) 1292 dmu_buf_will_fill(db, tx); 1293 else 1294 dmu_buf_will_dirty(db, tx); 1295 1296 /* 1297 * XXX uiomove could block forever (eg.nfs-backed 1298 * pages). There needs to be a uiolockdown() function 1299 * to lock the pages in memory, so that uiomove won't 1300 * block. 1301 */ 1302 #ifdef __FreeBSD__ 1303 err = vn_io_fault_uiomove((char *)db->db_data + bufoff, 1304 tocpy, uio); 1305 #else 1306 err = uiomove((char *)db->db_data + bufoff, tocpy, 1307 UIO_WRITE, uio); 1308 #endif 1309 if (tocpy == db->db_size) 1310 dmu_buf_fill_done(db, tx); 1311 1312 if (err) 1313 break; 1314 1315 size -= tocpy; 1316 } 1317 1318 dmu_buf_rele_array(dbp, numbufs, FTAG); 1319 return (err); 1320 } 1321 1322 /* 1323 * Write 'size' bytes from the uio buffer. 1324 * To object zdb->db_object. 1325 * Starting at offset uio->uio_loffset. 1326 * 1327 * If the caller already has a dbuf in the target object 1328 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1329 * because we don't have to find the dnode_t for the object. 1330 */ 1331 int 1332 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1333 dmu_tx_t *tx) 1334 { 1335 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1336 dnode_t *dn; 1337 int err; 1338 1339 if (size == 0) 1340 return (0); 1341 1342 DB_DNODE_ENTER(db); 1343 dn = DB_DNODE(db); 1344 err = dmu_write_uio_dnode(dn, uio, size, tx); 1345 DB_DNODE_EXIT(db); 1346 1347 return (err); 1348 } 1349 1350 /* 1351 * Write 'size' bytes from the uio buffer. 1352 * To the specified object. 1353 * Starting at offset uio->uio_loffset. 1354 */ 1355 int 1356 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1357 dmu_tx_t *tx) 1358 { 1359 dnode_t *dn; 1360 int err; 1361 1362 if (size == 0) 1363 return (0); 1364 1365 err = dnode_hold(os, object, FTAG, &dn); 1366 if (err) 1367 return (err); 1368 1369 err = dmu_write_uio_dnode(dn, uio, size, tx); 1370 1371 dnode_rele(dn, FTAG); 1372 1373 return (err); 1374 } 1375 #endif /* _KERNEL */ 1376 1377 /* 1378 * Allocate a loaned anonymous arc buffer. 1379 */ 1380 arc_buf_t * 1381 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1382 { 1383 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1384 1385 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1386 } 1387 1388 /* 1389 * Free a loaned arc buffer. 1390 */ 1391 void 1392 dmu_return_arcbuf(arc_buf_t *buf) 1393 { 1394 arc_return_buf(buf, FTAG); 1395 arc_buf_destroy(buf, FTAG); 1396 } 1397 1398 /* 1399 * A "lightweight" write is faster than a regular write (e.g. 1400 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the 1401 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the 1402 * data can not be read or overwritten until the transaction's txg has been 1403 * synced. This makes it appropriate for workloads that are known to be 1404 * (temporarily) write-only, like "zfs receive". 1405 * 1406 * A single block is written, starting at the specified offset in bytes. If 1407 * the call is successful, it returns 0 and the provided abd has been 1408 * consumed (the caller should not free it). 1409 */ 1410 int 1411 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, 1412 const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx) 1413 { 1414 dbuf_dirty_record_t *dr = 1415 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); 1416 if (dr == NULL) 1417 return (SET_ERROR(EIO)); 1418 dr->dt.dll.dr_abd = abd; 1419 dr->dt.dll.dr_props = *zp; 1420 dr->dt.dll.dr_flags = flags; 1421 return (0); 1422 } 1423 1424 /* 1425 * When possible directly assign passed loaned arc buffer to a dbuf. 1426 * If this is not possible copy the contents of passed arc buf via 1427 * dmu_write(). 1428 */ 1429 int 1430 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1431 dmu_tx_t *tx) 1432 { 1433 dmu_buf_impl_t *db; 1434 objset_t *os = dn->dn_objset; 1435 uint64_t object = dn->dn_object; 1436 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1437 uint64_t blkid; 1438 1439 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1440 blkid = dbuf_whichblock(dn, 0, offset); 1441 db = dbuf_hold(dn, blkid, FTAG); 1442 if (db == NULL) 1443 return (SET_ERROR(EIO)); 1444 rw_exit(&dn->dn_struct_rwlock); 1445 1446 /* 1447 * We can only assign if the offset is aligned and the arc buf is the 1448 * same size as the dbuf. 1449 */ 1450 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1451 dbuf_assign_arcbuf(db, buf, tx); 1452 dbuf_rele(db, FTAG); 1453 } else { 1454 /* compressed bufs must always be assignable to their dbuf */ 1455 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1456 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1457 1458 dbuf_rele(db, FTAG); 1459 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1460 dmu_return_arcbuf(buf); 1461 } 1462 1463 return (0); 1464 } 1465 1466 int 1467 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1468 dmu_tx_t *tx) 1469 { 1470 int err; 1471 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1472 1473 DB_DNODE_ENTER(dbuf); 1474 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1475 DB_DNODE_EXIT(dbuf); 1476 1477 return (err); 1478 } 1479 1480 typedef struct { 1481 dbuf_dirty_record_t *dsa_dr; 1482 dmu_sync_cb_t *dsa_done; 1483 zgd_t *dsa_zgd; 1484 dmu_tx_t *dsa_tx; 1485 } dmu_sync_arg_t; 1486 1487 /* ARGSUSED */ 1488 static void 1489 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1490 { 1491 dmu_sync_arg_t *dsa = varg; 1492 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1493 blkptr_t *bp = zio->io_bp; 1494 1495 if (zio->io_error == 0) { 1496 if (BP_IS_HOLE(bp)) { 1497 /* 1498 * A block of zeros may compress to a hole, but the 1499 * block size still needs to be known for replay. 1500 */ 1501 BP_SET_LSIZE(bp, db->db_size); 1502 } else if (!BP_IS_EMBEDDED(bp)) { 1503 ASSERT(BP_GET_LEVEL(bp) == 0); 1504 BP_SET_FILL(bp, 1); 1505 } 1506 } 1507 } 1508 1509 static void 1510 dmu_sync_late_arrival_ready(zio_t *zio) 1511 { 1512 dmu_sync_ready(zio, NULL, zio->io_private); 1513 } 1514 1515 /* ARGSUSED */ 1516 static void 1517 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1518 { 1519 dmu_sync_arg_t *dsa = varg; 1520 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1521 dmu_buf_impl_t *db = dr->dr_dbuf; 1522 zgd_t *zgd = dsa->dsa_zgd; 1523 1524 /* 1525 * Record the vdev(s) backing this blkptr so they can be flushed after 1526 * the writes for the lwb have completed. 1527 */ 1528 if (zio->io_error == 0) { 1529 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1530 } 1531 1532 mutex_enter(&db->db_mtx); 1533 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1534 if (zio->io_error == 0) { 1535 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1536 if (dr->dt.dl.dr_nopwrite) { 1537 blkptr_t *bp = zio->io_bp; 1538 blkptr_t *bp_orig = &zio->io_bp_orig; 1539 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1540 1541 ASSERT(BP_EQUAL(bp, bp_orig)); 1542 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1543 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1544 VERIFY(zio_checksum_table[chksum].ci_flags & 1545 ZCHECKSUM_FLAG_NOPWRITE); 1546 } 1547 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1548 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1549 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1550 1551 /* 1552 * Old style holes are filled with all zeros, whereas 1553 * new-style holes maintain their lsize, type, level, 1554 * and birth time (see zio_write_compress). While we 1555 * need to reset the BP_SET_LSIZE() call that happened 1556 * in dmu_sync_ready for old style holes, we do *not* 1557 * want to wipe out the information contained in new 1558 * style holes. Thus, only zero out the block pointer if 1559 * it's an old style hole. 1560 */ 1561 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1562 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1563 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1564 } else { 1565 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1566 } 1567 cv_broadcast(&db->db_changed); 1568 mutex_exit(&db->db_mtx); 1569 1570 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1571 1572 kmem_free(dsa, sizeof (*dsa)); 1573 } 1574 1575 static void 1576 dmu_sync_late_arrival_done(zio_t *zio) 1577 { 1578 blkptr_t *bp = zio->io_bp; 1579 dmu_sync_arg_t *dsa = zio->io_private; 1580 zgd_t *zgd = dsa->dsa_zgd; 1581 1582 if (zio->io_error == 0) { 1583 /* 1584 * Record the vdev(s) backing this blkptr so they can be 1585 * flushed after the writes for the lwb have completed. 1586 */ 1587 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1588 1589 if (!BP_IS_HOLE(bp)) { 1590 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1591 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1592 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1593 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1594 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1595 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1596 } 1597 } 1598 1599 dmu_tx_commit(dsa->dsa_tx); 1600 1601 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1602 1603 abd_put(zio->io_abd); 1604 kmem_free(dsa, sizeof (*dsa)); 1605 } 1606 1607 static int 1608 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1609 zio_prop_t *zp, zbookmark_phys_t *zb) 1610 { 1611 dmu_sync_arg_t *dsa; 1612 dmu_tx_t *tx; 1613 1614 tx = dmu_tx_create(os); 1615 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1616 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1617 dmu_tx_abort(tx); 1618 /* Make zl_get_data do txg_waited_synced() */ 1619 return (SET_ERROR(EIO)); 1620 } 1621 1622 /* 1623 * In order to prevent the zgd's lwb from being free'd prior to 1624 * dmu_sync_late_arrival_done() being called, we have to ensure 1625 * the lwb's "max txg" takes this tx's txg into account. 1626 */ 1627 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1628 1629 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1630 dsa->dsa_dr = NULL; 1631 dsa->dsa_done = done; 1632 dsa->dsa_zgd = zgd; 1633 dsa->dsa_tx = tx; 1634 1635 /* 1636 * Since we are currently syncing this txg, it's nontrivial to 1637 * determine what BP to nopwrite against, so we disable nopwrite. 1638 * 1639 * When syncing, the db_blkptr is initially the BP of the previous 1640 * txg. We can not nopwrite against it because it will be changed 1641 * (this is similar to the non-late-arrival case where the dbuf is 1642 * dirty in a future txg). 1643 * 1644 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1645 * We can not nopwrite against it because although the BP will not 1646 * (typically) be changed, the data has not yet been persisted to this 1647 * location. 1648 * 1649 * Finally, when dbuf_write_done() is called, it is theoretically 1650 * possible to always nopwrite, because the data that was written in 1651 * this txg is the same data that we are trying to write. However we 1652 * would need to check that this dbuf is not dirty in any future 1653 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1654 * don't nopwrite in this case. 1655 */ 1656 zp->zp_nopwrite = B_FALSE; 1657 1658 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1659 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1660 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1661 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1662 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1663 1664 return (0); 1665 } 1666 1667 /* 1668 * Intent log support: sync the block associated with db to disk. 1669 * N.B. and XXX: the caller is responsible for making sure that the 1670 * data isn't changing while dmu_sync() is writing it. 1671 * 1672 * Return values: 1673 * 1674 * EEXIST: this txg has already been synced, so there's nothing to do. 1675 * The caller should not log the write. 1676 * 1677 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1678 * The caller should not log the write. 1679 * 1680 * EALREADY: this block is already in the process of being synced. 1681 * The caller should track its progress (somehow). 1682 * 1683 * EIO: could not do the I/O. 1684 * The caller should do a txg_wait_synced(). 1685 * 1686 * 0: the I/O has been initiated. 1687 * The caller should log this blkptr in the done callback. 1688 * It is possible that the I/O will fail, in which case 1689 * the error will be reported to the done callback and 1690 * propagated to pio from zio_done(). 1691 */ 1692 int 1693 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1694 { 1695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1696 objset_t *os = db->db_objset; 1697 dsl_dataset_t *ds = os->os_dsl_dataset; 1698 dbuf_dirty_record_t *dr, *dr_next; 1699 dmu_sync_arg_t *dsa; 1700 zbookmark_phys_t zb; 1701 zio_prop_t zp; 1702 dnode_t *dn; 1703 1704 ASSERT(pio != NULL); 1705 ASSERT(txg != 0); 1706 1707 SET_BOOKMARK(&zb, ds->ds_object, 1708 db->db.db_object, db->db_level, db->db_blkid); 1709 1710 DB_DNODE_ENTER(db); 1711 dn = DB_DNODE(db); 1712 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1713 DB_DNODE_EXIT(db); 1714 1715 /* 1716 * If we're frozen (running ziltest), we always need to generate a bp. 1717 */ 1718 if (txg > spa_freeze_txg(os->os_spa)) 1719 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1720 1721 /* 1722 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1723 * and us. If we determine that this txg is not yet syncing, 1724 * but it begins to sync a moment later, that's OK because the 1725 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1726 */ 1727 mutex_enter(&db->db_mtx); 1728 1729 if (txg <= spa_last_synced_txg(os->os_spa)) { 1730 /* 1731 * This txg has already synced. There's nothing to do. 1732 */ 1733 mutex_exit(&db->db_mtx); 1734 return (SET_ERROR(EEXIST)); 1735 } 1736 1737 if (txg <= spa_syncing_txg(os->os_spa)) { 1738 /* 1739 * This txg is currently syncing, so we can't mess with 1740 * the dirty record anymore; just write a new log block. 1741 */ 1742 mutex_exit(&db->db_mtx); 1743 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1744 } 1745 1746 dr = dbuf_find_dirty_eq(db, txg); 1747 1748 if (dr == NULL) { 1749 /* 1750 * There's no dr for this dbuf, so it must have been freed. 1751 * There's no need to log writes to freed blocks, so we're done. 1752 */ 1753 mutex_exit(&db->db_mtx); 1754 return (SET_ERROR(ENOENT)); 1755 } 1756 1757 dr_next = list_next(&db->db_dirty_records, dr); 1758 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1759 1760 if (db->db_blkptr != NULL) { 1761 /* 1762 * We need to fill in zgd_bp with the current blkptr so that 1763 * the nopwrite code can check if we're writing the same 1764 * data that's already on disk. We can only nopwrite if we 1765 * are sure that after making the copy, db_blkptr will not 1766 * change until our i/o completes. We ensure this by 1767 * holding the db_mtx, and only allowing nopwrite if the 1768 * block is not already dirty (see below). This is verified 1769 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1770 * not changed. 1771 */ 1772 *zgd->zgd_bp = *db->db_blkptr; 1773 } 1774 1775 /* 1776 * Assume the on-disk data is X, the current syncing data (in 1777 * txg - 1) is Y, and the current in-memory data is Z (currently 1778 * in dmu_sync). 1779 * 1780 * We usually want to perform a nopwrite if X and Z are the 1781 * same. However, if Y is different (i.e. the BP is going to 1782 * change before this write takes effect), then a nopwrite will 1783 * be incorrect - we would override with X, which could have 1784 * been freed when Y was written. 1785 * 1786 * (Note that this is not a concern when we are nop-writing from 1787 * syncing context, because X and Y must be identical, because 1788 * all previous txgs have been synced.) 1789 * 1790 * Therefore, we disable nopwrite if the current BP could change 1791 * before this TXG. There are two ways it could change: by 1792 * being dirty (dr_next is non-NULL), or by being freed 1793 * (dnode_block_freed()). This behavior is verified by 1794 * zio_done(), which VERIFYs that the override BP is identical 1795 * to the on-disk BP. 1796 */ 1797 DB_DNODE_ENTER(db); 1798 dn = DB_DNODE(db); 1799 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1800 zp.zp_nopwrite = B_FALSE; 1801 DB_DNODE_EXIT(db); 1802 1803 ASSERT(dr->dr_txg == txg); 1804 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1805 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1806 /* 1807 * We have already issued a sync write for this buffer, 1808 * or this buffer has already been synced. It could not 1809 * have been dirtied since, or we would have cleared the state. 1810 */ 1811 mutex_exit(&db->db_mtx); 1812 return (SET_ERROR(EALREADY)); 1813 } 1814 1815 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1816 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1817 mutex_exit(&db->db_mtx); 1818 1819 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1820 dsa->dsa_dr = dr; 1821 dsa->dsa_done = done; 1822 dsa->dsa_zgd = zgd; 1823 dsa->dsa_tx = NULL; 1824 1825 zio_nowait(arc_write(pio, os->os_spa, txg, 1826 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1827 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1828 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1829 1830 return (0); 1831 } 1832 1833 int 1834 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1835 { 1836 dnode_t *dn; 1837 int err; 1838 1839 err = dnode_hold(os, object, FTAG, &dn); 1840 if (err) 1841 return (err); 1842 err = dnode_set_nlevels(dn, nlevels, tx); 1843 dnode_rele(dn, FTAG); 1844 return (err); 1845 } 1846 1847 int 1848 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1849 dmu_tx_t *tx) 1850 { 1851 dnode_t *dn; 1852 int err; 1853 1854 err = dnode_hold(os, object, FTAG, &dn); 1855 if (err) 1856 return (err); 1857 err = dnode_set_blksz(dn, size, ibs, tx); 1858 dnode_rele(dn, FTAG); 1859 return (err); 1860 } 1861 1862 int 1863 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 1864 dmu_tx_t *tx) 1865 { 1866 dnode_t *dn; 1867 int err; 1868 1869 err = dnode_hold(os, object, FTAG, &dn); 1870 if (err) 1871 return (err); 1872 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1873 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 1874 rw_exit(&dn->dn_struct_rwlock); 1875 dnode_rele(dn, FTAG); 1876 return (0); 1877 } 1878 1879 void 1880 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1881 dmu_tx_t *tx) 1882 { 1883 dnode_t *dn; 1884 1885 /* 1886 * Send streams include each object's checksum function. This 1887 * check ensures that the receiving system can understand the 1888 * checksum function transmitted. 1889 */ 1890 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1891 1892 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1893 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1894 dn->dn_checksum = checksum; 1895 dnode_setdirty(dn, tx); 1896 dnode_rele(dn, FTAG); 1897 } 1898 1899 void 1900 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1901 dmu_tx_t *tx) 1902 { 1903 dnode_t *dn; 1904 1905 /* 1906 * Send streams include each object's compression function. This 1907 * check ensures that the receiving system can understand the 1908 * compression function transmitted. 1909 */ 1910 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1911 1912 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1913 dn->dn_compress = compress; 1914 dnode_setdirty(dn, tx); 1915 dnode_rele(dn, FTAG); 1916 } 1917 1918 /* 1919 * When the "redundant_metadata" property is set to "most", only indirect 1920 * blocks of this level and higher will have an additional ditto block. 1921 */ 1922 int zfs_redundant_metadata_most_ditto_level = 2; 1923 1924 void 1925 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1926 { 1927 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1928 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1929 (wp & WP_SPILL)); 1930 enum zio_checksum checksum = os->os_checksum; 1931 enum zio_compress compress = os->os_compress; 1932 uint8_t complevel = os->os_complevel; 1933 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1934 boolean_t dedup = B_FALSE; 1935 boolean_t nopwrite = B_FALSE; 1936 boolean_t dedup_verify = os->os_dedup_verify; 1937 boolean_t encrypt = B_FALSE; 1938 int copies = os->os_copies; 1939 1940 /* 1941 * We maintain different write policies for each of the following 1942 * types of data: 1943 * 1. metadata 1944 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1945 * 3. all other level 0 blocks 1946 */ 1947 if (ismd) { 1948 /* 1949 * XXX -- we should design a compression algorithm 1950 * that specializes in arrays of bps. 1951 */ 1952 compress = zio_compress_select(os->os_spa, 1953 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1954 1955 /* 1956 * Metadata always gets checksummed. If the data 1957 * checksum is multi-bit correctable, and it's not a 1958 * ZBT-style checksum, then it's suitable for metadata 1959 * as well. Otherwise, the metadata checksum defaults 1960 * to fletcher4. 1961 */ 1962 if (!(zio_checksum_table[checksum].ci_flags & 1963 ZCHECKSUM_FLAG_METADATA) || 1964 (zio_checksum_table[checksum].ci_flags & 1965 ZCHECKSUM_FLAG_EMBEDDED)) 1966 checksum = ZIO_CHECKSUM_FLETCHER_4; 1967 1968 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1969 (os->os_redundant_metadata == 1970 ZFS_REDUNDANT_METADATA_MOST && 1971 (level >= zfs_redundant_metadata_most_ditto_level || 1972 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1973 copies++; 1974 } else if (wp & WP_NOFILL) { 1975 ASSERT(level == 0); 1976 1977 /* 1978 * If we're writing preallocated blocks, we aren't actually 1979 * writing them so don't set any policy properties. These 1980 * blocks are currently only used by an external subsystem 1981 * outside of zfs (i.e. dump) and not written by the zio 1982 * pipeline. 1983 */ 1984 compress = ZIO_COMPRESS_OFF; 1985 checksum = ZIO_CHECKSUM_OFF; 1986 } else { 1987 compress = zio_compress_select(os->os_spa, dn->dn_compress, 1988 compress); 1989 complevel = zio_complevel_select(os->os_spa, compress, 1990 complevel, complevel); 1991 1992 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1993 zio_checksum_select(dn->dn_checksum, checksum) : 1994 dedup_checksum; 1995 1996 /* 1997 * Determine dedup setting. If we are in dmu_sync(), 1998 * we won't actually dedup now because that's all 1999 * done in syncing context; but we do want to use the 2000 * dedup checksum. If the checksum is not strong 2001 * enough to ensure unique signatures, force 2002 * dedup_verify. 2003 */ 2004 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2005 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2006 if (!(zio_checksum_table[checksum].ci_flags & 2007 ZCHECKSUM_FLAG_DEDUP)) 2008 dedup_verify = B_TRUE; 2009 } 2010 2011 /* 2012 * Enable nopwrite if we have secure enough checksum 2013 * algorithm (see comment in zio_nop_write) and 2014 * compression is enabled. We don't enable nopwrite if 2015 * dedup is enabled as the two features are mutually 2016 * exclusive. 2017 */ 2018 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2019 ZCHECKSUM_FLAG_NOPWRITE) && 2020 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2021 } 2022 2023 /* 2024 * All objects in an encrypted objset are protected from modification 2025 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2026 * in the bp, so we cannot use all copies. Encrypted objects are also 2027 * not subject to nopwrite since writing the same data will still 2028 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2029 * to avoid ambiguity in the dedup code since the DDT does not store 2030 * object types. 2031 */ 2032 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2033 encrypt = B_TRUE; 2034 2035 if (DMU_OT_IS_ENCRYPTED(type)) { 2036 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2037 nopwrite = B_FALSE; 2038 } else { 2039 dedup = B_FALSE; 2040 } 2041 2042 if (level <= 0 && 2043 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2044 compress = ZIO_COMPRESS_EMPTY; 2045 } 2046 } 2047 2048 zp->zp_compress = compress; 2049 zp->zp_complevel = complevel; 2050 zp->zp_checksum = checksum; 2051 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2052 zp->zp_level = level; 2053 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2054 zp->zp_dedup = dedup; 2055 zp->zp_dedup_verify = dedup && dedup_verify; 2056 zp->zp_nopwrite = nopwrite; 2057 zp->zp_encrypt = encrypt; 2058 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2059 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN); 2060 bzero(zp->zp_iv, ZIO_DATA_IV_LEN); 2061 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN); 2062 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2063 os->os_zpl_special_smallblock : 0; 2064 2065 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2066 } 2067 2068 /* 2069 * This function is only called from zfs_holey_common() for zpl_llseek() 2070 * in order to determine the location of holes. In order to accurately 2071 * report holes all dirty data must be synced to disk. This causes extremely 2072 * poor performance when seeking for holes in a dirty file. As a compromise, 2073 * only provide hole data when the dnode is clean. When a dnode is dirty 2074 * report the dnode as having no holes which is always a safe thing to do. 2075 */ 2076 int 2077 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2078 { 2079 dnode_t *dn; 2080 int i, err; 2081 boolean_t clean = B_TRUE; 2082 2083 err = dnode_hold(os, object, FTAG, &dn); 2084 if (err) 2085 return (err); 2086 2087 /* 2088 * Check if dnode is dirty 2089 */ 2090 for (i = 0; i < TXG_SIZE; i++) { 2091 if (multilist_link_active(&dn->dn_dirty_link[i])) { 2092 clean = B_FALSE; 2093 break; 2094 } 2095 } 2096 2097 /* 2098 * If compatibility option is on, sync any current changes before 2099 * we go trundling through the block pointers. 2100 */ 2101 if (!clean && zfs_dmu_offset_next_sync) { 2102 clean = B_TRUE; 2103 dnode_rele(dn, FTAG); 2104 txg_wait_synced(dmu_objset_pool(os), 0); 2105 err = dnode_hold(os, object, FTAG, &dn); 2106 if (err) 2107 return (err); 2108 } 2109 2110 if (clean) 2111 err = dnode_next_offset(dn, 2112 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2113 else 2114 err = SET_ERROR(EBUSY); 2115 2116 dnode_rele(dn, FTAG); 2117 2118 return (err); 2119 } 2120 2121 void 2122 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2123 { 2124 dnode_phys_t *dnp = dn->dn_phys; 2125 2126 doi->doi_data_block_size = dn->dn_datablksz; 2127 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2128 1ULL << dn->dn_indblkshift : 0; 2129 doi->doi_type = dn->dn_type; 2130 doi->doi_bonus_type = dn->dn_bonustype; 2131 doi->doi_bonus_size = dn->dn_bonuslen; 2132 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2133 doi->doi_indirection = dn->dn_nlevels; 2134 doi->doi_checksum = dn->dn_checksum; 2135 doi->doi_compress = dn->dn_compress; 2136 doi->doi_nblkptr = dn->dn_nblkptr; 2137 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2138 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2139 doi->doi_fill_count = 0; 2140 for (int i = 0; i < dnp->dn_nblkptr; i++) 2141 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2142 } 2143 2144 void 2145 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2146 { 2147 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2148 mutex_enter(&dn->dn_mtx); 2149 2150 __dmu_object_info_from_dnode(dn, doi); 2151 2152 mutex_exit(&dn->dn_mtx); 2153 rw_exit(&dn->dn_struct_rwlock); 2154 } 2155 2156 /* 2157 * Get information on a DMU object. 2158 * If doi is NULL, just indicates whether the object exists. 2159 */ 2160 int 2161 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2162 { 2163 dnode_t *dn; 2164 int err = dnode_hold(os, object, FTAG, &dn); 2165 2166 if (err) 2167 return (err); 2168 2169 if (doi != NULL) 2170 dmu_object_info_from_dnode(dn, doi); 2171 2172 dnode_rele(dn, FTAG); 2173 return (0); 2174 } 2175 2176 /* 2177 * As above, but faster; can be used when you have a held dbuf in hand. 2178 */ 2179 void 2180 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2181 { 2182 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2183 2184 DB_DNODE_ENTER(db); 2185 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2186 DB_DNODE_EXIT(db); 2187 } 2188 2189 /* 2190 * Faster still when you only care about the size. 2191 */ 2192 void 2193 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2194 u_longlong_t *nblk512) 2195 { 2196 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2197 dnode_t *dn; 2198 2199 DB_DNODE_ENTER(db); 2200 dn = DB_DNODE(db); 2201 2202 *blksize = dn->dn_datablksz; 2203 /* add in number of slots used for the dnode itself */ 2204 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2205 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2206 DB_DNODE_EXIT(db); 2207 } 2208 2209 void 2210 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2211 { 2212 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2213 dnode_t *dn; 2214 2215 DB_DNODE_ENTER(db); 2216 dn = DB_DNODE(db); 2217 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2218 DB_DNODE_EXIT(db); 2219 } 2220 2221 void 2222 byteswap_uint64_array(void *vbuf, size_t size) 2223 { 2224 uint64_t *buf = vbuf; 2225 size_t count = size >> 3; 2226 int i; 2227 2228 ASSERT((size & 7) == 0); 2229 2230 for (i = 0; i < count; i++) 2231 buf[i] = BSWAP_64(buf[i]); 2232 } 2233 2234 void 2235 byteswap_uint32_array(void *vbuf, size_t size) 2236 { 2237 uint32_t *buf = vbuf; 2238 size_t count = size >> 2; 2239 int i; 2240 2241 ASSERT((size & 3) == 0); 2242 2243 for (i = 0; i < count; i++) 2244 buf[i] = BSWAP_32(buf[i]); 2245 } 2246 2247 void 2248 byteswap_uint16_array(void *vbuf, size_t size) 2249 { 2250 uint16_t *buf = vbuf; 2251 size_t count = size >> 1; 2252 int i; 2253 2254 ASSERT((size & 1) == 0); 2255 2256 for (i = 0; i < count; i++) 2257 buf[i] = BSWAP_16(buf[i]); 2258 } 2259 2260 /* ARGSUSED */ 2261 void 2262 byteswap_uint8_array(void *vbuf, size_t size) 2263 { 2264 } 2265 2266 void 2267 dmu_init(void) 2268 { 2269 abd_init(); 2270 zfs_dbgmsg_init(); 2271 sa_cache_init(); 2272 dmu_objset_init(); 2273 dnode_init(); 2274 zfetch_init(); 2275 dmu_tx_init(); 2276 l2arc_init(); 2277 arc_init(); 2278 dbuf_init(); 2279 } 2280 2281 void 2282 dmu_fini(void) 2283 { 2284 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2285 l2arc_fini(); 2286 dmu_tx_fini(); 2287 zfetch_fini(); 2288 dbuf_fini(); 2289 dnode_fini(); 2290 dmu_objset_fini(); 2291 sa_cache_fini(); 2292 zfs_dbgmsg_fini(); 2293 abd_fini(); 2294 } 2295 2296 EXPORT_SYMBOL(dmu_bonus_hold); 2297 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2298 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2299 EXPORT_SYMBOL(dmu_buf_rele_array); 2300 EXPORT_SYMBOL(dmu_prefetch); 2301 EXPORT_SYMBOL(dmu_free_range); 2302 EXPORT_SYMBOL(dmu_free_long_range); 2303 EXPORT_SYMBOL(dmu_free_long_object); 2304 EXPORT_SYMBOL(dmu_read); 2305 EXPORT_SYMBOL(dmu_read_by_dnode); 2306 EXPORT_SYMBOL(dmu_write); 2307 EXPORT_SYMBOL(dmu_write_by_dnode); 2308 EXPORT_SYMBOL(dmu_prealloc); 2309 EXPORT_SYMBOL(dmu_object_info); 2310 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2311 EXPORT_SYMBOL(dmu_object_info_from_db); 2312 EXPORT_SYMBOL(dmu_object_size_from_db); 2313 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2314 EXPORT_SYMBOL(dmu_object_set_nlevels); 2315 EXPORT_SYMBOL(dmu_object_set_blocksize); 2316 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2317 EXPORT_SYMBOL(dmu_object_set_checksum); 2318 EXPORT_SYMBOL(dmu_object_set_compress); 2319 EXPORT_SYMBOL(dmu_offset_next); 2320 EXPORT_SYMBOL(dmu_write_policy); 2321 EXPORT_SYMBOL(dmu_sync); 2322 EXPORT_SYMBOL(dmu_request_arcbuf); 2323 EXPORT_SYMBOL(dmu_return_arcbuf); 2324 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2325 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2326 EXPORT_SYMBOL(dmu_buf_hold); 2327 EXPORT_SYMBOL(dmu_ot); 2328 2329 /* BEGIN CSTYLED */ 2330 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2331 "Enable NOP writes"); 2332 2333 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW, 2334 "Percentage of dirtied blocks from frees in one TXG"); 2335 2336 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2337 "Enable forcing txg sync to find holes"); 2338 2339 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW, 2340 "Limit one prefetch call to this size"); 2341 /* END CSTYLED */ 2342