xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_rlock.h>
56 #ifdef _KERNEL
57 #include <sys/vmsystm.h>
58 #include <sys/zfs_znode.h>
59 #endif
60 
61 /*
62  * Enable/disable nopwrite feature.
63  */
64 int zfs_nopwrite_enabled = 1;
65 
66 /*
67  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
68  * one TXG. After this threshold is crossed, additional dirty blocks from frees
69  * will wait until the next TXG.
70  * A value of zero will disable this throttle.
71  */
72 unsigned long zfs_per_txg_dirty_frees_percent = 5;
73 
74 /*
75  * Enable/disable forcing txg sync when dirty in dmu_offset_next.
76  */
77 int zfs_dmu_offset_next_sync = 0;
78 
79 /*
80  * Limit the amount we can prefetch with one call to this amount.  This
81  * helps to limit the amount of memory that can be used by prefetching.
82  * Larger objects should be prefetched a bit at a time.
83  */
84 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
85 
86 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
87 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
88 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
89 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
90 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
91 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
92 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
93 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
94 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
95 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
96 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
97 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
98 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
99 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
100 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
101 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
102 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
103 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
104 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
105 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
106 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
107 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
108 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
109 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
110 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
111 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
112 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
113 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
115 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
116 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
117 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
118 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
120 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
121 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
122 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
123 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
124 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
125 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
128 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
129 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
131 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
132 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
136 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
137 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
138 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
139 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
140 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
141 };
142 
143 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
144 	{	byteswap_uint8_array,	"uint8"		},
145 	{	byteswap_uint16_array,	"uint16"	},
146 	{	byteswap_uint32_array,	"uint32"	},
147 	{	byteswap_uint64_array,	"uint64"	},
148 	{	zap_byteswap,		"zap"		},
149 	{	dnode_buf_byteswap,	"dnode"		},
150 	{	dmu_objset_byteswap,	"objset"	},
151 	{	zfs_znode_byteswap,	"znode"		},
152 	{	zfs_oldacl_byteswap,	"oldacl"	},
153 	{	zfs_acl_byteswap,	"acl"		}
154 };
155 
156 static int
157 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
158     void *tag, dmu_buf_t **dbp)
159 {
160 	uint64_t blkid;
161 	dmu_buf_impl_t *db;
162 
163 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
164 	blkid = dbuf_whichblock(dn, 0, offset);
165 	db = dbuf_hold(dn, blkid, tag);
166 	rw_exit(&dn->dn_struct_rwlock);
167 
168 	if (db == NULL) {
169 		*dbp = NULL;
170 		return (SET_ERROR(EIO));
171 	}
172 
173 	*dbp = &db->db;
174 	return (0);
175 }
176 int
177 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
178     void *tag, dmu_buf_t **dbp)
179 {
180 	dnode_t *dn;
181 	uint64_t blkid;
182 	dmu_buf_impl_t *db;
183 	int err;
184 
185 	err = dnode_hold(os, object, FTAG, &dn);
186 	if (err)
187 		return (err);
188 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
189 	blkid = dbuf_whichblock(dn, 0, offset);
190 	db = dbuf_hold(dn, blkid, tag);
191 	rw_exit(&dn->dn_struct_rwlock);
192 	dnode_rele(dn, FTAG);
193 
194 	if (db == NULL) {
195 		*dbp = NULL;
196 		return (SET_ERROR(EIO));
197 	}
198 
199 	*dbp = &db->db;
200 	return (err);
201 }
202 
203 int
204 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
205     void *tag, dmu_buf_t **dbp, int flags)
206 {
207 	int err;
208 	int db_flags = DB_RF_CANFAIL;
209 
210 	if (flags & DMU_READ_NO_PREFETCH)
211 		db_flags |= DB_RF_NOPREFETCH;
212 	if (flags & DMU_READ_NO_DECRYPT)
213 		db_flags |= DB_RF_NO_DECRYPT;
214 
215 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
216 	if (err == 0) {
217 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
218 		err = dbuf_read(db, NULL, db_flags);
219 		if (err != 0) {
220 			dbuf_rele(db, tag);
221 			*dbp = NULL;
222 		}
223 	}
224 
225 	return (err);
226 }
227 
228 int
229 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
230     void *tag, dmu_buf_t **dbp, int flags)
231 {
232 	int err;
233 	int db_flags = DB_RF_CANFAIL;
234 
235 	if (flags & DMU_READ_NO_PREFETCH)
236 		db_flags |= DB_RF_NOPREFETCH;
237 	if (flags & DMU_READ_NO_DECRYPT)
238 		db_flags |= DB_RF_NO_DECRYPT;
239 
240 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
241 	if (err == 0) {
242 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
243 		err = dbuf_read(db, NULL, db_flags);
244 		if (err != 0) {
245 			dbuf_rele(db, tag);
246 			*dbp = NULL;
247 		}
248 	}
249 
250 	return (err);
251 }
252 
253 int
254 dmu_bonus_max(void)
255 {
256 	return (DN_OLD_MAX_BONUSLEN);
257 }
258 
259 int
260 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
261 {
262 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
263 	dnode_t *dn;
264 	int error;
265 
266 	DB_DNODE_ENTER(db);
267 	dn = DB_DNODE(db);
268 
269 	if (dn->dn_bonus != db) {
270 		error = SET_ERROR(EINVAL);
271 	} else if (newsize < 0 || newsize > db_fake->db_size) {
272 		error = SET_ERROR(EINVAL);
273 	} else {
274 		dnode_setbonuslen(dn, newsize, tx);
275 		error = 0;
276 	}
277 
278 	DB_DNODE_EXIT(db);
279 	return (error);
280 }
281 
282 int
283 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
284 {
285 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
286 	dnode_t *dn;
287 	int error;
288 
289 	DB_DNODE_ENTER(db);
290 	dn = DB_DNODE(db);
291 
292 	if (!DMU_OT_IS_VALID(type)) {
293 		error = SET_ERROR(EINVAL);
294 	} else if (dn->dn_bonus != db) {
295 		error = SET_ERROR(EINVAL);
296 	} else {
297 		dnode_setbonus_type(dn, type, tx);
298 		error = 0;
299 	}
300 
301 	DB_DNODE_EXIT(db);
302 	return (error);
303 }
304 
305 dmu_object_type_t
306 dmu_get_bonustype(dmu_buf_t *db_fake)
307 {
308 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
309 	dnode_t *dn;
310 	dmu_object_type_t type;
311 
312 	DB_DNODE_ENTER(db);
313 	dn = DB_DNODE(db);
314 	type = dn->dn_bonustype;
315 	DB_DNODE_EXIT(db);
316 
317 	return (type);
318 }
319 
320 int
321 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
322 {
323 	dnode_t *dn;
324 	int error;
325 
326 	error = dnode_hold(os, object, FTAG, &dn);
327 	dbuf_rm_spill(dn, tx);
328 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
329 	dnode_rm_spill(dn, tx);
330 	rw_exit(&dn->dn_struct_rwlock);
331 	dnode_rele(dn, FTAG);
332 	return (error);
333 }
334 
335 /*
336  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
337  * has not yet been allocated a new bonus dbuf a will be allocated.
338  * Returns ENOENT, EIO, or 0.
339  */
340 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
341     uint32_t flags)
342 {
343 	dmu_buf_impl_t *db;
344 	int error;
345 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
346 
347 	if (flags & DMU_READ_NO_PREFETCH)
348 		db_flags |= DB_RF_NOPREFETCH;
349 	if (flags & DMU_READ_NO_DECRYPT)
350 		db_flags |= DB_RF_NO_DECRYPT;
351 
352 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
353 	if (dn->dn_bonus == NULL) {
354 		rw_exit(&dn->dn_struct_rwlock);
355 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
356 		if (dn->dn_bonus == NULL)
357 			dbuf_create_bonus(dn);
358 	}
359 	db = dn->dn_bonus;
360 
361 	/* as long as the bonus buf is held, the dnode will be held */
362 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
363 		VERIFY(dnode_add_ref(dn, db));
364 		atomic_inc_32(&dn->dn_dbufs_count);
365 	}
366 
367 	/*
368 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
369 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
370 	 * a dnode hold for every dbuf.
371 	 */
372 	rw_exit(&dn->dn_struct_rwlock);
373 
374 	error = dbuf_read(db, NULL, db_flags);
375 	if (error) {
376 		dnode_evict_bonus(dn);
377 		dbuf_rele(db, tag);
378 		*dbp = NULL;
379 		return (error);
380 	}
381 
382 	*dbp = &db->db;
383 	return (0);
384 }
385 
386 int
387 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
388 {
389 	dnode_t *dn;
390 	int error;
391 
392 	error = dnode_hold(os, object, FTAG, &dn);
393 	if (error)
394 		return (error);
395 
396 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
397 	dnode_rele(dn, FTAG);
398 
399 	return (error);
400 }
401 
402 /*
403  * returns ENOENT, EIO, or 0.
404  *
405  * This interface will allocate a blank spill dbuf when a spill blk
406  * doesn't already exist on the dnode.
407  *
408  * if you only want to find an already existing spill db, then
409  * dmu_spill_hold_existing() should be used.
410  */
411 int
412 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
413 {
414 	dmu_buf_impl_t *db = NULL;
415 	int err;
416 
417 	if ((flags & DB_RF_HAVESTRUCT) == 0)
418 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
419 
420 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
421 
422 	if ((flags & DB_RF_HAVESTRUCT) == 0)
423 		rw_exit(&dn->dn_struct_rwlock);
424 
425 	if (db == NULL) {
426 		*dbp = NULL;
427 		return (SET_ERROR(EIO));
428 	}
429 	err = dbuf_read(db, NULL, flags);
430 	if (err == 0)
431 		*dbp = &db->db;
432 	else {
433 		dbuf_rele(db, tag);
434 		*dbp = NULL;
435 	}
436 	return (err);
437 }
438 
439 int
440 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
441 {
442 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
443 	dnode_t *dn;
444 	int err;
445 
446 	DB_DNODE_ENTER(db);
447 	dn = DB_DNODE(db);
448 
449 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
450 		err = SET_ERROR(EINVAL);
451 	} else {
452 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
453 
454 		if (!dn->dn_have_spill) {
455 			err = SET_ERROR(ENOENT);
456 		} else {
457 			err = dmu_spill_hold_by_dnode(dn,
458 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
459 		}
460 
461 		rw_exit(&dn->dn_struct_rwlock);
462 	}
463 
464 	DB_DNODE_EXIT(db);
465 	return (err);
466 }
467 
468 int
469 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
470     dmu_buf_t **dbp)
471 {
472 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
473 	dnode_t *dn;
474 	int err;
475 	uint32_t db_flags = DB_RF_CANFAIL;
476 
477 	if (flags & DMU_READ_NO_DECRYPT)
478 		db_flags |= DB_RF_NO_DECRYPT;
479 
480 	DB_DNODE_ENTER(db);
481 	dn = DB_DNODE(db);
482 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
483 	DB_DNODE_EXIT(db);
484 
485 	return (err);
486 }
487 
488 /*
489  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
490  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
491  * and can induce severe lock contention when writing to several files
492  * whose dnodes are in the same block.
493  */
494 int
495 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
496     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
497 {
498 	dmu_buf_t **dbp;
499 	uint64_t blkid, nblks, i;
500 	uint32_t dbuf_flags;
501 	int err;
502 	zio_t *zio = NULL;
503 
504 	ASSERT(length <= DMU_MAX_ACCESS);
505 
506 	/*
507 	 * Note: We directly notify the prefetch code of this read, so that
508 	 * we can tell it about the multi-block read.  dbuf_read() only knows
509 	 * about the one block it is accessing.
510 	 */
511 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
512 	    DB_RF_NOPREFETCH;
513 
514 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
515 	if (dn->dn_datablkshift) {
516 		int blkshift = dn->dn_datablkshift;
517 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
518 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
519 	} else {
520 		if (offset + length > dn->dn_datablksz) {
521 			zfs_panic_recover("zfs: accessing past end of object "
522 			    "%llx/%llx (size=%u access=%llu+%llu)",
523 			    (longlong_t)dn->dn_objset->
524 			    os_dsl_dataset->ds_object,
525 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
526 			    (longlong_t)offset, (longlong_t)length);
527 			rw_exit(&dn->dn_struct_rwlock);
528 			return (SET_ERROR(EIO));
529 		}
530 		nblks = 1;
531 	}
532 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
533 
534 	if (read)
535 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
536 		    ZIO_FLAG_CANFAIL);
537 	blkid = dbuf_whichblock(dn, 0, offset);
538 	for (i = 0; i < nblks; i++) {
539 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
540 		if (db == NULL) {
541 			rw_exit(&dn->dn_struct_rwlock);
542 			dmu_buf_rele_array(dbp, nblks, tag);
543 			if (read)
544 				zio_nowait(zio);
545 			return (SET_ERROR(EIO));
546 		}
547 
548 		/* initiate async i/o */
549 		if (read)
550 			(void) dbuf_read(db, zio, dbuf_flags);
551 		dbp[i] = &db->db;
552 	}
553 
554 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
555 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
556 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
557 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
558 	}
559 	rw_exit(&dn->dn_struct_rwlock);
560 
561 	if (read) {
562 		/* wait for async read i/o */
563 		err = zio_wait(zio);
564 		if (err) {
565 			dmu_buf_rele_array(dbp, nblks, tag);
566 			return (err);
567 		}
568 
569 		/* wait for other io to complete */
570 		for (i = 0; i < nblks; i++) {
571 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
572 			mutex_enter(&db->db_mtx);
573 			while (db->db_state == DB_READ ||
574 			    db->db_state == DB_FILL)
575 				cv_wait(&db->db_changed, &db->db_mtx);
576 			if (db->db_state == DB_UNCACHED)
577 				err = SET_ERROR(EIO);
578 			mutex_exit(&db->db_mtx);
579 			if (err) {
580 				dmu_buf_rele_array(dbp, nblks, tag);
581 				return (err);
582 			}
583 		}
584 	}
585 
586 	*numbufsp = nblks;
587 	*dbpp = dbp;
588 	return (0);
589 }
590 
591 static int
592 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
593     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
594 {
595 	dnode_t *dn;
596 	int err;
597 
598 	err = dnode_hold(os, object, FTAG, &dn);
599 	if (err)
600 		return (err);
601 
602 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
603 	    numbufsp, dbpp, DMU_READ_PREFETCH);
604 
605 	dnode_rele(dn, FTAG);
606 
607 	return (err);
608 }
609 
610 int
611 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
612     uint64_t length, boolean_t read, void *tag, int *numbufsp,
613     dmu_buf_t ***dbpp)
614 {
615 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
616 	dnode_t *dn;
617 	int err;
618 
619 	DB_DNODE_ENTER(db);
620 	dn = DB_DNODE(db);
621 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
622 	    numbufsp, dbpp, DMU_READ_PREFETCH);
623 	DB_DNODE_EXIT(db);
624 
625 	return (err);
626 }
627 
628 void
629 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
630 {
631 	int i;
632 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
633 
634 	if (numbufs == 0)
635 		return;
636 
637 	for (i = 0; i < numbufs; i++) {
638 		if (dbp[i])
639 			dbuf_rele(dbp[i], tag);
640 	}
641 
642 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
643 }
644 
645 /*
646  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
647  * indirect blocks prefetched will be those that point to the blocks containing
648  * the data starting at offset, and continuing to offset + len.
649  *
650  * Note that if the indirect blocks above the blocks being prefetched are not
651  * in cache, they will be asynchronously read in.
652  */
653 void
654 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
655     uint64_t len, zio_priority_t pri)
656 {
657 	dnode_t *dn;
658 	uint64_t blkid;
659 	int nblks, err;
660 
661 	if (len == 0) {  /* they're interested in the bonus buffer */
662 		dn = DMU_META_DNODE(os);
663 
664 		if (object == 0 || object >= DN_MAX_OBJECT)
665 			return;
666 
667 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
668 		blkid = dbuf_whichblock(dn, level,
669 		    object * sizeof (dnode_phys_t));
670 		dbuf_prefetch(dn, level, blkid, pri, 0);
671 		rw_exit(&dn->dn_struct_rwlock);
672 		return;
673 	}
674 
675 	/*
676 	 * See comment before the definition of dmu_prefetch_max.
677 	 */
678 	len = MIN(len, dmu_prefetch_max);
679 
680 	/*
681 	 * XXX - Note, if the dnode for the requested object is not
682 	 * already cached, we will do a *synchronous* read in the
683 	 * dnode_hold() call.  The same is true for any indirects.
684 	 */
685 	err = dnode_hold(os, object, FTAG, &dn);
686 	if (err != 0)
687 		return;
688 
689 	/*
690 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
691 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
692 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
693 	 * offset)  is the first.  Then the number we need to prefetch is the
694 	 * last - first + 1.
695 	 */
696 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
697 	if (level > 0 || dn->dn_datablkshift != 0) {
698 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
699 		    dbuf_whichblock(dn, level, offset) + 1;
700 	} else {
701 		nblks = (offset < dn->dn_datablksz);
702 	}
703 
704 	if (nblks != 0) {
705 		blkid = dbuf_whichblock(dn, level, offset);
706 		for (int i = 0; i < nblks; i++)
707 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
708 	}
709 	rw_exit(&dn->dn_struct_rwlock);
710 
711 	dnode_rele(dn, FTAG);
712 }
713 
714 /*
715  * Get the next "chunk" of file data to free.  We traverse the file from
716  * the end so that the file gets shorter over time (if we crashes in the
717  * middle, this will leave us in a better state).  We find allocated file
718  * data by simply searching the allocated level 1 indirects.
719  *
720  * On input, *start should be the first offset that does not need to be
721  * freed (e.g. "offset + length").  On return, *start will be the first
722  * offset that should be freed and l1blks is set to the number of level 1
723  * indirect blocks found within the chunk.
724  */
725 static int
726 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
727 {
728 	uint64_t blks;
729 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
730 	/* bytes of data covered by a level-1 indirect block */
731 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
732 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
733 
734 	ASSERT3U(minimum, <=, *start);
735 
736 	/*
737 	 * Check if we can free the entire range assuming that all of the
738 	 * L1 blocks in this range have data. If we can, we use this
739 	 * worst case value as an estimate so we can avoid having to look
740 	 * at the object's actual data.
741 	 */
742 	uint64_t total_l1blks =
743 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
744 	    iblkrange;
745 	if (total_l1blks <= maxblks) {
746 		*l1blks = total_l1blks;
747 		*start = minimum;
748 		return (0);
749 	}
750 	ASSERT(ISP2(iblkrange));
751 
752 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
753 		int err;
754 
755 		/*
756 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
757 		 * indirect block at or before the input offset.  We must
758 		 * decrement *start so that it is at the end of the region
759 		 * to search.
760 		 */
761 		(*start)--;
762 
763 		err = dnode_next_offset(dn,
764 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
765 
766 		/* if there are no indirect blocks before start, we are done */
767 		if (err == ESRCH) {
768 			*start = minimum;
769 			break;
770 		} else if (err != 0) {
771 			*l1blks = blks;
772 			return (err);
773 		}
774 
775 		/* set start to the beginning of this L1 indirect */
776 		*start = P2ALIGN(*start, iblkrange);
777 	}
778 	if (*start < minimum)
779 		*start = minimum;
780 	*l1blks = blks;
781 
782 	return (0);
783 }
784 
785 /*
786  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
787  * otherwise return false.
788  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
789  */
790 /*ARGSUSED*/
791 static boolean_t
792 dmu_objset_zfs_unmounting(objset_t *os)
793 {
794 #ifdef _KERNEL
795 	if (dmu_objset_type(os) == DMU_OST_ZFS)
796 		return (zfs_get_vfs_flag_unmounted(os));
797 #endif
798 	return (B_FALSE);
799 }
800 
801 static int
802 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
803     uint64_t length)
804 {
805 	uint64_t object_size;
806 	int err;
807 	uint64_t dirty_frees_threshold;
808 	dsl_pool_t *dp = dmu_objset_pool(os);
809 
810 	if (dn == NULL)
811 		return (SET_ERROR(EINVAL));
812 
813 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
814 	if (offset >= object_size)
815 		return (0);
816 
817 	if (zfs_per_txg_dirty_frees_percent <= 100)
818 		dirty_frees_threshold =
819 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
820 	else
821 		dirty_frees_threshold = zfs_dirty_data_max / 20;
822 
823 	if (length == DMU_OBJECT_END || offset + length > object_size)
824 		length = object_size - offset;
825 
826 	while (length != 0) {
827 		uint64_t chunk_end, chunk_begin, chunk_len;
828 		uint64_t l1blks;
829 		dmu_tx_t *tx;
830 
831 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
832 			return (SET_ERROR(EINTR));
833 
834 		chunk_end = chunk_begin = offset + length;
835 
836 		/* move chunk_begin backwards to the beginning of this chunk */
837 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
838 		if (err)
839 			return (err);
840 		ASSERT3U(chunk_begin, >=, offset);
841 		ASSERT3U(chunk_begin, <=, chunk_end);
842 
843 		chunk_len = chunk_end - chunk_begin;
844 
845 		tx = dmu_tx_create(os);
846 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
847 
848 		/*
849 		 * Mark this transaction as typically resulting in a net
850 		 * reduction in space used.
851 		 */
852 		dmu_tx_mark_netfree(tx);
853 		err = dmu_tx_assign(tx, TXG_WAIT);
854 		if (err) {
855 			dmu_tx_abort(tx);
856 			return (err);
857 		}
858 
859 		uint64_t txg = dmu_tx_get_txg(tx);
860 
861 		mutex_enter(&dp->dp_lock);
862 		uint64_t long_free_dirty =
863 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
864 		mutex_exit(&dp->dp_lock);
865 
866 		/*
867 		 * To avoid filling up a TXG with just frees, wait for
868 		 * the next TXG to open before freeing more chunks if
869 		 * we have reached the threshold of frees.
870 		 */
871 		if (dirty_frees_threshold != 0 &&
872 		    long_free_dirty >= dirty_frees_threshold) {
873 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
874 			dmu_tx_commit(tx);
875 			txg_wait_open(dp, 0, B_TRUE);
876 			continue;
877 		}
878 
879 		/*
880 		 * In order to prevent unnecessary write throttling, for each
881 		 * TXG, we track the cumulative size of L1 blocks being dirtied
882 		 * in dnode_free_range() below. We compare this number to a
883 		 * tunable threshold, past which we prevent new L1 dirty freeing
884 		 * blocks from being added into the open TXG. See
885 		 * dmu_free_long_range_impl() for details. The threshold
886 		 * prevents write throttle activation due to dirty freeing L1
887 		 * blocks taking up a large percentage of zfs_dirty_data_max.
888 		 */
889 		mutex_enter(&dp->dp_lock);
890 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
891 		    l1blks << dn->dn_indblkshift;
892 		mutex_exit(&dp->dp_lock);
893 		DTRACE_PROBE3(free__long__range,
894 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
895 		    uint64_t, txg);
896 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
897 
898 		dmu_tx_commit(tx);
899 
900 		length -= chunk_len;
901 	}
902 	return (0);
903 }
904 
905 int
906 dmu_free_long_range(objset_t *os, uint64_t object,
907     uint64_t offset, uint64_t length)
908 {
909 	dnode_t *dn;
910 	int err;
911 
912 	err = dnode_hold(os, object, FTAG, &dn);
913 	if (err != 0)
914 		return (err);
915 	err = dmu_free_long_range_impl(os, dn, offset, length);
916 
917 	/*
918 	 * It is important to zero out the maxblkid when freeing the entire
919 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
920 	 * will take the fast path, and (b) dnode_reallocate() can verify
921 	 * that the entire file has been freed.
922 	 */
923 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
924 		dn->dn_maxblkid = 0;
925 
926 	dnode_rele(dn, FTAG);
927 	return (err);
928 }
929 
930 int
931 dmu_free_long_object(objset_t *os, uint64_t object)
932 {
933 	dmu_tx_t *tx;
934 	int err;
935 
936 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
937 	if (err != 0)
938 		return (err);
939 
940 	tx = dmu_tx_create(os);
941 	dmu_tx_hold_bonus(tx, object);
942 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
943 	dmu_tx_mark_netfree(tx);
944 	err = dmu_tx_assign(tx, TXG_WAIT);
945 	if (err == 0) {
946 		if (err == 0)
947 			err = dmu_object_free(os, object, tx);
948 
949 		dmu_tx_commit(tx);
950 	} else {
951 		dmu_tx_abort(tx);
952 	}
953 
954 	return (err);
955 }
956 
957 int
958 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
959     uint64_t size, dmu_tx_t *tx)
960 {
961 	dnode_t *dn;
962 	int err = dnode_hold(os, object, FTAG, &dn);
963 	if (err)
964 		return (err);
965 	ASSERT(offset < UINT64_MAX);
966 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
967 	dnode_free_range(dn, offset, size, tx);
968 	dnode_rele(dn, FTAG);
969 	return (0);
970 }
971 
972 static int
973 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
974     void *buf, uint32_t flags)
975 {
976 	dmu_buf_t **dbp;
977 	int numbufs, err = 0;
978 
979 	/*
980 	 * Deal with odd block sizes, where there can't be data past the first
981 	 * block.  If we ever do the tail block optimization, we will need to
982 	 * handle that here as well.
983 	 */
984 	if (dn->dn_maxblkid == 0) {
985 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
986 		    MIN(size, dn->dn_datablksz - offset);
987 		bzero((char *)buf + newsz, size - newsz);
988 		size = newsz;
989 	}
990 
991 	while (size > 0) {
992 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
993 		int i;
994 
995 		/*
996 		 * NB: we could do this block-at-a-time, but it's nice
997 		 * to be reading in parallel.
998 		 */
999 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1000 		    TRUE, FTAG, &numbufs, &dbp, flags);
1001 		if (err)
1002 			break;
1003 
1004 		for (i = 0; i < numbufs; i++) {
1005 			uint64_t tocpy;
1006 			int64_t bufoff;
1007 			dmu_buf_t *db = dbp[i];
1008 
1009 			ASSERT(size > 0);
1010 
1011 			bufoff = offset - db->db_offset;
1012 			tocpy = MIN(db->db_size - bufoff, size);
1013 
1014 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1015 
1016 			offset += tocpy;
1017 			size -= tocpy;
1018 			buf = (char *)buf + tocpy;
1019 		}
1020 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1021 	}
1022 	return (err);
1023 }
1024 
1025 int
1026 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1027     void *buf, uint32_t flags)
1028 {
1029 	dnode_t *dn;
1030 	int err;
1031 
1032 	err = dnode_hold(os, object, FTAG, &dn);
1033 	if (err != 0)
1034 		return (err);
1035 
1036 	err = dmu_read_impl(dn, offset, size, buf, flags);
1037 	dnode_rele(dn, FTAG);
1038 	return (err);
1039 }
1040 
1041 int
1042 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1043     uint32_t flags)
1044 {
1045 	return (dmu_read_impl(dn, offset, size, buf, flags));
1046 }
1047 
1048 static void
1049 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1050     const void *buf, dmu_tx_t *tx)
1051 {
1052 	int i;
1053 
1054 	for (i = 0; i < numbufs; i++) {
1055 		uint64_t tocpy;
1056 		int64_t bufoff;
1057 		dmu_buf_t *db = dbp[i];
1058 
1059 		ASSERT(size > 0);
1060 
1061 		bufoff = offset - db->db_offset;
1062 		tocpy = MIN(db->db_size - bufoff, size);
1063 
1064 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1065 
1066 		if (tocpy == db->db_size)
1067 			dmu_buf_will_fill(db, tx);
1068 		else
1069 			dmu_buf_will_dirty(db, tx);
1070 
1071 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1072 
1073 		if (tocpy == db->db_size)
1074 			dmu_buf_fill_done(db, tx);
1075 
1076 		offset += tocpy;
1077 		size -= tocpy;
1078 		buf = (char *)buf + tocpy;
1079 	}
1080 }
1081 
1082 void
1083 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1084     const void *buf, dmu_tx_t *tx)
1085 {
1086 	dmu_buf_t **dbp;
1087 	int numbufs;
1088 
1089 	if (size == 0)
1090 		return;
1091 
1092 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1093 	    FALSE, FTAG, &numbufs, &dbp));
1094 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1095 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1096 }
1097 
1098 /*
1099  * Note: Lustre is an external consumer of this interface.
1100  */
1101 void
1102 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1103     const void *buf, dmu_tx_t *tx)
1104 {
1105 	dmu_buf_t **dbp;
1106 	int numbufs;
1107 
1108 	if (size == 0)
1109 		return;
1110 
1111 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1112 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1113 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1114 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1115 }
1116 
1117 void
1118 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1119     dmu_tx_t *tx)
1120 {
1121 	dmu_buf_t **dbp;
1122 	int numbufs, i;
1123 
1124 	if (size == 0)
1125 		return;
1126 
1127 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1128 	    FALSE, FTAG, &numbufs, &dbp));
1129 
1130 	for (i = 0; i < numbufs; i++) {
1131 		dmu_buf_t *db = dbp[i];
1132 
1133 		dmu_buf_will_not_fill(db, tx);
1134 	}
1135 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1136 }
1137 
1138 void
1139 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1140     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1141     int compressed_size, int byteorder, dmu_tx_t *tx)
1142 {
1143 	dmu_buf_t *db;
1144 
1145 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1146 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1147 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1148 	    FTAG, &db));
1149 
1150 	dmu_buf_write_embedded(db,
1151 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1152 	    uncompressed_size, compressed_size, byteorder, tx);
1153 
1154 	dmu_buf_rele(db, FTAG);
1155 }
1156 
1157 void
1158 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1159     dmu_tx_t *tx)
1160 {
1161 	int numbufs, i;
1162 	dmu_buf_t **dbp;
1163 
1164 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1165 	    &numbufs, &dbp));
1166 	for (i = 0; i < numbufs; i++)
1167 		dmu_buf_redact(dbp[i], tx);
1168 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1169 }
1170 
1171 #ifdef _KERNEL
1172 int
1173 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1174 {
1175 	dmu_buf_t **dbp;
1176 	int numbufs, i, err;
1177 
1178 	/*
1179 	 * NB: we could do this block-at-a-time, but it's nice
1180 	 * to be reading in parallel.
1181 	 */
1182 	err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
1183 	    TRUE, FTAG, &numbufs, &dbp, 0);
1184 	if (err)
1185 		return (err);
1186 
1187 	for (i = 0; i < numbufs; i++) {
1188 		uint64_t tocpy;
1189 		int64_t bufoff;
1190 		dmu_buf_t *db = dbp[i];
1191 
1192 		ASSERT(size > 0);
1193 
1194 		bufoff = uio_offset(uio) - db->db_offset;
1195 		tocpy = MIN(db->db_size - bufoff, size);
1196 
1197 #ifdef __FreeBSD__
1198 			err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1199 			    tocpy, uio);
1200 #else
1201 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1202 			    UIO_READ, uio);
1203 #endif
1204 		if (err)
1205 			break;
1206 
1207 		size -= tocpy;
1208 	}
1209 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1210 
1211 	return (err);
1212 }
1213 
1214 /*
1215  * Read 'size' bytes into the uio buffer.
1216  * From object zdb->db_object.
1217  * Starting at offset uio->uio_loffset.
1218  *
1219  * If the caller already has a dbuf in the target object
1220  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1221  * because we don't have to find the dnode_t for the object.
1222  */
1223 int
1224 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1225 {
1226 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1227 	dnode_t *dn;
1228 	int err;
1229 
1230 	if (size == 0)
1231 		return (0);
1232 
1233 	DB_DNODE_ENTER(db);
1234 	dn = DB_DNODE(db);
1235 	err = dmu_read_uio_dnode(dn, uio, size);
1236 	DB_DNODE_EXIT(db);
1237 
1238 	return (err);
1239 }
1240 
1241 /*
1242  * Read 'size' bytes into the uio buffer.
1243  * From the specified object
1244  * Starting at offset uio->uio_loffset.
1245  */
1246 int
1247 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1248 {
1249 	dnode_t *dn;
1250 	int err;
1251 
1252 	if (size == 0)
1253 		return (0);
1254 
1255 	err = dnode_hold(os, object, FTAG, &dn);
1256 	if (err)
1257 		return (err);
1258 
1259 	err = dmu_read_uio_dnode(dn, uio, size);
1260 
1261 	dnode_rele(dn, FTAG);
1262 
1263 	return (err);
1264 }
1265 
1266 int
1267 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1268 {
1269 	dmu_buf_t **dbp;
1270 	int numbufs;
1271 	int err = 0;
1272 	int i;
1273 
1274 	err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
1275 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1276 	if (err)
1277 		return (err);
1278 
1279 	for (i = 0; i < numbufs; i++) {
1280 		uint64_t tocpy;
1281 		int64_t bufoff;
1282 		dmu_buf_t *db = dbp[i];
1283 
1284 		ASSERT(size > 0);
1285 
1286 		bufoff = uio_offset(uio) - db->db_offset;
1287 		tocpy = MIN(db->db_size - bufoff, size);
1288 
1289 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1290 
1291 		if (tocpy == db->db_size)
1292 			dmu_buf_will_fill(db, tx);
1293 		else
1294 			dmu_buf_will_dirty(db, tx);
1295 
1296 		/*
1297 		 * XXX uiomove could block forever (eg.nfs-backed
1298 		 * pages).  There needs to be a uiolockdown() function
1299 		 * to lock the pages in memory, so that uiomove won't
1300 		 * block.
1301 		 */
1302 #ifdef __FreeBSD__
1303 		err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1304 		    tocpy, uio);
1305 #else
1306 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1307 		    UIO_WRITE, uio);
1308 #endif
1309 		if (tocpy == db->db_size)
1310 			dmu_buf_fill_done(db, tx);
1311 
1312 		if (err)
1313 			break;
1314 
1315 		size -= tocpy;
1316 	}
1317 
1318 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1319 	return (err);
1320 }
1321 
1322 /*
1323  * Write 'size' bytes from the uio buffer.
1324  * To object zdb->db_object.
1325  * Starting at offset uio->uio_loffset.
1326  *
1327  * If the caller already has a dbuf in the target object
1328  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1329  * because we don't have to find the dnode_t for the object.
1330  */
1331 int
1332 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1333     dmu_tx_t *tx)
1334 {
1335 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1336 	dnode_t *dn;
1337 	int err;
1338 
1339 	if (size == 0)
1340 		return (0);
1341 
1342 	DB_DNODE_ENTER(db);
1343 	dn = DB_DNODE(db);
1344 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1345 	DB_DNODE_EXIT(db);
1346 
1347 	return (err);
1348 }
1349 
1350 /*
1351  * Write 'size' bytes from the uio buffer.
1352  * To the specified object.
1353  * Starting at offset uio->uio_loffset.
1354  */
1355 int
1356 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1357     dmu_tx_t *tx)
1358 {
1359 	dnode_t *dn;
1360 	int err;
1361 
1362 	if (size == 0)
1363 		return (0);
1364 
1365 	err = dnode_hold(os, object, FTAG, &dn);
1366 	if (err)
1367 		return (err);
1368 
1369 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1370 
1371 	dnode_rele(dn, FTAG);
1372 
1373 	return (err);
1374 }
1375 #endif /* _KERNEL */
1376 
1377 /*
1378  * Allocate a loaned anonymous arc buffer.
1379  */
1380 arc_buf_t *
1381 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1382 {
1383 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1384 
1385 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1386 }
1387 
1388 /*
1389  * Free a loaned arc buffer.
1390  */
1391 void
1392 dmu_return_arcbuf(arc_buf_t *buf)
1393 {
1394 	arc_return_buf(buf, FTAG);
1395 	arc_buf_destroy(buf, FTAG);
1396 }
1397 
1398 /*
1399  * A "lightweight" write is faster than a regular write (e.g.
1400  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1401  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1402  * data can not be read or overwritten until the transaction's txg has been
1403  * synced.  This makes it appropriate for workloads that are known to be
1404  * (temporarily) write-only, like "zfs receive".
1405  *
1406  * A single block is written, starting at the specified offset in bytes.  If
1407  * the call is successful, it returns 0 and the provided abd has been
1408  * consumed (the caller should not free it).
1409  */
1410 int
1411 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1412     const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1413 {
1414 	dbuf_dirty_record_t *dr =
1415 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1416 	if (dr == NULL)
1417 		return (SET_ERROR(EIO));
1418 	dr->dt.dll.dr_abd = abd;
1419 	dr->dt.dll.dr_props = *zp;
1420 	dr->dt.dll.dr_flags = flags;
1421 	return (0);
1422 }
1423 
1424 /*
1425  * When possible directly assign passed loaned arc buffer to a dbuf.
1426  * If this is not possible copy the contents of passed arc buf via
1427  * dmu_write().
1428  */
1429 int
1430 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1431     dmu_tx_t *tx)
1432 {
1433 	dmu_buf_impl_t *db;
1434 	objset_t *os = dn->dn_objset;
1435 	uint64_t object = dn->dn_object;
1436 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1437 	uint64_t blkid;
1438 
1439 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1440 	blkid = dbuf_whichblock(dn, 0, offset);
1441 	db = dbuf_hold(dn, blkid, FTAG);
1442 	if (db == NULL)
1443 		return (SET_ERROR(EIO));
1444 	rw_exit(&dn->dn_struct_rwlock);
1445 
1446 	/*
1447 	 * We can only assign if the offset is aligned and the arc buf is the
1448 	 * same size as the dbuf.
1449 	 */
1450 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1451 		dbuf_assign_arcbuf(db, buf, tx);
1452 		dbuf_rele(db, FTAG);
1453 	} else {
1454 		/* compressed bufs must always be assignable to their dbuf */
1455 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1456 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1457 
1458 		dbuf_rele(db, FTAG);
1459 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1460 		dmu_return_arcbuf(buf);
1461 	}
1462 
1463 	return (0);
1464 }
1465 
1466 int
1467 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1468     dmu_tx_t *tx)
1469 {
1470 	int err;
1471 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1472 
1473 	DB_DNODE_ENTER(dbuf);
1474 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1475 	DB_DNODE_EXIT(dbuf);
1476 
1477 	return (err);
1478 }
1479 
1480 typedef struct {
1481 	dbuf_dirty_record_t	*dsa_dr;
1482 	dmu_sync_cb_t		*dsa_done;
1483 	zgd_t			*dsa_zgd;
1484 	dmu_tx_t		*dsa_tx;
1485 } dmu_sync_arg_t;
1486 
1487 /* ARGSUSED */
1488 static void
1489 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1490 {
1491 	dmu_sync_arg_t *dsa = varg;
1492 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1493 	blkptr_t *bp = zio->io_bp;
1494 
1495 	if (zio->io_error == 0) {
1496 		if (BP_IS_HOLE(bp)) {
1497 			/*
1498 			 * A block of zeros may compress to a hole, but the
1499 			 * block size still needs to be known for replay.
1500 			 */
1501 			BP_SET_LSIZE(bp, db->db_size);
1502 		} else if (!BP_IS_EMBEDDED(bp)) {
1503 			ASSERT(BP_GET_LEVEL(bp) == 0);
1504 			BP_SET_FILL(bp, 1);
1505 		}
1506 	}
1507 }
1508 
1509 static void
1510 dmu_sync_late_arrival_ready(zio_t *zio)
1511 {
1512 	dmu_sync_ready(zio, NULL, zio->io_private);
1513 }
1514 
1515 /* ARGSUSED */
1516 static void
1517 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1518 {
1519 	dmu_sync_arg_t *dsa = varg;
1520 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1521 	dmu_buf_impl_t *db = dr->dr_dbuf;
1522 	zgd_t *zgd = dsa->dsa_zgd;
1523 
1524 	/*
1525 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1526 	 * the writes for the lwb have completed.
1527 	 */
1528 	if (zio->io_error == 0) {
1529 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1530 	}
1531 
1532 	mutex_enter(&db->db_mtx);
1533 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1534 	if (zio->io_error == 0) {
1535 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1536 		if (dr->dt.dl.dr_nopwrite) {
1537 			blkptr_t *bp = zio->io_bp;
1538 			blkptr_t *bp_orig = &zio->io_bp_orig;
1539 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1540 
1541 			ASSERT(BP_EQUAL(bp, bp_orig));
1542 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1543 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1544 			VERIFY(zio_checksum_table[chksum].ci_flags &
1545 			    ZCHECKSUM_FLAG_NOPWRITE);
1546 		}
1547 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1548 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1549 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1550 
1551 		/*
1552 		 * Old style holes are filled with all zeros, whereas
1553 		 * new-style holes maintain their lsize, type, level,
1554 		 * and birth time (see zio_write_compress). While we
1555 		 * need to reset the BP_SET_LSIZE() call that happened
1556 		 * in dmu_sync_ready for old style holes, we do *not*
1557 		 * want to wipe out the information contained in new
1558 		 * style holes. Thus, only zero out the block pointer if
1559 		 * it's an old style hole.
1560 		 */
1561 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1562 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1563 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1564 	} else {
1565 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1566 	}
1567 	cv_broadcast(&db->db_changed);
1568 	mutex_exit(&db->db_mtx);
1569 
1570 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1571 
1572 	kmem_free(dsa, sizeof (*dsa));
1573 }
1574 
1575 static void
1576 dmu_sync_late_arrival_done(zio_t *zio)
1577 {
1578 	blkptr_t *bp = zio->io_bp;
1579 	dmu_sync_arg_t *dsa = zio->io_private;
1580 	zgd_t *zgd = dsa->dsa_zgd;
1581 
1582 	if (zio->io_error == 0) {
1583 		/*
1584 		 * Record the vdev(s) backing this blkptr so they can be
1585 		 * flushed after the writes for the lwb have completed.
1586 		 */
1587 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1588 
1589 		if (!BP_IS_HOLE(bp)) {
1590 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1591 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1592 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1593 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1594 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1595 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1596 		}
1597 	}
1598 
1599 	dmu_tx_commit(dsa->dsa_tx);
1600 
1601 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1602 
1603 	abd_put(zio->io_abd);
1604 	kmem_free(dsa, sizeof (*dsa));
1605 }
1606 
1607 static int
1608 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1609     zio_prop_t *zp, zbookmark_phys_t *zb)
1610 {
1611 	dmu_sync_arg_t *dsa;
1612 	dmu_tx_t *tx;
1613 
1614 	tx = dmu_tx_create(os);
1615 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1616 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1617 		dmu_tx_abort(tx);
1618 		/* Make zl_get_data do txg_waited_synced() */
1619 		return (SET_ERROR(EIO));
1620 	}
1621 
1622 	/*
1623 	 * In order to prevent the zgd's lwb from being free'd prior to
1624 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1625 	 * the lwb's "max txg" takes this tx's txg into account.
1626 	 */
1627 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1628 
1629 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1630 	dsa->dsa_dr = NULL;
1631 	dsa->dsa_done = done;
1632 	dsa->dsa_zgd = zgd;
1633 	dsa->dsa_tx = tx;
1634 
1635 	/*
1636 	 * Since we are currently syncing this txg, it's nontrivial to
1637 	 * determine what BP to nopwrite against, so we disable nopwrite.
1638 	 *
1639 	 * When syncing, the db_blkptr is initially the BP of the previous
1640 	 * txg.  We can not nopwrite against it because it will be changed
1641 	 * (this is similar to the non-late-arrival case where the dbuf is
1642 	 * dirty in a future txg).
1643 	 *
1644 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1645 	 * We can not nopwrite against it because although the BP will not
1646 	 * (typically) be changed, the data has not yet been persisted to this
1647 	 * location.
1648 	 *
1649 	 * Finally, when dbuf_write_done() is called, it is theoretically
1650 	 * possible to always nopwrite, because the data that was written in
1651 	 * this txg is the same data that we are trying to write.  However we
1652 	 * would need to check that this dbuf is not dirty in any future
1653 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1654 	 * don't nopwrite in this case.
1655 	 */
1656 	zp->zp_nopwrite = B_FALSE;
1657 
1658 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1659 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1660 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1661 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1662 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1663 
1664 	return (0);
1665 }
1666 
1667 /*
1668  * Intent log support: sync the block associated with db to disk.
1669  * N.B. and XXX: the caller is responsible for making sure that the
1670  * data isn't changing while dmu_sync() is writing it.
1671  *
1672  * Return values:
1673  *
1674  *	EEXIST: this txg has already been synced, so there's nothing to do.
1675  *		The caller should not log the write.
1676  *
1677  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1678  *		The caller should not log the write.
1679  *
1680  *	EALREADY: this block is already in the process of being synced.
1681  *		The caller should track its progress (somehow).
1682  *
1683  *	EIO: could not do the I/O.
1684  *		The caller should do a txg_wait_synced().
1685  *
1686  *	0: the I/O has been initiated.
1687  *		The caller should log this blkptr in the done callback.
1688  *		It is possible that the I/O will fail, in which case
1689  *		the error will be reported to the done callback and
1690  *		propagated to pio from zio_done().
1691  */
1692 int
1693 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1694 {
1695 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1696 	objset_t *os = db->db_objset;
1697 	dsl_dataset_t *ds = os->os_dsl_dataset;
1698 	dbuf_dirty_record_t *dr, *dr_next;
1699 	dmu_sync_arg_t *dsa;
1700 	zbookmark_phys_t zb;
1701 	zio_prop_t zp;
1702 	dnode_t *dn;
1703 
1704 	ASSERT(pio != NULL);
1705 	ASSERT(txg != 0);
1706 
1707 	SET_BOOKMARK(&zb, ds->ds_object,
1708 	    db->db.db_object, db->db_level, db->db_blkid);
1709 
1710 	DB_DNODE_ENTER(db);
1711 	dn = DB_DNODE(db);
1712 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1713 	DB_DNODE_EXIT(db);
1714 
1715 	/*
1716 	 * If we're frozen (running ziltest), we always need to generate a bp.
1717 	 */
1718 	if (txg > spa_freeze_txg(os->os_spa))
1719 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1720 
1721 	/*
1722 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1723 	 * and us.  If we determine that this txg is not yet syncing,
1724 	 * but it begins to sync a moment later, that's OK because the
1725 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1726 	 */
1727 	mutex_enter(&db->db_mtx);
1728 
1729 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1730 		/*
1731 		 * This txg has already synced.  There's nothing to do.
1732 		 */
1733 		mutex_exit(&db->db_mtx);
1734 		return (SET_ERROR(EEXIST));
1735 	}
1736 
1737 	if (txg <= spa_syncing_txg(os->os_spa)) {
1738 		/*
1739 		 * This txg is currently syncing, so we can't mess with
1740 		 * the dirty record anymore; just write a new log block.
1741 		 */
1742 		mutex_exit(&db->db_mtx);
1743 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1744 	}
1745 
1746 	dr = dbuf_find_dirty_eq(db, txg);
1747 
1748 	if (dr == NULL) {
1749 		/*
1750 		 * There's no dr for this dbuf, so it must have been freed.
1751 		 * There's no need to log writes to freed blocks, so we're done.
1752 		 */
1753 		mutex_exit(&db->db_mtx);
1754 		return (SET_ERROR(ENOENT));
1755 	}
1756 
1757 	dr_next = list_next(&db->db_dirty_records, dr);
1758 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1759 
1760 	if (db->db_blkptr != NULL) {
1761 		/*
1762 		 * We need to fill in zgd_bp with the current blkptr so that
1763 		 * the nopwrite code can check if we're writing the same
1764 		 * data that's already on disk.  We can only nopwrite if we
1765 		 * are sure that after making the copy, db_blkptr will not
1766 		 * change until our i/o completes.  We ensure this by
1767 		 * holding the db_mtx, and only allowing nopwrite if the
1768 		 * block is not already dirty (see below).  This is verified
1769 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1770 		 * not changed.
1771 		 */
1772 		*zgd->zgd_bp = *db->db_blkptr;
1773 	}
1774 
1775 	/*
1776 	 * Assume the on-disk data is X, the current syncing data (in
1777 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1778 	 * in dmu_sync).
1779 	 *
1780 	 * We usually want to perform a nopwrite if X and Z are the
1781 	 * same.  However, if Y is different (i.e. the BP is going to
1782 	 * change before this write takes effect), then a nopwrite will
1783 	 * be incorrect - we would override with X, which could have
1784 	 * been freed when Y was written.
1785 	 *
1786 	 * (Note that this is not a concern when we are nop-writing from
1787 	 * syncing context, because X and Y must be identical, because
1788 	 * all previous txgs have been synced.)
1789 	 *
1790 	 * Therefore, we disable nopwrite if the current BP could change
1791 	 * before this TXG.  There are two ways it could change: by
1792 	 * being dirty (dr_next is non-NULL), or by being freed
1793 	 * (dnode_block_freed()).  This behavior is verified by
1794 	 * zio_done(), which VERIFYs that the override BP is identical
1795 	 * to the on-disk BP.
1796 	 */
1797 	DB_DNODE_ENTER(db);
1798 	dn = DB_DNODE(db);
1799 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1800 		zp.zp_nopwrite = B_FALSE;
1801 	DB_DNODE_EXIT(db);
1802 
1803 	ASSERT(dr->dr_txg == txg);
1804 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1805 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1806 		/*
1807 		 * We have already issued a sync write for this buffer,
1808 		 * or this buffer has already been synced.  It could not
1809 		 * have been dirtied since, or we would have cleared the state.
1810 		 */
1811 		mutex_exit(&db->db_mtx);
1812 		return (SET_ERROR(EALREADY));
1813 	}
1814 
1815 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1816 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1817 	mutex_exit(&db->db_mtx);
1818 
1819 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1820 	dsa->dsa_dr = dr;
1821 	dsa->dsa_done = done;
1822 	dsa->dsa_zgd = zgd;
1823 	dsa->dsa_tx = NULL;
1824 
1825 	zio_nowait(arc_write(pio, os->os_spa, txg,
1826 	    zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1827 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1828 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1829 
1830 	return (0);
1831 }
1832 
1833 int
1834 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1835 {
1836 	dnode_t *dn;
1837 	int err;
1838 
1839 	err = dnode_hold(os, object, FTAG, &dn);
1840 	if (err)
1841 		return (err);
1842 	err = dnode_set_nlevels(dn, nlevels, tx);
1843 	dnode_rele(dn, FTAG);
1844 	return (err);
1845 }
1846 
1847 int
1848 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1849     dmu_tx_t *tx)
1850 {
1851 	dnode_t *dn;
1852 	int err;
1853 
1854 	err = dnode_hold(os, object, FTAG, &dn);
1855 	if (err)
1856 		return (err);
1857 	err = dnode_set_blksz(dn, size, ibs, tx);
1858 	dnode_rele(dn, FTAG);
1859 	return (err);
1860 }
1861 
1862 int
1863 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1864     dmu_tx_t *tx)
1865 {
1866 	dnode_t *dn;
1867 	int err;
1868 
1869 	err = dnode_hold(os, object, FTAG, &dn);
1870 	if (err)
1871 		return (err);
1872 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1873 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1874 	rw_exit(&dn->dn_struct_rwlock);
1875 	dnode_rele(dn, FTAG);
1876 	return (0);
1877 }
1878 
1879 void
1880 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1881     dmu_tx_t *tx)
1882 {
1883 	dnode_t *dn;
1884 
1885 	/*
1886 	 * Send streams include each object's checksum function.  This
1887 	 * check ensures that the receiving system can understand the
1888 	 * checksum function transmitted.
1889 	 */
1890 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1891 
1892 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1893 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1894 	dn->dn_checksum = checksum;
1895 	dnode_setdirty(dn, tx);
1896 	dnode_rele(dn, FTAG);
1897 }
1898 
1899 void
1900 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1901     dmu_tx_t *tx)
1902 {
1903 	dnode_t *dn;
1904 
1905 	/*
1906 	 * Send streams include each object's compression function.  This
1907 	 * check ensures that the receiving system can understand the
1908 	 * compression function transmitted.
1909 	 */
1910 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1911 
1912 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1913 	dn->dn_compress = compress;
1914 	dnode_setdirty(dn, tx);
1915 	dnode_rele(dn, FTAG);
1916 }
1917 
1918 /*
1919  * When the "redundant_metadata" property is set to "most", only indirect
1920  * blocks of this level and higher will have an additional ditto block.
1921  */
1922 int zfs_redundant_metadata_most_ditto_level = 2;
1923 
1924 void
1925 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1926 {
1927 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1928 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1929 	    (wp & WP_SPILL));
1930 	enum zio_checksum checksum = os->os_checksum;
1931 	enum zio_compress compress = os->os_compress;
1932 	uint8_t complevel = os->os_complevel;
1933 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1934 	boolean_t dedup = B_FALSE;
1935 	boolean_t nopwrite = B_FALSE;
1936 	boolean_t dedup_verify = os->os_dedup_verify;
1937 	boolean_t encrypt = B_FALSE;
1938 	int copies = os->os_copies;
1939 
1940 	/*
1941 	 * We maintain different write policies for each of the following
1942 	 * types of data:
1943 	 *	 1. metadata
1944 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1945 	 *	 3. all other level 0 blocks
1946 	 */
1947 	if (ismd) {
1948 		/*
1949 		 * XXX -- we should design a compression algorithm
1950 		 * that specializes in arrays of bps.
1951 		 */
1952 		compress = zio_compress_select(os->os_spa,
1953 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1954 
1955 		/*
1956 		 * Metadata always gets checksummed.  If the data
1957 		 * checksum is multi-bit correctable, and it's not a
1958 		 * ZBT-style checksum, then it's suitable for metadata
1959 		 * as well.  Otherwise, the metadata checksum defaults
1960 		 * to fletcher4.
1961 		 */
1962 		if (!(zio_checksum_table[checksum].ci_flags &
1963 		    ZCHECKSUM_FLAG_METADATA) ||
1964 		    (zio_checksum_table[checksum].ci_flags &
1965 		    ZCHECKSUM_FLAG_EMBEDDED))
1966 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1967 
1968 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1969 		    (os->os_redundant_metadata ==
1970 		    ZFS_REDUNDANT_METADATA_MOST &&
1971 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1972 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1973 			copies++;
1974 	} else if (wp & WP_NOFILL) {
1975 		ASSERT(level == 0);
1976 
1977 		/*
1978 		 * If we're writing preallocated blocks, we aren't actually
1979 		 * writing them so don't set any policy properties.  These
1980 		 * blocks are currently only used by an external subsystem
1981 		 * outside of zfs (i.e. dump) and not written by the zio
1982 		 * pipeline.
1983 		 */
1984 		compress = ZIO_COMPRESS_OFF;
1985 		checksum = ZIO_CHECKSUM_OFF;
1986 	} else {
1987 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
1988 		    compress);
1989 		complevel = zio_complevel_select(os->os_spa, compress,
1990 		    complevel, complevel);
1991 
1992 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1993 		    zio_checksum_select(dn->dn_checksum, checksum) :
1994 		    dedup_checksum;
1995 
1996 		/*
1997 		 * Determine dedup setting.  If we are in dmu_sync(),
1998 		 * we won't actually dedup now because that's all
1999 		 * done in syncing context; but we do want to use the
2000 		 * dedup checksum.  If the checksum is not strong
2001 		 * enough to ensure unique signatures, force
2002 		 * dedup_verify.
2003 		 */
2004 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2005 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2006 			if (!(zio_checksum_table[checksum].ci_flags &
2007 			    ZCHECKSUM_FLAG_DEDUP))
2008 				dedup_verify = B_TRUE;
2009 		}
2010 
2011 		/*
2012 		 * Enable nopwrite if we have secure enough checksum
2013 		 * algorithm (see comment in zio_nop_write) and
2014 		 * compression is enabled.  We don't enable nopwrite if
2015 		 * dedup is enabled as the two features are mutually
2016 		 * exclusive.
2017 		 */
2018 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2019 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2020 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2021 	}
2022 
2023 	/*
2024 	 * All objects in an encrypted objset are protected from modification
2025 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2026 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2027 	 * not subject to nopwrite since writing the same data will still
2028 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2029 	 * to avoid ambiguity in the dedup code since the DDT does not store
2030 	 * object types.
2031 	 */
2032 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2033 		encrypt = B_TRUE;
2034 
2035 		if (DMU_OT_IS_ENCRYPTED(type)) {
2036 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2037 			nopwrite = B_FALSE;
2038 		} else {
2039 			dedup = B_FALSE;
2040 		}
2041 
2042 		if (level <= 0 &&
2043 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2044 			compress = ZIO_COMPRESS_EMPTY;
2045 		}
2046 	}
2047 
2048 	zp->zp_compress = compress;
2049 	zp->zp_complevel = complevel;
2050 	zp->zp_checksum = checksum;
2051 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2052 	zp->zp_level = level;
2053 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2054 	zp->zp_dedup = dedup;
2055 	zp->zp_dedup_verify = dedup && dedup_verify;
2056 	zp->zp_nopwrite = nopwrite;
2057 	zp->zp_encrypt = encrypt;
2058 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2059 	bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2060 	bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2061 	bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2062 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2063 	    os->os_zpl_special_smallblock : 0;
2064 
2065 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2066 }
2067 
2068 /*
2069  * This function is only called from zfs_holey_common() for zpl_llseek()
2070  * in order to determine the location of holes.  In order to accurately
2071  * report holes all dirty data must be synced to disk.  This causes extremely
2072  * poor performance when seeking for holes in a dirty file.  As a compromise,
2073  * only provide hole data when the dnode is clean.  When a dnode is dirty
2074  * report the dnode as having no holes which is always a safe thing to do.
2075  */
2076 int
2077 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2078 {
2079 	dnode_t *dn;
2080 	int i, err;
2081 	boolean_t clean = B_TRUE;
2082 
2083 	err = dnode_hold(os, object, FTAG, &dn);
2084 	if (err)
2085 		return (err);
2086 
2087 	/*
2088 	 * Check if dnode is dirty
2089 	 */
2090 	for (i = 0; i < TXG_SIZE; i++) {
2091 		if (multilist_link_active(&dn->dn_dirty_link[i])) {
2092 			clean = B_FALSE;
2093 			break;
2094 		}
2095 	}
2096 
2097 	/*
2098 	 * If compatibility option is on, sync any current changes before
2099 	 * we go trundling through the block pointers.
2100 	 */
2101 	if (!clean && zfs_dmu_offset_next_sync) {
2102 		clean = B_TRUE;
2103 		dnode_rele(dn, FTAG);
2104 		txg_wait_synced(dmu_objset_pool(os), 0);
2105 		err = dnode_hold(os, object, FTAG, &dn);
2106 		if (err)
2107 			return (err);
2108 	}
2109 
2110 	if (clean)
2111 		err = dnode_next_offset(dn,
2112 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2113 	else
2114 		err = SET_ERROR(EBUSY);
2115 
2116 	dnode_rele(dn, FTAG);
2117 
2118 	return (err);
2119 }
2120 
2121 void
2122 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2123 {
2124 	dnode_phys_t *dnp = dn->dn_phys;
2125 
2126 	doi->doi_data_block_size = dn->dn_datablksz;
2127 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2128 	    1ULL << dn->dn_indblkshift : 0;
2129 	doi->doi_type = dn->dn_type;
2130 	doi->doi_bonus_type = dn->dn_bonustype;
2131 	doi->doi_bonus_size = dn->dn_bonuslen;
2132 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2133 	doi->doi_indirection = dn->dn_nlevels;
2134 	doi->doi_checksum = dn->dn_checksum;
2135 	doi->doi_compress = dn->dn_compress;
2136 	doi->doi_nblkptr = dn->dn_nblkptr;
2137 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2138 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2139 	doi->doi_fill_count = 0;
2140 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2141 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2142 }
2143 
2144 void
2145 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2146 {
2147 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2148 	mutex_enter(&dn->dn_mtx);
2149 
2150 	__dmu_object_info_from_dnode(dn, doi);
2151 
2152 	mutex_exit(&dn->dn_mtx);
2153 	rw_exit(&dn->dn_struct_rwlock);
2154 }
2155 
2156 /*
2157  * Get information on a DMU object.
2158  * If doi is NULL, just indicates whether the object exists.
2159  */
2160 int
2161 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2162 {
2163 	dnode_t *dn;
2164 	int err = dnode_hold(os, object, FTAG, &dn);
2165 
2166 	if (err)
2167 		return (err);
2168 
2169 	if (doi != NULL)
2170 		dmu_object_info_from_dnode(dn, doi);
2171 
2172 	dnode_rele(dn, FTAG);
2173 	return (0);
2174 }
2175 
2176 /*
2177  * As above, but faster; can be used when you have a held dbuf in hand.
2178  */
2179 void
2180 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2181 {
2182 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2183 
2184 	DB_DNODE_ENTER(db);
2185 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2186 	DB_DNODE_EXIT(db);
2187 }
2188 
2189 /*
2190  * Faster still when you only care about the size.
2191  */
2192 void
2193 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2194     u_longlong_t *nblk512)
2195 {
2196 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2197 	dnode_t *dn;
2198 
2199 	DB_DNODE_ENTER(db);
2200 	dn = DB_DNODE(db);
2201 
2202 	*blksize = dn->dn_datablksz;
2203 	/* add in number of slots used for the dnode itself */
2204 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2205 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2206 	DB_DNODE_EXIT(db);
2207 }
2208 
2209 void
2210 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2211 {
2212 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2213 	dnode_t *dn;
2214 
2215 	DB_DNODE_ENTER(db);
2216 	dn = DB_DNODE(db);
2217 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2218 	DB_DNODE_EXIT(db);
2219 }
2220 
2221 void
2222 byteswap_uint64_array(void *vbuf, size_t size)
2223 {
2224 	uint64_t *buf = vbuf;
2225 	size_t count = size >> 3;
2226 	int i;
2227 
2228 	ASSERT((size & 7) == 0);
2229 
2230 	for (i = 0; i < count; i++)
2231 		buf[i] = BSWAP_64(buf[i]);
2232 }
2233 
2234 void
2235 byteswap_uint32_array(void *vbuf, size_t size)
2236 {
2237 	uint32_t *buf = vbuf;
2238 	size_t count = size >> 2;
2239 	int i;
2240 
2241 	ASSERT((size & 3) == 0);
2242 
2243 	for (i = 0; i < count; i++)
2244 		buf[i] = BSWAP_32(buf[i]);
2245 }
2246 
2247 void
2248 byteswap_uint16_array(void *vbuf, size_t size)
2249 {
2250 	uint16_t *buf = vbuf;
2251 	size_t count = size >> 1;
2252 	int i;
2253 
2254 	ASSERT((size & 1) == 0);
2255 
2256 	for (i = 0; i < count; i++)
2257 		buf[i] = BSWAP_16(buf[i]);
2258 }
2259 
2260 /* ARGSUSED */
2261 void
2262 byteswap_uint8_array(void *vbuf, size_t size)
2263 {
2264 }
2265 
2266 void
2267 dmu_init(void)
2268 {
2269 	abd_init();
2270 	zfs_dbgmsg_init();
2271 	sa_cache_init();
2272 	dmu_objset_init();
2273 	dnode_init();
2274 	zfetch_init();
2275 	dmu_tx_init();
2276 	l2arc_init();
2277 	arc_init();
2278 	dbuf_init();
2279 }
2280 
2281 void
2282 dmu_fini(void)
2283 {
2284 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2285 	l2arc_fini();
2286 	dmu_tx_fini();
2287 	zfetch_fini();
2288 	dbuf_fini();
2289 	dnode_fini();
2290 	dmu_objset_fini();
2291 	sa_cache_fini();
2292 	zfs_dbgmsg_fini();
2293 	abd_fini();
2294 }
2295 
2296 EXPORT_SYMBOL(dmu_bonus_hold);
2297 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2298 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2299 EXPORT_SYMBOL(dmu_buf_rele_array);
2300 EXPORT_SYMBOL(dmu_prefetch);
2301 EXPORT_SYMBOL(dmu_free_range);
2302 EXPORT_SYMBOL(dmu_free_long_range);
2303 EXPORT_SYMBOL(dmu_free_long_object);
2304 EXPORT_SYMBOL(dmu_read);
2305 EXPORT_SYMBOL(dmu_read_by_dnode);
2306 EXPORT_SYMBOL(dmu_write);
2307 EXPORT_SYMBOL(dmu_write_by_dnode);
2308 EXPORT_SYMBOL(dmu_prealloc);
2309 EXPORT_SYMBOL(dmu_object_info);
2310 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2311 EXPORT_SYMBOL(dmu_object_info_from_db);
2312 EXPORT_SYMBOL(dmu_object_size_from_db);
2313 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2314 EXPORT_SYMBOL(dmu_object_set_nlevels);
2315 EXPORT_SYMBOL(dmu_object_set_blocksize);
2316 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2317 EXPORT_SYMBOL(dmu_object_set_checksum);
2318 EXPORT_SYMBOL(dmu_object_set_compress);
2319 EXPORT_SYMBOL(dmu_offset_next);
2320 EXPORT_SYMBOL(dmu_write_policy);
2321 EXPORT_SYMBOL(dmu_sync);
2322 EXPORT_SYMBOL(dmu_request_arcbuf);
2323 EXPORT_SYMBOL(dmu_return_arcbuf);
2324 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2325 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2326 EXPORT_SYMBOL(dmu_buf_hold);
2327 EXPORT_SYMBOL(dmu_ot);
2328 
2329 /* BEGIN CSTYLED */
2330 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2331 	"Enable NOP writes");
2332 
2333 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2334 	"Percentage of dirtied blocks from frees in one TXG");
2335 
2336 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2337 	"Enable forcing txg sync to find holes");
2338 
2339 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2340 	"Limit one prefetch call to this size");
2341 /* END CSTYLED */
2342