1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. 32 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 33 */ 34 35 #include <sys/dmu.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dbuf.h> 39 #include <sys/dnode.h> 40 #include <sys/zfs_context.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/dmu_traverse.h> 43 #include <sys/dsl_dataset.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_pool.h> 46 #include <sys/dsl_synctask.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dmu_zfetch.h> 49 #include <sys/zfs_ioctl.h> 50 #include <sys/zap.h> 51 #include <sys/zio_checksum.h> 52 #include <sys/zio_compress.h> 53 #include <sys/sa.h> 54 #include <sys/zfeature.h> 55 #include <sys/abd.h> 56 #include <sys/brt.h> 57 #include <sys/trace_zfs.h> 58 #include <sys/zfs_racct.h> 59 #include <sys/zfs_rlock.h> 60 #ifdef _KERNEL 61 #include <sys/vmsystm.h> 62 #include <sys/zfs_znode.h> 63 #endif 64 65 /* 66 * Enable/disable nopwrite feature. 67 */ 68 static int zfs_nopwrite_enabled = 1; 69 70 /* 71 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 72 * one TXG. After this threshold is crossed, additional dirty blocks from frees 73 * will wait until the next TXG. 74 * A value of zero will disable this throttle. 75 */ 76 static uint_t zfs_per_txg_dirty_frees_percent = 30; 77 78 /* 79 * Enable/disable forcing txg sync when dirty checking for holes with lseek(). 80 * By default this is enabled to ensure accurate hole reporting, it can result 81 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads. 82 * Disabling this option will result in holes never being reported in dirty 83 * files which is always safe. 84 */ 85 static int zfs_dmu_offset_next_sync = 1; 86 87 /* 88 * Limit the amount we can prefetch with one call to this amount. This 89 * helps to limit the amount of memory that can be used by prefetching. 90 * Larger objects should be prefetched a bit at a time. 91 */ 92 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 93 94 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 95 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 96 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 97 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 98 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 99 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 100 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 101 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 102 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 103 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 104 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 105 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 106 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 107 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 108 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 109 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 110 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 111 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 112 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 113 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 114 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 115 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 117 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 118 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 119 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 120 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 121 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 122 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 123 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 124 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 125 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 126 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 127 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 128 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 129 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 130 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 131 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 132 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 133 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 134 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 135 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 136 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 137 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 138 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 139 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 140 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 141 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 142 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 143 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 144 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 145 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 146 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 147 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 148 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 149 }; 150 151 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 152 { byteswap_uint8_array, "uint8" }, 153 { byteswap_uint16_array, "uint16" }, 154 { byteswap_uint32_array, "uint32" }, 155 { byteswap_uint64_array, "uint64" }, 156 { zap_byteswap, "zap" }, 157 { dnode_buf_byteswap, "dnode" }, 158 { dmu_objset_byteswap, "objset" }, 159 { zfs_znode_byteswap, "znode" }, 160 { zfs_oldacl_byteswap, "oldacl" }, 161 { zfs_acl_byteswap, "acl" } 162 }; 163 164 static int 165 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 166 const void *tag, dmu_buf_t **dbp) 167 { 168 uint64_t blkid; 169 dmu_buf_impl_t *db; 170 171 rw_enter(&dn->dn_struct_rwlock, RW_READER); 172 blkid = dbuf_whichblock(dn, 0, offset); 173 db = dbuf_hold(dn, blkid, tag); 174 rw_exit(&dn->dn_struct_rwlock); 175 176 if (db == NULL) { 177 *dbp = NULL; 178 return (SET_ERROR(EIO)); 179 } 180 181 *dbp = &db->db; 182 return (0); 183 } 184 int 185 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 186 const void *tag, dmu_buf_t **dbp) 187 { 188 dnode_t *dn; 189 uint64_t blkid; 190 dmu_buf_impl_t *db; 191 int err; 192 193 err = dnode_hold(os, object, FTAG, &dn); 194 if (err) 195 return (err); 196 rw_enter(&dn->dn_struct_rwlock, RW_READER); 197 blkid = dbuf_whichblock(dn, 0, offset); 198 db = dbuf_hold(dn, blkid, tag); 199 rw_exit(&dn->dn_struct_rwlock); 200 dnode_rele(dn, FTAG); 201 202 if (db == NULL) { 203 *dbp = NULL; 204 return (SET_ERROR(EIO)); 205 } 206 207 *dbp = &db->db; 208 return (err); 209 } 210 211 int 212 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 213 const void *tag, dmu_buf_t **dbp, int flags) 214 { 215 int err; 216 int db_flags = DB_RF_CANFAIL; 217 218 if (flags & DMU_READ_NO_PREFETCH) 219 db_flags |= DB_RF_NOPREFETCH; 220 if (flags & DMU_READ_NO_DECRYPT) 221 db_flags |= DB_RF_NO_DECRYPT; 222 223 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 224 if (err == 0) { 225 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 226 err = dbuf_read(db, NULL, db_flags); 227 if (err != 0) { 228 dbuf_rele(db, tag); 229 *dbp = NULL; 230 } 231 } 232 233 return (err); 234 } 235 236 int 237 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 238 const void *tag, dmu_buf_t **dbp, int flags) 239 { 240 int err; 241 int db_flags = DB_RF_CANFAIL; 242 243 if (flags & DMU_READ_NO_PREFETCH) 244 db_flags |= DB_RF_NOPREFETCH; 245 if (flags & DMU_READ_NO_DECRYPT) 246 db_flags |= DB_RF_NO_DECRYPT; 247 248 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 249 if (err == 0) { 250 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 251 err = dbuf_read(db, NULL, db_flags); 252 if (err != 0) { 253 dbuf_rele(db, tag); 254 *dbp = NULL; 255 } 256 } 257 258 return (err); 259 } 260 261 int 262 dmu_bonus_max(void) 263 { 264 return (DN_OLD_MAX_BONUSLEN); 265 } 266 267 int 268 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 269 { 270 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 271 dnode_t *dn; 272 int error; 273 274 DB_DNODE_ENTER(db); 275 dn = DB_DNODE(db); 276 277 if (dn->dn_bonus != db) { 278 error = SET_ERROR(EINVAL); 279 } else if (newsize < 0 || newsize > db_fake->db_size) { 280 error = SET_ERROR(EINVAL); 281 } else { 282 dnode_setbonuslen(dn, newsize, tx); 283 error = 0; 284 } 285 286 DB_DNODE_EXIT(db); 287 return (error); 288 } 289 290 int 291 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 292 { 293 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 294 dnode_t *dn; 295 int error; 296 297 DB_DNODE_ENTER(db); 298 dn = DB_DNODE(db); 299 300 if (!DMU_OT_IS_VALID(type)) { 301 error = SET_ERROR(EINVAL); 302 } else if (dn->dn_bonus != db) { 303 error = SET_ERROR(EINVAL); 304 } else { 305 dnode_setbonus_type(dn, type, tx); 306 error = 0; 307 } 308 309 DB_DNODE_EXIT(db); 310 return (error); 311 } 312 313 dmu_object_type_t 314 dmu_get_bonustype(dmu_buf_t *db_fake) 315 { 316 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 317 dnode_t *dn; 318 dmu_object_type_t type; 319 320 DB_DNODE_ENTER(db); 321 dn = DB_DNODE(db); 322 type = dn->dn_bonustype; 323 DB_DNODE_EXIT(db); 324 325 return (type); 326 } 327 328 int 329 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 330 { 331 dnode_t *dn; 332 int error; 333 334 error = dnode_hold(os, object, FTAG, &dn); 335 dbuf_rm_spill(dn, tx); 336 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 337 dnode_rm_spill(dn, tx); 338 rw_exit(&dn->dn_struct_rwlock); 339 dnode_rele(dn, FTAG); 340 return (error); 341 } 342 343 /* 344 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 345 * has not yet been allocated a new bonus dbuf a will be allocated. 346 * Returns ENOENT, EIO, or 0. 347 */ 348 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, 349 uint32_t flags) 350 { 351 dmu_buf_impl_t *db; 352 int error; 353 uint32_t db_flags = DB_RF_MUST_SUCCEED; 354 355 if (flags & DMU_READ_NO_PREFETCH) 356 db_flags |= DB_RF_NOPREFETCH; 357 if (flags & DMU_READ_NO_DECRYPT) 358 db_flags |= DB_RF_NO_DECRYPT; 359 360 rw_enter(&dn->dn_struct_rwlock, RW_READER); 361 if (dn->dn_bonus == NULL) { 362 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 363 rw_exit(&dn->dn_struct_rwlock); 364 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 365 } 366 if (dn->dn_bonus == NULL) 367 dbuf_create_bonus(dn); 368 } 369 db = dn->dn_bonus; 370 371 /* as long as the bonus buf is held, the dnode will be held */ 372 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 373 VERIFY(dnode_add_ref(dn, db)); 374 atomic_inc_32(&dn->dn_dbufs_count); 375 } 376 377 /* 378 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 379 * hold and incrementing the dbuf count to ensure that dnode_move() sees 380 * a dnode hold for every dbuf. 381 */ 382 rw_exit(&dn->dn_struct_rwlock); 383 384 error = dbuf_read(db, NULL, db_flags); 385 if (error) { 386 dnode_evict_bonus(dn); 387 dbuf_rele(db, tag); 388 *dbp = NULL; 389 return (error); 390 } 391 392 *dbp = &db->db; 393 return (0); 394 } 395 396 int 397 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp) 398 { 399 dnode_t *dn; 400 int error; 401 402 error = dnode_hold(os, object, FTAG, &dn); 403 if (error) 404 return (error); 405 406 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 407 dnode_rele(dn, FTAG); 408 409 return (error); 410 } 411 412 /* 413 * returns ENOENT, EIO, or 0. 414 * 415 * This interface will allocate a blank spill dbuf when a spill blk 416 * doesn't already exist on the dnode. 417 * 418 * if you only want to find an already existing spill db, then 419 * dmu_spill_hold_existing() should be used. 420 */ 421 int 422 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag, 423 dmu_buf_t **dbp) 424 { 425 dmu_buf_impl_t *db = NULL; 426 int err; 427 428 if ((flags & DB_RF_HAVESTRUCT) == 0) 429 rw_enter(&dn->dn_struct_rwlock, RW_READER); 430 431 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 432 433 if ((flags & DB_RF_HAVESTRUCT) == 0) 434 rw_exit(&dn->dn_struct_rwlock); 435 436 if (db == NULL) { 437 *dbp = NULL; 438 return (SET_ERROR(EIO)); 439 } 440 err = dbuf_read(db, NULL, flags); 441 if (err == 0) 442 *dbp = &db->db; 443 else { 444 dbuf_rele(db, tag); 445 *dbp = NULL; 446 } 447 return (err); 448 } 449 450 int 451 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp) 452 { 453 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 454 dnode_t *dn; 455 int err; 456 457 DB_DNODE_ENTER(db); 458 dn = DB_DNODE(db); 459 460 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 461 err = SET_ERROR(EINVAL); 462 } else { 463 rw_enter(&dn->dn_struct_rwlock, RW_READER); 464 465 if (!dn->dn_have_spill) { 466 err = SET_ERROR(ENOENT); 467 } else { 468 err = dmu_spill_hold_by_dnode(dn, 469 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 470 } 471 472 rw_exit(&dn->dn_struct_rwlock); 473 } 474 475 DB_DNODE_EXIT(db); 476 return (err); 477 } 478 479 int 480 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, 481 dmu_buf_t **dbp) 482 { 483 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 484 dnode_t *dn; 485 int err; 486 uint32_t db_flags = DB_RF_CANFAIL; 487 488 if (flags & DMU_READ_NO_DECRYPT) 489 db_flags |= DB_RF_NO_DECRYPT; 490 491 DB_DNODE_ENTER(db); 492 dn = DB_DNODE(db); 493 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 494 DB_DNODE_EXIT(db); 495 496 return (err); 497 } 498 499 /* 500 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 501 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 502 * and can induce severe lock contention when writing to several files 503 * whose dnodes are in the same block. 504 */ 505 int 506 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 507 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp, 508 uint32_t flags) 509 { 510 dmu_buf_t **dbp; 511 zstream_t *zs = NULL; 512 uint64_t blkid, nblks, i; 513 uint32_t dbuf_flags; 514 int err; 515 zio_t *zio = NULL; 516 boolean_t missed = B_FALSE; 517 518 ASSERT(!read || length <= DMU_MAX_ACCESS); 519 520 /* 521 * Note: We directly notify the prefetch code of this read, so that 522 * we can tell it about the multi-block read. dbuf_read() only knows 523 * about the one block it is accessing. 524 */ 525 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 526 DB_RF_NOPREFETCH; 527 528 if ((flags & DMU_READ_NO_DECRYPT) != 0) 529 dbuf_flags |= DB_RF_NO_DECRYPT; 530 531 rw_enter(&dn->dn_struct_rwlock, RW_READER); 532 if (dn->dn_datablkshift) { 533 int blkshift = dn->dn_datablkshift; 534 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 535 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 536 } else { 537 if (offset + length > dn->dn_datablksz) { 538 zfs_panic_recover("zfs: accessing past end of object " 539 "%llx/%llx (size=%u access=%llu+%llu)", 540 (longlong_t)dn->dn_objset-> 541 os_dsl_dataset->ds_object, 542 (longlong_t)dn->dn_object, dn->dn_datablksz, 543 (longlong_t)offset, (longlong_t)length); 544 rw_exit(&dn->dn_struct_rwlock); 545 return (SET_ERROR(EIO)); 546 } 547 nblks = 1; 548 } 549 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 550 551 if (read) 552 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, 553 ZIO_FLAG_CANFAIL); 554 blkid = dbuf_whichblock(dn, 0, offset); 555 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 556 length <= zfetch_array_rd_sz) { 557 /* 558 * Prepare the zfetch before initiating the demand reads, so 559 * that if multiple threads block on same indirect block, we 560 * base predictions on the original less racy request order. 561 */ 562 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read, 563 B_TRUE); 564 } 565 for (i = 0; i < nblks; i++) { 566 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 567 if (db == NULL) { 568 if (zs) 569 dmu_zfetch_run(zs, missed, B_TRUE); 570 rw_exit(&dn->dn_struct_rwlock); 571 dmu_buf_rele_array(dbp, nblks, tag); 572 if (read) 573 zio_nowait(zio); 574 return (SET_ERROR(EIO)); 575 } 576 577 /* 578 * Initiate async demand data read. 579 * We check the db_state after calling dbuf_read() because 580 * (1) dbuf_read() may change the state to CACHED due to a 581 * hit in the ARC, and (2) on a cache miss, a child will 582 * have been added to "zio" but not yet completed, so the 583 * state will not yet be CACHED. 584 */ 585 if (read) { 586 if (i == nblks - 1 && blkid + i < dn->dn_maxblkid && 587 offset + length < db->db.db_offset + 588 db->db.db_size) { 589 if (offset <= db->db.db_offset) 590 dbuf_flags |= DB_RF_PARTIAL_FIRST; 591 else 592 dbuf_flags |= DB_RF_PARTIAL_MORE; 593 } 594 (void) dbuf_read(db, zio, dbuf_flags); 595 if (db->db_state != DB_CACHED) 596 missed = B_TRUE; 597 } 598 dbp[i] = &db->db; 599 } 600 601 if (!read) 602 zfs_racct_write(length, nblks); 603 604 if (zs) 605 dmu_zfetch_run(zs, missed, B_TRUE); 606 rw_exit(&dn->dn_struct_rwlock); 607 608 if (read) { 609 /* wait for async read i/o */ 610 err = zio_wait(zio); 611 if (err) { 612 dmu_buf_rele_array(dbp, nblks, tag); 613 return (err); 614 } 615 616 /* wait for other io to complete */ 617 for (i = 0; i < nblks; i++) { 618 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 619 mutex_enter(&db->db_mtx); 620 while (db->db_state == DB_READ || 621 db->db_state == DB_FILL) 622 cv_wait(&db->db_changed, &db->db_mtx); 623 if (db->db_state == DB_UNCACHED) 624 err = SET_ERROR(EIO); 625 mutex_exit(&db->db_mtx); 626 if (err) { 627 dmu_buf_rele_array(dbp, nblks, tag); 628 return (err); 629 } 630 } 631 } 632 633 *numbufsp = nblks; 634 *dbpp = dbp; 635 return (0); 636 } 637 638 int 639 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 640 uint64_t length, int read, const void *tag, int *numbufsp, 641 dmu_buf_t ***dbpp) 642 { 643 dnode_t *dn; 644 int err; 645 646 err = dnode_hold(os, object, FTAG, &dn); 647 if (err) 648 return (err); 649 650 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 651 numbufsp, dbpp, DMU_READ_PREFETCH); 652 653 dnode_rele(dn, FTAG); 654 655 return (err); 656 } 657 658 int 659 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 660 uint64_t length, boolean_t read, const void *tag, int *numbufsp, 661 dmu_buf_t ***dbpp) 662 { 663 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 664 dnode_t *dn; 665 int err; 666 667 DB_DNODE_ENTER(db); 668 dn = DB_DNODE(db); 669 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 670 numbufsp, dbpp, DMU_READ_PREFETCH); 671 DB_DNODE_EXIT(db); 672 673 return (err); 674 } 675 676 void 677 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag) 678 { 679 int i; 680 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 681 682 if (numbufs == 0) 683 return; 684 685 for (i = 0; i < numbufs; i++) { 686 if (dbp[i]) 687 dbuf_rele(dbp[i], tag); 688 } 689 690 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 691 } 692 693 /* 694 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 695 * indirect blocks prefetched will be those that point to the blocks containing 696 * the data starting at offset, and continuing to offset + len. 697 * 698 * Note that if the indirect blocks above the blocks being prefetched are not 699 * in cache, they will be asynchronously read in. 700 */ 701 void 702 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 703 uint64_t len, zio_priority_t pri) 704 { 705 dnode_t *dn; 706 uint64_t blkid; 707 int nblks, err; 708 709 if (len == 0) { /* they're interested in the bonus buffer */ 710 dn = DMU_META_DNODE(os); 711 712 if (object == 0 || object >= DN_MAX_OBJECT) 713 return; 714 715 rw_enter(&dn->dn_struct_rwlock, RW_READER); 716 blkid = dbuf_whichblock(dn, level, 717 object * sizeof (dnode_phys_t)); 718 dbuf_prefetch(dn, level, blkid, pri, 0); 719 rw_exit(&dn->dn_struct_rwlock); 720 return; 721 } 722 723 /* 724 * See comment before the definition of dmu_prefetch_max. 725 */ 726 len = MIN(len, dmu_prefetch_max); 727 728 /* 729 * XXX - Note, if the dnode for the requested object is not 730 * already cached, we will do a *synchronous* read in the 731 * dnode_hold() call. The same is true for any indirects. 732 */ 733 err = dnode_hold(os, object, FTAG, &dn); 734 if (err != 0) 735 return; 736 737 /* 738 * offset + len - 1 is the last byte we want to prefetch for, and offset 739 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 740 * last block we want to prefetch, and dbuf_whichblock(dn, level, 741 * offset) is the first. Then the number we need to prefetch is the 742 * last - first + 1. 743 */ 744 rw_enter(&dn->dn_struct_rwlock, RW_READER); 745 if (level > 0 || dn->dn_datablkshift != 0) { 746 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 747 dbuf_whichblock(dn, level, offset) + 1; 748 } else { 749 nblks = (offset < dn->dn_datablksz); 750 } 751 752 if (nblks != 0) { 753 blkid = dbuf_whichblock(dn, level, offset); 754 for (int i = 0; i < nblks; i++) 755 dbuf_prefetch(dn, level, blkid + i, pri, 0); 756 } 757 rw_exit(&dn->dn_struct_rwlock); 758 759 dnode_rele(dn, FTAG); 760 } 761 762 /* 763 * Get the next "chunk" of file data to free. We traverse the file from 764 * the end so that the file gets shorter over time (if we crashes in the 765 * middle, this will leave us in a better state). We find allocated file 766 * data by simply searching the allocated level 1 indirects. 767 * 768 * On input, *start should be the first offset that does not need to be 769 * freed (e.g. "offset + length"). On return, *start will be the first 770 * offset that should be freed and l1blks is set to the number of level 1 771 * indirect blocks found within the chunk. 772 */ 773 static int 774 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 775 { 776 uint64_t blks; 777 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 778 /* bytes of data covered by a level-1 indirect block */ 779 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 780 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 781 782 ASSERT3U(minimum, <=, *start); 783 784 /* 785 * Check if we can free the entire range assuming that all of the 786 * L1 blocks in this range have data. If we can, we use this 787 * worst case value as an estimate so we can avoid having to look 788 * at the object's actual data. 789 */ 790 uint64_t total_l1blks = 791 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 792 iblkrange; 793 if (total_l1blks <= maxblks) { 794 *l1blks = total_l1blks; 795 *start = minimum; 796 return (0); 797 } 798 ASSERT(ISP2(iblkrange)); 799 800 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 801 int err; 802 803 /* 804 * dnode_next_offset(BACKWARDS) will find an allocated L1 805 * indirect block at or before the input offset. We must 806 * decrement *start so that it is at the end of the region 807 * to search. 808 */ 809 (*start)--; 810 811 err = dnode_next_offset(dn, 812 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 813 814 /* if there are no indirect blocks before start, we are done */ 815 if (err == ESRCH) { 816 *start = minimum; 817 break; 818 } else if (err != 0) { 819 *l1blks = blks; 820 return (err); 821 } 822 823 /* set start to the beginning of this L1 indirect */ 824 *start = P2ALIGN(*start, iblkrange); 825 } 826 if (*start < minimum) 827 *start = minimum; 828 *l1blks = blks; 829 830 return (0); 831 } 832 833 /* 834 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 835 * otherwise return false. 836 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 837 */ 838 static boolean_t 839 dmu_objset_zfs_unmounting(objset_t *os) 840 { 841 #ifdef _KERNEL 842 if (dmu_objset_type(os) == DMU_OST_ZFS) 843 return (zfs_get_vfs_flag_unmounted(os)); 844 #else 845 (void) os; 846 #endif 847 return (B_FALSE); 848 } 849 850 static int 851 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 852 uint64_t length) 853 { 854 uint64_t object_size; 855 int err; 856 uint64_t dirty_frees_threshold; 857 dsl_pool_t *dp = dmu_objset_pool(os); 858 859 if (dn == NULL) 860 return (SET_ERROR(EINVAL)); 861 862 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 863 if (offset >= object_size) 864 return (0); 865 866 if (zfs_per_txg_dirty_frees_percent <= 100) 867 dirty_frees_threshold = 868 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 869 else 870 dirty_frees_threshold = zfs_dirty_data_max / 20; 871 872 if (length == DMU_OBJECT_END || offset + length > object_size) 873 length = object_size - offset; 874 875 while (length != 0) { 876 uint64_t chunk_end, chunk_begin, chunk_len; 877 uint64_t l1blks; 878 dmu_tx_t *tx; 879 880 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 881 return (SET_ERROR(EINTR)); 882 883 chunk_end = chunk_begin = offset + length; 884 885 /* move chunk_begin backwards to the beginning of this chunk */ 886 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 887 if (err) 888 return (err); 889 ASSERT3U(chunk_begin, >=, offset); 890 ASSERT3U(chunk_begin, <=, chunk_end); 891 892 chunk_len = chunk_end - chunk_begin; 893 894 tx = dmu_tx_create(os); 895 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 896 897 /* 898 * Mark this transaction as typically resulting in a net 899 * reduction in space used. 900 */ 901 dmu_tx_mark_netfree(tx); 902 err = dmu_tx_assign(tx, TXG_WAIT); 903 if (err) { 904 dmu_tx_abort(tx); 905 return (err); 906 } 907 908 uint64_t txg = dmu_tx_get_txg(tx); 909 910 mutex_enter(&dp->dp_lock); 911 uint64_t long_free_dirty = 912 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 913 mutex_exit(&dp->dp_lock); 914 915 /* 916 * To avoid filling up a TXG with just frees, wait for 917 * the next TXG to open before freeing more chunks if 918 * we have reached the threshold of frees. 919 */ 920 if (dirty_frees_threshold != 0 && 921 long_free_dirty >= dirty_frees_threshold) { 922 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 923 dmu_tx_commit(tx); 924 txg_wait_open(dp, 0, B_TRUE); 925 continue; 926 } 927 928 /* 929 * In order to prevent unnecessary write throttling, for each 930 * TXG, we track the cumulative size of L1 blocks being dirtied 931 * in dnode_free_range() below. We compare this number to a 932 * tunable threshold, past which we prevent new L1 dirty freeing 933 * blocks from being added into the open TXG. See 934 * dmu_free_long_range_impl() for details. The threshold 935 * prevents write throttle activation due to dirty freeing L1 936 * blocks taking up a large percentage of zfs_dirty_data_max. 937 */ 938 mutex_enter(&dp->dp_lock); 939 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 940 l1blks << dn->dn_indblkshift; 941 mutex_exit(&dp->dp_lock); 942 DTRACE_PROBE3(free__long__range, 943 uint64_t, long_free_dirty, uint64_t, chunk_len, 944 uint64_t, txg); 945 dnode_free_range(dn, chunk_begin, chunk_len, tx); 946 947 dmu_tx_commit(tx); 948 949 length -= chunk_len; 950 } 951 return (0); 952 } 953 954 int 955 dmu_free_long_range(objset_t *os, uint64_t object, 956 uint64_t offset, uint64_t length) 957 { 958 dnode_t *dn; 959 int err; 960 961 err = dnode_hold(os, object, FTAG, &dn); 962 if (err != 0) 963 return (err); 964 err = dmu_free_long_range_impl(os, dn, offset, length); 965 966 /* 967 * It is important to zero out the maxblkid when freeing the entire 968 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 969 * will take the fast path, and (b) dnode_reallocate() can verify 970 * that the entire file has been freed. 971 */ 972 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 973 dn->dn_maxblkid = 0; 974 975 dnode_rele(dn, FTAG); 976 return (err); 977 } 978 979 int 980 dmu_free_long_object(objset_t *os, uint64_t object) 981 { 982 dmu_tx_t *tx; 983 int err; 984 985 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 986 if (err != 0) 987 return (err); 988 989 tx = dmu_tx_create(os); 990 dmu_tx_hold_bonus(tx, object); 991 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 992 dmu_tx_mark_netfree(tx); 993 err = dmu_tx_assign(tx, TXG_WAIT); 994 if (err == 0) { 995 err = dmu_object_free(os, object, tx); 996 dmu_tx_commit(tx); 997 } else { 998 dmu_tx_abort(tx); 999 } 1000 1001 return (err); 1002 } 1003 1004 int 1005 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 1006 uint64_t size, dmu_tx_t *tx) 1007 { 1008 dnode_t *dn; 1009 int err = dnode_hold(os, object, FTAG, &dn); 1010 if (err) 1011 return (err); 1012 ASSERT(offset < UINT64_MAX); 1013 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 1014 dnode_free_range(dn, offset, size, tx); 1015 dnode_rele(dn, FTAG); 1016 return (0); 1017 } 1018 1019 static int 1020 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 1021 void *buf, uint32_t flags) 1022 { 1023 dmu_buf_t **dbp; 1024 int numbufs, err = 0; 1025 1026 /* 1027 * Deal with odd block sizes, where there can't be data past the first 1028 * block. If we ever do the tail block optimization, we will need to 1029 * handle that here as well. 1030 */ 1031 if (dn->dn_maxblkid == 0) { 1032 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 1033 MIN(size, dn->dn_datablksz - offset); 1034 memset((char *)buf + newsz, 0, size - newsz); 1035 size = newsz; 1036 } 1037 1038 while (size > 0) { 1039 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 1040 int i; 1041 1042 /* 1043 * NB: we could do this block-at-a-time, but it's nice 1044 * to be reading in parallel. 1045 */ 1046 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1047 TRUE, FTAG, &numbufs, &dbp, flags); 1048 if (err) 1049 break; 1050 1051 for (i = 0; i < numbufs; i++) { 1052 uint64_t tocpy; 1053 int64_t bufoff; 1054 dmu_buf_t *db = dbp[i]; 1055 1056 ASSERT(size > 0); 1057 1058 bufoff = offset - db->db_offset; 1059 tocpy = MIN(db->db_size - bufoff, size); 1060 1061 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1062 1063 offset += tocpy; 1064 size -= tocpy; 1065 buf = (char *)buf + tocpy; 1066 } 1067 dmu_buf_rele_array(dbp, numbufs, FTAG); 1068 } 1069 return (err); 1070 } 1071 1072 int 1073 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1074 void *buf, uint32_t flags) 1075 { 1076 dnode_t *dn; 1077 int err; 1078 1079 err = dnode_hold(os, object, FTAG, &dn); 1080 if (err != 0) 1081 return (err); 1082 1083 err = dmu_read_impl(dn, offset, size, buf, flags); 1084 dnode_rele(dn, FTAG); 1085 return (err); 1086 } 1087 1088 int 1089 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1090 uint32_t flags) 1091 { 1092 return (dmu_read_impl(dn, offset, size, buf, flags)); 1093 } 1094 1095 static void 1096 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1097 const void *buf, dmu_tx_t *tx) 1098 { 1099 int i; 1100 1101 for (i = 0; i < numbufs; i++) { 1102 uint64_t tocpy; 1103 int64_t bufoff; 1104 dmu_buf_t *db = dbp[i]; 1105 1106 ASSERT(size > 0); 1107 1108 bufoff = offset - db->db_offset; 1109 tocpy = MIN(db->db_size - bufoff, size); 1110 1111 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1112 1113 if (tocpy == db->db_size) 1114 dmu_buf_will_fill(db, tx); 1115 else 1116 dmu_buf_will_dirty(db, tx); 1117 1118 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1119 1120 if (tocpy == db->db_size) 1121 dmu_buf_fill_done(db, tx); 1122 1123 offset += tocpy; 1124 size -= tocpy; 1125 buf = (char *)buf + tocpy; 1126 } 1127 } 1128 1129 void 1130 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1131 const void *buf, dmu_tx_t *tx) 1132 { 1133 dmu_buf_t **dbp; 1134 int numbufs; 1135 1136 if (size == 0) 1137 return; 1138 1139 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1140 FALSE, FTAG, &numbufs, &dbp)); 1141 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1142 dmu_buf_rele_array(dbp, numbufs, FTAG); 1143 } 1144 1145 /* 1146 * Note: Lustre is an external consumer of this interface. 1147 */ 1148 void 1149 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1150 const void *buf, dmu_tx_t *tx) 1151 { 1152 dmu_buf_t **dbp; 1153 int numbufs; 1154 1155 if (size == 0) 1156 return; 1157 1158 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1159 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1160 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1161 dmu_buf_rele_array(dbp, numbufs, FTAG); 1162 } 1163 1164 void 1165 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1166 dmu_tx_t *tx) 1167 { 1168 dmu_buf_t **dbp; 1169 int numbufs, i; 1170 1171 if (size == 0) 1172 return; 1173 1174 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1175 FALSE, FTAG, &numbufs, &dbp)); 1176 1177 for (i = 0; i < numbufs; i++) { 1178 dmu_buf_t *db = dbp[i]; 1179 1180 dmu_buf_will_not_fill(db, tx); 1181 } 1182 dmu_buf_rele_array(dbp, numbufs, FTAG); 1183 } 1184 1185 void 1186 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1187 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1188 int compressed_size, int byteorder, dmu_tx_t *tx) 1189 { 1190 dmu_buf_t *db; 1191 1192 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1193 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1194 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1195 FTAG, &db)); 1196 1197 dmu_buf_write_embedded(db, 1198 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1199 uncompressed_size, compressed_size, byteorder, tx); 1200 1201 dmu_buf_rele(db, FTAG); 1202 } 1203 1204 void 1205 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1206 dmu_tx_t *tx) 1207 { 1208 int numbufs, i; 1209 dmu_buf_t **dbp; 1210 1211 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1212 &numbufs, &dbp)); 1213 for (i = 0; i < numbufs; i++) 1214 dmu_buf_redact(dbp[i], tx); 1215 dmu_buf_rele_array(dbp, numbufs, FTAG); 1216 } 1217 1218 #ifdef _KERNEL 1219 int 1220 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size) 1221 { 1222 dmu_buf_t **dbp; 1223 int numbufs, i, err; 1224 1225 /* 1226 * NB: we could do this block-at-a-time, but it's nice 1227 * to be reading in parallel. 1228 */ 1229 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1230 TRUE, FTAG, &numbufs, &dbp, 0); 1231 if (err) 1232 return (err); 1233 1234 for (i = 0; i < numbufs; i++) { 1235 uint64_t tocpy; 1236 int64_t bufoff; 1237 dmu_buf_t *db = dbp[i]; 1238 1239 ASSERT(size > 0); 1240 1241 bufoff = zfs_uio_offset(uio) - db->db_offset; 1242 tocpy = MIN(db->db_size - bufoff, size); 1243 1244 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, 1245 UIO_READ, uio); 1246 1247 if (err) 1248 break; 1249 1250 size -= tocpy; 1251 } 1252 dmu_buf_rele_array(dbp, numbufs, FTAG); 1253 1254 return (err); 1255 } 1256 1257 /* 1258 * Read 'size' bytes into the uio buffer. 1259 * From object zdb->db_object. 1260 * Starting at zfs_uio_offset(uio). 1261 * 1262 * If the caller already has a dbuf in the target object 1263 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1264 * because we don't have to find the dnode_t for the object. 1265 */ 1266 int 1267 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size) 1268 { 1269 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1270 dnode_t *dn; 1271 int err; 1272 1273 if (size == 0) 1274 return (0); 1275 1276 DB_DNODE_ENTER(db); 1277 dn = DB_DNODE(db); 1278 err = dmu_read_uio_dnode(dn, uio, size); 1279 DB_DNODE_EXIT(db); 1280 1281 return (err); 1282 } 1283 1284 /* 1285 * Read 'size' bytes into the uio buffer. 1286 * From the specified object 1287 * Starting at offset zfs_uio_offset(uio). 1288 */ 1289 int 1290 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size) 1291 { 1292 dnode_t *dn; 1293 int err; 1294 1295 if (size == 0) 1296 return (0); 1297 1298 err = dnode_hold(os, object, FTAG, &dn); 1299 if (err) 1300 return (err); 1301 1302 err = dmu_read_uio_dnode(dn, uio, size); 1303 1304 dnode_rele(dn, FTAG); 1305 1306 return (err); 1307 } 1308 1309 int 1310 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) 1311 { 1312 dmu_buf_t **dbp; 1313 int numbufs; 1314 int err = 0; 1315 int i; 1316 1317 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1318 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1319 if (err) 1320 return (err); 1321 1322 for (i = 0; i < numbufs; i++) { 1323 uint64_t tocpy; 1324 int64_t bufoff; 1325 dmu_buf_t *db = dbp[i]; 1326 1327 ASSERT(size > 0); 1328 1329 bufoff = zfs_uio_offset(uio) - db->db_offset; 1330 tocpy = MIN(db->db_size - bufoff, size); 1331 1332 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1333 1334 if (tocpy == db->db_size) 1335 dmu_buf_will_fill(db, tx); 1336 else 1337 dmu_buf_will_dirty(db, tx); 1338 1339 /* 1340 * XXX zfs_uiomove could block forever (eg.nfs-backed 1341 * pages). There needs to be a uiolockdown() function 1342 * to lock the pages in memory, so that zfs_uiomove won't 1343 * block. 1344 */ 1345 err = zfs_uio_fault_move((char *)db->db_data + bufoff, 1346 tocpy, UIO_WRITE, uio); 1347 1348 if (tocpy == db->db_size) 1349 dmu_buf_fill_done(db, tx); 1350 1351 if (err) 1352 break; 1353 1354 size -= tocpy; 1355 } 1356 1357 dmu_buf_rele_array(dbp, numbufs, FTAG); 1358 return (err); 1359 } 1360 1361 /* 1362 * Write 'size' bytes from the uio buffer. 1363 * To object zdb->db_object. 1364 * Starting at offset zfs_uio_offset(uio). 1365 * 1366 * If the caller already has a dbuf in the target object 1367 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1368 * because we don't have to find the dnode_t for the object. 1369 */ 1370 int 1371 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, 1372 dmu_tx_t *tx) 1373 { 1374 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1375 dnode_t *dn; 1376 int err; 1377 1378 if (size == 0) 1379 return (0); 1380 1381 DB_DNODE_ENTER(db); 1382 dn = DB_DNODE(db); 1383 err = dmu_write_uio_dnode(dn, uio, size, tx); 1384 DB_DNODE_EXIT(db); 1385 1386 return (err); 1387 } 1388 1389 /* 1390 * Write 'size' bytes from the uio buffer. 1391 * To the specified object. 1392 * Starting at offset zfs_uio_offset(uio). 1393 */ 1394 int 1395 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, 1396 dmu_tx_t *tx) 1397 { 1398 dnode_t *dn; 1399 int err; 1400 1401 if (size == 0) 1402 return (0); 1403 1404 err = dnode_hold(os, object, FTAG, &dn); 1405 if (err) 1406 return (err); 1407 1408 err = dmu_write_uio_dnode(dn, uio, size, tx); 1409 1410 dnode_rele(dn, FTAG); 1411 1412 return (err); 1413 } 1414 #endif /* _KERNEL */ 1415 1416 /* 1417 * Allocate a loaned anonymous arc buffer. 1418 */ 1419 arc_buf_t * 1420 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1421 { 1422 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1423 1424 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1425 } 1426 1427 /* 1428 * Free a loaned arc buffer. 1429 */ 1430 void 1431 dmu_return_arcbuf(arc_buf_t *buf) 1432 { 1433 arc_return_buf(buf, FTAG); 1434 arc_buf_destroy(buf, FTAG); 1435 } 1436 1437 /* 1438 * A "lightweight" write is faster than a regular write (e.g. 1439 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the 1440 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the 1441 * data can not be read or overwritten until the transaction's txg has been 1442 * synced. This makes it appropriate for workloads that are known to be 1443 * (temporarily) write-only, like "zfs receive". 1444 * 1445 * A single block is written, starting at the specified offset in bytes. If 1446 * the call is successful, it returns 0 and the provided abd has been 1447 * consumed (the caller should not free it). 1448 */ 1449 int 1450 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, 1451 const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx) 1452 { 1453 dbuf_dirty_record_t *dr = 1454 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); 1455 if (dr == NULL) 1456 return (SET_ERROR(EIO)); 1457 dr->dt.dll.dr_abd = abd; 1458 dr->dt.dll.dr_props = *zp; 1459 dr->dt.dll.dr_flags = flags; 1460 return (0); 1461 } 1462 1463 /* 1464 * When possible directly assign passed loaned arc buffer to a dbuf. 1465 * If this is not possible copy the contents of passed arc buf via 1466 * dmu_write(). 1467 */ 1468 int 1469 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1470 dmu_tx_t *tx) 1471 { 1472 dmu_buf_impl_t *db; 1473 objset_t *os = dn->dn_objset; 1474 uint64_t object = dn->dn_object; 1475 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1476 uint64_t blkid; 1477 1478 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1479 blkid = dbuf_whichblock(dn, 0, offset); 1480 db = dbuf_hold(dn, blkid, FTAG); 1481 if (db == NULL) 1482 return (SET_ERROR(EIO)); 1483 rw_exit(&dn->dn_struct_rwlock); 1484 1485 /* 1486 * We can only assign if the offset is aligned and the arc buf is the 1487 * same size as the dbuf. 1488 */ 1489 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1490 zfs_racct_write(blksz, 1); 1491 dbuf_assign_arcbuf(db, buf, tx); 1492 dbuf_rele(db, FTAG); 1493 } else { 1494 /* compressed bufs must always be assignable to their dbuf */ 1495 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1496 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1497 1498 dbuf_rele(db, FTAG); 1499 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1500 dmu_return_arcbuf(buf); 1501 } 1502 1503 return (0); 1504 } 1505 1506 int 1507 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1508 dmu_tx_t *tx) 1509 { 1510 int err; 1511 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1512 1513 DB_DNODE_ENTER(dbuf); 1514 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1515 DB_DNODE_EXIT(dbuf); 1516 1517 return (err); 1518 } 1519 1520 typedef struct { 1521 dbuf_dirty_record_t *dsa_dr; 1522 dmu_sync_cb_t *dsa_done; 1523 zgd_t *dsa_zgd; 1524 dmu_tx_t *dsa_tx; 1525 } dmu_sync_arg_t; 1526 1527 static void 1528 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1529 { 1530 (void) buf; 1531 dmu_sync_arg_t *dsa = varg; 1532 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1533 blkptr_t *bp = zio->io_bp; 1534 1535 if (zio->io_error == 0) { 1536 if (BP_IS_HOLE(bp)) { 1537 /* 1538 * A block of zeros may compress to a hole, but the 1539 * block size still needs to be known for replay. 1540 */ 1541 BP_SET_LSIZE(bp, db->db_size); 1542 } else if (!BP_IS_EMBEDDED(bp)) { 1543 ASSERT(BP_GET_LEVEL(bp) == 0); 1544 BP_SET_FILL(bp, 1); 1545 } 1546 } 1547 } 1548 1549 static void 1550 dmu_sync_late_arrival_ready(zio_t *zio) 1551 { 1552 dmu_sync_ready(zio, NULL, zio->io_private); 1553 } 1554 1555 static void 1556 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1557 { 1558 (void) buf; 1559 dmu_sync_arg_t *dsa = varg; 1560 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1561 dmu_buf_impl_t *db = dr->dr_dbuf; 1562 zgd_t *zgd = dsa->dsa_zgd; 1563 1564 /* 1565 * Record the vdev(s) backing this blkptr so they can be flushed after 1566 * the writes for the lwb have completed. 1567 */ 1568 if (zio->io_error == 0) { 1569 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1570 } 1571 1572 mutex_enter(&db->db_mtx); 1573 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1574 if (zio->io_error == 0) { 1575 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1576 if (dr->dt.dl.dr_nopwrite) { 1577 blkptr_t *bp = zio->io_bp; 1578 blkptr_t *bp_orig = &zio->io_bp_orig; 1579 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1580 1581 ASSERT(BP_EQUAL(bp, bp_orig)); 1582 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1583 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1584 VERIFY(zio_checksum_table[chksum].ci_flags & 1585 ZCHECKSUM_FLAG_NOPWRITE); 1586 } 1587 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1588 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1589 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1590 1591 /* 1592 * Old style holes are filled with all zeros, whereas 1593 * new-style holes maintain their lsize, type, level, 1594 * and birth time (see zio_write_compress). While we 1595 * need to reset the BP_SET_LSIZE() call that happened 1596 * in dmu_sync_ready for old style holes, we do *not* 1597 * want to wipe out the information contained in new 1598 * style holes. Thus, only zero out the block pointer if 1599 * it's an old style hole. 1600 */ 1601 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1602 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1603 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1604 } else { 1605 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1606 } 1607 cv_broadcast(&db->db_changed); 1608 mutex_exit(&db->db_mtx); 1609 1610 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1611 1612 kmem_free(dsa, sizeof (*dsa)); 1613 } 1614 1615 static void 1616 dmu_sync_late_arrival_done(zio_t *zio) 1617 { 1618 blkptr_t *bp = zio->io_bp; 1619 dmu_sync_arg_t *dsa = zio->io_private; 1620 zgd_t *zgd = dsa->dsa_zgd; 1621 1622 if (zio->io_error == 0) { 1623 /* 1624 * Record the vdev(s) backing this blkptr so they can be 1625 * flushed after the writes for the lwb have completed. 1626 */ 1627 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1628 1629 if (!BP_IS_HOLE(bp)) { 1630 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1631 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1632 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1633 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1634 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1635 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1636 } 1637 } 1638 1639 dmu_tx_commit(dsa->dsa_tx); 1640 1641 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1642 1643 abd_free(zio->io_abd); 1644 kmem_free(dsa, sizeof (*dsa)); 1645 } 1646 1647 static int 1648 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1649 zio_prop_t *zp, zbookmark_phys_t *zb) 1650 { 1651 dmu_sync_arg_t *dsa; 1652 dmu_tx_t *tx; 1653 1654 tx = dmu_tx_create(os); 1655 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1656 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1657 dmu_tx_abort(tx); 1658 /* Make zl_get_data do txg_waited_synced() */ 1659 return (SET_ERROR(EIO)); 1660 } 1661 1662 /* 1663 * In order to prevent the zgd's lwb from being free'd prior to 1664 * dmu_sync_late_arrival_done() being called, we have to ensure 1665 * the lwb's "max txg" takes this tx's txg into account. 1666 */ 1667 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1668 1669 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1670 dsa->dsa_dr = NULL; 1671 dsa->dsa_done = done; 1672 dsa->dsa_zgd = zgd; 1673 dsa->dsa_tx = tx; 1674 1675 /* 1676 * Since we are currently syncing this txg, it's nontrivial to 1677 * determine what BP to nopwrite against, so we disable nopwrite. 1678 * 1679 * When syncing, the db_blkptr is initially the BP of the previous 1680 * txg. We can not nopwrite against it because it will be changed 1681 * (this is similar to the non-late-arrival case where the dbuf is 1682 * dirty in a future txg). 1683 * 1684 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1685 * We can not nopwrite against it because although the BP will not 1686 * (typically) be changed, the data has not yet been persisted to this 1687 * location. 1688 * 1689 * Finally, when dbuf_write_done() is called, it is theoretically 1690 * possible to always nopwrite, because the data that was written in 1691 * this txg is the same data that we are trying to write. However we 1692 * would need to check that this dbuf is not dirty in any future 1693 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1694 * don't nopwrite in this case. 1695 */ 1696 zp->zp_nopwrite = B_FALSE; 1697 1698 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1699 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1700 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1701 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, 1702 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1703 1704 return (0); 1705 } 1706 1707 /* 1708 * Intent log support: sync the block associated with db to disk. 1709 * N.B. and XXX: the caller is responsible for making sure that the 1710 * data isn't changing while dmu_sync() is writing it. 1711 * 1712 * Return values: 1713 * 1714 * EEXIST: this txg has already been synced, so there's nothing to do. 1715 * The caller should not log the write. 1716 * 1717 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1718 * The caller should not log the write. 1719 * 1720 * EALREADY: this block is already in the process of being synced. 1721 * The caller should track its progress (somehow). 1722 * 1723 * EIO: could not do the I/O. 1724 * The caller should do a txg_wait_synced(). 1725 * 1726 * 0: the I/O has been initiated. 1727 * The caller should log this blkptr in the done callback. 1728 * It is possible that the I/O will fail, in which case 1729 * the error will be reported to the done callback and 1730 * propagated to pio from zio_done(). 1731 */ 1732 int 1733 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1734 { 1735 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1736 objset_t *os = db->db_objset; 1737 dsl_dataset_t *ds = os->os_dsl_dataset; 1738 dbuf_dirty_record_t *dr, *dr_next; 1739 dmu_sync_arg_t *dsa; 1740 zbookmark_phys_t zb; 1741 zio_prop_t zp; 1742 dnode_t *dn; 1743 1744 ASSERT(pio != NULL); 1745 ASSERT(txg != 0); 1746 1747 SET_BOOKMARK(&zb, ds->ds_object, 1748 db->db.db_object, db->db_level, db->db_blkid); 1749 1750 DB_DNODE_ENTER(db); 1751 dn = DB_DNODE(db); 1752 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1753 DB_DNODE_EXIT(db); 1754 1755 /* 1756 * If we're frozen (running ziltest), we always need to generate a bp. 1757 */ 1758 if (txg > spa_freeze_txg(os->os_spa)) 1759 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1760 1761 /* 1762 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1763 * and us. If we determine that this txg is not yet syncing, 1764 * but it begins to sync a moment later, that's OK because the 1765 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1766 */ 1767 mutex_enter(&db->db_mtx); 1768 1769 if (txg <= spa_last_synced_txg(os->os_spa)) { 1770 /* 1771 * This txg has already synced. There's nothing to do. 1772 */ 1773 mutex_exit(&db->db_mtx); 1774 return (SET_ERROR(EEXIST)); 1775 } 1776 1777 if (txg <= spa_syncing_txg(os->os_spa)) { 1778 /* 1779 * This txg is currently syncing, so we can't mess with 1780 * the dirty record anymore; just write a new log block. 1781 */ 1782 mutex_exit(&db->db_mtx); 1783 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1784 } 1785 1786 dr = dbuf_find_dirty_eq(db, txg); 1787 1788 if (dr == NULL) { 1789 /* 1790 * There's no dr for this dbuf, so it must have been freed. 1791 * There's no need to log writes to freed blocks, so we're done. 1792 */ 1793 mutex_exit(&db->db_mtx); 1794 return (SET_ERROR(ENOENT)); 1795 } 1796 1797 dr_next = list_next(&db->db_dirty_records, dr); 1798 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1799 1800 if (db->db_blkptr != NULL) { 1801 /* 1802 * We need to fill in zgd_bp with the current blkptr so that 1803 * the nopwrite code can check if we're writing the same 1804 * data that's already on disk. We can only nopwrite if we 1805 * are sure that after making the copy, db_blkptr will not 1806 * change until our i/o completes. We ensure this by 1807 * holding the db_mtx, and only allowing nopwrite if the 1808 * block is not already dirty (see below). This is verified 1809 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1810 * not changed. 1811 */ 1812 *zgd->zgd_bp = *db->db_blkptr; 1813 } 1814 1815 /* 1816 * Assume the on-disk data is X, the current syncing data (in 1817 * txg - 1) is Y, and the current in-memory data is Z (currently 1818 * in dmu_sync). 1819 * 1820 * We usually want to perform a nopwrite if X and Z are the 1821 * same. However, if Y is different (i.e. the BP is going to 1822 * change before this write takes effect), then a nopwrite will 1823 * be incorrect - we would override with X, which could have 1824 * been freed when Y was written. 1825 * 1826 * (Note that this is not a concern when we are nop-writing from 1827 * syncing context, because X and Y must be identical, because 1828 * all previous txgs have been synced.) 1829 * 1830 * Therefore, we disable nopwrite if the current BP could change 1831 * before this TXG. There are two ways it could change: by 1832 * being dirty (dr_next is non-NULL), or by being freed 1833 * (dnode_block_freed()). This behavior is verified by 1834 * zio_done(), which VERIFYs that the override BP is identical 1835 * to the on-disk BP. 1836 */ 1837 DB_DNODE_ENTER(db); 1838 dn = DB_DNODE(db); 1839 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1840 zp.zp_nopwrite = B_FALSE; 1841 DB_DNODE_EXIT(db); 1842 1843 ASSERT(dr->dr_txg == txg); 1844 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1845 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1846 /* 1847 * We have already issued a sync write for this buffer, 1848 * or this buffer has already been synced. It could not 1849 * have been dirtied since, or we would have cleared the state. 1850 */ 1851 mutex_exit(&db->db_mtx); 1852 return (SET_ERROR(EALREADY)); 1853 } 1854 1855 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1856 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1857 mutex_exit(&db->db_mtx); 1858 1859 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1860 dsa->dsa_dr = dr; 1861 dsa->dsa_done = done; 1862 dsa->dsa_zgd = zgd; 1863 dsa->dsa_tx = NULL; 1864 1865 zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp, 1866 dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db), 1867 &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa, 1868 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1869 1870 return (0); 1871 } 1872 1873 int 1874 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1875 { 1876 dnode_t *dn; 1877 int err; 1878 1879 err = dnode_hold(os, object, FTAG, &dn); 1880 if (err) 1881 return (err); 1882 err = dnode_set_nlevels(dn, nlevels, tx); 1883 dnode_rele(dn, FTAG); 1884 return (err); 1885 } 1886 1887 int 1888 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1889 dmu_tx_t *tx) 1890 { 1891 dnode_t *dn; 1892 int err; 1893 1894 err = dnode_hold(os, object, FTAG, &dn); 1895 if (err) 1896 return (err); 1897 err = dnode_set_blksz(dn, size, ibs, tx); 1898 dnode_rele(dn, FTAG); 1899 return (err); 1900 } 1901 1902 int 1903 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 1904 dmu_tx_t *tx) 1905 { 1906 dnode_t *dn; 1907 int err; 1908 1909 err = dnode_hold(os, object, FTAG, &dn); 1910 if (err) 1911 return (err); 1912 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1913 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 1914 rw_exit(&dn->dn_struct_rwlock); 1915 dnode_rele(dn, FTAG); 1916 return (0); 1917 } 1918 1919 void 1920 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1921 dmu_tx_t *tx) 1922 { 1923 dnode_t *dn; 1924 1925 /* 1926 * Send streams include each object's checksum function. This 1927 * check ensures that the receiving system can understand the 1928 * checksum function transmitted. 1929 */ 1930 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1931 1932 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1933 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1934 dn->dn_checksum = checksum; 1935 dnode_setdirty(dn, tx); 1936 dnode_rele(dn, FTAG); 1937 } 1938 1939 void 1940 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1941 dmu_tx_t *tx) 1942 { 1943 dnode_t *dn; 1944 1945 /* 1946 * Send streams include each object's compression function. This 1947 * check ensures that the receiving system can understand the 1948 * compression function transmitted. 1949 */ 1950 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1951 1952 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1953 dn->dn_compress = compress; 1954 dnode_setdirty(dn, tx); 1955 dnode_rele(dn, FTAG); 1956 } 1957 1958 /* 1959 * When the "redundant_metadata" property is set to "most", only indirect 1960 * blocks of this level and higher will have an additional ditto block. 1961 */ 1962 static const int zfs_redundant_metadata_most_ditto_level = 2; 1963 1964 void 1965 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1966 { 1967 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1968 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1969 (wp & WP_SPILL)); 1970 enum zio_checksum checksum = os->os_checksum; 1971 enum zio_compress compress = os->os_compress; 1972 uint8_t complevel = os->os_complevel; 1973 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1974 boolean_t dedup = B_FALSE; 1975 boolean_t nopwrite = B_FALSE; 1976 boolean_t dedup_verify = os->os_dedup_verify; 1977 boolean_t encrypt = B_FALSE; 1978 int copies = os->os_copies; 1979 1980 /* 1981 * We maintain different write policies for each of the following 1982 * types of data: 1983 * 1. metadata 1984 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1985 * 3. all other level 0 blocks 1986 */ 1987 if (ismd) { 1988 /* 1989 * XXX -- we should design a compression algorithm 1990 * that specializes in arrays of bps. 1991 */ 1992 compress = zio_compress_select(os->os_spa, 1993 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1994 1995 /* 1996 * Metadata always gets checksummed. If the data 1997 * checksum is multi-bit correctable, and it's not a 1998 * ZBT-style checksum, then it's suitable for metadata 1999 * as well. Otherwise, the metadata checksum defaults 2000 * to fletcher4. 2001 */ 2002 if (!(zio_checksum_table[checksum].ci_flags & 2003 ZCHECKSUM_FLAG_METADATA) || 2004 (zio_checksum_table[checksum].ci_flags & 2005 ZCHECKSUM_FLAG_EMBEDDED)) 2006 checksum = ZIO_CHECKSUM_FLETCHER_4; 2007 2008 switch (os->os_redundant_metadata) { 2009 case ZFS_REDUNDANT_METADATA_ALL: 2010 copies++; 2011 break; 2012 case ZFS_REDUNDANT_METADATA_MOST: 2013 if (level >= zfs_redundant_metadata_most_ditto_level || 2014 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)) 2015 copies++; 2016 break; 2017 case ZFS_REDUNDANT_METADATA_SOME: 2018 if (DMU_OT_IS_CRITICAL(type)) 2019 copies++; 2020 break; 2021 case ZFS_REDUNDANT_METADATA_NONE: 2022 break; 2023 } 2024 } else if (wp & WP_NOFILL) { 2025 ASSERT(level == 0); 2026 2027 /* 2028 * If we're writing preallocated blocks, we aren't actually 2029 * writing them so don't set any policy properties. These 2030 * blocks are currently only used by an external subsystem 2031 * outside of zfs (i.e. dump) and not written by the zio 2032 * pipeline. 2033 */ 2034 compress = ZIO_COMPRESS_OFF; 2035 checksum = ZIO_CHECKSUM_OFF; 2036 } else { 2037 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2038 compress); 2039 complevel = zio_complevel_select(os->os_spa, compress, 2040 complevel, complevel); 2041 2042 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2043 zio_checksum_select(dn->dn_checksum, checksum) : 2044 dedup_checksum; 2045 2046 /* 2047 * Determine dedup setting. If we are in dmu_sync(), 2048 * we won't actually dedup now because that's all 2049 * done in syncing context; but we do want to use the 2050 * dedup checksum. If the checksum is not strong 2051 * enough to ensure unique signatures, force 2052 * dedup_verify. 2053 */ 2054 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2055 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2056 if (!(zio_checksum_table[checksum].ci_flags & 2057 ZCHECKSUM_FLAG_DEDUP)) 2058 dedup_verify = B_TRUE; 2059 } 2060 2061 /* 2062 * Enable nopwrite if we have secure enough checksum 2063 * algorithm (see comment in zio_nop_write) and 2064 * compression is enabled. We don't enable nopwrite if 2065 * dedup is enabled as the two features are mutually 2066 * exclusive. 2067 */ 2068 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2069 ZCHECKSUM_FLAG_NOPWRITE) && 2070 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2071 } 2072 2073 /* 2074 * All objects in an encrypted objset are protected from modification 2075 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2076 * in the bp, so we cannot use all copies. Encrypted objects are also 2077 * not subject to nopwrite since writing the same data will still 2078 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2079 * to avoid ambiguity in the dedup code since the DDT does not store 2080 * object types. 2081 */ 2082 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2083 encrypt = B_TRUE; 2084 2085 if (DMU_OT_IS_ENCRYPTED(type)) { 2086 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2087 nopwrite = B_FALSE; 2088 } else { 2089 dedup = B_FALSE; 2090 } 2091 2092 if (level <= 0 && 2093 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2094 compress = ZIO_COMPRESS_EMPTY; 2095 } 2096 } 2097 2098 zp->zp_compress = compress; 2099 zp->zp_complevel = complevel; 2100 zp->zp_checksum = checksum; 2101 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2102 zp->zp_level = level; 2103 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2104 zp->zp_dedup = dedup; 2105 zp->zp_dedup_verify = dedup && dedup_verify; 2106 zp->zp_nopwrite = nopwrite; 2107 zp->zp_encrypt = encrypt; 2108 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2109 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN); 2110 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN); 2111 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN); 2112 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2113 os->os_zpl_special_smallblock : 0; 2114 2115 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2116 } 2117 2118 /* 2119 * Reports the location of data and holes in an object. In order to 2120 * accurately report holes all dirty data must be synced to disk. This 2121 * causes extremely poor performance when seeking for holes in a dirty file. 2122 * As a compromise, only provide hole data when the dnode is clean. When 2123 * a dnode is dirty report the dnode as having no holes by returning EBUSY 2124 * which is always safe to do. 2125 */ 2126 int 2127 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2128 { 2129 dnode_t *dn; 2130 int restarted = 0, err; 2131 2132 restart: 2133 err = dnode_hold(os, object, FTAG, &dn); 2134 if (err) 2135 return (err); 2136 2137 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2138 2139 if (dnode_is_dirty(dn)) { 2140 /* 2141 * If the zfs_dmu_offset_next_sync module option is enabled 2142 * then hole reporting has been requested. Dirty dnodes 2143 * must be synced to disk to accurately report holes. 2144 * 2145 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is 2146 * held by the caller only a single restart will be required. 2147 * We tolerate callers which do not hold the rangelock by 2148 * returning EBUSY and not reporting holes after one restart. 2149 */ 2150 if (zfs_dmu_offset_next_sync) { 2151 rw_exit(&dn->dn_struct_rwlock); 2152 dnode_rele(dn, FTAG); 2153 2154 if (restarted) 2155 return (SET_ERROR(EBUSY)); 2156 2157 txg_wait_synced(dmu_objset_pool(os), 0); 2158 restarted = 1; 2159 goto restart; 2160 } 2161 2162 err = SET_ERROR(EBUSY); 2163 } else { 2164 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK | 2165 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2166 } 2167 2168 rw_exit(&dn->dn_struct_rwlock); 2169 dnode_rele(dn, FTAG); 2170 2171 return (err); 2172 } 2173 2174 int 2175 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, 2176 blkptr_t *bps, size_t *nbpsp) 2177 { 2178 dmu_buf_t **dbp, *dbuf; 2179 dmu_buf_impl_t *db; 2180 blkptr_t *bp; 2181 int error, numbufs; 2182 2183 error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG, 2184 &numbufs, &dbp); 2185 if (error != 0) { 2186 if (error == ESRCH) { 2187 error = SET_ERROR(ENXIO); 2188 } 2189 return (error); 2190 } 2191 2192 ASSERT3U(numbufs, <=, *nbpsp); 2193 2194 for (int i = 0; i < numbufs; i++) { 2195 dbuf = dbp[i]; 2196 db = (dmu_buf_impl_t *)dbuf; 2197 2198 mutex_enter(&db->db_mtx); 2199 2200 if (!list_is_empty(&db->db_dirty_records)) { 2201 dbuf_dirty_record_t *dr; 2202 2203 dr = list_head(&db->db_dirty_records); 2204 if (dr->dt.dl.dr_brtwrite) { 2205 /* 2206 * This is very special case where we clone a 2207 * block and in the same transaction group we 2208 * read its BP (most likely to clone the clone). 2209 */ 2210 bp = &dr->dt.dl.dr_overridden_by; 2211 } else { 2212 /* 2213 * The block was modified in the same 2214 * transaction group. 2215 */ 2216 mutex_exit(&db->db_mtx); 2217 error = SET_ERROR(EAGAIN); 2218 goto out; 2219 } 2220 } else { 2221 bp = db->db_blkptr; 2222 } 2223 2224 mutex_exit(&db->db_mtx); 2225 2226 if (bp == NULL) { 2227 /* 2228 * The block was created in this transaction group, 2229 * so it has no BP yet. 2230 */ 2231 error = SET_ERROR(EAGAIN); 2232 goto out; 2233 } 2234 /* 2235 * Make sure we clone only data blocks. 2236 */ 2237 if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) { 2238 error = SET_ERROR(EINVAL); 2239 goto out; 2240 } 2241 2242 bps[i] = *bp; 2243 } 2244 2245 *nbpsp = numbufs; 2246 out: 2247 dmu_buf_rele_array(dbp, numbufs, FTAG); 2248 2249 return (error); 2250 } 2251 2252 int 2253 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, 2254 dmu_tx_t *tx, const blkptr_t *bps, size_t nbps, boolean_t replay) 2255 { 2256 spa_t *spa; 2257 dmu_buf_t **dbp, *dbuf; 2258 dmu_buf_impl_t *db; 2259 struct dirty_leaf *dl; 2260 dbuf_dirty_record_t *dr; 2261 const blkptr_t *bp; 2262 int error = 0, i, numbufs; 2263 2264 spa = os->os_spa; 2265 2266 VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG, 2267 &numbufs, &dbp)); 2268 ASSERT3U(nbps, ==, numbufs); 2269 2270 /* 2271 * Before we start cloning make sure that the dbufs sizes match new BPs 2272 * sizes. If they don't, that's a no-go, as we are not able to shrink 2273 * dbufs. 2274 */ 2275 for (i = 0; i < numbufs; i++) { 2276 dbuf = dbp[i]; 2277 db = (dmu_buf_impl_t *)dbuf; 2278 bp = &bps[i]; 2279 2280 ASSERT0(db->db_level); 2281 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2282 ASSERT(db->db_blkid != DMU_SPILL_BLKID); 2283 2284 if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) { 2285 error = SET_ERROR(EXDEV); 2286 goto out; 2287 } 2288 } 2289 2290 for (i = 0; i < numbufs; i++) { 2291 dbuf = dbp[i]; 2292 db = (dmu_buf_impl_t *)dbuf; 2293 bp = &bps[i]; 2294 2295 ASSERT0(db->db_level); 2296 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2297 ASSERT(db->db_blkid != DMU_SPILL_BLKID); 2298 ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp)); 2299 2300 dmu_buf_will_clone(dbuf, tx); 2301 2302 mutex_enter(&db->db_mtx); 2303 2304 dr = list_head(&db->db_dirty_records); 2305 VERIFY(dr != NULL); 2306 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2307 dl = &dr->dt.dl; 2308 dl->dr_overridden_by = *bp; 2309 dl->dr_brtwrite = B_TRUE; 2310 dl->dr_override_state = DR_OVERRIDDEN; 2311 if (BP_IS_HOLE(bp)) { 2312 dl->dr_overridden_by.blk_birth = 0; 2313 dl->dr_overridden_by.blk_phys_birth = 0; 2314 } else { 2315 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2316 if (!BP_IS_EMBEDDED(bp)) { 2317 dl->dr_overridden_by.blk_phys_birth = 2318 BP_PHYSICAL_BIRTH(bp); 2319 } 2320 } 2321 2322 mutex_exit(&db->db_mtx); 2323 2324 /* 2325 * When data in embedded into BP there is no need to create 2326 * BRT entry as there is no data block. Just copy the BP as 2327 * it contains the data. 2328 * Also, when replaying ZIL we don't want to bump references 2329 * in the BRT as it was already done during ZIL claim. 2330 */ 2331 if (!replay && !BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 2332 brt_pending_add(spa, bp, tx); 2333 } 2334 } 2335 out: 2336 dmu_buf_rele_array(dbp, numbufs, FTAG); 2337 2338 return (error); 2339 } 2340 2341 void 2342 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2343 { 2344 dnode_phys_t *dnp = dn->dn_phys; 2345 2346 doi->doi_data_block_size = dn->dn_datablksz; 2347 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2348 1ULL << dn->dn_indblkshift : 0; 2349 doi->doi_type = dn->dn_type; 2350 doi->doi_bonus_type = dn->dn_bonustype; 2351 doi->doi_bonus_size = dn->dn_bonuslen; 2352 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2353 doi->doi_indirection = dn->dn_nlevels; 2354 doi->doi_checksum = dn->dn_checksum; 2355 doi->doi_compress = dn->dn_compress; 2356 doi->doi_nblkptr = dn->dn_nblkptr; 2357 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2358 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2359 doi->doi_fill_count = 0; 2360 for (int i = 0; i < dnp->dn_nblkptr; i++) 2361 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2362 } 2363 2364 void 2365 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2366 { 2367 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2368 mutex_enter(&dn->dn_mtx); 2369 2370 __dmu_object_info_from_dnode(dn, doi); 2371 2372 mutex_exit(&dn->dn_mtx); 2373 rw_exit(&dn->dn_struct_rwlock); 2374 } 2375 2376 /* 2377 * Get information on a DMU object. 2378 * If doi is NULL, just indicates whether the object exists. 2379 */ 2380 int 2381 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2382 { 2383 dnode_t *dn; 2384 int err = dnode_hold(os, object, FTAG, &dn); 2385 2386 if (err) 2387 return (err); 2388 2389 if (doi != NULL) 2390 dmu_object_info_from_dnode(dn, doi); 2391 2392 dnode_rele(dn, FTAG); 2393 return (0); 2394 } 2395 2396 /* 2397 * As above, but faster; can be used when you have a held dbuf in hand. 2398 */ 2399 void 2400 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2401 { 2402 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2403 2404 DB_DNODE_ENTER(db); 2405 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2406 DB_DNODE_EXIT(db); 2407 } 2408 2409 /* 2410 * Faster still when you only care about the size. 2411 */ 2412 void 2413 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2414 u_longlong_t *nblk512) 2415 { 2416 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2417 dnode_t *dn; 2418 2419 DB_DNODE_ENTER(db); 2420 dn = DB_DNODE(db); 2421 2422 *blksize = dn->dn_datablksz; 2423 /* add in number of slots used for the dnode itself */ 2424 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2425 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2426 DB_DNODE_EXIT(db); 2427 } 2428 2429 void 2430 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2431 { 2432 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2433 dnode_t *dn; 2434 2435 DB_DNODE_ENTER(db); 2436 dn = DB_DNODE(db); 2437 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2438 DB_DNODE_EXIT(db); 2439 } 2440 2441 void 2442 byteswap_uint64_array(void *vbuf, size_t size) 2443 { 2444 uint64_t *buf = vbuf; 2445 size_t count = size >> 3; 2446 int i; 2447 2448 ASSERT((size & 7) == 0); 2449 2450 for (i = 0; i < count; i++) 2451 buf[i] = BSWAP_64(buf[i]); 2452 } 2453 2454 void 2455 byteswap_uint32_array(void *vbuf, size_t size) 2456 { 2457 uint32_t *buf = vbuf; 2458 size_t count = size >> 2; 2459 int i; 2460 2461 ASSERT((size & 3) == 0); 2462 2463 for (i = 0; i < count; i++) 2464 buf[i] = BSWAP_32(buf[i]); 2465 } 2466 2467 void 2468 byteswap_uint16_array(void *vbuf, size_t size) 2469 { 2470 uint16_t *buf = vbuf; 2471 size_t count = size >> 1; 2472 int i; 2473 2474 ASSERT((size & 1) == 0); 2475 2476 for (i = 0; i < count; i++) 2477 buf[i] = BSWAP_16(buf[i]); 2478 } 2479 2480 void 2481 byteswap_uint8_array(void *vbuf, size_t size) 2482 { 2483 (void) vbuf, (void) size; 2484 } 2485 2486 void 2487 dmu_init(void) 2488 { 2489 abd_init(); 2490 zfs_dbgmsg_init(); 2491 sa_cache_init(); 2492 dmu_objset_init(); 2493 dnode_init(); 2494 zfetch_init(); 2495 dmu_tx_init(); 2496 l2arc_init(); 2497 arc_init(); 2498 dbuf_init(); 2499 } 2500 2501 void 2502 dmu_fini(void) 2503 { 2504 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2505 l2arc_fini(); 2506 dmu_tx_fini(); 2507 zfetch_fini(); 2508 dbuf_fini(); 2509 dnode_fini(); 2510 dmu_objset_fini(); 2511 sa_cache_fini(); 2512 zfs_dbgmsg_fini(); 2513 abd_fini(); 2514 } 2515 2516 EXPORT_SYMBOL(dmu_bonus_hold); 2517 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2518 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2519 EXPORT_SYMBOL(dmu_buf_rele_array); 2520 EXPORT_SYMBOL(dmu_prefetch); 2521 EXPORT_SYMBOL(dmu_free_range); 2522 EXPORT_SYMBOL(dmu_free_long_range); 2523 EXPORT_SYMBOL(dmu_free_long_object); 2524 EXPORT_SYMBOL(dmu_read); 2525 EXPORT_SYMBOL(dmu_read_by_dnode); 2526 EXPORT_SYMBOL(dmu_write); 2527 EXPORT_SYMBOL(dmu_write_by_dnode); 2528 EXPORT_SYMBOL(dmu_prealloc); 2529 EXPORT_SYMBOL(dmu_object_info); 2530 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2531 EXPORT_SYMBOL(dmu_object_info_from_db); 2532 EXPORT_SYMBOL(dmu_object_size_from_db); 2533 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2534 EXPORT_SYMBOL(dmu_object_set_nlevels); 2535 EXPORT_SYMBOL(dmu_object_set_blocksize); 2536 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2537 EXPORT_SYMBOL(dmu_object_set_checksum); 2538 EXPORT_SYMBOL(dmu_object_set_compress); 2539 EXPORT_SYMBOL(dmu_offset_next); 2540 EXPORT_SYMBOL(dmu_write_policy); 2541 EXPORT_SYMBOL(dmu_sync); 2542 EXPORT_SYMBOL(dmu_request_arcbuf); 2543 EXPORT_SYMBOL(dmu_return_arcbuf); 2544 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2545 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2546 EXPORT_SYMBOL(dmu_buf_hold); 2547 EXPORT_SYMBOL(dmu_ot); 2548 2549 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2550 "Enable NOP writes"); 2551 2552 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW, 2553 "Percentage of dirtied blocks from frees in one TXG"); 2554 2555 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2556 "Enable forcing txg sync to find holes"); 2557 2558 /* CSTYLED */ 2559 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW, 2560 "Limit one prefetch call to this size"); 2561