xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_rlock.h>
56 #ifdef _KERNEL
57 #include <sys/vmsystm.h>
58 #include <sys/zfs_znode.h>
59 #endif
60 
61 /*
62  * Enable/disable nopwrite feature.
63  */
64 int zfs_nopwrite_enabled = 1;
65 
66 /*
67  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
68  * one TXG. After this threshold is crossed, additional dirty blocks from frees
69  * will wait until the next TXG.
70  * A value of zero will disable this throttle.
71  */
72 unsigned long zfs_per_txg_dirty_frees_percent = 5;
73 
74 /*
75  * Enable/disable forcing txg sync when dirty in dmu_offset_next.
76  */
77 int zfs_dmu_offset_next_sync = 0;
78 
79 /*
80  * Limit the amount we can prefetch with one call to this amount.  This
81  * helps to limit the amount of memory that can be used by prefetching.
82  * Larger objects should be prefetched a bit at a time.
83  */
84 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
85 
86 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
87 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
88 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
89 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
90 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
91 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
92 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
93 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
94 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
95 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
96 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
97 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
98 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
99 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
100 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
101 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
102 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
103 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
104 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
105 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
106 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
107 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
108 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
109 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
110 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
111 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
112 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
113 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
115 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
116 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
117 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
118 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
120 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
121 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
122 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
123 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
124 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
125 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
128 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
129 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
131 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
132 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
133 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
136 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
137 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
138 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
139 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
140 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
141 };
142 
143 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
144 	{	byteswap_uint8_array,	"uint8"		},
145 	{	byteswap_uint16_array,	"uint16"	},
146 	{	byteswap_uint32_array,	"uint32"	},
147 	{	byteswap_uint64_array,	"uint64"	},
148 	{	zap_byteswap,		"zap"		},
149 	{	dnode_buf_byteswap,	"dnode"		},
150 	{	dmu_objset_byteswap,	"objset"	},
151 	{	zfs_znode_byteswap,	"znode"		},
152 	{	zfs_oldacl_byteswap,	"oldacl"	},
153 	{	zfs_acl_byteswap,	"acl"		}
154 };
155 
156 static int
157 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
158     void *tag, dmu_buf_t **dbp)
159 {
160 	uint64_t blkid;
161 	dmu_buf_impl_t *db;
162 
163 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
164 	blkid = dbuf_whichblock(dn, 0, offset);
165 	db = dbuf_hold(dn, blkid, tag);
166 	rw_exit(&dn->dn_struct_rwlock);
167 
168 	if (db == NULL) {
169 		*dbp = NULL;
170 		return (SET_ERROR(EIO));
171 	}
172 
173 	*dbp = &db->db;
174 	return (0);
175 }
176 int
177 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
178     void *tag, dmu_buf_t **dbp)
179 {
180 	dnode_t *dn;
181 	uint64_t blkid;
182 	dmu_buf_impl_t *db;
183 	int err;
184 
185 	err = dnode_hold(os, object, FTAG, &dn);
186 	if (err)
187 		return (err);
188 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
189 	blkid = dbuf_whichblock(dn, 0, offset);
190 	db = dbuf_hold(dn, blkid, tag);
191 	rw_exit(&dn->dn_struct_rwlock);
192 	dnode_rele(dn, FTAG);
193 
194 	if (db == NULL) {
195 		*dbp = NULL;
196 		return (SET_ERROR(EIO));
197 	}
198 
199 	*dbp = &db->db;
200 	return (err);
201 }
202 
203 int
204 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
205     void *tag, dmu_buf_t **dbp, int flags)
206 {
207 	int err;
208 	int db_flags = DB_RF_CANFAIL;
209 
210 	if (flags & DMU_READ_NO_PREFETCH)
211 		db_flags |= DB_RF_NOPREFETCH;
212 	if (flags & DMU_READ_NO_DECRYPT)
213 		db_flags |= DB_RF_NO_DECRYPT;
214 
215 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
216 	if (err == 0) {
217 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
218 		err = dbuf_read(db, NULL, db_flags);
219 		if (err != 0) {
220 			dbuf_rele(db, tag);
221 			*dbp = NULL;
222 		}
223 	}
224 
225 	return (err);
226 }
227 
228 int
229 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
230     void *tag, dmu_buf_t **dbp, int flags)
231 {
232 	int err;
233 	int db_flags = DB_RF_CANFAIL;
234 
235 	if (flags & DMU_READ_NO_PREFETCH)
236 		db_flags |= DB_RF_NOPREFETCH;
237 	if (flags & DMU_READ_NO_DECRYPT)
238 		db_flags |= DB_RF_NO_DECRYPT;
239 
240 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
241 	if (err == 0) {
242 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
243 		err = dbuf_read(db, NULL, db_flags);
244 		if (err != 0) {
245 			dbuf_rele(db, tag);
246 			*dbp = NULL;
247 		}
248 	}
249 
250 	return (err);
251 }
252 
253 int
254 dmu_bonus_max(void)
255 {
256 	return (DN_OLD_MAX_BONUSLEN);
257 }
258 
259 int
260 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
261 {
262 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
263 	dnode_t *dn;
264 	int error;
265 
266 	DB_DNODE_ENTER(db);
267 	dn = DB_DNODE(db);
268 
269 	if (dn->dn_bonus != db) {
270 		error = SET_ERROR(EINVAL);
271 	} else if (newsize < 0 || newsize > db_fake->db_size) {
272 		error = SET_ERROR(EINVAL);
273 	} else {
274 		dnode_setbonuslen(dn, newsize, tx);
275 		error = 0;
276 	}
277 
278 	DB_DNODE_EXIT(db);
279 	return (error);
280 }
281 
282 int
283 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
284 {
285 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
286 	dnode_t *dn;
287 	int error;
288 
289 	DB_DNODE_ENTER(db);
290 	dn = DB_DNODE(db);
291 
292 	if (!DMU_OT_IS_VALID(type)) {
293 		error = SET_ERROR(EINVAL);
294 	} else if (dn->dn_bonus != db) {
295 		error = SET_ERROR(EINVAL);
296 	} else {
297 		dnode_setbonus_type(dn, type, tx);
298 		error = 0;
299 	}
300 
301 	DB_DNODE_EXIT(db);
302 	return (error);
303 }
304 
305 dmu_object_type_t
306 dmu_get_bonustype(dmu_buf_t *db_fake)
307 {
308 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
309 	dnode_t *dn;
310 	dmu_object_type_t type;
311 
312 	DB_DNODE_ENTER(db);
313 	dn = DB_DNODE(db);
314 	type = dn->dn_bonustype;
315 	DB_DNODE_EXIT(db);
316 
317 	return (type);
318 }
319 
320 int
321 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
322 {
323 	dnode_t *dn;
324 	int error;
325 
326 	error = dnode_hold(os, object, FTAG, &dn);
327 	dbuf_rm_spill(dn, tx);
328 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
329 	dnode_rm_spill(dn, tx);
330 	rw_exit(&dn->dn_struct_rwlock);
331 	dnode_rele(dn, FTAG);
332 	return (error);
333 }
334 
335 /*
336  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
337  * has not yet been allocated a new bonus dbuf a will be allocated.
338  * Returns ENOENT, EIO, or 0.
339  */
340 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
341     uint32_t flags)
342 {
343 	dmu_buf_impl_t *db;
344 	int error;
345 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
346 
347 	if (flags & DMU_READ_NO_PREFETCH)
348 		db_flags |= DB_RF_NOPREFETCH;
349 	if (flags & DMU_READ_NO_DECRYPT)
350 		db_flags |= DB_RF_NO_DECRYPT;
351 
352 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
353 	if (dn->dn_bonus == NULL) {
354 		rw_exit(&dn->dn_struct_rwlock);
355 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
356 		if (dn->dn_bonus == NULL)
357 			dbuf_create_bonus(dn);
358 	}
359 	db = dn->dn_bonus;
360 
361 	/* as long as the bonus buf is held, the dnode will be held */
362 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
363 		VERIFY(dnode_add_ref(dn, db));
364 		atomic_inc_32(&dn->dn_dbufs_count);
365 	}
366 
367 	/*
368 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
369 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
370 	 * a dnode hold for every dbuf.
371 	 */
372 	rw_exit(&dn->dn_struct_rwlock);
373 
374 	error = dbuf_read(db, NULL, db_flags);
375 	if (error) {
376 		dnode_evict_bonus(dn);
377 		dbuf_rele(db, tag);
378 		*dbp = NULL;
379 		return (error);
380 	}
381 
382 	*dbp = &db->db;
383 	return (0);
384 }
385 
386 int
387 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
388 {
389 	dnode_t *dn;
390 	int error;
391 
392 	error = dnode_hold(os, object, FTAG, &dn);
393 	if (error)
394 		return (error);
395 
396 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
397 	dnode_rele(dn, FTAG);
398 
399 	return (error);
400 }
401 
402 /*
403  * returns ENOENT, EIO, or 0.
404  *
405  * This interface will allocate a blank spill dbuf when a spill blk
406  * doesn't already exist on the dnode.
407  *
408  * if you only want to find an already existing spill db, then
409  * dmu_spill_hold_existing() should be used.
410  */
411 int
412 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
413 {
414 	dmu_buf_impl_t *db = NULL;
415 	int err;
416 
417 	if ((flags & DB_RF_HAVESTRUCT) == 0)
418 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
419 
420 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
421 
422 	if ((flags & DB_RF_HAVESTRUCT) == 0)
423 		rw_exit(&dn->dn_struct_rwlock);
424 
425 	if (db == NULL) {
426 		*dbp = NULL;
427 		return (SET_ERROR(EIO));
428 	}
429 	err = dbuf_read(db, NULL, flags);
430 	if (err == 0)
431 		*dbp = &db->db;
432 	else {
433 		dbuf_rele(db, tag);
434 		*dbp = NULL;
435 	}
436 	return (err);
437 }
438 
439 int
440 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
441 {
442 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
443 	dnode_t *dn;
444 	int err;
445 
446 	DB_DNODE_ENTER(db);
447 	dn = DB_DNODE(db);
448 
449 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
450 		err = SET_ERROR(EINVAL);
451 	} else {
452 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
453 
454 		if (!dn->dn_have_spill) {
455 			err = SET_ERROR(ENOENT);
456 		} else {
457 			err = dmu_spill_hold_by_dnode(dn,
458 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
459 		}
460 
461 		rw_exit(&dn->dn_struct_rwlock);
462 	}
463 
464 	DB_DNODE_EXIT(db);
465 	return (err);
466 }
467 
468 int
469 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
470     dmu_buf_t **dbp)
471 {
472 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
473 	dnode_t *dn;
474 	int err;
475 	uint32_t db_flags = DB_RF_CANFAIL;
476 
477 	if (flags & DMU_READ_NO_DECRYPT)
478 		db_flags |= DB_RF_NO_DECRYPT;
479 
480 	DB_DNODE_ENTER(db);
481 	dn = DB_DNODE(db);
482 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
483 	DB_DNODE_EXIT(db);
484 
485 	return (err);
486 }
487 
488 /*
489  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
490  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
491  * and can induce severe lock contention when writing to several files
492  * whose dnodes are in the same block.
493  */
494 int
495 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
496     boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
497 {
498 	dmu_buf_t **dbp;
499 	uint64_t blkid, nblks, i;
500 	uint32_t dbuf_flags;
501 	int err;
502 	zio_t *zio;
503 
504 	ASSERT(length <= DMU_MAX_ACCESS);
505 
506 	/*
507 	 * Note: We directly notify the prefetch code of this read, so that
508 	 * we can tell it about the multi-block read.  dbuf_read() only knows
509 	 * about the one block it is accessing.
510 	 */
511 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
512 	    DB_RF_NOPREFETCH;
513 
514 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
515 	if (dn->dn_datablkshift) {
516 		int blkshift = dn->dn_datablkshift;
517 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
518 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
519 	} else {
520 		if (offset + length > dn->dn_datablksz) {
521 			zfs_panic_recover("zfs: accessing past end of object "
522 			    "%llx/%llx (size=%u access=%llu+%llu)",
523 			    (longlong_t)dn->dn_objset->
524 			    os_dsl_dataset->ds_object,
525 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
526 			    (longlong_t)offset, (longlong_t)length);
527 			rw_exit(&dn->dn_struct_rwlock);
528 			return (SET_ERROR(EIO));
529 		}
530 		nblks = 1;
531 	}
532 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
533 
534 	zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
535 	blkid = dbuf_whichblock(dn, 0, offset);
536 	for (i = 0; i < nblks; i++) {
537 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
538 		if (db == NULL) {
539 			rw_exit(&dn->dn_struct_rwlock);
540 			dmu_buf_rele_array(dbp, nblks, tag);
541 			zio_nowait(zio);
542 			return (SET_ERROR(EIO));
543 		}
544 
545 		/* initiate async i/o */
546 		if (read)
547 			(void) dbuf_read(db, zio, dbuf_flags);
548 		dbp[i] = &db->db;
549 	}
550 
551 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
552 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
553 		dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
554 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
555 	}
556 	rw_exit(&dn->dn_struct_rwlock);
557 
558 	/* wait for async i/o */
559 	err = zio_wait(zio);
560 	if (err) {
561 		dmu_buf_rele_array(dbp, nblks, tag);
562 		return (err);
563 	}
564 
565 	/* wait for other io to complete */
566 	if (read) {
567 		for (i = 0; i < nblks; i++) {
568 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
569 			mutex_enter(&db->db_mtx);
570 			while (db->db_state == DB_READ ||
571 			    db->db_state == DB_FILL)
572 				cv_wait(&db->db_changed, &db->db_mtx);
573 			if (db->db_state == DB_UNCACHED)
574 				err = SET_ERROR(EIO);
575 			mutex_exit(&db->db_mtx);
576 			if (err) {
577 				dmu_buf_rele_array(dbp, nblks, tag);
578 				return (err);
579 			}
580 		}
581 	}
582 
583 	*numbufsp = nblks;
584 	*dbpp = dbp;
585 	return (0);
586 }
587 
588 static int
589 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
590     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
591 {
592 	dnode_t *dn;
593 	int err;
594 
595 	err = dnode_hold(os, object, FTAG, &dn);
596 	if (err)
597 		return (err);
598 
599 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
600 	    numbufsp, dbpp, DMU_READ_PREFETCH);
601 
602 	dnode_rele(dn, FTAG);
603 
604 	return (err);
605 }
606 
607 int
608 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
609     uint64_t length, boolean_t read, void *tag, int *numbufsp,
610     dmu_buf_t ***dbpp)
611 {
612 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
613 	dnode_t *dn;
614 	int err;
615 
616 	DB_DNODE_ENTER(db);
617 	dn = DB_DNODE(db);
618 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
619 	    numbufsp, dbpp, DMU_READ_PREFETCH);
620 	DB_DNODE_EXIT(db);
621 
622 	return (err);
623 }
624 
625 void
626 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
627 {
628 	int i;
629 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
630 
631 	if (numbufs == 0)
632 		return;
633 
634 	for (i = 0; i < numbufs; i++) {
635 		if (dbp[i])
636 			dbuf_rele(dbp[i], tag);
637 	}
638 
639 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
640 }
641 
642 /*
643  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
644  * indirect blocks prefetched will be those that point to the blocks containing
645  * the data starting at offset, and continuing to offset + len.
646  *
647  * Note that if the indirect blocks above the blocks being prefetched are not
648  * in cache, they will be asynchronously read in.
649  */
650 void
651 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
652     uint64_t len, zio_priority_t pri)
653 {
654 	dnode_t *dn;
655 	uint64_t blkid;
656 	int nblks, err;
657 
658 	if (len == 0) {  /* they're interested in the bonus buffer */
659 		dn = DMU_META_DNODE(os);
660 
661 		if (object == 0 || object >= DN_MAX_OBJECT)
662 			return;
663 
664 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
665 		blkid = dbuf_whichblock(dn, level,
666 		    object * sizeof (dnode_phys_t));
667 		dbuf_prefetch(dn, level, blkid, pri, 0);
668 		rw_exit(&dn->dn_struct_rwlock);
669 		return;
670 	}
671 
672 	/*
673 	 * See comment before the definition of dmu_prefetch_max.
674 	 */
675 	len = MIN(len, dmu_prefetch_max);
676 
677 	/*
678 	 * XXX - Note, if the dnode for the requested object is not
679 	 * already cached, we will do a *synchronous* read in the
680 	 * dnode_hold() call.  The same is true for any indirects.
681 	 */
682 	err = dnode_hold(os, object, FTAG, &dn);
683 	if (err != 0)
684 		return;
685 
686 	/*
687 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
688 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
689 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
690 	 * offset)  is the first.  Then the number we need to prefetch is the
691 	 * last - first + 1.
692 	 */
693 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
694 	if (level > 0 || dn->dn_datablkshift != 0) {
695 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
696 		    dbuf_whichblock(dn, level, offset) + 1;
697 	} else {
698 		nblks = (offset < dn->dn_datablksz);
699 	}
700 
701 	if (nblks != 0) {
702 		blkid = dbuf_whichblock(dn, level, offset);
703 		for (int i = 0; i < nblks; i++)
704 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
705 	}
706 	rw_exit(&dn->dn_struct_rwlock);
707 
708 	dnode_rele(dn, FTAG);
709 }
710 
711 /*
712  * Get the next "chunk" of file data to free.  We traverse the file from
713  * the end so that the file gets shorter over time (if we crashes in the
714  * middle, this will leave us in a better state).  We find allocated file
715  * data by simply searching the allocated level 1 indirects.
716  *
717  * On input, *start should be the first offset that does not need to be
718  * freed (e.g. "offset + length").  On return, *start will be the first
719  * offset that should be freed and l1blks is set to the number of level 1
720  * indirect blocks found within the chunk.
721  */
722 static int
723 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
724 {
725 	uint64_t blks;
726 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
727 	/* bytes of data covered by a level-1 indirect block */
728 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
729 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
730 
731 	ASSERT3U(minimum, <=, *start);
732 
733 	/*
734 	 * Check if we can free the entire range assuming that all of the
735 	 * L1 blocks in this range have data. If we can, we use this
736 	 * worst case value as an estimate so we can avoid having to look
737 	 * at the object's actual data.
738 	 */
739 	uint64_t total_l1blks =
740 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
741 	    iblkrange;
742 	if (total_l1blks <= maxblks) {
743 		*l1blks = total_l1blks;
744 		*start = minimum;
745 		return (0);
746 	}
747 	ASSERT(ISP2(iblkrange));
748 
749 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
750 		int err;
751 
752 		/*
753 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
754 		 * indirect block at or before the input offset.  We must
755 		 * decrement *start so that it is at the end of the region
756 		 * to search.
757 		 */
758 		(*start)--;
759 
760 		err = dnode_next_offset(dn,
761 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
762 
763 		/* if there are no indirect blocks before start, we are done */
764 		if (err == ESRCH) {
765 			*start = minimum;
766 			break;
767 		} else if (err != 0) {
768 			*l1blks = blks;
769 			return (err);
770 		}
771 
772 		/* set start to the beginning of this L1 indirect */
773 		*start = P2ALIGN(*start, iblkrange);
774 	}
775 	if (*start < minimum)
776 		*start = minimum;
777 	*l1blks = blks;
778 
779 	return (0);
780 }
781 
782 /*
783  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
784  * otherwise return false.
785  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
786  */
787 /*ARGSUSED*/
788 static boolean_t
789 dmu_objset_zfs_unmounting(objset_t *os)
790 {
791 #ifdef _KERNEL
792 	if (dmu_objset_type(os) == DMU_OST_ZFS)
793 		return (zfs_get_vfs_flag_unmounted(os));
794 #endif
795 	return (B_FALSE);
796 }
797 
798 static int
799 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
800     uint64_t length)
801 {
802 	uint64_t object_size;
803 	int err;
804 	uint64_t dirty_frees_threshold;
805 	dsl_pool_t *dp = dmu_objset_pool(os);
806 
807 	if (dn == NULL)
808 		return (SET_ERROR(EINVAL));
809 
810 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
811 	if (offset >= object_size)
812 		return (0);
813 
814 	if (zfs_per_txg_dirty_frees_percent <= 100)
815 		dirty_frees_threshold =
816 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
817 	else
818 		dirty_frees_threshold = zfs_dirty_data_max / 20;
819 
820 	if (length == DMU_OBJECT_END || offset + length > object_size)
821 		length = object_size - offset;
822 
823 	while (length != 0) {
824 		uint64_t chunk_end, chunk_begin, chunk_len;
825 		uint64_t l1blks;
826 		dmu_tx_t *tx;
827 
828 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
829 			return (SET_ERROR(EINTR));
830 
831 		chunk_end = chunk_begin = offset + length;
832 
833 		/* move chunk_begin backwards to the beginning of this chunk */
834 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
835 		if (err)
836 			return (err);
837 		ASSERT3U(chunk_begin, >=, offset);
838 		ASSERT3U(chunk_begin, <=, chunk_end);
839 
840 		chunk_len = chunk_end - chunk_begin;
841 
842 		tx = dmu_tx_create(os);
843 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
844 
845 		/*
846 		 * Mark this transaction as typically resulting in a net
847 		 * reduction in space used.
848 		 */
849 		dmu_tx_mark_netfree(tx);
850 		err = dmu_tx_assign(tx, TXG_WAIT);
851 		if (err) {
852 			dmu_tx_abort(tx);
853 			return (err);
854 		}
855 
856 		uint64_t txg = dmu_tx_get_txg(tx);
857 
858 		mutex_enter(&dp->dp_lock);
859 		uint64_t long_free_dirty =
860 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
861 		mutex_exit(&dp->dp_lock);
862 
863 		/*
864 		 * To avoid filling up a TXG with just frees, wait for
865 		 * the next TXG to open before freeing more chunks if
866 		 * we have reached the threshold of frees.
867 		 */
868 		if (dirty_frees_threshold != 0 &&
869 		    long_free_dirty >= dirty_frees_threshold) {
870 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
871 			dmu_tx_commit(tx);
872 			txg_wait_open(dp, 0, B_TRUE);
873 			continue;
874 		}
875 
876 		/*
877 		 * In order to prevent unnecessary write throttling, for each
878 		 * TXG, we track the cumulative size of L1 blocks being dirtied
879 		 * in dnode_free_range() below. We compare this number to a
880 		 * tunable threshold, past which we prevent new L1 dirty freeing
881 		 * blocks from being added into the open TXG. See
882 		 * dmu_free_long_range_impl() for details. The threshold
883 		 * prevents write throttle activation due to dirty freeing L1
884 		 * blocks taking up a large percentage of zfs_dirty_data_max.
885 		 */
886 		mutex_enter(&dp->dp_lock);
887 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
888 		    l1blks << dn->dn_indblkshift;
889 		mutex_exit(&dp->dp_lock);
890 		DTRACE_PROBE3(free__long__range,
891 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
892 		    uint64_t, txg);
893 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
894 
895 		dmu_tx_commit(tx);
896 
897 		length -= chunk_len;
898 	}
899 	return (0);
900 }
901 
902 int
903 dmu_free_long_range(objset_t *os, uint64_t object,
904     uint64_t offset, uint64_t length)
905 {
906 	dnode_t *dn;
907 	int err;
908 
909 	err = dnode_hold(os, object, FTAG, &dn);
910 	if (err != 0)
911 		return (err);
912 	err = dmu_free_long_range_impl(os, dn, offset, length);
913 
914 	/*
915 	 * It is important to zero out the maxblkid when freeing the entire
916 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
917 	 * will take the fast path, and (b) dnode_reallocate() can verify
918 	 * that the entire file has been freed.
919 	 */
920 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
921 		dn->dn_maxblkid = 0;
922 
923 	dnode_rele(dn, FTAG);
924 	return (err);
925 }
926 
927 int
928 dmu_free_long_object(objset_t *os, uint64_t object)
929 {
930 	dmu_tx_t *tx;
931 	int err;
932 
933 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
934 	if (err != 0)
935 		return (err);
936 
937 	tx = dmu_tx_create(os);
938 	dmu_tx_hold_bonus(tx, object);
939 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
940 	dmu_tx_mark_netfree(tx);
941 	err = dmu_tx_assign(tx, TXG_WAIT);
942 	if (err == 0) {
943 		if (err == 0)
944 			err = dmu_object_free(os, object, tx);
945 
946 		dmu_tx_commit(tx);
947 	} else {
948 		dmu_tx_abort(tx);
949 	}
950 
951 	return (err);
952 }
953 
954 int
955 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
956     uint64_t size, dmu_tx_t *tx)
957 {
958 	dnode_t *dn;
959 	int err = dnode_hold(os, object, FTAG, &dn);
960 	if (err)
961 		return (err);
962 	ASSERT(offset < UINT64_MAX);
963 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
964 	dnode_free_range(dn, offset, size, tx);
965 	dnode_rele(dn, FTAG);
966 	return (0);
967 }
968 
969 static int
970 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
971     void *buf, uint32_t flags)
972 {
973 	dmu_buf_t **dbp;
974 	int numbufs, err = 0;
975 
976 	/*
977 	 * Deal with odd block sizes, where there can't be data past the first
978 	 * block.  If we ever do the tail block optimization, we will need to
979 	 * handle that here as well.
980 	 */
981 	if (dn->dn_maxblkid == 0) {
982 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
983 		    MIN(size, dn->dn_datablksz - offset);
984 		bzero((char *)buf + newsz, size - newsz);
985 		size = newsz;
986 	}
987 
988 	while (size > 0) {
989 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
990 		int i;
991 
992 		/*
993 		 * NB: we could do this block-at-a-time, but it's nice
994 		 * to be reading in parallel.
995 		 */
996 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
997 		    TRUE, FTAG, &numbufs, &dbp, flags);
998 		if (err)
999 			break;
1000 
1001 		for (i = 0; i < numbufs; i++) {
1002 			uint64_t tocpy;
1003 			int64_t bufoff;
1004 			dmu_buf_t *db = dbp[i];
1005 
1006 			ASSERT(size > 0);
1007 
1008 			bufoff = offset - db->db_offset;
1009 			tocpy = MIN(db->db_size - bufoff, size);
1010 
1011 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1012 
1013 			offset += tocpy;
1014 			size -= tocpy;
1015 			buf = (char *)buf + tocpy;
1016 		}
1017 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1018 	}
1019 	return (err);
1020 }
1021 
1022 int
1023 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1024     void *buf, uint32_t flags)
1025 {
1026 	dnode_t *dn;
1027 	int err;
1028 
1029 	err = dnode_hold(os, object, FTAG, &dn);
1030 	if (err != 0)
1031 		return (err);
1032 
1033 	err = dmu_read_impl(dn, offset, size, buf, flags);
1034 	dnode_rele(dn, FTAG);
1035 	return (err);
1036 }
1037 
1038 int
1039 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1040     uint32_t flags)
1041 {
1042 	return (dmu_read_impl(dn, offset, size, buf, flags));
1043 }
1044 
1045 static void
1046 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1047     const void *buf, dmu_tx_t *tx)
1048 {
1049 	int i;
1050 
1051 	for (i = 0; i < numbufs; i++) {
1052 		uint64_t tocpy;
1053 		int64_t bufoff;
1054 		dmu_buf_t *db = dbp[i];
1055 
1056 		ASSERT(size > 0);
1057 
1058 		bufoff = offset - db->db_offset;
1059 		tocpy = MIN(db->db_size - bufoff, size);
1060 
1061 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1062 
1063 		if (tocpy == db->db_size)
1064 			dmu_buf_will_fill(db, tx);
1065 		else
1066 			dmu_buf_will_dirty(db, tx);
1067 
1068 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1069 
1070 		if (tocpy == db->db_size)
1071 			dmu_buf_fill_done(db, tx);
1072 
1073 		offset += tocpy;
1074 		size -= tocpy;
1075 		buf = (char *)buf + tocpy;
1076 	}
1077 }
1078 
1079 void
1080 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1081     const void *buf, dmu_tx_t *tx)
1082 {
1083 	dmu_buf_t **dbp;
1084 	int numbufs;
1085 
1086 	if (size == 0)
1087 		return;
1088 
1089 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1090 	    FALSE, FTAG, &numbufs, &dbp));
1091 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1092 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1093 }
1094 
1095 /*
1096  * Note: Lustre is an external consumer of this interface.
1097  */
1098 void
1099 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1100     const void *buf, dmu_tx_t *tx)
1101 {
1102 	dmu_buf_t **dbp;
1103 	int numbufs;
1104 
1105 	if (size == 0)
1106 		return;
1107 
1108 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1109 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1110 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1111 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1112 }
1113 
1114 void
1115 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1116     dmu_tx_t *tx)
1117 {
1118 	dmu_buf_t **dbp;
1119 	int numbufs, i;
1120 
1121 	if (size == 0)
1122 		return;
1123 
1124 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1125 	    FALSE, FTAG, &numbufs, &dbp));
1126 
1127 	for (i = 0; i < numbufs; i++) {
1128 		dmu_buf_t *db = dbp[i];
1129 
1130 		dmu_buf_will_not_fill(db, tx);
1131 	}
1132 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1133 }
1134 
1135 void
1136 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1137     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1138     int compressed_size, int byteorder, dmu_tx_t *tx)
1139 {
1140 	dmu_buf_t *db;
1141 
1142 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1143 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1144 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1145 	    FTAG, &db));
1146 
1147 	dmu_buf_write_embedded(db,
1148 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1149 	    uncompressed_size, compressed_size, byteorder, tx);
1150 
1151 	dmu_buf_rele(db, FTAG);
1152 }
1153 
1154 void
1155 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1156     dmu_tx_t *tx)
1157 {
1158 	int numbufs, i;
1159 	dmu_buf_t **dbp;
1160 
1161 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1162 	    &numbufs, &dbp));
1163 	for (i = 0; i < numbufs; i++)
1164 		dmu_buf_redact(dbp[i], tx);
1165 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1166 }
1167 
1168 /*
1169  * DMU support for xuio
1170  */
1171 kstat_t *xuio_ksp = NULL;
1172 
1173 typedef struct xuio_stats {
1174 	/* loaned yet not returned arc_buf */
1175 	kstat_named_t xuiostat_onloan_rbuf;
1176 	kstat_named_t xuiostat_onloan_wbuf;
1177 	/* whether a copy is made when loaning out a read buffer */
1178 	kstat_named_t xuiostat_rbuf_copied;
1179 	kstat_named_t xuiostat_rbuf_nocopy;
1180 	/* whether a copy is made when assigning a write buffer */
1181 	kstat_named_t xuiostat_wbuf_copied;
1182 	kstat_named_t xuiostat_wbuf_nocopy;
1183 } xuio_stats_t;
1184 
1185 static xuio_stats_t xuio_stats = {
1186 	{ "onloan_read_buf",	KSTAT_DATA_UINT64 },
1187 	{ "onloan_write_buf",	KSTAT_DATA_UINT64 },
1188 	{ "read_buf_copied",	KSTAT_DATA_UINT64 },
1189 	{ "read_buf_nocopy",	KSTAT_DATA_UINT64 },
1190 	{ "write_buf_copied",	KSTAT_DATA_UINT64 },
1191 	{ "write_buf_nocopy",	KSTAT_DATA_UINT64 }
1192 };
1193 
1194 #define	XUIOSTAT_INCR(stat, val)        \
1195 	atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1196 #define	XUIOSTAT_BUMP(stat)	XUIOSTAT_INCR(stat, 1)
1197 
1198 #ifdef HAVE_UIO_ZEROCOPY
1199 int
1200 dmu_xuio_init(xuio_t *xuio, int nblk)
1201 {
1202 	dmu_xuio_t *priv;
1203 	uio_t *uio = &xuio->xu_uio;
1204 
1205 	uio->uio_iovcnt = nblk;
1206 	uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1207 
1208 	priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1209 	priv->cnt = nblk;
1210 	priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1211 	priv->iovp = (iovec_t *)uio->uio_iov;
1212 	XUIO_XUZC_PRIV(xuio) = priv;
1213 
1214 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
1215 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1216 	else
1217 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1218 
1219 	return (0);
1220 }
1221 
1222 void
1223 dmu_xuio_fini(xuio_t *xuio)
1224 {
1225 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1226 	int nblk = priv->cnt;
1227 
1228 	kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1229 	kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1230 	kmem_free(priv, sizeof (dmu_xuio_t));
1231 
1232 	if (XUIO_XUZC_RW(xuio) == UIO_READ)
1233 		XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1234 	else
1235 		XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1236 }
1237 
1238 /*
1239  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1240  * and increase priv->next by 1.
1241  */
1242 int
1243 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1244 {
1245 	struct iovec *iov;
1246 	uio_t *uio = &xuio->xu_uio;
1247 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1248 	int i = priv->next++;
1249 
1250 	ASSERT(i < priv->cnt);
1251 	ASSERT(off + n <= arc_buf_lsize(abuf));
1252 	iov = (iovec_t *)uio->uio_iov + i;
1253 	iov->iov_base = (char *)abuf->b_data + off;
1254 	iov->iov_len = n;
1255 	priv->bufs[i] = abuf;
1256 	return (0);
1257 }
1258 
1259 int
1260 dmu_xuio_cnt(xuio_t *xuio)
1261 {
1262 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1263 	return (priv->cnt);
1264 }
1265 
1266 arc_buf_t *
1267 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1268 {
1269 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1270 
1271 	ASSERT(i < priv->cnt);
1272 	return (priv->bufs[i]);
1273 }
1274 
1275 void
1276 dmu_xuio_clear(xuio_t *xuio, int i)
1277 {
1278 	dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1279 
1280 	ASSERT(i < priv->cnt);
1281 	priv->bufs[i] = NULL;
1282 }
1283 #endif /* HAVE_UIO_ZEROCOPY */
1284 
1285 static void
1286 xuio_stat_init(void)
1287 {
1288 	xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1289 	    KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1290 	    KSTAT_FLAG_VIRTUAL);
1291 	if (xuio_ksp != NULL) {
1292 		xuio_ksp->ks_data = &xuio_stats;
1293 		kstat_install(xuio_ksp);
1294 	}
1295 }
1296 
1297 static void
1298 xuio_stat_fini(void)
1299 {
1300 	if (xuio_ksp != NULL) {
1301 		kstat_delete(xuio_ksp);
1302 		xuio_ksp = NULL;
1303 	}
1304 }
1305 
1306 void
1307 xuio_stat_wbuf_copied(void)
1308 {
1309 	XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1310 }
1311 
1312 void
1313 xuio_stat_wbuf_nocopy(void)
1314 {
1315 	XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1316 }
1317 
1318 #ifdef _KERNEL
1319 int
1320 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1321 {
1322 	dmu_buf_t **dbp;
1323 	int numbufs, i, err;
1324 #ifdef HAVE_UIO_ZEROCOPY
1325 	xuio_t *xuio = NULL;
1326 #endif
1327 
1328 	/*
1329 	 * NB: we could do this block-at-a-time, but it's nice
1330 	 * to be reading in parallel.
1331 	 */
1332 	err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
1333 	    TRUE, FTAG, &numbufs, &dbp, 0);
1334 	if (err)
1335 		return (err);
1336 
1337 	for (i = 0; i < numbufs; i++) {
1338 		uint64_t tocpy;
1339 		int64_t bufoff;
1340 		dmu_buf_t *db = dbp[i];
1341 
1342 		ASSERT(size > 0);
1343 
1344 		bufoff = uio_offset(uio) - db->db_offset;
1345 		tocpy = MIN(db->db_size - bufoff, size);
1346 
1347 #ifdef HAVE_UIO_ZEROCOPY
1348 		if (xuio) {
1349 			dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1350 			arc_buf_t *dbuf_abuf = dbi->db_buf;
1351 			arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1352 			err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1353 			if (!err)
1354 				uio_advance(uio, tocpy);
1355 
1356 			if (abuf == dbuf_abuf)
1357 				XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1358 			else
1359 				XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1360 		} else
1361 #endif
1362 #ifdef __FreeBSD__
1363 			err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1364 			    tocpy, uio);
1365 #else
1366 			err = uiomove((char *)db->db_data + bufoff, tocpy,
1367 			    UIO_READ, uio);
1368 #endif
1369 		if (err)
1370 			break;
1371 
1372 		size -= tocpy;
1373 	}
1374 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1375 
1376 	return (err);
1377 }
1378 
1379 /*
1380  * Read 'size' bytes into the uio buffer.
1381  * From object zdb->db_object.
1382  * Starting at offset uio->uio_loffset.
1383  *
1384  * If the caller already has a dbuf in the target object
1385  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1386  * because we don't have to find the dnode_t for the object.
1387  */
1388 int
1389 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1390 {
1391 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1392 	dnode_t *dn;
1393 	int err;
1394 
1395 	if (size == 0)
1396 		return (0);
1397 
1398 	DB_DNODE_ENTER(db);
1399 	dn = DB_DNODE(db);
1400 	err = dmu_read_uio_dnode(dn, uio, size);
1401 	DB_DNODE_EXIT(db);
1402 
1403 	return (err);
1404 }
1405 
1406 /*
1407  * Read 'size' bytes into the uio buffer.
1408  * From the specified object
1409  * Starting at offset uio->uio_loffset.
1410  */
1411 int
1412 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1413 {
1414 	dnode_t *dn;
1415 	int err;
1416 
1417 	if (size == 0)
1418 		return (0);
1419 
1420 	err = dnode_hold(os, object, FTAG, &dn);
1421 	if (err)
1422 		return (err);
1423 
1424 	err = dmu_read_uio_dnode(dn, uio, size);
1425 
1426 	dnode_rele(dn, FTAG);
1427 
1428 	return (err);
1429 }
1430 
1431 int
1432 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1433 {
1434 	dmu_buf_t **dbp;
1435 	int numbufs;
1436 	int err = 0;
1437 	int i;
1438 
1439 	err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size,
1440 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1441 	if (err)
1442 		return (err);
1443 
1444 	for (i = 0; i < numbufs; i++) {
1445 		uint64_t tocpy;
1446 		int64_t bufoff;
1447 		dmu_buf_t *db = dbp[i];
1448 
1449 		ASSERT(size > 0);
1450 
1451 		bufoff = uio_offset(uio) - db->db_offset;
1452 		tocpy = MIN(db->db_size - bufoff, size);
1453 
1454 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1455 
1456 		if (tocpy == db->db_size)
1457 			dmu_buf_will_fill(db, tx);
1458 		else
1459 			dmu_buf_will_dirty(db, tx);
1460 
1461 		/*
1462 		 * XXX uiomove could block forever (eg.nfs-backed
1463 		 * pages).  There needs to be a uiolockdown() function
1464 		 * to lock the pages in memory, so that uiomove won't
1465 		 * block.
1466 		 */
1467 #ifdef __FreeBSD__
1468 		err = vn_io_fault_uiomove((char *)db->db_data + bufoff,
1469 		    tocpy, uio);
1470 #else
1471 		err = uiomove((char *)db->db_data + bufoff, tocpy,
1472 		    UIO_WRITE, uio);
1473 #endif
1474 		if (tocpy == db->db_size)
1475 			dmu_buf_fill_done(db, tx);
1476 
1477 		if (err)
1478 			break;
1479 
1480 		size -= tocpy;
1481 	}
1482 
1483 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1484 	return (err);
1485 }
1486 
1487 /*
1488  * Write 'size' bytes from the uio buffer.
1489  * To object zdb->db_object.
1490  * Starting at offset uio->uio_loffset.
1491  *
1492  * If the caller already has a dbuf in the target object
1493  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1494  * because we don't have to find the dnode_t for the object.
1495  */
1496 int
1497 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1498     dmu_tx_t *tx)
1499 {
1500 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1501 	dnode_t *dn;
1502 	int err;
1503 
1504 	if (size == 0)
1505 		return (0);
1506 
1507 	DB_DNODE_ENTER(db);
1508 	dn = DB_DNODE(db);
1509 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1510 	DB_DNODE_EXIT(db);
1511 
1512 	return (err);
1513 }
1514 
1515 /*
1516  * Write 'size' bytes from the uio buffer.
1517  * To the specified object.
1518  * Starting at offset uio->uio_loffset.
1519  */
1520 int
1521 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1522     dmu_tx_t *tx)
1523 {
1524 	dnode_t *dn;
1525 	int err;
1526 
1527 	if (size == 0)
1528 		return (0);
1529 
1530 	err = dnode_hold(os, object, FTAG, &dn);
1531 	if (err)
1532 		return (err);
1533 
1534 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1535 
1536 	dnode_rele(dn, FTAG);
1537 
1538 	return (err);
1539 }
1540 #endif /* _KERNEL */
1541 
1542 /*
1543  * Allocate a loaned anonymous arc buffer.
1544  */
1545 arc_buf_t *
1546 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1547 {
1548 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1549 
1550 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1551 }
1552 
1553 /*
1554  * Free a loaned arc buffer.
1555  */
1556 void
1557 dmu_return_arcbuf(arc_buf_t *buf)
1558 {
1559 	arc_return_buf(buf, FTAG);
1560 	arc_buf_destroy(buf, FTAG);
1561 }
1562 
1563 /*
1564  * When possible directly assign passed loaned arc buffer to a dbuf.
1565  * If this is not possible copy the contents of passed arc buf via
1566  * dmu_write().
1567  */
1568 int
1569 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1570     dmu_tx_t *tx)
1571 {
1572 	dmu_buf_impl_t *db;
1573 	objset_t *os = dn->dn_objset;
1574 	uint64_t object = dn->dn_object;
1575 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1576 	uint64_t blkid;
1577 
1578 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1579 	blkid = dbuf_whichblock(dn, 0, offset);
1580 	db = dbuf_hold(dn, blkid, FTAG);
1581 	if (db == NULL)
1582 		return (SET_ERROR(EIO));
1583 	rw_exit(&dn->dn_struct_rwlock);
1584 
1585 	/*
1586 	 * We can only assign if the offset is aligned, the arc buf is the
1587 	 * same size as the dbuf, and the dbuf is not metadata.
1588 	 */
1589 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1590 		dbuf_assign_arcbuf(db, buf, tx);
1591 		dbuf_rele(db, FTAG);
1592 	} else {
1593 		/* compressed bufs must always be assignable to their dbuf */
1594 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1595 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1596 
1597 		dbuf_rele(db, FTAG);
1598 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1599 		dmu_return_arcbuf(buf);
1600 		XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1601 	}
1602 
1603 	return (0);
1604 }
1605 
1606 int
1607 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1608     dmu_tx_t *tx)
1609 {
1610 	int err;
1611 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1612 
1613 	DB_DNODE_ENTER(dbuf);
1614 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1615 	DB_DNODE_EXIT(dbuf);
1616 
1617 	return (err);
1618 }
1619 
1620 typedef struct {
1621 	dbuf_dirty_record_t	*dsa_dr;
1622 	dmu_sync_cb_t		*dsa_done;
1623 	zgd_t			*dsa_zgd;
1624 	dmu_tx_t		*dsa_tx;
1625 } dmu_sync_arg_t;
1626 
1627 /* ARGSUSED */
1628 static void
1629 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1630 {
1631 	dmu_sync_arg_t *dsa = varg;
1632 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1633 	blkptr_t *bp = zio->io_bp;
1634 
1635 	if (zio->io_error == 0) {
1636 		if (BP_IS_HOLE(bp)) {
1637 			/*
1638 			 * A block of zeros may compress to a hole, but the
1639 			 * block size still needs to be known for replay.
1640 			 */
1641 			BP_SET_LSIZE(bp, db->db_size);
1642 		} else if (!BP_IS_EMBEDDED(bp)) {
1643 			ASSERT(BP_GET_LEVEL(bp) == 0);
1644 			BP_SET_FILL(bp, 1);
1645 		}
1646 	}
1647 }
1648 
1649 static void
1650 dmu_sync_late_arrival_ready(zio_t *zio)
1651 {
1652 	dmu_sync_ready(zio, NULL, zio->io_private);
1653 }
1654 
1655 /* ARGSUSED */
1656 static void
1657 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1658 {
1659 	dmu_sync_arg_t *dsa = varg;
1660 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1661 	dmu_buf_impl_t *db = dr->dr_dbuf;
1662 	zgd_t *zgd = dsa->dsa_zgd;
1663 
1664 	/*
1665 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1666 	 * the writes for the lwb have completed.
1667 	 */
1668 	if (zio->io_error == 0) {
1669 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1670 	}
1671 
1672 	mutex_enter(&db->db_mtx);
1673 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1674 	if (zio->io_error == 0) {
1675 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1676 		if (dr->dt.dl.dr_nopwrite) {
1677 			blkptr_t *bp = zio->io_bp;
1678 			blkptr_t *bp_orig = &zio->io_bp_orig;
1679 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1680 
1681 			ASSERT(BP_EQUAL(bp, bp_orig));
1682 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1683 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1684 			VERIFY(zio_checksum_table[chksum].ci_flags &
1685 			    ZCHECKSUM_FLAG_NOPWRITE);
1686 		}
1687 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1688 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1689 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1690 
1691 		/*
1692 		 * Old style holes are filled with all zeros, whereas
1693 		 * new-style holes maintain their lsize, type, level,
1694 		 * and birth time (see zio_write_compress). While we
1695 		 * need to reset the BP_SET_LSIZE() call that happened
1696 		 * in dmu_sync_ready for old style holes, we do *not*
1697 		 * want to wipe out the information contained in new
1698 		 * style holes. Thus, only zero out the block pointer if
1699 		 * it's an old style hole.
1700 		 */
1701 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1702 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1703 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1704 	} else {
1705 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1706 	}
1707 	cv_broadcast(&db->db_changed);
1708 	mutex_exit(&db->db_mtx);
1709 
1710 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1711 
1712 	kmem_free(dsa, sizeof (*dsa));
1713 }
1714 
1715 static void
1716 dmu_sync_late_arrival_done(zio_t *zio)
1717 {
1718 	blkptr_t *bp = zio->io_bp;
1719 	dmu_sync_arg_t *dsa = zio->io_private;
1720 	zgd_t *zgd = dsa->dsa_zgd;
1721 
1722 	if (zio->io_error == 0) {
1723 		/*
1724 		 * Record the vdev(s) backing this blkptr so they can be
1725 		 * flushed after the writes for the lwb have completed.
1726 		 */
1727 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1728 
1729 		if (!BP_IS_HOLE(bp)) {
1730 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1731 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1732 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1733 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1734 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1735 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1736 		}
1737 	}
1738 
1739 	dmu_tx_commit(dsa->dsa_tx);
1740 
1741 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1742 
1743 	abd_put(zio->io_abd);
1744 	kmem_free(dsa, sizeof (*dsa));
1745 }
1746 
1747 static int
1748 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1749     zio_prop_t *zp, zbookmark_phys_t *zb)
1750 {
1751 	dmu_sync_arg_t *dsa;
1752 	dmu_tx_t *tx;
1753 
1754 	tx = dmu_tx_create(os);
1755 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1756 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1757 		dmu_tx_abort(tx);
1758 		/* Make zl_get_data do txg_waited_synced() */
1759 		return (SET_ERROR(EIO));
1760 	}
1761 
1762 	/*
1763 	 * In order to prevent the zgd's lwb from being free'd prior to
1764 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1765 	 * the lwb's "max txg" takes this tx's txg into account.
1766 	 */
1767 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1768 
1769 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1770 	dsa->dsa_dr = NULL;
1771 	dsa->dsa_done = done;
1772 	dsa->dsa_zgd = zgd;
1773 	dsa->dsa_tx = tx;
1774 
1775 	/*
1776 	 * Since we are currently syncing this txg, it's nontrivial to
1777 	 * determine what BP to nopwrite against, so we disable nopwrite.
1778 	 *
1779 	 * When syncing, the db_blkptr is initially the BP of the previous
1780 	 * txg.  We can not nopwrite against it because it will be changed
1781 	 * (this is similar to the non-late-arrival case where the dbuf is
1782 	 * dirty in a future txg).
1783 	 *
1784 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1785 	 * We can not nopwrite against it because although the BP will not
1786 	 * (typically) be changed, the data has not yet been persisted to this
1787 	 * location.
1788 	 *
1789 	 * Finally, when dbuf_write_done() is called, it is theoretically
1790 	 * possible to always nopwrite, because the data that was written in
1791 	 * this txg is the same data that we are trying to write.  However we
1792 	 * would need to check that this dbuf is not dirty in any future
1793 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1794 	 * don't nopwrite in this case.
1795 	 */
1796 	zp->zp_nopwrite = B_FALSE;
1797 
1798 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1799 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1800 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1801 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1802 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1803 
1804 	return (0);
1805 }
1806 
1807 /*
1808  * Intent log support: sync the block associated with db to disk.
1809  * N.B. and XXX: the caller is responsible for making sure that the
1810  * data isn't changing while dmu_sync() is writing it.
1811  *
1812  * Return values:
1813  *
1814  *	EEXIST: this txg has already been synced, so there's nothing to do.
1815  *		The caller should not log the write.
1816  *
1817  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1818  *		The caller should not log the write.
1819  *
1820  *	EALREADY: this block is already in the process of being synced.
1821  *		The caller should track its progress (somehow).
1822  *
1823  *	EIO: could not do the I/O.
1824  *		The caller should do a txg_wait_synced().
1825  *
1826  *	0: the I/O has been initiated.
1827  *		The caller should log this blkptr in the done callback.
1828  *		It is possible that the I/O will fail, in which case
1829  *		the error will be reported to the done callback and
1830  *		propagated to pio from zio_done().
1831  */
1832 int
1833 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1834 {
1835 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1836 	objset_t *os = db->db_objset;
1837 	dsl_dataset_t *ds = os->os_dsl_dataset;
1838 	dbuf_dirty_record_t *dr, *dr_next;
1839 	dmu_sync_arg_t *dsa;
1840 	zbookmark_phys_t zb;
1841 	zio_prop_t zp;
1842 	dnode_t *dn;
1843 
1844 	ASSERT(pio != NULL);
1845 	ASSERT(txg != 0);
1846 
1847 	SET_BOOKMARK(&zb, ds->ds_object,
1848 	    db->db.db_object, db->db_level, db->db_blkid);
1849 
1850 	DB_DNODE_ENTER(db);
1851 	dn = DB_DNODE(db);
1852 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1853 	DB_DNODE_EXIT(db);
1854 
1855 	/*
1856 	 * If we're frozen (running ziltest), we always need to generate a bp.
1857 	 */
1858 	if (txg > spa_freeze_txg(os->os_spa))
1859 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1860 
1861 	/*
1862 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1863 	 * and us.  If we determine that this txg is not yet syncing,
1864 	 * but it begins to sync a moment later, that's OK because the
1865 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1866 	 */
1867 	mutex_enter(&db->db_mtx);
1868 
1869 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1870 		/*
1871 		 * This txg has already synced.  There's nothing to do.
1872 		 */
1873 		mutex_exit(&db->db_mtx);
1874 		return (SET_ERROR(EEXIST));
1875 	}
1876 
1877 	if (txg <= spa_syncing_txg(os->os_spa)) {
1878 		/*
1879 		 * This txg is currently syncing, so we can't mess with
1880 		 * the dirty record anymore; just write a new log block.
1881 		 */
1882 		mutex_exit(&db->db_mtx);
1883 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1884 	}
1885 
1886 	dr = dbuf_find_dirty_eq(db, txg);
1887 
1888 	if (dr == NULL) {
1889 		/*
1890 		 * There's no dr for this dbuf, so it must have been freed.
1891 		 * There's no need to log writes to freed blocks, so we're done.
1892 		 */
1893 		mutex_exit(&db->db_mtx);
1894 		return (SET_ERROR(ENOENT));
1895 	}
1896 
1897 	dr_next = list_next(&db->db_dirty_records, dr);
1898 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1899 
1900 	if (db->db_blkptr != NULL) {
1901 		/*
1902 		 * We need to fill in zgd_bp with the current blkptr so that
1903 		 * the nopwrite code can check if we're writing the same
1904 		 * data that's already on disk.  We can only nopwrite if we
1905 		 * are sure that after making the copy, db_blkptr will not
1906 		 * change until our i/o completes.  We ensure this by
1907 		 * holding the db_mtx, and only allowing nopwrite if the
1908 		 * block is not already dirty (see below).  This is verified
1909 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1910 		 * not changed.
1911 		 */
1912 		*zgd->zgd_bp = *db->db_blkptr;
1913 	}
1914 
1915 	/*
1916 	 * Assume the on-disk data is X, the current syncing data (in
1917 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1918 	 * in dmu_sync).
1919 	 *
1920 	 * We usually want to perform a nopwrite if X and Z are the
1921 	 * same.  However, if Y is different (i.e. the BP is going to
1922 	 * change before this write takes effect), then a nopwrite will
1923 	 * be incorrect - we would override with X, which could have
1924 	 * been freed when Y was written.
1925 	 *
1926 	 * (Note that this is not a concern when we are nop-writing from
1927 	 * syncing context, because X and Y must be identical, because
1928 	 * all previous txgs have been synced.)
1929 	 *
1930 	 * Therefore, we disable nopwrite if the current BP could change
1931 	 * before this TXG.  There are two ways it could change: by
1932 	 * being dirty (dr_next is non-NULL), or by being freed
1933 	 * (dnode_block_freed()).  This behavior is verified by
1934 	 * zio_done(), which VERIFYs that the override BP is identical
1935 	 * to the on-disk BP.
1936 	 */
1937 	DB_DNODE_ENTER(db);
1938 	dn = DB_DNODE(db);
1939 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1940 		zp.zp_nopwrite = B_FALSE;
1941 	DB_DNODE_EXIT(db);
1942 
1943 	ASSERT(dr->dr_txg == txg);
1944 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1945 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1946 		/*
1947 		 * We have already issued a sync write for this buffer,
1948 		 * or this buffer has already been synced.  It could not
1949 		 * have been dirtied since, or we would have cleared the state.
1950 		 */
1951 		mutex_exit(&db->db_mtx);
1952 		return (SET_ERROR(EALREADY));
1953 	}
1954 
1955 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1956 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1957 	mutex_exit(&db->db_mtx);
1958 
1959 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1960 	dsa->dsa_dr = dr;
1961 	dsa->dsa_done = done;
1962 	dsa->dsa_zgd = zgd;
1963 	dsa->dsa_tx = NULL;
1964 
1965 	zio_nowait(arc_write(pio, os->os_spa, txg,
1966 	    zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1967 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1968 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1969 
1970 	return (0);
1971 }
1972 
1973 int
1974 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1975 {
1976 	dnode_t *dn;
1977 	int err;
1978 
1979 	err = dnode_hold(os, object, FTAG, &dn);
1980 	if (err)
1981 		return (err);
1982 	err = dnode_set_nlevels(dn, nlevels, tx);
1983 	dnode_rele(dn, FTAG);
1984 	return (err);
1985 }
1986 
1987 int
1988 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1989     dmu_tx_t *tx)
1990 {
1991 	dnode_t *dn;
1992 	int err;
1993 
1994 	err = dnode_hold(os, object, FTAG, &dn);
1995 	if (err)
1996 		return (err);
1997 	err = dnode_set_blksz(dn, size, ibs, tx);
1998 	dnode_rele(dn, FTAG);
1999 	return (err);
2000 }
2001 
2002 int
2003 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2004     dmu_tx_t *tx)
2005 {
2006 	dnode_t *dn;
2007 	int err;
2008 
2009 	err = dnode_hold(os, object, FTAG, &dn);
2010 	if (err)
2011 		return (err);
2012 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2013 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2014 	rw_exit(&dn->dn_struct_rwlock);
2015 	dnode_rele(dn, FTAG);
2016 	return (0);
2017 }
2018 
2019 void
2020 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2021     dmu_tx_t *tx)
2022 {
2023 	dnode_t *dn;
2024 
2025 	/*
2026 	 * Send streams include each object's checksum function.  This
2027 	 * check ensures that the receiving system can understand the
2028 	 * checksum function transmitted.
2029 	 */
2030 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2031 
2032 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2033 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2034 	dn->dn_checksum = checksum;
2035 	dnode_setdirty(dn, tx);
2036 	dnode_rele(dn, FTAG);
2037 }
2038 
2039 void
2040 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2041     dmu_tx_t *tx)
2042 {
2043 	dnode_t *dn;
2044 
2045 	/*
2046 	 * Send streams include each object's compression function.  This
2047 	 * check ensures that the receiving system can understand the
2048 	 * compression function transmitted.
2049 	 */
2050 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2051 
2052 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
2053 	dn->dn_compress = compress;
2054 	dnode_setdirty(dn, tx);
2055 	dnode_rele(dn, FTAG);
2056 }
2057 
2058 /*
2059  * When the "redundant_metadata" property is set to "most", only indirect
2060  * blocks of this level and higher will have an additional ditto block.
2061  */
2062 int zfs_redundant_metadata_most_ditto_level = 2;
2063 
2064 void
2065 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2066 {
2067 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2068 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2069 	    (wp & WP_SPILL));
2070 	enum zio_checksum checksum = os->os_checksum;
2071 	enum zio_compress compress = os->os_compress;
2072 	uint8_t complevel = os->os_complevel;
2073 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2074 	boolean_t dedup = B_FALSE;
2075 	boolean_t nopwrite = B_FALSE;
2076 	boolean_t dedup_verify = os->os_dedup_verify;
2077 	boolean_t encrypt = B_FALSE;
2078 	int copies = os->os_copies;
2079 
2080 	/*
2081 	 * We maintain different write policies for each of the following
2082 	 * types of data:
2083 	 *	 1. metadata
2084 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2085 	 *	 3. all other level 0 blocks
2086 	 */
2087 	if (ismd) {
2088 		/*
2089 		 * XXX -- we should design a compression algorithm
2090 		 * that specializes in arrays of bps.
2091 		 */
2092 		compress = zio_compress_select(os->os_spa,
2093 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2094 
2095 		/*
2096 		 * Metadata always gets checksummed.  If the data
2097 		 * checksum is multi-bit correctable, and it's not a
2098 		 * ZBT-style checksum, then it's suitable for metadata
2099 		 * as well.  Otherwise, the metadata checksum defaults
2100 		 * to fletcher4.
2101 		 */
2102 		if (!(zio_checksum_table[checksum].ci_flags &
2103 		    ZCHECKSUM_FLAG_METADATA) ||
2104 		    (zio_checksum_table[checksum].ci_flags &
2105 		    ZCHECKSUM_FLAG_EMBEDDED))
2106 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2107 
2108 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2109 		    (os->os_redundant_metadata ==
2110 		    ZFS_REDUNDANT_METADATA_MOST &&
2111 		    (level >= zfs_redundant_metadata_most_ditto_level ||
2112 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2113 			copies++;
2114 	} else if (wp & WP_NOFILL) {
2115 		ASSERT(level == 0);
2116 
2117 		/*
2118 		 * If we're writing preallocated blocks, we aren't actually
2119 		 * writing them so don't set any policy properties.  These
2120 		 * blocks are currently only used by an external subsystem
2121 		 * outside of zfs (i.e. dump) and not written by the zio
2122 		 * pipeline.
2123 		 */
2124 		compress = ZIO_COMPRESS_OFF;
2125 		checksum = ZIO_CHECKSUM_OFF;
2126 	} else {
2127 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2128 		    compress);
2129 		complevel = zio_complevel_select(os->os_spa, compress,
2130 		    complevel, complevel);
2131 
2132 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2133 		    zio_checksum_select(dn->dn_checksum, checksum) :
2134 		    dedup_checksum;
2135 
2136 		/*
2137 		 * Determine dedup setting.  If we are in dmu_sync(),
2138 		 * we won't actually dedup now because that's all
2139 		 * done in syncing context; but we do want to use the
2140 		 * dedup checksum.  If the checksum is not strong
2141 		 * enough to ensure unique signatures, force
2142 		 * dedup_verify.
2143 		 */
2144 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2145 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2146 			if (!(zio_checksum_table[checksum].ci_flags &
2147 			    ZCHECKSUM_FLAG_DEDUP))
2148 				dedup_verify = B_TRUE;
2149 		}
2150 
2151 		/*
2152 		 * Enable nopwrite if we have secure enough checksum
2153 		 * algorithm (see comment in zio_nop_write) and
2154 		 * compression is enabled.  We don't enable nopwrite if
2155 		 * dedup is enabled as the two features are mutually
2156 		 * exclusive.
2157 		 */
2158 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2159 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2160 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2161 	}
2162 
2163 	/*
2164 	 * All objects in an encrypted objset are protected from modification
2165 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2166 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2167 	 * not subject to nopwrite since writing the same data will still
2168 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2169 	 * to avoid ambiguity in the dedup code since the DDT does not store
2170 	 * object types.
2171 	 */
2172 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2173 		encrypt = B_TRUE;
2174 
2175 		if (DMU_OT_IS_ENCRYPTED(type)) {
2176 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2177 			nopwrite = B_FALSE;
2178 		} else {
2179 			dedup = B_FALSE;
2180 		}
2181 
2182 		if (level <= 0 &&
2183 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2184 			compress = ZIO_COMPRESS_EMPTY;
2185 		}
2186 	}
2187 
2188 	zp->zp_compress = compress;
2189 	zp->zp_complevel = complevel;
2190 	zp->zp_checksum = checksum;
2191 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2192 	zp->zp_level = level;
2193 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2194 	zp->zp_dedup = dedup;
2195 	zp->zp_dedup_verify = dedup && dedup_verify;
2196 	zp->zp_nopwrite = nopwrite;
2197 	zp->zp_encrypt = encrypt;
2198 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2199 	bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2200 	bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2201 	bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2202 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2203 	    os->os_zpl_special_smallblock : 0;
2204 
2205 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2206 }
2207 
2208 /*
2209  * This function is only called from zfs_holey_common() for zpl_llseek()
2210  * in order to determine the location of holes.  In order to accurately
2211  * report holes all dirty data must be synced to disk.  This causes extremely
2212  * poor performance when seeking for holes in a dirty file.  As a compromise,
2213  * only provide hole data when the dnode is clean.  When a dnode is dirty
2214  * report the dnode as having no holes which is always a safe thing to do.
2215  */
2216 int
2217 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2218 {
2219 	dnode_t *dn;
2220 	int i, err;
2221 	boolean_t clean = B_TRUE;
2222 
2223 	err = dnode_hold(os, object, FTAG, &dn);
2224 	if (err)
2225 		return (err);
2226 
2227 	/*
2228 	 * Check if dnode is dirty
2229 	 */
2230 	for (i = 0; i < TXG_SIZE; i++) {
2231 		if (multilist_link_active(&dn->dn_dirty_link[i])) {
2232 			clean = B_FALSE;
2233 			break;
2234 		}
2235 	}
2236 
2237 	/*
2238 	 * If compatibility option is on, sync any current changes before
2239 	 * we go trundling through the block pointers.
2240 	 */
2241 	if (!clean && zfs_dmu_offset_next_sync) {
2242 		clean = B_TRUE;
2243 		dnode_rele(dn, FTAG);
2244 		txg_wait_synced(dmu_objset_pool(os), 0);
2245 		err = dnode_hold(os, object, FTAG, &dn);
2246 		if (err)
2247 			return (err);
2248 	}
2249 
2250 	if (clean)
2251 		err = dnode_next_offset(dn,
2252 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2253 	else
2254 		err = SET_ERROR(EBUSY);
2255 
2256 	dnode_rele(dn, FTAG);
2257 
2258 	return (err);
2259 }
2260 
2261 void
2262 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2263 {
2264 	dnode_phys_t *dnp = dn->dn_phys;
2265 
2266 	doi->doi_data_block_size = dn->dn_datablksz;
2267 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2268 	    1ULL << dn->dn_indblkshift : 0;
2269 	doi->doi_type = dn->dn_type;
2270 	doi->doi_bonus_type = dn->dn_bonustype;
2271 	doi->doi_bonus_size = dn->dn_bonuslen;
2272 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2273 	doi->doi_indirection = dn->dn_nlevels;
2274 	doi->doi_checksum = dn->dn_checksum;
2275 	doi->doi_compress = dn->dn_compress;
2276 	doi->doi_nblkptr = dn->dn_nblkptr;
2277 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2278 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2279 	doi->doi_fill_count = 0;
2280 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2281 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2282 }
2283 
2284 void
2285 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2286 {
2287 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2288 	mutex_enter(&dn->dn_mtx);
2289 
2290 	__dmu_object_info_from_dnode(dn, doi);
2291 
2292 	mutex_exit(&dn->dn_mtx);
2293 	rw_exit(&dn->dn_struct_rwlock);
2294 }
2295 
2296 /*
2297  * Get information on a DMU object.
2298  * If doi is NULL, just indicates whether the object exists.
2299  */
2300 int
2301 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2302 {
2303 	dnode_t *dn;
2304 	int err = dnode_hold(os, object, FTAG, &dn);
2305 
2306 	if (err)
2307 		return (err);
2308 
2309 	if (doi != NULL)
2310 		dmu_object_info_from_dnode(dn, doi);
2311 
2312 	dnode_rele(dn, FTAG);
2313 	return (0);
2314 }
2315 
2316 /*
2317  * As above, but faster; can be used when you have a held dbuf in hand.
2318  */
2319 void
2320 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2321 {
2322 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2323 
2324 	DB_DNODE_ENTER(db);
2325 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2326 	DB_DNODE_EXIT(db);
2327 }
2328 
2329 /*
2330  * Faster still when you only care about the size.
2331  */
2332 void
2333 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2334     u_longlong_t *nblk512)
2335 {
2336 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2337 	dnode_t *dn;
2338 
2339 	DB_DNODE_ENTER(db);
2340 	dn = DB_DNODE(db);
2341 
2342 	*blksize = dn->dn_datablksz;
2343 	/* add in number of slots used for the dnode itself */
2344 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2345 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2346 	DB_DNODE_EXIT(db);
2347 }
2348 
2349 void
2350 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2351 {
2352 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2353 	dnode_t *dn;
2354 
2355 	DB_DNODE_ENTER(db);
2356 	dn = DB_DNODE(db);
2357 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2358 	DB_DNODE_EXIT(db);
2359 }
2360 
2361 void
2362 byteswap_uint64_array(void *vbuf, size_t size)
2363 {
2364 	uint64_t *buf = vbuf;
2365 	size_t count = size >> 3;
2366 	int i;
2367 
2368 	ASSERT((size & 7) == 0);
2369 
2370 	for (i = 0; i < count; i++)
2371 		buf[i] = BSWAP_64(buf[i]);
2372 }
2373 
2374 void
2375 byteswap_uint32_array(void *vbuf, size_t size)
2376 {
2377 	uint32_t *buf = vbuf;
2378 	size_t count = size >> 2;
2379 	int i;
2380 
2381 	ASSERT((size & 3) == 0);
2382 
2383 	for (i = 0; i < count; i++)
2384 		buf[i] = BSWAP_32(buf[i]);
2385 }
2386 
2387 void
2388 byteswap_uint16_array(void *vbuf, size_t size)
2389 {
2390 	uint16_t *buf = vbuf;
2391 	size_t count = size >> 1;
2392 	int i;
2393 
2394 	ASSERT((size & 1) == 0);
2395 
2396 	for (i = 0; i < count; i++)
2397 		buf[i] = BSWAP_16(buf[i]);
2398 }
2399 
2400 /* ARGSUSED */
2401 void
2402 byteswap_uint8_array(void *vbuf, size_t size)
2403 {
2404 }
2405 
2406 void
2407 dmu_init(void)
2408 {
2409 	abd_init();
2410 	zfs_dbgmsg_init();
2411 	sa_cache_init();
2412 	xuio_stat_init();
2413 	dmu_objset_init();
2414 	dnode_init();
2415 	zfetch_init();
2416 	dmu_tx_init();
2417 	l2arc_init();
2418 	arc_init();
2419 	dbuf_init();
2420 }
2421 
2422 void
2423 dmu_fini(void)
2424 {
2425 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2426 	l2arc_fini();
2427 	dmu_tx_fini();
2428 	zfetch_fini();
2429 	dbuf_fini();
2430 	dnode_fini();
2431 	dmu_objset_fini();
2432 	xuio_stat_fini();
2433 	sa_cache_fini();
2434 	zfs_dbgmsg_fini();
2435 	abd_fini();
2436 }
2437 
2438 EXPORT_SYMBOL(dmu_bonus_hold);
2439 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2440 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2441 EXPORT_SYMBOL(dmu_buf_rele_array);
2442 EXPORT_SYMBOL(dmu_prefetch);
2443 EXPORT_SYMBOL(dmu_free_range);
2444 EXPORT_SYMBOL(dmu_free_long_range);
2445 EXPORT_SYMBOL(dmu_free_long_object);
2446 EXPORT_SYMBOL(dmu_read);
2447 EXPORT_SYMBOL(dmu_read_by_dnode);
2448 EXPORT_SYMBOL(dmu_write);
2449 EXPORT_SYMBOL(dmu_write_by_dnode);
2450 EXPORT_SYMBOL(dmu_prealloc);
2451 EXPORT_SYMBOL(dmu_object_info);
2452 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2453 EXPORT_SYMBOL(dmu_object_info_from_db);
2454 EXPORT_SYMBOL(dmu_object_size_from_db);
2455 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2456 EXPORT_SYMBOL(dmu_object_set_nlevels);
2457 EXPORT_SYMBOL(dmu_object_set_blocksize);
2458 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2459 EXPORT_SYMBOL(dmu_object_set_checksum);
2460 EXPORT_SYMBOL(dmu_object_set_compress);
2461 EXPORT_SYMBOL(dmu_offset_next);
2462 EXPORT_SYMBOL(dmu_write_policy);
2463 EXPORT_SYMBOL(dmu_sync);
2464 EXPORT_SYMBOL(dmu_request_arcbuf);
2465 EXPORT_SYMBOL(dmu_return_arcbuf);
2466 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2467 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2468 EXPORT_SYMBOL(dmu_buf_hold);
2469 EXPORT_SYMBOL(dmu_ot);
2470 
2471 /* BEGIN CSTYLED */
2472 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2473 	"Enable NOP writes");
2474 
2475 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2476 	"Percentage of dirtied blocks from frees in one TXG");
2477 
2478 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2479 	"Enable forcing txg sync to find holes");
2480 
2481 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2482 	"Limit one prefetch call to this size");
2483 /* END CSTYLED */
2484