1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dbuf.h> 37 #include <sys/dnode.h> 38 #include <sys/zfs_context.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dmu_traverse.h> 41 #include <sys/dsl_dataset.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_synctask.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dmu_zfetch.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/zio_compress.h> 51 #include <sys/sa.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/trace_zfs.h> 55 #include <sys/zfs_rlock.h> 56 #ifdef _KERNEL 57 #include <sys/vmsystm.h> 58 #include <sys/zfs_znode.h> 59 #endif 60 61 /* 62 * Enable/disable nopwrite feature. 63 */ 64 int zfs_nopwrite_enabled = 1; 65 66 /* 67 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 68 * one TXG. After this threshold is crossed, additional dirty blocks from frees 69 * will wait until the next TXG. 70 * A value of zero will disable this throttle. 71 */ 72 unsigned long zfs_per_txg_dirty_frees_percent = 5; 73 74 /* 75 * Enable/disable forcing txg sync when dirty in dmu_offset_next. 76 */ 77 int zfs_dmu_offset_next_sync = 0; 78 79 /* 80 * Limit the amount we can prefetch with one call to this amount. This 81 * helps to limit the amount of memory that can be used by prefetching. 82 * Larger objects should be prefetched a bit at a time. 83 */ 84 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 85 86 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 87 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 88 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 89 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 90 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 91 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 92 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 93 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 94 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 95 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 96 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 97 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 98 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 99 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 100 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 101 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 102 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 103 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 104 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 105 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 106 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 107 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 108 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 109 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 110 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 111 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 112 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 113 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 114 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 115 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 116 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 117 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 118 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 119 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 120 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 121 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 122 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 123 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 125 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 126 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 127 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 128 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 129 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 131 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 134 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 136 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 137 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 138 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 139 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 140 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 141 }; 142 143 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 144 { byteswap_uint8_array, "uint8" }, 145 { byteswap_uint16_array, "uint16" }, 146 { byteswap_uint32_array, "uint32" }, 147 { byteswap_uint64_array, "uint64" }, 148 { zap_byteswap, "zap" }, 149 { dnode_buf_byteswap, "dnode" }, 150 { dmu_objset_byteswap, "objset" }, 151 { zfs_znode_byteswap, "znode" }, 152 { zfs_oldacl_byteswap, "oldacl" }, 153 { zfs_acl_byteswap, "acl" } 154 }; 155 156 static int 157 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 158 void *tag, dmu_buf_t **dbp) 159 { 160 uint64_t blkid; 161 dmu_buf_impl_t *db; 162 163 rw_enter(&dn->dn_struct_rwlock, RW_READER); 164 blkid = dbuf_whichblock(dn, 0, offset); 165 db = dbuf_hold(dn, blkid, tag); 166 rw_exit(&dn->dn_struct_rwlock); 167 168 if (db == NULL) { 169 *dbp = NULL; 170 return (SET_ERROR(EIO)); 171 } 172 173 *dbp = &db->db; 174 return (0); 175 } 176 int 177 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 178 void *tag, dmu_buf_t **dbp) 179 { 180 dnode_t *dn; 181 uint64_t blkid; 182 dmu_buf_impl_t *db; 183 int err; 184 185 err = dnode_hold(os, object, FTAG, &dn); 186 if (err) 187 return (err); 188 rw_enter(&dn->dn_struct_rwlock, RW_READER); 189 blkid = dbuf_whichblock(dn, 0, offset); 190 db = dbuf_hold(dn, blkid, tag); 191 rw_exit(&dn->dn_struct_rwlock); 192 dnode_rele(dn, FTAG); 193 194 if (db == NULL) { 195 *dbp = NULL; 196 return (SET_ERROR(EIO)); 197 } 198 199 *dbp = &db->db; 200 return (err); 201 } 202 203 int 204 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 205 void *tag, dmu_buf_t **dbp, int flags) 206 { 207 int err; 208 int db_flags = DB_RF_CANFAIL; 209 210 if (flags & DMU_READ_NO_PREFETCH) 211 db_flags |= DB_RF_NOPREFETCH; 212 if (flags & DMU_READ_NO_DECRYPT) 213 db_flags |= DB_RF_NO_DECRYPT; 214 215 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 216 if (err == 0) { 217 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 218 err = dbuf_read(db, NULL, db_flags); 219 if (err != 0) { 220 dbuf_rele(db, tag); 221 *dbp = NULL; 222 } 223 } 224 225 return (err); 226 } 227 228 int 229 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 230 void *tag, dmu_buf_t **dbp, int flags) 231 { 232 int err; 233 int db_flags = DB_RF_CANFAIL; 234 235 if (flags & DMU_READ_NO_PREFETCH) 236 db_flags |= DB_RF_NOPREFETCH; 237 if (flags & DMU_READ_NO_DECRYPT) 238 db_flags |= DB_RF_NO_DECRYPT; 239 240 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 241 if (err == 0) { 242 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 243 err = dbuf_read(db, NULL, db_flags); 244 if (err != 0) { 245 dbuf_rele(db, tag); 246 *dbp = NULL; 247 } 248 } 249 250 return (err); 251 } 252 253 int 254 dmu_bonus_max(void) 255 { 256 return (DN_OLD_MAX_BONUSLEN); 257 } 258 259 int 260 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 261 { 262 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 263 dnode_t *dn; 264 int error; 265 266 DB_DNODE_ENTER(db); 267 dn = DB_DNODE(db); 268 269 if (dn->dn_bonus != db) { 270 error = SET_ERROR(EINVAL); 271 } else if (newsize < 0 || newsize > db_fake->db_size) { 272 error = SET_ERROR(EINVAL); 273 } else { 274 dnode_setbonuslen(dn, newsize, tx); 275 error = 0; 276 } 277 278 DB_DNODE_EXIT(db); 279 return (error); 280 } 281 282 int 283 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 284 { 285 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 286 dnode_t *dn; 287 int error; 288 289 DB_DNODE_ENTER(db); 290 dn = DB_DNODE(db); 291 292 if (!DMU_OT_IS_VALID(type)) { 293 error = SET_ERROR(EINVAL); 294 } else if (dn->dn_bonus != db) { 295 error = SET_ERROR(EINVAL); 296 } else { 297 dnode_setbonus_type(dn, type, tx); 298 error = 0; 299 } 300 301 DB_DNODE_EXIT(db); 302 return (error); 303 } 304 305 dmu_object_type_t 306 dmu_get_bonustype(dmu_buf_t *db_fake) 307 { 308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 309 dnode_t *dn; 310 dmu_object_type_t type; 311 312 DB_DNODE_ENTER(db); 313 dn = DB_DNODE(db); 314 type = dn->dn_bonustype; 315 DB_DNODE_EXIT(db); 316 317 return (type); 318 } 319 320 int 321 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 322 { 323 dnode_t *dn; 324 int error; 325 326 error = dnode_hold(os, object, FTAG, &dn); 327 dbuf_rm_spill(dn, tx); 328 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 329 dnode_rm_spill(dn, tx); 330 rw_exit(&dn->dn_struct_rwlock); 331 dnode_rele(dn, FTAG); 332 return (error); 333 } 334 335 /* 336 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 337 * has not yet been allocated a new bonus dbuf a will be allocated. 338 * Returns ENOENT, EIO, or 0. 339 */ 340 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp, 341 uint32_t flags) 342 { 343 dmu_buf_impl_t *db; 344 int error; 345 uint32_t db_flags = DB_RF_MUST_SUCCEED; 346 347 if (flags & DMU_READ_NO_PREFETCH) 348 db_flags |= DB_RF_NOPREFETCH; 349 if (flags & DMU_READ_NO_DECRYPT) 350 db_flags |= DB_RF_NO_DECRYPT; 351 352 rw_enter(&dn->dn_struct_rwlock, RW_READER); 353 if (dn->dn_bonus == NULL) { 354 rw_exit(&dn->dn_struct_rwlock); 355 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 356 if (dn->dn_bonus == NULL) 357 dbuf_create_bonus(dn); 358 } 359 db = dn->dn_bonus; 360 361 /* as long as the bonus buf is held, the dnode will be held */ 362 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 363 VERIFY(dnode_add_ref(dn, db)); 364 atomic_inc_32(&dn->dn_dbufs_count); 365 } 366 367 /* 368 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 369 * hold and incrementing the dbuf count to ensure that dnode_move() sees 370 * a dnode hold for every dbuf. 371 */ 372 rw_exit(&dn->dn_struct_rwlock); 373 374 error = dbuf_read(db, NULL, db_flags); 375 if (error) { 376 dnode_evict_bonus(dn); 377 dbuf_rele(db, tag); 378 *dbp = NULL; 379 return (error); 380 } 381 382 *dbp = &db->db; 383 return (0); 384 } 385 386 int 387 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 388 { 389 dnode_t *dn; 390 int error; 391 392 error = dnode_hold(os, object, FTAG, &dn); 393 if (error) 394 return (error); 395 396 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 397 dnode_rele(dn, FTAG); 398 399 return (error); 400 } 401 402 /* 403 * returns ENOENT, EIO, or 0. 404 * 405 * This interface will allocate a blank spill dbuf when a spill blk 406 * doesn't already exist on the dnode. 407 * 408 * if you only want to find an already existing spill db, then 409 * dmu_spill_hold_existing() should be used. 410 */ 411 int 412 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 413 { 414 dmu_buf_impl_t *db = NULL; 415 int err; 416 417 if ((flags & DB_RF_HAVESTRUCT) == 0) 418 rw_enter(&dn->dn_struct_rwlock, RW_READER); 419 420 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 421 422 if ((flags & DB_RF_HAVESTRUCT) == 0) 423 rw_exit(&dn->dn_struct_rwlock); 424 425 if (db == NULL) { 426 *dbp = NULL; 427 return (SET_ERROR(EIO)); 428 } 429 err = dbuf_read(db, NULL, flags); 430 if (err == 0) 431 *dbp = &db->db; 432 else { 433 dbuf_rele(db, tag); 434 *dbp = NULL; 435 } 436 return (err); 437 } 438 439 int 440 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 441 { 442 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 443 dnode_t *dn; 444 int err; 445 446 DB_DNODE_ENTER(db); 447 dn = DB_DNODE(db); 448 449 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 450 err = SET_ERROR(EINVAL); 451 } else { 452 rw_enter(&dn->dn_struct_rwlock, RW_READER); 453 454 if (!dn->dn_have_spill) { 455 err = SET_ERROR(ENOENT); 456 } else { 457 err = dmu_spill_hold_by_dnode(dn, 458 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 459 } 460 461 rw_exit(&dn->dn_struct_rwlock); 462 } 463 464 DB_DNODE_EXIT(db); 465 return (err); 466 } 467 468 int 469 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag, 470 dmu_buf_t **dbp) 471 { 472 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 473 dnode_t *dn; 474 int err; 475 uint32_t db_flags = DB_RF_CANFAIL; 476 477 if (flags & DMU_READ_NO_DECRYPT) 478 db_flags |= DB_RF_NO_DECRYPT; 479 480 DB_DNODE_ENTER(db); 481 dn = DB_DNODE(db); 482 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 483 DB_DNODE_EXIT(db); 484 485 return (err); 486 } 487 488 /* 489 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 490 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 491 * and can induce severe lock contention when writing to several files 492 * whose dnodes are in the same block. 493 */ 494 int 495 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 496 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 497 { 498 dmu_buf_t **dbp; 499 uint64_t blkid, nblks, i; 500 uint32_t dbuf_flags; 501 int err; 502 zio_t *zio; 503 504 ASSERT(length <= DMU_MAX_ACCESS); 505 506 /* 507 * Note: We directly notify the prefetch code of this read, so that 508 * we can tell it about the multi-block read. dbuf_read() only knows 509 * about the one block it is accessing. 510 */ 511 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 512 DB_RF_NOPREFETCH; 513 514 rw_enter(&dn->dn_struct_rwlock, RW_READER); 515 if (dn->dn_datablkshift) { 516 int blkshift = dn->dn_datablkshift; 517 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 518 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 519 } else { 520 if (offset + length > dn->dn_datablksz) { 521 zfs_panic_recover("zfs: accessing past end of object " 522 "%llx/%llx (size=%u access=%llu+%llu)", 523 (longlong_t)dn->dn_objset-> 524 os_dsl_dataset->ds_object, 525 (longlong_t)dn->dn_object, dn->dn_datablksz, 526 (longlong_t)offset, (longlong_t)length); 527 rw_exit(&dn->dn_struct_rwlock); 528 return (SET_ERROR(EIO)); 529 } 530 nblks = 1; 531 } 532 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 533 534 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 535 blkid = dbuf_whichblock(dn, 0, offset); 536 for (i = 0; i < nblks; i++) { 537 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 538 if (db == NULL) { 539 rw_exit(&dn->dn_struct_rwlock); 540 dmu_buf_rele_array(dbp, nblks, tag); 541 zio_nowait(zio); 542 return (SET_ERROR(EIO)); 543 } 544 545 /* initiate async i/o */ 546 if (read) 547 (void) dbuf_read(db, zio, dbuf_flags); 548 dbp[i] = &db->db; 549 } 550 551 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 552 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 553 dmu_zfetch(&dn->dn_zfetch, blkid, nblks, 554 read && DNODE_IS_CACHEABLE(dn), B_TRUE); 555 } 556 rw_exit(&dn->dn_struct_rwlock); 557 558 /* wait for async i/o */ 559 err = zio_wait(zio); 560 if (err) { 561 dmu_buf_rele_array(dbp, nblks, tag); 562 return (err); 563 } 564 565 /* wait for other io to complete */ 566 if (read) { 567 for (i = 0; i < nblks; i++) { 568 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 569 mutex_enter(&db->db_mtx); 570 while (db->db_state == DB_READ || 571 db->db_state == DB_FILL) 572 cv_wait(&db->db_changed, &db->db_mtx); 573 if (db->db_state == DB_UNCACHED) 574 err = SET_ERROR(EIO); 575 mutex_exit(&db->db_mtx); 576 if (err) { 577 dmu_buf_rele_array(dbp, nblks, tag); 578 return (err); 579 } 580 } 581 } 582 583 *numbufsp = nblks; 584 *dbpp = dbp; 585 return (0); 586 } 587 588 static int 589 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 590 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 591 { 592 dnode_t *dn; 593 int err; 594 595 err = dnode_hold(os, object, FTAG, &dn); 596 if (err) 597 return (err); 598 599 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 600 numbufsp, dbpp, DMU_READ_PREFETCH); 601 602 dnode_rele(dn, FTAG); 603 604 return (err); 605 } 606 607 int 608 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 609 uint64_t length, boolean_t read, void *tag, int *numbufsp, 610 dmu_buf_t ***dbpp) 611 { 612 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 613 dnode_t *dn; 614 int err; 615 616 DB_DNODE_ENTER(db); 617 dn = DB_DNODE(db); 618 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 619 numbufsp, dbpp, DMU_READ_PREFETCH); 620 DB_DNODE_EXIT(db); 621 622 return (err); 623 } 624 625 void 626 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 627 { 628 int i; 629 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 630 631 if (numbufs == 0) 632 return; 633 634 for (i = 0; i < numbufs; i++) { 635 if (dbp[i]) 636 dbuf_rele(dbp[i], tag); 637 } 638 639 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 640 } 641 642 /* 643 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 644 * indirect blocks prefetched will be those that point to the blocks containing 645 * the data starting at offset, and continuing to offset + len. 646 * 647 * Note that if the indirect blocks above the blocks being prefetched are not 648 * in cache, they will be asynchronously read in. 649 */ 650 void 651 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 652 uint64_t len, zio_priority_t pri) 653 { 654 dnode_t *dn; 655 uint64_t blkid; 656 int nblks, err; 657 658 if (len == 0) { /* they're interested in the bonus buffer */ 659 dn = DMU_META_DNODE(os); 660 661 if (object == 0 || object >= DN_MAX_OBJECT) 662 return; 663 664 rw_enter(&dn->dn_struct_rwlock, RW_READER); 665 blkid = dbuf_whichblock(dn, level, 666 object * sizeof (dnode_phys_t)); 667 dbuf_prefetch(dn, level, blkid, pri, 0); 668 rw_exit(&dn->dn_struct_rwlock); 669 return; 670 } 671 672 /* 673 * See comment before the definition of dmu_prefetch_max. 674 */ 675 len = MIN(len, dmu_prefetch_max); 676 677 /* 678 * XXX - Note, if the dnode for the requested object is not 679 * already cached, we will do a *synchronous* read in the 680 * dnode_hold() call. The same is true for any indirects. 681 */ 682 err = dnode_hold(os, object, FTAG, &dn); 683 if (err != 0) 684 return; 685 686 /* 687 * offset + len - 1 is the last byte we want to prefetch for, and offset 688 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 689 * last block we want to prefetch, and dbuf_whichblock(dn, level, 690 * offset) is the first. Then the number we need to prefetch is the 691 * last - first + 1. 692 */ 693 rw_enter(&dn->dn_struct_rwlock, RW_READER); 694 if (level > 0 || dn->dn_datablkshift != 0) { 695 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 696 dbuf_whichblock(dn, level, offset) + 1; 697 } else { 698 nblks = (offset < dn->dn_datablksz); 699 } 700 701 if (nblks != 0) { 702 blkid = dbuf_whichblock(dn, level, offset); 703 for (int i = 0; i < nblks; i++) 704 dbuf_prefetch(dn, level, blkid + i, pri, 0); 705 } 706 rw_exit(&dn->dn_struct_rwlock); 707 708 dnode_rele(dn, FTAG); 709 } 710 711 /* 712 * Get the next "chunk" of file data to free. We traverse the file from 713 * the end so that the file gets shorter over time (if we crashes in the 714 * middle, this will leave us in a better state). We find allocated file 715 * data by simply searching the allocated level 1 indirects. 716 * 717 * On input, *start should be the first offset that does not need to be 718 * freed (e.g. "offset + length"). On return, *start will be the first 719 * offset that should be freed and l1blks is set to the number of level 1 720 * indirect blocks found within the chunk. 721 */ 722 static int 723 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 724 { 725 uint64_t blks; 726 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 727 /* bytes of data covered by a level-1 indirect block */ 728 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 729 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 730 731 ASSERT3U(minimum, <=, *start); 732 733 /* 734 * Check if we can free the entire range assuming that all of the 735 * L1 blocks in this range have data. If we can, we use this 736 * worst case value as an estimate so we can avoid having to look 737 * at the object's actual data. 738 */ 739 uint64_t total_l1blks = 740 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 741 iblkrange; 742 if (total_l1blks <= maxblks) { 743 *l1blks = total_l1blks; 744 *start = minimum; 745 return (0); 746 } 747 ASSERT(ISP2(iblkrange)); 748 749 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 750 int err; 751 752 /* 753 * dnode_next_offset(BACKWARDS) will find an allocated L1 754 * indirect block at or before the input offset. We must 755 * decrement *start so that it is at the end of the region 756 * to search. 757 */ 758 (*start)--; 759 760 err = dnode_next_offset(dn, 761 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 762 763 /* if there are no indirect blocks before start, we are done */ 764 if (err == ESRCH) { 765 *start = minimum; 766 break; 767 } else if (err != 0) { 768 *l1blks = blks; 769 return (err); 770 } 771 772 /* set start to the beginning of this L1 indirect */ 773 *start = P2ALIGN(*start, iblkrange); 774 } 775 if (*start < minimum) 776 *start = minimum; 777 *l1blks = blks; 778 779 return (0); 780 } 781 782 /* 783 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 784 * otherwise return false. 785 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 786 */ 787 /*ARGSUSED*/ 788 static boolean_t 789 dmu_objset_zfs_unmounting(objset_t *os) 790 { 791 #ifdef _KERNEL 792 if (dmu_objset_type(os) == DMU_OST_ZFS) 793 return (zfs_get_vfs_flag_unmounted(os)); 794 #endif 795 return (B_FALSE); 796 } 797 798 static int 799 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 800 uint64_t length) 801 { 802 uint64_t object_size; 803 int err; 804 uint64_t dirty_frees_threshold; 805 dsl_pool_t *dp = dmu_objset_pool(os); 806 807 if (dn == NULL) 808 return (SET_ERROR(EINVAL)); 809 810 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 811 if (offset >= object_size) 812 return (0); 813 814 if (zfs_per_txg_dirty_frees_percent <= 100) 815 dirty_frees_threshold = 816 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 817 else 818 dirty_frees_threshold = zfs_dirty_data_max / 20; 819 820 if (length == DMU_OBJECT_END || offset + length > object_size) 821 length = object_size - offset; 822 823 while (length != 0) { 824 uint64_t chunk_end, chunk_begin, chunk_len; 825 uint64_t l1blks; 826 dmu_tx_t *tx; 827 828 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 829 return (SET_ERROR(EINTR)); 830 831 chunk_end = chunk_begin = offset + length; 832 833 /* move chunk_begin backwards to the beginning of this chunk */ 834 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 835 if (err) 836 return (err); 837 ASSERT3U(chunk_begin, >=, offset); 838 ASSERT3U(chunk_begin, <=, chunk_end); 839 840 chunk_len = chunk_end - chunk_begin; 841 842 tx = dmu_tx_create(os); 843 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 844 845 /* 846 * Mark this transaction as typically resulting in a net 847 * reduction in space used. 848 */ 849 dmu_tx_mark_netfree(tx); 850 err = dmu_tx_assign(tx, TXG_WAIT); 851 if (err) { 852 dmu_tx_abort(tx); 853 return (err); 854 } 855 856 uint64_t txg = dmu_tx_get_txg(tx); 857 858 mutex_enter(&dp->dp_lock); 859 uint64_t long_free_dirty = 860 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 861 mutex_exit(&dp->dp_lock); 862 863 /* 864 * To avoid filling up a TXG with just frees, wait for 865 * the next TXG to open before freeing more chunks if 866 * we have reached the threshold of frees. 867 */ 868 if (dirty_frees_threshold != 0 && 869 long_free_dirty >= dirty_frees_threshold) { 870 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 871 dmu_tx_commit(tx); 872 txg_wait_open(dp, 0, B_TRUE); 873 continue; 874 } 875 876 /* 877 * In order to prevent unnecessary write throttling, for each 878 * TXG, we track the cumulative size of L1 blocks being dirtied 879 * in dnode_free_range() below. We compare this number to a 880 * tunable threshold, past which we prevent new L1 dirty freeing 881 * blocks from being added into the open TXG. See 882 * dmu_free_long_range_impl() for details. The threshold 883 * prevents write throttle activation due to dirty freeing L1 884 * blocks taking up a large percentage of zfs_dirty_data_max. 885 */ 886 mutex_enter(&dp->dp_lock); 887 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 888 l1blks << dn->dn_indblkshift; 889 mutex_exit(&dp->dp_lock); 890 DTRACE_PROBE3(free__long__range, 891 uint64_t, long_free_dirty, uint64_t, chunk_len, 892 uint64_t, txg); 893 dnode_free_range(dn, chunk_begin, chunk_len, tx); 894 895 dmu_tx_commit(tx); 896 897 length -= chunk_len; 898 } 899 return (0); 900 } 901 902 int 903 dmu_free_long_range(objset_t *os, uint64_t object, 904 uint64_t offset, uint64_t length) 905 { 906 dnode_t *dn; 907 int err; 908 909 err = dnode_hold(os, object, FTAG, &dn); 910 if (err != 0) 911 return (err); 912 err = dmu_free_long_range_impl(os, dn, offset, length); 913 914 /* 915 * It is important to zero out the maxblkid when freeing the entire 916 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 917 * will take the fast path, and (b) dnode_reallocate() can verify 918 * that the entire file has been freed. 919 */ 920 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 921 dn->dn_maxblkid = 0; 922 923 dnode_rele(dn, FTAG); 924 return (err); 925 } 926 927 int 928 dmu_free_long_object(objset_t *os, uint64_t object) 929 { 930 dmu_tx_t *tx; 931 int err; 932 933 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 934 if (err != 0) 935 return (err); 936 937 tx = dmu_tx_create(os); 938 dmu_tx_hold_bonus(tx, object); 939 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 940 dmu_tx_mark_netfree(tx); 941 err = dmu_tx_assign(tx, TXG_WAIT); 942 if (err == 0) { 943 if (err == 0) 944 err = dmu_object_free(os, object, tx); 945 946 dmu_tx_commit(tx); 947 } else { 948 dmu_tx_abort(tx); 949 } 950 951 return (err); 952 } 953 954 int 955 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 956 uint64_t size, dmu_tx_t *tx) 957 { 958 dnode_t *dn; 959 int err = dnode_hold(os, object, FTAG, &dn); 960 if (err) 961 return (err); 962 ASSERT(offset < UINT64_MAX); 963 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 964 dnode_free_range(dn, offset, size, tx); 965 dnode_rele(dn, FTAG); 966 return (0); 967 } 968 969 static int 970 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 971 void *buf, uint32_t flags) 972 { 973 dmu_buf_t **dbp; 974 int numbufs, err = 0; 975 976 /* 977 * Deal with odd block sizes, where there can't be data past the first 978 * block. If we ever do the tail block optimization, we will need to 979 * handle that here as well. 980 */ 981 if (dn->dn_maxblkid == 0) { 982 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 983 MIN(size, dn->dn_datablksz - offset); 984 bzero((char *)buf + newsz, size - newsz); 985 size = newsz; 986 } 987 988 while (size > 0) { 989 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 990 int i; 991 992 /* 993 * NB: we could do this block-at-a-time, but it's nice 994 * to be reading in parallel. 995 */ 996 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 997 TRUE, FTAG, &numbufs, &dbp, flags); 998 if (err) 999 break; 1000 1001 for (i = 0; i < numbufs; i++) { 1002 uint64_t tocpy; 1003 int64_t bufoff; 1004 dmu_buf_t *db = dbp[i]; 1005 1006 ASSERT(size > 0); 1007 1008 bufoff = offset - db->db_offset; 1009 tocpy = MIN(db->db_size - bufoff, size); 1010 1011 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1012 1013 offset += tocpy; 1014 size -= tocpy; 1015 buf = (char *)buf + tocpy; 1016 } 1017 dmu_buf_rele_array(dbp, numbufs, FTAG); 1018 } 1019 return (err); 1020 } 1021 1022 int 1023 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1024 void *buf, uint32_t flags) 1025 { 1026 dnode_t *dn; 1027 int err; 1028 1029 err = dnode_hold(os, object, FTAG, &dn); 1030 if (err != 0) 1031 return (err); 1032 1033 err = dmu_read_impl(dn, offset, size, buf, flags); 1034 dnode_rele(dn, FTAG); 1035 return (err); 1036 } 1037 1038 int 1039 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1040 uint32_t flags) 1041 { 1042 return (dmu_read_impl(dn, offset, size, buf, flags)); 1043 } 1044 1045 static void 1046 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1047 const void *buf, dmu_tx_t *tx) 1048 { 1049 int i; 1050 1051 for (i = 0; i < numbufs; i++) { 1052 uint64_t tocpy; 1053 int64_t bufoff; 1054 dmu_buf_t *db = dbp[i]; 1055 1056 ASSERT(size > 0); 1057 1058 bufoff = offset - db->db_offset; 1059 tocpy = MIN(db->db_size - bufoff, size); 1060 1061 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1062 1063 if (tocpy == db->db_size) 1064 dmu_buf_will_fill(db, tx); 1065 else 1066 dmu_buf_will_dirty(db, tx); 1067 1068 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1069 1070 if (tocpy == db->db_size) 1071 dmu_buf_fill_done(db, tx); 1072 1073 offset += tocpy; 1074 size -= tocpy; 1075 buf = (char *)buf + tocpy; 1076 } 1077 } 1078 1079 void 1080 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1081 const void *buf, dmu_tx_t *tx) 1082 { 1083 dmu_buf_t **dbp; 1084 int numbufs; 1085 1086 if (size == 0) 1087 return; 1088 1089 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1090 FALSE, FTAG, &numbufs, &dbp)); 1091 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1092 dmu_buf_rele_array(dbp, numbufs, FTAG); 1093 } 1094 1095 /* 1096 * Note: Lustre is an external consumer of this interface. 1097 */ 1098 void 1099 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1100 const void *buf, dmu_tx_t *tx) 1101 { 1102 dmu_buf_t **dbp; 1103 int numbufs; 1104 1105 if (size == 0) 1106 return; 1107 1108 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1109 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1110 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1111 dmu_buf_rele_array(dbp, numbufs, FTAG); 1112 } 1113 1114 void 1115 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1116 dmu_tx_t *tx) 1117 { 1118 dmu_buf_t **dbp; 1119 int numbufs, i; 1120 1121 if (size == 0) 1122 return; 1123 1124 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1125 FALSE, FTAG, &numbufs, &dbp)); 1126 1127 for (i = 0; i < numbufs; i++) { 1128 dmu_buf_t *db = dbp[i]; 1129 1130 dmu_buf_will_not_fill(db, tx); 1131 } 1132 dmu_buf_rele_array(dbp, numbufs, FTAG); 1133 } 1134 1135 void 1136 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1137 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1138 int compressed_size, int byteorder, dmu_tx_t *tx) 1139 { 1140 dmu_buf_t *db; 1141 1142 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1143 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1144 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1145 FTAG, &db)); 1146 1147 dmu_buf_write_embedded(db, 1148 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1149 uncompressed_size, compressed_size, byteorder, tx); 1150 1151 dmu_buf_rele(db, FTAG); 1152 } 1153 1154 void 1155 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1156 dmu_tx_t *tx) 1157 { 1158 int numbufs, i; 1159 dmu_buf_t **dbp; 1160 1161 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1162 &numbufs, &dbp)); 1163 for (i = 0; i < numbufs; i++) 1164 dmu_buf_redact(dbp[i], tx); 1165 dmu_buf_rele_array(dbp, numbufs, FTAG); 1166 } 1167 1168 /* 1169 * DMU support for xuio 1170 */ 1171 kstat_t *xuio_ksp = NULL; 1172 1173 typedef struct xuio_stats { 1174 /* loaned yet not returned arc_buf */ 1175 kstat_named_t xuiostat_onloan_rbuf; 1176 kstat_named_t xuiostat_onloan_wbuf; 1177 /* whether a copy is made when loaning out a read buffer */ 1178 kstat_named_t xuiostat_rbuf_copied; 1179 kstat_named_t xuiostat_rbuf_nocopy; 1180 /* whether a copy is made when assigning a write buffer */ 1181 kstat_named_t xuiostat_wbuf_copied; 1182 kstat_named_t xuiostat_wbuf_nocopy; 1183 } xuio_stats_t; 1184 1185 static xuio_stats_t xuio_stats = { 1186 { "onloan_read_buf", KSTAT_DATA_UINT64 }, 1187 { "onloan_write_buf", KSTAT_DATA_UINT64 }, 1188 { "read_buf_copied", KSTAT_DATA_UINT64 }, 1189 { "read_buf_nocopy", KSTAT_DATA_UINT64 }, 1190 { "write_buf_copied", KSTAT_DATA_UINT64 }, 1191 { "write_buf_nocopy", KSTAT_DATA_UINT64 } 1192 }; 1193 1194 #define XUIOSTAT_INCR(stat, val) \ 1195 atomic_add_64(&xuio_stats.stat.value.ui64, (val)) 1196 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1) 1197 1198 #ifdef HAVE_UIO_ZEROCOPY 1199 int 1200 dmu_xuio_init(xuio_t *xuio, int nblk) 1201 { 1202 dmu_xuio_t *priv; 1203 uio_t *uio = &xuio->xu_uio; 1204 1205 uio->uio_iovcnt = nblk; 1206 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 1207 1208 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 1209 priv->cnt = nblk; 1210 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 1211 priv->iovp = (iovec_t *)uio->uio_iov; 1212 XUIO_XUZC_PRIV(xuio) = priv; 1213 1214 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1215 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 1216 else 1217 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 1218 1219 return (0); 1220 } 1221 1222 void 1223 dmu_xuio_fini(xuio_t *xuio) 1224 { 1225 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1226 int nblk = priv->cnt; 1227 1228 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 1229 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 1230 kmem_free(priv, sizeof (dmu_xuio_t)); 1231 1232 if (XUIO_XUZC_RW(xuio) == UIO_READ) 1233 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 1234 else 1235 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 1236 } 1237 1238 /* 1239 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 1240 * and increase priv->next by 1. 1241 */ 1242 int 1243 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 1244 { 1245 struct iovec *iov; 1246 uio_t *uio = &xuio->xu_uio; 1247 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1248 int i = priv->next++; 1249 1250 ASSERT(i < priv->cnt); 1251 ASSERT(off + n <= arc_buf_lsize(abuf)); 1252 iov = (iovec_t *)uio->uio_iov + i; 1253 iov->iov_base = (char *)abuf->b_data + off; 1254 iov->iov_len = n; 1255 priv->bufs[i] = abuf; 1256 return (0); 1257 } 1258 1259 int 1260 dmu_xuio_cnt(xuio_t *xuio) 1261 { 1262 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1263 return (priv->cnt); 1264 } 1265 1266 arc_buf_t * 1267 dmu_xuio_arcbuf(xuio_t *xuio, int i) 1268 { 1269 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1270 1271 ASSERT(i < priv->cnt); 1272 return (priv->bufs[i]); 1273 } 1274 1275 void 1276 dmu_xuio_clear(xuio_t *xuio, int i) 1277 { 1278 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 1279 1280 ASSERT(i < priv->cnt); 1281 priv->bufs[i] = NULL; 1282 } 1283 #endif /* HAVE_UIO_ZEROCOPY */ 1284 1285 static void 1286 xuio_stat_init(void) 1287 { 1288 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 1289 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 1290 KSTAT_FLAG_VIRTUAL); 1291 if (xuio_ksp != NULL) { 1292 xuio_ksp->ks_data = &xuio_stats; 1293 kstat_install(xuio_ksp); 1294 } 1295 } 1296 1297 static void 1298 xuio_stat_fini(void) 1299 { 1300 if (xuio_ksp != NULL) { 1301 kstat_delete(xuio_ksp); 1302 xuio_ksp = NULL; 1303 } 1304 } 1305 1306 void 1307 xuio_stat_wbuf_copied(void) 1308 { 1309 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1310 } 1311 1312 void 1313 xuio_stat_wbuf_nocopy(void) 1314 { 1315 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 1316 } 1317 1318 #ifdef _KERNEL 1319 int 1320 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size) 1321 { 1322 dmu_buf_t **dbp; 1323 int numbufs, i, err; 1324 #ifdef HAVE_UIO_ZEROCOPY 1325 xuio_t *xuio = NULL; 1326 #endif 1327 1328 /* 1329 * NB: we could do this block-at-a-time, but it's nice 1330 * to be reading in parallel. 1331 */ 1332 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size, 1333 TRUE, FTAG, &numbufs, &dbp, 0); 1334 if (err) 1335 return (err); 1336 1337 for (i = 0; i < numbufs; i++) { 1338 uint64_t tocpy; 1339 int64_t bufoff; 1340 dmu_buf_t *db = dbp[i]; 1341 1342 ASSERT(size > 0); 1343 1344 bufoff = uio_offset(uio) - db->db_offset; 1345 tocpy = MIN(db->db_size - bufoff, size); 1346 1347 #ifdef HAVE_UIO_ZEROCOPY 1348 if (xuio) { 1349 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1350 arc_buf_t *dbuf_abuf = dbi->db_buf; 1351 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1352 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1353 if (!err) 1354 uio_advance(uio, tocpy); 1355 1356 if (abuf == dbuf_abuf) 1357 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1358 else 1359 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1360 } else 1361 #endif 1362 #ifdef __FreeBSD__ 1363 err = vn_io_fault_uiomove((char *)db->db_data + bufoff, 1364 tocpy, uio); 1365 #else 1366 err = uiomove((char *)db->db_data + bufoff, tocpy, 1367 UIO_READ, uio); 1368 #endif 1369 if (err) 1370 break; 1371 1372 size -= tocpy; 1373 } 1374 dmu_buf_rele_array(dbp, numbufs, FTAG); 1375 1376 return (err); 1377 } 1378 1379 /* 1380 * Read 'size' bytes into the uio buffer. 1381 * From object zdb->db_object. 1382 * Starting at offset uio->uio_loffset. 1383 * 1384 * If the caller already has a dbuf in the target object 1385 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1386 * because we don't have to find the dnode_t for the object. 1387 */ 1388 int 1389 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size) 1390 { 1391 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1392 dnode_t *dn; 1393 int err; 1394 1395 if (size == 0) 1396 return (0); 1397 1398 DB_DNODE_ENTER(db); 1399 dn = DB_DNODE(db); 1400 err = dmu_read_uio_dnode(dn, uio, size); 1401 DB_DNODE_EXIT(db); 1402 1403 return (err); 1404 } 1405 1406 /* 1407 * Read 'size' bytes into the uio buffer. 1408 * From the specified object 1409 * Starting at offset uio->uio_loffset. 1410 */ 1411 int 1412 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 1413 { 1414 dnode_t *dn; 1415 int err; 1416 1417 if (size == 0) 1418 return (0); 1419 1420 err = dnode_hold(os, object, FTAG, &dn); 1421 if (err) 1422 return (err); 1423 1424 err = dmu_read_uio_dnode(dn, uio, size); 1425 1426 dnode_rele(dn, FTAG); 1427 1428 return (err); 1429 } 1430 1431 int 1432 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1433 { 1434 dmu_buf_t **dbp; 1435 int numbufs; 1436 int err = 0; 1437 int i; 1438 1439 err = dmu_buf_hold_array_by_dnode(dn, uio_offset(uio), size, 1440 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1441 if (err) 1442 return (err); 1443 1444 for (i = 0; i < numbufs; i++) { 1445 uint64_t tocpy; 1446 int64_t bufoff; 1447 dmu_buf_t *db = dbp[i]; 1448 1449 ASSERT(size > 0); 1450 1451 bufoff = uio_offset(uio) - db->db_offset; 1452 tocpy = MIN(db->db_size - bufoff, size); 1453 1454 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1455 1456 if (tocpy == db->db_size) 1457 dmu_buf_will_fill(db, tx); 1458 else 1459 dmu_buf_will_dirty(db, tx); 1460 1461 /* 1462 * XXX uiomove could block forever (eg.nfs-backed 1463 * pages). There needs to be a uiolockdown() function 1464 * to lock the pages in memory, so that uiomove won't 1465 * block. 1466 */ 1467 #ifdef __FreeBSD__ 1468 err = vn_io_fault_uiomove((char *)db->db_data + bufoff, 1469 tocpy, uio); 1470 #else 1471 err = uiomove((char *)db->db_data + bufoff, tocpy, 1472 UIO_WRITE, uio); 1473 #endif 1474 if (tocpy == db->db_size) 1475 dmu_buf_fill_done(db, tx); 1476 1477 if (err) 1478 break; 1479 1480 size -= tocpy; 1481 } 1482 1483 dmu_buf_rele_array(dbp, numbufs, FTAG); 1484 return (err); 1485 } 1486 1487 /* 1488 * Write 'size' bytes from the uio buffer. 1489 * To object zdb->db_object. 1490 * Starting at offset uio->uio_loffset. 1491 * 1492 * If the caller already has a dbuf in the target object 1493 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1494 * because we don't have to find the dnode_t for the object. 1495 */ 1496 int 1497 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1498 dmu_tx_t *tx) 1499 { 1500 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1501 dnode_t *dn; 1502 int err; 1503 1504 if (size == 0) 1505 return (0); 1506 1507 DB_DNODE_ENTER(db); 1508 dn = DB_DNODE(db); 1509 err = dmu_write_uio_dnode(dn, uio, size, tx); 1510 DB_DNODE_EXIT(db); 1511 1512 return (err); 1513 } 1514 1515 /* 1516 * Write 'size' bytes from the uio buffer. 1517 * To the specified object. 1518 * Starting at offset uio->uio_loffset. 1519 */ 1520 int 1521 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1522 dmu_tx_t *tx) 1523 { 1524 dnode_t *dn; 1525 int err; 1526 1527 if (size == 0) 1528 return (0); 1529 1530 err = dnode_hold(os, object, FTAG, &dn); 1531 if (err) 1532 return (err); 1533 1534 err = dmu_write_uio_dnode(dn, uio, size, tx); 1535 1536 dnode_rele(dn, FTAG); 1537 1538 return (err); 1539 } 1540 #endif /* _KERNEL */ 1541 1542 /* 1543 * Allocate a loaned anonymous arc buffer. 1544 */ 1545 arc_buf_t * 1546 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1547 { 1548 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1549 1550 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1551 } 1552 1553 /* 1554 * Free a loaned arc buffer. 1555 */ 1556 void 1557 dmu_return_arcbuf(arc_buf_t *buf) 1558 { 1559 arc_return_buf(buf, FTAG); 1560 arc_buf_destroy(buf, FTAG); 1561 } 1562 1563 /* 1564 * When possible directly assign passed loaned arc buffer to a dbuf. 1565 * If this is not possible copy the contents of passed arc buf via 1566 * dmu_write(). 1567 */ 1568 int 1569 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1570 dmu_tx_t *tx) 1571 { 1572 dmu_buf_impl_t *db; 1573 objset_t *os = dn->dn_objset; 1574 uint64_t object = dn->dn_object; 1575 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1576 uint64_t blkid; 1577 1578 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1579 blkid = dbuf_whichblock(dn, 0, offset); 1580 db = dbuf_hold(dn, blkid, FTAG); 1581 if (db == NULL) 1582 return (SET_ERROR(EIO)); 1583 rw_exit(&dn->dn_struct_rwlock); 1584 1585 /* 1586 * We can only assign if the offset is aligned, the arc buf is the 1587 * same size as the dbuf, and the dbuf is not metadata. 1588 */ 1589 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1590 dbuf_assign_arcbuf(db, buf, tx); 1591 dbuf_rele(db, FTAG); 1592 } else { 1593 /* compressed bufs must always be assignable to their dbuf */ 1594 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1595 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1596 1597 dbuf_rele(db, FTAG); 1598 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1599 dmu_return_arcbuf(buf); 1600 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1601 } 1602 1603 return (0); 1604 } 1605 1606 int 1607 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1608 dmu_tx_t *tx) 1609 { 1610 int err; 1611 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1612 1613 DB_DNODE_ENTER(dbuf); 1614 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1615 DB_DNODE_EXIT(dbuf); 1616 1617 return (err); 1618 } 1619 1620 typedef struct { 1621 dbuf_dirty_record_t *dsa_dr; 1622 dmu_sync_cb_t *dsa_done; 1623 zgd_t *dsa_zgd; 1624 dmu_tx_t *dsa_tx; 1625 } dmu_sync_arg_t; 1626 1627 /* ARGSUSED */ 1628 static void 1629 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1630 { 1631 dmu_sync_arg_t *dsa = varg; 1632 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1633 blkptr_t *bp = zio->io_bp; 1634 1635 if (zio->io_error == 0) { 1636 if (BP_IS_HOLE(bp)) { 1637 /* 1638 * A block of zeros may compress to a hole, but the 1639 * block size still needs to be known for replay. 1640 */ 1641 BP_SET_LSIZE(bp, db->db_size); 1642 } else if (!BP_IS_EMBEDDED(bp)) { 1643 ASSERT(BP_GET_LEVEL(bp) == 0); 1644 BP_SET_FILL(bp, 1); 1645 } 1646 } 1647 } 1648 1649 static void 1650 dmu_sync_late_arrival_ready(zio_t *zio) 1651 { 1652 dmu_sync_ready(zio, NULL, zio->io_private); 1653 } 1654 1655 /* ARGSUSED */ 1656 static void 1657 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1658 { 1659 dmu_sync_arg_t *dsa = varg; 1660 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1661 dmu_buf_impl_t *db = dr->dr_dbuf; 1662 zgd_t *zgd = dsa->dsa_zgd; 1663 1664 /* 1665 * Record the vdev(s) backing this blkptr so they can be flushed after 1666 * the writes for the lwb have completed. 1667 */ 1668 if (zio->io_error == 0) { 1669 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1670 } 1671 1672 mutex_enter(&db->db_mtx); 1673 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1674 if (zio->io_error == 0) { 1675 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1676 if (dr->dt.dl.dr_nopwrite) { 1677 blkptr_t *bp = zio->io_bp; 1678 blkptr_t *bp_orig = &zio->io_bp_orig; 1679 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1680 1681 ASSERT(BP_EQUAL(bp, bp_orig)); 1682 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1683 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1684 VERIFY(zio_checksum_table[chksum].ci_flags & 1685 ZCHECKSUM_FLAG_NOPWRITE); 1686 } 1687 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1688 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1689 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1690 1691 /* 1692 * Old style holes are filled with all zeros, whereas 1693 * new-style holes maintain their lsize, type, level, 1694 * and birth time (see zio_write_compress). While we 1695 * need to reset the BP_SET_LSIZE() call that happened 1696 * in dmu_sync_ready for old style holes, we do *not* 1697 * want to wipe out the information contained in new 1698 * style holes. Thus, only zero out the block pointer if 1699 * it's an old style hole. 1700 */ 1701 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1702 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1703 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1704 } else { 1705 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1706 } 1707 cv_broadcast(&db->db_changed); 1708 mutex_exit(&db->db_mtx); 1709 1710 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1711 1712 kmem_free(dsa, sizeof (*dsa)); 1713 } 1714 1715 static void 1716 dmu_sync_late_arrival_done(zio_t *zio) 1717 { 1718 blkptr_t *bp = zio->io_bp; 1719 dmu_sync_arg_t *dsa = zio->io_private; 1720 zgd_t *zgd = dsa->dsa_zgd; 1721 1722 if (zio->io_error == 0) { 1723 /* 1724 * Record the vdev(s) backing this blkptr so they can be 1725 * flushed after the writes for the lwb have completed. 1726 */ 1727 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1728 1729 if (!BP_IS_HOLE(bp)) { 1730 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1731 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1732 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1733 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1734 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1735 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1736 } 1737 } 1738 1739 dmu_tx_commit(dsa->dsa_tx); 1740 1741 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1742 1743 abd_put(zio->io_abd); 1744 kmem_free(dsa, sizeof (*dsa)); 1745 } 1746 1747 static int 1748 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1749 zio_prop_t *zp, zbookmark_phys_t *zb) 1750 { 1751 dmu_sync_arg_t *dsa; 1752 dmu_tx_t *tx; 1753 1754 tx = dmu_tx_create(os); 1755 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1756 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1757 dmu_tx_abort(tx); 1758 /* Make zl_get_data do txg_waited_synced() */ 1759 return (SET_ERROR(EIO)); 1760 } 1761 1762 /* 1763 * In order to prevent the zgd's lwb from being free'd prior to 1764 * dmu_sync_late_arrival_done() being called, we have to ensure 1765 * the lwb's "max txg" takes this tx's txg into account. 1766 */ 1767 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1768 1769 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1770 dsa->dsa_dr = NULL; 1771 dsa->dsa_done = done; 1772 dsa->dsa_zgd = zgd; 1773 dsa->dsa_tx = tx; 1774 1775 /* 1776 * Since we are currently syncing this txg, it's nontrivial to 1777 * determine what BP to nopwrite against, so we disable nopwrite. 1778 * 1779 * When syncing, the db_blkptr is initially the BP of the previous 1780 * txg. We can not nopwrite against it because it will be changed 1781 * (this is similar to the non-late-arrival case where the dbuf is 1782 * dirty in a future txg). 1783 * 1784 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1785 * We can not nopwrite against it because although the BP will not 1786 * (typically) be changed, the data has not yet been persisted to this 1787 * location. 1788 * 1789 * Finally, when dbuf_write_done() is called, it is theoretically 1790 * possible to always nopwrite, because the data that was written in 1791 * this txg is the same data that we are trying to write. However we 1792 * would need to check that this dbuf is not dirty in any future 1793 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1794 * don't nopwrite in this case. 1795 */ 1796 zp->zp_nopwrite = B_FALSE; 1797 1798 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1799 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1800 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1801 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1802 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1803 1804 return (0); 1805 } 1806 1807 /* 1808 * Intent log support: sync the block associated with db to disk. 1809 * N.B. and XXX: the caller is responsible for making sure that the 1810 * data isn't changing while dmu_sync() is writing it. 1811 * 1812 * Return values: 1813 * 1814 * EEXIST: this txg has already been synced, so there's nothing to do. 1815 * The caller should not log the write. 1816 * 1817 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1818 * The caller should not log the write. 1819 * 1820 * EALREADY: this block is already in the process of being synced. 1821 * The caller should track its progress (somehow). 1822 * 1823 * EIO: could not do the I/O. 1824 * The caller should do a txg_wait_synced(). 1825 * 1826 * 0: the I/O has been initiated. 1827 * The caller should log this blkptr in the done callback. 1828 * It is possible that the I/O will fail, in which case 1829 * the error will be reported to the done callback and 1830 * propagated to pio from zio_done(). 1831 */ 1832 int 1833 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1834 { 1835 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1836 objset_t *os = db->db_objset; 1837 dsl_dataset_t *ds = os->os_dsl_dataset; 1838 dbuf_dirty_record_t *dr, *dr_next; 1839 dmu_sync_arg_t *dsa; 1840 zbookmark_phys_t zb; 1841 zio_prop_t zp; 1842 dnode_t *dn; 1843 1844 ASSERT(pio != NULL); 1845 ASSERT(txg != 0); 1846 1847 SET_BOOKMARK(&zb, ds->ds_object, 1848 db->db.db_object, db->db_level, db->db_blkid); 1849 1850 DB_DNODE_ENTER(db); 1851 dn = DB_DNODE(db); 1852 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1853 DB_DNODE_EXIT(db); 1854 1855 /* 1856 * If we're frozen (running ziltest), we always need to generate a bp. 1857 */ 1858 if (txg > spa_freeze_txg(os->os_spa)) 1859 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1860 1861 /* 1862 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1863 * and us. If we determine that this txg is not yet syncing, 1864 * but it begins to sync a moment later, that's OK because the 1865 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1866 */ 1867 mutex_enter(&db->db_mtx); 1868 1869 if (txg <= spa_last_synced_txg(os->os_spa)) { 1870 /* 1871 * This txg has already synced. There's nothing to do. 1872 */ 1873 mutex_exit(&db->db_mtx); 1874 return (SET_ERROR(EEXIST)); 1875 } 1876 1877 if (txg <= spa_syncing_txg(os->os_spa)) { 1878 /* 1879 * This txg is currently syncing, so we can't mess with 1880 * the dirty record anymore; just write a new log block. 1881 */ 1882 mutex_exit(&db->db_mtx); 1883 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1884 } 1885 1886 dr = dbuf_find_dirty_eq(db, txg); 1887 1888 if (dr == NULL) { 1889 /* 1890 * There's no dr for this dbuf, so it must have been freed. 1891 * There's no need to log writes to freed blocks, so we're done. 1892 */ 1893 mutex_exit(&db->db_mtx); 1894 return (SET_ERROR(ENOENT)); 1895 } 1896 1897 dr_next = list_next(&db->db_dirty_records, dr); 1898 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1899 1900 if (db->db_blkptr != NULL) { 1901 /* 1902 * We need to fill in zgd_bp with the current blkptr so that 1903 * the nopwrite code can check if we're writing the same 1904 * data that's already on disk. We can only nopwrite if we 1905 * are sure that after making the copy, db_blkptr will not 1906 * change until our i/o completes. We ensure this by 1907 * holding the db_mtx, and only allowing nopwrite if the 1908 * block is not already dirty (see below). This is verified 1909 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1910 * not changed. 1911 */ 1912 *zgd->zgd_bp = *db->db_blkptr; 1913 } 1914 1915 /* 1916 * Assume the on-disk data is X, the current syncing data (in 1917 * txg - 1) is Y, and the current in-memory data is Z (currently 1918 * in dmu_sync). 1919 * 1920 * We usually want to perform a nopwrite if X and Z are the 1921 * same. However, if Y is different (i.e. the BP is going to 1922 * change before this write takes effect), then a nopwrite will 1923 * be incorrect - we would override with X, which could have 1924 * been freed when Y was written. 1925 * 1926 * (Note that this is not a concern when we are nop-writing from 1927 * syncing context, because X and Y must be identical, because 1928 * all previous txgs have been synced.) 1929 * 1930 * Therefore, we disable nopwrite if the current BP could change 1931 * before this TXG. There are two ways it could change: by 1932 * being dirty (dr_next is non-NULL), or by being freed 1933 * (dnode_block_freed()). This behavior is verified by 1934 * zio_done(), which VERIFYs that the override BP is identical 1935 * to the on-disk BP. 1936 */ 1937 DB_DNODE_ENTER(db); 1938 dn = DB_DNODE(db); 1939 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1940 zp.zp_nopwrite = B_FALSE; 1941 DB_DNODE_EXIT(db); 1942 1943 ASSERT(dr->dr_txg == txg); 1944 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1945 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1946 /* 1947 * We have already issued a sync write for this buffer, 1948 * or this buffer has already been synced. It could not 1949 * have been dirtied since, or we would have cleared the state. 1950 */ 1951 mutex_exit(&db->db_mtx); 1952 return (SET_ERROR(EALREADY)); 1953 } 1954 1955 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1956 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1957 mutex_exit(&db->db_mtx); 1958 1959 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1960 dsa->dsa_dr = dr; 1961 dsa->dsa_done = done; 1962 dsa->dsa_zgd = zgd; 1963 dsa->dsa_tx = NULL; 1964 1965 zio_nowait(arc_write(pio, os->os_spa, txg, 1966 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1967 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1968 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1969 1970 return (0); 1971 } 1972 1973 int 1974 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1975 { 1976 dnode_t *dn; 1977 int err; 1978 1979 err = dnode_hold(os, object, FTAG, &dn); 1980 if (err) 1981 return (err); 1982 err = dnode_set_nlevels(dn, nlevels, tx); 1983 dnode_rele(dn, FTAG); 1984 return (err); 1985 } 1986 1987 int 1988 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1989 dmu_tx_t *tx) 1990 { 1991 dnode_t *dn; 1992 int err; 1993 1994 err = dnode_hold(os, object, FTAG, &dn); 1995 if (err) 1996 return (err); 1997 err = dnode_set_blksz(dn, size, ibs, tx); 1998 dnode_rele(dn, FTAG); 1999 return (err); 2000 } 2001 2002 int 2003 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 2004 dmu_tx_t *tx) 2005 { 2006 dnode_t *dn; 2007 int err; 2008 2009 err = dnode_hold(os, object, FTAG, &dn); 2010 if (err) 2011 return (err); 2012 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2013 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 2014 rw_exit(&dn->dn_struct_rwlock); 2015 dnode_rele(dn, FTAG); 2016 return (0); 2017 } 2018 2019 void 2020 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 2021 dmu_tx_t *tx) 2022 { 2023 dnode_t *dn; 2024 2025 /* 2026 * Send streams include each object's checksum function. This 2027 * check ensures that the receiving system can understand the 2028 * checksum function transmitted. 2029 */ 2030 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 2031 2032 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2033 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 2034 dn->dn_checksum = checksum; 2035 dnode_setdirty(dn, tx); 2036 dnode_rele(dn, FTAG); 2037 } 2038 2039 void 2040 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 2041 dmu_tx_t *tx) 2042 { 2043 dnode_t *dn; 2044 2045 /* 2046 * Send streams include each object's compression function. This 2047 * check ensures that the receiving system can understand the 2048 * compression function transmitted. 2049 */ 2050 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 2051 2052 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 2053 dn->dn_compress = compress; 2054 dnode_setdirty(dn, tx); 2055 dnode_rele(dn, FTAG); 2056 } 2057 2058 /* 2059 * When the "redundant_metadata" property is set to "most", only indirect 2060 * blocks of this level and higher will have an additional ditto block. 2061 */ 2062 int zfs_redundant_metadata_most_ditto_level = 2; 2063 2064 void 2065 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 2066 { 2067 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 2068 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 2069 (wp & WP_SPILL)); 2070 enum zio_checksum checksum = os->os_checksum; 2071 enum zio_compress compress = os->os_compress; 2072 uint8_t complevel = os->os_complevel; 2073 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 2074 boolean_t dedup = B_FALSE; 2075 boolean_t nopwrite = B_FALSE; 2076 boolean_t dedup_verify = os->os_dedup_verify; 2077 boolean_t encrypt = B_FALSE; 2078 int copies = os->os_copies; 2079 2080 /* 2081 * We maintain different write policies for each of the following 2082 * types of data: 2083 * 1. metadata 2084 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 2085 * 3. all other level 0 blocks 2086 */ 2087 if (ismd) { 2088 /* 2089 * XXX -- we should design a compression algorithm 2090 * that specializes in arrays of bps. 2091 */ 2092 compress = zio_compress_select(os->os_spa, 2093 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 2094 2095 /* 2096 * Metadata always gets checksummed. If the data 2097 * checksum is multi-bit correctable, and it's not a 2098 * ZBT-style checksum, then it's suitable for metadata 2099 * as well. Otherwise, the metadata checksum defaults 2100 * to fletcher4. 2101 */ 2102 if (!(zio_checksum_table[checksum].ci_flags & 2103 ZCHECKSUM_FLAG_METADATA) || 2104 (zio_checksum_table[checksum].ci_flags & 2105 ZCHECKSUM_FLAG_EMBEDDED)) 2106 checksum = ZIO_CHECKSUM_FLETCHER_4; 2107 2108 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 2109 (os->os_redundant_metadata == 2110 ZFS_REDUNDANT_METADATA_MOST && 2111 (level >= zfs_redundant_metadata_most_ditto_level || 2112 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 2113 copies++; 2114 } else if (wp & WP_NOFILL) { 2115 ASSERT(level == 0); 2116 2117 /* 2118 * If we're writing preallocated blocks, we aren't actually 2119 * writing them so don't set any policy properties. These 2120 * blocks are currently only used by an external subsystem 2121 * outside of zfs (i.e. dump) and not written by the zio 2122 * pipeline. 2123 */ 2124 compress = ZIO_COMPRESS_OFF; 2125 checksum = ZIO_CHECKSUM_OFF; 2126 } else { 2127 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2128 compress); 2129 complevel = zio_complevel_select(os->os_spa, compress, 2130 complevel, complevel); 2131 2132 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2133 zio_checksum_select(dn->dn_checksum, checksum) : 2134 dedup_checksum; 2135 2136 /* 2137 * Determine dedup setting. If we are in dmu_sync(), 2138 * we won't actually dedup now because that's all 2139 * done in syncing context; but we do want to use the 2140 * dedup checksum. If the checksum is not strong 2141 * enough to ensure unique signatures, force 2142 * dedup_verify. 2143 */ 2144 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2145 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2146 if (!(zio_checksum_table[checksum].ci_flags & 2147 ZCHECKSUM_FLAG_DEDUP)) 2148 dedup_verify = B_TRUE; 2149 } 2150 2151 /* 2152 * Enable nopwrite if we have secure enough checksum 2153 * algorithm (see comment in zio_nop_write) and 2154 * compression is enabled. We don't enable nopwrite if 2155 * dedup is enabled as the two features are mutually 2156 * exclusive. 2157 */ 2158 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2159 ZCHECKSUM_FLAG_NOPWRITE) && 2160 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2161 } 2162 2163 /* 2164 * All objects in an encrypted objset are protected from modification 2165 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2166 * in the bp, so we cannot use all copies. Encrypted objects are also 2167 * not subject to nopwrite since writing the same data will still 2168 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2169 * to avoid ambiguity in the dedup code since the DDT does not store 2170 * object types. 2171 */ 2172 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2173 encrypt = B_TRUE; 2174 2175 if (DMU_OT_IS_ENCRYPTED(type)) { 2176 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2177 nopwrite = B_FALSE; 2178 } else { 2179 dedup = B_FALSE; 2180 } 2181 2182 if (level <= 0 && 2183 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2184 compress = ZIO_COMPRESS_EMPTY; 2185 } 2186 } 2187 2188 zp->zp_compress = compress; 2189 zp->zp_complevel = complevel; 2190 zp->zp_checksum = checksum; 2191 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2192 zp->zp_level = level; 2193 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2194 zp->zp_dedup = dedup; 2195 zp->zp_dedup_verify = dedup && dedup_verify; 2196 zp->zp_nopwrite = nopwrite; 2197 zp->zp_encrypt = encrypt; 2198 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2199 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN); 2200 bzero(zp->zp_iv, ZIO_DATA_IV_LEN); 2201 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN); 2202 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2203 os->os_zpl_special_smallblock : 0; 2204 2205 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2206 } 2207 2208 /* 2209 * This function is only called from zfs_holey_common() for zpl_llseek() 2210 * in order to determine the location of holes. In order to accurately 2211 * report holes all dirty data must be synced to disk. This causes extremely 2212 * poor performance when seeking for holes in a dirty file. As a compromise, 2213 * only provide hole data when the dnode is clean. When a dnode is dirty 2214 * report the dnode as having no holes which is always a safe thing to do. 2215 */ 2216 int 2217 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2218 { 2219 dnode_t *dn; 2220 int i, err; 2221 boolean_t clean = B_TRUE; 2222 2223 err = dnode_hold(os, object, FTAG, &dn); 2224 if (err) 2225 return (err); 2226 2227 /* 2228 * Check if dnode is dirty 2229 */ 2230 for (i = 0; i < TXG_SIZE; i++) { 2231 if (multilist_link_active(&dn->dn_dirty_link[i])) { 2232 clean = B_FALSE; 2233 break; 2234 } 2235 } 2236 2237 /* 2238 * If compatibility option is on, sync any current changes before 2239 * we go trundling through the block pointers. 2240 */ 2241 if (!clean && zfs_dmu_offset_next_sync) { 2242 clean = B_TRUE; 2243 dnode_rele(dn, FTAG); 2244 txg_wait_synced(dmu_objset_pool(os), 0); 2245 err = dnode_hold(os, object, FTAG, &dn); 2246 if (err) 2247 return (err); 2248 } 2249 2250 if (clean) 2251 err = dnode_next_offset(dn, 2252 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2253 else 2254 err = SET_ERROR(EBUSY); 2255 2256 dnode_rele(dn, FTAG); 2257 2258 return (err); 2259 } 2260 2261 void 2262 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2263 { 2264 dnode_phys_t *dnp = dn->dn_phys; 2265 2266 doi->doi_data_block_size = dn->dn_datablksz; 2267 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2268 1ULL << dn->dn_indblkshift : 0; 2269 doi->doi_type = dn->dn_type; 2270 doi->doi_bonus_type = dn->dn_bonustype; 2271 doi->doi_bonus_size = dn->dn_bonuslen; 2272 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2273 doi->doi_indirection = dn->dn_nlevels; 2274 doi->doi_checksum = dn->dn_checksum; 2275 doi->doi_compress = dn->dn_compress; 2276 doi->doi_nblkptr = dn->dn_nblkptr; 2277 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2278 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2279 doi->doi_fill_count = 0; 2280 for (int i = 0; i < dnp->dn_nblkptr; i++) 2281 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2282 } 2283 2284 void 2285 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2286 { 2287 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2288 mutex_enter(&dn->dn_mtx); 2289 2290 __dmu_object_info_from_dnode(dn, doi); 2291 2292 mutex_exit(&dn->dn_mtx); 2293 rw_exit(&dn->dn_struct_rwlock); 2294 } 2295 2296 /* 2297 * Get information on a DMU object. 2298 * If doi is NULL, just indicates whether the object exists. 2299 */ 2300 int 2301 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2302 { 2303 dnode_t *dn; 2304 int err = dnode_hold(os, object, FTAG, &dn); 2305 2306 if (err) 2307 return (err); 2308 2309 if (doi != NULL) 2310 dmu_object_info_from_dnode(dn, doi); 2311 2312 dnode_rele(dn, FTAG); 2313 return (0); 2314 } 2315 2316 /* 2317 * As above, but faster; can be used when you have a held dbuf in hand. 2318 */ 2319 void 2320 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2321 { 2322 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2323 2324 DB_DNODE_ENTER(db); 2325 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2326 DB_DNODE_EXIT(db); 2327 } 2328 2329 /* 2330 * Faster still when you only care about the size. 2331 */ 2332 void 2333 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2334 u_longlong_t *nblk512) 2335 { 2336 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2337 dnode_t *dn; 2338 2339 DB_DNODE_ENTER(db); 2340 dn = DB_DNODE(db); 2341 2342 *blksize = dn->dn_datablksz; 2343 /* add in number of slots used for the dnode itself */ 2344 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2345 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2346 DB_DNODE_EXIT(db); 2347 } 2348 2349 void 2350 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2351 { 2352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2353 dnode_t *dn; 2354 2355 DB_DNODE_ENTER(db); 2356 dn = DB_DNODE(db); 2357 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2358 DB_DNODE_EXIT(db); 2359 } 2360 2361 void 2362 byteswap_uint64_array(void *vbuf, size_t size) 2363 { 2364 uint64_t *buf = vbuf; 2365 size_t count = size >> 3; 2366 int i; 2367 2368 ASSERT((size & 7) == 0); 2369 2370 for (i = 0; i < count; i++) 2371 buf[i] = BSWAP_64(buf[i]); 2372 } 2373 2374 void 2375 byteswap_uint32_array(void *vbuf, size_t size) 2376 { 2377 uint32_t *buf = vbuf; 2378 size_t count = size >> 2; 2379 int i; 2380 2381 ASSERT((size & 3) == 0); 2382 2383 for (i = 0; i < count; i++) 2384 buf[i] = BSWAP_32(buf[i]); 2385 } 2386 2387 void 2388 byteswap_uint16_array(void *vbuf, size_t size) 2389 { 2390 uint16_t *buf = vbuf; 2391 size_t count = size >> 1; 2392 int i; 2393 2394 ASSERT((size & 1) == 0); 2395 2396 for (i = 0; i < count; i++) 2397 buf[i] = BSWAP_16(buf[i]); 2398 } 2399 2400 /* ARGSUSED */ 2401 void 2402 byteswap_uint8_array(void *vbuf, size_t size) 2403 { 2404 } 2405 2406 void 2407 dmu_init(void) 2408 { 2409 abd_init(); 2410 zfs_dbgmsg_init(); 2411 sa_cache_init(); 2412 xuio_stat_init(); 2413 dmu_objset_init(); 2414 dnode_init(); 2415 zfetch_init(); 2416 dmu_tx_init(); 2417 l2arc_init(); 2418 arc_init(); 2419 dbuf_init(); 2420 } 2421 2422 void 2423 dmu_fini(void) 2424 { 2425 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2426 l2arc_fini(); 2427 dmu_tx_fini(); 2428 zfetch_fini(); 2429 dbuf_fini(); 2430 dnode_fini(); 2431 dmu_objset_fini(); 2432 xuio_stat_fini(); 2433 sa_cache_fini(); 2434 zfs_dbgmsg_fini(); 2435 abd_fini(); 2436 } 2437 2438 EXPORT_SYMBOL(dmu_bonus_hold); 2439 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2440 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2441 EXPORT_SYMBOL(dmu_buf_rele_array); 2442 EXPORT_SYMBOL(dmu_prefetch); 2443 EXPORT_SYMBOL(dmu_free_range); 2444 EXPORT_SYMBOL(dmu_free_long_range); 2445 EXPORT_SYMBOL(dmu_free_long_object); 2446 EXPORT_SYMBOL(dmu_read); 2447 EXPORT_SYMBOL(dmu_read_by_dnode); 2448 EXPORT_SYMBOL(dmu_write); 2449 EXPORT_SYMBOL(dmu_write_by_dnode); 2450 EXPORT_SYMBOL(dmu_prealloc); 2451 EXPORT_SYMBOL(dmu_object_info); 2452 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2453 EXPORT_SYMBOL(dmu_object_info_from_db); 2454 EXPORT_SYMBOL(dmu_object_size_from_db); 2455 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2456 EXPORT_SYMBOL(dmu_object_set_nlevels); 2457 EXPORT_SYMBOL(dmu_object_set_blocksize); 2458 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2459 EXPORT_SYMBOL(dmu_object_set_checksum); 2460 EXPORT_SYMBOL(dmu_object_set_compress); 2461 EXPORT_SYMBOL(dmu_offset_next); 2462 EXPORT_SYMBOL(dmu_write_policy); 2463 EXPORT_SYMBOL(dmu_sync); 2464 EXPORT_SYMBOL(dmu_request_arcbuf); 2465 EXPORT_SYMBOL(dmu_return_arcbuf); 2466 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2467 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2468 EXPORT_SYMBOL(dmu_buf_hold); 2469 EXPORT_SYMBOL(dmu_ot); 2470 2471 /* BEGIN CSTYLED */ 2472 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2473 "Enable NOP writes"); 2474 2475 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW, 2476 "Percentage of dirtied blocks from frees in one TXG"); 2477 2478 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2479 "Enable forcing txg sync to find holes"); 2480 2481 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW, 2482 "Limit one prefetch call to this size"); 2483 /* END CSTYLED */ 2484