1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. 32 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 33 */ 34 35 #include <sys/dmu.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/dbuf.h> 39 #include <sys/dnode.h> 40 #include <sys/zfs_context.h> 41 #include <sys/dmu_objset.h> 42 #include <sys/dmu_traverse.h> 43 #include <sys/dsl_dataset.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_pool.h> 46 #include <sys/dsl_synctask.h> 47 #include <sys/dsl_prop.h> 48 #include <sys/dmu_zfetch.h> 49 #include <sys/zfs_ioctl.h> 50 #include <sys/zap.h> 51 #include <sys/zio_checksum.h> 52 #include <sys/zio_compress.h> 53 #include <sys/sa.h> 54 #include <sys/zfeature.h> 55 #include <sys/abd.h> 56 #include <sys/brt.h> 57 #include <sys/trace_zfs.h> 58 #include <sys/zfs_racct.h> 59 #include <sys/zfs_rlock.h> 60 #ifdef _KERNEL 61 #include <sys/vmsystm.h> 62 #include <sys/zfs_znode.h> 63 #endif 64 65 /* 66 * Enable/disable nopwrite feature. 67 */ 68 static int zfs_nopwrite_enabled = 1; 69 70 /* 71 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 72 * one TXG. After this threshold is crossed, additional dirty blocks from frees 73 * will wait until the next TXG. 74 * A value of zero will disable this throttle. 75 */ 76 static uint_t zfs_per_txg_dirty_frees_percent = 30; 77 78 /* 79 * Enable/disable forcing txg sync when dirty checking for holes with lseek(). 80 * By default this is enabled to ensure accurate hole reporting, it can result 81 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads. 82 * Disabling this option will result in holes never being reported in dirty 83 * files which is always safe. 84 */ 85 static int zfs_dmu_offset_next_sync = 1; 86 87 /* 88 * Limit the amount we can prefetch with one call to this amount. This 89 * helps to limit the amount of memory that can be used by prefetching. 90 * Larger objects should be prefetched a bit at a time. 91 */ 92 #ifdef _ILP32 93 uint_t dmu_prefetch_max = 8 * 1024 * 1024; 94 #else 95 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 96 #endif 97 98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 99 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 100 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 101 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 102 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 103 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 104 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 105 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 106 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 107 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 108 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 109 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 110 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 111 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 112 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 113 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 114 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 115 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 116 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 117 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 118 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 119 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 121 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 122 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 123 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 124 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 125 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 127 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 128 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 129 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 130 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 131 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 132 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 133 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 134 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 135 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 136 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 137 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 140 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 141 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 142 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 143 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 144 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 145 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 146 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 147 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 148 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 149 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 150 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 151 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 152 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 153 }; 154 155 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 156 { byteswap_uint8_array, "uint8" }, 157 { byteswap_uint16_array, "uint16" }, 158 { byteswap_uint32_array, "uint32" }, 159 { byteswap_uint64_array, "uint64" }, 160 { zap_byteswap, "zap" }, 161 { dnode_buf_byteswap, "dnode" }, 162 { dmu_objset_byteswap, "objset" }, 163 { zfs_znode_byteswap, "znode" }, 164 { zfs_oldacl_byteswap, "oldacl" }, 165 { zfs_acl_byteswap, "acl" } 166 }; 167 168 int 169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 170 const void *tag, dmu_buf_t **dbp) 171 { 172 uint64_t blkid; 173 dmu_buf_impl_t *db; 174 175 rw_enter(&dn->dn_struct_rwlock, RW_READER); 176 blkid = dbuf_whichblock(dn, 0, offset); 177 db = dbuf_hold(dn, blkid, tag); 178 rw_exit(&dn->dn_struct_rwlock); 179 180 if (db == NULL) { 181 *dbp = NULL; 182 return (SET_ERROR(EIO)); 183 } 184 185 *dbp = &db->db; 186 return (0); 187 } 188 189 int 190 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 191 const void *tag, dmu_buf_t **dbp) 192 { 193 dnode_t *dn; 194 uint64_t blkid; 195 dmu_buf_impl_t *db; 196 int err; 197 198 err = dnode_hold(os, object, FTAG, &dn); 199 if (err) 200 return (err); 201 rw_enter(&dn->dn_struct_rwlock, RW_READER); 202 blkid = dbuf_whichblock(dn, 0, offset); 203 db = dbuf_hold(dn, blkid, tag); 204 rw_exit(&dn->dn_struct_rwlock); 205 dnode_rele(dn, FTAG); 206 207 if (db == NULL) { 208 *dbp = NULL; 209 return (SET_ERROR(EIO)); 210 } 211 212 *dbp = &db->db; 213 return (err); 214 } 215 216 int 217 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 218 const void *tag, dmu_buf_t **dbp, int flags) 219 { 220 int err; 221 int db_flags = DB_RF_CANFAIL; 222 223 if (flags & DMU_READ_NO_PREFETCH) 224 db_flags |= DB_RF_NOPREFETCH; 225 if (flags & DMU_READ_NO_DECRYPT) 226 db_flags |= DB_RF_NO_DECRYPT; 227 228 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 229 if (err == 0) { 230 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 231 err = dbuf_read(db, NULL, db_flags); 232 if (err != 0) { 233 dbuf_rele(db, tag); 234 *dbp = NULL; 235 } 236 } 237 238 return (err); 239 } 240 241 int 242 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 243 const void *tag, dmu_buf_t **dbp, int flags) 244 { 245 int err; 246 int db_flags = DB_RF_CANFAIL; 247 248 if (flags & DMU_READ_NO_PREFETCH) 249 db_flags |= DB_RF_NOPREFETCH; 250 if (flags & DMU_READ_NO_DECRYPT) 251 db_flags |= DB_RF_NO_DECRYPT; 252 253 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 254 if (err == 0) { 255 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 256 err = dbuf_read(db, NULL, db_flags); 257 if (err != 0) { 258 dbuf_rele(db, tag); 259 *dbp = NULL; 260 } 261 } 262 263 return (err); 264 } 265 266 int 267 dmu_bonus_max(void) 268 { 269 return (DN_OLD_MAX_BONUSLEN); 270 } 271 272 int 273 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 274 { 275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 276 dnode_t *dn; 277 int error; 278 279 DB_DNODE_ENTER(db); 280 dn = DB_DNODE(db); 281 282 if (dn->dn_bonus != db) { 283 error = SET_ERROR(EINVAL); 284 } else if (newsize < 0 || newsize > db_fake->db_size) { 285 error = SET_ERROR(EINVAL); 286 } else { 287 dnode_setbonuslen(dn, newsize, tx); 288 error = 0; 289 } 290 291 DB_DNODE_EXIT(db); 292 return (error); 293 } 294 295 int 296 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 297 { 298 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 299 dnode_t *dn; 300 int error; 301 302 DB_DNODE_ENTER(db); 303 dn = DB_DNODE(db); 304 305 if (!DMU_OT_IS_VALID(type)) { 306 error = SET_ERROR(EINVAL); 307 } else if (dn->dn_bonus != db) { 308 error = SET_ERROR(EINVAL); 309 } else { 310 dnode_setbonus_type(dn, type, tx); 311 error = 0; 312 } 313 314 DB_DNODE_EXIT(db); 315 return (error); 316 } 317 318 dmu_object_type_t 319 dmu_get_bonustype(dmu_buf_t *db_fake) 320 { 321 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 322 dnode_t *dn; 323 dmu_object_type_t type; 324 325 DB_DNODE_ENTER(db); 326 dn = DB_DNODE(db); 327 type = dn->dn_bonustype; 328 DB_DNODE_EXIT(db); 329 330 return (type); 331 } 332 333 int 334 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 335 { 336 dnode_t *dn; 337 int error; 338 339 error = dnode_hold(os, object, FTAG, &dn); 340 dbuf_rm_spill(dn, tx); 341 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 342 dnode_rm_spill(dn, tx); 343 rw_exit(&dn->dn_struct_rwlock); 344 dnode_rele(dn, FTAG); 345 return (error); 346 } 347 348 /* 349 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 350 * has not yet been allocated a new bonus dbuf a will be allocated. 351 * Returns ENOENT, EIO, or 0. 352 */ 353 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, 354 uint32_t flags) 355 { 356 dmu_buf_impl_t *db; 357 int error; 358 uint32_t db_flags = DB_RF_MUST_SUCCEED; 359 360 if (flags & DMU_READ_NO_PREFETCH) 361 db_flags |= DB_RF_NOPREFETCH; 362 if (flags & DMU_READ_NO_DECRYPT) 363 db_flags |= DB_RF_NO_DECRYPT; 364 365 rw_enter(&dn->dn_struct_rwlock, RW_READER); 366 if (dn->dn_bonus == NULL) { 367 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 368 rw_exit(&dn->dn_struct_rwlock); 369 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 370 } 371 if (dn->dn_bonus == NULL) 372 dbuf_create_bonus(dn); 373 } 374 db = dn->dn_bonus; 375 376 /* as long as the bonus buf is held, the dnode will be held */ 377 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 378 VERIFY(dnode_add_ref(dn, db)); 379 atomic_inc_32(&dn->dn_dbufs_count); 380 } 381 382 /* 383 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 384 * hold and incrementing the dbuf count to ensure that dnode_move() sees 385 * a dnode hold for every dbuf. 386 */ 387 rw_exit(&dn->dn_struct_rwlock); 388 389 error = dbuf_read(db, NULL, db_flags); 390 if (error) { 391 dnode_evict_bonus(dn); 392 dbuf_rele(db, tag); 393 *dbp = NULL; 394 return (error); 395 } 396 397 *dbp = &db->db; 398 return (0); 399 } 400 401 int 402 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp) 403 { 404 dnode_t *dn; 405 int error; 406 407 error = dnode_hold(os, object, FTAG, &dn); 408 if (error) 409 return (error); 410 411 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 412 dnode_rele(dn, FTAG); 413 414 return (error); 415 } 416 417 /* 418 * returns ENOENT, EIO, or 0. 419 * 420 * This interface will allocate a blank spill dbuf when a spill blk 421 * doesn't already exist on the dnode. 422 * 423 * if you only want to find an already existing spill db, then 424 * dmu_spill_hold_existing() should be used. 425 */ 426 int 427 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag, 428 dmu_buf_t **dbp) 429 { 430 dmu_buf_impl_t *db = NULL; 431 int err; 432 433 if ((flags & DB_RF_HAVESTRUCT) == 0) 434 rw_enter(&dn->dn_struct_rwlock, RW_READER); 435 436 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 437 438 if ((flags & DB_RF_HAVESTRUCT) == 0) 439 rw_exit(&dn->dn_struct_rwlock); 440 441 if (db == NULL) { 442 *dbp = NULL; 443 return (SET_ERROR(EIO)); 444 } 445 err = dbuf_read(db, NULL, flags); 446 if (err == 0) 447 *dbp = &db->db; 448 else { 449 dbuf_rele(db, tag); 450 *dbp = NULL; 451 } 452 return (err); 453 } 454 455 int 456 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp) 457 { 458 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 459 dnode_t *dn; 460 int err; 461 462 DB_DNODE_ENTER(db); 463 dn = DB_DNODE(db); 464 465 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 466 err = SET_ERROR(EINVAL); 467 } else { 468 rw_enter(&dn->dn_struct_rwlock, RW_READER); 469 470 if (!dn->dn_have_spill) { 471 err = SET_ERROR(ENOENT); 472 } else { 473 err = dmu_spill_hold_by_dnode(dn, 474 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 475 } 476 477 rw_exit(&dn->dn_struct_rwlock); 478 } 479 480 DB_DNODE_EXIT(db); 481 return (err); 482 } 483 484 int 485 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, 486 dmu_buf_t **dbp) 487 { 488 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 489 dnode_t *dn; 490 int err; 491 uint32_t db_flags = DB_RF_CANFAIL; 492 493 if (flags & DMU_READ_NO_DECRYPT) 494 db_flags |= DB_RF_NO_DECRYPT; 495 496 DB_DNODE_ENTER(db); 497 dn = DB_DNODE(db); 498 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 499 DB_DNODE_EXIT(db); 500 501 return (err); 502 } 503 504 /* 505 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 506 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 507 * and can induce severe lock contention when writing to several files 508 * whose dnodes are in the same block. 509 */ 510 int 511 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 512 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp, 513 uint32_t flags) 514 { 515 dmu_buf_t **dbp; 516 zstream_t *zs = NULL; 517 uint64_t blkid, nblks, i; 518 uint32_t dbuf_flags; 519 int err; 520 zio_t *zio = NULL; 521 boolean_t missed = B_FALSE; 522 523 ASSERT(!read || length <= DMU_MAX_ACCESS); 524 525 /* 526 * Note: We directly notify the prefetch code of this read, so that 527 * we can tell it about the multi-block read. dbuf_read() only knows 528 * about the one block it is accessing. 529 */ 530 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 531 DB_RF_NOPREFETCH; 532 533 if ((flags & DMU_READ_NO_DECRYPT) != 0) 534 dbuf_flags |= DB_RF_NO_DECRYPT; 535 536 rw_enter(&dn->dn_struct_rwlock, RW_READER); 537 if (dn->dn_datablkshift) { 538 int blkshift = dn->dn_datablkshift; 539 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 540 P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t)) 541 >> blkshift; 542 } else { 543 if (offset + length > dn->dn_datablksz) { 544 zfs_panic_recover("zfs: accessing past end of object " 545 "%llx/%llx (size=%u access=%llu+%llu)", 546 (longlong_t)dn->dn_objset-> 547 os_dsl_dataset->ds_object, 548 (longlong_t)dn->dn_object, dn->dn_datablksz, 549 (longlong_t)offset, (longlong_t)length); 550 rw_exit(&dn->dn_struct_rwlock); 551 return (SET_ERROR(EIO)); 552 } 553 nblks = 1; 554 } 555 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 556 557 if (read) 558 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, 559 ZIO_FLAG_CANFAIL); 560 blkid = dbuf_whichblock(dn, 0, offset); 561 if ((flags & DMU_READ_NO_PREFETCH) == 0) { 562 /* 563 * Prepare the zfetch before initiating the demand reads, so 564 * that if multiple threads block on same indirect block, we 565 * base predictions on the original less racy request order. 566 */ 567 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read, 568 B_TRUE); 569 } 570 for (i = 0; i < nblks; i++) { 571 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 572 if (db == NULL) { 573 if (zs) { 574 dmu_zfetch_run(&dn->dn_zfetch, zs, missed, 575 B_TRUE); 576 } 577 rw_exit(&dn->dn_struct_rwlock); 578 dmu_buf_rele_array(dbp, nblks, tag); 579 if (read) 580 zio_nowait(zio); 581 return (SET_ERROR(EIO)); 582 } 583 584 /* 585 * Initiate async demand data read. 586 * We check the db_state after calling dbuf_read() because 587 * (1) dbuf_read() may change the state to CACHED due to a 588 * hit in the ARC, and (2) on a cache miss, a child will 589 * have been added to "zio" but not yet completed, so the 590 * state will not yet be CACHED. 591 */ 592 if (read) { 593 if (i == nblks - 1 && blkid + i < dn->dn_maxblkid && 594 offset + length < db->db.db_offset + 595 db->db.db_size) { 596 if (offset <= db->db.db_offset) 597 dbuf_flags |= DB_RF_PARTIAL_FIRST; 598 else 599 dbuf_flags |= DB_RF_PARTIAL_MORE; 600 } 601 (void) dbuf_read(db, zio, dbuf_flags); 602 if (db->db_state != DB_CACHED) 603 missed = B_TRUE; 604 } 605 dbp[i] = &db->db; 606 } 607 608 if (!read) 609 zfs_racct_write(length, nblks); 610 611 if (zs) 612 dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE); 613 rw_exit(&dn->dn_struct_rwlock); 614 615 if (read) { 616 /* wait for async read i/o */ 617 err = zio_wait(zio); 618 if (err) { 619 dmu_buf_rele_array(dbp, nblks, tag); 620 return (err); 621 } 622 623 /* wait for other io to complete */ 624 for (i = 0; i < nblks; i++) { 625 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 626 mutex_enter(&db->db_mtx); 627 while (db->db_state == DB_READ || 628 db->db_state == DB_FILL) 629 cv_wait(&db->db_changed, &db->db_mtx); 630 if (db->db_state == DB_UNCACHED) 631 err = SET_ERROR(EIO); 632 mutex_exit(&db->db_mtx); 633 if (err) { 634 dmu_buf_rele_array(dbp, nblks, tag); 635 return (err); 636 } 637 } 638 } 639 640 *numbufsp = nblks; 641 *dbpp = dbp; 642 return (0); 643 } 644 645 int 646 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 647 uint64_t length, int read, const void *tag, int *numbufsp, 648 dmu_buf_t ***dbpp) 649 { 650 dnode_t *dn; 651 int err; 652 653 err = dnode_hold(os, object, FTAG, &dn); 654 if (err) 655 return (err); 656 657 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 658 numbufsp, dbpp, DMU_READ_PREFETCH); 659 660 dnode_rele(dn, FTAG); 661 662 return (err); 663 } 664 665 int 666 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 667 uint64_t length, boolean_t read, const void *tag, int *numbufsp, 668 dmu_buf_t ***dbpp) 669 { 670 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 671 dnode_t *dn; 672 int err; 673 674 DB_DNODE_ENTER(db); 675 dn = DB_DNODE(db); 676 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 677 numbufsp, dbpp, DMU_READ_PREFETCH); 678 DB_DNODE_EXIT(db); 679 680 return (err); 681 } 682 683 void 684 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag) 685 { 686 int i; 687 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 688 689 if (numbufs == 0) 690 return; 691 692 for (i = 0; i < numbufs; i++) { 693 if (dbp[i]) 694 dbuf_rele(dbp[i], tag); 695 } 696 697 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 698 } 699 700 /* 701 * Issue prefetch I/Os for the given blocks. If level is greater than 0, the 702 * indirect blocks prefetched will be those that point to the blocks containing 703 * the data starting at offset, and continuing to offset + len. If the range 704 * it too long, prefetch the first dmu_prefetch_max bytes as requested, while 705 * for the rest only a higher level, also fitting within dmu_prefetch_max. It 706 * should primarily help random reads, since for long sequential reads there is 707 * a speculative prefetcher. 708 * 709 * Note that if the indirect blocks above the blocks being prefetched are not 710 * in cache, they will be asynchronously read in. Dnode read by dnode_hold() 711 * is currently synchronous. 712 */ 713 void 714 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 715 uint64_t len, zio_priority_t pri) 716 { 717 dnode_t *dn; 718 719 if (dmu_prefetch_max == 0 || len == 0) { 720 dmu_prefetch_dnode(os, object, pri); 721 return; 722 } 723 724 if (dnode_hold(os, object, FTAG, &dn) != 0) 725 return; 726 727 dmu_prefetch_by_dnode(dn, level, offset, len, pri); 728 729 dnode_rele(dn, FTAG); 730 } 731 732 void 733 dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset, 734 uint64_t len, zio_priority_t pri) 735 { 736 int64_t level2 = level; 737 uint64_t start, end, start2, end2; 738 739 /* 740 * Depending on len we may do two prefetches: blocks [start, end) at 741 * level, and following blocks [start2, end2) at higher level2. 742 */ 743 rw_enter(&dn->dn_struct_rwlock, RW_READER); 744 if (dn->dn_datablkshift != 0) { 745 /* 746 * The object has multiple blocks. Calculate the full range 747 * of blocks [start, end2) and then split it into two parts, 748 * so that the first [start, end) fits into dmu_prefetch_max. 749 */ 750 start = dbuf_whichblock(dn, level, offset); 751 end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1; 752 uint8_t ibs = dn->dn_indblkshift; 753 uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs; 754 uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs; 755 start2 = end = MIN(end2, start + limit); 756 757 /* 758 * Find level2 where [start2, end2) fits into dmu_prefetch_max. 759 */ 760 uint8_t ibps = ibs - SPA_BLKPTRSHIFT; 761 limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs; 762 do { 763 level2++; 764 start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps; 765 end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps; 766 } while (end2 - start2 > limit); 767 } else { 768 /* There is only one block. Prefetch it or nothing. */ 769 start = start2 = end2 = 0; 770 end = start + (level == 0 && offset < dn->dn_datablksz); 771 } 772 773 for (uint64_t i = start; i < end; i++) 774 dbuf_prefetch(dn, level, i, pri, 0); 775 for (uint64_t i = start2; i < end2; i++) 776 dbuf_prefetch(dn, level2, i, pri, 0); 777 rw_exit(&dn->dn_struct_rwlock); 778 } 779 780 /* 781 * Issue prefetch I/Os for the given object's dnode. 782 */ 783 void 784 dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri) 785 { 786 if (object == 0 || object >= DN_MAX_OBJECT) 787 return; 788 789 dnode_t *dn = DMU_META_DNODE(os); 790 rw_enter(&dn->dn_struct_rwlock, RW_READER); 791 uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t)); 792 dbuf_prefetch(dn, 0, blkid, pri, 0); 793 rw_exit(&dn->dn_struct_rwlock); 794 } 795 796 /* 797 * Get the next "chunk" of file data to free. We traverse the file from 798 * the end so that the file gets shorter over time (if we crashes in the 799 * middle, this will leave us in a better state). We find allocated file 800 * data by simply searching the allocated level 1 indirects. 801 * 802 * On input, *start should be the first offset that does not need to be 803 * freed (e.g. "offset + length"). On return, *start will be the first 804 * offset that should be freed and l1blks is set to the number of level 1 805 * indirect blocks found within the chunk. 806 */ 807 static int 808 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 809 { 810 uint64_t blks; 811 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 812 /* bytes of data covered by a level-1 indirect block */ 813 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 814 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 815 816 ASSERT3U(minimum, <=, *start); 817 818 /* 819 * Check if we can free the entire range assuming that all of the 820 * L1 blocks in this range have data. If we can, we use this 821 * worst case value as an estimate so we can avoid having to look 822 * at the object's actual data. 823 */ 824 uint64_t total_l1blks = 825 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 826 iblkrange; 827 if (total_l1blks <= maxblks) { 828 *l1blks = total_l1blks; 829 *start = minimum; 830 return (0); 831 } 832 ASSERT(ISP2(iblkrange)); 833 834 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 835 int err; 836 837 /* 838 * dnode_next_offset(BACKWARDS) will find an allocated L1 839 * indirect block at or before the input offset. We must 840 * decrement *start so that it is at the end of the region 841 * to search. 842 */ 843 (*start)--; 844 845 err = dnode_next_offset(dn, 846 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 847 848 /* if there are no indirect blocks before start, we are done */ 849 if (err == ESRCH) { 850 *start = minimum; 851 break; 852 } else if (err != 0) { 853 *l1blks = blks; 854 return (err); 855 } 856 857 /* set start to the beginning of this L1 indirect */ 858 *start = P2ALIGN_TYPED(*start, iblkrange, uint64_t); 859 } 860 if (*start < minimum) 861 *start = minimum; 862 *l1blks = blks; 863 864 return (0); 865 } 866 867 /* 868 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 869 * otherwise return false. 870 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 871 */ 872 static boolean_t 873 dmu_objset_zfs_unmounting(objset_t *os) 874 { 875 #ifdef _KERNEL 876 if (dmu_objset_type(os) == DMU_OST_ZFS) 877 return (zfs_get_vfs_flag_unmounted(os)); 878 #else 879 (void) os; 880 #endif 881 return (B_FALSE); 882 } 883 884 static int 885 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 886 uint64_t length) 887 { 888 uint64_t object_size; 889 int err; 890 uint64_t dirty_frees_threshold; 891 dsl_pool_t *dp = dmu_objset_pool(os); 892 893 if (dn == NULL) 894 return (SET_ERROR(EINVAL)); 895 896 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 897 if (offset >= object_size) 898 return (0); 899 900 if (zfs_per_txg_dirty_frees_percent <= 100) 901 dirty_frees_threshold = 902 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 903 else 904 dirty_frees_threshold = zfs_dirty_data_max / 20; 905 906 if (length == DMU_OBJECT_END || offset + length > object_size) 907 length = object_size - offset; 908 909 while (length != 0) { 910 uint64_t chunk_end, chunk_begin, chunk_len; 911 uint64_t l1blks; 912 dmu_tx_t *tx; 913 914 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 915 return (SET_ERROR(EINTR)); 916 917 chunk_end = chunk_begin = offset + length; 918 919 /* move chunk_begin backwards to the beginning of this chunk */ 920 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 921 if (err) 922 return (err); 923 ASSERT3U(chunk_begin, >=, offset); 924 ASSERT3U(chunk_begin, <=, chunk_end); 925 926 chunk_len = chunk_end - chunk_begin; 927 928 tx = dmu_tx_create(os); 929 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 930 931 /* 932 * Mark this transaction as typically resulting in a net 933 * reduction in space used. 934 */ 935 dmu_tx_mark_netfree(tx); 936 err = dmu_tx_assign(tx, TXG_WAIT); 937 if (err) { 938 dmu_tx_abort(tx); 939 return (err); 940 } 941 942 uint64_t txg = dmu_tx_get_txg(tx); 943 944 mutex_enter(&dp->dp_lock); 945 uint64_t long_free_dirty = 946 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 947 mutex_exit(&dp->dp_lock); 948 949 /* 950 * To avoid filling up a TXG with just frees, wait for 951 * the next TXG to open before freeing more chunks if 952 * we have reached the threshold of frees. 953 */ 954 if (dirty_frees_threshold != 0 && 955 long_free_dirty >= dirty_frees_threshold) { 956 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 957 dmu_tx_commit(tx); 958 txg_wait_open(dp, 0, B_TRUE); 959 continue; 960 } 961 962 /* 963 * In order to prevent unnecessary write throttling, for each 964 * TXG, we track the cumulative size of L1 blocks being dirtied 965 * in dnode_free_range() below. We compare this number to a 966 * tunable threshold, past which we prevent new L1 dirty freeing 967 * blocks from being added into the open TXG. See 968 * dmu_free_long_range_impl() for details. The threshold 969 * prevents write throttle activation due to dirty freeing L1 970 * blocks taking up a large percentage of zfs_dirty_data_max. 971 */ 972 mutex_enter(&dp->dp_lock); 973 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 974 l1blks << dn->dn_indblkshift; 975 mutex_exit(&dp->dp_lock); 976 DTRACE_PROBE3(free__long__range, 977 uint64_t, long_free_dirty, uint64_t, chunk_len, 978 uint64_t, txg); 979 dnode_free_range(dn, chunk_begin, chunk_len, tx); 980 981 dmu_tx_commit(tx); 982 983 length -= chunk_len; 984 } 985 return (0); 986 } 987 988 int 989 dmu_free_long_range(objset_t *os, uint64_t object, 990 uint64_t offset, uint64_t length) 991 { 992 dnode_t *dn; 993 int err; 994 995 err = dnode_hold(os, object, FTAG, &dn); 996 if (err != 0) 997 return (err); 998 err = dmu_free_long_range_impl(os, dn, offset, length); 999 1000 /* 1001 * It is important to zero out the maxblkid when freeing the entire 1002 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 1003 * will take the fast path, and (b) dnode_reallocate() can verify 1004 * that the entire file has been freed. 1005 */ 1006 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 1007 dn->dn_maxblkid = 0; 1008 1009 dnode_rele(dn, FTAG); 1010 return (err); 1011 } 1012 1013 int 1014 dmu_free_long_object(objset_t *os, uint64_t object) 1015 { 1016 dmu_tx_t *tx; 1017 int err; 1018 1019 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 1020 if (err != 0) 1021 return (err); 1022 1023 tx = dmu_tx_create(os); 1024 dmu_tx_hold_bonus(tx, object); 1025 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1026 dmu_tx_mark_netfree(tx); 1027 err = dmu_tx_assign(tx, TXG_WAIT); 1028 if (err == 0) { 1029 err = dmu_object_free(os, object, tx); 1030 dmu_tx_commit(tx); 1031 } else { 1032 dmu_tx_abort(tx); 1033 } 1034 1035 return (err); 1036 } 1037 1038 int 1039 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 1040 uint64_t size, dmu_tx_t *tx) 1041 { 1042 dnode_t *dn; 1043 int err = dnode_hold(os, object, FTAG, &dn); 1044 if (err) 1045 return (err); 1046 ASSERT(offset < UINT64_MAX); 1047 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 1048 dnode_free_range(dn, offset, size, tx); 1049 dnode_rele(dn, FTAG); 1050 return (0); 1051 } 1052 1053 static int 1054 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 1055 void *buf, uint32_t flags) 1056 { 1057 dmu_buf_t **dbp; 1058 int numbufs, err = 0; 1059 1060 /* 1061 * Deal with odd block sizes, where there can't be data past the first 1062 * block. If we ever do the tail block optimization, we will need to 1063 * handle that here as well. 1064 */ 1065 if (dn->dn_maxblkid == 0) { 1066 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 1067 MIN(size, dn->dn_datablksz - offset); 1068 memset((char *)buf + newsz, 0, size - newsz); 1069 size = newsz; 1070 } 1071 1072 while (size > 0) { 1073 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 1074 int i; 1075 1076 /* 1077 * NB: we could do this block-at-a-time, but it's nice 1078 * to be reading in parallel. 1079 */ 1080 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1081 TRUE, FTAG, &numbufs, &dbp, flags); 1082 if (err) 1083 break; 1084 1085 for (i = 0; i < numbufs; i++) { 1086 uint64_t tocpy; 1087 int64_t bufoff; 1088 dmu_buf_t *db = dbp[i]; 1089 1090 ASSERT(size > 0); 1091 1092 bufoff = offset - db->db_offset; 1093 tocpy = MIN(db->db_size - bufoff, size); 1094 1095 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1096 1097 offset += tocpy; 1098 size -= tocpy; 1099 buf = (char *)buf + tocpy; 1100 } 1101 dmu_buf_rele_array(dbp, numbufs, FTAG); 1102 } 1103 return (err); 1104 } 1105 1106 int 1107 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1108 void *buf, uint32_t flags) 1109 { 1110 dnode_t *dn; 1111 int err; 1112 1113 err = dnode_hold(os, object, FTAG, &dn); 1114 if (err != 0) 1115 return (err); 1116 1117 err = dmu_read_impl(dn, offset, size, buf, flags); 1118 dnode_rele(dn, FTAG); 1119 return (err); 1120 } 1121 1122 int 1123 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1124 uint32_t flags) 1125 { 1126 return (dmu_read_impl(dn, offset, size, buf, flags)); 1127 } 1128 1129 static void 1130 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1131 const void *buf, dmu_tx_t *tx) 1132 { 1133 int i; 1134 1135 for (i = 0; i < numbufs; i++) { 1136 uint64_t tocpy; 1137 int64_t bufoff; 1138 dmu_buf_t *db = dbp[i]; 1139 1140 ASSERT(size > 0); 1141 1142 bufoff = offset - db->db_offset; 1143 tocpy = MIN(db->db_size - bufoff, size); 1144 1145 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1146 1147 if (tocpy == db->db_size) 1148 dmu_buf_will_fill(db, tx, B_FALSE); 1149 else 1150 dmu_buf_will_dirty(db, tx); 1151 1152 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1153 1154 if (tocpy == db->db_size) 1155 dmu_buf_fill_done(db, tx, B_FALSE); 1156 1157 offset += tocpy; 1158 size -= tocpy; 1159 buf = (char *)buf + tocpy; 1160 } 1161 } 1162 1163 void 1164 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1165 const void *buf, dmu_tx_t *tx) 1166 { 1167 dmu_buf_t **dbp; 1168 int numbufs; 1169 1170 if (size == 0) 1171 return; 1172 1173 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1174 FALSE, FTAG, &numbufs, &dbp)); 1175 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1176 dmu_buf_rele_array(dbp, numbufs, FTAG); 1177 } 1178 1179 /* 1180 * Note: Lustre is an external consumer of this interface. 1181 */ 1182 void 1183 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1184 const void *buf, dmu_tx_t *tx) 1185 { 1186 dmu_buf_t **dbp; 1187 int numbufs; 1188 1189 if (size == 0) 1190 return; 1191 1192 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1193 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1194 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1195 dmu_buf_rele_array(dbp, numbufs, FTAG); 1196 } 1197 1198 void 1199 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1200 dmu_tx_t *tx) 1201 { 1202 dmu_buf_t **dbp; 1203 int numbufs, i; 1204 1205 if (size == 0) 1206 return; 1207 1208 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1209 FALSE, FTAG, &numbufs, &dbp)); 1210 1211 for (i = 0; i < numbufs; i++) { 1212 dmu_buf_t *db = dbp[i]; 1213 1214 dmu_buf_will_not_fill(db, tx); 1215 } 1216 dmu_buf_rele_array(dbp, numbufs, FTAG); 1217 } 1218 1219 void 1220 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1221 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1222 int compressed_size, int byteorder, dmu_tx_t *tx) 1223 { 1224 dmu_buf_t *db; 1225 1226 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1227 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1228 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1229 FTAG, &db)); 1230 1231 dmu_buf_write_embedded(db, 1232 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1233 uncompressed_size, compressed_size, byteorder, tx); 1234 1235 dmu_buf_rele(db, FTAG); 1236 } 1237 1238 void 1239 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1240 dmu_tx_t *tx) 1241 { 1242 int numbufs, i; 1243 dmu_buf_t **dbp; 1244 1245 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1246 &numbufs, &dbp)); 1247 for (i = 0; i < numbufs; i++) 1248 dmu_buf_redact(dbp[i], tx); 1249 dmu_buf_rele_array(dbp, numbufs, FTAG); 1250 } 1251 1252 #ifdef _KERNEL 1253 int 1254 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size) 1255 { 1256 dmu_buf_t **dbp; 1257 int numbufs, i, err; 1258 1259 /* 1260 * NB: we could do this block-at-a-time, but it's nice 1261 * to be reading in parallel. 1262 */ 1263 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1264 TRUE, FTAG, &numbufs, &dbp, 0); 1265 if (err) 1266 return (err); 1267 1268 for (i = 0; i < numbufs; i++) { 1269 uint64_t tocpy; 1270 int64_t bufoff; 1271 dmu_buf_t *db = dbp[i]; 1272 1273 ASSERT(size > 0); 1274 1275 bufoff = zfs_uio_offset(uio) - db->db_offset; 1276 tocpy = MIN(db->db_size - bufoff, size); 1277 1278 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, 1279 UIO_READ, uio); 1280 1281 if (err) 1282 break; 1283 1284 size -= tocpy; 1285 } 1286 dmu_buf_rele_array(dbp, numbufs, FTAG); 1287 1288 return (err); 1289 } 1290 1291 /* 1292 * Read 'size' bytes into the uio buffer. 1293 * From object zdb->db_object. 1294 * Starting at zfs_uio_offset(uio). 1295 * 1296 * If the caller already has a dbuf in the target object 1297 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1298 * because we don't have to find the dnode_t for the object. 1299 */ 1300 int 1301 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size) 1302 { 1303 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1304 dnode_t *dn; 1305 int err; 1306 1307 if (size == 0) 1308 return (0); 1309 1310 DB_DNODE_ENTER(db); 1311 dn = DB_DNODE(db); 1312 err = dmu_read_uio_dnode(dn, uio, size); 1313 DB_DNODE_EXIT(db); 1314 1315 return (err); 1316 } 1317 1318 /* 1319 * Read 'size' bytes into the uio buffer. 1320 * From the specified object 1321 * Starting at offset zfs_uio_offset(uio). 1322 */ 1323 int 1324 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size) 1325 { 1326 dnode_t *dn; 1327 int err; 1328 1329 if (size == 0) 1330 return (0); 1331 1332 err = dnode_hold(os, object, FTAG, &dn); 1333 if (err) 1334 return (err); 1335 1336 err = dmu_read_uio_dnode(dn, uio, size); 1337 1338 dnode_rele(dn, FTAG); 1339 1340 return (err); 1341 } 1342 1343 int 1344 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) 1345 { 1346 dmu_buf_t **dbp; 1347 int numbufs; 1348 int err = 0; 1349 int i; 1350 1351 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1352 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1353 if (err) 1354 return (err); 1355 1356 for (i = 0; i < numbufs; i++) { 1357 uint64_t tocpy; 1358 int64_t bufoff; 1359 dmu_buf_t *db = dbp[i]; 1360 1361 ASSERT(size > 0); 1362 1363 offset_t off = zfs_uio_offset(uio); 1364 bufoff = off - db->db_offset; 1365 tocpy = MIN(db->db_size - bufoff, size); 1366 1367 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1368 1369 if (tocpy == db->db_size) 1370 dmu_buf_will_fill(db, tx, B_TRUE); 1371 else 1372 dmu_buf_will_dirty(db, tx); 1373 1374 err = zfs_uio_fault_move((char *)db->db_data + bufoff, 1375 tocpy, UIO_WRITE, uio); 1376 1377 if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) { 1378 /* The fill was reverted. Undo any uio progress. */ 1379 zfs_uio_advance(uio, off - zfs_uio_offset(uio)); 1380 } 1381 1382 if (err) 1383 break; 1384 1385 size -= tocpy; 1386 } 1387 1388 dmu_buf_rele_array(dbp, numbufs, FTAG); 1389 return (err); 1390 } 1391 1392 /* 1393 * Write 'size' bytes from the uio buffer. 1394 * To object zdb->db_object. 1395 * Starting at offset zfs_uio_offset(uio). 1396 * 1397 * If the caller already has a dbuf in the target object 1398 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1399 * because we don't have to find the dnode_t for the object. 1400 */ 1401 int 1402 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, 1403 dmu_tx_t *tx) 1404 { 1405 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1406 dnode_t *dn; 1407 int err; 1408 1409 if (size == 0) 1410 return (0); 1411 1412 DB_DNODE_ENTER(db); 1413 dn = DB_DNODE(db); 1414 err = dmu_write_uio_dnode(dn, uio, size, tx); 1415 DB_DNODE_EXIT(db); 1416 1417 return (err); 1418 } 1419 1420 /* 1421 * Write 'size' bytes from the uio buffer. 1422 * To the specified object. 1423 * Starting at offset zfs_uio_offset(uio). 1424 */ 1425 int 1426 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, 1427 dmu_tx_t *tx) 1428 { 1429 dnode_t *dn; 1430 int err; 1431 1432 if (size == 0) 1433 return (0); 1434 1435 err = dnode_hold(os, object, FTAG, &dn); 1436 if (err) 1437 return (err); 1438 1439 err = dmu_write_uio_dnode(dn, uio, size, tx); 1440 1441 dnode_rele(dn, FTAG); 1442 1443 return (err); 1444 } 1445 #endif /* _KERNEL */ 1446 1447 /* 1448 * Allocate a loaned anonymous arc buffer. 1449 */ 1450 arc_buf_t * 1451 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1452 { 1453 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1454 1455 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1456 } 1457 1458 /* 1459 * Free a loaned arc buffer. 1460 */ 1461 void 1462 dmu_return_arcbuf(arc_buf_t *buf) 1463 { 1464 arc_return_buf(buf, FTAG); 1465 arc_buf_destroy(buf, FTAG); 1466 } 1467 1468 /* 1469 * A "lightweight" write is faster than a regular write (e.g. 1470 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the 1471 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the 1472 * data can not be read or overwritten until the transaction's txg has been 1473 * synced. This makes it appropriate for workloads that are known to be 1474 * (temporarily) write-only, like "zfs receive". 1475 * 1476 * A single block is written, starting at the specified offset in bytes. If 1477 * the call is successful, it returns 0 and the provided abd has been 1478 * consumed (the caller should not free it). 1479 */ 1480 int 1481 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, 1482 const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx) 1483 { 1484 dbuf_dirty_record_t *dr = 1485 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); 1486 if (dr == NULL) 1487 return (SET_ERROR(EIO)); 1488 dr->dt.dll.dr_abd = abd; 1489 dr->dt.dll.dr_props = *zp; 1490 dr->dt.dll.dr_flags = flags; 1491 return (0); 1492 } 1493 1494 /* 1495 * When possible directly assign passed loaned arc buffer to a dbuf. 1496 * If this is not possible copy the contents of passed arc buf via 1497 * dmu_write(). 1498 */ 1499 int 1500 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1501 dmu_tx_t *tx) 1502 { 1503 dmu_buf_impl_t *db; 1504 objset_t *os = dn->dn_objset; 1505 uint64_t object = dn->dn_object; 1506 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1507 uint64_t blkid; 1508 1509 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1510 blkid = dbuf_whichblock(dn, 0, offset); 1511 db = dbuf_hold(dn, blkid, FTAG); 1512 rw_exit(&dn->dn_struct_rwlock); 1513 if (db == NULL) 1514 return (SET_ERROR(EIO)); 1515 1516 /* 1517 * We can only assign if the offset is aligned and the arc buf is the 1518 * same size as the dbuf. 1519 */ 1520 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1521 zfs_racct_write(blksz, 1); 1522 dbuf_assign_arcbuf(db, buf, tx); 1523 dbuf_rele(db, FTAG); 1524 } else { 1525 /* compressed bufs must always be assignable to their dbuf */ 1526 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1527 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1528 1529 dbuf_rele(db, FTAG); 1530 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1531 dmu_return_arcbuf(buf); 1532 } 1533 1534 return (0); 1535 } 1536 1537 int 1538 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1539 dmu_tx_t *tx) 1540 { 1541 int err; 1542 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1543 1544 DB_DNODE_ENTER(dbuf); 1545 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1546 DB_DNODE_EXIT(dbuf); 1547 1548 return (err); 1549 } 1550 1551 typedef struct { 1552 dbuf_dirty_record_t *dsa_dr; 1553 dmu_sync_cb_t *dsa_done; 1554 zgd_t *dsa_zgd; 1555 dmu_tx_t *dsa_tx; 1556 } dmu_sync_arg_t; 1557 1558 static void 1559 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1560 { 1561 (void) buf; 1562 dmu_sync_arg_t *dsa = varg; 1563 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1564 blkptr_t *bp = zio->io_bp; 1565 1566 if (zio->io_error == 0) { 1567 if (BP_IS_HOLE(bp)) { 1568 /* 1569 * A block of zeros may compress to a hole, but the 1570 * block size still needs to be known for replay. 1571 */ 1572 BP_SET_LSIZE(bp, db->db_size); 1573 } else if (!BP_IS_EMBEDDED(bp)) { 1574 ASSERT(BP_GET_LEVEL(bp) == 0); 1575 BP_SET_FILL(bp, 1); 1576 } 1577 } 1578 } 1579 1580 static void 1581 dmu_sync_late_arrival_ready(zio_t *zio) 1582 { 1583 dmu_sync_ready(zio, NULL, zio->io_private); 1584 } 1585 1586 static void 1587 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1588 { 1589 (void) buf; 1590 dmu_sync_arg_t *dsa = varg; 1591 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1592 dmu_buf_impl_t *db = dr->dr_dbuf; 1593 zgd_t *zgd = dsa->dsa_zgd; 1594 1595 /* 1596 * Record the vdev(s) backing this blkptr so they can be flushed after 1597 * the writes for the lwb have completed. 1598 */ 1599 if (zio->io_error == 0) { 1600 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1601 } 1602 1603 mutex_enter(&db->db_mtx); 1604 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1605 if (zio->io_error == 0) { 1606 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1607 if (dr->dt.dl.dr_nopwrite) { 1608 blkptr_t *bp = zio->io_bp; 1609 blkptr_t *bp_orig = &zio->io_bp_orig; 1610 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1611 1612 ASSERT(BP_EQUAL(bp, bp_orig)); 1613 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1614 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1615 VERIFY(zio_checksum_table[chksum].ci_flags & 1616 ZCHECKSUM_FLAG_NOPWRITE); 1617 } 1618 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1619 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1620 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1621 1622 /* 1623 * Old style holes are filled with all zeros, whereas 1624 * new-style holes maintain their lsize, type, level, 1625 * and birth time (see zio_write_compress). While we 1626 * need to reset the BP_SET_LSIZE() call that happened 1627 * in dmu_sync_ready for old style holes, we do *not* 1628 * want to wipe out the information contained in new 1629 * style holes. Thus, only zero out the block pointer if 1630 * it's an old style hole. 1631 */ 1632 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1633 BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0) 1634 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1635 } else { 1636 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1637 } 1638 cv_broadcast(&db->db_changed); 1639 mutex_exit(&db->db_mtx); 1640 1641 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1642 1643 kmem_free(dsa, sizeof (*dsa)); 1644 } 1645 1646 static void 1647 dmu_sync_late_arrival_done(zio_t *zio) 1648 { 1649 blkptr_t *bp = zio->io_bp; 1650 dmu_sync_arg_t *dsa = zio->io_private; 1651 zgd_t *zgd = dsa->dsa_zgd; 1652 1653 if (zio->io_error == 0) { 1654 /* 1655 * Record the vdev(s) backing this blkptr so they can be 1656 * flushed after the writes for the lwb have completed. 1657 */ 1658 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1659 1660 if (!BP_IS_HOLE(bp)) { 1661 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1662 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1663 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1664 ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg); 1665 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1666 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1667 } 1668 } 1669 1670 dmu_tx_commit(dsa->dsa_tx); 1671 1672 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1673 1674 abd_free(zio->io_abd); 1675 kmem_free(dsa, sizeof (*dsa)); 1676 } 1677 1678 static int 1679 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1680 zio_prop_t *zp, zbookmark_phys_t *zb) 1681 { 1682 dmu_sync_arg_t *dsa; 1683 dmu_tx_t *tx; 1684 int error; 1685 1686 error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL, 1687 DB_RF_CANFAIL | DB_RF_NOPREFETCH); 1688 if (error != 0) 1689 return (error); 1690 1691 tx = dmu_tx_create(os); 1692 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1693 /* 1694 * This transaction does not produce any dirty data or log blocks, so 1695 * it should not be throttled. All other cases wait for TXG sync, by 1696 * which time the log block we are writing will be obsolete, so we can 1697 * skip waiting and just return error here instead. 1698 */ 1699 if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) { 1700 dmu_tx_abort(tx); 1701 /* Make zl_get_data do txg_waited_synced() */ 1702 return (SET_ERROR(EIO)); 1703 } 1704 1705 /* 1706 * In order to prevent the zgd's lwb from being free'd prior to 1707 * dmu_sync_late_arrival_done() being called, we have to ensure 1708 * the lwb's "max txg" takes this tx's txg into account. 1709 */ 1710 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1711 1712 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1713 dsa->dsa_dr = NULL; 1714 dsa->dsa_done = done; 1715 dsa->dsa_zgd = zgd; 1716 dsa->dsa_tx = tx; 1717 1718 /* 1719 * Since we are currently syncing this txg, it's nontrivial to 1720 * determine what BP to nopwrite against, so we disable nopwrite. 1721 * 1722 * When syncing, the db_blkptr is initially the BP of the previous 1723 * txg. We can not nopwrite against it because it will be changed 1724 * (this is similar to the non-late-arrival case where the dbuf is 1725 * dirty in a future txg). 1726 * 1727 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1728 * We can not nopwrite against it because although the BP will not 1729 * (typically) be changed, the data has not yet been persisted to this 1730 * location. 1731 * 1732 * Finally, when dbuf_write_done() is called, it is theoretically 1733 * possible to always nopwrite, because the data that was written in 1734 * this txg is the same data that we are trying to write. However we 1735 * would need to check that this dbuf is not dirty in any future 1736 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1737 * don't nopwrite in this case. 1738 */ 1739 zp->zp_nopwrite = B_FALSE; 1740 1741 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1742 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1743 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1744 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, 1745 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1746 1747 return (0); 1748 } 1749 1750 /* 1751 * Intent log support: sync the block associated with db to disk. 1752 * N.B. and XXX: the caller is responsible for making sure that the 1753 * data isn't changing while dmu_sync() is writing it. 1754 * 1755 * Return values: 1756 * 1757 * EEXIST: this txg has already been synced, so there's nothing to do. 1758 * The caller should not log the write. 1759 * 1760 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1761 * The caller should not log the write. 1762 * 1763 * EALREADY: this block is already in the process of being synced. 1764 * The caller should track its progress (somehow). 1765 * 1766 * EIO: could not do the I/O. 1767 * The caller should do a txg_wait_synced(). 1768 * 1769 * 0: the I/O has been initiated. 1770 * The caller should log this blkptr in the done callback. 1771 * It is possible that the I/O will fail, in which case 1772 * the error will be reported to the done callback and 1773 * propagated to pio from zio_done(). 1774 */ 1775 int 1776 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1777 { 1778 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1779 objset_t *os = db->db_objset; 1780 dsl_dataset_t *ds = os->os_dsl_dataset; 1781 dbuf_dirty_record_t *dr, *dr_next; 1782 dmu_sync_arg_t *dsa; 1783 zbookmark_phys_t zb; 1784 zio_prop_t zp; 1785 dnode_t *dn; 1786 1787 ASSERT(pio != NULL); 1788 ASSERT(txg != 0); 1789 1790 SET_BOOKMARK(&zb, ds->ds_object, 1791 db->db.db_object, db->db_level, db->db_blkid); 1792 1793 DB_DNODE_ENTER(db); 1794 dn = DB_DNODE(db); 1795 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1796 DB_DNODE_EXIT(db); 1797 1798 /* 1799 * If we're frozen (running ziltest), we always need to generate a bp. 1800 */ 1801 if (txg > spa_freeze_txg(os->os_spa)) 1802 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1803 1804 /* 1805 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1806 * and us. If we determine that this txg is not yet syncing, 1807 * but it begins to sync a moment later, that's OK because the 1808 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1809 */ 1810 mutex_enter(&db->db_mtx); 1811 1812 if (txg <= spa_last_synced_txg(os->os_spa)) { 1813 /* 1814 * This txg has already synced. There's nothing to do. 1815 */ 1816 mutex_exit(&db->db_mtx); 1817 return (SET_ERROR(EEXIST)); 1818 } 1819 1820 if (txg <= spa_syncing_txg(os->os_spa)) { 1821 /* 1822 * This txg is currently syncing, so we can't mess with 1823 * the dirty record anymore; just write a new log block. 1824 */ 1825 mutex_exit(&db->db_mtx); 1826 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1827 } 1828 1829 dr = dbuf_find_dirty_eq(db, txg); 1830 1831 if (dr == NULL) { 1832 /* 1833 * There's no dr for this dbuf, so it must have been freed. 1834 * There's no need to log writes to freed blocks, so we're done. 1835 */ 1836 mutex_exit(&db->db_mtx); 1837 return (SET_ERROR(ENOENT)); 1838 } 1839 1840 dr_next = list_next(&db->db_dirty_records, dr); 1841 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1842 1843 if (db->db_blkptr != NULL) { 1844 /* 1845 * We need to fill in zgd_bp with the current blkptr so that 1846 * the nopwrite code can check if we're writing the same 1847 * data that's already on disk. We can only nopwrite if we 1848 * are sure that after making the copy, db_blkptr will not 1849 * change until our i/o completes. We ensure this by 1850 * holding the db_mtx, and only allowing nopwrite if the 1851 * block is not already dirty (see below). This is verified 1852 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1853 * not changed. 1854 */ 1855 *zgd->zgd_bp = *db->db_blkptr; 1856 } 1857 1858 /* 1859 * Assume the on-disk data is X, the current syncing data (in 1860 * txg - 1) is Y, and the current in-memory data is Z (currently 1861 * in dmu_sync). 1862 * 1863 * We usually want to perform a nopwrite if X and Z are the 1864 * same. However, if Y is different (i.e. the BP is going to 1865 * change before this write takes effect), then a nopwrite will 1866 * be incorrect - we would override with X, which could have 1867 * been freed when Y was written. 1868 * 1869 * (Note that this is not a concern when we are nop-writing from 1870 * syncing context, because X and Y must be identical, because 1871 * all previous txgs have been synced.) 1872 * 1873 * Therefore, we disable nopwrite if the current BP could change 1874 * before this TXG. There are two ways it could change: by 1875 * being dirty (dr_next is non-NULL), or by being freed 1876 * (dnode_block_freed()). This behavior is verified by 1877 * zio_done(), which VERIFYs that the override BP is identical 1878 * to the on-disk BP. 1879 */ 1880 DB_DNODE_ENTER(db); 1881 dn = DB_DNODE(db); 1882 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1883 zp.zp_nopwrite = B_FALSE; 1884 DB_DNODE_EXIT(db); 1885 1886 ASSERT(dr->dr_txg == txg); 1887 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1888 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1889 /* 1890 * We have already issued a sync write for this buffer, 1891 * or this buffer has already been synced. It could not 1892 * have been dirtied since, or we would have cleared the state. 1893 */ 1894 mutex_exit(&db->db_mtx); 1895 return (SET_ERROR(EALREADY)); 1896 } 1897 1898 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1899 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1900 mutex_exit(&db->db_mtx); 1901 1902 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1903 dsa->dsa_dr = dr; 1904 dsa->dsa_done = done; 1905 dsa->dsa_zgd = zgd; 1906 dsa->dsa_tx = NULL; 1907 1908 zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp, 1909 dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db), 1910 &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa, 1911 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1912 1913 return (0); 1914 } 1915 1916 int 1917 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1918 { 1919 dnode_t *dn; 1920 int err; 1921 1922 err = dnode_hold(os, object, FTAG, &dn); 1923 if (err) 1924 return (err); 1925 err = dnode_set_nlevels(dn, nlevels, tx); 1926 dnode_rele(dn, FTAG); 1927 return (err); 1928 } 1929 1930 int 1931 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1932 dmu_tx_t *tx) 1933 { 1934 dnode_t *dn; 1935 int err; 1936 1937 err = dnode_hold(os, object, FTAG, &dn); 1938 if (err) 1939 return (err); 1940 err = dnode_set_blksz(dn, size, ibs, tx); 1941 dnode_rele(dn, FTAG); 1942 return (err); 1943 } 1944 1945 int 1946 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 1947 dmu_tx_t *tx) 1948 { 1949 dnode_t *dn; 1950 int err; 1951 1952 err = dnode_hold(os, object, FTAG, &dn); 1953 if (err) 1954 return (err); 1955 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1956 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 1957 rw_exit(&dn->dn_struct_rwlock); 1958 dnode_rele(dn, FTAG); 1959 return (0); 1960 } 1961 1962 void 1963 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1964 dmu_tx_t *tx) 1965 { 1966 dnode_t *dn; 1967 1968 /* 1969 * Send streams include each object's checksum function. This 1970 * check ensures that the receiving system can understand the 1971 * checksum function transmitted. 1972 */ 1973 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1974 1975 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1976 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1977 dn->dn_checksum = checksum; 1978 dnode_setdirty(dn, tx); 1979 dnode_rele(dn, FTAG); 1980 } 1981 1982 void 1983 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1984 dmu_tx_t *tx) 1985 { 1986 dnode_t *dn; 1987 1988 /* 1989 * Send streams include each object's compression function. This 1990 * check ensures that the receiving system can understand the 1991 * compression function transmitted. 1992 */ 1993 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1994 1995 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1996 dn->dn_compress = compress; 1997 dnode_setdirty(dn, tx); 1998 dnode_rele(dn, FTAG); 1999 } 2000 2001 /* 2002 * When the "redundant_metadata" property is set to "most", only indirect 2003 * blocks of this level and higher will have an additional ditto block. 2004 */ 2005 static const int zfs_redundant_metadata_most_ditto_level = 2; 2006 2007 void 2008 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 2009 { 2010 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 2011 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 2012 (wp & WP_SPILL)); 2013 enum zio_checksum checksum = os->os_checksum; 2014 enum zio_compress compress = os->os_compress; 2015 uint8_t complevel = os->os_complevel; 2016 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 2017 boolean_t dedup = B_FALSE; 2018 boolean_t nopwrite = B_FALSE; 2019 boolean_t dedup_verify = os->os_dedup_verify; 2020 boolean_t encrypt = B_FALSE; 2021 int copies = os->os_copies; 2022 2023 /* 2024 * We maintain different write policies for each of the following 2025 * types of data: 2026 * 1. metadata 2027 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 2028 * 3. all other level 0 blocks 2029 */ 2030 if (ismd) { 2031 /* 2032 * XXX -- we should design a compression algorithm 2033 * that specializes in arrays of bps. 2034 */ 2035 compress = zio_compress_select(os->os_spa, 2036 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 2037 2038 /* 2039 * Metadata always gets checksummed. If the data 2040 * checksum is multi-bit correctable, and it's not a 2041 * ZBT-style checksum, then it's suitable for metadata 2042 * as well. Otherwise, the metadata checksum defaults 2043 * to fletcher4. 2044 */ 2045 if (!(zio_checksum_table[checksum].ci_flags & 2046 ZCHECKSUM_FLAG_METADATA) || 2047 (zio_checksum_table[checksum].ci_flags & 2048 ZCHECKSUM_FLAG_EMBEDDED)) 2049 checksum = ZIO_CHECKSUM_FLETCHER_4; 2050 2051 switch (os->os_redundant_metadata) { 2052 case ZFS_REDUNDANT_METADATA_ALL: 2053 copies++; 2054 break; 2055 case ZFS_REDUNDANT_METADATA_MOST: 2056 if (level >= zfs_redundant_metadata_most_ditto_level || 2057 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)) 2058 copies++; 2059 break; 2060 case ZFS_REDUNDANT_METADATA_SOME: 2061 if (DMU_OT_IS_CRITICAL(type)) 2062 copies++; 2063 break; 2064 case ZFS_REDUNDANT_METADATA_NONE: 2065 break; 2066 } 2067 } else if (wp & WP_NOFILL) { 2068 ASSERT(level == 0); 2069 2070 /* 2071 * If we're writing preallocated blocks, we aren't actually 2072 * writing them so don't set any policy properties. These 2073 * blocks are currently only used by an external subsystem 2074 * outside of zfs (i.e. dump) and not written by the zio 2075 * pipeline. 2076 */ 2077 compress = ZIO_COMPRESS_OFF; 2078 checksum = ZIO_CHECKSUM_OFF; 2079 } else { 2080 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2081 compress); 2082 complevel = zio_complevel_select(os->os_spa, compress, 2083 complevel, complevel); 2084 2085 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2086 zio_checksum_select(dn->dn_checksum, checksum) : 2087 dedup_checksum; 2088 2089 /* 2090 * Determine dedup setting. If we are in dmu_sync(), 2091 * we won't actually dedup now because that's all 2092 * done in syncing context; but we do want to use the 2093 * dedup checksum. If the checksum is not strong 2094 * enough to ensure unique signatures, force 2095 * dedup_verify. 2096 */ 2097 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2098 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2099 if (!(zio_checksum_table[checksum].ci_flags & 2100 ZCHECKSUM_FLAG_DEDUP)) 2101 dedup_verify = B_TRUE; 2102 } 2103 2104 /* 2105 * Enable nopwrite if we have secure enough checksum 2106 * algorithm (see comment in zio_nop_write) and 2107 * compression is enabled. We don't enable nopwrite if 2108 * dedup is enabled as the two features are mutually 2109 * exclusive. 2110 */ 2111 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2112 ZCHECKSUM_FLAG_NOPWRITE) && 2113 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2114 } 2115 2116 /* 2117 * All objects in an encrypted objset are protected from modification 2118 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2119 * in the bp, so we cannot use all copies. Encrypted objects are also 2120 * not subject to nopwrite since writing the same data will still 2121 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2122 * to avoid ambiguity in the dedup code since the DDT does not store 2123 * object types. 2124 */ 2125 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2126 encrypt = B_TRUE; 2127 2128 if (DMU_OT_IS_ENCRYPTED(type)) { 2129 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2130 nopwrite = B_FALSE; 2131 } else { 2132 dedup = B_FALSE; 2133 } 2134 2135 if (level <= 0 && 2136 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2137 compress = ZIO_COMPRESS_EMPTY; 2138 } 2139 } 2140 2141 zp->zp_compress = compress; 2142 zp->zp_complevel = complevel; 2143 zp->zp_checksum = checksum; 2144 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2145 zp->zp_level = level; 2146 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2147 zp->zp_dedup = dedup; 2148 zp->zp_dedup_verify = dedup && dedup_verify; 2149 zp->zp_nopwrite = nopwrite; 2150 zp->zp_encrypt = encrypt; 2151 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2152 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN); 2153 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN); 2154 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN); 2155 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2156 os->os_zpl_special_smallblock : 0; 2157 2158 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2159 } 2160 2161 /* 2162 * Reports the location of data and holes in an object. In order to 2163 * accurately report holes all dirty data must be synced to disk. This 2164 * causes extremely poor performance when seeking for holes in a dirty file. 2165 * As a compromise, only provide hole data when the dnode is clean. When 2166 * a dnode is dirty report the dnode as having no holes by returning EBUSY 2167 * which is always safe to do. 2168 */ 2169 int 2170 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2171 { 2172 dnode_t *dn; 2173 int restarted = 0, err; 2174 2175 restart: 2176 err = dnode_hold(os, object, FTAG, &dn); 2177 if (err) 2178 return (err); 2179 2180 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2181 2182 if (dnode_is_dirty(dn)) { 2183 /* 2184 * If the zfs_dmu_offset_next_sync module option is enabled 2185 * then hole reporting has been requested. Dirty dnodes 2186 * must be synced to disk to accurately report holes. 2187 * 2188 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is 2189 * held by the caller only a single restart will be required. 2190 * We tolerate callers which do not hold the rangelock by 2191 * returning EBUSY and not reporting holes after one restart. 2192 */ 2193 if (zfs_dmu_offset_next_sync) { 2194 rw_exit(&dn->dn_struct_rwlock); 2195 dnode_rele(dn, FTAG); 2196 2197 if (restarted) 2198 return (SET_ERROR(EBUSY)); 2199 2200 txg_wait_synced(dmu_objset_pool(os), 0); 2201 restarted = 1; 2202 goto restart; 2203 } 2204 2205 err = SET_ERROR(EBUSY); 2206 } else { 2207 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK | 2208 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2209 } 2210 2211 rw_exit(&dn->dn_struct_rwlock); 2212 dnode_rele(dn, FTAG); 2213 2214 return (err); 2215 } 2216 2217 int 2218 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, 2219 blkptr_t *bps, size_t *nbpsp) 2220 { 2221 dmu_buf_t **dbp, *dbuf; 2222 dmu_buf_impl_t *db; 2223 blkptr_t *bp; 2224 int error, numbufs; 2225 2226 error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG, 2227 &numbufs, &dbp); 2228 if (error != 0) { 2229 if (error == ESRCH) { 2230 error = SET_ERROR(ENXIO); 2231 } 2232 return (error); 2233 } 2234 2235 ASSERT3U(numbufs, <=, *nbpsp); 2236 2237 for (int i = 0; i < numbufs; i++) { 2238 dbuf = dbp[i]; 2239 db = (dmu_buf_impl_t *)dbuf; 2240 2241 mutex_enter(&db->db_mtx); 2242 2243 if (!list_is_empty(&db->db_dirty_records)) { 2244 dbuf_dirty_record_t *dr; 2245 2246 dr = list_head(&db->db_dirty_records); 2247 if (dr->dt.dl.dr_brtwrite) { 2248 /* 2249 * This is very special case where we clone a 2250 * block and in the same transaction group we 2251 * read its BP (most likely to clone the clone). 2252 */ 2253 bp = &dr->dt.dl.dr_overridden_by; 2254 } else { 2255 /* 2256 * The block was modified in the same 2257 * transaction group. 2258 */ 2259 mutex_exit(&db->db_mtx); 2260 error = SET_ERROR(EAGAIN); 2261 goto out; 2262 } 2263 } else { 2264 bp = db->db_blkptr; 2265 } 2266 2267 mutex_exit(&db->db_mtx); 2268 2269 if (bp == NULL) { 2270 /* 2271 * The file size was increased, but the block was never 2272 * written, otherwise we would either have the block 2273 * pointer or the dirty record and would not get here. 2274 * It is effectively a hole, so report it as such. 2275 */ 2276 BP_ZERO(&bps[i]); 2277 continue; 2278 } 2279 /* 2280 * Make sure we clone only data blocks. 2281 */ 2282 if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) { 2283 error = SET_ERROR(EINVAL); 2284 goto out; 2285 } 2286 2287 /* 2288 * If the block was allocated in transaction group that is not 2289 * yet synced, we could clone it, but we couldn't write this 2290 * operation into ZIL, or it may be impossible to replay, since 2291 * the block may appear not yet allocated at that point. 2292 */ 2293 if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) { 2294 error = SET_ERROR(EINVAL); 2295 goto out; 2296 } 2297 if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) { 2298 error = SET_ERROR(EAGAIN); 2299 goto out; 2300 } 2301 2302 bps[i] = *bp; 2303 } 2304 2305 *nbpsp = numbufs; 2306 out: 2307 dmu_buf_rele_array(dbp, numbufs, FTAG); 2308 2309 return (error); 2310 } 2311 2312 int 2313 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length, 2314 dmu_tx_t *tx, const blkptr_t *bps, size_t nbps) 2315 { 2316 spa_t *spa; 2317 dmu_buf_t **dbp, *dbuf; 2318 dmu_buf_impl_t *db; 2319 struct dirty_leaf *dl; 2320 dbuf_dirty_record_t *dr; 2321 const blkptr_t *bp; 2322 int error = 0, i, numbufs; 2323 2324 spa = os->os_spa; 2325 2326 VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG, 2327 &numbufs, &dbp)); 2328 ASSERT3U(nbps, ==, numbufs); 2329 2330 /* 2331 * Before we start cloning make sure that the dbufs sizes match new BPs 2332 * sizes. If they don't, that's a no-go, as we are not able to shrink 2333 * dbufs. 2334 */ 2335 for (i = 0; i < numbufs; i++) { 2336 dbuf = dbp[i]; 2337 db = (dmu_buf_impl_t *)dbuf; 2338 bp = &bps[i]; 2339 2340 ASSERT0(db->db_level); 2341 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2342 ASSERT(db->db_blkid != DMU_SPILL_BLKID); 2343 2344 if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) { 2345 error = SET_ERROR(EXDEV); 2346 goto out; 2347 } 2348 } 2349 2350 for (i = 0; i < numbufs; i++) { 2351 dbuf = dbp[i]; 2352 db = (dmu_buf_impl_t *)dbuf; 2353 bp = &bps[i]; 2354 2355 ASSERT0(db->db_level); 2356 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2357 ASSERT(db->db_blkid != DMU_SPILL_BLKID); 2358 ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp)); 2359 2360 dmu_buf_will_clone(dbuf, tx); 2361 2362 mutex_enter(&db->db_mtx); 2363 2364 dr = list_head(&db->db_dirty_records); 2365 VERIFY(dr != NULL); 2366 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2367 dl = &dr->dt.dl; 2368 dl->dr_overridden_by = *bp; 2369 if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) { 2370 if (!BP_IS_EMBEDDED(bp)) { 2371 BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg, 2372 BP_GET_BIRTH(bp)); 2373 } else { 2374 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, 2375 dr->dr_txg); 2376 } 2377 } 2378 dl->dr_brtwrite = B_TRUE; 2379 dl->dr_override_state = DR_OVERRIDDEN; 2380 2381 mutex_exit(&db->db_mtx); 2382 2383 /* 2384 * When data in embedded into BP there is no need to create 2385 * BRT entry as there is no data block. Just copy the BP as 2386 * it contains the data. 2387 */ 2388 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 2389 brt_pending_add(spa, bp, tx); 2390 } 2391 } 2392 out: 2393 dmu_buf_rele_array(dbp, numbufs, FTAG); 2394 2395 return (error); 2396 } 2397 2398 void 2399 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2400 { 2401 dnode_phys_t *dnp = dn->dn_phys; 2402 2403 doi->doi_data_block_size = dn->dn_datablksz; 2404 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2405 1ULL << dn->dn_indblkshift : 0; 2406 doi->doi_type = dn->dn_type; 2407 doi->doi_bonus_type = dn->dn_bonustype; 2408 doi->doi_bonus_size = dn->dn_bonuslen; 2409 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2410 doi->doi_indirection = dn->dn_nlevels; 2411 doi->doi_checksum = dn->dn_checksum; 2412 doi->doi_compress = dn->dn_compress; 2413 doi->doi_nblkptr = dn->dn_nblkptr; 2414 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2415 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2416 doi->doi_fill_count = 0; 2417 for (int i = 0; i < dnp->dn_nblkptr; i++) 2418 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2419 } 2420 2421 void 2422 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2423 { 2424 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2425 mutex_enter(&dn->dn_mtx); 2426 2427 __dmu_object_info_from_dnode(dn, doi); 2428 2429 mutex_exit(&dn->dn_mtx); 2430 rw_exit(&dn->dn_struct_rwlock); 2431 } 2432 2433 /* 2434 * Get information on a DMU object. 2435 * If doi is NULL, just indicates whether the object exists. 2436 */ 2437 int 2438 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2439 { 2440 dnode_t *dn; 2441 int err = dnode_hold(os, object, FTAG, &dn); 2442 2443 if (err) 2444 return (err); 2445 2446 if (doi != NULL) 2447 dmu_object_info_from_dnode(dn, doi); 2448 2449 dnode_rele(dn, FTAG); 2450 return (0); 2451 } 2452 2453 /* 2454 * As above, but faster; can be used when you have a held dbuf in hand. 2455 */ 2456 void 2457 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2458 { 2459 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2460 2461 DB_DNODE_ENTER(db); 2462 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2463 DB_DNODE_EXIT(db); 2464 } 2465 2466 /* 2467 * Faster still when you only care about the size. 2468 */ 2469 void 2470 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2471 u_longlong_t *nblk512) 2472 { 2473 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2474 dnode_t *dn; 2475 2476 DB_DNODE_ENTER(db); 2477 dn = DB_DNODE(db); 2478 2479 *blksize = dn->dn_datablksz; 2480 /* add in number of slots used for the dnode itself */ 2481 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2482 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2483 DB_DNODE_EXIT(db); 2484 } 2485 2486 void 2487 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2488 { 2489 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2490 dnode_t *dn; 2491 2492 DB_DNODE_ENTER(db); 2493 dn = DB_DNODE(db); 2494 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2495 DB_DNODE_EXIT(db); 2496 } 2497 2498 void 2499 byteswap_uint64_array(void *vbuf, size_t size) 2500 { 2501 uint64_t *buf = vbuf; 2502 size_t count = size >> 3; 2503 int i; 2504 2505 ASSERT((size & 7) == 0); 2506 2507 for (i = 0; i < count; i++) 2508 buf[i] = BSWAP_64(buf[i]); 2509 } 2510 2511 void 2512 byteswap_uint32_array(void *vbuf, size_t size) 2513 { 2514 uint32_t *buf = vbuf; 2515 size_t count = size >> 2; 2516 int i; 2517 2518 ASSERT((size & 3) == 0); 2519 2520 for (i = 0; i < count; i++) 2521 buf[i] = BSWAP_32(buf[i]); 2522 } 2523 2524 void 2525 byteswap_uint16_array(void *vbuf, size_t size) 2526 { 2527 uint16_t *buf = vbuf; 2528 size_t count = size >> 1; 2529 int i; 2530 2531 ASSERT((size & 1) == 0); 2532 2533 for (i = 0; i < count; i++) 2534 buf[i] = BSWAP_16(buf[i]); 2535 } 2536 2537 void 2538 byteswap_uint8_array(void *vbuf, size_t size) 2539 { 2540 (void) vbuf, (void) size; 2541 } 2542 2543 void 2544 dmu_init(void) 2545 { 2546 abd_init(); 2547 zfs_dbgmsg_init(); 2548 sa_cache_init(); 2549 dmu_objset_init(); 2550 dnode_init(); 2551 zfetch_init(); 2552 dmu_tx_init(); 2553 l2arc_init(); 2554 arc_init(); 2555 dbuf_init(); 2556 } 2557 2558 void 2559 dmu_fini(void) 2560 { 2561 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2562 l2arc_fini(); 2563 dmu_tx_fini(); 2564 zfetch_fini(); 2565 dbuf_fini(); 2566 dnode_fini(); 2567 dmu_objset_fini(); 2568 sa_cache_fini(); 2569 zfs_dbgmsg_fini(); 2570 abd_fini(); 2571 } 2572 2573 EXPORT_SYMBOL(dmu_bonus_hold); 2574 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2575 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2576 EXPORT_SYMBOL(dmu_buf_rele_array); 2577 EXPORT_SYMBOL(dmu_prefetch); 2578 EXPORT_SYMBOL(dmu_prefetch_by_dnode); 2579 EXPORT_SYMBOL(dmu_prefetch_dnode); 2580 EXPORT_SYMBOL(dmu_free_range); 2581 EXPORT_SYMBOL(dmu_free_long_range); 2582 EXPORT_SYMBOL(dmu_free_long_object); 2583 EXPORT_SYMBOL(dmu_read); 2584 EXPORT_SYMBOL(dmu_read_by_dnode); 2585 EXPORT_SYMBOL(dmu_write); 2586 EXPORT_SYMBOL(dmu_write_by_dnode); 2587 EXPORT_SYMBOL(dmu_prealloc); 2588 EXPORT_SYMBOL(dmu_object_info); 2589 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2590 EXPORT_SYMBOL(dmu_object_info_from_db); 2591 EXPORT_SYMBOL(dmu_object_size_from_db); 2592 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2593 EXPORT_SYMBOL(dmu_object_set_nlevels); 2594 EXPORT_SYMBOL(dmu_object_set_blocksize); 2595 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2596 EXPORT_SYMBOL(dmu_object_set_checksum); 2597 EXPORT_SYMBOL(dmu_object_set_compress); 2598 EXPORT_SYMBOL(dmu_offset_next); 2599 EXPORT_SYMBOL(dmu_write_policy); 2600 EXPORT_SYMBOL(dmu_sync); 2601 EXPORT_SYMBOL(dmu_request_arcbuf); 2602 EXPORT_SYMBOL(dmu_return_arcbuf); 2603 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2604 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2605 EXPORT_SYMBOL(dmu_buf_hold); 2606 EXPORT_SYMBOL(dmu_ot); 2607 2608 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2609 "Enable NOP writes"); 2610 2611 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW, 2612 "Percentage of dirtied blocks from frees in one TXG"); 2613 2614 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2615 "Enable forcing txg sync to find holes"); 2616 2617 /* CSTYLED */ 2618 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW, 2619 "Limit one prefetch call to this size"); 2620