xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
33  */
34 
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dbuf.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
50 #include <sys/zap.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
53 #include <sys/sa.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/brt.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
60 #ifdef _KERNEL
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
63 #endif
64 
65 /*
66  * Enable/disable nopwrite feature.
67  */
68 static int zfs_nopwrite_enabled = 1;
69 
70 /*
71  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72  * one TXG. After this threshold is crossed, additional dirty blocks from frees
73  * will wait until the next TXG.
74  * A value of zero will disable this throttle.
75  */
76 static uint_t zfs_per_txg_dirty_frees_percent = 30;
77 
78 /*
79  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80  * By default this is enabled to ensure accurate hole reporting, it can result
81  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82  * Disabling this option will result in holes never being reported in dirty
83  * files which is always safe.
84  */
85 static int zfs_dmu_offset_next_sync = 1;
86 
87 /*
88  * Limit the amount we can prefetch with one call to this amount.  This
89  * helps to limit the amount of memory that can be used by prefetching.
90  * Larger objects should be prefetched a bit at a time.
91  */
92 #ifdef _ILP32
93 uint_t dmu_prefetch_max = 8 * 1024 * 1024;
94 #else
95 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
96 #endif
97 
98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
99 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
100 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
101 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
102 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
103 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
104 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
105 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
106 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
107 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
108 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
109 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
110 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
111 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
112 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
113 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
115 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
116 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
117 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
118 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
121 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
122 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
123 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
124 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
125 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
126 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
127 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
128 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
129 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
130 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
132 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
133 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
134 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
135 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
136 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
137 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
140 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
141 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
142 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
143 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
144 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
145 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
146 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
147 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
148 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
149 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
150 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
151 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
152 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
153 };
154 
155 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
156 	{	byteswap_uint8_array,	"uint8"		},
157 	{	byteswap_uint16_array,	"uint16"	},
158 	{	byteswap_uint32_array,	"uint32"	},
159 	{	byteswap_uint64_array,	"uint64"	},
160 	{	zap_byteswap,		"zap"		},
161 	{	dnode_buf_byteswap,	"dnode"		},
162 	{	dmu_objset_byteswap,	"objset"	},
163 	{	zfs_znode_byteswap,	"znode"		},
164 	{	zfs_oldacl_byteswap,	"oldacl"	},
165 	{	zfs_acl_byteswap,	"acl"		}
166 };
167 
168 int
169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
170     const void *tag, dmu_buf_t **dbp)
171 {
172 	uint64_t blkid;
173 	dmu_buf_impl_t *db;
174 
175 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
176 	blkid = dbuf_whichblock(dn, 0, offset);
177 	db = dbuf_hold(dn, blkid, tag);
178 	rw_exit(&dn->dn_struct_rwlock);
179 
180 	if (db == NULL) {
181 		*dbp = NULL;
182 		return (SET_ERROR(EIO));
183 	}
184 
185 	*dbp = &db->db;
186 	return (0);
187 }
188 
189 int
190 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
191     const void *tag, dmu_buf_t **dbp)
192 {
193 	dnode_t *dn;
194 	uint64_t blkid;
195 	dmu_buf_impl_t *db;
196 	int err;
197 
198 	err = dnode_hold(os, object, FTAG, &dn);
199 	if (err)
200 		return (err);
201 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
202 	blkid = dbuf_whichblock(dn, 0, offset);
203 	db = dbuf_hold(dn, blkid, tag);
204 	rw_exit(&dn->dn_struct_rwlock);
205 	dnode_rele(dn, FTAG);
206 
207 	if (db == NULL) {
208 		*dbp = NULL;
209 		return (SET_ERROR(EIO));
210 	}
211 
212 	*dbp = &db->db;
213 	return (err);
214 }
215 
216 int
217 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
218     const void *tag, dmu_buf_t **dbp, int flags)
219 {
220 	int err;
221 	int db_flags = DB_RF_CANFAIL;
222 
223 	if (flags & DMU_READ_NO_PREFETCH)
224 		db_flags |= DB_RF_NOPREFETCH;
225 	if (flags & DMU_READ_NO_DECRYPT)
226 		db_flags |= DB_RF_NO_DECRYPT;
227 
228 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
229 	if (err == 0) {
230 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
231 		err = dbuf_read(db, NULL, db_flags);
232 		if (err != 0) {
233 			dbuf_rele(db, tag);
234 			*dbp = NULL;
235 		}
236 	}
237 
238 	return (err);
239 }
240 
241 int
242 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
243     const void *tag, dmu_buf_t **dbp, int flags)
244 {
245 	int err;
246 	int db_flags = DB_RF_CANFAIL;
247 
248 	if (flags & DMU_READ_NO_PREFETCH)
249 		db_flags |= DB_RF_NOPREFETCH;
250 	if (flags & DMU_READ_NO_DECRYPT)
251 		db_flags |= DB_RF_NO_DECRYPT;
252 
253 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
254 	if (err == 0) {
255 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
256 		err = dbuf_read(db, NULL, db_flags);
257 		if (err != 0) {
258 			dbuf_rele(db, tag);
259 			*dbp = NULL;
260 		}
261 	}
262 
263 	return (err);
264 }
265 
266 int
267 dmu_bonus_max(void)
268 {
269 	return (DN_OLD_MAX_BONUSLEN);
270 }
271 
272 int
273 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
274 {
275 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 	dnode_t *dn;
277 	int error;
278 
279 	DB_DNODE_ENTER(db);
280 	dn = DB_DNODE(db);
281 
282 	if (dn->dn_bonus != db) {
283 		error = SET_ERROR(EINVAL);
284 	} else if (newsize < 0 || newsize > db_fake->db_size) {
285 		error = SET_ERROR(EINVAL);
286 	} else {
287 		dnode_setbonuslen(dn, newsize, tx);
288 		error = 0;
289 	}
290 
291 	DB_DNODE_EXIT(db);
292 	return (error);
293 }
294 
295 int
296 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
297 {
298 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 	dnode_t *dn;
300 	int error;
301 
302 	DB_DNODE_ENTER(db);
303 	dn = DB_DNODE(db);
304 
305 	if (!DMU_OT_IS_VALID(type)) {
306 		error = SET_ERROR(EINVAL);
307 	} else if (dn->dn_bonus != db) {
308 		error = SET_ERROR(EINVAL);
309 	} else {
310 		dnode_setbonus_type(dn, type, tx);
311 		error = 0;
312 	}
313 
314 	DB_DNODE_EXIT(db);
315 	return (error);
316 }
317 
318 dmu_object_type_t
319 dmu_get_bonustype(dmu_buf_t *db_fake)
320 {
321 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
322 	dnode_t *dn;
323 	dmu_object_type_t type;
324 
325 	DB_DNODE_ENTER(db);
326 	dn = DB_DNODE(db);
327 	type = dn->dn_bonustype;
328 	DB_DNODE_EXIT(db);
329 
330 	return (type);
331 }
332 
333 int
334 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
335 {
336 	dnode_t *dn;
337 	int error;
338 
339 	error = dnode_hold(os, object, FTAG, &dn);
340 	dbuf_rm_spill(dn, tx);
341 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
342 	dnode_rm_spill(dn, tx);
343 	rw_exit(&dn->dn_struct_rwlock);
344 	dnode_rele(dn, FTAG);
345 	return (error);
346 }
347 
348 /*
349  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
350  * has not yet been allocated a new bonus dbuf a will be allocated.
351  * Returns ENOENT, EIO, or 0.
352  */
353 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
354     uint32_t flags)
355 {
356 	dmu_buf_impl_t *db;
357 	int error;
358 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
359 
360 	if (flags & DMU_READ_NO_PREFETCH)
361 		db_flags |= DB_RF_NOPREFETCH;
362 	if (flags & DMU_READ_NO_DECRYPT)
363 		db_flags |= DB_RF_NO_DECRYPT;
364 
365 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
366 	if (dn->dn_bonus == NULL) {
367 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
368 			rw_exit(&dn->dn_struct_rwlock);
369 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
370 		}
371 		if (dn->dn_bonus == NULL)
372 			dbuf_create_bonus(dn);
373 	}
374 	db = dn->dn_bonus;
375 
376 	/* as long as the bonus buf is held, the dnode will be held */
377 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
378 		VERIFY(dnode_add_ref(dn, db));
379 		atomic_inc_32(&dn->dn_dbufs_count);
380 	}
381 
382 	/*
383 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
384 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
385 	 * a dnode hold for every dbuf.
386 	 */
387 	rw_exit(&dn->dn_struct_rwlock);
388 
389 	error = dbuf_read(db, NULL, db_flags);
390 	if (error) {
391 		dnode_evict_bonus(dn);
392 		dbuf_rele(db, tag);
393 		*dbp = NULL;
394 		return (error);
395 	}
396 
397 	*dbp = &db->db;
398 	return (0);
399 }
400 
401 int
402 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
403 {
404 	dnode_t *dn;
405 	int error;
406 
407 	error = dnode_hold(os, object, FTAG, &dn);
408 	if (error)
409 		return (error);
410 
411 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
412 	dnode_rele(dn, FTAG);
413 
414 	return (error);
415 }
416 
417 /*
418  * returns ENOENT, EIO, or 0.
419  *
420  * This interface will allocate a blank spill dbuf when a spill blk
421  * doesn't already exist on the dnode.
422  *
423  * if you only want to find an already existing spill db, then
424  * dmu_spill_hold_existing() should be used.
425  */
426 int
427 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
428     dmu_buf_t **dbp)
429 {
430 	dmu_buf_impl_t *db = NULL;
431 	int err;
432 
433 	if ((flags & DB_RF_HAVESTRUCT) == 0)
434 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
435 
436 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
437 
438 	if ((flags & DB_RF_HAVESTRUCT) == 0)
439 		rw_exit(&dn->dn_struct_rwlock);
440 
441 	if (db == NULL) {
442 		*dbp = NULL;
443 		return (SET_ERROR(EIO));
444 	}
445 	err = dbuf_read(db, NULL, flags);
446 	if (err == 0)
447 		*dbp = &db->db;
448 	else {
449 		dbuf_rele(db, tag);
450 		*dbp = NULL;
451 	}
452 	return (err);
453 }
454 
455 int
456 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
457 {
458 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
459 	dnode_t *dn;
460 	int err;
461 
462 	DB_DNODE_ENTER(db);
463 	dn = DB_DNODE(db);
464 
465 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
466 		err = SET_ERROR(EINVAL);
467 	} else {
468 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
469 
470 		if (!dn->dn_have_spill) {
471 			err = SET_ERROR(ENOENT);
472 		} else {
473 			err = dmu_spill_hold_by_dnode(dn,
474 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
475 		}
476 
477 		rw_exit(&dn->dn_struct_rwlock);
478 	}
479 
480 	DB_DNODE_EXIT(db);
481 	return (err);
482 }
483 
484 int
485 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
486     dmu_buf_t **dbp)
487 {
488 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
489 	dnode_t *dn;
490 	int err;
491 	uint32_t db_flags = DB_RF_CANFAIL;
492 
493 	if (flags & DMU_READ_NO_DECRYPT)
494 		db_flags |= DB_RF_NO_DECRYPT;
495 
496 	DB_DNODE_ENTER(db);
497 	dn = DB_DNODE(db);
498 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
499 	DB_DNODE_EXIT(db);
500 
501 	return (err);
502 }
503 
504 /*
505  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
506  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
507  * and can induce severe lock contention when writing to several files
508  * whose dnodes are in the same block.
509  */
510 int
511 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
512     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
513     uint32_t flags)
514 {
515 	dmu_buf_t **dbp;
516 	zstream_t *zs = NULL;
517 	uint64_t blkid, nblks, i;
518 	uint32_t dbuf_flags;
519 	int err;
520 	zio_t *zio = NULL;
521 	boolean_t missed = B_FALSE;
522 
523 	ASSERT(!read || length <= DMU_MAX_ACCESS);
524 
525 	/*
526 	 * Note: We directly notify the prefetch code of this read, so that
527 	 * we can tell it about the multi-block read.  dbuf_read() only knows
528 	 * about the one block it is accessing.
529 	 */
530 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
531 	    DB_RF_NOPREFETCH;
532 
533 	if ((flags & DMU_READ_NO_DECRYPT) != 0)
534 		dbuf_flags |= DB_RF_NO_DECRYPT;
535 
536 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
537 	if (dn->dn_datablkshift) {
538 		int blkshift = dn->dn_datablkshift;
539 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
540 		    P2ALIGN_TYPED(offset, 1ULL << blkshift, uint64_t))
541 		    >> blkshift;
542 	} else {
543 		if (offset + length > dn->dn_datablksz) {
544 			zfs_panic_recover("zfs: accessing past end of object "
545 			    "%llx/%llx (size=%u access=%llu+%llu)",
546 			    (longlong_t)dn->dn_objset->
547 			    os_dsl_dataset->ds_object,
548 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
549 			    (longlong_t)offset, (longlong_t)length);
550 			rw_exit(&dn->dn_struct_rwlock);
551 			return (SET_ERROR(EIO));
552 		}
553 		nblks = 1;
554 	}
555 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
556 
557 	if (read)
558 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
559 		    ZIO_FLAG_CANFAIL);
560 	blkid = dbuf_whichblock(dn, 0, offset);
561 	if ((flags & DMU_READ_NO_PREFETCH) == 0) {
562 		/*
563 		 * Prepare the zfetch before initiating the demand reads, so
564 		 * that if multiple threads block on same indirect block, we
565 		 * base predictions on the original less racy request order.
566 		 */
567 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
568 		    B_TRUE);
569 	}
570 	for (i = 0; i < nblks; i++) {
571 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
572 		if (db == NULL) {
573 			if (zs) {
574 				dmu_zfetch_run(&dn->dn_zfetch, zs, missed,
575 				    B_TRUE);
576 			}
577 			rw_exit(&dn->dn_struct_rwlock);
578 			dmu_buf_rele_array(dbp, nblks, tag);
579 			if (read)
580 				zio_nowait(zio);
581 			return (SET_ERROR(EIO));
582 		}
583 
584 		/*
585 		 * Initiate async demand data read.
586 		 * We check the db_state after calling dbuf_read() because
587 		 * (1) dbuf_read() may change the state to CACHED due to a
588 		 * hit in the ARC, and (2) on a cache miss, a child will
589 		 * have been added to "zio" but not yet completed, so the
590 		 * state will not yet be CACHED.
591 		 */
592 		if (read) {
593 			if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
594 			    offset + length < db->db.db_offset +
595 			    db->db.db_size) {
596 				if (offset <= db->db.db_offset)
597 					dbuf_flags |= DB_RF_PARTIAL_FIRST;
598 				else
599 					dbuf_flags |= DB_RF_PARTIAL_MORE;
600 			}
601 			(void) dbuf_read(db, zio, dbuf_flags);
602 			if (db->db_state != DB_CACHED)
603 				missed = B_TRUE;
604 		}
605 		dbp[i] = &db->db;
606 	}
607 
608 	if (!read)
609 		zfs_racct_write(length, nblks);
610 
611 	if (zs)
612 		dmu_zfetch_run(&dn->dn_zfetch, zs, missed, B_TRUE);
613 	rw_exit(&dn->dn_struct_rwlock);
614 
615 	if (read) {
616 		/* wait for async read i/o */
617 		err = zio_wait(zio);
618 		if (err) {
619 			dmu_buf_rele_array(dbp, nblks, tag);
620 			return (err);
621 		}
622 
623 		/* wait for other io to complete */
624 		for (i = 0; i < nblks; i++) {
625 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
626 			mutex_enter(&db->db_mtx);
627 			while (db->db_state == DB_READ ||
628 			    db->db_state == DB_FILL)
629 				cv_wait(&db->db_changed, &db->db_mtx);
630 			if (db->db_state == DB_UNCACHED)
631 				err = SET_ERROR(EIO);
632 			mutex_exit(&db->db_mtx);
633 			if (err) {
634 				dmu_buf_rele_array(dbp, nblks, tag);
635 				return (err);
636 			}
637 		}
638 	}
639 
640 	*numbufsp = nblks;
641 	*dbpp = dbp;
642 	return (0);
643 }
644 
645 int
646 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
647     uint64_t length, int read, const void *tag, int *numbufsp,
648     dmu_buf_t ***dbpp)
649 {
650 	dnode_t *dn;
651 	int err;
652 
653 	err = dnode_hold(os, object, FTAG, &dn);
654 	if (err)
655 		return (err);
656 
657 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
658 	    numbufsp, dbpp, DMU_READ_PREFETCH);
659 
660 	dnode_rele(dn, FTAG);
661 
662 	return (err);
663 }
664 
665 int
666 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
667     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
668     dmu_buf_t ***dbpp)
669 {
670 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
671 	dnode_t *dn;
672 	int err;
673 
674 	DB_DNODE_ENTER(db);
675 	dn = DB_DNODE(db);
676 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
677 	    numbufsp, dbpp, DMU_READ_PREFETCH);
678 	DB_DNODE_EXIT(db);
679 
680 	return (err);
681 }
682 
683 void
684 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
685 {
686 	int i;
687 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
688 
689 	if (numbufs == 0)
690 		return;
691 
692 	for (i = 0; i < numbufs; i++) {
693 		if (dbp[i])
694 			dbuf_rele(dbp[i], tag);
695 	}
696 
697 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
698 }
699 
700 /*
701  * Issue prefetch I/Os for the given blocks.  If level is greater than 0, the
702  * indirect blocks prefetched will be those that point to the blocks containing
703  * the data starting at offset, and continuing to offset + len.  If the range
704  * it too long, prefetch the first dmu_prefetch_max bytes as requested, while
705  * for the rest only a higher level, also fitting within dmu_prefetch_max.  It
706  * should primarily help random reads, since for long sequential reads there is
707  * a speculative prefetcher.
708  *
709  * Note that if the indirect blocks above the blocks being prefetched are not
710  * in cache, they will be asynchronously read in.  Dnode read by dnode_hold()
711  * is currently synchronous.
712  */
713 void
714 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
715     uint64_t len, zio_priority_t pri)
716 {
717 	dnode_t *dn;
718 
719 	if (dmu_prefetch_max == 0 || len == 0) {
720 		dmu_prefetch_dnode(os, object, pri);
721 		return;
722 	}
723 
724 	if (dnode_hold(os, object, FTAG, &dn) != 0)
725 		return;
726 
727 	dmu_prefetch_by_dnode(dn, level, offset, len, pri);
728 
729 	dnode_rele(dn, FTAG);
730 }
731 
732 void
733 dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
734     uint64_t len, zio_priority_t pri)
735 {
736 	int64_t level2 = level;
737 	uint64_t start, end, start2, end2;
738 
739 	/*
740 	 * Depending on len we may do two prefetches: blocks [start, end) at
741 	 * level, and following blocks [start2, end2) at higher level2.
742 	 */
743 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
744 	if (dn->dn_datablkshift != 0) {
745 		/*
746 		 * The object has multiple blocks.  Calculate the full range
747 		 * of blocks [start, end2) and then split it into two parts,
748 		 * so that the first [start, end) fits into dmu_prefetch_max.
749 		 */
750 		start = dbuf_whichblock(dn, level, offset);
751 		end2 = dbuf_whichblock(dn, level, offset + len - 1) + 1;
752 		uint8_t ibs = dn->dn_indblkshift;
753 		uint8_t bs = (level == 0) ? dn->dn_datablkshift : ibs;
754 		uint_t limit = P2ROUNDUP(dmu_prefetch_max, 1 << bs) >> bs;
755 		start2 = end = MIN(end2, start + limit);
756 
757 		/*
758 		 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
759 		 */
760 		uint8_t ibps = ibs - SPA_BLKPTRSHIFT;
761 		limit = P2ROUNDUP(dmu_prefetch_max, 1 << ibs) >> ibs;
762 		do {
763 			level2++;
764 			start2 = P2ROUNDUP(start2, 1 << ibps) >> ibps;
765 			end2 = P2ROUNDUP(end2, 1 << ibps) >> ibps;
766 		} while (end2 - start2 > limit);
767 	} else {
768 		/* There is only one block.  Prefetch it or nothing. */
769 		start = start2 = end2 = 0;
770 		end = start + (level == 0 && offset < dn->dn_datablksz);
771 	}
772 
773 	for (uint64_t i = start; i < end; i++)
774 		dbuf_prefetch(dn, level, i, pri, 0);
775 	for (uint64_t i = start2; i < end2; i++)
776 		dbuf_prefetch(dn, level2, i, pri, 0);
777 	rw_exit(&dn->dn_struct_rwlock);
778 }
779 
780 /*
781  * Issue prefetch I/Os for the given object's dnode.
782  */
783 void
784 dmu_prefetch_dnode(objset_t *os, uint64_t object, zio_priority_t pri)
785 {
786 	if (object == 0 || object >= DN_MAX_OBJECT)
787 		return;
788 
789 	dnode_t *dn = DMU_META_DNODE(os);
790 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
791 	uint64_t blkid = dbuf_whichblock(dn, 0, object * sizeof (dnode_phys_t));
792 	dbuf_prefetch(dn, 0, blkid, pri, 0);
793 	rw_exit(&dn->dn_struct_rwlock);
794 }
795 
796 /*
797  * Get the next "chunk" of file data to free.  We traverse the file from
798  * the end so that the file gets shorter over time (if we crashes in the
799  * middle, this will leave us in a better state).  We find allocated file
800  * data by simply searching the allocated level 1 indirects.
801  *
802  * On input, *start should be the first offset that does not need to be
803  * freed (e.g. "offset + length").  On return, *start will be the first
804  * offset that should be freed and l1blks is set to the number of level 1
805  * indirect blocks found within the chunk.
806  */
807 static int
808 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
809 {
810 	uint64_t blks;
811 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
812 	/* bytes of data covered by a level-1 indirect block */
813 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
814 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
815 
816 	ASSERT3U(minimum, <=, *start);
817 
818 	/*
819 	 * Check if we can free the entire range assuming that all of the
820 	 * L1 blocks in this range have data. If we can, we use this
821 	 * worst case value as an estimate so we can avoid having to look
822 	 * at the object's actual data.
823 	 */
824 	uint64_t total_l1blks =
825 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
826 	    iblkrange;
827 	if (total_l1blks <= maxblks) {
828 		*l1blks = total_l1blks;
829 		*start = minimum;
830 		return (0);
831 	}
832 	ASSERT(ISP2(iblkrange));
833 
834 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
835 		int err;
836 
837 		/*
838 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
839 		 * indirect block at or before the input offset.  We must
840 		 * decrement *start so that it is at the end of the region
841 		 * to search.
842 		 */
843 		(*start)--;
844 
845 		err = dnode_next_offset(dn,
846 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
847 
848 		/* if there are no indirect blocks before start, we are done */
849 		if (err == ESRCH) {
850 			*start = minimum;
851 			break;
852 		} else if (err != 0) {
853 			*l1blks = blks;
854 			return (err);
855 		}
856 
857 		/* set start to the beginning of this L1 indirect */
858 		*start = P2ALIGN_TYPED(*start, iblkrange, uint64_t);
859 	}
860 	if (*start < minimum)
861 		*start = minimum;
862 	*l1blks = blks;
863 
864 	return (0);
865 }
866 
867 /*
868  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
869  * otherwise return false.
870  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
871  */
872 static boolean_t
873 dmu_objset_zfs_unmounting(objset_t *os)
874 {
875 #ifdef _KERNEL
876 	if (dmu_objset_type(os) == DMU_OST_ZFS)
877 		return (zfs_get_vfs_flag_unmounted(os));
878 #else
879 	(void) os;
880 #endif
881 	return (B_FALSE);
882 }
883 
884 static int
885 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
886     uint64_t length)
887 {
888 	uint64_t object_size;
889 	int err;
890 	uint64_t dirty_frees_threshold;
891 	dsl_pool_t *dp = dmu_objset_pool(os);
892 
893 	if (dn == NULL)
894 		return (SET_ERROR(EINVAL));
895 
896 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
897 	if (offset >= object_size)
898 		return (0);
899 
900 	if (zfs_per_txg_dirty_frees_percent <= 100)
901 		dirty_frees_threshold =
902 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
903 	else
904 		dirty_frees_threshold = zfs_dirty_data_max / 20;
905 
906 	if (length == DMU_OBJECT_END || offset + length > object_size)
907 		length = object_size - offset;
908 
909 	while (length != 0) {
910 		uint64_t chunk_end, chunk_begin, chunk_len;
911 		uint64_t l1blks;
912 		dmu_tx_t *tx;
913 
914 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
915 			return (SET_ERROR(EINTR));
916 
917 		chunk_end = chunk_begin = offset + length;
918 
919 		/* move chunk_begin backwards to the beginning of this chunk */
920 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
921 		if (err)
922 			return (err);
923 		ASSERT3U(chunk_begin, >=, offset);
924 		ASSERT3U(chunk_begin, <=, chunk_end);
925 
926 		chunk_len = chunk_end - chunk_begin;
927 
928 		tx = dmu_tx_create(os);
929 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
930 
931 		/*
932 		 * Mark this transaction as typically resulting in a net
933 		 * reduction in space used.
934 		 */
935 		dmu_tx_mark_netfree(tx);
936 		err = dmu_tx_assign(tx, TXG_WAIT);
937 		if (err) {
938 			dmu_tx_abort(tx);
939 			return (err);
940 		}
941 
942 		uint64_t txg = dmu_tx_get_txg(tx);
943 
944 		mutex_enter(&dp->dp_lock);
945 		uint64_t long_free_dirty =
946 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
947 		mutex_exit(&dp->dp_lock);
948 
949 		/*
950 		 * To avoid filling up a TXG with just frees, wait for
951 		 * the next TXG to open before freeing more chunks if
952 		 * we have reached the threshold of frees.
953 		 */
954 		if (dirty_frees_threshold != 0 &&
955 		    long_free_dirty >= dirty_frees_threshold) {
956 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
957 			dmu_tx_commit(tx);
958 			txg_wait_open(dp, 0, B_TRUE);
959 			continue;
960 		}
961 
962 		/*
963 		 * In order to prevent unnecessary write throttling, for each
964 		 * TXG, we track the cumulative size of L1 blocks being dirtied
965 		 * in dnode_free_range() below. We compare this number to a
966 		 * tunable threshold, past which we prevent new L1 dirty freeing
967 		 * blocks from being added into the open TXG. See
968 		 * dmu_free_long_range_impl() for details. The threshold
969 		 * prevents write throttle activation due to dirty freeing L1
970 		 * blocks taking up a large percentage of zfs_dirty_data_max.
971 		 */
972 		mutex_enter(&dp->dp_lock);
973 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
974 		    l1blks << dn->dn_indblkshift;
975 		mutex_exit(&dp->dp_lock);
976 		DTRACE_PROBE3(free__long__range,
977 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
978 		    uint64_t, txg);
979 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
980 
981 		dmu_tx_commit(tx);
982 
983 		length -= chunk_len;
984 	}
985 	return (0);
986 }
987 
988 int
989 dmu_free_long_range(objset_t *os, uint64_t object,
990     uint64_t offset, uint64_t length)
991 {
992 	dnode_t *dn;
993 	int err;
994 
995 	err = dnode_hold(os, object, FTAG, &dn);
996 	if (err != 0)
997 		return (err);
998 	err = dmu_free_long_range_impl(os, dn, offset, length);
999 
1000 	/*
1001 	 * It is important to zero out the maxblkid when freeing the entire
1002 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
1003 	 * will take the fast path, and (b) dnode_reallocate() can verify
1004 	 * that the entire file has been freed.
1005 	 */
1006 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
1007 		dn->dn_maxblkid = 0;
1008 
1009 	dnode_rele(dn, FTAG);
1010 	return (err);
1011 }
1012 
1013 int
1014 dmu_free_long_object(objset_t *os, uint64_t object)
1015 {
1016 	dmu_tx_t *tx;
1017 	int err;
1018 
1019 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
1020 	if (err != 0)
1021 		return (err);
1022 
1023 	tx = dmu_tx_create(os);
1024 	dmu_tx_hold_bonus(tx, object);
1025 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1026 	dmu_tx_mark_netfree(tx);
1027 	err = dmu_tx_assign(tx, TXG_WAIT);
1028 	if (err == 0) {
1029 		err = dmu_object_free(os, object, tx);
1030 		dmu_tx_commit(tx);
1031 	} else {
1032 		dmu_tx_abort(tx);
1033 	}
1034 
1035 	return (err);
1036 }
1037 
1038 int
1039 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1040     uint64_t size, dmu_tx_t *tx)
1041 {
1042 	dnode_t *dn;
1043 	int err = dnode_hold(os, object, FTAG, &dn);
1044 	if (err)
1045 		return (err);
1046 	ASSERT(offset < UINT64_MAX);
1047 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1048 	dnode_free_range(dn, offset, size, tx);
1049 	dnode_rele(dn, FTAG);
1050 	return (0);
1051 }
1052 
1053 static int
1054 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1055     void *buf, uint32_t flags)
1056 {
1057 	dmu_buf_t **dbp;
1058 	int numbufs, err = 0;
1059 
1060 	/*
1061 	 * Deal with odd block sizes, where there can't be data past the first
1062 	 * block.  If we ever do the tail block optimization, we will need to
1063 	 * handle that here as well.
1064 	 */
1065 	if (dn->dn_maxblkid == 0) {
1066 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1067 		    MIN(size, dn->dn_datablksz - offset);
1068 		memset((char *)buf + newsz, 0, size - newsz);
1069 		size = newsz;
1070 	}
1071 
1072 	while (size > 0) {
1073 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1074 		int i;
1075 
1076 		/*
1077 		 * NB: we could do this block-at-a-time, but it's nice
1078 		 * to be reading in parallel.
1079 		 */
1080 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1081 		    TRUE, FTAG, &numbufs, &dbp, flags);
1082 		if (err)
1083 			break;
1084 
1085 		for (i = 0; i < numbufs; i++) {
1086 			uint64_t tocpy;
1087 			int64_t bufoff;
1088 			dmu_buf_t *db = dbp[i];
1089 
1090 			ASSERT(size > 0);
1091 
1092 			bufoff = offset - db->db_offset;
1093 			tocpy = MIN(db->db_size - bufoff, size);
1094 
1095 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1096 
1097 			offset += tocpy;
1098 			size -= tocpy;
1099 			buf = (char *)buf + tocpy;
1100 		}
1101 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1102 	}
1103 	return (err);
1104 }
1105 
1106 int
1107 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1108     void *buf, uint32_t flags)
1109 {
1110 	dnode_t *dn;
1111 	int err;
1112 
1113 	err = dnode_hold(os, object, FTAG, &dn);
1114 	if (err != 0)
1115 		return (err);
1116 
1117 	err = dmu_read_impl(dn, offset, size, buf, flags);
1118 	dnode_rele(dn, FTAG);
1119 	return (err);
1120 }
1121 
1122 int
1123 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1124     uint32_t flags)
1125 {
1126 	return (dmu_read_impl(dn, offset, size, buf, flags));
1127 }
1128 
1129 static void
1130 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1131     const void *buf, dmu_tx_t *tx)
1132 {
1133 	int i;
1134 
1135 	for (i = 0; i < numbufs; i++) {
1136 		uint64_t tocpy;
1137 		int64_t bufoff;
1138 		dmu_buf_t *db = dbp[i];
1139 
1140 		ASSERT(size > 0);
1141 
1142 		bufoff = offset - db->db_offset;
1143 		tocpy = MIN(db->db_size - bufoff, size);
1144 
1145 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1146 
1147 		if (tocpy == db->db_size)
1148 			dmu_buf_will_fill(db, tx, B_FALSE);
1149 		else
1150 			dmu_buf_will_dirty(db, tx);
1151 
1152 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1153 
1154 		if (tocpy == db->db_size)
1155 			dmu_buf_fill_done(db, tx, B_FALSE);
1156 
1157 		offset += tocpy;
1158 		size -= tocpy;
1159 		buf = (char *)buf + tocpy;
1160 	}
1161 }
1162 
1163 void
1164 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1165     const void *buf, dmu_tx_t *tx)
1166 {
1167 	dmu_buf_t **dbp;
1168 	int numbufs;
1169 
1170 	if (size == 0)
1171 		return;
1172 
1173 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1174 	    FALSE, FTAG, &numbufs, &dbp));
1175 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1176 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1177 }
1178 
1179 /*
1180  * Note: Lustre is an external consumer of this interface.
1181  */
1182 void
1183 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1184     const void *buf, dmu_tx_t *tx)
1185 {
1186 	dmu_buf_t **dbp;
1187 	int numbufs;
1188 
1189 	if (size == 0)
1190 		return;
1191 
1192 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1193 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1194 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1195 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1196 }
1197 
1198 void
1199 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1200     dmu_tx_t *tx)
1201 {
1202 	dmu_buf_t **dbp;
1203 	int numbufs, i;
1204 
1205 	if (size == 0)
1206 		return;
1207 
1208 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1209 	    FALSE, FTAG, &numbufs, &dbp));
1210 
1211 	for (i = 0; i < numbufs; i++) {
1212 		dmu_buf_t *db = dbp[i];
1213 
1214 		dmu_buf_will_not_fill(db, tx);
1215 	}
1216 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1217 }
1218 
1219 void
1220 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1221     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1222     int compressed_size, int byteorder, dmu_tx_t *tx)
1223 {
1224 	dmu_buf_t *db;
1225 
1226 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1227 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1228 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1229 	    FTAG, &db));
1230 
1231 	dmu_buf_write_embedded(db,
1232 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1233 	    uncompressed_size, compressed_size, byteorder, tx);
1234 
1235 	dmu_buf_rele(db, FTAG);
1236 }
1237 
1238 void
1239 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1240     dmu_tx_t *tx)
1241 {
1242 	int numbufs, i;
1243 	dmu_buf_t **dbp;
1244 
1245 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1246 	    &numbufs, &dbp));
1247 	for (i = 0; i < numbufs; i++)
1248 		dmu_buf_redact(dbp[i], tx);
1249 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1250 }
1251 
1252 #ifdef _KERNEL
1253 int
1254 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1255 {
1256 	dmu_buf_t **dbp;
1257 	int numbufs, i, err;
1258 
1259 	/*
1260 	 * NB: we could do this block-at-a-time, but it's nice
1261 	 * to be reading in parallel.
1262 	 */
1263 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1264 	    TRUE, FTAG, &numbufs, &dbp, 0);
1265 	if (err)
1266 		return (err);
1267 
1268 	for (i = 0; i < numbufs; i++) {
1269 		uint64_t tocpy;
1270 		int64_t bufoff;
1271 		dmu_buf_t *db = dbp[i];
1272 
1273 		ASSERT(size > 0);
1274 
1275 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1276 		tocpy = MIN(db->db_size - bufoff, size);
1277 
1278 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1279 		    UIO_READ, uio);
1280 
1281 		if (err)
1282 			break;
1283 
1284 		size -= tocpy;
1285 	}
1286 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1287 
1288 	return (err);
1289 }
1290 
1291 /*
1292  * Read 'size' bytes into the uio buffer.
1293  * From object zdb->db_object.
1294  * Starting at zfs_uio_offset(uio).
1295  *
1296  * If the caller already has a dbuf in the target object
1297  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1298  * because we don't have to find the dnode_t for the object.
1299  */
1300 int
1301 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1302 {
1303 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1304 	dnode_t *dn;
1305 	int err;
1306 
1307 	if (size == 0)
1308 		return (0);
1309 
1310 	DB_DNODE_ENTER(db);
1311 	dn = DB_DNODE(db);
1312 	err = dmu_read_uio_dnode(dn, uio, size);
1313 	DB_DNODE_EXIT(db);
1314 
1315 	return (err);
1316 }
1317 
1318 /*
1319  * Read 'size' bytes into the uio buffer.
1320  * From the specified object
1321  * Starting at offset zfs_uio_offset(uio).
1322  */
1323 int
1324 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1325 {
1326 	dnode_t *dn;
1327 	int err;
1328 
1329 	if (size == 0)
1330 		return (0);
1331 
1332 	err = dnode_hold(os, object, FTAG, &dn);
1333 	if (err)
1334 		return (err);
1335 
1336 	err = dmu_read_uio_dnode(dn, uio, size);
1337 
1338 	dnode_rele(dn, FTAG);
1339 
1340 	return (err);
1341 }
1342 
1343 int
1344 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1345 {
1346 	dmu_buf_t **dbp;
1347 	int numbufs;
1348 	int err = 0;
1349 	int i;
1350 
1351 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1352 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1353 	if (err)
1354 		return (err);
1355 
1356 	for (i = 0; i < numbufs; i++) {
1357 		uint64_t tocpy;
1358 		int64_t bufoff;
1359 		dmu_buf_t *db = dbp[i];
1360 
1361 		ASSERT(size > 0);
1362 
1363 		offset_t off = zfs_uio_offset(uio);
1364 		bufoff = off - db->db_offset;
1365 		tocpy = MIN(db->db_size - bufoff, size);
1366 
1367 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1368 
1369 		if (tocpy == db->db_size)
1370 			dmu_buf_will_fill(db, tx, B_TRUE);
1371 		else
1372 			dmu_buf_will_dirty(db, tx);
1373 
1374 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1375 		    tocpy, UIO_WRITE, uio);
1376 
1377 		if (tocpy == db->db_size && dmu_buf_fill_done(db, tx, err)) {
1378 			/* The fill was reverted.  Undo any uio progress. */
1379 			zfs_uio_advance(uio, off - zfs_uio_offset(uio));
1380 		}
1381 
1382 		if (err)
1383 			break;
1384 
1385 		size -= tocpy;
1386 	}
1387 
1388 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1389 	return (err);
1390 }
1391 
1392 /*
1393  * Write 'size' bytes from the uio buffer.
1394  * To object zdb->db_object.
1395  * Starting at offset zfs_uio_offset(uio).
1396  *
1397  * If the caller already has a dbuf in the target object
1398  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1399  * because we don't have to find the dnode_t for the object.
1400  */
1401 int
1402 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1403     dmu_tx_t *tx)
1404 {
1405 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1406 	dnode_t *dn;
1407 	int err;
1408 
1409 	if (size == 0)
1410 		return (0);
1411 
1412 	DB_DNODE_ENTER(db);
1413 	dn = DB_DNODE(db);
1414 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1415 	DB_DNODE_EXIT(db);
1416 
1417 	return (err);
1418 }
1419 
1420 /*
1421  * Write 'size' bytes from the uio buffer.
1422  * To the specified object.
1423  * Starting at offset zfs_uio_offset(uio).
1424  */
1425 int
1426 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1427     dmu_tx_t *tx)
1428 {
1429 	dnode_t *dn;
1430 	int err;
1431 
1432 	if (size == 0)
1433 		return (0);
1434 
1435 	err = dnode_hold(os, object, FTAG, &dn);
1436 	if (err)
1437 		return (err);
1438 
1439 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1440 
1441 	dnode_rele(dn, FTAG);
1442 
1443 	return (err);
1444 }
1445 #endif /* _KERNEL */
1446 
1447 /*
1448  * Allocate a loaned anonymous arc buffer.
1449  */
1450 arc_buf_t *
1451 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1452 {
1453 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1454 
1455 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1456 }
1457 
1458 /*
1459  * Free a loaned arc buffer.
1460  */
1461 void
1462 dmu_return_arcbuf(arc_buf_t *buf)
1463 {
1464 	arc_return_buf(buf, FTAG);
1465 	arc_buf_destroy(buf, FTAG);
1466 }
1467 
1468 /*
1469  * A "lightweight" write is faster than a regular write (e.g.
1470  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1471  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1472  * data can not be read or overwritten until the transaction's txg has been
1473  * synced.  This makes it appropriate for workloads that are known to be
1474  * (temporarily) write-only, like "zfs receive".
1475  *
1476  * A single block is written, starting at the specified offset in bytes.  If
1477  * the call is successful, it returns 0 and the provided abd has been
1478  * consumed (the caller should not free it).
1479  */
1480 int
1481 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1482     const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1483 {
1484 	dbuf_dirty_record_t *dr =
1485 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1486 	if (dr == NULL)
1487 		return (SET_ERROR(EIO));
1488 	dr->dt.dll.dr_abd = abd;
1489 	dr->dt.dll.dr_props = *zp;
1490 	dr->dt.dll.dr_flags = flags;
1491 	return (0);
1492 }
1493 
1494 /*
1495  * When possible directly assign passed loaned arc buffer to a dbuf.
1496  * If this is not possible copy the contents of passed arc buf via
1497  * dmu_write().
1498  */
1499 int
1500 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1501     dmu_tx_t *tx)
1502 {
1503 	dmu_buf_impl_t *db;
1504 	objset_t *os = dn->dn_objset;
1505 	uint64_t object = dn->dn_object;
1506 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1507 	uint64_t blkid;
1508 
1509 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1510 	blkid = dbuf_whichblock(dn, 0, offset);
1511 	db = dbuf_hold(dn, blkid, FTAG);
1512 	rw_exit(&dn->dn_struct_rwlock);
1513 	if (db == NULL)
1514 		return (SET_ERROR(EIO));
1515 
1516 	/*
1517 	 * We can only assign if the offset is aligned and the arc buf is the
1518 	 * same size as the dbuf.
1519 	 */
1520 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1521 		zfs_racct_write(blksz, 1);
1522 		dbuf_assign_arcbuf(db, buf, tx);
1523 		dbuf_rele(db, FTAG);
1524 	} else {
1525 		/* compressed bufs must always be assignable to their dbuf */
1526 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1527 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1528 
1529 		dbuf_rele(db, FTAG);
1530 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1531 		dmu_return_arcbuf(buf);
1532 	}
1533 
1534 	return (0);
1535 }
1536 
1537 int
1538 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1539     dmu_tx_t *tx)
1540 {
1541 	int err;
1542 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1543 
1544 	DB_DNODE_ENTER(dbuf);
1545 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1546 	DB_DNODE_EXIT(dbuf);
1547 
1548 	return (err);
1549 }
1550 
1551 typedef struct {
1552 	dbuf_dirty_record_t	*dsa_dr;
1553 	dmu_sync_cb_t		*dsa_done;
1554 	zgd_t			*dsa_zgd;
1555 	dmu_tx_t		*dsa_tx;
1556 } dmu_sync_arg_t;
1557 
1558 static void
1559 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1560 {
1561 	(void) buf;
1562 	dmu_sync_arg_t *dsa = varg;
1563 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1564 	blkptr_t *bp = zio->io_bp;
1565 
1566 	if (zio->io_error == 0) {
1567 		if (BP_IS_HOLE(bp)) {
1568 			/*
1569 			 * A block of zeros may compress to a hole, but the
1570 			 * block size still needs to be known for replay.
1571 			 */
1572 			BP_SET_LSIZE(bp, db->db_size);
1573 		} else if (!BP_IS_EMBEDDED(bp)) {
1574 			ASSERT(BP_GET_LEVEL(bp) == 0);
1575 			BP_SET_FILL(bp, 1);
1576 		}
1577 	}
1578 }
1579 
1580 static void
1581 dmu_sync_late_arrival_ready(zio_t *zio)
1582 {
1583 	dmu_sync_ready(zio, NULL, zio->io_private);
1584 }
1585 
1586 static void
1587 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1588 {
1589 	(void) buf;
1590 	dmu_sync_arg_t *dsa = varg;
1591 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1592 	dmu_buf_impl_t *db = dr->dr_dbuf;
1593 	zgd_t *zgd = dsa->dsa_zgd;
1594 
1595 	/*
1596 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1597 	 * the writes for the lwb have completed.
1598 	 */
1599 	if (zio->io_error == 0) {
1600 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1601 	}
1602 
1603 	mutex_enter(&db->db_mtx);
1604 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1605 	if (zio->io_error == 0) {
1606 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1607 		if (dr->dt.dl.dr_nopwrite) {
1608 			blkptr_t *bp = zio->io_bp;
1609 			blkptr_t *bp_orig = &zio->io_bp_orig;
1610 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1611 
1612 			ASSERT(BP_EQUAL(bp, bp_orig));
1613 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1614 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1615 			VERIFY(zio_checksum_table[chksum].ci_flags &
1616 			    ZCHECKSUM_FLAG_NOPWRITE);
1617 		}
1618 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1619 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1620 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1621 
1622 		/*
1623 		 * Old style holes are filled with all zeros, whereas
1624 		 * new-style holes maintain their lsize, type, level,
1625 		 * and birth time (see zio_write_compress). While we
1626 		 * need to reset the BP_SET_LSIZE() call that happened
1627 		 * in dmu_sync_ready for old style holes, we do *not*
1628 		 * want to wipe out the information contained in new
1629 		 * style holes. Thus, only zero out the block pointer if
1630 		 * it's an old style hole.
1631 		 */
1632 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1633 		    BP_GET_LOGICAL_BIRTH(&dr->dt.dl.dr_overridden_by) == 0)
1634 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1635 	} else {
1636 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1637 	}
1638 	cv_broadcast(&db->db_changed);
1639 	mutex_exit(&db->db_mtx);
1640 
1641 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1642 
1643 	kmem_free(dsa, sizeof (*dsa));
1644 }
1645 
1646 static void
1647 dmu_sync_late_arrival_done(zio_t *zio)
1648 {
1649 	blkptr_t *bp = zio->io_bp;
1650 	dmu_sync_arg_t *dsa = zio->io_private;
1651 	zgd_t *zgd = dsa->dsa_zgd;
1652 
1653 	if (zio->io_error == 0) {
1654 		/*
1655 		 * Record the vdev(s) backing this blkptr so they can be
1656 		 * flushed after the writes for the lwb have completed.
1657 		 */
1658 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1659 
1660 		if (!BP_IS_HOLE(bp)) {
1661 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1662 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1663 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1664 			ASSERT(BP_GET_LOGICAL_BIRTH(zio->io_bp) == zio->io_txg);
1665 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1666 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1667 		}
1668 	}
1669 
1670 	dmu_tx_commit(dsa->dsa_tx);
1671 
1672 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1673 
1674 	abd_free(zio->io_abd);
1675 	kmem_free(dsa, sizeof (*dsa));
1676 }
1677 
1678 static int
1679 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1680     zio_prop_t *zp, zbookmark_phys_t *zb)
1681 {
1682 	dmu_sync_arg_t *dsa;
1683 	dmu_tx_t *tx;
1684 	int error;
1685 
1686 	error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1687 	    DB_RF_CANFAIL | DB_RF_NOPREFETCH);
1688 	if (error != 0)
1689 		return (error);
1690 
1691 	tx = dmu_tx_create(os);
1692 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1693 	/*
1694 	 * This transaction does not produce any dirty data or log blocks, so
1695 	 * it should not be throttled.  All other cases wait for TXG sync, by
1696 	 * which time the log block we are writing will be obsolete, so we can
1697 	 * skip waiting and just return error here instead.
1698 	 */
1699 	if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) {
1700 		dmu_tx_abort(tx);
1701 		/* Make zl_get_data do txg_waited_synced() */
1702 		return (SET_ERROR(EIO));
1703 	}
1704 
1705 	/*
1706 	 * In order to prevent the zgd's lwb from being free'd prior to
1707 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1708 	 * the lwb's "max txg" takes this tx's txg into account.
1709 	 */
1710 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1711 
1712 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1713 	dsa->dsa_dr = NULL;
1714 	dsa->dsa_done = done;
1715 	dsa->dsa_zgd = zgd;
1716 	dsa->dsa_tx = tx;
1717 
1718 	/*
1719 	 * Since we are currently syncing this txg, it's nontrivial to
1720 	 * determine what BP to nopwrite against, so we disable nopwrite.
1721 	 *
1722 	 * When syncing, the db_blkptr is initially the BP of the previous
1723 	 * txg.  We can not nopwrite against it because it will be changed
1724 	 * (this is similar to the non-late-arrival case where the dbuf is
1725 	 * dirty in a future txg).
1726 	 *
1727 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1728 	 * We can not nopwrite against it because although the BP will not
1729 	 * (typically) be changed, the data has not yet been persisted to this
1730 	 * location.
1731 	 *
1732 	 * Finally, when dbuf_write_done() is called, it is theoretically
1733 	 * possible to always nopwrite, because the data that was written in
1734 	 * this txg is the same data that we are trying to write.  However we
1735 	 * would need to check that this dbuf is not dirty in any future
1736 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1737 	 * don't nopwrite in this case.
1738 	 */
1739 	zp->zp_nopwrite = B_FALSE;
1740 
1741 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1742 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1743 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1744 	    dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
1745 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1746 
1747 	return (0);
1748 }
1749 
1750 /*
1751  * Intent log support: sync the block associated with db to disk.
1752  * N.B. and XXX: the caller is responsible for making sure that the
1753  * data isn't changing while dmu_sync() is writing it.
1754  *
1755  * Return values:
1756  *
1757  *	EEXIST: this txg has already been synced, so there's nothing to do.
1758  *		The caller should not log the write.
1759  *
1760  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1761  *		The caller should not log the write.
1762  *
1763  *	EALREADY: this block is already in the process of being synced.
1764  *		The caller should track its progress (somehow).
1765  *
1766  *	EIO: could not do the I/O.
1767  *		The caller should do a txg_wait_synced().
1768  *
1769  *	0: the I/O has been initiated.
1770  *		The caller should log this blkptr in the done callback.
1771  *		It is possible that the I/O will fail, in which case
1772  *		the error will be reported to the done callback and
1773  *		propagated to pio from zio_done().
1774  */
1775 int
1776 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1777 {
1778 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1779 	objset_t *os = db->db_objset;
1780 	dsl_dataset_t *ds = os->os_dsl_dataset;
1781 	dbuf_dirty_record_t *dr, *dr_next;
1782 	dmu_sync_arg_t *dsa;
1783 	zbookmark_phys_t zb;
1784 	zio_prop_t zp;
1785 	dnode_t *dn;
1786 
1787 	ASSERT(pio != NULL);
1788 	ASSERT(txg != 0);
1789 
1790 	SET_BOOKMARK(&zb, ds->ds_object,
1791 	    db->db.db_object, db->db_level, db->db_blkid);
1792 
1793 	DB_DNODE_ENTER(db);
1794 	dn = DB_DNODE(db);
1795 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1796 	DB_DNODE_EXIT(db);
1797 
1798 	/*
1799 	 * If we're frozen (running ziltest), we always need to generate a bp.
1800 	 */
1801 	if (txg > spa_freeze_txg(os->os_spa))
1802 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1803 
1804 	/*
1805 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1806 	 * and us.  If we determine that this txg is not yet syncing,
1807 	 * but it begins to sync a moment later, that's OK because the
1808 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1809 	 */
1810 	mutex_enter(&db->db_mtx);
1811 
1812 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1813 		/*
1814 		 * This txg has already synced.  There's nothing to do.
1815 		 */
1816 		mutex_exit(&db->db_mtx);
1817 		return (SET_ERROR(EEXIST));
1818 	}
1819 
1820 	if (txg <= spa_syncing_txg(os->os_spa)) {
1821 		/*
1822 		 * This txg is currently syncing, so we can't mess with
1823 		 * the dirty record anymore; just write a new log block.
1824 		 */
1825 		mutex_exit(&db->db_mtx);
1826 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1827 	}
1828 
1829 	dr = dbuf_find_dirty_eq(db, txg);
1830 
1831 	if (dr == NULL) {
1832 		/*
1833 		 * There's no dr for this dbuf, so it must have been freed.
1834 		 * There's no need to log writes to freed blocks, so we're done.
1835 		 */
1836 		mutex_exit(&db->db_mtx);
1837 		return (SET_ERROR(ENOENT));
1838 	}
1839 
1840 	dr_next = list_next(&db->db_dirty_records, dr);
1841 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1842 
1843 	if (db->db_blkptr != NULL) {
1844 		/*
1845 		 * We need to fill in zgd_bp with the current blkptr so that
1846 		 * the nopwrite code can check if we're writing the same
1847 		 * data that's already on disk.  We can only nopwrite if we
1848 		 * are sure that after making the copy, db_blkptr will not
1849 		 * change until our i/o completes.  We ensure this by
1850 		 * holding the db_mtx, and only allowing nopwrite if the
1851 		 * block is not already dirty (see below).  This is verified
1852 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1853 		 * not changed.
1854 		 */
1855 		*zgd->zgd_bp = *db->db_blkptr;
1856 	}
1857 
1858 	/*
1859 	 * Assume the on-disk data is X, the current syncing data (in
1860 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1861 	 * in dmu_sync).
1862 	 *
1863 	 * We usually want to perform a nopwrite if X and Z are the
1864 	 * same.  However, if Y is different (i.e. the BP is going to
1865 	 * change before this write takes effect), then a nopwrite will
1866 	 * be incorrect - we would override with X, which could have
1867 	 * been freed when Y was written.
1868 	 *
1869 	 * (Note that this is not a concern when we are nop-writing from
1870 	 * syncing context, because X and Y must be identical, because
1871 	 * all previous txgs have been synced.)
1872 	 *
1873 	 * Therefore, we disable nopwrite if the current BP could change
1874 	 * before this TXG.  There are two ways it could change: by
1875 	 * being dirty (dr_next is non-NULL), or by being freed
1876 	 * (dnode_block_freed()).  This behavior is verified by
1877 	 * zio_done(), which VERIFYs that the override BP is identical
1878 	 * to the on-disk BP.
1879 	 */
1880 	DB_DNODE_ENTER(db);
1881 	dn = DB_DNODE(db);
1882 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1883 		zp.zp_nopwrite = B_FALSE;
1884 	DB_DNODE_EXIT(db);
1885 
1886 	ASSERT(dr->dr_txg == txg);
1887 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1888 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1889 		/*
1890 		 * We have already issued a sync write for this buffer,
1891 		 * or this buffer has already been synced.  It could not
1892 		 * have been dirtied since, or we would have cleared the state.
1893 		 */
1894 		mutex_exit(&db->db_mtx);
1895 		return (SET_ERROR(EALREADY));
1896 	}
1897 
1898 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1899 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1900 	mutex_exit(&db->db_mtx);
1901 
1902 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1903 	dsa->dsa_dr = dr;
1904 	dsa->dsa_done = done;
1905 	dsa->dsa_zgd = zgd;
1906 	dsa->dsa_tx = NULL;
1907 
1908 	zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1909 	    dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
1910 	    &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa,
1911 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1912 
1913 	return (0);
1914 }
1915 
1916 int
1917 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1918 {
1919 	dnode_t *dn;
1920 	int err;
1921 
1922 	err = dnode_hold(os, object, FTAG, &dn);
1923 	if (err)
1924 		return (err);
1925 	err = dnode_set_nlevels(dn, nlevels, tx);
1926 	dnode_rele(dn, FTAG);
1927 	return (err);
1928 }
1929 
1930 int
1931 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1932     dmu_tx_t *tx)
1933 {
1934 	dnode_t *dn;
1935 	int err;
1936 
1937 	err = dnode_hold(os, object, FTAG, &dn);
1938 	if (err)
1939 		return (err);
1940 	err = dnode_set_blksz(dn, size, ibs, tx);
1941 	dnode_rele(dn, FTAG);
1942 	return (err);
1943 }
1944 
1945 int
1946 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1947     dmu_tx_t *tx)
1948 {
1949 	dnode_t *dn;
1950 	int err;
1951 
1952 	err = dnode_hold(os, object, FTAG, &dn);
1953 	if (err)
1954 		return (err);
1955 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1956 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1957 	rw_exit(&dn->dn_struct_rwlock);
1958 	dnode_rele(dn, FTAG);
1959 	return (0);
1960 }
1961 
1962 void
1963 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1964     dmu_tx_t *tx)
1965 {
1966 	dnode_t *dn;
1967 
1968 	/*
1969 	 * Send streams include each object's checksum function.  This
1970 	 * check ensures that the receiving system can understand the
1971 	 * checksum function transmitted.
1972 	 */
1973 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1974 
1975 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1976 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1977 	dn->dn_checksum = checksum;
1978 	dnode_setdirty(dn, tx);
1979 	dnode_rele(dn, FTAG);
1980 }
1981 
1982 void
1983 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1984     dmu_tx_t *tx)
1985 {
1986 	dnode_t *dn;
1987 
1988 	/*
1989 	 * Send streams include each object's compression function.  This
1990 	 * check ensures that the receiving system can understand the
1991 	 * compression function transmitted.
1992 	 */
1993 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1994 
1995 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1996 	dn->dn_compress = compress;
1997 	dnode_setdirty(dn, tx);
1998 	dnode_rele(dn, FTAG);
1999 }
2000 
2001 /*
2002  * When the "redundant_metadata" property is set to "most", only indirect
2003  * blocks of this level and higher will have an additional ditto block.
2004  */
2005 static const int zfs_redundant_metadata_most_ditto_level = 2;
2006 
2007 void
2008 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2009 {
2010 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2011 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2012 	    (wp & WP_SPILL));
2013 	enum zio_checksum checksum = os->os_checksum;
2014 	enum zio_compress compress = os->os_compress;
2015 	uint8_t complevel = os->os_complevel;
2016 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2017 	boolean_t dedup = B_FALSE;
2018 	boolean_t nopwrite = B_FALSE;
2019 	boolean_t dedup_verify = os->os_dedup_verify;
2020 	boolean_t encrypt = B_FALSE;
2021 	int copies = os->os_copies;
2022 
2023 	/*
2024 	 * We maintain different write policies for each of the following
2025 	 * types of data:
2026 	 *	 1. metadata
2027 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2028 	 *	 3. all other level 0 blocks
2029 	 */
2030 	if (ismd) {
2031 		/*
2032 		 * XXX -- we should design a compression algorithm
2033 		 * that specializes in arrays of bps.
2034 		 */
2035 		compress = zio_compress_select(os->os_spa,
2036 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2037 
2038 		/*
2039 		 * Metadata always gets checksummed.  If the data
2040 		 * checksum is multi-bit correctable, and it's not a
2041 		 * ZBT-style checksum, then it's suitable for metadata
2042 		 * as well.  Otherwise, the metadata checksum defaults
2043 		 * to fletcher4.
2044 		 */
2045 		if (!(zio_checksum_table[checksum].ci_flags &
2046 		    ZCHECKSUM_FLAG_METADATA) ||
2047 		    (zio_checksum_table[checksum].ci_flags &
2048 		    ZCHECKSUM_FLAG_EMBEDDED))
2049 			checksum = ZIO_CHECKSUM_FLETCHER_4;
2050 
2051 		switch (os->os_redundant_metadata) {
2052 		case ZFS_REDUNDANT_METADATA_ALL:
2053 			copies++;
2054 			break;
2055 		case ZFS_REDUNDANT_METADATA_MOST:
2056 			if (level >= zfs_redundant_metadata_most_ditto_level ||
2057 			    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2058 				copies++;
2059 			break;
2060 		case ZFS_REDUNDANT_METADATA_SOME:
2061 			if (DMU_OT_IS_CRITICAL(type))
2062 				copies++;
2063 			break;
2064 		case ZFS_REDUNDANT_METADATA_NONE:
2065 			break;
2066 		}
2067 	} else if (wp & WP_NOFILL) {
2068 		ASSERT(level == 0);
2069 
2070 		/*
2071 		 * If we're writing preallocated blocks, we aren't actually
2072 		 * writing them so don't set any policy properties.  These
2073 		 * blocks are currently only used by an external subsystem
2074 		 * outside of zfs (i.e. dump) and not written by the zio
2075 		 * pipeline.
2076 		 */
2077 		compress = ZIO_COMPRESS_OFF;
2078 		checksum = ZIO_CHECKSUM_OFF;
2079 	} else {
2080 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2081 		    compress);
2082 		complevel = zio_complevel_select(os->os_spa, compress,
2083 		    complevel, complevel);
2084 
2085 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2086 		    zio_checksum_select(dn->dn_checksum, checksum) :
2087 		    dedup_checksum;
2088 
2089 		/*
2090 		 * Determine dedup setting.  If we are in dmu_sync(),
2091 		 * we won't actually dedup now because that's all
2092 		 * done in syncing context; but we do want to use the
2093 		 * dedup checksum.  If the checksum is not strong
2094 		 * enough to ensure unique signatures, force
2095 		 * dedup_verify.
2096 		 */
2097 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2098 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2099 			if (!(zio_checksum_table[checksum].ci_flags &
2100 			    ZCHECKSUM_FLAG_DEDUP))
2101 				dedup_verify = B_TRUE;
2102 		}
2103 
2104 		/*
2105 		 * Enable nopwrite if we have secure enough checksum
2106 		 * algorithm (see comment in zio_nop_write) and
2107 		 * compression is enabled.  We don't enable nopwrite if
2108 		 * dedup is enabled as the two features are mutually
2109 		 * exclusive.
2110 		 */
2111 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2112 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2113 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2114 	}
2115 
2116 	/*
2117 	 * All objects in an encrypted objset are protected from modification
2118 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2119 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2120 	 * not subject to nopwrite since writing the same data will still
2121 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2122 	 * to avoid ambiguity in the dedup code since the DDT does not store
2123 	 * object types.
2124 	 */
2125 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2126 		encrypt = B_TRUE;
2127 
2128 		if (DMU_OT_IS_ENCRYPTED(type)) {
2129 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2130 			nopwrite = B_FALSE;
2131 		} else {
2132 			dedup = B_FALSE;
2133 		}
2134 
2135 		if (level <= 0 &&
2136 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2137 			compress = ZIO_COMPRESS_EMPTY;
2138 		}
2139 	}
2140 
2141 	zp->zp_compress = compress;
2142 	zp->zp_complevel = complevel;
2143 	zp->zp_checksum = checksum;
2144 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2145 	zp->zp_level = level;
2146 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2147 	zp->zp_dedup = dedup;
2148 	zp->zp_dedup_verify = dedup && dedup_verify;
2149 	zp->zp_nopwrite = nopwrite;
2150 	zp->zp_encrypt = encrypt;
2151 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2152 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2153 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2154 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2155 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2156 	    os->os_zpl_special_smallblock : 0;
2157 
2158 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2159 }
2160 
2161 /*
2162  * Reports the location of data and holes in an object.  In order to
2163  * accurately report holes all dirty data must be synced to disk.  This
2164  * causes extremely poor performance when seeking for holes in a dirty file.
2165  * As a compromise, only provide hole data when the dnode is clean.  When
2166  * a dnode is dirty report the dnode as having no holes by returning EBUSY
2167  * which is always safe to do.
2168  */
2169 int
2170 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2171 {
2172 	dnode_t *dn;
2173 	int restarted = 0, err;
2174 
2175 restart:
2176 	err = dnode_hold(os, object, FTAG, &dn);
2177 	if (err)
2178 		return (err);
2179 
2180 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2181 
2182 	if (dnode_is_dirty(dn)) {
2183 		/*
2184 		 * If the zfs_dmu_offset_next_sync module option is enabled
2185 		 * then hole reporting has been requested.  Dirty dnodes
2186 		 * must be synced to disk to accurately report holes.
2187 		 *
2188 		 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2189 		 * held by the caller only a single restart will be required.
2190 		 * We tolerate callers which do not hold the rangelock by
2191 		 * returning EBUSY and not reporting holes after one restart.
2192 		 */
2193 		if (zfs_dmu_offset_next_sync) {
2194 			rw_exit(&dn->dn_struct_rwlock);
2195 			dnode_rele(dn, FTAG);
2196 
2197 			if (restarted)
2198 				return (SET_ERROR(EBUSY));
2199 
2200 			txg_wait_synced(dmu_objset_pool(os), 0);
2201 			restarted = 1;
2202 			goto restart;
2203 		}
2204 
2205 		err = SET_ERROR(EBUSY);
2206 	} else {
2207 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2208 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2209 	}
2210 
2211 	rw_exit(&dn->dn_struct_rwlock);
2212 	dnode_rele(dn, FTAG);
2213 
2214 	return (err);
2215 }
2216 
2217 int
2218 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2219     blkptr_t *bps, size_t *nbpsp)
2220 {
2221 	dmu_buf_t **dbp, *dbuf;
2222 	dmu_buf_impl_t *db;
2223 	blkptr_t *bp;
2224 	int error, numbufs;
2225 
2226 	error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2227 	    &numbufs, &dbp);
2228 	if (error != 0) {
2229 		if (error == ESRCH) {
2230 			error = SET_ERROR(ENXIO);
2231 		}
2232 		return (error);
2233 	}
2234 
2235 	ASSERT3U(numbufs, <=, *nbpsp);
2236 
2237 	for (int i = 0; i < numbufs; i++) {
2238 		dbuf = dbp[i];
2239 		db = (dmu_buf_impl_t *)dbuf;
2240 
2241 		mutex_enter(&db->db_mtx);
2242 
2243 		if (!list_is_empty(&db->db_dirty_records)) {
2244 			dbuf_dirty_record_t *dr;
2245 
2246 			dr = list_head(&db->db_dirty_records);
2247 			if (dr->dt.dl.dr_brtwrite) {
2248 				/*
2249 				 * This is very special case where we clone a
2250 				 * block and in the same transaction group we
2251 				 * read its BP (most likely to clone the clone).
2252 				 */
2253 				bp = &dr->dt.dl.dr_overridden_by;
2254 			} else {
2255 				/*
2256 				 * The block was modified in the same
2257 				 * transaction group.
2258 				 */
2259 				mutex_exit(&db->db_mtx);
2260 				error = SET_ERROR(EAGAIN);
2261 				goto out;
2262 			}
2263 		} else {
2264 			bp = db->db_blkptr;
2265 		}
2266 
2267 		mutex_exit(&db->db_mtx);
2268 
2269 		if (bp == NULL) {
2270 			/*
2271 			 * The file size was increased, but the block was never
2272 			 * written, otherwise we would either have the block
2273 			 * pointer or the dirty record and would not get here.
2274 			 * It is effectively a hole, so report it as such.
2275 			 */
2276 			BP_ZERO(&bps[i]);
2277 			continue;
2278 		}
2279 		/*
2280 		 * Make sure we clone only data blocks.
2281 		 */
2282 		if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2283 			error = SET_ERROR(EINVAL);
2284 			goto out;
2285 		}
2286 
2287 		/*
2288 		 * If the block was allocated in transaction group that is not
2289 		 * yet synced, we could clone it, but we couldn't write this
2290 		 * operation into ZIL, or it may be impossible to replay, since
2291 		 * the block may appear not yet allocated at that point.
2292 		 */
2293 		if (BP_GET_BIRTH(bp) > spa_freeze_txg(os->os_spa)) {
2294 			error = SET_ERROR(EINVAL);
2295 			goto out;
2296 		}
2297 		if (BP_GET_BIRTH(bp) > spa_last_synced_txg(os->os_spa)) {
2298 			error = SET_ERROR(EAGAIN);
2299 			goto out;
2300 		}
2301 
2302 		bps[i] = *bp;
2303 	}
2304 
2305 	*nbpsp = numbufs;
2306 out:
2307 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2308 
2309 	return (error);
2310 }
2311 
2312 int
2313 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2314     dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2315 {
2316 	spa_t *spa;
2317 	dmu_buf_t **dbp, *dbuf;
2318 	dmu_buf_impl_t *db;
2319 	struct dirty_leaf *dl;
2320 	dbuf_dirty_record_t *dr;
2321 	const blkptr_t *bp;
2322 	int error = 0, i, numbufs;
2323 
2324 	spa = os->os_spa;
2325 
2326 	VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2327 	    &numbufs, &dbp));
2328 	ASSERT3U(nbps, ==, numbufs);
2329 
2330 	/*
2331 	 * Before we start cloning make sure that the dbufs sizes match new BPs
2332 	 * sizes. If they don't, that's a no-go, as we are not able to shrink
2333 	 * dbufs.
2334 	 */
2335 	for (i = 0; i < numbufs; i++) {
2336 		dbuf = dbp[i];
2337 		db = (dmu_buf_impl_t *)dbuf;
2338 		bp = &bps[i];
2339 
2340 		ASSERT0(db->db_level);
2341 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2342 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2343 
2344 		if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2345 			error = SET_ERROR(EXDEV);
2346 			goto out;
2347 		}
2348 	}
2349 
2350 	for (i = 0; i < numbufs; i++) {
2351 		dbuf = dbp[i];
2352 		db = (dmu_buf_impl_t *)dbuf;
2353 		bp = &bps[i];
2354 
2355 		ASSERT0(db->db_level);
2356 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2357 		ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2358 		ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));
2359 
2360 		dmu_buf_will_clone(dbuf, tx);
2361 
2362 		mutex_enter(&db->db_mtx);
2363 
2364 		dr = list_head(&db->db_dirty_records);
2365 		VERIFY(dr != NULL);
2366 		ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2367 		dl = &dr->dt.dl;
2368 		dl->dr_overridden_by = *bp;
2369 		if (!BP_IS_HOLE(bp) || BP_GET_LOGICAL_BIRTH(bp) != 0) {
2370 			if (!BP_IS_EMBEDDED(bp)) {
2371 				BP_SET_BIRTH(&dl->dr_overridden_by, dr->dr_txg,
2372 				    BP_GET_BIRTH(bp));
2373 			} else {
2374 				BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by,
2375 				    dr->dr_txg);
2376 			}
2377 		}
2378 		dl->dr_brtwrite = B_TRUE;
2379 		dl->dr_override_state = DR_OVERRIDDEN;
2380 
2381 		mutex_exit(&db->db_mtx);
2382 
2383 		/*
2384 		 * When data in embedded into BP there is no need to create
2385 		 * BRT entry as there is no data block. Just copy the BP as
2386 		 * it contains the data.
2387 		 */
2388 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2389 			brt_pending_add(spa, bp, tx);
2390 		}
2391 	}
2392 out:
2393 	dmu_buf_rele_array(dbp, numbufs, FTAG);
2394 
2395 	return (error);
2396 }
2397 
2398 void
2399 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2400 {
2401 	dnode_phys_t *dnp = dn->dn_phys;
2402 
2403 	doi->doi_data_block_size = dn->dn_datablksz;
2404 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2405 	    1ULL << dn->dn_indblkshift : 0;
2406 	doi->doi_type = dn->dn_type;
2407 	doi->doi_bonus_type = dn->dn_bonustype;
2408 	doi->doi_bonus_size = dn->dn_bonuslen;
2409 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2410 	doi->doi_indirection = dn->dn_nlevels;
2411 	doi->doi_checksum = dn->dn_checksum;
2412 	doi->doi_compress = dn->dn_compress;
2413 	doi->doi_nblkptr = dn->dn_nblkptr;
2414 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2415 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2416 	doi->doi_fill_count = 0;
2417 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2418 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2419 }
2420 
2421 void
2422 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2423 {
2424 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2425 	mutex_enter(&dn->dn_mtx);
2426 
2427 	__dmu_object_info_from_dnode(dn, doi);
2428 
2429 	mutex_exit(&dn->dn_mtx);
2430 	rw_exit(&dn->dn_struct_rwlock);
2431 }
2432 
2433 /*
2434  * Get information on a DMU object.
2435  * If doi is NULL, just indicates whether the object exists.
2436  */
2437 int
2438 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2439 {
2440 	dnode_t *dn;
2441 	int err = dnode_hold(os, object, FTAG, &dn);
2442 
2443 	if (err)
2444 		return (err);
2445 
2446 	if (doi != NULL)
2447 		dmu_object_info_from_dnode(dn, doi);
2448 
2449 	dnode_rele(dn, FTAG);
2450 	return (0);
2451 }
2452 
2453 /*
2454  * As above, but faster; can be used when you have a held dbuf in hand.
2455  */
2456 void
2457 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2458 {
2459 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2460 
2461 	DB_DNODE_ENTER(db);
2462 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2463 	DB_DNODE_EXIT(db);
2464 }
2465 
2466 /*
2467  * Faster still when you only care about the size.
2468  */
2469 void
2470 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2471     u_longlong_t *nblk512)
2472 {
2473 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2474 	dnode_t *dn;
2475 
2476 	DB_DNODE_ENTER(db);
2477 	dn = DB_DNODE(db);
2478 
2479 	*blksize = dn->dn_datablksz;
2480 	/* add in number of slots used for the dnode itself */
2481 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2482 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2483 	DB_DNODE_EXIT(db);
2484 }
2485 
2486 void
2487 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2488 {
2489 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2490 	dnode_t *dn;
2491 
2492 	DB_DNODE_ENTER(db);
2493 	dn = DB_DNODE(db);
2494 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2495 	DB_DNODE_EXIT(db);
2496 }
2497 
2498 void
2499 byteswap_uint64_array(void *vbuf, size_t size)
2500 {
2501 	uint64_t *buf = vbuf;
2502 	size_t count = size >> 3;
2503 	int i;
2504 
2505 	ASSERT((size & 7) == 0);
2506 
2507 	for (i = 0; i < count; i++)
2508 		buf[i] = BSWAP_64(buf[i]);
2509 }
2510 
2511 void
2512 byteswap_uint32_array(void *vbuf, size_t size)
2513 {
2514 	uint32_t *buf = vbuf;
2515 	size_t count = size >> 2;
2516 	int i;
2517 
2518 	ASSERT((size & 3) == 0);
2519 
2520 	for (i = 0; i < count; i++)
2521 		buf[i] = BSWAP_32(buf[i]);
2522 }
2523 
2524 void
2525 byteswap_uint16_array(void *vbuf, size_t size)
2526 {
2527 	uint16_t *buf = vbuf;
2528 	size_t count = size >> 1;
2529 	int i;
2530 
2531 	ASSERT((size & 1) == 0);
2532 
2533 	for (i = 0; i < count; i++)
2534 		buf[i] = BSWAP_16(buf[i]);
2535 }
2536 
2537 void
2538 byteswap_uint8_array(void *vbuf, size_t size)
2539 {
2540 	(void) vbuf, (void) size;
2541 }
2542 
2543 void
2544 dmu_init(void)
2545 {
2546 	abd_init();
2547 	zfs_dbgmsg_init();
2548 	sa_cache_init();
2549 	dmu_objset_init();
2550 	dnode_init();
2551 	zfetch_init();
2552 	dmu_tx_init();
2553 	l2arc_init();
2554 	arc_init();
2555 	dbuf_init();
2556 }
2557 
2558 void
2559 dmu_fini(void)
2560 {
2561 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2562 	l2arc_fini();
2563 	dmu_tx_fini();
2564 	zfetch_fini();
2565 	dbuf_fini();
2566 	dnode_fini();
2567 	dmu_objset_fini();
2568 	sa_cache_fini();
2569 	zfs_dbgmsg_fini();
2570 	abd_fini();
2571 }
2572 
2573 EXPORT_SYMBOL(dmu_bonus_hold);
2574 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2575 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2576 EXPORT_SYMBOL(dmu_buf_rele_array);
2577 EXPORT_SYMBOL(dmu_prefetch);
2578 EXPORT_SYMBOL(dmu_prefetch_by_dnode);
2579 EXPORT_SYMBOL(dmu_prefetch_dnode);
2580 EXPORT_SYMBOL(dmu_free_range);
2581 EXPORT_SYMBOL(dmu_free_long_range);
2582 EXPORT_SYMBOL(dmu_free_long_object);
2583 EXPORT_SYMBOL(dmu_read);
2584 EXPORT_SYMBOL(dmu_read_by_dnode);
2585 EXPORT_SYMBOL(dmu_write);
2586 EXPORT_SYMBOL(dmu_write_by_dnode);
2587 EXPORT_SYMBOL(dmu_prealloc);
2588 EXPORT_SYMBOL(dmu_object_info);
2589 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2590 EXPORT_SYMBOL(dmu_object_info_from_db);
2591 EXPORT_SYMBOL(dmu_object_size_from_db);
2592 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2593 EXPORT_SYMBOL(dmu_object_set_nlevels);
2594 EXPORT_SYMBOL(dmu_object_set_blocksize);
2595 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2596 EXPORT_SYMBOL(dmu_object_set_checksum);
2597 EXPORT_SYMBOL(dmu_object_set_compress);
2598 EXPORT_SYMBOL(dmu_offset_next);
2599 EXPORT_SYMBOL(dmu_write_policy);
2600 EXPORT_SYMBOL(dmu_sync);
2601 EXPORT_SYMBOL(dmu_request_arcbuf);
2602 EXPORT_SYMBOL(dmu_return_arcbuf);
2603 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2604 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2605 EXPORT_SYMBOL(dmu_buf_hold);
2606 EXPORT_SYMBOL(dmu_ot);
2607 
2608 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2609 	"Enable NOP writes");
2610 
2611 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2612 	"Percentage of dirtied blocks from frees in one TXG");
2613 
2614 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2615 	"Enable forcing txg sync to find holes");
2616 
2617 /* CSTYLED */
2618 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2619 	"Limit one prefetch call to this size");
2620