xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu.c (revision 354d7675fe12ace9cde344cb79c7ded792802f88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26  * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28  * Copyright (c) 2019 Datto Inc.
29  * Copyright (c) 2019, Klara Inc.
30  * Copyright (c) 2019, Allan Jude
31  */
32 
33 #include <sys/dmu.h>
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/dbuf.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
51 #include <sys/sa.h>
52 #include <sys/zfeature.h>
53 #include <sys/abd.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
57 #ifdef _KERNEL
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
60 #endif
61 
62 /*
63  * Enable/disable nopwrite feature.
64  */
65 static int zfs_nopwrite_enabled = 1;
66 
67 /*
68  * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69  * one TXG. After this threshold is crossed, additional dirty blocks from frees
70  * will wait until the next TXG.
71  * A value of zero will disable this throttle.
72  */
73 static unsigned long zfs_per_txg_dirty_frees_percent = 5;
74 
75 /*
76  * Enable/disable forcing txg sync when dirty checking for holes with lseek().
77  * By default this is enabled to ensure accurate hole reporting, it can result
78  * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
79  * Disabling this option will result in holes never being reported in dirty
80  * files which is always safe.
81  */
82 static int zfs_dmu_offset_next_sync = 1;
83 
84 /*
85  * Limit the amount we can prefetch with one call to this amount.  This
86  * helps to limit the amount of memory that can be used by prefetching.
87  * Larger objects should be prefetched a bit at a time.
88  */
89 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
90 
91 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
92 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "unallocated"		},
93 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "object directory"	},
94 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "object array"		},
95 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "packed nvlist"		},
96 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "packed nvlist size"	},
97 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj"			},
98 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj header"		},
99 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map header"	},
100 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA space map"		},
101 	{DMU_BSWAP_UINT64, TRUE,  FALSE, TRUE,  "ZIL intent log"	},
102 	{DMU_BSWAP_DNODE,  TRUE,  FALSE, TRUE,  "DMU dnode"		},
103 	{DMU_BSWAP_OBJSET, TRUE,  TRUE,  FALSE, "DMU objset"		},
104 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL directory"		},
105 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL directory child map"},
106 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset snap map"	},
107 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL props"		},
108 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL dataset"		},
109 	{DMU_BSWAP_ZNODE,  TRUE,  FALSE, FALSE, "ZFS znode"		},
110 	{DMU_BSWAP_OLDACL, TRUE,  FALSE, TRUE,  "ZFS V0 ACL"		},
111 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "ZFS plain file"	},
112 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS directory"		},
113 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "ZFS master node"	},
114 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS delete queue"	},
115 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "zvol object"		},
116 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "zvol prop"		},
117 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "other uint8[]"		},
118 	{DMU_BSWAP_UINT64, FALSE, FALSE, TRUE,  "other uint64[]"	},
119 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "other ZAP"		},
120 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "persistent error log"	},
121 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, FALSE, "SPA history"		},
122 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "SPA history offsets"	},
123 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "Pool properties"	},
124 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL permissions"	},
125 	{DMU_BSWAP_ACL,    TRUE,  FALSE, TRUE,  "ZFS ACL"		},
126 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "ZFS SYSACL"		},
127 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,  "FUID table"		},
128 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "FUID table size"	},
129 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dataset next clones"},
130 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan work queue"	},
131 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project used" },
132 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,  "ZFS user/group/project quota"},
133 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "snapshot refcount tags"},
134 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT ZAP algorithm"	},
135 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "DDT statistics"	},
136 	{DMU_BSWAP_UINT8,  TRUE,  FALSE, TRUE,	"System attributes"	},
137 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA master node"	},
138 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr registration"	},
139 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, TRUE,	"SA attr layouts"	},
140 	{DMU_BSWAP_ZAP,    TRUE,  FALSE, FALSE, "scan translations"	},
141 	{DMU_BSWAP_UINT8,  FALSE, FALSE, TRUE,  "deduplicated block"	},
142 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL deadlist map"	},
143 	{DMU_BSWAP_UINT64, TRUE,  TRUE,  FALSE, "DSL deadlist map hdr"	},
144 	{DMU_BSWAP_ZAP,    TRUE,  TRUE,  FALSE, "DSL dir clones"	},
145 	{DMU_BSWAP_UINT64, TRUE,  FALSE, FALSE, "bpobj subobj"		}
146 };
147 
148 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
149 	{	byteswap_uint8_array,	"uint8"		},
150 	{	byteswap_uint16_array,	"uint16"	},
151 	{	byteswap_uint32_array,	"uint32"	},
152 	{	byteswap_uint64_array,	"uint64"	},
153 	{	zap_byteswap,		"zap"		},
154 	{	dnode_buf_byteswap,	"dnode"		},
155 	{	dmu_objset_byteswap,	"objset"	},
156 	{	zfs_znode_byteswap,	"znode"		},
157 	{	zfs_oldacl_byteswap,	"oldacl"	},
158 	{	zfs_acl_byteswap,	"acl"		}
159 };
160 
161 static int
162 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
163     const void *tag, dmu_buf_t **dbp)
164 {
165 	uint64_t blkid;
166 	dmu_buf_impl_t *db;
167 
168 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
169 	blkid = dbuf_whichblock(dn, 0, offset);
170 	db = dbuf_hold(dn, blkid, tag);
171 	rw_exit(&dn->dn_struct_rwlock);
172 
173 	if (db == NULL) {
174 		*dbp = NULL;
175 		return (SET_ERROR(EIO));
176 	}
177 
178 	*dbp = &db->db;
179 	return (0);
180 }
181 int
182 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
183     const void *tag, dmu_buf_t **dbp)
184 {
185 	dnode_t *dn;
186 	uint64_t blkid;
187 	dmu_buf_impl_t *db;
188 	int err;
189 
190 	err = dnode_hold(os, object, FTAG, &dn);
191 	if (err)
192 		return (err);
193 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
194 	blkid = dbuf_whichblock(dn, 0, offset);
195 	db = dbuf_hold(dn, blkid, tag);
196 	rw_exit(&dn->dn_struct_rwlock);
197 	dnode_rele(dn, FTAG);
198 
199 	if (db == NULL) {
200 		*dbp = NULL;
201 		return (SET_ERROR(EIO));
202 	}
203 
204 	*dbp = &db->db;
205 	return (err);
206 }
207 
208 int
209 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
210     const void *tag, dmu_buf_t **dbp, int flags)
211 {
212 	int err;
213 	int db_flags = DB_RF_CANFAIL;
214 
215 	if (flags & DMU_READ_NO_PREFETCH)
216 		db_flags |= DB_RF_NOPREFETCH;
217 	if (flags & DMU_READ_NO_DECRYPT)
218 		db_flags |= DB_RF_NO_DECRYPT;
219 
220 	err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
221 	if (err == 0) {
222 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
223 		err = dbuf_read(db, NULL, db_flags);
224 		if (err != 0) {
225 			dbuf_rele(db, tag);
226 			*dbp = NULL;
227 		}
228 	}
229 
230 	return (err);
231 }
232 
233 int
234 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
235     const void *tag, dmu_buf_t **dbp, int flags)
236 {
237 	int err;
238 	int db_flags = DB_RF_CANFAIL;
239 
240 	if (flags & DMU_READ_NO_PREFETCH)
241 		db_flags |= DB_RF_NOPREFETCH;
242 	if (flags & DMU_READ_NO_DECRYPT)
243 		db_flags |= DB_RF_NO_DECRYPT;
244 
245 	err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
246 	if (err == 0) {
247 		dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
248 		err = dbuf_read(db, NULL, db_flags);
249 		if (err != 0) {
250 			dbuf_rele(db, tag);
251 			*dbp = NULL;
252 		}
253 	}
254 
255 	return (err);
256 }
257 
258 int
259 dmu_bonus_max(void)
260 {
261 	return (DN_OLD_MAX_BONUSLEN);
262 }
263 
264 int
265 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
266 {
267 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
268 	dnode_t *dn;
269 	int error;
270 
271 	DB_DNODE_ENTER(db);
272 	dn = DB_DNODE(db);
273 
274 	if (dn->dn_bonus != db) {
275 		error = SET_ERROR(EINVAL);
276 	} else if (newsize < 0 || newsize > db_fake->db_size) {
277 		error = SET_ERROR(EINVAL);
278 	} else {
279 		dnode_setbonuslen(dn, newsize, tx);
280 		error = 0;
281 	}
282 
283 	DB_DNODE_EXIT(db);
284 	return (error);
285 }
286 
287 int
288 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
289 {
290 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
291 	dnode_t *dn;
292 	int error;
293 
294 	DB_DNODE_ENTER(db);
295 	dn = DB_DNODE(db);
296 
297 	if (!DMU_OT_IS_VALID(type)) {
298 		error = SET_ERROR(EINVAL);
299 	} else if (dn->dn_bonus != db) {
300 		error = SET_ERROR(EINVAL);
301 	} else {
302 		dnode_setbonus_type(dn, type, tx);
303 		error = 0;
304 	}
305 
306 	DB_DNODE_EXIT(db);
307 	return (error);
308 }
309 
310 dmu_object_type_t
311 dmu_get_bonustype(dmu_buf_t *db_fake)
312 {
313 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
314 	dnode_t *dn;
315 	dmu_object_type_t type;
316 
317 	DB_DNODE_ENTER(db);
318 	dn = DB_DNODE(db);
319 	type = dn->dn_bonustype;
320 	DB_DNODE_EXIT(db);
321 
322 	return (type);
323 }
324 
325 int
326 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
327 {
328 	dnode_t *dn;
329 	int error;
330 
331 	error = dnode_hold(os, object, FTAG, &dn);
332 	dbuf_rm_spill(dn, tx);
333 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
334 	dnode_rm_spill(dn, tx);
335 	rw_exit(&dn->dn_struct_rwlock);
336 	dnode_rele(dn, FTAG);
337 	return (error);
338 }
339 
340 /*
341  * Lookup and hold the bonus buffer for the provided dnode.  If the dnode
342  * has not yet been allocated a new bonus dbuf a will be allocated.
343  * Returns ENOENT, EIO, or 0.
344  */
345 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
346     uint32_t flags)
347 {
348 	dmu_buf_impl_t *db;
349 	int error;
350 	uint32_t db_flags = DB_RF_MUST_SUCCEED;
351 
352 	if (flags & DMU_READ_NO_PREFETCH)
353 		db_flags |= DB_RF_NOPREFETCH;
354 	if (flags & DMU_READ_NO_DECRYPT)
355 		db_flags |= DB_RF_NO_DECRYPT;
356 
357 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
358 	if (dn->dn_bonus == NULL) {
359 		rw_exit(&dn->dn_struct_rwlock);
360 		rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
361 		if (dn->dn_bonus == NULL)
362 			dbuf_create_bonus(dn);
363 	}
364 	db = dn->dn_bonus;
365 
366 	/* as long as the bonus buf is held, the dnode will be held */
367 	if (zfs_refcount_add(&db->db_holds, tag) == 1) {
368 		VERIFY(dnode_add_ref(dn, db));
369 		atomic_inc_32(&dn->dn_dbufs_count);
370 	}
371 
372 	/*
373 	 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
374 	 * hold and incrementing the dbuf count to ensure that dnode_move() sees
375 	 * a dnode hold for every dbuf.
376 	 */
377 	rw_exit(&dn->dn_struct_rwlock);
378 
379 	error = dbuf_read(db, NULL, db_flags);
380 	if (error) {
381 		dnode_evict_bonus(dn);
382 		dbuf_rele(db, tag);
383 		*dbp = NULL;
384 		return (error);
385 	}
386 
387 	*dbp = &db->db;
388 	return (0);
389 }
390 
391 int
392 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
393 {
394 	dnode_t *dn;
395 	int error;
396 
397 	error = dnode_hold(os, object, FTAG, &dn);
398 	if (error)
399 		return (error);
400 
401 	error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
402 	dnode_rele(dn, FTAG);
403 
404 	return (error);
405 }
406 
407 /*
408  * returns ENOENT, EIO, or 0.
409  *
410  * This interface will allocate a blank spill dbuf when a spill blk
411  * doesn't already exist on the dnode.
412  *
413  * if you only want to find an already existing spill db, then
414  * dmu_spill_hold_existing() should be used.
415  */
416 int
417 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
418     dmu_buf_t **dbp)
419 {
420 	dmu_buf_impl_t *db = NULL;
421 	int err;
422 
423 	if ((flags & DB_RF_HAVESTRUCT) == 0)
424 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
425 
426 	db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
427 
428 	if ((flags & DB_RF_HAVESTRUCT) == 0)
429 		rw_exit(&dn->dn_struct_rwlock);
430 
431 	if (db == NULL) {
432 		*dbp = NULL;
433 		return (SET_ERROR(EIO));
434 	}
435 	err = dbuf_read(db, NULL, flags);
436 	if (err == 0)
437 		*dbp = &db->db;
438 	else {
439 		dbuf_rele(db, tag);
440 		*dbp = NULL;
441 	}
442 	return (err);
443 }
444 
445 int
446 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
447 {
448 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
449 	dnode_t *dn;
450 	int err;
451 
452 	DB_DNODE_ENTER(db);
453 	dn = DB_DNODE(db);
454 
455 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
456 		err = SET_ERROR(EINVAL);
457 	} else {
458 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
459 
460 		if (!dn->dn_have_spill) {
461 			err = SET_ERROR(ENOENT);
462 		} else {
463 			err = dmu_spill_hold_by_dnode(dn,
464 			    DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
465 		}
466 
467 		rw_exit(&dn->dn_struct_rwlock);
468 	}
469 
470 	DB_DNODE_EXIT(db);
471 	return (err);
472 }
473 
474 int
475 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
476     dmu_buf_t **dbp)
477 {
478 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
479 	dnode_t *dn;
480 	int err;
481 	uint32_t db_flags = DB_RF_CANFAIL;
482 
483 	if (flags & DMU_READ_NO_DECRYPT)
484 		db_flags |= DB_RF_NO_DECRYPT;
485 
486 	DB_DNODE_ENTER(db);
487 	dn = DB_DNODE(db);
488 	err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
489 	DB_DNODE_EXIT(db);
490 
491 	return (err);
492 }
493 
494 /*
495  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
496  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
497  * and can induce severe lock contention when writing to several files
498  * whose dnodes are in the same block.
499  */
500 int
501 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
502     boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
503     uint32_t flags)
504 {
505 	dmu_buf_t **dbp;
506 	zstream_t *zs = NULL;
507 	uint64_t blkid, nblks, i;
508 	uint32_t dbuf_flags;
509 	int err;
510 	zio_t *zio = NULL;
511 	boolean_t missed = B_FALSE;
512 
513 	ASSERT(length <= DMU_MAX_ACCESS);
514 
515 	/*
516 	 * Note: We directly notify the prefetch code of this read, so that
517 	 * we can tell it about the multi-block read.  dbuf_read() only knows
518 	 * about the one block it is accessing.
519 	 */
520 	dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
521 	    DB_RF_NOPREFETCH;
522 
523 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
524 	if (dn->dn_datablkshift) {
525 		int blkshift = dn->dn_datablkshift;
526 		nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
527 		    P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
528 	} else {
529 		if (offset + length > dn->dn_datablksz) {
530 			zfs_panic_recover("zfs: accessing past end of object "
531 			    "%llx/%llx (size=%u access=%llu+%llu)",
532 			    (longlong_t)dn->dn_objset->
533 			    os_dsl_dataset->ds_object,
534 			    (longlong_t)dn->dn_object, dn->dn_datablksz,
535 			    (longlong_t)offset, (longlong_t)length);
536 			rw_exit(&dn->dn_struct_rwlock);
537 			return (SET_ERROR(EIO));
538 		}
539 		nblks = 1;
540 	}
541 	dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
542 
543 	if (read)
544 		zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
545 		    ZIO_FLAG_CANFAIL);
546 	blkid = dbuf_whichblock(dn, 0, offset);
547 	if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
548 	    DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
549 		/*
550 		 * Prepare the zfetch before initiating the demand reads, so
551 		 * that if multiple threads block on same indirect block, we
552 		 * base predictions on the original less racy request order.
553 		 */
554 		zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks,
555 		    read && DNODE_IS_CACHEABLE(dn), B_TRUE);
556 	}
557 	for (i = 0; i < nblks; i++) {
558 		dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
559 		if (db == NULL) {
560 			if (zs)
561 				dmu_zfetch_run(zs, missed, B_TRUE);
562 			rw_exit(&dn->dn_struct_rwlock);
563 			dmu_buf_rele_array(dbp, nblks, tag);
564 			if (read)
565 				zio_nowait(zio);
566 			return (SET_ERROR(EIO));
567 		}
568 
569 		/*
570 		 * Initiate async demand data read.
571 		 * We check the db_state after calling dbuf_read() because
572 		 * (1) dbuf_read() may change the state to CACHED due to a
573 		 * hit in the ARC, and (2) on a cache miss, a child will
574 		 * have been added to "zio" but not yet completed, so the
575 		 * state will not yet be CACHED.
576 		 */
577 		if (read) {
578 			(void) dbuf_read(db, zio, dbuf_flags);
579 			if (db->db_state != DB_CACHED)
580 				missed = B_TRUE;
581 		}
582 		dbp[i] = &db->db;
583 	}
584 
585 	if (!read)
586 		zfs_racct_write(length, nblks);
587 
588 	if (zs)
589 		dmu_zfetch_run(zs, missed, B_TRUE);
590 	rw_exit(&dn->dn_struct_rwlock);
591 
592 	if (read) {
593 		/* wait for async read i/o */
594 		err = zio_wait(zio);
595 		if (err) {
596 			dmu_buf_rele_array(dbp, nblks, tag);
597 			return (err);
598 		}
599 
600 		/* wait for other io to complete */
601 		for (i = 0; i < nblks; i++) {
602 			dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
603 			mutex_enter(&db->db_mtx);
604 			while (db->db_state == DB_READ ||
605 			    db->db_state == DB_FILL)
606 				cv_wait(&db->db_changed, &db->db_mtx);
607 			if (db->db_state == DB_UNCACHED)
608 				err = SET_ERROR(EIO);
609 			mutex_exit(&db->db_mtx);
610 			if (err) {
611 				dmu_buf_rele_array(dbp, nblks, tag);
612 				return (err);
613 			}
614 		}
615 	}
616 
617 	*numbufsp = nblks;
618 	*dbpp = dbp;
619 	return (0);
620 }
621 
622 int
623 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
624     uint64_t length, int read, const void *tag, int *numbufsp,
625     dmu_buf_t ***dbpp)
626 {
627 	dnode_t *dn;
628 	int err;
629 
630 	err = dnode_hold(os, object, FTAG, &dn);
631 	if (err)
632 		return (err);
633 
634 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
635 	    numbufsp, dbpp, DMU_READ_PREFETCH);
636 
637 	dnode_rele(dn, FTAG);
638 
639 	return (err);
640 }
641 
642 int
643 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
644     uint64_t length, boolean_t read, const void *tag, int *numbufsp,
645     dmu_buf_t ***dbpp)
646 {
647 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
648 	dnode_t *dn;
649 	int err;
650 
651 	DB_DNODE_ENTER(db);
652 	dn = DB_DNODE(db);
653 	err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
654 	    numbufsp, dbpp, DMU_READ_PREFETCH);
655 	DB_DNODE_EXIT(db);
656 
657 	return (err);
658 }
659 
660 void
661 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
662 {
663 	int i;
664 	dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
665 
666 	if (numbufs == 0)
667 		return;
668 
669 	for (i = 0; i < numbufs; i++) {
670 		if (dbp[i])
671 			dbuf_rele(dbp[i], tag);
672 	}
673 
674 	kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
675 }
676 
677 /*
678  * Issue prefetch i/os for the given blocks.  If level is greater than 0, the
679  * indirect blocks prefetched will be those that point to the blocks containing
680  * the data starting at offset, and continuing to offset + len.
681  *
682  * Note that if the indirect blocks above the blocks being prefetched are not
683  * in cache, they will be asynchronously read in.
684  */
685 void
686 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
687     uint64_t len, zio_priority_t pri)
688 {
689 	dnode_t *dn;
690 	uint64_t blkid;
691 	int nblks, err;
692 
693 	if (len == 0) {  /* they're interested in the bonus buffer */
694 		dn = DMU_META_DNODE(os);
695 
696 		if (object == 0 || object >= DN_MAX_OBJECT)
697 			return;
698 
699 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
700 		blkid = dbuf_whichblock(dn, level,
701 		    object * sizeof (dnode_phys_t));
702 		dbuf_prefetch(dn, level, blkid, pri, 0);
703 		rw_exit(&dn->dn_struct_rwlock);
704 		return;
705 	}
706 
707 	/*
708 	 * See comment before the definition of dmu_prefetch_max.
709 	 */
710 	len = MIN(len, dmu_prefetch_max);
711 
712 	/*
713 	 * XXX - Note, if the dnode for the requested object is not
714 	 * already cached, we will do a *synchronous* read in the
715 	 * dnode_hold() call.  The same is true for any indirects.
716 	 */
717 	err = dnode_hold(os, object, FTAG, &dn);
718 	if (err != 0)
719 		return;
720 
721 	/*
722 	 * offset + len - 1 is the last byte we want to prefetch for, and offset
723 	 * is the first.  Then dbuf_whichblk(dn, level, off + len - 1) is the
724 	 * last block we want to prefetch, and dbuf_whichblock(dn, level,
725 	 * offset)  is the first.  Then the number we need to prefetch is the
726 	 * last - first + 1.
727 	 */
728 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
729 	if (level > 0 || dn->dn_datablkshift != 0) {
730 		nblks = dbuf_whichblock(dn, level, offset + len - 1) -
731 		    dbuf_whichblock(dn, level, offset) + 1;
732 	} else {
733 		nblks = (offset < dn->dn_datablksz);
734 	}
735 
736 	if (nblks != 0) {
737 		blkid = dbuf_whichblock(dn, level, offset);
738 		for (int i = 0; i < nblks; i++)
739 			dbuf_prefetch(dn, level, blkid + i, pri, 0);
740 	}
741 	rw_exit(&dn->dn_struct_rwlock);
742 
743 	dnode_rele(dn, FTAG);
744 }
745 
746 /*
747  * Get the next "chunk" of file data to free.  We traverse the file from
748  * the end so that the file gets shorter over time (if we crashes in the
749  * middle, this will leave us in a better state).  We find allocated file
750  * data by simply searching the allocated level 1 indirects.
751  *
752  * On input, *start should be the first offset that does not need to be
753  * freed (e.g. "offset + length").  On return, *start will be the first
754  * offset that should be freed and l1blks is set to the number of level 1
755  * indirect blocks found within the chunk.
756  */
757 static int
758 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
759 {
760 	uint64_t blks;
761 	uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
762 	/* bytes of data covered by a level-1 indirect block */
763 	uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
764 	    EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
765 
766 	ASSERT3U(minimum, <=, *start);
767 
768 	/*
769 	 * Check if we can free the entire range assuming that all of the
770 	 * L1 blocks in this range have data. If we can, we use this
771 	 * worst case value as an estimate so we can avoid having to look
772 	 * at the object's actual data.
773 	 */
774 	uint64_t total_l1blks =
775 	    (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
776 	    iblkrange;
777 	if (total_l1blks <= maxblks) {
778 		*l1blks = total_l1blks;
779 		*start = minimum;
780 		return (0);
781 	}
782 	ASSERT(ISP2(iblkrange));
783 
784 	for (blks = 0; *start > minimum && blks < maxblks; blks++) {
785 		int err;
786 
787 		/*
788 		 * dnode_next_offset(BACKWARDS) will find an allocated L1
789 		 * indirect block at or before the input offset.  We must
790 		 * decrement *start so that it is at the end of the region
791 		 * to search.
792 		 */
793 		(*start)--;
794 
795 		err = dnode_next_offset(dn,
796 		    DNODE_FIND_BACKWARDS, start, 2, 1, 0);
797 
798 		/* if there are no indirect blocks before start, we are done */
799 		if (err == ESRCH) {
800 			*start = minimum;
801 			break;
802 		} else if (err != 0) {
803 			*l1blks = blks;
804 			return (err);
805 		}
806 
807 		/* set start to the beginning of this L1 indirect */
808 		*start = P2ALIGN(*start, iblkrange);
809 	}
810 	if (*start < minimum)
811 		*start = minimum;
812 	*l1blks = blks;
813 
814 	return (0);
815 }
816 
817 /*
818  * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
819  * otherwise return false.
820  * Used below in dmu_free_long_range_impl() to enable abort when unmounting
821  */
822 static boolean_t
823 dmu_objset_zfs_unmounting(objset_t *os)
824 {
825 #ifdef _KERNEL
826 	if (dmu_objset_type(os) == DMU_OST_ZFS)
827 		return (zfs_get_vfs_flag_unmounted(os));
828 #else
829 	(void) os;
830 #endif
831 	return (B_FALSE);
832 }
833 
834 static int
835 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
836     uint64_t length)
837 {
838 	uint64_t object_size;
839 	int err;
840 	uint64_t dirty_frees_threshold;
841 	dsl_pool_t *dp = dmu_objset_pool(os);
842 
843 	if (dn == NULL)
844 		return (SET_ERROR(EINVAL));
845 
846 	object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
847 	if (offset >= object_size)
848 		return (0);
849 
850 	if (zfs_per_txg_dirty_frees_percent <= 100)
851 		dirty_frees_threshold =
852 		    zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
853 	else
854 		dirty_frees_threshold = zfs_dirty_data_max / 20;
855 
856 	if (length == DMU_OBJECT_END || offset + length > object_size)
857 		length = object_size - offset;
858 
859 	while (length != 0) {
860 		uint64_t chunk_end, chunk_begin, chunk_len;
861 		uint64_t l1blks;
862 		dmu_tx_t *tx;
863 
864 		if (dmu_objset_zfs_unmounting(dn->dn_objset))
865 			return (SET_ERROR(EINTR));
866 
867 		chunk_end = chunk_begin = offset + length;
868 
869 		/* move chunk_begin backwards to the beginning of this chunk */
870 		err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
871 		if (err)
872 			return (err);
873 		ASSERT3U(chunk_begin, >=, offset);
874 		ASSERT3U(chunk_begin, <=, chunk_end);
875 
876 		chunk_len = chunk_end - chunk_begin;
877 
878 		tx = dmu_tx_create(os);
879 		dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
880 
881 		/*
882 		 * Mark this transaction as typically resulting in a net
883 		 * reduction in space used.
884 		 */
885 		dmu_tx_mark_netfree(tx);
886 		err = dmu_tx_assign(tx, TXG_WAIT);
887 		if (err) {
888 			dmu_tx_abort(tx);
889 			return (err);
890 		}
891 
892 		uint64_t txg = dmu_tx_get_txg(tx);
893 
894 		mutex_enter(&dp->dp_lock);
895 		uint64_t long_free_dirty =
896 		    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
897 		mutex_exit(&dp->dp_lock);
898 
899 		/*
900 		 * To avoid filling up a TXG with just frees, wait for
901 		 * the next TXG to open before freeing more chunks if
902 		 * we have reached the threshold of frees.
903 		 */
904 		if (dirty_frees_threshold != 0 &&
905 		    long_free_dirty >= dirty_frees_threshold) {
906 			DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
907 			dmu_tx_commit(tx);
908 			txg_wait_open(dp, 0, B_TRUE);
909 			continue;
910 		}
911 
912 		/*
913 		 * In order to prevent unnecessary write throttling, for each
914 		 * TXG, we track the cumulative size of L1 blocks being dirtied
915 		 * in dnode_free_range() below. We compare this number to a
916 		 * tunable threshold, past which we prevent new L1 dirty freeing
917 		 * blocks from being added into the open TXG. See
918 		 * dmu_free_long_range_impl() for details. The threshold
919 		 * prevents write throttle activation due to dirty freeing L1
920 		 * blocks taking up a large percentage of zfs_dirty_data_max.
921 		 */
922 		mutex_enter(&dp->dp_lock);
923 		dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
924 		    l1blks << dn->dn_indblkshift;
925 		mutex_exit(&dp->dp_lock);
926 		DTRACE_PROBE3(free__long__range,
927 		    uint64_t, long_free_dirty, uint64_t, chunk_len,
928 		    uint64_t, txg);
929 		dnode_free_range(dn, chunk_begin, chunk_len, tx);
930 
931 		dmu_tx_commit(tx);
932 
933 		length -= chunk_len;
934 	}
935 	return (0);
936 }
937 
938 int
939 dmu_free_long_range(objset_t *os, uint64_t object,
940     uint64_t offset, uint64_t length)
941 {
942 	dnode_t *dn;
943 	int err;
944 
945 	err = dnode_hold(os, object, FTAG, &dn);
946 	if (err != 0)
947 		return (err);
948 	err = dmu_free_long_range_impl(os, dn, offset, length);
949 
950 	/*
951 	 * It is important to zero out the maxblkid when freeing the entire
952 	 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
953 	 * will take the fast path, and (b) dnode_reallocate() can verify
954 	 * that the entire file has been freed.
955 	 */
956 	if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
957 		dn->dn_maxblkid = 0;
958 
959 	dnode_rele(dn, FTAG);
960 	return (err);
961 }
962 
963 int
964 dmu_free_long_object(objset_t *os, uint64_t object)
965 {
966 	dmu_tx_t *tx;
967 	int err;
968 
969 	err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
970 	if (err != 0)
971 		return (err);
972 
973 	tx = dmu_tx_create(os);
974 	dmu_tx_hold_bonus(tx, object);
975 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
976 	dmu_tx_mark_netfree(tx);
977 	err = dmu_tx_assign(tx, TXG_WAIT);
978 	if (err == 0) {
979 		err = dmu_object_free(os, object, tx);
980 		dmu_tx_commit(tx);
981 	} else {
982 		dmu_tx_abort(tx);
983 	}
984 
985 	return (err);
986 }
987 
988 int
989 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
990     uint64_t size, dmu_tx_t *tx)
991 {
992 	dnode_t *dn;
993 	int err = dnode_hold(os, object, FTAG, &dn);
994 	if (err)
995 		return (err);
996 	ASSERT(offset < UINT64_MAX);
997 	ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
998 	dnode_free_range(dn, offset, size, tx);
999 	dnode_rele(dn, FTAG);
1000 	return (0);
1001 }
1002 
1003 static int
1004 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1005     void *buf, uint32_t flags)
1006 {
1007 	dmu_buf_t **dbp;
1008 	int numbufs, err = 0;
1009 
1010 	/*
1011 	 * Deal with odd block sizes, where there can't be data past the first
1012 	 * block.  If we ever do the tail block optimization, we will need to
1013 	 * handle that here as well.
1014 	 */
1015 	if (dn->dn_maxblkid == 0) {
1016 		uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1017 		    MIN(size, dn->dn_datablksz - offset);
1018 		memset((char *)buf + newsz, 0, size - newsz);
1019 		size = newsz;
1020 	}
1021 
1022 	while (size > 0) {
1023 		uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1024 		int i;
1025 
1026 		/*
1027 		 * NB: we could do this block-at-a-time, but it's nice
1028 		 * to be reading in parallel.
1029 		 */
1030 		err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1031 		    TRUE, FTAG, &numbufs, &dbp, flags);
1032 		if (err)
1033 			break;
1034 
1035 		for (i = 0; i < numbufs; i++) {
1036 			uint64_t tocpy;
1037 			int64_t bufoff;
1038 			dmu_buf_t *db = dbp[i];
1039 
1040 			ASSERT(size > 0);
1041 
1042 			bufoff = offset - db->db_offset;
1043 			tocpy = MIN(db->db_size - bufoff, size);
1044 
1045 			(void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1046 
1047 			offset += tocpy;
1048 			size -= tocpy;
1049 			buf = (char *)buf + tocpy;
1050 		}
1051 		dmu_buf_rele_array(dbp, numbufs, FTAG);
1052 	}
1053 	return (err);
1054 }
1055 
1056 int
1057 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1058     void *buf, uint32_t flags)
1059 {
1060 	dnode_t *dn;
1061 	int err;
1062 
1063 	err = dnode_hold(os, object, FTAG, &dn);
1064 	if (err != 0)
1065 		return (err);
1066 
1067 	err = dmu_read_impl(dn, offset, size, buf, flags);
1068 	dnode_rele(dn, FTAG);
1069 	return (err);
1070 }
1071 
1072 int
1073 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1074     uint32_t flags)
1075 {
1076 	return (dmu_read_impl(dn, offset, size, buf, flags));
1077 }
1078 
1079 static void
1080 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1081     const void *buf, dmu_tx_t *tx)
1082 {
1083 	int i;
1084 
1085 	for (i = 0; i < numbufs; i++) {
1086 		uint64_t tocpy;
1087 		int64_t bufoff;
1088 		dmu_buf_t *db = dbp[i];
1089 
1090 		ASSERT(size > 0);
1091 
1092 		bufoff = offset - db->db_offset;
1093 		tocpy = MIN(db->db_size - bufoff, size);
1094 
1095 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1096 
1097 		if (tocpy == db->db_size)
1098 			dmu_buf_will_fill(db, tx);
1099 		else
1100 			dmu_buf_will_dirty(db, tx);
1101 
1102 		(void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1103 
1104 		if (tocpy == db->db_size)
1105 			dmu_buf_fill_done(db, tx);
1106 
1107 		offset += tocpy;
1108 		size -= tocpy;
1109 		buf = (char *)buf + tocpy;
1110 	}
1111 }
1112 
1113 void
1114 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1115     const void *buf, dmu_tx_t *tx)
1116 {
1117 	dmu_buf_t **dbp;
1118 	int numbufs;
1119 
1120 	if (size == 0)
1121 		return;
1122 
1123 	VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1124 	    FALSE, FTAG, &numbufs, &dbp));
1125 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1126 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1127 }
1128 
1129 /*
1130  * Note: Lustre is an external consumer of this interface.
1131  */
1132 void
1133 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1134     const void *buf, dmu_tx_t *tx)
1135 {
1136 	dmu_buf_t **dbp;
1137 	int numbufs;
1138 
1139 	if (size == 0)
1140 		return;
1141 
1142 	VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1143 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1144 	dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1145 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1146 }
1147 
1148 void
1149 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1150     dmu_tx_t *tx)
1151 {
1152 	dmu_buf_t **dbp;
1153 	int numbufs, i;
1154 
1155 	if (size == 0)
1156 		return;
1157 
1158 	VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1159 	    FALSE, FTAG, &numbufs, &dbp));
1160 
1161 	for (i = 0; i < numbufs; i++) {
1162 		dmu_buf_t *db = dbp[i];
1163 
1164 		dmu_buf_will_not_fill(db, tx);
1165 	}
1166 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1167 }
1168 
1169 void
1170 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1171     void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1172     int compressed_size, int byteorder, dmu_tx_t *tx)
1173 {
1174 	dmu_buf_t *db;
1175 
1176 	ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1177 	ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1178 	VERIFY0(dmu_buf_hold_noread(os, object, offset,
1179 	    FTAG, &db));
1180 
1181 	dmu_buf_write_embedded(db,
1182 	    data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1183 	    uncompressed_size, compressed_size, byteorder, tx);
1184 
1185 	dmu_buf_rele(db, FTAG);
1186 }
1187 
1188 void
1189 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1190     dmu_tx_t *tx)
1191 {
1192 	int numbufs, i;
1193 	dmu_buf_t **dbp;
1194 
1195 	VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1196 	    &numbufs, &dbp));
1197 	for (i = 0; i < numbufs; i++)
1198 		dmu_buf_redact(dbp[i], tx);
1199 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1200 }
1201 
1202 #ifdef _KERNEL
1203 int
1204 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1205 {
1206 	dmu_buf_t **dbp;
1207 	int numbufs, i, err;
1208 
1209 	/*
1210 	 * NB: we could do this block-at-a-time, but it's nice
1211 	 * to be reading in parallel.
1212 	 */
1213 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1214 	    TRUE, FTAG, &numbufs, &dbp, 0);
1215 	if (err)
1216 		return (err);
1217 
1218 	for (i = 0; i < numbufs; i++) {
1219 		uint64_t tocpy;
1220 		int64_t bufoff;
1221 		dmu_buf_t *db = dbp[i];
1222 
1223 		ASSERT(size > 0);
1224 
1225 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1226 		tocpy = MIN(db->db_size - bufoff, size);
1227 
1228 		err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1229 		    UIO_READ, uio);
1230 
1231 		if (err)
1232 			break;
1233 
1234 		size -= tocpy;
1235 	}
1236 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1237 
1238 	return (err);
1239 }
1240 
1241 /*
1242  * Read 'size' bytes into the uio buffer.
1243  * From object zdb->db_object.
1244  * Starting at zfs_uio_offset(uio).
1245  *
1246  * If the caller already has a dbuf in the target object
1247  * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1248  * because we don't have to find the dnode_t for the object.
1249  */
1250 int
1251 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1252 {
1253 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1254 	dnode_t *dn;
1255 	int err;
1256 
1257 	if (size == 0)
1258 		return (0);
1259 
1260 	DB_DNODE_ENTER(db);
1261 	dn = DB_DNODE(db);
1262 	err = dmu_read_uio_dnode(dn, uio, size);
1263 	DB_DNODE_EXIT(db);
1264 
1265 	return (err);
1266 }
1267 
1268 /*
1269  * Read 'size' bytes into the uio buffer.
1270  * From the specified object
1271  * Starting at offset zfs_uio_offset(uio).
1272  */
1273 int
1274 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1275 {
1276 	dnode_t *dn;
1277 	int err;
1278 
1279 	if (size == 0)
1280 		return (0);
1281 
1282 	err = dnode_hold(os, object, FTAG, &dn);
1283 	if (err)
1284 		return (err);
1285 
1286 	err = dmu_read_uio_dnode(dn, uio, size);
1287 
1288 	dnode_rele(dn, FTAG);
1289 
1290 	return (err);
1291 }
1292 
1293 int
1294 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1295 {
1296 	dmu_buf_t **dbp;
1297 	int numbufs;
1298 	int err = 0;
1299 	int i;
1300 
1301 	err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1302 	    FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1303 	if (err)
1304 		return (err);
1305 
1306 	for (i = 0; i < numbufs; i++) {
1307 		uint64_t tocpy;
1308 		int64_t bufoff;
1309 		dmu_buf_t *db = dbp[i];
1310 
1311 		ASSERT(size > 0);
1312 
1313 		bufoff = zfs_uio_offset(uio) - db->db_offset;
1314 		tocpy = MIN(db->db_size - bufoff, size);
1315 
1316 		ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1317 
1318 		if (tocpy == db->db_size)
1319 			dmu_buf_will_fill(db, tx);
1320 		else
1321 			dmu_buf_will_dirty(db, tx);
1322 
1323 		/*
1324 		 * XXX zfs_uiomove could block forever (eg.nfs-backed
1325 		 * pages).  There needs to be a uiolockdown() function
1326 		 * to lock the pages in memory, so that zfs_uiomove won't
1327 		 * block.
1328 		 */
1329 		err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1330 		    tocpy, UIO_WRITE, uio);
1331 
1332 		if (tocpy == db->db_size)
1333 			dmu_buf_fill_done(db, tx);
1334 
1335 		if (err)
1336 			break;
1337 
1338 		size -= tocpy;
1339 	}
1340 
1341 	dmu_buf_rele_array(dbp, numbufs, FTAG);
1342 	return (err);
1343 }
1344 
1345 /*
1346  * Write 'size' bytes from the uio buffer.
1347  * To object zdb->db_object.
1348  * Starting at offset zfs_uio_offset(uio).
1349  *
1350  * If the caller already has a dbuf in the target object
1351  * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1352  * because we don't have to find the dnode_t for the object.
1353  */
1354 int
1355 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1356     dmu_tx_t *tx)
1357 {
1358 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1359 	dnode_t *dn;
1360 	int err;
1361 
1362 	if (size == 0)
1363 		return (0);
1364 
1365 	DB_DNODE_ENTER(db);
1366 	dn = DB_DNODE(db);
1367 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1368 	DB_DNODE_EXIT(db);
1369 
1370 	return (err);
1371 }
1372 
1373 /*
1374  * Write 'size' bytes from the uio buffer.
1375  * To the specified object.
1376  * Starting at offset zfs_uio_offset(uio).
1377  */
1378 int
1379 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1380     dmu_tx_t *tx)
1381 {
1382 	dnode_t *dn;
1383 	int err;
1384 
1385 	if (size == 0)
1386 		return (0);
1387 
1388 	err = dnode_hold(os, object, FTAG, &dn);
1389 	if (err)
1390 		return (err);
1391 
1392 	err = dmu_write_uio_dnode(dn, uio, size, tx);
1393 
1394 	dnode_rele(dn, FTAG);
1395 
1396 	return (err);
1397 }
1398 #endif /* _KERNEL */
1399 
1400 /*
1401  * Allocate a loaned anonymous arc buffer.
1402  */
1403 arc_buf_t *
1404 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1405 {
1406 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1407 
1408 	return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1409 }
1410 
1411 /*
1412  * Free a loaned arc buffer.
1413  */
1414 void
1415 dmu_return_arcbuf(arc_buf_t *buf)
1416 {
1417 	arc_return_buf(buf, FTAG);
1418 	arc_buf_destroy(buf, FTAG);
1419 }
1420 
1421 /*
1422  * A "lightweight" write is faster than a regular write (e.g.
1423  * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1424  * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t.  However, the
1425  * data can not be read or overwritten until the transaction's txg has been
1426  * synced.  This makes it appropriate for workloads that are known to be
1427  * (temporarily) write-only, like "zfs receive".
1428  *
1429  * A single block is written, starting at the specified offset in bytes.  If
1430  * the call is successful, it returns 0 and the provided abd has been
1431  * consumed (the caller should not free it).
1432  */
1433 int
1434 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1435     const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx)
1436 {
1437 	dbuf_dirty_record_t *dr =
1438 	    dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1439 	if (dr == NULL)
1440 		return (SET_ERROR(EIO));
1441 	dr->dt.dll.dr_abd = abd;
1442 	dr->dt.dll.dr_props = *zp;
1443 	dr->dt.dll.dr_flags = flags;
1444 	return (0);
1445 }
1446 
1447 /*
1448  * When possible directly assign passed loaned arc buffer to a dbuf.
1449  * If this is not possible copy the contents of passed arc buf via
1450  * dmu_write().
1451  */
1452 int
1453 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1454     dmu_tx_t *tx)
1455 {
1456 	dmu_buf_impl_t *db;
1457 	objset_t *os = dn->dn_objset;
1458 	uint64_t object = dn->dn_object;
1459 	uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1460 	uint64_t blkid;
1461 
1462 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
1463 	blkid = dbuf_whichblock(dn, 0, offset);
1464 	db = dbuf_hold(dn, blkid, FTAG);
1465 	if (db == NULL)
1466 		return (SET_ERROR(EIO));
1467 	rw_exit(&dn->dn_struct_rwlock);
1468 
1469 	/*
1470 	 * We can only assign if the offset is aligned and the arc buf is the
1471 	 * same size as the dbuf.
1472 	 */
1473 	if (offset == db->db.db_offset && blksz == db->db.db_size) {
1474 		zfs_racct_write(blksz, 1);
1475 		dbuf_assign_arcbuf(db, buf, tx);
1476 		dbuf_rele(db, FTAG);
1477 	} else {
1478 		/* compressed bufs must always be assignable to their dbuf */
1479 		ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1480 		ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1481 
1482 		dbuf_rele(db, FTAG);
1483 		dmu_write(os, object, offset, blksz, buf->b_data, tx);
1484 		dmu_return_arcbuf(buf);
1485 	}
1486 
1487 	return (0);
1488 }
1489 
1490 int
1491 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1492     dmu_tx_t *tx)
1493 {
1494 	int err;
1495 	dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1496 
1497 	DB_DNODE_ENTER(dbuf);
1498 	err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1499 	DB_DNODE_EXIT(dbuf);
1500 
1501 	return (err);
1502 }
1503 
1504 typedef struct {
1505 	dbuf_dirty_record_t	*dsa_dr;
1506 	dmu_sync_cb_t		*dsa_done;
1507 	zgd_t			*dsa_zgd;
1508 	dmu_tx_t		*dsa_tx;
1509 } dmu_sync_arg_t;
1510 
1511 static void
1512 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1513 {
1514 	(void) buf;
1515 	dmu_sync_arg_t *dsa = varg;
1516 	dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1517 	blkptr_t *bp = zio->io_bp;
1518 
1519 	if (zio->io_error == 0) {
1520 		if (BP_IS_HOLE(bp)) {
1521 			/*
1522 			 * A block of zeros may compress to a hole, but the
1523 			 * block size still needs to be known for replay.
1524 			 */
1525 			BP_SET_LSIZE(bp, db->db_size);
1526 		} else if (!BP_IS_EMBEDDED(bp)) {
1527 			ASSERT(BP_GET_LEVEL(bp) == 0);
1528 			BP_SET_FILL(bp, 1);
1529 		}
1530 	}
1531 }
1532 
1533 static void
1534 dmu_sync_late_arrival_ready(zio_t *zio)
1535 {
1536 	dmu_sync_ready(zio, NULL, zio->io_private);
1537 }
1538 
1539 static void
1540 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1541 {
1542 	(void) buf;
1543 	dmu_sync_arg_t *dsa = varg;
1544 	dbuf_dirty_record_t *dr = dsa->dsa_dr;
1545 	dmu_buf_impl_t *db = dr->dr_dbuf;
1546 	zgd_t *zgd = dsa->dsa_zgd;
1547 
1548 	/*
1549 	 * Record the vdev(s) backing this blkptr so they can be flushed after
1550 	 * the writes for the lwb have completed.
1551 	 */
1552 	if (zio->io_error == 0) {
1553 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1554 	}
1555 
1556 	mutex_enter(&db->db_mtx);
1557 	ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1558 	if (zio->io_error == 0) {
1559 		dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1560 		if (dr->dt.dl.dr_nopwrite) {
1561 			blkptr_t *bp = zio->io_bp;
1562 			blkptr_t *bp_orig = &zio->io_bp_orig;
1563 			uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1564 
1565 			ASSERT(BP_EQUAL(bp, bp_orig));
1566 			VERIFY(BP_EQUAL(bp, db->db_blkptr));
1567 			ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1568 			VERIFY(zio_checksum_table[chksum].ci_flags &
1569 			    ZCHECKSUM_FLAG_NOPWRITE);
1570 		}
1571 		dr->dt.dl.dr_overridden_by = *zio->io_bp;
1572 		dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1573 		dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1574 
1575 		/*
1576 		 * Old style holes are filled with all zeros, whereas
1577 		 * new-style holes maintain their lsize, type, level,
1578 		 * and birth time (see zio_write_compress). While we
1579 		 * need to reset the BP_SET_LSIZE() call that happened
1580 		 * in dmu_sync_ready for old style holes, we do *not*
1581 		 * want to wipe out the information contained in new
1582 		 * style holes. Thus, only zero out the block pointer if
1583 		 * it's an old style hole.
1584 		 */
1585 		if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1586 		    dr->dt.dl.dr_overridden_by.blk_birth == 0)
1587 			BP_ZERO(&dr->dt.dl.dr_overridden_by);
1588 	} else {
1589 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1590 	}
1591 	cv_broadcast(&db->db_changed);
1592 	mutex_exit(&db->db_mtx);
1593 
1594 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1595 
1596 	kmem_free(dsa, sizeof (*dsa));
1597 }
1598 
1599 static void
1600 dmu_sync_late_arrival_done(zio_t *zio)
1601 {
1602 	blkptr_t *bp = zio->io_bp;
1603 	dmu_sync_arg_t *dsa = zio->io_private;
1604 	zgd_t *zgd = dsa->dsa_zgd;
1605 
1606 	if (zio->io_error == 0) {
1607 		/*
1608 		 * Record the vdev(s) backing this blkptr so they can be
1609 		 * flushed after the writes for the lwb have completed.
1610 		 */
1611 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1612 
1613 		if (!BP_IS_HOLE(bp)) {
1614 			blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1615 			ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1616 			ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1617 			ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1618 			ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1619 			zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1620 		}
1621 	}
1622 
1623 	dmu_tx_commit(dsa->dsa_tx);
1624 
1625 	dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1626 
1627 	abd_free(zio->io_abd);
1628 	kmem_free(dsa, sizeof (*dsa));
1629 }
1630 
1631 static int
1632 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1633     zio_prop_t *zp, zbookmark_phys_t *zb)
1634 {
1635 	dmu_sync_arg_t *dsa;
1636 	dmu_tx_t *tx;
1637 
1638 	tx = dmu_tx_create(os);
1639 	dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1640 	if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1641 		dmu_tx_abort(tx);
1642 		/* Make zl_get_data do txg_waited_synced() */
1643 		return (SET_ERROR(EIO));
1644 	}
1645 
1646 	/*
1647 	 * In order to prevent the zgd's lwb from being free'd prior to
1648 	 * dmu_sync_late_arrival_done() being called, we have to ensure
1649 	 * the lwb's "max txg" takes this tx's txg into account.
1650 	 */
1651 	zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1652 
1653 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1654 	dsa->dsa_dr = NULL;
1655 	dsa->dsa_done = done;
1656 	dsa->dsa_zgd = zgd;
1657 	dsa->dsa_tx = tx;
1658 
1659 	/*
1660 	 * Since we are currently syncing this txg, it's nontrivial to
1661 	 * determine what BP to nopwrite against, so we disable nopwrite.
1662 	 *
1663 	 * When syncing, the db_blkptr is initially the BP of the previous
1664 	 * txg.  We can not nopwrite against it because it will be changed
1665 	 * (this is similar to the non-late-arrival case where the dbuf is
1666 	 * dirty in a future txg).
1667 	 *
1668 	 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1669 	 * We can not nopwrite against it because although the BP will not
1670 	 * (typically) be changed, the data has not yet been persisted to this
1671 	 * location.
1672 	 *
1673 	 * Finally, when dbuf_write_done() is called, it is theoretically
1674 	 * possible to always nopwrite, because the data that was written in
1675 	 * this txg is the same data that we are trying to write.  However we
1676 	 * would need to check that this dbuf is not dirty in any future
1677 	 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1678 	 * don't nopwrite in this case.
1679 	 */
1680 	zp->zp_nopwrite = B_FALSE;
1681 
1682 	zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1683 	    abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1684 	    zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1685 	    dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1686 	    dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1687 
1688 	return (0);
1689 }
1690 
1691 /*
1692  * Intent log support: sync the block associated with db to disk.
1693  * N.B. and XXX: the caller is responsible for making sure that the
1694  * data isn't changing while dmu_sync() is writing it.
1695  *
1696  * Return values:
1697  *
1698  *	EEXIST: this txg has already been synced, so there's nothing to do.
1699  *		The caller should not log the write.
1700  *
1701  *	ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1702  *		The caller should not log the write.
1703  *
1704  *	EALREADY: this block is already in the process of being synced.
1705  *		The caller should track its progress (somehow).
1706  *
1707  *	EIO: could not do the I/O.
1708  *		The caller should do a txg_wait_synced().
1709  *
1710  *	0: the I/O has been initiated.
1711  *		The caller should log this blkptr in the done callback.
1712  *		It is possible that the I/O will fail, in which case
1713  *		the error will be reported to the done callback and
1714  *		propagated to pio from zio_done().
1715  */
1716 int
1717 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1718 {
1719 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1720 	objset_t *os = db->db_objset;
1721 	dsl_dataset_t *ds = os->os_dsl_dataset;
1722 	dbuf_dirty_record_t *dr, *dr_next;
1723 	dmu_sync_arg_t *dsa;
1724 	zbookmark_phys_t zb;
1725 	zio_prop_t zp;
1726 	dnode_t *dn;
1727 
1728 	ASSERT(pio != NULL);
1729 	ASSERT(txg != 0);
1730 
1731 	SET_BOOKMARK(&zb, ds->ds_object,
1732 	    db->db.db_object, db->db_level, db->db_blkid);
1733 
1734 	DB_DNODE_ENTER(db);
1735 	dn = DB_DNODE(db);
1736 	dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1737 	DB_DNODE_EXIT(db);
1738 
1739 	/*
1740 	 * If we're frozen (running ziltest), we always need to generate a bp.
1741 	 */
1742 	if (txg > spa_freeze_txg(os->os_spa))
1743 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1744 
1745 	/*
1746 	 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1747 	 * and us.  If we determine that this txg is not yet syncing,
1748 	 * but it begins to sync a moment later, that's OK because the
1749 	 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1750 	 */
1751 	mutex_enter(&db->db_mtx);
1752 
1753 	if (txg <= spa_last_synced_txg(os->os_spa)) {
1754 		/*
1755 		 * This txg has already synced.  There's nothing to do.
1756 		 */
1757 		mutex_exit(&db->db_mtx);
1758 		return (SET_ERROR(EEXIST));
1759 	}
1760 
1761 	if (txg <= spa_syncing_txg(os->os_spa)) {
1762 		/*
1763 		 * This txg is currently syncing, so we can't mess with
1764 		 * the dirty record anymore; just write a new log block.
1765 		 */
1766 		mutex_exit(&db->db_mtx);
1767 		return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1768 	}
1769 
1770 	dr = dbuf_find_dirty_eq(db, txg);
1771 
1772 	if (dr == NULL) {
1773 		/*
1774 		 * There's no dr for this dbuf, so it must have been freed.
1775 		 * There's no need to log writes to freed blocks, so we're done.
1776 		 */
1777 		mutex_exit(&db->db_mtx);
1778 		return (SET_ERROR(ENOENT));
1779 	}
1780 
1781 	dr_next = list_next(&db->db_dirty_records, dr);
1782 	ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1783 
1784 	if (db->db_blkptr != NULL) {
1785 		/*
1786 		 * We need to fill in zgd_bp with the current blkptr so that
1787 		 * the nopwrite code can check if we're writing the same
1788 		 * data that's already on disk.  We can only nopwrite if we
1789 		 * are sure that after making the copy, db_blkptr will not
1790 		 * change until our i/o completes.  We ensure this by
1791 		 * holding the db_mtx, and only allowing nopwrite if the
1792 		 * block is not already dirty (see below).  This is verified
1793 		 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1794 		 * not changed.
1795 		 */
1796 		*zgd->zgd_bp = *db->db_blkptr;
1797 	}
1798 
1799 	/*
1800 	 * Assume the on-disk data is X, the current syncing data (in
1801 	 * txg - 1) is Y, and the current in-memory data is Z (currently
1802 	 * in dmu_sync).
1803 	 *
1804 	 * We usually want to perform a nopwrite if X and Z are the
1805 	 * same.  However, if Y is different (i.e. the BP is going to
1806 	 * change before this write takes effect), then a nopwrite will
1807 	 * be incorrect - we would override with X, which could have
1808 	 * been freed when Y was written.
1809 	 *
1810 	 * (Note that this is not a concern when we are nop-writing from
1811 	 * syncing context, because X and Y must be identical, because
1812 	 * all previous txgs have been synced.)
1813 	 *
1814 	 * Therefore, we disable nopwrite if the current BP could change
1815 	 * before this TXG.  There are two ways it could change: by
1816 	 * being dirty (dr_next is non-NULL), or by being freed
1817 	 * (dnode_block_freed()).  This behavior is verified by
1818 	 * zio_done(), which VERIFYs that the override BP is identical
1819 	 * to the on-disk BP.
1820 	 */
1821 	DB_DNODE_ENTER(db);
1822 	dn = DB_DNODE(db);
1823 	if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1824 		zp.zp_nopwrite = B_FALSE;
1825 	DB_DNODE_EXIT(db);
1826 
1827 	ASSERT(dr->dr_txg == txg);
1828 	if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1829 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1830 		/*
1831 		 * We have already issued a sync write for this buffer,
1832 		 * or this buffer has already been synced.  It could not
1833 		 * have been dirtied since, or we would have cleared the state.
1834 		 */
1835 		mutex_exit(&db->db_mtx);
1836 		return (SET_ERROR(EALREADY));
1837 	}
1838 
1839 	ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1840 	dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1841 	mutex_exit(&db->db_mtx);
1842 
1843 	dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1844 	dsa->dsa_dr = dr;
1845 	dsa->dsa_done = done;
1846 	dsa->dsa_zgd = zgd;
1847 	dsa->dsa_tx = NULL;
1848 
1849 	zio_nowait(arc_write(pio, os->os_spa, txg,
1850 	    zgd->zgd_bp, dr->dt.dl.dr_data, dbuf_is_l2cacheable(db),
1851 	    &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
1852 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1853 
1854 	return (0);
1855 }
1856 
1857 int
1858 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1859 {
1860 	dnode_t *dn;
1861 	int err;
1862 
1863 	err = dnode_hold(os, object, FTAG, &dn);
1864 	if (err)
1865 		return (err);
1866 	err = dnode_set_nlevels(dn, nlevels, tx);
1867 	dnode_rele(dn, FTAG);
1868 	return (err);
1869 }
1870 
1871 int
1872 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1873     dmu_tx_t *tx)
1874 {
1875 	dnode_t *dn;
1876 	int err;
1877 
1878 	err = dnode_hold(os, object, FTAG, &dn);
1879 	if (err)
1880 		return (err);
1881 	err = dnode_set_blksz(dn, size, ibs, tx);
1882 	dnode_rele(dn, FTAG);
1883 	return (err);
1884 }
1885 
1886 int
1887 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1888     dmu_tx_t *tx)
1889 {
1890 	dnode_t *dn;
1891 	int err;
1892 
1893 	err = dnode_hold(os, object, FTAG, &dn);
1894 	if (err)
1895 		return (err);
1896 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1897 	dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1898 	rw_exit(&dn->dn_struct_rwlock);
1899 	dnode_rele(dn, FTAG);
1900 	return (0);
1901 }
1902 
1903 void
1904 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1905     dmu_tx_t *tx)
1906 {
1907 	dnode_t *dn;
1908 
1909 	/*
1910 	 * Send streams include each object's checksum function.  This
1911 	 * check ensures that the receiving system can understand the
1912 	 * checksum function transmitted.
1913 	 */
1914 	ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1915 
1916 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1917 	ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1918 	dn->dn_checksum = checksum;
1919 	dnode_setdirty(dn, tx);
1920 	dnode_rele(dn, FTAG);
1921 }
1922 
1923 void
1924 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1925     dmu_tx_t *tx)
1926 {
1927 	dnode_t *dn;
1928 
1929 	/*
1930 	 * Send streams include each object's compression function.  This
1931 	 * check ensures that the receiving system can understand the
1932 	 * compression function transmitted.
1933 	 */
1934 	ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1935 
1936 	VERIFY0(dnode_hold(os, object, FTAG, &dn));
1937 	dn->dn_compress = compress;
1938 	dnode_setdirty(dn, tx);
1939 	dnode_rele(dn, FTAG);
1940 }
1941 
1942 /*
1943  * When the "redundant_metadata" property is set to "most", only indirect
1944  * blocks of this level and higher will have an additional ditto block.
1945  */
1946 static const int zfs_redundant_metadata_most_ditto_level = 2;
1947 
1948 void
1949 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1950 {
1951 	dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1952 	boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1953 	    (wp & WP_SPILL));
1954 	enum zio_checksum checksum = os->os_checksum;
1955 	enum zio_compress compress = os->os_compress;
1956 	uint8_t complevel = os->os_complevel;
1957 	enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1958 	boolean_t dedup = B_FALSE;
1959 	boolean_t nopwrite = B_FALSE;
1960 	boolean_t dedup_verify = os->os_dedup_verify;
1961 	boolean_t encrypt = B_FALSE;
1962 	int copies = os->os_copies;
1963 
1964 	/*
1965 	 * We maintain different write policies for each of the following
1966 	 * types of data:
1967 	 *	 1. metadata
1968 	 *	 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1969 	 *	 3. all other level 0 blocks
1970 	 */
1971 	if (ismd) {
1972 		/*
1973 		 * XXX -- we should design a compression algorithm
1974 		 * that specializes in arrays of bps.
1975 		 */
1976 		compress = zio_compress_select(os->os_spa,
1977 		    ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
1978 
1979 		/*
1980 		 * Metadata always gets checksummed.  If the data
1981 		 * checksum is multi-bit correctable, and it's not a
1982 		 * ZBT-style checksum, then it's suitable for metadata
1983 		 * as well.  Otherwise, the metadata checksum defaults
1984 		 * to fletcher4.
1985 		 */
1986 		if (!(zio_checksum_table[checksum].ci_flags &
1987 		    ZCHECKSUM_FLAG_METADATA) ||
1988 		    (zio_checksum_table[checksum].ci_flags &
1989 		    ZCHECKSUM_FLAG_EMBEDDED))
1990 			checksum = ZIO_CHECKSUM_FLETCHER_4;
1991 
1992 		if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1993 		    (os->os_redundant_metadata ==
1994 		    ZFS_REDUNDANT_METADATA_MOST &&
1995 		    (level >= zfs_redundant_metadata_most_ditto_level ||
1996 		    DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1997 			copies++;
1998 	} else if (wp & WP_NOFILL) {
1999 		ASSERT(level == 0);
2000 
2001 		/*
2002 		 * If we're writing preallocated blocks, we aren't actually
2003 		 * writing them so don't set any policy properties.  These
2004 		 * blocks are currently only used by an external subsystem
2005 		 * outside of zfs (i.e. dump) and not written by the zio
2006 		 * pipeline.
2007 		 */
2008 		compress = ZIO_COMPRESS_OFF;
2009 		checksum = ZIO_CHECKSUM_OFF;
2010 	} else {
2011 		compress = zio_compress_select(os->os_spa, dn->dn_compress,
2012 		    compress);
2013 		complevel = zio_complevel_select(os->os_spa, compress,
2014 		    complevel, complevel);
2015 
2016 		checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2017 		    zio_checksum_select(dn->dn_checksum, checksum) :
2018 		    dedup_checksum;
2019 
2020 		/*
2021 		 * Determine dedup setting.  If we are in dmu_sync(),
2022 		 * we won't actually dedup now because that's all
2023 		 * done in syncing context; but we do want to use the
2024 		 * dedup checksum.  If the checksum is not strong
2025 		 * enough to ensure unique signatures, force
2026 		 * dedup_verify.
2027 		 */
2028 		if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2029 			dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2030 			if (!(zio_checksum_table[checksum].ci_flags &
2031 			    ZCHECKSUM_FLAG_DEDUP))
2032 				dedup_verify = B_TRUE;
2033 		}
2034 
2035 		/*
2036 		 * Enable nopwrite if we have secure enough checksum
2037 		 * algorithm (see comment in zio_nop_write) and
2038 		 * compression is enabled.  We don't enable nopwrite if
2039 		 * dedup is enabled as the two features are mutually
2040 		 * exclusive.
2041 		 */
2042 		nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2043 		    ZCHECKSUM_FLAG_NOPWRITE) &&
2044 		    compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2045 	}
2046 
2047 	/*
2048 	 * All objects in an encrypted objset are protected from modification
2049 	 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2050 	 * in the bp, so we cannot use all copies. Encrypted objects are also
2051 	 * not subject to nopwrite since writing the same data will still
2052 	 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2053 	 * to avoid ambiguity in the dedup code since the DDT does not store
2054 	 * object types.
2055 	 */
2056 	if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2057 		encrypt = B_TRUE;
2058 
2059 		if (DMU_OT_IS_ENCRYPTED(type)) {
2060 			copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2061 			nopwrite = B_FALSE;
2062 		} else {
2063 			dedup = B_FALSE;
2064 		}
2065 
2066 		if (level <= 0 &&
2067 		    (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2068 			compress = ZIO_COMPRESS_EMPTY;
2069 		}
2070 	}
2071 
2072 	zp->zp_compress = compress;
2073 	zp->zp_complevel = complevel;
2074 	zp->zp_checksum = checksum;
2075 	zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2076 	zp->zp_level = level;
2077 	zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2078 	zp->zp_dedup = dedup;
2079 	zp->zp_dedup_verify = dedup && dedup_verify;
2080 	zp->zp_nopwrite = nopwrite;
2081 	zp->zp_encrypt = encrypt;
2082 	zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2083 	memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2084 	memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2085 	memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2086 	zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2087 	    os->os_zpl_special_smallblock : 0;
2088 
2089 	ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2090 }
2091 
2092 /*
2093  * This function is only called from zfs_holey_common() for zpl_llseek()
2094  * in order to determine the location of holes.  In order to accurately
2095  * report holes all dirty data must be synced to disk.  This causes extremely
2096  * poor performance when seeking for holes in a dirty file.  As a compromise,
2097  * only provide hole data when the dnode is clean.  When a dnode is dirty
2098  * report the dnode as having no holes which is always a safe thing to do.
2099  */
2100 int
2101 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2102 {
2103 	dnode_t *dn;
2104 	int err;
2105 
2106 restart:
2107 	err = dnode_hold(os, object, FTAG, &dn);
2108 	if (err)
2109 		return (err);
2110 
2111 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2112 
2113 	if (dnode_is_dirty(dn)) {
2114 		/*
2115 		 * If the zfs_dmu_offset_next_sync module option is enabled
2116 		 * then strict hole reporting has been requested.  Dirty
2117 		 * dnodes must be synced to disk to accurately report all
2118 		 * holes.  When disabled dirty dnodes are reported to not
2119 		 * have any holes which is always safe.
2120 		 *
2121 		 * When called by zfs_holey_common() the zp->z_rangelock
2122 		 * is held to prevent zfs_write() and mmap writeback from
2123 		 * re-dirtying the dnode after txg_wait_synced().
2124 		 */
2125 		if (zfs_dmu_offset_next_sync) {
2126 			rw_exit(&dn->dn_struct_rwlock);
2127 			dnode_rele(dn, FTAG);
2128 			txg_wait_synced(dmu_objset_pool(os), 0);
2129 			goto restart;
2130 		}
2131 
2132 		err = SET_ERROR(EBUSY);
2133 	} else {
2134 		err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2135 		    (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2136 	}
2137 
2138 	rw_exit(&dn->dn_struct_rwlock);
2139 	dnode_rele(dn, FTAG);
2140 
2141 	return (err);
2142 }
2143 
2144 void
2145 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2146 {
2147 	dnode_phys_t *dnp = dn->dn_phys;
2148 
2149 	doi->doi_data_block_size = dn->dn_datablksz;
2150 	doi->doi_metadata_block_size = dn->dn_indblkshift ?
2151 	    1ULL << dn->dn_indblkshift : 0;
2152 	doi->doi_type = dn->dn_type;
2153 	doi->doi_bonus_type = dn->dn_bonustype;
2154 	doi->doi_bonus_size = dn->dn_bonuslen;
2155 	doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2156 	doi->doi_indirection = dn->dn_nlevels;
2157 	doi->doi_checksum = dn->dn_checksum;
2158 	doi->doi_compress = dn->dn_compress;
2159 	doi->doi_nblkptr = dn->dn_nblkptr;
2160 	doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2161 	doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2162 	doi->doi_fill_count = 0;
2163 	for (int i = 0; i < dnp->dn_nblkptr; i++)
2164 		doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2165 }
2166 
2167 void
2168 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2169 {
2170 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2171 	mutex_enter(&dn->dn_mtx);
2172 
2173 	__dmu_object_info_from_dnode(dn, doi);
2174 
2175 	mutex_exit(&dn->dn_mtx);
2176 	rw_exit(&dn->dn_struct_rwlock);
2177 }
2178 
2179 /*
2180  * Get information on a DMU object.
2181  * If doi is NULL, just indicates whether the object exists.
2182  */
2183 int
2184 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2185 {
2186 	dnode_t *dn;
2187 	int err = dnode_hold(os, object, FTAG, &dn);
2188 
2189 	if (err)
2190 		return (err);
2191 
2192 	if (doi != NULL)
2193 		dmu_object_info_from_dnode(dn, doi);
2194 
2195 	dnode_rele(dn, FTAG);
2196 	return (0);
2197 }
2198 
2199 /*
2200  * As above, but faster; can be used when you have a held dbuf in hand.
2201  */
2202 void
2203 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2204 {
2205 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2206 
2207 	DB_DNODE_ENTER(db);
2208 	dmu_object_info_from_dnode(DB_DNODE(db), doi);
2209 	DB_DNODE_EXIT(db);
2210 }
2211 
2212 /*
2213  * Faster still when you only care about the size.
2214  */
2215 void
2216 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2217     u_longlong_t *nblk512)
2218 {
2219 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2220 	dnode_t *dn;
2221 
2222 	DB_DNODE_ENTER(db);
2223 	dn = DB_DNODE(db);
2224 
2225 	*blksize = dn->dn_datablksz;
2226 	/* add in number of slots used for the dnode itself */
2227 	*nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2228 	    SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2229 	DB_DNODE_EXIT(db);
2230 }
2231 
2232 void
2233 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2234 {
2235 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2236 	dnode_t *dn;
2237 
2238 	DB_DNODE_ENTER(db);
2239 	dn = DB_DNODE(db);
2240 	*dnsize = dn->dn_num_slots << DNODE_SHIFT;
2241 	DB_DNODE_EXIT(db);
2242 }
2243 
2244 void
2245 byteswap_uint64_array(void *vbuf, size_t size)
2246 {
2247 	uint64_t *buf = vbuf;
2248 	size_t count = size >> 3;
2249 	int i;
2250 
2251 	ASSERT((size & 7) == 0);
2252 
2253 	for (i = 0; i < count; i++)
2254 		buf[i] = BSWAP_64(buf[i]);
2255 }
2256 
2257 void
2258 byteswap_uint32_array(void *vbuf, size_t size)
2259 {
2260 	uint32_t *buf = vbuf;
2261 	size_t count = size >> 2;
2262 	int i;
2263 
2264 	ASSERT((size & 3) == 0);
2265 
2266 	for (i = 0; i < count; i++)
2267 		buf[i] = BSWAP_32(buf[i]);
2268 }
2269 
2270 void
2271 byteswap_uint16_array(void *vbuf, size_t size)
2272 {
2273 	uint16_t *buf = vbuf;
2274 	size_t count = size >> 1;
2275 	int i;
2276 
2277 	ASSERT((size & 1) == 0);
2278 
2279 	for (i = 0; i < count; i++)
2280 		buf[i] = BSWAP_16(buf[i]);
2281 }
2282 
2283 void
2284 byteswap_uint8_array(void *vbuf, size_t size)
2285 {
2286 	(void) vbuf, (void) size;
2287 }
2288 
2289 void
2290 dmu_init(void)
2291 {
2292 	abd_init();
2293 	zfs_dbgmsg_init();
2294 	sa_cache_init();
2295 	dmu_objset_init();
2296 	dnode_init();
2297 	zfetch_init();
2298 	dmu_tx_init();
2299 	l2arc_init();
2300 	arc_init();
2301 	dbuf_init();
2302 }
2303 
2304 void
2305 dmu_fini(void)
2306 {
2307 	arc_fini(); /* arc depends on l2arc, so arc must go first */
2308 	l2arc_fini();
2309 	dmu_tx_fini();
2310 	zfetch_fini();
2311 	dbuf_fini();
2312 	dnode_fini();
2313 	dmu_objset_fini();
2314 	sa_cache_fini();
2315 	zfs_dbgmsg_fini();
2316 	abd_fini();
2317 }
2318 
2319 EXPORT_SYMBOL(dmu_bonus_hold);
2320 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2321 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2322 EXPORT_SYMBOL(dmu_buf_rele_array);
2323 EXPORT_SYMBOL(dmu_prefetch);
2324 EXPORT_SYMBOL(dmu_free_range);
2325 EXPORT_SYMBOL(dmu_free_long_range);
2326 EXPORT_SYMBOL(dmu_free_long_object);
2327 EXPORT_SYMBOL(dmu_read);
2328 EXPORT_SYMBOL(dmu_read_by_dnode);
2329 EXPORT_SYMBOL(dmu_write);
2330 EXPORT_SYMBOL(dmu_write_by_dnode);
2331 EXPORT_SYMBOL(dmu_prealloc);
2332 EXPORT_SYMBOL(dmu_object_info);
2333 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2334 EXPORT_SYMBOL(dmu_object_info_from_db);
2335 EXPORT_SYMBOL(dmu_object_size_from_db);
2336 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2337 EXPORT_SYMBOL(dmu_object_set_nlevels);
2338 EXPORT_SYMBOL(dmu_object_set_blocksize);
2339 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2340 EXPORT_SYMBOL(dmu_object_set_checksum);
2341 EXPORT_SYMBOL(dmu_object_set_compress);
2342 EXPORT_SYMBOL(dmu_offset_next);
2343 EXPORT_SYMBOL(dmu_write_policy);
2344 EXPORT_SYMBOL(dmu_sync);
2345 EXPORT_SYMBOL(dmu_request_arcbuf);
2346 EXPORT_SYMBOL(dmu_return_arcbuf);
2347 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2348 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2349 EXPORT_SYMBOL(dmu_buf_hold);
2350 EXPORT_SYMBOL(dmu_ot);
2351 
2352 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2353 	"Enable NOP writes");
2354 
2355 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW,
2356 	"Percentage of dirtied blocks from frees in one TXG");
2357 
2358 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2359 	"Enable forcing txg sync to find holes");
2360 
2361 /* CSTYLED */
2362 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW,
2363 	"Limit one prefetch call to this size");
2364