1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 */ 32 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dbuf.h> 37 #include <sys/dnode.h> 38 #include <sys/zfs_context.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dmu_traverse.h> 41 #include <sys/dsl_dataset.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_synctask.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dmu_zfetch.h> 47 #include <sys/zfs_ioctl.h> 48 #include <sys/zap.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/zio_compress.h> 51 #include <sys/sa.h> 52 #include <sys/zfeature.h> 53 #include <sys/abd.h> 54 #include <sys/trace_zfs.h> 55 #include <sys/zfs_racct.h> 56 #include <sys/zfs_rlock.h> 57 #ifdef _KERNEL 58 #include <sys/vmsystm.h> 59 #include <sys/zfs_znode.h> 60 #endif 61 62 /* 63 * Enable/disable nopwrite feature. 64 */ 65 static int zfs_nopwrite_enabled = 1; 66 67 /* 68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 69 * one TXG. After this threshold is crossed, additional dirty blocks from frees 70 * will wait until the next TXG. 71 * A value of zero will disable this throttle. 72 */ 73 static unsigned long zfs_per_txg_dirty_frees_percent = 5; 74 75 /* 76 * Enable/disable forcing txg sync when dirty checking for holes with lseek(). 77 * By default this is enabled to ensure accurate hole reporting, it can result 78 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads. 79 * Disabling this option will result in holes never being reported in dirty 80 * files which is always safe. 81 */ 82 static int zfs_dmu_offset_next_sync = 1; 83 84 /* 85 * Limit the amount we can prefetch with one call to this amount. This 86 * helps to limit the amount of memory that can be used by prefetching. 87 * Larger objects should be prefetched a bit at a time. 88 */ 89 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 90 91 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 92 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 93 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 94 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 95 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 96 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 97 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 98 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 99 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 100 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 101 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 102 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 103 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 104 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 105 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 106 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 107 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 108 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 109 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 110 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 111 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 112 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 113 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 114 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 115 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 117 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 118 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 119 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 121 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 122 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 123 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 125 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 126 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 127 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 128 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 129 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 131 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 133 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 134 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 136 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 137 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 140 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 141 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 142 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 143 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 144 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 145 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 146 }; 147 148 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 149 { byteswap_uint8_array, "uint8" }, 150 { byteswap_uint16_array, "uint16" }, 151 { byteswap_uint32_array, "uint32" }, 152 { byteswap_uint64_array, "uint64" }, 153 { zap_byteswap, "zap" }, 154 { dnode_buf_byteswap, "dnode" }, 155 { dmu_objset_byteswap, "objset" }, 156 { zfs_znode_byteswap, "znode" }, 157 { zfs_oldacl_byteswap, "oldacl" }, 158 { zfs_acl_byteswap, "acl" } 159 }; 160 161 static int 162 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 163 const void *tag, dmu_buf_t **dbp) 164 { 165 uint64_t blkid; 166 dmu_buf_impl_t *db; 167 168 rw_enter(&dn->dn_struct_rwlock, RW_READER); 169 blkid = dbuf_whichblock(dn, 0, offset); 170 db = dbuf_hold(dn, blkid, tag); 171 rw_exit(&dn->dn_struct_rwlock); 172 173 if (db == NULL) { 174 *dbp = NULL; 175 return (SET_ERROR(EIO)); 176 } 177 178 *dbp = &db->db; 179 return (0); 180 } 181 int 182 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 183 const void *tag, dmu_buf_t **dbp) 184 { 185 dnode_t *dn; 186 uint64_t blkid; 187 dmu_buf_impl_t *db; 188 int err; 189 190 err = dnode_hold(os, object, FTAG, &dn); 191 if (err) 192 return (err); 193 rw_enter(&dn->dn_struct_rwlock, RW_READER); 194 blkid = dbuf_whichblock(dn, 0, offset); 195 db = dbuf_hold(dn, blkid, tag); 196 rw_exit(&dn->dn_struct_rwlock); 197 dnode_rele(dn, FTAG); 198 199 if (db == NULL) { 200 *dbp = NULL; 201 return (SET_ERROR(EIO)); 202 } 203 204 *dbp = &db->db; 205 return (err); 206 } 207 208 int 209 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 210 const void *tag, dmu_buf_t **dbp, int flags) 211 { 212 int err; 213 int db_flags = DB_RF_CANFAIL; 214 215 if (flags & DMU_READ_NO_PREFETCH) 216 db_flags |= DB_RF_NOPREFETCH; 217 if (flags & DMU_READ_NO_DECRYPT) 218 db_flags |= DB_RF_NO_DECRYPT; 219 220 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 221 if (err == 0) { 222 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 223 err = dbuf_read(db, NULL, db_flags); 224 if (err != 0) { 225 dbuf_rele(db, tag); 226 *dbp = NULL; 227 } 228 } 229 230 return (err); 231 } 232 233 int 234 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 235 const void *tag, dmu_buf_t **dbp, int flags) 236 { 237 int err; 238 int db_flags = DB_RF_CANFAIL; 239 240 if (flags & DMU_READ_NO_PREFETCH) 241 db_flags |= DB_RF_NOPREFETCH; 242 if (flags & DMU_READ_NO_DECRYPT) 243 db_flags |= DB_RF_NO_DECRYPT; 244 245 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 246 if (err == 0) { 247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 248 err = dbuf_read(db, NULL, db_flags); 249 if (err != 0) { 250 dbuf_rele(db, tag); 251 *dbp = NULL; 252 } 253 } 254 255 return (err); 256 } 257 258 int 259 dmu_bonus_max(void) 260 { 261 return (DN_OLD_MAX_BONUSLEN); 262 } 263 264 int 265 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 266 { 267 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 268 dnode_t *dn; 269 int error; 270 271 DB_DNODE_ENTER(db); 272 dn = DB_DNODE(db); 273 274 if (dn->dn_bonus != db) { 275 error = SET_ERROR(EINVAL); 276 } else if (newsize < 0 || newsize > db_fake->db_size) { 277 error = SET_ERROR(EINVAL); 278 } else { 279 dnode_setbonuslen(dn, newsize, tx); 280 error = 0; 281 } 282 283 DB_DNODE_EXIT(db); 284 return (error); 285 } 286 287 int 288 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 289 { 290 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 291 dnode_t *dn; 292 int error; 293 294 DB_DNODE_ENTER(db); 295 dn = DB_DNODE(db); 296 297 if (!DMU_OT_IS_VALID(type)) { 298 error = SET_ERROR(EINVAL); 299 } else if (dn->dn_bonus != db) { 300 error = SET_ERROR(EINVAL); 301 } else { 302 dnode_setbonus_type(dn, type, tx); 303 error = 0; 304 } 305 306 DB_DNODE_EXIT(db); 307 return (error); 308 } 309 310 dmu_object_type_t 311 dmu_get_bonustype(dmu_buf_t *db_fake) 312 { 313 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 314 dnode_t *dn; 315 dmu_object_type_t type; 316 317 DB_DNODE_ENTER(db); 318 dn = DB_DNODE(db); 319 type = dn->dn_bonustype; 320 DB_DNODE_EXIT(db); 321 322 return (type); 323 } 324 325 int 326 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 327 { 328 dnode_t *dn; 329 int error; 330 331 error = dnode_hold(os, object, FTAG, &dn); 332 dbuf_rm_spill(dn, tx); 333 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 334 dnode_rm_spill(dn, tx); 335 rw_exit(&dn->dn_struct_rwlock); 336 dnode_rele(dn, FTAG); 337 return (error); 338 } 339 340 /* 341 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 342 * has not yet been allocated a new bonus dbuf a will be allocated. 343 * Returns ENOENT, EIO, or 0. 344 */ 345 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, 346 uint32_t flags) 347 { 348 dmu_buf_impl_t *db; 349 int error; 350 uint32_t db_flags = DB_RF_MUST_SUCCEED; 351 352 if (flags & DMU_READ_NO_PREFETCH) 353 db_flags |= DB_RF_NOPREFETCH; 354 if (flags & DMU_READ_NO_DECRYPT) 355 db_flags |= DB_RF_NO_DECRYPT; 356 357 rw_enter(&dn->dn_struct_rwlock, RW_READER); 358 if (dn->dn_bonus == NULL) { 359 rw_exit(&dn->dn_struct_rwlock); 360 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 361 if (dn->dn_bonus == NULL) 362 dbuf_create_bonus(dn); 363 } 364 db = dn->dn_bonus; 365 366 /* as long as the bonus buf is held, the dnode will be held */ 367 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 368 VERIFY(dnode_add_ref(dn, db)); 369 atomic_inc_32(&dn->dn_dbufs_count); 370 } 371 372 /* 373 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 374 * hold and incrementing the dbuf count to ensure that dnode_move() sees 375 * a dnode hold for every dbuf. 376 */ 377 rw_exit(&dn->dn_struct_rwlock); 378 379 error = dbuf_read(db, NULL, db_flags); 380 if (error) { 381 dnode_evict_bonus(dn); 382 dbuf_rele(db, tag); 383 *dbp = NULL; 384 return (error); 385 } 386 387 *dbp = &db->db; 388 return (0); 389 } 390 391 int 392 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp) 393 { 394 dnode_t *dn; 395 int error; 396 397 error = dnode_hold(os, object, FTAG, &dn); 398 if (error) 399 return (error); 400 401 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 402 dnode_rele(dn, FTAG); 403 404 return (error); 405 } 406 407 /* 408 * returns ENOENT, EIO, or 0. 409 * 410 * This interface will allocate a blank spill dbuf when a spill blk 411 * doesn't already exist on the dnode. 412 * 413 * if you only want to find an already existing spill db, then 414 * dmu_spill_hold_existing() should be used. 415 */ 416 int 417 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag, 418 dmu_buf_t **dbp) 419 { 420 dmu_buf_impl_t *db = NULL; 421 int err; 422 423 if ((flags & DB_RF_HAVESTRUCT) == 0) 424 rw_enter(&dn->dn_struct_rwlock, RW_READER); 425 426 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 427 428 if ((flags & DB_RF_HAVESTRUCT) == 0) 429 rw_exit(&dn->dn_struct_rwlock); 430 431 if (db == NULL) { 432 *dbp = NULL; 433 return (SET_ERROR(EIO)); 434 } 435 err = dbuf_read(db, NULL, flags); 436 if (err == 0) 437 *dbp = &db->db; 438 else { 439 dbuf_rele(db, tag); 440 *dbp = NULL; 441 } 442 return (err); 443 } 444 445 int 446 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp) 447 { 448 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 449 dnode_t *dn; 450 int err; 451 452 DB_DNODE_ENTER(db); 453 dn = DB_DNODE(db); 454 455 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 456 err = SET_ERROR(EINVAL); 457 } else { 458 rw_enter(&dn->dn_struct_rwlock, RW_READER); 459 460 if (!dn->dn_have_spill) { 461 err = SET_ERROR(ENOENT); 462 } else { 463 err = dmu_spill_hold_by_dnode(dn, 464 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 465 } 466 467 rw_exit(&dn->dn_struct_rwlock); 468 } 469 470 DB_DNODE_EXIT(db); 471 return (err); 472 } 473 474 int 475 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, 476 dmu_buf_t **dbp) 477 { 478 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 479 dnode_t *dn; 480 int err; 481 uint32_t db_flags = DB_RF_CANFAIL; 482 483 if (flags & DMU_READ_NO_DECRYPT) 484 db_flags |= DB_RF_NO_DECRYPT; 485 486 DB_DNODE_ENTER(db); 487 dn = DB_DNODE(db); 488 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 489 DB_DNODE_EXIT(db); 490 491 return (err); 492 } 493 494 /* 495 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 496 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 497 * and can induce severe lock contention when writing to several files 498 * whose dnodes are in the same block. 499 */ 500 int 501 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 502 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp, 503 uint32_t flags) 504 { 505 dmu_buf_t **dbp; 506 zstream_t *zs = NULL; 507 uint64_t blkid, nblks, i; 508 uint32_t dbuf_flags; 509 int err; 510 zio_t *zio = NULL; 511 boolean_t missed = B_FALSE; 512 513 ASSERT(length <= DMU_MAX_ACCESS); 514 515 /* 516 * Note: We directly notify the prefetch code of this read, so that 517 * we can tell it about the multi-block read. dbuf_read() only knows 518 * about the one block it is accessing. 519 */ 520 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 521 DB_RF_NOPREFETCH; 522 523 rw_enter(&dn->dn_struct_rwlock, RW_READER); 524 if (dn->dn_datablkshift) { 525 int blkshift = dn->dn_datablkshift; 526 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 527 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 528 } else { 529 if (offset + length > dn->dn_datablksz) { 530 zfs_panic_recover("zfs: accessing past end of object " 531 "%llx/%llx (size=%u access=%llu+%llu)", 532 (longlong_t)dn->dn_objset-> 533 os_dsl_dataset->ds_object, 534 (longlong_t)dn->dn_object, dn->dn_datablksz, 535 (longlong_t)offset, (longlong_t)length); 536 rw_exit(&dn->dn_struct_rwlock); 537 return (SET_ERROR(EIO)); 538 } 539 nblks = 1; 540 } 541 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 542 543 if (read) 544 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, 545 ZIO_FLAG_CANFAIL); 546 blkid = dbuf_whichblock(dn, 0, offset); 547 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 548 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 549 /* 550 * Prepare the zfetch before initiating the demand reads, so 551 * that if multiple threads block on same indirect block, we 552 * base predictions on the original less racy request order. 553 */ 554 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, 555 read && DNODE_IS_CACHEABLE(dn), B_TRUE); 556 } 557 for (i = 0; i < nblks; i++) { 558 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 559 if (db == NULL) { 560 if (zs) 561 dmu_zfetch_run(zs, missed, B_TRUE); 562 rw_exit(&dn->dn_struct_rwlock); 563 dmu_buf_rele_array(dbp, nblks, tag); 564 if (read) 565 zio_nowait(zio); 566 return (SET_ERROR(EIO)); 567 } 568 569 /* 570 * Initiate async demand data read. 571 * We check the db_state after calling dbuf_read() because 572 * (1) dbuf_read() may change the state to CACHED due to a 573 * hit in the ARC, and (2) on a cache miss, a child will 574 * have been added to "zio" but not yet completed, so the 575 * state will not yet be CACHED. 576 */ 577 if (read) { 578 (void) dbuf_read(db, zio, dbuf_flags); 579 if (db->db_state != DB_CACHED) 580 missed = B_TRUE; 581 } 582 dbp[i] = &db->db; 583 } 584 585 if (!read) 586 zfs_racct_write(length, nblks); 587 588 if (zs) 589 dmu_zfetch_run(zs, missed, B_TRUE); 590 rw_exit(&dn->dn_struct_rwlock); 591 592 if (read) { 593 /* wait for async read i/o */ 594 err = zio_wait(zio); 595 if (err) { 596 dmu_buf_rele_array(dbp, nblks, tag); 597 return (err); 598 } 599 600 /* wait for other io to complete */ 601 for (i = 0; i < nblks; i++) { 602 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 603 mutex_enter(&db->db_mtx); 604 while (db->db_state == DB_READ || 605 db->db_state == DB_FILL) 606 cv_wait(&db->db_changed, &db->db_mtx); 607 if (db->db_state == DB_UNCACHED) 608 err = SET_ERROR(EIO); 609 mutex_exit(&db->db_mtx); 610 if (err) { 611 dmu_buf_rele_array(dbp, nblks, tag); 612 return (err); 613 } 614 } 615 } 616 617 *numbufsp = nblks; 618 *dbpp = dbp; 619 return (0); 620 } 621 622 int 623 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 624 uint64_t length, int read, const void *tag, int *numbufsp, 625 dmu_buf_t ***dbpp) 626 { 627 dnode_t *dn; 628 int err; 629 630 err = dnode_hold(os, object, FTAG, &dn); 631 if (err) 632 return (err); 633 634 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 635 numbufsp, dbpp, DMU_READ_PREFETCH); 636 637 dnode_rele(dn, FTAG); 638 639 return (err); 640 } 641 642 int 643 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 644 uint64_t length, boolean_t read, const void *tag, int *numbufsp, 645 dmu_buf_t ***dbpp) 646 { 647 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 648 dnode_t *dn; 649 int err; 650 651 DB_DNODE_ENTER(db); 652 dn = DB_DNODE(db); 653 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 654 numbufsp, dbpp, DMU_READ_PREFETCH); 655 DB_DNODE_EXIT(db); 656 657 return (err); 658 } 659 660 void 661 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag) 662 { 663 int i; 664 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 665 666 if (numbufs == 0) 667 return; 668 669 for (i = 0; i < numbufs; i++) { 670 if (dbp[i]) 671 dbuf_rele(dbp[i], tag); 672 } 673 674 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 675 } 676 677 /* 678 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 679 * indirect blocks prefetched will be those that point to the blocks containing 680 * the data starting at offset, and continuing to offset + len. 681 * 682 * Note that if the indirect blocks above the blocks being prefetched are not 683 * in cache, they will be asynchronously read in. 684 */ 685 void 686 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 687 uint64_t len, zio_priority_t pri) 688 { 689 dnode_t *dn; 690 uint64_t blkid; 691 int nblks, err; 692 693 if (len == 0) { /* they're interested in the bonus buffer */ 694 dn = DMU_META_DNODE(os); 695 696 if (object == 0 || object >= DN_MAX_OBJECT) 697 return; 698 699 rw_enter(&dn->dn_struct_rwlock, RW_READER); 700 blkid = dbuf_whichblock(dn, level, 701 object * sizeof (dnode_phys_t)); 702 dbuf_prefetch(dn, level, blkid, pri, 0); 703 rw_exit(&dn->dn_struct_rwlock); 704 return; 705 } 706 707 /* 708 * See comment before the definition of dmu_prefetch_max. 709 */ 710 len = MIN(len, dmu_prefetch_max); 711 712 /* 713 * XXX - Note, if the dnode for the requested object is not 714 * already cached, we will do a *synchronous* read in the 715 * dnode_hold() call. The same is true for any indirects. 716 */ 717 err = dnode_hold(os, object, FTAG, &dn); 718 if (err != 0) 719 return; 720 721 /* 722 * offset + len - 1 is the last byte we want to prefetch for, and offset 723 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 724 * last block we want to prefetch, and dbuf_whichblock(dn, level, 725 * offset) is the first. Then the number we need to prefetch is the 726 * last - first + 1. 727 */ 728 rw_enter(&dn->dn_struct_rwlock, RW_READER); 729 if (level > 0 || dn->dn_datablkshift != 0) { 730 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 731 dbuf_whichblock(dn, level, offset) + 1; 732 } else { 733 nblks = (offset < dn->dn_datablksz); 734 } 735 736 if (nblks != 0) { 737 blkid = dbuf_whichblock(dn, level, offset); 738 for (int i = 0; i < nblks; i++) 739 dbuf_prefetch(dn, level, blkid + i, pri, 0); 740 } 741 rw_exit(&dn->dn_struct_rwlock); 742 743 dnode_rele(dn, FTAG); 744 } 745 746 /* 747 * Get the next "chunk" of file data to free. We traverse the file from 748 * the end so that the file gets shorter over time (if we crashes in the 749 * middle, this will leave us in a better state). We find allocated file 750 * data by simply searching the allocated level 1 indirects. 751 * 752 * On input, *start should be the first offset that does not need to be 753 * freed (e.g. "offset + length"). On return, *start will be the first 754 * offset that should be freed and l1blks is set to the number of level 1 755 * indirect blocks found within the chunk. 756 */ 757 static int 758 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 759 { 760 uint64_t blks; 761 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 762 /* bytes of data covered by a level-1 indirect block */ 763 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 764 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 765 766 ASSERT3U(minimum, <=, *start); 767 768 /* 769 * Check if we can free the entire range assuming that all of the 770 * L1 blocks in this range have data. If we can, we use this 771 * worst case value as an estimate so we can avoid having to look 772 * at the object's actual data. 773 */ 774 uint64_t total_l1blks = 775 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 776 iblkrange; 777 if (total_l1blks <= maxblks) { 778 *l1blks = total_l1blks; 779 *start = minimum; 780 return (0); 781 } 782 ASSERT(ISP2(iblkrange)); 783 784 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 785 int err; 786 787 /* 788 * dnode_next_offset(BACKWARDS) will find an allocated L1 789 * indirect block at or before the input offset. We must 790 * decrement *start so that it is at the end of the region 791 * to search. 792 */ 793 (*start)--; 794 795 err = dnode_next_offset(dn, 796 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 797 798 /* if there are no indirect blocks before start, we are done */ 799 if (err == ESRCH) { 800 *start = minimum; 801 break; 802 } else if (err != 0) { 803 *l1blks = blks; 804 return (err); 805 } 806 807 /* set start to the beginning of this L1 indirect */ 808 *start = P2ALIGN(*start, iblkrange); 809 } 810 if (*start < minimum) 811 *start = minimum; 812 *l1blks = blks; 813 814 return (0); 815 } 816 817 /* 818 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 819 * otherwise return false. 820 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 821 */ 822 static boolean_t 823 dmu_objset_zfs_unmounting(objset_t *os) 824 { 825 #ifdef _KERNEL 826 if (dmu_objset_type(os) == DMU_OST_ZFS) 827 return (zfs_get_vfs_flag_unmounted(os)); 828 #else 829 (void) os; 830 #endif 831 return (B_FALSE); 832 } 833 834 static int 835 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 836 uint64_t length) 837 { 838 uint64_t object_size; 839 int err; 840 uint64_t dirty_frees_threshold; 841 dsl_pool_t *dp = dmu_objset_pool(os); 842 843 if (dn == NULL) 844 return (SET_ERROR(EINVAL)); 845 846 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 847 if (offset >= object_size) 848 return (0); 849 850 if (zfs_per_txg_dirty_frees_percent <= 100) 851 dirty_frees_threshold = 852 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 853 else 854 dirty_frees_threshold = zfs_dirty_data_max / 20; 855 856 if (length == DMU_OBJECT_END || offset + length > object_size) 857 length = object_size - offset; 858 859 while (length != 0) { 860 uint64_t chunk_end, chunk_begin, chunk_len; 861 uint64_t l1blks; 862 dmu_tx_t *tx; 863 864 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 865 return (SET_ERROR(EINTR)); 866 867 chunk_end = chunk_begin = offset + length; 868 869 /* move chunk_begin backwards to the beginning of this chunk */ 870 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 871 if (err) 872 return (err); 873 ASSERT3U(chunk_begin, >=, offset); 874 ASSERT3U(chunk_begin, <=, chunk_end); 875 876 chunk_len = chunk_end - chunk_begin; 877 878 tx = dmu_tx_create(os); 879 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 880 881 /* 882 * Mark this transaction as typically resulting in a net 883 * reduction in space used. 884 */ 885 dmu_tx_mark_netfree(tx); 886 err = dmu_tx_assign(tx, TXG_WAIT); 887 if (err) { 888 dmu_tx_abort(tx); 889 return (err); 890 } 891 892 uint64_t txg = dmu_tx_get_txg(tx); 893 894 mutex_enter(&dp->dp_lock); 895 uint64_t long_free_dirty = 896 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 897 mutex_exit(&dp->dp_lock); 898 899 /* 900 * To avoid filling up a TXG with just frees, wait for 901 * the next TXG to open before freeing more chunks if 902 * we have reached the threshold of frees. 903 */ 904 if (dirty_frees_threshold != 0 && 905 long_free_dirty >= dirty_frees_threshold) { 906 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 907 dmu_tx_commit(tx); 908 txg_wait_open(dp, 0, B_TRUE); 909 continue; 910 } 911 912 /* 913 * In order to prevent unnecessary write throttling, for each 914 * TXG, we track the cumulative size of L1 blocks being dirtied 915 * in dnode_free_range() below. We compare this number to a 916 * tunable threshold, past which we prevent new L1 dirty freeing 917 * blocks from being added into the open TXG. See 918 * dmu_free_long_range_impl() for details. The threshold 919 * prevents write throttle activation due to dirty freeing L1 920 * blocks taking up a large percentage of zfs_dirty_data_max. 921 */ 922 mutex_enter(&dp->dp_lock); 923 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 924 l1blks << dn->dn_indblkshift; 925 mutex_exit(&dp->dp_lock); 926 DTRACE_PROBE3(free__long__range, 927 uint64_t, long_free_dirty, uint64_t, chunk_len, 928 uint64_t, txg); 929 dnode_free_range(dn, chunk_begin, chunk_len, tx); 930 931 dmu_tx_commit(tx); 932 933 length -= chunk_len; 934 } 935 return (0); 936 } 937 938 int 939 dmu_free_long_range(objset_t *os, uint64_t object, 940 uint64_t offset, uint64_t length) 941 { 942 dnode_t *dn; 943 int err; 944 945 err = dnode_hold(os, object, FTAG, &dn); 946 if (err != 0) 947 return (err); 948 err = dmu_free_long_range_impl(os, dn, offset, length); 949 950 /* 951 * It is important to zero out the maxblkid when freeing the entire 952 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 953 * will take the fast path, and (b) dnode_reallocate() can verify 954 * that the entire file has been freed. 955 */ 956 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 957 dn->dn_maxblkid = 0; 958 959 dnode_rele(dn, FTAG); 960 return (err); 961 } 962 963 int 964 dmu_free_long_object(objset_t *os, uint64_t object) 965 { 966 dmu_tx_t *tx; 967 int err; 968 969 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 970 if (err != 0) 971 return (err); 972 973 tx = dmu_tx_create(os); 974 dmu_tx_hold_bonus(tx, object); 975 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 976 dmu_tx_mark_netfree(tx); 977 err = dmu_tx_assign(tx, TXG_WAIT); 978 if (err == 0) { 979 err = dmu_object_free(os, object, tx); 980 dmu_tx_commit(tx); 981 } else { 982 dmu_tx_abort(tx); 983 } 984 985 return (err); 986 } 987 988 int 989 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 990 uint64_t size, dmu_tx_t *tx) 991 { 992 dnode_t *dn; 993 int err = dnode_hold(os, object, FTAG, &dn); 994 if (err) 995 return (err); 996 ASSERT(offset < UINT64_MAX); 997 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 998 dnode_free_range(dn, offset, size, tx); 999 dnode_rele(dn, FTAG); 1000 return (0); 1001 } 1002 1003 static int 1004 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 1005 void *buf, uint32_t flags) 1006 { 1007 dmu_buf_t **dbp; 1008 int numbufs, err = 0; 1009 1010 /* 1011 * Deal with odd block sizes, where there can't be data past the first 1012 * block. If we ever do the tail block optimization, we will need to 1013 * handle that here as well. 1014 */ 1015 if (dn->dn_maxblkid == 0) { 1016 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 1017 MIN(size, dn->dn_datablksz - offset); 1018 memset((char *)buf + newsz, 0, size - newsz); 1019 size = newsz; 1020 } 1021 1022 while (size > 0) { 1023 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 1024 int i; 1025 1026 /* 1027 * NB: we could do this block-at-a-time, but it's nice 1028 * to be reading in parallel. 1029 */ 1030 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1031 TRUE, FTAG, &numbufs, &dbp, flags); 1032 if (err) 1033 break; 1034 1035 for (i = 0; i < numbufs; i++) { 1036 uint64_t tocpy; 1037 int64_t bufoff; 1038 dmu_buf_t *db = dbp[i]; 1039 1040 ASSERT(size > 0); 1041 1042 bufoff = offset - db->db_offset; 1043 tocpy = MIN(db->db_size - bufoff, size); 1044 1045 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1046 1047 offset += tocpy; 1048 size -= tocpy; 1049 buf = (char *)buf + tocpy; 1050 } 1051 dmu_buf_rele_array(dbp, numbufs, FTAG); 1052 } 1053 return (err); 1054 } 1055 1056 int 1057 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1058 void *buf, uint32_t flags) 1059 { 1060 dnode_t *dn; 1061 int err; 1062 1063 err = dnode_hold(os, object, FTAG, &dn); 1064 if (err != 0) 1065 return (err); 1066 1067 err = dmu_read_impl(dn, offset, size, buf, flags); 1068 dnode_rele(dn, FTAG); 1069 return (err); 1070 } 1071 1072 int 1073 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1074 uint32_t flags) 1075 { 1076 return (dmu_read_impl(dn, offset, size, buf, flags)); 1077 } 1078 1079 static void 1080 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1081 const void *buf, dmu_tx_t *tx) 1082 { 1083 int i; 1084 1085 for (i = 0; i < numbufs; i++) { 1086 uint64_t tocpy; 1087 int64_t bufoff; 1088 dmu_buf_t *db = dbp[i]; 1089 1090 ASSERT(size > 0); 1091 1092 bufoff = offset - db->db_offset; 1093 tocpy = MIN(db->db_size - bufoff, size); 1094 1095 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1096 1097 if (tocpy == db->db_size) 1098 dmu_buf_will_fill(db, tx); 1099 else 1100 dmu_buf_will_dirty(db, tx); 1101 1102 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1103 1104 if (tocpy == db->db_size) 1105 dmu_buf_fill_done(db, tx); 1106 1107 offset += tocpy; 1108 size -= tocpy; 1109 buf = (char *)buf + tocpy; 1110 } 1111 } 1112 1113 void 1114 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1115 const void *buf, dmu_tx_t *tx) 1116 { 1117 dmu_buf_t **dbp; 1118 int numbufs; 1119 1120 if (size == 0) 1121 return; 1122 1123 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1124 FALSE, FTAG, &numbufs, &dbp)); 1125 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1126 dmu_buf_rele_array(dbp, numbufs, FTAG); 1127 } 1128 1129 /* 1130 * Note: Lustre is an external consumer of this interface. 1131 */ 1132 void 1133 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1134 const void *buf, dmu_tx_t *tx) 1135 { 1136 dmu_buf_t **dbp; 1137 int numbufs; 1138 1139 if (size == 0) 1140 return; 1141 1142 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1143 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1144 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1145 dmu_buf_rele_array(dbp, numbufs, FTAG); 1146 } 1147 1148 void 1149 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1150 dmu_tx_t *tx) 1151 { 1152 dmu_buf_t **dbp; 1153 int numbufs, i; 1154 1155 if (size == 0) 1156 return; 1157 1158 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1159 FALSE, FTAG, &numbufs, &dbp)); 1160 1161 for (i = 0; i < numbufs; i++) { 1162 dmu_buf_t *db = dbp[i]; 1163 1164 dmu_buf_will_not_fill(db, tx); 1165 } 1166 dmu_buf_rele_array(dbp, numbufs, FTAG); 1167 } 1168 1169 void 1170 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1171 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1172 int compressed_size, int byteorder, dmu_tx_t *tx) 1173 { 1174 dmu_buf_t *db; 1175 1176 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1177 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1178 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1179 FTAG, &db)); 1180 1181 dmu_buf_write_embedded(db, 1182 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1183 uncompressed_size, compressed_size, byteorder, tx); 1184 1185 dmu_buf_rele(db, FTAG); 1186 } 1187 1188 void 1189 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1190 dmu_tx_t *tx) 1191 { 1192 int numbufs, i; 1193 dmu_buf_t **dbp; 1194 1195 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1196 &numbufs, &dbp)); 1197 for (i = 0; i < numbufs; i++) 1198 dmu_buf_redact(dbp[i], tx); 1199 dmu_buf_rele_array(dbp, numbufs, FTAG); 1200 } 1201 1202 #ifdef _KERNEL 1203 int 1204 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size) 1205 { 1206 dmu_buf_t **dbp; 1207 int numbufs, i, err; 1208 1209 /* 1210 * NB: we could do this block-at-a-time, but it's nice 1211 * to be reading in parallel. 1212 */ 1213 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1214 TRUE, FTAG, &numbufs, &dbp, 0); 1215 if (err) 1216 return (err); 1217 1218 for (i = 0; i < numbufs; i++) { 1219 uint64_t tocpy; 1220 int64_t bufoff; 1221 dmu_buf_t *db = dbp[i]; 1222 1223 ASSERT(size > 0); 1224 1225 bufoff = zfs_uio_offset(uio) - db->db_offset; 1226 tocpy = MIN(db->db_size - bufoff, size); 1227 1228 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, 1229 UIO_READ, uio); 1230 1231 if (err) 1232 break; 1233 1234 size -= tocpy; 1235 } 1236 dmu_buf_rele_array(dbp, numbufs, FTAG); 1237 1238 return (err); 1239 } 1240 1241 /* 1242 * Read 'size' bytes into the uio buffer. 1243 * From object zdb->db_object. 1244 * Starting at zfs_uio_offset(uio). 1245 * 1246 * If the caller already has a dbuf in the target object 1247 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1248 * because we don't have to find the dnode_t for the object. 1249 */ 1250 int 1251 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size) 1252 { 1253 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1254 dnode_t *dn; 1255 int err; 1256 1257 if (size == 0) 1258 return (0); 1259 1260 DB_DNODE_ENTER(db); 1261 dn = DB_DNODE(db); 1262 err = dmu_read_uio_dnode(dn, uio, size); 1263 DB_DNODE_EXIT(db); 1264 1265 return (err); 1266 } 1267 1268 /* 1269 * Read 'size' bytes into the uio buffer. 1270 * From the specified object 1271 * Starting at offset zfs_uio_offset(uio). 1272 */ 1273 int 1274 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size) 1275 { 1276 dnode_t *dn; 1277 int err; 1278 1279 if (size == 0) 1280 return (0); 1281 1282 err = dnode_hold(os, object, FTAG, &dn); 1283 if (err) 1284 return (err); 1285 1286 err = dmu_read_uio_dnode(dn, uio, size); 1287 1288 dnode_rele(dn, FTAG); 1289 1290 return (err); 1291 } 1292 1293 int 1294 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) 1295 { 1296 dmu_buf_t **dbp; 1297 int numbufs; 1298 int err = 0; 1299 int i; 1300 1301 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1302 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1303 if (err) 1304 return (err); 1305 1306 for (i = 0; i < numbufs; i++) { 1307 uint64_t tocpy; 1308 int64_t bufoff; 1309 dmu_buf_t *db = dbp[i]; 1310 1311 ASSERT(size > 0); 1312 1313 bufoff = zfs_uio_offset(uio) - db->db_offset; 1314 tocpy = MIN(db->db_size - bufoff, size); 1315 1316 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1317 1318 if (tocpy == db->db_size) 1319 dmu_buf_will_fill(db, tx); 1320 else 1321 dmu_buf_will_dirty(db, tx); 1322 1323 /* 1324 * XXX zfs_uiomove could block forever (eg.nfs-backed 1325 * pages). There needs to be a uiolockdown() function 1326 * to lock the pages in memory, so that zfs_uiomove won't 1327 * block. 1328 */ 1329 err = zfs_uio_fault_move((char *)db->db_data + bufoff, 1330 tocpy, UIO_WRITE, uio); 1331 1332 if (tocpy == db->db_size) 1333 dmu_buf_fill_done(db, tx); 1334 1335 if (err) 1336 break; 1337 1338 size -= tocpy; 1339 } 1340 1341 dmu_buf_rele_array(dbp, numbufs, FTAG); 1342 return (err); 1343 } 1344 1345 /* 1346 * Write 'size' bytes from the uio buffer. 1347 * To object zdb->db_object. 1348 * Starting at offset zfs_uio_offset(uio). 1349 * 1350 * If the caller already has a dbuf in the target object 1351 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1352 * because we don't have to find the dnode_t for the object. 1353 */ 1354 int 1355 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, 1356 dmu_tx_t *tx) 1357 { 1358 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1359 dnode_t *dn; 1360 int err; 1361 1362 if (size == 0) 1363 return (0); 1364 1365 DB_DNODE_ENTER(db); 1366 dn = DB_DNODE(db); 1367 err = dmu_write_uio_dnode(dn, uio, size, tx); 1368 DB_DNODE_EXIT(db); 1369 1370 return (err); 1371 } 1372 1373 /* 1374 * Write 'size' bytes from the uio buffer. 1375 * To the specified object. 1376 * Starting at offset zfs_uio_offset(uio). 1377 */ 1378 int 1379 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, 1380 dmu_tx_t *tx) 1381 { 1382 dnode_t *dn; 1383 int err; 1384 1385 if (size == 0) 1386 return (0); 1387 1388 err = dnode_hold(os, object, FTAG, &dn); 1389 if (err) 1390 return (err); 1391 1392 err = dmu_write_uio_dnode(dn, uio, size, tx); 1393 1394 dnode_rele(dn, FTAG); 1395 1396 return (err); 1397 } 1398 #endif /* _KERNEL */ 1399 1400 /* 1401 * Allocate a loaned anonymous arc buffer. 1402 */ 1403 arc_buf_t * 1404 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1405 { 1406 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1407 1408 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1409 } 1410 1411 /* 1412 * Free a loaned arc buffer. 1413 */ 1414 void 1415 dmu_return_arcbuf(arc_buf_t *buf) 1416 { 1417 arc_return_buf(buf, FTAG); 1418 arc_buf_destroy(buf, FTAG); 1419 } 1420 1421 /* 1422 * A "lightweight" write is faster than a regular write (e.g. 1423 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the 1424 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the 1425 * data can not be read or overwritten until the transaction's txg has been 1426 * synced. This makes it appropriate for workloads that are known to be 1427 * (temporarily) write-only, like "zfs receive". 1428 * 1429 * A single block is written, starting at the specified offset in bytes. If 1430 * the call is successful, it returns 0 and the provided abd has been 1431 * consumed (the caller should not free it). 1432 */ 1433 int 1434 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, 1435 const zio_prop_t *zp, enum zio_flag flags, dmu_tx_t *tx) 1436 { 1437 dbuf_dirty_record_t *dr = 1438 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); 1439 if (dr == NULL) 1440 return (SET_ERROR(EIO)); 1441 dr->dt.dll.dr_abd = abd; 1442 dr->dt.dll.dr_props = *zp; 1443 dr->dt.dll.dr_flags = flags; 1444 return (0); 1445 } 1446 1447 /* 1448 * When possible directly assign passed loaned arc buffer to a dbuf. 1449 * If this is not possible copy the contents of passed arc buf via 1450 * dmu_write(). 1451 */ 1452 int 1453 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1454 dmu_tx_t *tx) 1455 { 1456 dmu_buf_impl_t *db; 1457 objset_t *os = dn->dn_objset; 1458 uint64_t object = dn->dn_object; 1459 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1460 uint64_t blkid; 1461 1462 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1463 blkid = dbuf_whichblock(dn, 0, offset); 1464 db = dbuf_hold(dn, blkid, FTAG); 1465 if (db == NULL) 1466 return (SET_ERROR(EIO)); 1467 rw_exit(&dn->dn_struct_rwlock); 1468 1469 /* 1470 * We can only assign if the offset is aligned and the arc buf is the 1471 * same size as the dbuf. 1472 */ 1473 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1474 zfs_racct_write(blksz, 1); 1475 dbuf_assign_arcbuf(db, buf, tx); 1476 dbuf_rele(db, FTAG); 1477 } else { 1478 /* compressed bufs must always be assignable to their dbuf */ 1479 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1480 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1481 1482 dbuf_rele(db, FTAG); 1483 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1484 dmu_return_arcbuf(buf); 1485 } 1486 1487 return (0); 1488 } 1489 1490 int 1491 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1492 dmu_tx_t *tx) 1493 { 1494 int err; 1495 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1496 1497 DB_DNODE_ENTER(dbuf); 1498 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1499 DB_DNODE_EXIT(dbuf); 1500 1501 return (err); 1502 } 1503 1504 typedef struct { 1505 dbuf_dirty_record_t *dsa_dr; 1506 dmu_sync_cb_t *dsa_done; 1507 zgd_t *dsa_zgd; 1508 dmu_tx_t *dsa_tx; 1509 } dmu_sync_arg_t; 1510 1511 static void 1512 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1513 { 1514 (void) buf; 1515 dmu_sync_arg_t *dsa = varg; 1516 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1517 blkptr_t *bp = zio->io_bp; 1518 1519 if (zio->io_error == 0) { 1520 if (BP_IS_HOLE(bp)) { 1521 /* 1522 * A block of zeros may compress to a hole, but the 1523 * block size still needs to be known for replay. 1524 */ 1525 BP_SET_LSIZE(bp, db->db_size); 1526 } else if (!BP_IS_EMBEDDED(bp)) { 1527 ASSERT(BP_GET_LEVEL(bp) == 0); 1528 BP_SET_FILL(bp, 1); 1529 } 1530 } 1531 } 1532 1533 static void 1534 dmu_sync_late_arrival_ready(zio_t *zio) 1535 { 1536 dmu_sync_ready(zio, NULL, zio->io_private); 1537 } 1538 1539 static void 1540 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1541 { 1542 (void) buf; 1543 dmu_sync_arg_t *dsa = varg; 1544 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1545 dmu_buf_impl_t *db = dr->dr_dbuf; 1546 zgd_t *zgd = dsa->dsa_zgd; 1547 1548 /* 1549 * Record the vdev(s) backing this blkptr so they can be flushed after 1550 * the writes for the lwb have completed. 1551 */ 1552 if (zio->io_error == 0) { 1553 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1554 } 1555 1556 mutex_enter(&db->db_mtx); 1557 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1558 if (zio->io_error == 0) { 1559 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1560 if (dr->dt.dl.dr_nopwrite) { 1561 blkptr_t *bp = zio->io_bp; 1562 blkptr_t *bp_orig = &zio->io_bp_orig; 1563 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1564 1565 ASSERT(BP_EQUAL(bp, bp_orig)); 1566 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1567 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1568 VERIFY(zio_checksum_table[chksum].ci_flags & 1569 ZCHECKSUM_FLAG_NOPWRITE); 1570 } 1571 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1572 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1573 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1574 1575 /* 1576 * Old style holes are filled with all zeros, whereas 1577 * new-style holes maintain their lsize, type, level, 1578 * and birth time (see zio_write_compress). While we 1579 * need to reset the BP_SET_LSIZE() call that happened 1580 * in dmu_sync_ready for old style holes, we do *not* 1581 * want to wipe out the information contained in new 1582 * style holes. Thus, only zero out the block pointer if 1583 * it's an old style hole. 1584 */ 1585 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1586 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1587 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1588 } else { 1589 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1590 } 1591 cv_broadcast(&db->db_changed); 1592 mutex_exit(&db->db_mtx); 1593 1594 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1595 1596 kmem_free(dsa, sizeof (*dsa)); 1597 } 1598 1599 static void 1600 dmu_sync_late_arrival_done(zio_t *zio) 1601 { 1602 blkptr_t *bp = zio->io_bp; 1603 dmu_sync_arg_t *dsa = zio->io_private; 1604 zgd_t *zgd = dsa->dsa_zgd; 1605 1606 if (zio->io_error == 0) { 1607 /* 1608 * Record the vdev(s) backing this blkptr so they can be 1609 * flushed after the writes for the lwb have completed. 1610 */ 1611 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1612 1613 if (!BP_IS_HOLE(bp)) { 1614 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1615 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1616 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1617 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1618 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1619 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1620 } 1621 } 1622 1623 dmu_tx_commit(dsa->dsa_tx); 1624 1625 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1626 1627 abd_free(zio->io_abd); 1628 kmem_free(dsa, sizeof (*dsa)); 1629 } 1630 1631 static int 1632 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1633 zio_prop_t *zp, zbookmark_phys_t *zb) 1634 { 1635 dmu_sync_arg_t *dsa; 1636 dmu_tx_t *tx; 1637 1638 tx = dmu_tx_create(os); 1639 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1640 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1641 dmu_tx_abort(tx); 1642 /* Make zl_get_data do txg_waited_synced() */ 1643 return (SET_ERROR(EIO)); 1644 } 1645 1646 /* 1647 * In order to prevent the zgd's lwb from being free'd prior to 1648 * dmu_sync_late_arrival_done() being called, we have to ensure 1649 * the lwb's "max txg" takes this tx's txg into account. 1650 */ 1651 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1652 1653 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1654 dsa->dsa_dr = NULL; 1655 dsa->dsa_done = done; 1656 dsa->dsa_zgd = zgd; 1657 dsa->dsa_tx = tx; 1658 1659 /* 1660 * Since we are currently syncing this txg, it's nontrivial to 1661 * determine what BP to nopwrite against, so we disable nopwrite. 1662 * 1663 * When syncing, the db_blkptr is initially the BP of the previous 1664 * txg. We can not nopwrite against it because it will be changed 1665 * (this is similar to the non-late-arrival case where the dbuf is 1666 * dirty in a future txg). 1667 * 1668 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1669 * We can not nopwrite against it because although the BP will not 1670 * (typically) be changed, the data has not yet been persisted to this 1671 * location. 1672 * 1673 * Finally, when dbuf_write_done() is called, it is theoretically 1674 * possible to always nopwrite, because the data that was written in 1675 * this txg is the same data that we are trying to write. However we 1676 * would need to check that this dbuf is not dirty in any future 1677 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1678 * don't nopwrite in this case. 1679 */ 1680 zp->zp_nopwrite = B_FALSE; 1681 1682 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1683 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1684 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1685 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1686 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1687 1688 return (0); 1689 } 1690 1691 /* 1692 * Intent log support: sync the block associated with db to disk. 1693 * N.B. and XXX: the caller is responsible for making sure that the 1694 * data isn't changing while dmu_sync() is writing it. 1695 * 1696 * Return values: 1697 * 1698 * EEXIST: this txg has already been synced, so there's nothing to do. 1699 * The caller should not log the write. 1700 * 1701 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1702 * The caller should not log the write. 1703 * 1704 * EALREADY: this block is already in the process of being synced. 1705 * The caller should track its progress (somehow). 1706 * 1707 * EIO: could not do the I/O. 1708 * The caller should do a txg_wait_synced(). 1709 * 1710 * 0: the I/O has been initiated. 1711 * The caller should log this blkptr in the done callback. 1712 * It is possible that the I/O will fail, in which case 1713 * the error will be reported to the done callback and 1714 * propagated to pio from zio_done(). 1715 */ 1716 int 1717 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1718 { 1719 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1720 objset_t *os = db->db_objset; 1721 dsl_dataset_t *ds = os->os_dsl_dataset; 1722 dbuf_dirty_record_t *dr, *dr_next; 1723 dmu_sync_arg_t *dsa; 1724 zbookmark_phys_t zb; 1725 zio_prop_t zp; 1726 dnode_t *dn; 1727 1728 ASSERT(pio != NULL); 1729 ASSERT(txg != 0); 1730 1731 SET_BOOKMARK(&zb, ds->ds_object, 1732 db->db.db_object, db->db_level, db->db_blkid); 1733 1734 DB_DNODE_ENTER(db); 1735 dn = DB_DNODE(db); 1736 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1737 DB_DNODE_EXIT(db); 1738 1739 /* 1740 * If we're frozen (running ziltest), we always need to generate a bp. 1741 */ 1742 if (txg > spa_freeze_txg(os->os_spa)) 1743 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1744 1745 /* 1746 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1747 * and us. If we determine that this txg is not yet syncing, 1748 * but it begins to sync a moment later, that's OK because the 1749 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1750 */ 1751 mutex_enter(&db->db_mtx); 1752 1753 if (txg <= spa_last_synced_txg(os->os_spa)) { 1754 /* 1755 * This txg has already synced. There's nothing to do. 1756 */ 1757 mutex_exit(&db->db_mtx); 1758 return (SET_ERROR(EEXIST)); 1759 } 1760 1761 if (txg <= spa_syncing_txg(os->os_spa)) { 1762 /* 1763 * This txg is currently syncing, so we can't mess with 1764 * the dirty record anymore; just write a new log block. 1765 */ 1766 mutex_exit(&db->db_mtx); 1767 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1768 } 1769 1770 dr = dbuf_find_dirty_eq(db, txg); 1771 1772 if (dr == NULL) { 1773 /* 1774 * There's no dr for this dbuf, so it must have been freed. 1775 * There's no need to log writes to freed blocks, so we're done. 1776 */ 1777 mutex_exit(&db->db_mtx); 1778 return (SET_ERROR(ENOENT)); 1779 } 1780 1781 dr_next = list_next(&db->db_dirty_records, dr); 1782 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1783 1784 if (db->db_blkptr != NULL) { 1785 /* 1786 * We need to fill in zgd_bp with the current blkptr so that 1787 * the nopwrite code can check if we're writing the same 1788 * data that's already on disk. We can only nopwrite if we 1789 * are sure that after making the copy, db_blkptr will not 1790 * change until our i/o completes. We ensure this by 1791 * holding the db_mtx, and only allowing nopwrite if the 1792 * block is not already dirty (see below). This is verified 1793 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1794 * not changed. 1795 */ 1796 *zgd->zgd_bp = *db->db_blkptr; 1797 } 1798 1799 /* 1800 * Assume the on-disk data is X, the current syncing data (in 1801 * txg - 1) is Y, and the current in-memory data is Z (currently 1802 * in dmu_sync). 1803 * 1804 * We usually want to perform a nopwrite if X and Z are the 1805 * same. However, if Y is different (i.e. the BP is going to 1806 * change before this write takes effect), then a nopwrite will 1807 * be incorrect - we would override with X, which could have 1808 * been freed when Y was written. 1809 * 1810 * (Note that this is not a concern when we are nop-writing from 1811 * syncing context, because X and Y must be identical, because 1812 * all previous txgs have been synced.) 1813 * 1814 * Therefore, we disable nopwrite if the current BP could change 1815 * before this TXG. There are two ways it could change: by 1816 * being dirty (dr_next is non-NULL), or by being freed 1817 * (dnode_block_freed()). This behavior is verified by 1818 * zio_done(), which VERIFYs that the override BP is identical 1819 * to the on-disk BP. 1820 */ 1821 DB_DNODE_ENTER(db); 1822 dn = DB_DNODE(db); 1823 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1824 zp.zp_nopwrite = B_FALSE; 1825 DB_DNODE_EXIT(db); 1826 1827 ASSERT(dr->dr_txg == txg); 1828 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1829 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1830 /* 1831 * We have already issued a sync write for this buffer, 1832 * or this buffer has already been synced. It could not 1833 * have been dirtied since, or we would have cleared the state. 1834 */ 1835 mutex_exit(&db->db_mtx); 1836 return (SET_ERROR(EALREADY)); 1837 } 1838 1839 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1840 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1841 mutex_exit(&db->db_mtx); 1842 1843 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1844 dsa->dsa_dr = dr; 1845 dsa->dsa_done = done; 1846 dsa->dsa_zgd = zgd; 1847 dsa->dsa_tx = NULL; 1848 1849 zio_nowait(arc_write(pio, os->os_spa, txg, 1850 zgd->zgd_bp, dr->dt.dl.dr_data, dbuf_is_l2cacheable(db), 1851 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1852 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1853 1854 return (0); 1855 } 1856 1857 int 1858 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1859 { 1860 dnode_t *dn; 1861 int err; 1862 1863 err = dnode_hold(os, object, FTAG, &dn); 1864 if (err) 1865 return (err); 1866 err = dnode_set_nlevels(dn, nlevels, tx); 1867 dnode_rele(dn, FTAG); 1868 return (err); 1869 } 1870 1871 int 1872 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1873 dmu_tx_t *tx) 1874 { 1875 dnode_t *dn; 1876 int err; 1877 1878 err = dnode_hold(os, object, FTAG, &dn); 1879 if (err) 1880 return (err); 1881 err = dnode_set_blksz(dn, size, ibs, tx); 1882 dnode_rele(dn, FTAG); 1883 return (err); 1884 } 1885 1886 int 1887 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 1888 dmu_tx_t *tx) 1889 { 1890 dnode_t *dn; 1891 int err; 1892 1893 err = dnode_hold(os, object, FTAG, &dn); 1894 if (err) 1895 return (err); 1896 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1897 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 1898 rw_exit(&dn->dn_struct_rwlock); 1899 dnode_rele(dn, FTAG); 1900 return (0); 1901 } 1902 1903 void 1904 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1905 dmu_tx_t *tx) 1906 { 1907 dnode_t *dn; 1908 1909 /* 1910 * Send streams include each object's checksum function. This 1911 * check ensures that the receiving system can understand the 1912 * checksum function transmitted. 1913 */ 1914 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1915 1916 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1917 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1918 dn->dn_checksum = checksum; 1919 dnode_setdirty(dn, tx); 1920 dnode_rele(dn, FTAG); 1921 } 1922 1923 void 1924 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1925 dmu_tx_t *tx) 1926 { 1927 dnode_t *dn; 1928 1929 /* 1930 * Send streams include each object's compression function. This 1931 * check ensures that the receiving system can understand the 1932 * compression function transmitted. 1933 */ 1934 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1935 1936 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1937 dn->dn_compress = compress; 1938 dnode_setdirty(dn, tx); 1939 dnode_rele(dn, FTAG); 1940 } 1941 1942 /* 1943 * When the "redundant_metadata" property is set to "most", only indirect 1944 * blocks of this level and higher will have an additional ditto block. 1945 */ 1946 static const int zfs_redundant_metadata_most_ditto_level = 2; 1947 1948 void 1949 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1950 { 1951 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1952 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1953 (wp & WP_SPILL)); 1954 enum zio_checksum checksum = os->os_checksum; 1955 enum zio_compress compress = os->os_compress; 1956 uint8_t complevel = os->os_complevel; 1957 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1958 boolean_t dedup = B_FALSE; 1959 boolean_t nopwrite = B_FALSE; 1960 boolean_t dedup_verify = os->os_dedup_verify; 1961 boolean_t encrypt = B_FALSE; 1962 int copies = os->os_copies; 1963 1964 /* 1965 * We maintain different write policies for each of the following 1966 * types of data: 1967 * 1. metadata 1968 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1969 * 3. all other level 0 blocks 1970 */ 1971 if (ismd) { 1972 /* 1973 * XXX -- we should design a compression algorithm 1974 * that specializes in arrays of bps. 1975 */ 1976 compress = zio_compress_select(os->os_spa, 1977 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1978 1979 /* 1980 * Metadata always gets checksummed. If the data 1981 * checksum is multi-bit correctable, and it's not a 1982 * ZBT-style checksum, then it's suitable for metadata 1983 * as well. Otherwise, the metadata checksum defaults 1984 * to fletcher4. 1985 */ 1986 if (!(zio_checksum_table[checksum].ci_flags & 1987 ZCHECKSUM_FLAG_METADATA) || 1988 (zio_checksum_table[checksum].ci_flags & 1989 ZCHECKSUM_FLAG_EMBEDDED)) 1990 checksum = ZIO_CHECKSUM_FLETCHER_4; 1991 1992 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1993 (os->os_redundant_metadata == 1994 ZFS_REDUNDANT_METADATA_MOST && 1995 (level >= zfs_redundant_metadata_most_ditto_level || 1996 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1997 copies++; 1998 } else if (wp & WP_NOFILL) { 1999 ASSERT(level == 0); 2000 2001 /* 2002 * If we're writing preallocated blocks, we aren't actually 2003 * writing them so don't set any policy properties. These 2004 * blocks are currently only used by an external subsystem 2005 * outside of zfs (i.e. dump) and not written by the zio 2006 * pipeline. 2007 */ 2008 compress = ZIO_COMPRESS_OFF; 2009 checksum = ZIO_CHECKSUM_OFF; 2010 } else { 2011 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2012 compress); 2013 complevel = zio_complevel_select(os->os_spa, compress, 2014 complevel, complevel); 2015 2016 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2017 zio_checksum_select(dn->dn_checksum, checksum) : 2018 dedup_checksum; 2019 2020 /* 2021 * Determine dedup setting. If we are in dmu_sync(), 2022 * we won't actually dedup now because that's all 2023 * done in syncing context; but we do want to use the 2024 * dedup checksum. If the checksum is not strong 2025 * enough to ensure unique signatures, force 2026 * dedup_verify. 2027 */ 2028 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2029 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2030 if (!(zio_checksum_table[checksum].ci_flags & 2031 ZCHECKSUM_FLAG_DEDUP)) 2032 dedup_verify = B_TRUE; 2033 } 2034 2035 /* 2036 * Enable nopwrite if we have secure enough checksum 2037 * algorithm (see comment in zio_nop_write) and 2038 * compression is enabled. We don't enable nopwrite if 2039 * dedup is enabled as the two features are mutually 2040 * exclusive. 2041 */ 2042 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2043 ZCHECKSUM_FLAG_NOPWRITE) && 2044 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2045 } 2046 2047 /* 2048 * All objects in an encrypted objset are protected from modification 2049 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2050 * in the bp, so we cannot use all copies. Encrypted objects are also 2051 * not subject to nopwrite since writing the same data will still 2052 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2053 * to avoid ambiguity in the dedup code since the DDT does not store 2054 * object types. 2055 */ 2056 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2057 encrypt = B_TRUE; 2058 2059 if (DMU_OT_IS_ENCRYPTED(type)) { 2060 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2061 nopwrite = B_FALSE; 2062 } else { 2063 dedup = B_FALSE; 2064 } 2065 2066 if (level <= 0 && 2067 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2068 compress = ZIO_COMPRESS_EMPTY; 2069 } 2070 } 2071 2072 zp->zp_compress = compress; 2073 zp->zp_complevel = complevel; 2074 zp->zp_checksum = checksum; 2075 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2076 zp->zp_level = level; 2077 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2078 zp->zp_dedup = dedup; 2079 zp->zp_dedup_verify = dedup && dedup_verify; 2080 zp->zp_nopwrite = nopwrite; 2081 zp->zp_encrypt = encrypt; 2082 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2083 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN); 2084 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN); 2085 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN); 2086 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2087 os->os_zpl_special_smallblock : 0; 2088 2089 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2090 } 2091 2092 /* 2093 * This function is only called from zfs_holey_common() for zpl_llseek() 2094 * in order to determine the location of holes. In order to accurately 2095 * report holes all dirty data must be synced to disk. This causes extremely 2096 * poor performance when seeking for holes in a dirty file. As a compromise, 2097 * only provide hole data when the dnode is clean. When a dnode is dirty 2098 * report the dnode as having no holes which is always a safe thing to do. 2099 */ 2100 int 2101 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2102 { 2103 dnode_t *dn; 2104 int err; 2105 2106 restart: 2107 err = dnode_hold(os, object, FTAG, &dn); 2108 if (err) 2109 return (err); 2110 2111 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2112 2113 if (dnode_is_dirty(dn)) { 2114 /* 2115 * If the zfs_dmu_offset_next_sync module option is enabled 2116 * then strict hole reporting has been requested. Dirty 2117 * dnodes must be synced to disk to accurately report all 2118 * holes. When disabled dirty dnodes are reported to not 2119 * have any holes which is always safe. 2120 * 2121 * When called by zfs_holey_common() the zp->z_rangelock 2122 * is held to prevent zfs_write() and mmap writeback from 2123 * re-dirtying the dnode after txg_wait_synced(). 2124 */ 2125 if (zfs_dmu_offset_next_sync) { 2126 rw_exit(&dn->dn_struct_rwlock); 2127 dnode_rele(dn, FTAG); 2128 txg_wait_synced(dmu_objset_pool(os), 0); 2129 goto restart; 2130 } 2131 2132 err = SET_ERROR(EBUSY); 2133 } else { 2134 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK | 2135 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2136 } 2137 2138 rw_exit(&dn->dn_struct_rwlock); 2139 dnode_rele(dn, FTAG); 2140 2141 return (err); 2142 } 2143 2144 void 2145 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2146 { 2147 dnode_phys_t *dnp = dn->dn_phys; 2148 2149 doi->doi_data_block_size = dn->dn_datablksz; 2150 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2151 1ULL << dn->dn_indblkshift : 0; 2152 doi->doi_type = dn->dn_type; 2153 doi->doi_bonus_type = dn->dn_bonustype; 2154 doi->doi_bonus_size = dn->dn_bonuslen; 2155 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2156 doi->doi_indirection = dn->dn_nlevels; 2157 doi->doi_checksum = dn->dn_checksum; 2158 doi->doi_compress = dn->dn_compress; 2159 doi->doi_nblkptr = dn->dn_nblkptr; 2160 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2161 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2162 doi->doi_fill_count = 0; 2163 for (int i = 0; i < dnp->dn_nblkptr; i++) 2164 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2165 } 2166 2167 void 2168 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2169 { 2170 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2171 mutex_enter(&dn->dn_mtx); 2172 2173 __dmu_object_info_from_dnode(dn, doi); 2174 2175 mutex_exit(&dn->dn_mtx); 2176 rw_exit(&dn->dn_struct_rwlock); 2177 } 2178 2179 /* 2180 * Get information on a DMU object. 2181 * If doi is NULL, just indicates whether the object exists. 2182 */ 2183 int 2184 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2185 { 2186 dnode_t *dn; 2187 int err = dnode_hold(os, object, FTAG, &dn); 2188 2189 if (err) 2190 return (err); 2191 2192 if (doi != NULL) 2193 dmu_object_info_from_dnode(dn, doi); 2194 2195 dnode_rele(dn, FTAG); 2196 return (0); 2197 } 2198 2199 /* 2200 * As above, but faster; can be used when you have a held dbuf in hand. 2201 */ 2202 void 2203 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2204 { 2205 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2206 2207 DB_DNODE_ENTER(db); 2208 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2209 DB_DNODE_EXIT(db); 2210 } 2211 2212 /* 2213 * Faster still when you only care about the size. 2214 */ 2215 void 2216 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2217 u_longlong_t *nblk512) 2218 { 2219 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2220 dnode_t *dn; 2221 2222 DB_DNODE_ENTER(db); 2223 dn = DB_DNODE(db); 2224 2225 *blksize = dn->dn_datablksz; 2226 /* add in number of slots used for the dnode itself */ 2227 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2228 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2229 DB_DNODE_EXIT(db); 2230 } 2231 2232 void 2233 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2234 { 2235 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2236 dnode_t *dn; 2237 2238 DB_DNODE_ENTER(db); 2239 dn = DB_DNODE(db); 2240 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2241 DB_DNODE_EXIT(db); 2242 } 2243 2244 void 2245 byteswap_uint64_array(void *vbuf, size_t size) 2246 { 2247 uint64_t *buf = vbuf; 2248 size_t count = size >> 3; 2249 int i; 2250 2251 ASSERT((size & 7) == 0); 2252 2253 for (i = 0; i < count; i++) 2254 buf[i] = BSWAP_64(buf[i]); 2255 } 2256 2257 void 2258 byteswap_uint32_array(void *vbuf, size_t size) 2259 { 2260 uint32_t *buf = vbuf; 2261 size_t count = size >> 2; 2262 int i; 2263 2264 ASSERT((size & 3) == 0); 2265 2266 for (i = 0; i < count; i++) 2267 buf[i] = BSWAP_32(buf[i]); 2268 } 2269 2270 void 2271 byteswap_uint16_array(void *vbuf, size_t size) 2272 { 2273 uint16_t *buf = vbuf; 2274 size_t count = size >> 1; 2275 int i; 2276 2277 ASSERT((size & 1) == 0); 2278 2279 for (i = 0; i < count; i++) 2280 buf[i] = BSWAP_16(buf[i]); 2281 } 2282 2283 void 2284 byteswap_uint8_array(void *vbuf, size_t size) 2285 { 2286 (void) vbuf, (void) size; 2287 } 2288 2289 void 2290 dmu_init(void) 2291 { 2292 abd_init(); 2293 zfs_dbgmsg_init(); 2294 sa_cache_init(); 2295 dmu_objset_init(); 2296 dnode_init(); 2297 zfetch_init(); 2298 dmu_tx_init(); 2299 l2arc_init(); 2300 arc_init(); 2301 dbuf_init(); 2302 } 2303 2304 void 2305 dmu_fini(void) 2306 { 2307 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2308 l2arc_fini(); 2309 dmu_tx_fini(); 2310 zfetch_fini(); 2311 dbuf_fini(); 2312 dnode_fini(); 2313 dmu_objset_fini(); 2314 sa_cache_fini(); 2315 zfs_dbgmsg_fini(); 2316 abd_fini(); 2317 } 2318 2319 EXPORT_SYMBOL(dmu_bonus_hold); 2320 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2321 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2322 EXPORT_SYMBOL(dmu_buf_rele_array); 2323 EXPORT_SYMBOL(dmu_prefetch); 2324 EXPORT_SYMBOL(dmu_free_range); 2325 EXPORT_SYMBOL(dmu_free_long_range); 2326 EXPORT_SYMBOL(dmu_free_long_object); 2327 EXPORT_SYMBOL(dmu_read); 2328 EXPORT_SYMBOL(dmu_read_by_dnode); 2329 EXPORT_SYMBOL(dmu_write); 2330 EXPORT_SYMBOL(dmu_write_by_dnode); 2331 EXPORT_SYMBOL(dmu_prealloc); 2332 EXPORT_SYMBOL(dmu_object_info); 2333 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2334 EXPORT_SYMBOL(dmu_object_info_from_db); 2335 EXPORT_SYMBOL(dmu_object_size_from_db); 2336 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2337 EXPORT_SYMBOL(dmu_object_set_nlevels); 2338 EXPORT_SYMBOL(dmu_object_set_blocksize); 2339 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2340 EXPORT_SYMBOL(dmu_object_set_checksum); 2341 EXPORT_SYMBOL(dmu_object_set_compress); 2342 EXPORT_SYMBOL(dmu_offset_next); 2343 EXPORT_SYMBOL(dmu_write_policy); 2344 EXPORT_SYMBOL(dmu_sync); 2345 EXPORT_SYMBOL(dmu_request_arcbuf); 2346 EXPORT_SYMBOL(dmu_return_arcbuf); 2347 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2348 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2349 EXPORT_SYMBOL(dmu_buf_hold); 2350 EXPORT_SYMBOL(dmu_ot); 2351 2352 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2353 "Enable NOP writes"); 2354 2355 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, ULONG, ZMOD_RW, 2356 "Percentage of dirtied blocks from frees in one TXG"); 2357 2358 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2359 "Enable forcing txg sync to find holes"); 2360 2361 /* CSTYLED */ 2362 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, INT, ZMOD_RW, 2363 "Limit one prefetch call to this size"); 2364