1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 28 * Copyright (c) 2019 Datto Inc. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. 32 */ 33 34 #include <sys/dmu.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dmu_tx.h> 37 #include <sys/dbuf.h> 38 #include <sys/dnode.h> 39 #include <sys/zfs_context.h> 40 #include <sys/dmu_objset.h> 41 #include <sys/dmu_traverse.h> 42 #include <sys/dsl_dataset.h> 43 #include <sys/dsl_dir.h> 44 #include <sys/dsl_pool.h> 45 #include <sys/dsl_synctask.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dmu_zfetch.h> 48 #include <sys/zfs_ioctl.h> 49 #include <sys/zap.h> 50 #include <sys/zio_checksum.h> 51 #include <sys/zio_compress.h> 52 #include <sys/sa.h> 53 #include <sys/zfeature.h> 54 #include <sys/abd.h> 55 #include <sys/trace_zfs.h> 56 #include <sys/zfs_racct.h> 57 #include <sys/zfs_rlock.h> 58 #ifdef _KERNEL 59 #include <sys/vmsystm.h> 60 #include <sys/zfs_znode.h> 61 #endif 62 63 /* 64 * Enable/disable nopwrite feature. 65 */ 66 static int zfs_nopwrite_enabled = 1; 67 68 /* 69 * Tunable to control percentage of dirtied L1 blocks from frees allowed into 70 * one TXG. After this threshold is crossed, additional dirty blocks from frees 71 * will wait until the next TXG. 72 * A value of zero will disable this throttle. 73 */ 74 static uint_t zfs_per_txg_dirty_frees_percent = 30; 75 76 /* 77 * Enable/disable forcing txg sync when dirty checking for holes with lseek(). 78 * By default this is enabled to ensure accurate hole reporting, it can result 79 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads. 80 * Disabling this option will result in holes never being reported in dirty 81 * files which is always safe. 82 */ 83 static int zfs_dmu_offset_next_sync = 1; 84 85 /* 86 * Limit the amount we can prefetch with one call to this amount. This 87 * helps to limit the amount of memory that can be used by prefetching. 88 * Larger objects should be prefetched a bit at a time. 89 */ 90 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE; 91 92 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 93 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" }, 94 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" }, 95 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" }, 96 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" }, 97 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" }, 98 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" }, 99 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" }, 100 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" }, 101 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" }, 102 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" }, 103 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" }, 104 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" }, 105 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" }, 106 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"}, 107 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" }, 108 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" }, 109 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" }, 110 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" }, 111 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" }, 112 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" }, 113 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" }, 114 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" }, 115 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" }, 116 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" }, 117 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" }, 118 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" }, 119 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" }, 120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" }, 121 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" }, 122 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" }, 123 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" }, 124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" }, 125 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" }, 126 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" }, 127 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" }, 128 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" }, 129 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" }, 130 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"}, 131 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" }, 132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" }, 133 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"}, 134 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"}, 135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" }, 136 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" }, 137 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" }, 138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" }, 139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" }, 140 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" }, 141 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" }, 142 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" }, 143 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" }, 144 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" }, 145 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" }, 146 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" } 147 }; 148 149 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 150 { byteswap_uint8_array, "uint8" }, 151 { byteswap_uint16_array, "uint16" }, 152 { byteswap_uint32_array, "uint32" }, 153 { byteswap_uint64_array, "uint64" }, 154 { zap_byteswap, "zap" }, 155 { dnode_buf_byteswap, "dnode" }, 156 { dmu_objset_byteswap, "objset" }, 157 { zfs_znode_byteswap, "znode" }, 158 { zfs_oldacl_byteswap, "oldacl" }, 159 { zfs_acl_byteswap, "acl" } 160 }; 161 162 static int 163 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, 164 const void *tag, dmu_buf_t **dbp) 165 { 166 uint64_t blkid; 167 dmu_buf_impl_t *db; 168 169 rw_enter(&dn->dn_struct_rwlock, RW_READER); 170 blkid = dbuf_whichblock(dn, 0, offset); 171 db = dbuf_hold(dn, blkid, tag); 172 rw_exit(&dn->dn_struct_rwlock); 173 174 if (db == NULL) { 175 *dbp = NULL; 176 return (SET_ERROR(EIO)); 177 } 178 179 *dbp = &db->db; 180 return (0); 181 } 182 int 183 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset, 184 const void *tag, dmu_buf_t **dbp) 185 { 186 dnode_t *dn; 187 uint64_t blkid; 188 dmu_buf_impl_t *db; 189 int err; 190 191 err = dnode_hold(os, object, FTAG, &dn); 192 if (err) 193 return (err); 194 rw_enter(&dn->dn_struct_rwlock, RW_READER); 195 blkid = dbuf_whichblock(dn, 0, offset); 196 db = dbuf_hold(dn, blkid, tag); 197 rw_exit(&dn->dn_struct_rwlock); 198 dnode_rele(dn, FTAG); 199 200 if (db == NULL) { 201 *dbp = NULL; 202 return (SET_ERROR(EIO)); 203 } 204 205 *dbp = &db->db; 206 return (err); 207 } 208 209 int 210 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset, 211 const void *tag, dmu_buf_t **dbp, int flags) 212 { 213 int err; 214 int db_flags = DB_RF_CANFAIL; 215 216 if (flags & DMU_READ_NO_PREFETCH) 217 db_flags |= DB_RF_NOPREFETCH; 218 if (flags & DMU_READ_NO_DECRYPT) 219 db_flags |= DB_RF_NO_DECRYPT; 220 221 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp); 222 if (err == 0) { 223 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 224 err = dbuf_read(db, NULL, db_flags); 225 if (err != 0) { 226 dbuf_rele(db, tag); 227 *dbp = NULL; 228 } 229 } 230 231 return (err); 232 } 233 234 int 235 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 236 const void *tag, dmu_buf_t **dbp, int flags) 237 { 238 int err; 239 int db_flags = DB_RF_CANFAIL; 240 241 if (flags & DMU_READ_NO_PREFETCH) 242 db_flags |= DB_RF_NOPREFETCH; 243 if (flags & DMU_READ_NO_DECRYPT) 244 db_flags |= DB_RF_NO_DECRYPT; 245 246 err = dmu_buf_hold_noread(os, object, offset, tag, dbp); 247 if (err == 0) { 248 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp); 249 err = dbuf_read(db, NULL, db_flags); 250 if (err != 0) { 251 dbuf_rele(db, tag); 252 *dbp = NULL; 253 } 254 } 255 256 return (err); 257 } 258 259 int 260 dmu_bonus_max(void) 261 { 262 return (DN_OLD_MAX_BONUSLEN); 263 } 264 265 int 266 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 267 { 268 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 269 dnode_t *dn; 270 int error; 271 272 DB_DNODE_ENTER(db); 273 dn = DB_DNODE(db); 274 275 if (dn->dn_bonus != db) { 276 error = SET_ERROR(EINVAL); 277 } else if (newsize < 0 || newsize > db_fake->db_size) { 278 error = SET_ERROR(EINVAL); 279 } else { 280 dnode_setbonuslen(dn, newsize, tx); 281 error = 0; 282 } 283 284 DB_DNODE_EXIT(db); 285 return (error); 286 } 287 288 int 289 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 290 { 291 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 292 dnode_t *dn; 293 int error; 294 295 DB_DNODE_ENTER(db); 296 dn = DB_DNODE(db); 297 298 if (!DMU_OT_IS_VALID(type)) { 299 error = SET_ERROR(EINVAL); 300 } else if (dn->dn_bonus != db) { 301 error = SET_ERROR(EINVAL); 302 } else { 303 dnode_setbonus_type(dn, type, tx); 304 error = 0; 305 } 306 307 DB_DNODE_EXIT(db); 308 return (error); 309 } 310 311 dmu_object_type_t 312 dmu_get_bonustype(dmu_buf_t *db_fake) 313 { 314 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 315 dnode_t *dn; 316 dmu_object_type_t type; 317 318 DB_DNODE_ENTER(db); 319 dn = DB_DNODE(db); 320 type = dn->dn_bonustype; 321 DB_DNODE_EXIT(db); 322 323 return (type); 324 } 325 326 int 327 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 328 { 329 dnode_t *dn; 330 int error; 331 332 error = dnode_hold(os, object, FTAG, &dn); 333 dbuf_rm_spill(dn, tx); 334 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 335 dnode_rm_spill(dn, tx); 336 rw_exit(&dn->dn_struct_rwlock); 337 dnode_rele(dn, FTAG); 338 return (error); 339 } 340 341 /* 342 * Lookup and hold the bonus buffer for the provided dnode. If the dnode 343 * has not yet been allocated a new bonus dbuf a will be allocated. 344 * Returns ENOENT, EIO, or 0. 345 */ 346 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp, 347 uint32_t flags) 348 { 349 dmu_buf_impl_t *db; 350 int error; 351 uint32_t db_flags = DB_RF_MUST_SUCCEED; 352 353 if (flags & DMU_READ_NO_PREFETCH) 354 db_flags |= DB_RF_NOPREFETCH; 355 if (flags & DMU_READ_NO_DECRYPT) 356 db_flags |= DB_RF_NO_DECRYPT; 357 358 rw_enter(&dn->dn_struct_rwlock, RW_READER); 359 if (dn->dn_bonus == NULL) { 360 rw_exit(&dn->dn_struct_rwlock); 361 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 362 if (dn->dn_bonus == NULL) 363 dbuf_create_bonus(dn); 364 } 365 db = dn->dn_bonus; 366 367 /* as long as the bonus buf is held, the dnode will be held */ 368 if (zfs_refcount_add(&db->db_holds, tag) == 1) { 369 VERIFY(dnode_add_ref(dn, db)); 370 atomic_inc_32(&dn->dn_dbufs_count); 371 } 372 373 /* 374 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 375 * hold and incrementing the dbuf count to ensure that dnode_move() sees 376 * a dnode hold for every dbuf. 377 */ 378 rw_exit(&dn->dn_struct_rwlock); 379 380 error = dbuf_read(db, NULL, db_flags); 381 if (error) { 382 dnode_evict_bonus(dn); 383 dbuf_rele(db, tag); 384 *dbp = NULL; 385 return (error); 386 } 387 388 *dbp = &db->db; 389 return (0); 390 } 391 392 int 393 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp) 394 { 395 dnode_t *dn; 396 int error; 397 398 error = dnode_hold(os, object, FTAG, &dn); 399 if (error) 400 return (error); 401 402 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH); 403 dnode_rele(dn, FTAG); 404 405 return (error); 406 } 407 408 /* 409 * returns ENOENT, EIO, or 0. 410 * 411 * This interface will allocate a blank spill dbuf when a spill blk 412 * doesn't already exist on the dnode. 413 * 414 * if you only want to find an already existing spill db, then 415 * dmu_spill_hold_existing() should be used. 416 */ 417 int 418 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag, 419 dmu_buf_t **dbp) 420 { 421 dmu_buf_impl_t *db = NULL; 422 int err; 423 424 if ((flags & DB_RF_HAVESTRUCT) == 0) 425 rw_enter(&dn->dn_struct_rwlock, RW_READER); 426 427 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 428 429 if ((flags & DB_RF_HAVESTRUCT) == 0) 430 rw_exit(&dn->dn_struct_rwlock); 431 432 if (db == NULL) { 433 *dbp = NULL; 434 return (SET_ERROR(EIO)); 435 } 436 err = dbuf_read(db, NULL, flags); 437 if (err == 0) 438 *dbp = &db->db; 439 else { 440 dbuf_rele(db, tag); 441 *dbp = NULL; 442 } 443 return (err); 444 } 445 446 int 447 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp) 448 { 449 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 450 dnode_t *dn; 451 int err; 452 453 DB_DNODE_ENTER(db); 454 dn = DB_DNODE(db); 455 456 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 457 err = SET_ERROR(EINVAL); 458 } else { 459 rw_enter(&dn->dn_struct_rwlock, RW_READER); 460 461 if (!dn->dn_have_spill) { 462 err = SET_ERROR(ENOENT); 463 } else { 464 err = dmu_spill_hold_by_dnode(dn, 465 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 466 } 467 468 rw_exit(&dn->dn_struct_rwlock); 469 } 470 471 DB_DNODE_EXIT(db); 472 return (err); 473 } 474 475 int 476 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag, 477 dmu_buf_t **dbp) 478 { 479 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 480 dnode_t *dn; 481 int err; 482 uint32_t db_flags = DB_RF_CANFAIL; 483 484 if (flags & DMU_READ_NO_DECRYPT) 485 db_flags |= DB_RF_NO_DECRYPT; 486 487 DB_DNODE_ENTER(db); 488 dn = DB_DNODE(db); 489 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp); 490 DB_DNODE_EXIT(db); 491 492 return (err); 493 } 494 495 /* 496 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 497 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 498 * and can induce severe lock contention when writing to several files 499 * whose dnodes are in the same block. 500 */ 501 int 502 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 503 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp, 504 uint32_t flags) 505 { 506 dmu_buf_t **dbp; 507 zstream_t *zs = NULL; 508 uint64_t blkid, nblks, i; 509 uint32_t dbuf_flags; 510 int err; 511 zio_t *zio = NULL; 512 boolean_t missed = B_FALSE; 513 514 ASSERT(length <= DMU_MAX_ACCESS); 515 516 /* 517 * Note: We directly notify the prefetch code of this read, so that 518 * we can tell it about the multi-block read. dbuf_read() only knows 519 * about the one block it is accessing. 520 */ 521 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT | 522 DB_RF_NOPREFETCH; 523 524 if ((flags & DMU_READ_NO_DECRYPT) != 0) 525 dbuf_flags |= DB_RF_NO_DECRYPT; 526 527 rw_enter(&dn->dn_struct_rwlock, RW_READER); 528 if (dn->dn_datablkshift) { 529 int blkshift = dn->dn_datablkshift; 530 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) - 531 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift; 532 } else { 533 if (offset + length > dn->dn_datablksz) { 534 zfs_panic_recover("zfs: accessing past end of object " 535 "%llx/%llx (size=%u access=%llu+%llu)", 536 (longlong_t)dn->dn_objset-> 537 os_dsl_dataset->ds_object, 538 (longlong_t)dn->dn_object, dn->dn_datablksz, 539 (longlong_t)offset, (longlong_t)length); 540 rw_exit(&dn->dn_struct_rwlock); 541 return (SET_ERROR(EIO)); 542 } 543 nblks = 1; 544 } 545 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 546 547 if (read) 548 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, 549 ZIO_FLAG_CANFAIL); 550 blkid = dbuf_whichblock(dn, 0, offset); 551 if ((flags & DMU_READ_NO_PREFETCH) == 0 && 552 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) { 553 /* 554 * Prepare the zfetch before initiating the demand reads, so 555 * that if multiple threads block on same indirect block, we 556 * base predictions on the original less racy request order. 557 */ 558 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, 559 read && DNODE_IS_CACHEABLE(dn), B_TRUE); 560 } 561 for (i = 0; i < nblks; i++) { 562 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag); 563 if (db == NULL) { 564 if (zs) 565 dmu_zfetch_run(zs, missed, B_TRUE); 566 rw_exit(&dn->dn_struct_rwlock); 567 dmu_buf_rele_array(dbp, nblks, tag); 568 if (read) 569 zio_nowait(zio); 570 return (SET_ERROR(EIO)); 571 } 572 573 /* 574 * Initiate async demand data read. 575 * We check the db_state after calling dbuf_read() because 576 * (1) dbuf_read() may change the state to CACHED due to a 577 * hit in the ARC, and (2) on a cache miss, a child will 578 * have been added to "zio" but not yet completed, so the 579 * state will not yet be CACHED. 580 */ 581 if (read) { 582 (void) dbuf_read(db, zio, dbuf_flags); 583 if (db->db_state != DB_CACHED) 584 missed = B_TRUE; 585 } 586 dbp[i] = &db->db; 587 } 588 589 if (!read) 590 zfs_racct_write(length, nblks); 591 592 if (zs) 593 dmu_zfetch_run(zs, missed, B_TRUE); 594 rw_exit(&dn->dn_struct_rwlock); 595 596 if (read) { 597 /* wait for async read i/o */ 598 err = zio_wait(zio); 599 if (err) { 600 dmu_buf_rele_array(dbp, nblks, tag); 601 return (err); 602 } 603 604 /* wait for other io to complete */ 605 for (i = 0; i < nblks; i++) { 606 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 607 mutex_enter(&db->db_mtx); 608 while (db->db_state == DB_READ || 609 db->db_state == DB_FILL) 610 cv_wait(&db->db_changed, &db->db_mtx); 611 if (db->db_state == DB_UNCACHED) 612 err = SET_ERROR(EIO); 613 mutex_exit(&db->db_mtx); 614 if (err) { 615 dmu_buf_rele_array(dbp, nblks, tag); 616 return (err); 617 } 618 } 619 } 620 621 *numbufsp = nblks; 622 *dbpp = dbp; 623 return (0); 624 } 625 626 int 627 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 628 uint64_t length, int read, const void *tag, int *numbufsp, 629 dmu_buf_t ***dbpp) 630 { 631 dnode_t *dn; 632 int err; 633 634 err = dnode_hold(os, object, FTAG, &dn); 635 if (err) 636 return (err); 637 638 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 639 numbufsp, dbpp, DMU_READ_PREFETCH); 640 641 dnode_rele(dn, FTAG); 642 643 return (err); 644 } 645 646 int 647 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 648 uint64_t length, boolean_t read, const void *tag, int *numbufsp, 649 dmu_buf_t ***dbpp) 650 { 651 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 652 dnode_t *dn; 653 int err; 654 655 DB_DNODE_ENTER(db); 656 dn = DB_DNODE(db); 657 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 658 numbufsp, dbpp, DMU_READ_PREFETCH); 659 DB_DNODE_EXIT(db); 660 661 return (err); 662 } 663 664 void 665 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag) 666 { 667 int i; 668 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 669 670 if (numbufs == 0) 671 return; 672 673 for (i = 0; i < numbufs; i++) { 674 if (dbp[i]) 675 dbuf_rele(dbp[i], tag); 676 } 677 678 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 679 } 680 681 /* 682 * Issue prefetch i/os for the given blocks. If level is greater than 0, the 683 * indirect blocks prefetched will be those that point to the blocks containing 684 * the data starting at offset, and continuing to offset + len. 685 * 686 * Note that if the indirect blocks above the blocks being prefetched are not 687 * in cache, they will be asynchronously read in. 688 */ 689 void 690 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset, 691 uint64_t len, zio_priority_t pri) 692 { 693 dnode_t *dn; 694 uint64_t blkid; 695 int nblks, err; 696 697 if (len == 0) { /* they're interested in the bonus buffer */ 698 dn = DMU_META_DNODE(os); 699 700 if (object == 0 || object >= DN_MAX_OBJECT) 701 return; 702 703 rw_enter(&dn->dn_struct_rwlock, RW_READER); 704 blkid = dbuf_whichblock(dn, level, 705 object * sizeof (dnode_phys_t)); 706 dbuf_prefetch(dn, level, blkid, pri, 0); 707 rw_exit(&dn->dn_struct_rwlock); 708 return; 709 } 710 711 /* 712 * See comment before the definition of dmu_prefetch_max. 713 */ 714 len = MIN(len, dmu_prefetch_max); 715 716 /* 717 * XXX - Note, if the dnode for the requested object is not 718 * already cached, we will do a *synchronous* read in the 719 * dnode_hold() call. The same is true for any indirects. 720 */ 721 err = dnode_hold(os, object, FTAG, &dn); 722 if (err != 0) 723 return; 724 725 /* 726 * offset + len - 1 is the last byte we want to prefetch for, and offset 727 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the 728 * last block we want to prefetch, and dbuf_whichblock(dn, level, 729 * offset) is the first. Then the number we need to prefetch is the 730 * last - first + 1. 731 */ 732 rw_enter(&dn->dn_struct_rwlock, RW_READER); 733 if (level > 0 || dn->dn_datablkshift != 0) { 734 nblks = dbuf_whichblock(dn, level, offset + len - 1) - 735 dbuf_whichblock(dn, level, offset) + 1; 736 } else { 737 nblks = (offset < dn->dn_datablksz); 738 } 739 740 if (nblks != 0) { 741 blkid = dbuf_whichblock(dn, level, offset); 742 for (int i = 0; i < nblks; i++) 743 dbuf_prefetch(dn, level, blkid + i, pri, 0); 744 } 745 rw_exit(&dn->dn_struct_rwlock); 746 747 dnode_rele(dn, FTAG); 748 } 749 750 /* 751 * Get the next "chunk" of file data to free. We traverse the file from 752 * the end so that the file gets shorter over time (if we crashes in the 753 * middle, this will leave us in a better state). We find allocated file 754 * data by simply searching the allocated level 1 indirects. 755 * 756 * On input, *start should be the first offset that does not need to be 757 * freed (e.g. "offset + length"). On return, *start will be the first 758 * offset that should be freed and l1blks is set to the number of level 1 759 * indirect blocks found within the chunk. 760 */ 761 static int 762 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks) 763 { 764 uint64_t blks; 765 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 766 /* bytes of data covered by a level-1 indirect block */ 767 uint64_t iblkrange = (uint64_t)dn->dn_datablksz * 768 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 769 770 ASSERT3U(minimum, <=, *start); 771 772 /* 773 * Check if we can free the entire range assuming that all of the 774 * L1 blocks in this range have data. If we can, we use this 775 * worst case value as an estimate so we can avoid having to look 776 * at the object's actual data. 777 */ 778 uint64_t total_l1blks = 779 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) / 780 iblkrange; 781 if (total_l1blks <= maxblks) { 782 *l1blks = total_l1blks; 783 *start = minimum; 784 return (0); 785 } 786 ASSERT(ISP2(iblkrange)); 787 788 for (blks = 0; *start > minimum && blks < maxblks; blks++) { 789 int err; 790 791 /* 792 * dnode_next_offset(BACKWARDS) will find an allocated L1 793 * indirect block at or before the input offset. We must 794 * decrement *start so that it is at the end of the region 795 * to search. 796 */ 797 (*start)--; 798 799 err = dnode_next_offset(dn, 800 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 801 802 /* if there are no indirect blocks before start, we are done */ 803 if (err == ESRCH) { 804 *start = minimum; 805 break; 806 } else if (err != 0) { 807 *l1blks = blks; 808 return (err); 809 } 810 811 /* set start to the beginning of this L1 indirect */ 812 *start = P2ALIGN(*start, iblkrange); 813 } 814 if (*start < minimum) 815 *start = minimum; 816 *l1blks = blks; 817 818 return (0); 819 } 820 821 /* 822 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set, 823 * otherwise return false. 824 * Used below in dmu_free_long_range_impl() to enable abort when unmounting 825 */ 826 static boolean_t 827 dmu_objset_zfs_unmounting(objset_t *os) 828 { 829 #ifdef _KERNEL 830 if (dmu_objset_type(os) == DMU_OST_ZFS) 831 return (zfs_get_vfs_flag_unmounted(os)); 832 #else 833 (void) os; 834 #endif 835 return (B_FALSE); 836 } 837 838 static int 839 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 840 uint64_t length) 841 { 842 uint64_t object_size; 843 int err; 844 uint64_t dirty_frees_threshold; 845 dsl_pool_t *dp = dmu_objset_pool(os); 846 847 if (dn == NULL) 848 return (SET_ERROR(EINVAL)); 849 850 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 851 if (offset >= object_size) 852 return (0); 853 854 if (zfs_per_txg_dirty_frees_percent <= 100) 855 dirty_frees_threshold = 856 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100; 857 else 858 dirty_frees_threshold = zfs_dirty_data_max / 20; 859 860 if (length == DMU_OBJECT_END || offset + length > object_size) 861 length = object_size - offset; 862 863 while (length != 0) { 864 uint64_t chunk_end, chunk_begin, chunk_len; 865 uint64_t l1blks; 866 dmu_tx_t *tx; 867 868 if (dmu_objset_zfs_unmounting(dn->dn_objset)) 869 return (SET_ERROR(EINTR)); 870 871 chunk_end = chunk_begin = offset + length; 872 873 /* move chunk_begin backwards to the beginning of this chunk */ 874 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks); 875 if (err) 876 return (err); 877 ASSERT3U(chunk_begin, >=, offset); 878 ASSERT3U(chunk_begin, <=, chunk_end); 879 880 chunk_len = chunk_end - chunk_begin; 881 882 tx = dmu_tx_create(os); 883 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len); 884 885 /* 886 * Mark this transaction as typically resulting in a net 887 * reduction in space used. 888 */ 889 dmu_tx_mark_netfree(tx); 890 err = dmu_tx_assign(tx, TXG_WAIT); 891 if (err) { 892 dmu_tx_abort(tx); 893 return (err); 894 } 895 896 uint64_t txg = dmu_tx_get_txg(tx); 897 898 mutex_enter(&dp->dp_lock); 899 uint64_t long_free_dirty = 900 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK]; 901 mutex_exit(&dp->dp_lock); 902 903 /* 904 * To avoid filling up a TXG with just frees, wait for 905 * the next TXG to open before freeing more chunks if 906 * we have reached the threshold of frees. 907 */ 908 if (dirty_frees_threshold != 0 && 909 long_free_dirty >= dirty_frees_threshold) { 910 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay); 911 dmu_tx_commit(tx); 912 txg_wait_open(dp, 0, B_TRUE); 913 continue; 914 } 915 916 /* 917 * In order to prevent unnecessary write throttling, for each 918 * TXG, we track the cumulative size of L1 blocks being dirtied 919 * in dnode_free_range() below. We compare this number to a 920 * tunable threshold, past which we prevent new L1 dirty freeing 921 * blocks from being added into the open TXG. See 922 * dmu_free_long_range_impl() for details. The threshold 923 * prevents write throttle activation due to dirty freeing L1 924 * blocks taking up a large percentage of zfs_dirty_data_max. 925 */ 926 mutex_enter(&dp->dp_lock); 927 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] += 928 l1blks << dn->dn_indblkshift; 929 mutex_exit(&dp->dp_lock); 930 DTRACE_PROBE3(free__long__range, 931 uint64_t, long_free_dirty, uint64_t, chunk_len, 932 uint64_t, txg); 933 dnode_free_range(dn, chunk_begin, chunk_len, tx); 934 935 dmu_tx_commit(tx); 936 937 length -= chunk_len; 938 } 939 return (0); 940 } 941 942 int 943 dmu_free_long_range(objset_t *os, uint64_t object, 944 uint64_t offset, uint64_t length) 945 { 946 dnode_t *dn; 947 int err; 948 949 err = dnode_hold(os, object, FTAG, &dn); 950 if (err != 0) 951 return (err); 952 err = dmu_free_long_range_impl(os, dn, offset, length); 953 954 /* 955 * It is important to zero out the maxblkid when freeing the entire 956 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 957 * will take the fast path, and (b) dnode_reallocate() can verify 958 * that the entire file has been freed. 959 */ 960 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 961 dn->dn_maxblkid = 0; 962 963 dnode_rele(dn, FTAG); 964 return (err); 965 } 966 967 int 968 dmu_free_long_object(objset_t *os, uint64_t object) 969 { 970 dmu_tx_t *tx; 971 int err; 972 973 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 974 if (err != 0) 975 return (err); 976 977 tx = dmu_tx_create(os); 978 dmu_tx_hold_bonus(tx, object); 979 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 980 dmu_tx_mark_netfree(tx); 981 err = dmu_tx_assign(tx, TXG_WAIT); 982 if (err == 0) { 983 err = dmu_object_free(os, object, tx); 984 dmu_tx_commit(tx); 985 } else { 986 dmu_tx_abort(tx); 987 } 988 989 return (err); 990 } 991 992 int 993 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 994 uint64_t size, dmu_tx_t *tx) 995 { 996 dnode_t *dn; 997 int err = dnode_hold(os, object, FTAG, &dn); 998 if (err) 999 return (err); 1000 ASSERT(offset < UINT64_MAX); 1001 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset); 1002 dnode_free_range(dn, offset, size, tx); 1003 dnode_rele(dn, FTAG); 1004 return (0); 1005 } 1006 1007 static int 1008 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size, 1009 void *buf, uint32_t flags) 1010 { 1011 dmu_buf_t **dbp; 1012 int numbufs, err = 0; 1013 1014 /* 1015 * Deal with odd block sizes, where there can't be data past the first 1016 * block. If we ever do the tail block optimization, we will need to 1017 * handle that here as well. 1018 */ 1019 if (dn->dn_maxblkid == 0) { 1020 uint64_t newsz = offset > dn->dn_datablksz ? 0 : 1021 MIN(size, dn->dn_datablksz - offset); 1022 memset((char *)buf + newsz, 0, size - newsz); 1023 size = newsz; 1024 } 1025 1026 while (size > 0) { 1027 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 1028 int i; 1029 1030 /* 1031 * NB: we could do this block-at-a-time, but it's nice 1032 * to be reading in parallel. 1033 */ 1034 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 1035 TRUE, FTAG, &numbufs, &dbp, flags); 1036 if (err) 1037 break; 1038 1039 for (i = 0; i < numbufs; i++) { 1040 uint64_t tocpy; 1041 int64_t bufoff; 1042 dmu_buf_t *db = dbp[i]; 1043 1044 ASSERT(size > 0); 1045 1046 bufoff = offset - db->db_offset; 1047 tocpy = MIN(db->db_size - bufoff, size); 1048 1049 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy); 1050 1051 offset += tocpy; 1052 size -= tocpy; 1053 buf = (char *)buf + tocpy; 1054 } 1055 dmu_buf_rele_array(dbp, numbufs, FTAG); 1056 } 1057 return (err); 1058 } 1059 1060 int 1061 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1062 void *buf, uint32_t flags) 1063 { 1064 dnode_t *dn; 1065 int err; 1066 1067 err = dnode_hold(os, object, FTAG, &dn); 1068 if (err != 0) 1069 return (err); 1070 1071 err = dmu_read_impl(dn, offset, size, buf, flags); 1072 dnode_rele(dn, FTAG); 1073 return (err); 1074 } 1075 1076 int 1077 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf, 1078 uint32_t flags) 1079 { 1080 return (dmu_read_impl(dn, offset, size, buf, flags)); 1081 } 1082 1083 static void 1084 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size, 1085 const void *buf, dmu_tx_t *tx) 1086 { 1087 int i; 1088 1089 for (i = 0; i < numbufs; i++) { 1090 uint64_t tocpy; 1091 int64_t bufoff; 1092 dmu_buf_t *db = dbp[i]; 1093 1094 ASSERT(size > 0); 1095 1096 bufoff = offset - db->db_offset; 1097 tocpy = MIN(db->db_size - bufoff, size); 1098 1099 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1100 1101 if (tocpy == db->db_size) 1102 dmu_buf_will_fill(db, tx); 1103 else 1104 dmu_buf_will_dirty(db, tx); 1105 1106 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy); 1107 1108 if (tocpy == db->db_size) 1109 dmu_buf_fill_done(db, tx); 1110 1111 offset += tocpy; 1112 size -= tocpy; 1113 buf = (char *)buf + tocpy; 1114 } 1115 } 1116 1117 void 1118 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1119 const void *buf, dmu_tx_t *tx) 1120 { 1121 dmu_buf_t **dbp; 1122 int numbufs; 1123 1124 if (size == 0) 1125 return; 1126 1127 VERIFY0(dmu_buf_hold_array(os, object, offset, size, 1128 FALSE, FTAG, &numbufs, &dbp)); 1129 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1130 dmu_buf_rele_array(dbp, numbufs, FTAG); 1131 } 1132 1133 /* 1134 * Note: Lustre is an external consumer of this interface. 1135 */ 1136 void 1137 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, 1138 const void *buf, dmu_tx_t *tx) 1139 { 1140 dmu_buf_t **dbp; 1141 int numbufs; 1142 1143 if (size == 0) 1144 return; 1145 1146 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size, 1147 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH)); 1148 dmu_write_impl(dbp, numbufs, offset, size, buf, tx); 1149 dmu_buf_rele_array(dbp, numbufs, FTAG); 1150 } 1151 1152 void 1153 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1154 dmu_tx_t *tx) 1155 { 1156 dmu_buf_t **dbp; 1157 int numbufs, i; 1158 1159 if (size == 0) 1160 return; 1161 1162 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 1163 FALSE, FTAG, &numbufs, &dbp)); 1164 1165 for (i = 0; i < numbufs; i++) { 1166 dmu_buf_t *db = dbp[i]; 1167 1168 dmu_buf_will_not_fill(db, tx); 1169 } 1170 dmu_buf_rele_array(dbp, numbufs, FTAG); 1171 } 1172 1173 void 1174 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset, 1175 void *data, uint8_t etype, uint8_t comp, int uncompressed_size, 1176 int compressed_size, int byteorder, dmu_tx_t *tx) 1177 { 1178 dmu_buf_t *db; 1179 1180 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES); 1181 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS); 1182 VERIFY0(dmu_buf_hold_noread(os, object, offset, 1183 FTAG, &db)); 1184 1185 dmu_buf_write_embedded(db, 1186 data, (bp_embedded_type_t)etype, (enum zio_compress)comp, 1187 uncompressed_size, compressed_size, byteorder, tx); 1188 1189 dmu_buf_rele(db, FTAG); 1190 } 1191 1192 void 1193 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1194 dmu_tx_t *tx) 1195 { 1196 int numbufs, i; 1197 dmu_buf_t **dbp; 1198 1199 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG, 1200 &numbufs, &dbp)); 1201 for (i = 0; i < numbufs; i++) 1202 dmu_buf_redact(dbp[i], tx); 1203 dmu_buf_rele_array(dbp, numbufs, FTAG); 1204 } 1205 1206 #ifdef _KERNEL 1207 int 1208 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size) 1209 { 1210 dmu_buf_t **dbp; 1211 int numbufs, i, err; 1212 1213 /* 1214 * NB: we could do this block-at-a-time, but it's nice 1215 * to be reading in parallel. 1216 */ 1217 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1218 TRUE, FTAG, &numbufs, &dbp, 0); 1219 if (err) 1220 return (err); 1221 1222 for (i = 0; i < numbufs; i++) { 1223 uint64_t tocpy; 1224 int64_t bufoff; 1225 dmu_buf_t *db = dbp[i]; 1226 1227 ASSERT(size > 0); 1228 1229 bufoff = zfs_uio_offset(uio) - db->db_offset; 1230 tocpy = MIN(db->db_size - bufoff, size); 1231 1232 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy, 1233 UIO_READ, uio); 1234 1235 if (err) 1236 break; 1237 1238 size -= tocpy; 1239 } 1240 dmu_buf_rele_array(dbp, numbufs, FTAG); 1241 1242 return (err); 1243 } 1244 1245 /* 1246 * Read 'size' bytes into the uio buffer. 1247 * From object zdb->db_object. 1248 * Starting at zfs_uio_offset(uio). 1249 * 1250 * If the caller already has a dbuf in the target object 1251 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(), 1252 * because we don't have to find the dnode_t for the object. 1253 */ 1254 int 1255 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size) 1256 { 1257 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1258 dnode_t *dn; 1259 int err; 1260 1261 if (size == 0) 1262 return (0); 1263 1264 DB_DNODE_ENTER(db); 1265 dn = DB_DNODE(db); 1266 err = dmu_read_uio_dnode(dn, uio, size); 1267 DB_DNODE_EXIT(db); 1268 1269 return (err); 1270 } 1271 1272 /* 1273 * Read 'size' bytes into the uio buffer. 1274 * From the specified object 1275 * Starting at offset zfs_uio_offset(uio). 1276 */ 1277 int 1278 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size) 1279 { 1280 dnode_t *dn; 1281 int err; 1282 1283 if (size == 0) 1284 return (0); 1285 1286 err = dnode_hold(os, object, FTAG, &dn); 1287 if (err) 1288 return (err); 1289 1290 err = dmu_read_uio_dnode(dn, uio, size); 1291 1292 dnode_rele(dn, FTAG); 1293 1294 return (err); 1295 } 1296 1297 int 1298 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx) 1299 { 1300 dmu_buf_t **dbp; 1301 int numbufs; 1302 int err = 0; 1303 int i; 1304 1305 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size, 1306 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1307 if (err) 1308 return (err); 1309 1310 for (i = 0; i < numbufs; i++) { 1311 uint64_t tocpy; 1312 int64_t bufoff; 1313 dmu_buf_t *db = dbp[i]; 1314 1315 ASSERT(size > 0); 1316 1317 bufoff = zfs_uio_offset(uio) - db->db_offset; 1318 tocpy = MIN(db->db_size - bufoff, size); 1319 1320 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1321 1322 if (tocpy == db->db_size) 1323 dmu_buf_will_fill(db, tx); 1324 else 1325 dmu_buf_will_dirty(db, tx); 1326 1327 /* 1328 * XXX zfs_uiomove could block forever (eg.nfs-backed 1329 * pages). There needs to be a uiolockdown() function 1330 * to lock the pages in memory, so that zfs_uiomove won't 1331 * block. 1332 */ 1333 err = zfs_uio_fault_move((char *)db->db_data + bufoff, 1334 tocpy, UIO_WRITE, uio); 1335 1336 if (tocpy == db->db_size) 1337 dmu_buf_fill_done(db, tx); 1338 1339 if (err) 1340 break; 1341 1342 size -= tocpy; 1343 } 1344 1345 dmu_buf_rele_array(dbp, numbufs, FTAG); 1346 return (err); 1347 } 1348 1349 /* 1350 * Write 'size' bytes from the uio buffer. 1351 * To object zdb->db_object. 1352 * Starting at offset zfs_uio_offset(uio). 1353 * 1354 * If the caller already has a dbuf in the target object 1355 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(), 1356 * because we don't have to find the dnode_t for the object. 1357 */ 1358 int 1359 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size, 1360 dmu_tx_t *tx) 1361 { 1362 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1363 dnode_t *dn; 1364 int err; 1365 1366 if (size == 0) 1367 return (0); 1368 1369 DB_DNODE_ENTER(db); 1370 dn = DB_DNODE(db); 1371 err = dmu_write_uio_dnode(dn, uio, size, tx); 1372 DB_DNODE_EXIT(db); 1373 1374 return (err); 1375 } 1376 1377 /* 1378 * Write 'size' bytes from the uio buffer. 1379 * To the specified object. 1380 * Starting at offset zfs_uio_offset(uio). 1381 */ 1382 int 1383 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size, 1384 dmu_tx_t *tx) 1385 { 1386 dnode_t *dn; 1387 int err; 1388 1389 if (size == 0) 1390 return (0); 1391 1392 err = dnode_hold(os, object, FTAG, &dn); 1393 if (err) 1394 return (err); 1395 1396 err = dmu_write_uio_dnode(dn, uio, size, tx); 1397 1398 dnode_rele(dn, FTAG); 1399 1400 return (err); 1401 } 1402 #endif /* _KERNEL */ 1403 1404 /* 1405 * Allocate a loaned anonymous arc buffer. 1406 */ 1407 arc_buf_t * 1408 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1409 { 1410 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1411 1412 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size)); 1413 } 1414 1415 /* 1416 * Free a loaned arc buffer. 1417 */ 1418 void 1419 dmu_return_arcbuf(arc_buf_t *buf) 1420 { 1421 arc_return_buf(buf, FTAG); 1422 arc_buf_destroy(buf, FTAG); 1423 } 1424 1425 /* 1426 * A "lightweight" write is faster than a regular write (e.g. 1427 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the 1428 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the 1429 * data can not be read or overwritten until the transaction's txg has been 1430 * synced. This makes it appropriate for workloads that are known to be 1431 * (temporarily) write-only, like "zfs receive". 1432 * 1433 * A single block is written, starting at the specified offset in bytes. If 1434 * the call is successful, it returns 0 and the provided abd has been 1435 * consumed (the caller should not free it). 1436 */ 1437 int 1438 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd, 1439 const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx) 1440 { 1441 dbuf_dirty_record_t *dr = 1442 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx); 1443 if (dr == NULL) 1444 return (SET_ERROR(EIO)); 1445 dr->dt.dll.dr_abd = abd; 1446 dr->dt.dll.dr_props = *zp; 1447 dr->dt.dll.dr_flags = flags; 1448 return (0); 1449 } 1450 1451 /* 1452 * When possible directly assign passed loaned arc buffer to a dbuf. 1453 * If this is not possible copy the contents of passed arc buf via 1454 * dmu_write(). 1455 */ 1456 int 1457 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf, 1458 dmu_tx_t *tx) 1459 { 1460 dmu_buf_impl_t *db; 1461 objset_t *os = dn->dn_objset; 1462 uint64_t object = dn->dn_object; 1463 uint32_t blksz = (uint32_t)arc_buf_lsize(buf); 1464 uint64_t blkid; 1465 1466 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1467 blkid = dbuf_whichblock(dn, 0, offset); 1468 db = dbuf_hold(dn, blkid, FTAG); 1469 if (db == NULL) 1470 return (SET_ERROR(EIO)); 1471 rw_exit(&dn->dn_struct_rwlock); 1472 1473 /* 1474 * We can only assign if the offset is aligned and the arc buf is the 1475 * same size as the dbuf. 1476 */ 1477 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1478 zfs_racct_write(blksz, 1); 1479 dbuf_assign_arcbuf(db, buf, tx); 1480 dbuf_rele(db, FTAG); 1481 } else { 1482 /* compressed bufs must always be assignable to their dbuf */ 1483 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF); 1484 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED)); 1485 1486 dbuf_rele(db, FTAG); 1487 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1488 dmu_return_arcbuf(buf); 1489 } 1490 1491 return (0); 1492 } 1493 1494 int 1495 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1496 dmu_tx_t *tx) 1497 { 1498 int err; 1499 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1500 1501 DB_DNODE_ENTER(dbuf); 1502 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx); 1503 DB_DNODE_EXIT(dbuf); 1504 1505 return (err); 1506 } 1507 1508 typedef struct { 1509 dbuf_dirty_record_t *dsa_dr; 1510 dmu_sync_cb_t *dsa_done; 1511 zgd_t *dsa_zgd; 1512 dmu_tx_t *dsa_tx; 1513 } dmu_sync_arg_t; 1514 1515 static void 1516 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1517 { 1518 (void) buf; 1519 dmu_sync_arg_t *dsa = varg; 1520 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1521 blkptr_t *bp = zio->io_bp; 1522 1523 if (zio->io_error == 0) { 1524 if (BP_IS_HOLE(bp)) { 1525 /* 1526 * A block of zeros may compress to a hole, but the 1527 * block size still needs to be known for replay. 1528 */ 1529 BP_SET_LSIZE(bp, db->db_size); 1530 } else if (!BP_IS_EMBEDDED(bp)) { 1531 ASSERT(BP_GET_LEVEL(bp) == 0); 1532 BP_SET_FILL(bp, 1); 1533 } 1534 } 1535 } 1536 1537 static void 1538 dmu_sync_late_arrival_ready(zio_t *zio) 1539 { 1540 dmu_sync_ready(zio, NULL, zio->io_private); 1541 } 1542 1543 static void 1544 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1545 { 1546 (void) buf; 1547 dmu_sync_arg_t *dsa = varg; 1548 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1549 dmu_buf_impl_t *db = dr->dr_dbuf; 1550 zgd_t *zgd = dsa->dsa_zgd; 1551 1552 /* 1553 * Record the vdev(s) backing this blkptr so they can be flushed after 1554 * the writes for the lwb have completed. 1555 */ 1556 if (zio->io_error == 0) { 1557 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1558 } 1559 1560 mutex_enter(&db->db_mtx); 1561 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1562 if (zio->io_error == 0) { 1563 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1564 if (dr->dt.dl.dr_nopwrite) { 1565 blkptr_t *bp = zio->io_bp; 1566 blkptr_t *bp_orig = &zio->io_bp_orig; 1567 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1568 1569 ASSERT(BP_EQUAL(bp, bp_orig)); 1570 VERIFY(BP_EQUAL(bp, db->db_blkptr)); 1571 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1572 VERIFY(zio_checksum_table[chksum].ci_flags & 1573 ZCHECKSUM_FLAG_NOPWRITE); 1574 } 1575 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1576 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1577 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1578 1579 /* 1580 * Old style holes are filled with all zeros, whereas 1581 * new-style holes maintain their lsize, type, level, 1582 * and birth time (see zio_write_compress). While we 1583 * need to reset the BP_SET_LSIZE() call that happened 1584 * in dmu_sync_ready for old style holes, we do *not* 1585 * want to wipe out the information contained in new 1586 * style holes. Thus, only zero out the block pointer if 1587 * it's an old style hole. 1588 */ 1589 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) && 1590 dr->dt.dl.dr_overridden_by.blk_birth == 0) 1591 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1592 } else { 1593 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1594 } 1595 cv_broadcast(&db->db_changed); 1596 mutex_exit(&db->db_mtx); 1597 1598 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1599 1600 kmem_free(dsa, sizeof (*dsa)); 1601 } 1602 1603 static void 1604 dmu_sync_late_arrival_done(zio_t *zio) 1605 { 1606 blkptr_t *bp = zio->io_bp; 1607 dmu_sync_arg_t *dsa = zio->io_private; 1608 zgd_t *zgd = dsa->dsa_zgd; 1609 1610 if (zio->io_error == 0) { 1611 /* 1612 * Record the vdev(s) backing this blkptr so they can be 1613 * flushed after the writes for the lwb have completed. 1614 */ 1615 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1616 1617 if (!BP_IS_HOLE(bp)) { 1618 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig; 1619 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE)); 1620 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1621 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1622 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1623 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1624 } 1625 } 1626 1627 dmu_tx_commit(dsa->dsa_tx); 1628 1629 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1630 1631 abd_free(zio->io_abd); 1632 kmem_free(dsa, sizeof (*dsa)); 1633 } 1634 1635 static int 1636 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1637 zio_prop_t *zp, zbookmark_phys_t *zb) 1638 { 1639 dmu_sync_arg_t *dsa; 1640 dmu_tx_t *tx; 1641 1642 tx = dmu_tx_create(os); 1643 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1644 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1645 dmu_tx_abort(tx); 1646 /* Make zl_get_data do txg_waited_synced() */ 1647 return (SET_ERROR(EIO)); 1648 } 1649 1650 /* 1651 * In order to prevent the zgd's lwb from being free'd prior to 1652 * dmu_sync_late_arrival_done() being called, we have to ensure 1653 * the lwb's "max txg" takes this tx's txg into account. 1654 */ 1655 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx)); 1656 1657 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1658 dsa->dsa_dr = NULL; 1659 dsa->dsa_done = done; 1660 dsa->dsa_zgd = zgd; 1661 dsa->dsa_tx = tx; 1662 1663 /* 1664 * Since we are currently syncing this txg, it's nontrivial to 1665 * determine what BP to nopwrite against, so we disable nopwrite. 1666 * 1667 * When syncing, the db_blkptr is initially the BP of the previous 1668 * txg. We can not nopwrite against it because it will be changed 1669 * (this is similar to the non-late-arrival case where the dbuf is 1670 * dirty in a future txg). 1671 * 1672 * Then dbuf_write_ready() sets bp_blkptr to the location we will write. 1673 * We can not nopwrite against it because although the BP will not 1674 * (typically) be changed, the data has not yet been persisted to this 1675 * location. 1676 * 1677 * Finally, when dbuf_write_done() is called, it is theoretically 1678 * possible to always nopwrite, because the data that was written in 1679 * this txg is the same data that we are trying to write. However we 1680 * would need to check that this dbuf is not dirty in any future 1681 * txg's (as we do in the normal dmu_sync() path). For simplicity, we 1682 * don't nopwrite in this case. 1683 */ 1684 zp->zp_nopwrite = B_FALSE; 1685 1686 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1687 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size), 1688 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp, 1689 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done, 1690 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1691 1692 return (0); 1693 } 1694 1695 /* 1696 * Intent log support: sync the block associated with db to disk. 1697 * N.B. and XXX: the caller is responsible for making sure that the 1698 * data isn't changing while dmu_sync() is writing it. 1699 * 1700 * Return values: 1701 * 1702 * EEXIST: this txg has already been synced, so there's nothing to do. 1703 * The caller should not log the write. 1704 * 1705 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1706 * The caller should not log the write. 1707 * 1708 * EALREADY: this block is already in the process of being synced. 1709 * The caller should track its progress (somehow). 1710 * 1711 * EIO: could not do the I/O. 1712 * The caller should do a txg_wait_synced(). 1713 * 1714 * 0: the I/O has been initiated. 1715 * The caller should log this blkptr in the done callback. 1716 * It is possible that the I/O will fail, in which case 1717 * the error will be reported to the done callback and 1718 * propagated to pio from zio_done(). 1719 */ 1720 int 1721 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1722 { 1723 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1724 objset_t *os = db->db_objset; 1725 dsl_dataset_t *ds = os->os_dsl_dataset; 1726 dbuf_dirty_record_t *dr, *dr_next; 1727 dmu_sync_arg_t *dsa; 1728 zbookmark_phys_t zb; 1729 zio_prop_t zp; 1730 dnode_t *dn; 1731 1732 ASSERT(pio != NULL); 1733 ASSERT(txg != 0); 1734 1735 SET_BOOKMARK(&zb, ds->ds_object, 1736 db->db.db_object, db->db_level, db->db_blkid); 1737 1738 DB_DNODE_ENTER(db); 1739 dn = DB_DNODE(db); 1740 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1741 DB_DNODE_EXIT(db); 1742 1743 /* 1744 * If we're frozen (running ziltest), we always need to generate a bp. 1745 */ 1746 if (txg > spa_freeze_txg(os->os_spa)) 1747 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1748 1749 /* 1750 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1751 * and us. If we determine that this txg is not yet syncing, 1752 * but it begins to sync a moment later, that's OK because the 1753 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1754 */ 1755 mutex_enter(&db->db_mtx); 1756 1757 if (txg <= spa_last_synced_txg(os->os_spa)) { 1758 /* 1759 * This txg has already synced. There's nothing to do. 1760 */ 1761 mutex_exit(&db->db_mtx); 1762 return (SET_ERROR(EEXIST)); 1763 } 1764 1765 if (txg <= spa_syncing_txg(os->os_spa)) { 1766 /* 1767 * This txg is currently syncing, so we can't mess with 1768 * the dirty record anymore; just write a new log block. 1769 */ 1770 mutex_exit(&db->db_mtx); 1771 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1772 } 1773 1774 dr = dbuf_find_dirty_eq(db, txg); 1775 1776 if (dr == NULL) { 1777 /* 1778 * There's no dr for this dbuf, so it must have been freed. 1779 * There's no need to log writes to freed blocks, so we're done. 1780 */ 1781 mutex_exit(&db->db_mtx); 1782 return (SET_ERROR(ENOENT)); 1783 } 1784 1785 dr_next = list_next(&db->db_dirty_records, dr); 1786 ASSERT(dr_next == NULL || dr_next->dr_txg < txg); 1787 1788 if (db->db_blkptr != NULL) { 1789 /* 1790 * We need to fill in zgd_bp with the current blkptr so that 1791 * the nopwrite code can check if we're writing the same 1792 * data that's already on disk. We can only nopwrite if we 1793 * are sure that after making the copy, db_blkptr will not 1794 * change until our i/o completes. We ensure this by 1795 * holding the db_mtx, and only allowing nopwrite if the 1796 * block is not already dirty (see below). This is verified 1797 * by dmu_sync_done(), which VERIFYs that the db_blkptr has 1798 * not changed. 1799 */ 1800 *zgd->zgd_bp = *db->db_blkptr; 1801 } 1802 1803 /* 1804 * Assume the on-disk data is X, the current syncing data (in 1805 * txg - 1) is Y, and the current in-memory data is Z (currently 1806 * in dmu_sync). 1807 * 1808 * We usually want to perform a nopwrite if X and Z are the 1809 * same. However, if Y is different (i.e. the BP is going to 1810 * change before this write takes effect), then a nopwrite will 1811 * be incorrect - we would override with X, which could have 1812 * been freed when Y was written. 1813 * 1814 * (Note that this is not a concern when we are nop-writing from 1815 * syncing context, because X and Y must be identical, because 1816 * all previous txgs have been synced.) 1817 * 1818 * Therefore, we disable nopwrite if the current BP could change 1819 * before this TXG. There are two ways it could change: by 1820 * being dirty (dr_next is non-NULL), or by being freed 1821 * (dnode_block_freed()). This behavior is verified by 1822 * zio_done(), which VERIFYs that the override BP is identical 1823 * to the on-disk BP. 1824 */ 1825 DB_DNODE_ENTER(db); 1826 dn = DB_DNODE(db); 1827 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid)) 1828 zp.zp_nopwrite = B_FALSE; 1829 DB_DNODE_EXIT(db); 1830 1831 ASSERT(dr->dr_txg == txg); 1832 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1833 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1834 /* 1835 * We have already issued a sync write for this buffer, 1836 * or this buffer has already been synced. It could not 1837 * have been dirtied since, or we would have cleared the state. 1838 */ 1839 mutex_exit(&db->db_mtx); 1840 return (SET_ERROR(EALREADY)); 1841 } 1842 1843 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1844 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1845 mutex_exit(&db->db_mtx); 1846 1847 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1848 dsa->dsa_dr = dr; 1849 dsa->dsa_done = done; 1850 dsa->dsa_zgd = zgd; 1851 dsa->dsa_tx = NULL; 1852 1853 zio_nowait(arc_write(pio, os->os_spa, txg, 1854 zgd->zgd_bp, dr->dt.dl.dr_data, dbuf_is_l2cacheable(db), 1855 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa, 1856 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1857 1858 return (0); 1859 } 1860 1861 int 1862 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx) 1863 { 1864 dnode_t *dn; 1865 int err; 1866 1867 err = dnode_hold(os, object, FTAG, &dn); 1868 if (err) 1869 return (err); 1870 err = dnode_set_nlevels(dn, nlevels, tx); 1871 dnode_rele(dn, FTAG); 1872 return (err); 1873 } 1874 1875 int 1876 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1877 dmu_tx_t *tx) 1878 { 1879 dnode_t *dn; 1880 int err; 1881 1882 err = dnode_hold(os, object, FTAG, &dn); 1883 if (err) 1884 return (err); 1885 err = dnode_set_blksz(dn, size, ibs, tx); 1886 dnode_rele(dn, FTAG); 1887 return (err); 1888 } 1889 1890 int 1891 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid, 1892 dmu_tx_t *tx) 1893 { 1894 dnode_t *dn; 1895 int err; 1896 1897 err = dnode_hold(os, object, FTAG, &dn); 1898 if (err) 1899 return (err); 1900 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1901 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE); 1902 rw_exit(&dn->dn_struct_rwlock); 1903 dnode_rele(dn, FTAG); 1904 return (0); 1905 } 1906 1907 void 1908 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1909 dmu_tx_t *tx) 1910 { 1911 dnode_t *dn; 1912 1913 /* 1914 * Send streams include each object's checksum function. This 1915 * check ensures that the receiving system can understand the 1916 * checksum function transmitted. 1917 */ 1918 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS); 1919 1920 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1921 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS); 1922 dn->dn_checksum = checksum; 1923 dnode_setdirty(dn, tx); 1924 dnode_rele(dn, FTAG); 1925 } 1926 1927 void 1928 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1929 dmu_tx_t *tx) 1930 { 1931 dnode_t *dn; 1932 1933 /* 1934 * Send streams include each object's compression function. This 1935 * check ensures that the receiving system can understand the 1936 * compression function transmitted. 1937 */ 1938 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS); 1939 1940 VERIFY0(dnode_hold(os, object, FTAG, &dn)); 1941 dn->dn_compress = compress; 1942 dnode_setdirty(dn, tx); 1943 dnode_rele(dn, FTAG); 1944 } 1945 1946 /* 1947 * When the "redundant_metadata" property is set to "most", only indirect 1948 * blocks of this level and higher will have an additional ditto block. 1949 */ 1950 static const int zfs_redundant_metadata_most_ditto_level = 2; 1951 1952 void 1953 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1954 { 1955 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1956 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1957 (wp & WP_SPILL)); 1958 enum zio_checksum checksum = os->os_checksum; 1959 enum zio_compress compress = os->os_compress; 1960 uint8_t complevel = os->os_complevel; 1961 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1962 boolean_t dedup = B_FALSE; 1963 boolean_t nopwrite = B_FALSE; 1964 boolean_t dedup_verify = os->os_dedup_verify; 1965 boolean_t encrypt = B_FALSE; 1966 int copies = os->os_copies; 1967 1968 /* 1969 * We maintain different write policies for each of the following 1970 * types of data: 1971 * 1. metadata 1972 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1973 * 3. all other level 0 blocks 1974 */ 1975 if (ismd) { 1976 /* 1977 * XXX -- we should design a compression algorithm 1978 * that specializes in arrays of bps. 1979 */ 1980 compress = zio_compress_select(os->os_spa, 1981 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON); 1982 1983 /* 1984 * Metadata always gets checksummed. If the data 1985 * checksum is multi-bit correctable, and it's not a 1986 * ZBT-style checksum, then it's suitable for metadata 1987 * as well. Otherwise, the metadata checksum defaults 1988 * to fletcher4. 1989 */ 1990 if (!(zio_checksum_table[checksum].ci_flags & 1991 ZCHECKSUM_FLAG_METADATA) || 1992 (zio_checksum_table[checksum].ci_flags & 1993 ZCHECKSUM_FLAG_EMBEDDED)) 1994 checksum = ZIO_CHECKSUM_FLETCHER_4; 1995 1996 switch (os->os_redundant_metadata) { 1997 case ZFS_REDUNDANT_METADATA_ALL: 1998 copies++; 1999 break; 2000 case ZFS_REDUNDANT_METADATA_MOST: 2001 if (level >= zfs_redundant_metadata_most_ditto_level || 2002 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)) 2003 copies++; 2004 break; 2005 case ZFS_REDUNDANT_METADATA_SOME: 2006 if (DMU_OT_IS_CRITICAL(type)) 2007 copies++; 2008 break; 2009 case ZFS_REDUNDANT_METADATA_NONE: 2010 break; 2011 } 2012 } else if (wp & WP_NOFILL) { 2013 ASSERT(level == 0); 2014 2015 /* 2016 * If we're writing preallocated blocks, we aren't actually 2017 * writing them so don't set any policy properties. These 2018 * blocks are currently only used by an external subsystem 2019 * outside of zfs (i.e. dump) and not written by the zio 2020 * pipeline. 2021 */ 2022 compress = ZIO_COMPRESS_OFF; 2023 checksum = ZIO_CHECKSUM_OFF; 2024 } else { 2025 compress = zio_compress_select(os->os_spa, dn->dn_compress, 2026 compress); 2027 complevel = zio_complevel_select(os->os_spa, compress, 2028 complevel, complevel); 2029 2030 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 2031 zio_checksum_select(dn->dn_checksum, checksum) : 2032 dedup_checksum; 2033 2034 /* 2035 * Determine dedup setting. If we are in dmu_sync(), 2036 * we won't actually dedup now because that's all 2037 * done in syncing context; but we do want to use the 2038 * dedup checksum. If the checksum is not strong 2039 * enough to ensure unique signatures, force 2040 * dedup_verify. 2041 */ 2042 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 2043 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 2044 if (!(zio_checksum_table[checksum].ci_flags & 2045 ZCHECKSUM_FLAG_DEDUP)) 2046 dedup_verify = B_TRUE; 2047 } 2048 2049 /* 2050 * Enable nopwrite if we have secure enough checksum 2051 * algorithm (see comment in zio_nop_write) and 2052 * compression is enabled. We don't enable nopwrite if 2053 * dedup is enabled as the two features are mutually 2054 * exclusive. 2055 */ 2056 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags & 2057 ZCHECKSUM_FLAG_NOPWRITE) && 2058 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 2059 } 2060 2061 /* 2062 * All objects in an encrypted objset are protected from modification 2063 * via a MAC. Encrypted objects store their IV and salt in the last DVA 2064 * in the bp, so we cannot use all copies. Encrypted objects are also 2065 * not subject to nopwrite since writing the same data will still 2066 * result in a new ciphertext. Only encrypted blocks can be dedup'd 2067 * to avoid ambiguity in the dedup code since the DDT does not store 2068 * object types. 2069 */ 2070 if (os->os_encrypted && (wp & WP_NOFILL) == 0) { 2071 encrypt = B_TRUE; 2072 2073 if (DMU_OT_IS_ENCRYPTED(type)) { 2074 copies = MIN(copies, SPA_DVAS_PER_BP - 1); 2075 nopwrite = B_FALSE; 2076 } else { 2077 dedup = B_FALSE; 2078 } 2079 2080 if (level <= 0 && 2081 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) { 2082 compress = ZIO_COMPRESS_EMPTY; 2083 } 2084 } 2085 2086 zp->zp_compress = compress; 2087 zp->zp_complevel = complevel; 2088 zp->zp_checksum = checksum; 2089 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 2090 zp->zp_level = level; 2091 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 2092 zp->zp_dedup = dedup; 2093 zp->zp_dedup_verify = dedup && dedup_verify; 2094 zp->zp_nopwrite = nopwrite; 2095 zp->zp_encrypt = encrypt; 2096 zp->zp_byteorder = ZFS_HOST_BYTEORDER; 2097 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN); 2098 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN); 2099 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN); 2100 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ? 2101 os->os_zpl_special_smallblock : 0; 2102 2103 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT); 2104 } 2105 2106 /* 2107 * This function is only called from zfs_holey_common() for zpl_llseek() 2108 * in order to determine the location of holes. In order to accurately 2109 * report holes all dirty data must be synced to disk. This causes extremely 2110 * poor performance when seeking for holes in a dirty file. As a compromise, 2111 * only provide hole data when the dnode is clean. When a dnode is dirty 2112 * report the dnode as having no holes which is always a safe thing to do. 2113 */ 2114 int 2115 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 2116 { 2117 dnode_t *dn; 2118 int err; 2119 2120 restart: 2121 err = dnode_hold(os, object, FTAG, &dn); 2122 if (err) 2123 return (err); 2124 2125 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2126 2127 if (dnode_is_dirty(dn)) { 2128 /* 2129 * If the zfs_dmu_offset_next_sync module option is enabled 2130 * then strict hole reporting has been requested. Dirty 2131 * dnodes must be synced to disk to accurately report all 2132 * holes. When disabled dirty dnodes are reported to not 2133 * have any holes which is always safe. 2134 * 2135 * When called by zfs_holey_common() the zp->z_rangelock 2136 * is held to prevent zfs_write() and mmap writeback from 2137 * re-dirtying the dnode after txg_wait_synced(). 2138 */ 2139 if (zfs_dmu_offset_next_sync) { 2140 rw_exit(&dn->dn_struct_rwlock); 2141 dnode_rele(dn, FTAG); 2142 txg_wait_synced(dmu_objset_pool(os), 0); 2143 goto restart; 2144 } 2145 2146 err = SET_ERROR(EBUSY); 2147 } else { 2148 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK | 2149 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 2150 } 2151 2152 rw_exit(&dn->dn_struct_rwlock); 2153 dnode_rele(dn, FTAG); 2154 2155 return (err); 2156 } 2157 2158 void 2159 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2160 { 2161 dnode_phys_t *dnp = dn->dn_phys; 2162 2163 doi->doi_data_block_size = dn->dn_datablksz; 2164 doi->doi_metadata_block_size = dn->dn_indblkshift ? 2165 1ULL << dn->dn_indblkshift : 0; 2166 doi->doi_type = dn->dn_type; 2167 doi->doi_bonus_type = dn->dn_bonustype; 2168 doi->doi_bonus_size = dn->dn_bonuslen; 2169 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT; 2170 doi->doi_indirection = dn->dn_nlevels; 2171 doi->doi_checksum = dn->dn_checksum; 2172 doi->doi_compress = dn->dn_compress; 2173 doi->doi_nblkptr = dn->dn_nblkptr; 2174 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 2175 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 2176 doi->doi_fill_count = 0; 2177 for (int i = 0; i < dnp->dn_nblkptr; i++) 2178 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]); 2179 } 2180 2181 void 2182 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 2183 { 2184 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2185 mutex_enter(&dn->dn_mtx); 2186 2187 __dmu_object_info_from_dnode(dn, doi); 2188 2189 mutex_exit(&dn->dn_mtx); 2190 rw_exit(&dn->dn_struct_rwlock); 2191 } 2192 2193 /* 2194 * Get information on a DMU object. 2195 * If doi is NULL, just indicates whether the object exists. 2196 */ 2197 int 2198 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 2199 { 2200 dnode_t *dn; 2201 int err = dnode_hold(os, object, FTAG, &dn); 2202 2203 if (err) 2204 return (err); 2205 2206 if (doi != NULL) 2207 dmu_object_info_from_dnode(dn, doi); 2208 2209 dnode_rele(dn, FTAG); 2210 return (0); 2211 } 2212 2213 /* 2214 * As above, but faster; can be used when you have a held dbuf in hand. 2215 */ 2216 void 2217 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 2218 { 2219 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2220 2221 DB_DNODE_ENTER(db); 2222 dmu_object_info_from_dnode(DB_DNODE(db), doi); 2223 DB_DNODE_EXIT(db); 2224 } 2225 2226 /* 2227 * Faster still when you only care about the size. 2228 */ 2229 void 2230 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 2231 u_longlong_t *nblk512) 2232 { 2233 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2234 dnode_t *dn; 2235 2236 DB_DNODE_ENTER(db); 2237 dn = DB_DNODE(db); 2238 2239 *blksize = dn->dn_datablksz; 2240 /* add in number of slots used for the dnode itself */ 2241 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 2242 SPA_MINBLOCKSHIFT) + dn->dn_num_slots; 2243 DB_DNODE_EXIT(db); 2244 } 2245 2246 void 2247 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize) 2248 { 2249 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2250 dnode_t *dn; 2251 2252 DB_DNODE_ENTER(db); 2253 dn = DB_DNODE(db); 2254 *dnsize = dn->dn_num_slots << DNODE_SHIFT; 2255 DB_DNODE_EXIT(db); 2256 } 2257 2258 void 2259 byteswap_uint64_array(void *vbuf, size_t size) 2260 { 2261 uint64_t *buf = vbuf; 2262 size_t count = size >> 3; 2263 int i; 2264 2265 ASSERT((size & 7) == 0); 2266 2267 for (i = 0; i < count; i++) 2268 buf[i] = BSWAP_64(buf[i]); 2269 } 2270 2271 void 2272 byteswap_uint32_array(void *vbuf, size_t size) 2273 { 2274 uint32_t *buf = vbuf; 2275 size_t count = size >> 2; 2276 int i; 2277 2278 ASSERT((size & 3) == 0); 2279 2280 for (i = 0; i < count; i++) 2281 buf[i] = BSWAP_32(buf[i]); 2282 } 2283 2284 void 2285 byteswap_uint16_array(void *vbuf, size_t size) 2286 { 2287 uint16_t *buf = vbuf; 2288 size_t count = size >> 1; 2289 int i; 2290 2291 ASSERT((size & 1) == 0); 2292 2293 for (i = 0; i < count; i++) 2294 buf[i] = BSWAP_16(buf[i]); 2295 } 2296 2297 void 2298 byteswap_uint8_array(void *vbuf, size_t size) 2299 { 2300 (void) vbuf, (void) size; 2301 } 2302 2303 void 2304 dmu_init(void) 2305 { 2306 abd_init(); 2307 zfs_dbgmsg_init(); 2308 sa_cache_init(); 2309 dmu_objset_init(); 2310 dnode_init(); 2311 zfetch_init(); 2312 dmu_tx_init(); 2313 l2arc_init(); 2314 arc_init(); 2315 dbuf_init(); 2316 } 2317 2318 void 2319 dmu_fini(void) 2320 { 2321 arc_fini(); /* arc depends on l2arc, so arc must go first */ 2322 l2arc_fini(); 2323 dmu_tx_fini(); 2324 zfetch_fini(); 2325 dbuf_fini(); 2326 dnode_fini(); 2327 dmu_objset_fini(); 2328 sa_cache_fini(); 2329 zfs_dbgmsg_fini(); 2330 abd_fini(); 2331 } 2332 2333 EXPORT_SYMBOL(dmu_bonus_hold); 2334 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode); 2335 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus); 2336 EXPORT_SYMBOL(dmu_buf_rele_array); 2337 EXPORT_SYMBOL(dmu_prefetch); 2338 EXPORT_SYMBOL(dmu_free_range); 2339 EXPORT_SYMBOL(dmu_free_long_range); 2340 EXPORT_SYMBOL(dmu_free_long_object); 2341 EXPORT_SYMBOL(dmu_read); 2342 EXPORT_SYMBOL(dmu_read_by_dnode); 2343 EXPORT_SYMBOL(dmu_write); 2344 EXPORT_SYMBOL(dmu_write_by_dnode); 2345 EXPORT_SYMBOL(dmu_prealloc); 2346 EXPORT_SYMBOL(dmu_object_info); 2347 EXPORT_SYMBOL(dmu_object_info_from_dnode); 2348 EXPORT_SYMBOL(dmu_object_info_from_db); 2349 EXPORT_SYMBOL(dmu_object_size_from_db); 2350 EXPORT_SYMBOL(dmu_object_dnsize_from_db); 2351 EXPORT_SYMBOL(dmu_object_set_nlevels); 2352 EXPORT_SYMBOL(dmu_object_set_blocksize); 2353 EXPORT_SYMBOL(dmu_object_set_maxblkid); 2354 EXPORT_SYMBOL(dmu_object_set_checksum); 2355 EXPORT_SYMBOL(dmu_object_set_compress); 2356 EXPORT_SYMBOL(dmu_offset_next); 2357 EXPORT_SYMBOL(dmu_write_policy); 2358 EXPORT_SYMBOL(dmu_sync); 2359 EXPORT_SYMBOL(dmu_request_arcbuf); 2360 EXPORT_SYMBOL(dmu_return_arcbuf); 2361 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode); 2362 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf); 2363 EXPORT_SYMBOL(dmu_buf_hold); 2364 EXPORT_SYMBOL(dmu_ot); 2365 2366 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW, 2367 "Enable NOP writes"); 2368 2369 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW, 2370 "Percentage of dirtied blocks from frees in one TXG"); 2371 2372 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW, 2373 "Enable forcing txg sync to find holes"); 2374 2375 /* CSTYLED */ 2376 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW, 2377 "Limit one prefetch call to this size"); 2378