1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2023, Klara Inc. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/ddt.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu.h> 32 #include <sys/ddt_impl.h> 33 #include <sys/dnode.h> 34 #include <sys/dbuf.h> 35 #include <sys/zap.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * No more than this many txgs before swapping logs. 40 */ 41 uint_t zfs_dedup_log_txg_max = 8; 42 43 /* 44 * Max memory for the log AVL trees. If zfs_dedup_log_mem_max is zero at module 45 * load, it will be set to zfs_dedup_log_mem_max_percent% of total memory. 46 */ 47 uint64_t zfs_dedup_log_mem_max = 0; 48 uint_t zfs_dedup_log_mem_max_percent = 1; 49 50 51 static kmem_cache_t *ddt_log_entry_flat_cache; 52 static kmem_cache_t *ddt_log_entry_trad_cache; 53 54 #define DDT_LOG_ENTRY_FLAT_SIZE \ 55 (sizeof (ddt_log_entry_t) + DDT_FLAT_PHYS_SIZE) 56 #define DDT_LOG_ENTRY_TRAD_SIZE \ 57 (sizeof (ddt_log_entry_t) + DDT_TRAD_PHYS_SIZE) 58 59 #define DDT_LOG_ENTRY_SIZE(ddt) \ 60 _DDT_PHYS_SWITCH(ddt, DDT_LOG_ENTRY_FLAT_SIZE, DDT_LOG_ENTRY_TRAD_SIZE) 61 62 void 63 ddt_log_init(void) 64 { 65 ddt_log_entry_flat_cache = kmem_cache_create("ddt_log_entry_flat_cache", 66 DDT_LOG_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 67 ddt_log_entry_trad_cache = kmem_cache_create("ddt_log_entry_trad_cache", 68 DDT_LOG_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 69 70 /* 71 * Max memory for log AVL entries. At least 1M, because we need 72 * something (that's ~3800 entries per tree). They can say 100% if they 73 * want; it just means they're at the mercy of the the txg flush limit. 74 */ 75 if (zfs_dedup_log_mem_max == 0) { 76 zfs_dedup_log_mem_max_percent = 77 MIN(zfs_dedup_log_mem_max_percent, 100); 78 zfs_dedup_log_mem_max = (physmem * PAGESIZE) * 79 zfs_dedup_log_mem_max_percent / 100; 80 } 81 zfs_dedup_log_mem_max = MAX(zfs_dedup_log_mem_max, 1*1024*1024); 82 } 83 84 void 85 ddt_log_fini(void) 86 { 87 kmem_cache_destroy(ddt_log_entry_trad_cache); 88 kmem_cache_destroy(ddt_log_entry_flat_cache); 89 } 90 91 static void 92 ddt_log_name(ddt_t *ddt, char *name, uint_t n) 93 { 94 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_LOG, 95 zio_checksum_table[ddt->ddt_checksum].ci_name, n); 96 } 97 98 static void 99 ddt_log_update_header(ddt_t *ddt, ddt_log_t *ddl, dmu_tx_t *tx) 100 { 101 dmu_buf_t *db; 102 VERIFY0(dmu_bonus_hold(ddt->ddt_os, ddl->ddl_object, FTAG, &db)); 103 dmu_buf_will_dirty(db, tx); 104 105 ddt_log_header_t *hdr = (ddt_log_header_t *)db->db_data; 106 DLH_SET_VERSION(hdr, 1); 107 DLH_SET_FLAGS(hdr, ddl->ddl_flags); 108 hdr->dlh_length = ddl->ddl_length; 109 hdr->dlh_first_txg = ddl->ddl_first_txg; 110 hdr->dlh_checkpoint = ddl->ddl_checkpoint; 111 112 dmu_buf_rele(db, FTAG); 113 } 114 115 static void 116 ddt_log_create_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx) 117 { 118 ASSERT3U(ddt->ddt_dir_object, >, 0); 119 ASSERT0(ddl->ddl_object); 120 121 char name[DDT_NAMELEN]; 122 ddt_log_name(ddt, name, n); 123 124 ddl->ddl_object = dmu_object_alloc(ddt->ddt_os, 125 DMU_OTN_UINT64_METADATA, SPA_OLD_MAXBLOCKSIZE, 126 DMU_OTN_UINT64_METADATA, sizeof (ddt_log_header_t), tx); 127 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, name, 128 sizeof (uint64_t), 1, &ddl->ddl_object, tx)); 129 ddl->ddl_length = 0; 130 ddl->ddl_first_txg = tx->tx_txg; 131 ddt_log_update_header(ddt, ddl, tx); 132 } 133 134 static void 135 ddt_log_create(ddt_t *ddt, dmu_tx_t *tx) 136 { 137 ddt_log_create_one(ddt, ddt->ddt_log_active, 0, tx); 138 ddt_log_create_one(ddt, ddt->ddt_log_flushing, 1, tx); 139 } 140 141 static void 142 ddt_log_destroy_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx) 143 { 144 ASSERT3U(ddt->ddt_dir_object, >, 0); 145 146 if (ddl->ddl_object == 0) 147 return; 148 149 ASSERT0(ddl->ddl_length); 150 151 char name[DDT_NAMELEN]; 152 ddt_log_name(ddt, name, n); 153 154 VERIFY0(zap_remove(ddt->ddt_os, ddt->ddt_dir_object, name, tx)); 155 VERIFY0(dmu_object_free(ddt->ddt_os, ddl->ddl_object, tx)); 156 157 ddl->ddl_object = 0; 158 } 159 160 void 161 ddt_log_destroy(ddt_t *ddt, dmu_tx_t *tx) 162 { 163 ddt_log_destroy_one(ddt, ddt->ddt_log_active, 0, tx); 164 ddt_log_destroy_one(ddt, ddt->ddt_log_flushing, 1, tx); 165 } 166 167 static void 168 ddt_log_update_stats(ddt_t *ddt) 169 { 170 /* 171 * Log object stats. We count the number of live entries in the log 172 * tree, even if there are more than on disk, and even if the same 173 * entry is on both append and flush trees, because that's more what 174 * the user expects to see. This does mean the on-disk size is not 175 * really correlated with the number of entries, but I don't think 176 * that's reasonable to expect anyway. 177 */ 178 dmu_object_info_t doi; 179 uint64_t nblocks; 180 dmu_object_info(ddt->ddt_os, ddt->ddt_log_active->ddl_object, &doi); 181 nblocks = doi.doi_physical_blocks_512; 182 dmu_object_info(ddt->ddt_os, ddt->ddt_log_flushing->ddl_object, &doi); 183 nblocks += doi.doi_physical_blocks_512; 184 185 ddt_object_t *ddo = &ddt->ddt_log_stats; 186 ddo->ddo_count = 187 avl_numnodes(&ddt->ddt_log_active->ddl_tree) + 188 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 189 ddo->ddo_mspace = ddo->ddo_count * DDT_LOG_ENTRY_SIZE(ddt); 190 ddo->ddo_dspace = nblocks << 9; 191 } 192 193 void 194 ddt_log_begin(ddt_t *ddt, size_t nentries, dmu_tx_t *tx, ddt_log_update_t *dlu) 195 { 196 ASSERT3U(nentries, >, 0); 197 ASSERT0P(dlu->dlu_dbp); 198 199 if (ddt->ddt_log_active->ddl_object == 0) 200 ddt_log_create(ddt, tx); 201 202 /* 203 * We want to store as many entries as we can in a block, but never 204 * split an entry across block boundaries. 205 */ 206 size_t reclen = P2ALIGN_TYPED( 207 sizeof (ddt_log_record_t) + sizeof (ddt_log_record_entry_t) + 208 DDT_PHYS_SIZE(ddt), sizeof (uint64_t), size_t); 209 ASSERT3U(reclen, <=, UINT16_MAX); 210 dlu->dlu_reclen = reclen; 211 212 VERIFY0(dnode_hold(ddt->ddt_os, ddt->ddt_log_active->ddl_object, FTAG, 213 &dlu->dlu_dn)); 214 dnode_set_storage_type(dlu->dlu_dn, DMU_OT_DDT_ZAP); 215 216 uint64_t nblocks = howmany(nentries, 217 dlu->dlu_dn->dn_datablksz / dlu->dlu_reclen); 218 uint64_t offset = ddt->ddt_log_active->ddl_length; 219 uint64_t length = nblocks * dlu->dlu_dn->dn_datablksz; 220 221 VERIFY0(dmu_buf_hold_array_by_dnode(dlu->dlu_dn, offset, length, 222 B_FALSE, FTAG, &dlu->dlu_ndbp, &dlu->dlu_dbp, 223 DMU_READ_NO_PREFETCH)); 224 225 dlu->dlu_tx = tx; 226 dlu->dlu_block = dlu->dlu_offset = 0; 227 } 228 229 static ddt_log_entry_t * 230 ddt_log_alloc_entry(ddt_t *ddt) 231 { 232 ddt_log_entry_t *ddle; 233 234 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 235 ddle = kmem_cache_alloc(ddt_log_entry_flat_cache, KM_SLEEP); 236 memset(ddle, 0, DDT_LOG_ENTRY_FLAT_SIZE); 237 } else { 238 ddle = kmem_cache_alloc(ddt_log_entry_trad_cache, KM_SLEEP); 239 memset(ddle, 0, DDT_LOG_ENTRY_TRAD_SIZE); 240 } 241 242 return (ddle); 243 } 244 245 static void 246 ddt_log_update_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe) 247 { 248 /* Create the log tree entry from a live or stored entry */ 249 avl_index_t where; 250 ddt_log_entry_t *ddle = 251 avl_find(&ddl->ddl_tree, &ddlwe->ddlwe_key, &where); 252 if (ddle == NULL) { 253 ddle = ddt_log_alloc_entry(ddt); 254 ddle->ddle_key = ddlwe->ddlwe_key; 255 avl_insert(&ddl->ddl_tree, ddle, where); 256 } 257 ddle->ddle_type = ddlwe->ddlwe_type; 258 ddle->ddle_class = ddlwe->ddlwe_class; 259 memcpy(ddle->ddle_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 260 } 261 262 void 263 ddt_log_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, ddt_log_update_t *dlu) 264 { 265 ASSERT3U(dlu->dlu_dbp, !=, NULL); 266 267 ddt_log_update_entry(ddt, ddt->ddt_log_active, ddlwe); 268 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, ddlwe); 269 270 /* Get our block */ 271 ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp); 272 dmu_buf_t *db = dlu->dlu_dbp[dlu->dlu_block]; 273 274 /* 275 * If this would take us past the end of the block, finish it and 276 * move to the next one. 277 */ 278 if (db->db_size < (dlu->dlu_offset + dlu->dlu_reclen)) { 279 ASSERT3U(dlu->dlu_offset, >, 0); 280 dmu_buf_fill_done(db, dlu->dlu_tx, B_FALSE); 281 dlu->dlu_block++; 282 dlu->dlu_offset = 0; 283 ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp); 284 db = dlu->dlu_dbp[dlu->dlu_block]; 285 } 286 287 /* 288 * If this is the first time touching the block, inform the DMU that 289 * we will fill it, and zero it out. 290 */ 291 if (dlu->dlu_offset == 0) { 292 dmu_buf_will_fill(db, dlu->dlu_tx, B_FALSE); 293 memset(db->db_data, 0, db->db_size); 294 } 295 296 /* Create the log record directly in the buffer */ 297 ddt_log_record_t *dlr = (db->db_data + dlu->dlu_offset); 298 DLR_SET_TYPE(dlr, DLR_ENTRY); 299 DLR_SET_RECLEN(dlr, dlu->dlu_reclen); 300 DLR_SET_ENTRY_TYPE(dlr, ddlwe->ddlwe_type); 301 DLR_SET_ENTRY_CLASS(dlr, ddlwe->ddlwe_class); 302 303 ddt_log_record_entry_t *dlre = 304 (ddt_log_record_entry_t *)&dlr->dlr_payload; 305 dlre->dlre_key = ddlwe->ddlwe_key; 306 memcpy(dlre->dlre_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 307 308 /* Advance offset for next record. */ 309 dlu->dlu_offset += dlu->dlu_reclen; 310 } 311 312 void 313 ddt_log_commit(ddt_t *ddt, ddt_log_update_t *dlu) 314 { 315 ASSERT3U(dlu->dlu_dbp, !=, NULL); 316 ASSERT3U(dlu->dlu_block+1, ==, dlu->dlu_ndbp); 317 ASSERT3U(dlu->dlu_offset, >, 0); 318 319 /* 320 * Close out the last block. Whatever we haven't used will be zeroed, 321 * which matches DLR_INVALID, so we can detect this during load. 322 */ 323 dmu_buf_fill_done(dlu->dlu_dbp[dlu->dlu_block], dlu->dlu_tx, B_FALSE); 324 325 dmu_buf_rele_array(dlu->dlu_dbp, dlu->dlu_ndbp, FTAG); 326 327 ddt->ddt_log_active->ddl_length += 328 dlu->dlu_ndbp * (uint64_t)dlu->dlu_dn->dn_datablksz; 329 dnode_rele(dlu->dlu_dn, FTAG); 330 331 ddt_log_update_header(ddt, ddt->ddt_log_active, dlu->dlu_tx); 332 333 memset(dlu, 0, sizeof (ddt_log_update_t)); 334 335 ddt_log_update_stats(ddt); 336 } 337 338 boolean_t 339 ddt_log_take_first(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe) 340 { 341 ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 342 if (ddle == NULL) 343 return (B_FALSE); 344 345 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe); 346 347 ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, ddlwe); 348 349 avl_remove(&ddl->ddl_tree, ddle); 350 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 351 ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle); 352 353 return (B_TRUE); 354 } 355 356 boolean_t 357 ddt_log_remove_key(ddt_t *ddt, ddt_log_t *ddl, const ddt_key_t *ddk) 358 { 359 ddt_log_entry_t *ddle = avl_find(&ddl->ddl_tree, ddk, NULL); 360 if (ddle == NULL) 361 return (B_FALSE); 362 363 ddt_lightweight_entry_t ddlwe; 364 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 365 ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 366 367 avl_remove(&ddl->ddl_tree, ddle); 368 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 369 ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle); 370 371 return (B_TRUE); 372 } 373 374 boolean_t 375 ddt_log_find_key(ddt_t *ddt, const ddt_key_t *ddk, 376 ddt_lightweight_entry_t *ddlwe) 377 { 378 ddt_log_entry_t *ddle = 379 avl_find(&ddt->ddt_log_active->ddl_tree, ddk, NULL); 380 if (!ddle) 381 ddle = avl_find(&ddt->ddt_log_flushing->ddl_tree, ddk, NULL); 382 if (!ddle) 383 return (B_FALSE); 384 if (ddlwe) 385 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe); 386 return (B_TRUE); 387 } 388 389 void 390 ddt_log_checkpoint(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 391 { 392 ddt_log_t *ddl = ddt->ddt_log_flushing; 393 394 ASSERT3U(ddl->ddl_object, !=, 0); 395 396 #ifdef ZFS_DEBUG 397 /* 398 * There should not be any entries on the log tree before the given 399 * checkpoint. Assert that this is the case. 400 */ 401 ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 402 if (ddle != NULL) 403 VERIFY3U(ddt_key_compare(&ddle->ddle_key, &ddlwe->ddlwe_key), 404 >, 0); 405 #endif 406 407 ddl->ddl_flags |= DDL_FLAG_CHECKPOINT; 408 ddl->ddl_checkpoint = ddlwe->ddlwe_key; 409 ddt_log_update_header(ddt, ddl, tx); 410 411 ddt_log_update_stats(ddt); 412 } 413 414 void 415 ddt_log_truncate(ddt_t *ddt, dmu_tx_t *tx) 416 { 417 ddt_log_t *ddl = ddt->ddt_log_flushing; 418 419 if (ddl->ddl_object == 0) 420 return; 421 422 ASSERT(avl_is_empty(&ddl->ddl_tree)); 423 424 /* Eject the entire object */ 425 dmu_free_range(ddt->ddt_os, ddl->ddl_object, 0, DMU_OBJECT_END, tx); 426 427 ddl->ddl_length = 0; 428 ddl->ddl_flags &= ~DDL_FLAG_CHECKPOINT; 429 memset(&ddl->ddl_checkpoint, 0, sizeof (ddt_key_t)); 430 ddt_log_update_header(ddt, ddl, tx); 431 432 ddt_log_update_stats(ddt); 433 } 434 435 boolean_t 436 ddt_log_swap(ddt_t *ddt, dmu_tx_t *tx) 437 { 438 /* Swap the logs. The old flushing one must be empty */ 439 VERIFY(avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)); 440 441 /* 442 * If there are still blocks on the flushing log, truncate it first. 443 * This can happen if there were entries on the flushing log that were 444 * removed in memory via ddt_lookup(); their vestigal remains are 445 * on disk. 446 */ 447 if (ddt->ddt_log_flushing->ddl_length > 0) 448 ddt_log_truncate(ddt, tx); 449 450 /* 451 * Swap policy. We swap the logs (and so begin flushing) when the 452 * active tree grows too large, or when we haven't swapped it in 453 * some amount of time, or if something has requested the logs be 454 * flushed ASAP (see ddt_walk_init()). 455 */ 456 457 /* 458 * The log tree is too large if the memory usage of its entries is over 459 * half of the memory limit. This effectively gives each log tree half 460 * the available memory. 461 */ 462 const boolean_t too_large = 463 (avl_numnodes(&ddt->ddt_log_active->ddl_tree) * 464 DDT_LOG_ENTRY_SIZE(ddt)) >= (zfs_dedup_log_mem_max >> 1); 465 466 const boolean_t too_old = 467 tx->tx_txg >= 468 (ddt->ddt_log_active->ddl_first_txg + 469 MAX(1, zfs_dedup_log_txg_max)); 470 471 const boolean_t force = 472 ddt->ddt_log_active->ddl_first_txg <= ddt->ddt_flush_force_txg; 473 474 if (!(too_large || too_old || force)) 475 return (B_FALSE); 476 477 ddt_log_t *swap = ddt->ddt_log_active; 478 ddt->ddt_log_active = ddt->ddt_log_flushing; 479 ddt->ddt_log_flushing = swap; 480 481 ASSERT(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING); 482 ddt->ddt_log_active->ddl_flags &= 483 ~(DDL_FLAG_FLUSHING | DDL_FLAG_CHECKPOINT); 484 485 ASSERT(!(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING)); 486 ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING; 487 488 ddt->ddt_log_active->ddl_first_txg = tx->tx_txg; 489 490 ddt_log_update_header(ddt, ddt->ddt_log_active, tx); 491 ddt_log_update_header(ddt, ddt->ddt_log_flushing, tx); 492 493 ddt_log_update_stats(ddt); 494 495 return (B_TRUE); 496 } 497 498 static inline void 499 ddt_log_load_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_log_record_t *dlr, 500 const ddt_key_t *checkpoint) 501 { 502 ASSERT3U(DLR_GET_TYPE(dlr), ==, DLR_ENTRY); 503 504 ddt_log_record_entry_t *dlre = 505 (ddt_log_record_entry_t *)dlr->dlr_payload; 506 if (checkpoint != NULL && 507 ddt_key_compare(&dlre->dlre_key, checkpoint) <= 0) { 508 /* Skip pre-checkpoint entries; they're already flushed. */ 509 return; 510 } 511 512 ddt_lightweight_entry_t ddlwe; 513 ddlwe.ddlwe_type = DLR_GET_ENTRY_TYPE(dlr); 514 ddlwe.ddlwe_class = DLR_GET_ENTRY_CLASS(dlr); 515 516 ddlwe.ddlwe_key = dlre->dlre_key; 517 memcpy(&ddlwe.ddlwe_phys, dlre->dlre_phys, DDT_PHYS_SIZE(ddt)); 518 519 ddt_log_update_entry(ddt, ddl, &ddlwe); 520 } 521 522 static void 523 ddt_log_empty(ddt_t *ddt, ddt_log_t *ddl) 524 { 525 void *cookie = NULL; 526 ddt_log_entry_t *ddle; 527 IMPLY(ddt->ddt_version == UINT64_MAX, avl_is_empty(&ddl->ddl_tree)); 528 while ((ddle = 529 avl_destroy_nodes(&ddl->ddl_tree, &cookie)) != NULL) { 530 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 531 ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle); 532 } 533 ASSERT(avl_is_empty(&ddl->ddl_tree)); 534 } 535 536 static int 537 ddt_log_load_one(ddt_t *ddt, uint_t n) 538 { 539 ASSERT3U(n, <, 2); 540 541 ddt_log_t *ddl = &ddt->ddt_log[n]; 542 543 char name[DDT_NAMELEN]; 544 ddt_log_name(ddt, name, n); 545 546 uint64_t obj; 547 int err = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name, 548 sizeof (uint64_t), 1, &obj); 549 if (err == ENOENT) 550 return (0); 551 if (err != 0) 552 return (err); 553 554 dnode_t *dn; 555 err = dnode_hold(ddt->ddt_os, obj, FTAG, &dn); 556 if (err != 0) 557 return (err); 558 559 ddt_log_header_t hdr; 560 dmu_buf_t *db; 561 err = dmu_bonus_hold_by_dnode(dn, FTAG, &db, DMU_READ_NO_PREFETCH); 562 if (err != 0) { 563 dnode_rele(dn, FTAG); 564 return (err); 565 } 566 memcpy(&hdr, db->db_data, sizeof (ddt_log_header_t)); 567 dmu_buf_rele(db, FTAG); 568 569 if (DLH_GET_VERSION(&hdr) != 1) { 570 dnode_rele(dn, FTAG); 571 zfs_dbgmsg("ddt_log_load: spa=%s ddt_log=%s " 572 "unknown version=%llu", spa_name(ddt->ddt_spa), name, 573 (u_longlong_t)DLH_GET_VERSION(&hdr)); 574 return (SET_ERROR(EINVAL)); 575 } 576 577 ddt_key_t *checkpoint = NULL; 578 if (DLH_GET_FLAGS(&hdr) & DDL_FLAG_CHECKPOINT) { 579 /* 580 * If the log has a checkpoint, then we can ignore any entries 581 * that have already been flushed. 582 */ 583 ASSERT(DLH_GET_FLAGS(&hdr) & DDL_FLAG_FLUSHING); 584 checkpoint = &hdr.dlh_checkpoint; 585 } 586 587 if (hdr.dlh_length > 0) { 588 dmu_prefetch_by_dnode(dn, 0, 0, hdr.dlh_length, 589 ZIO_PRIORITY_SYNC_READ); 590 591 for (uint64_t offset = 0; offset < hdr.dlh_length; 592 offset += dn->dn_datablksz) { 593 err = dmu_buf_hold_by_dnode(dn, offset, FTAG, &db, 594 DMU_READ_PREFETCH); 595 if (err != 0) { 596 dnode_rele(dn, FTAG); 597 ddt_log_empty(ddt, ddl); 598 return (err); 599 } 600 601 uint64_t boffset = 0; 602 while (boffset < db->db_size) { 603 ddt_log_record_t *dlr = 604 (ddt_log_record_t *)(db->db_data + boffset); 605 606 /* Partially-filled block, skip the rest */ 607 if (DLR_GET_TYPE(dlr) == DLR_INVALID) 608 break; 609 610 switch (DLR_GET_TYPE(dlr)) { 611 case DLR_ENTRY: 612 ddt_log_load_entry(ddt, ddl, dlr, 613 checkpoint); 614 break; 615 616 default: 617 dmu_buf_rele(db, FTAG); 618 dnode_rele(dn, FTAG); 619 ddt_log_empty(ddt, ddl); 620 return (SET_ERROR(EINVAL)); 621 } 622 623 boffset += DLR_GET_RECLEN(dlr); 624 } 625 626 dmu_buf_rele(db, FTAG); 627 } 628 } 629 630 dnode_rele(dn, FTAG); 631 632 ddl->ddl_object = obj; 633 ddl->ddl_flags = DLH_GET_FLAGS(&hdr); 634 ddl->ddl_length = hdr.dlh_length; 635 ddl->ddl_first_txg = hdr.dlh_first_txg; 636 637 if (ddl->ddl_flags & DDL_FLAG_FLUSHING) 638 ddt->ddt_log_flushing = ddl; 639 else 640 ddt->ddt_log_active = ddl; 641 642 return (0); 643 } 644 645 int 646 ddt_log_load(ddt_t *ddt) 647 { 648 int err; 649 650 if (spa_load_state(ddt->ddt_spa) == SPA_LOAD_TRYIMPORT) { 651 /* 652 * The DDT is going to be freed again in a moment, so there's 653 * no point loading the log; it'll just slow down import. 654 */ 655 return (0); 656 } 657 658 ASSERT0(ddt->ddt_log[0].ddl_object); 659 ASSERT0(ddt->ddt_log[1].ddl_object); 660 if (ddt->ddt_dir_object == 0) { 661 /* 662 * If we're configured but the containing dir doesn't exist 663 * yet, then the log object can't possibly exist either. 664 */ 665 ASSERT3U(ddt->ddt_version, !=, UINT64_MAX); 666 return (SET_ERROR(ENOENT)); 667 } 668 669 if ((err = ddt_log_load_one(ddt, 0)) != 0) 670 return (err); 671 if ((err = ddt_log_load_one(ddt, 1)) != 0) 672 return (err); 673 674 VERIFY3P(ddt->ddt_log_active, !=, ddt->ddt_log_flushing); 675 VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING)); 676 VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_CHECKPOINT)); 677 VERIFY(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING); 678 679 /* 680 * We have two finalisation tasks: 681 * 682 * - rebuild the histogram. We do this at the end rather than while 683 * we're loading so we don't need to uncount and recount entries that 684 * appear multiple times in the log. 685 * 686 * - remove entries from the flushing tree that are on both trees. This 687 * happens when ddt_lookup() rehydrates an entry from the flushing 688 * tree, as ddt_log_take_key() removes the entry from the in-memory 689 * tree but doesn't remove it from disk. 690 */ 691 692 /* 693 * We don't technically need a config lock here, since there shouldn't 694 * be pool config changes during DDT load. dva_get_dsize_sync() via 695 * ddt_stat_generate() is expecting it though, and it won't hurt 696 * anything, so we take it. 697 */ 698 spa_config_enter(ddt->ddt_spa, SCL_STATE, FTAG, RW_READER); 699 700 avl_tree_t *al = &ddt->ddt_log_active->ddl_tree; 701 avl_tree_t *fl = &ddt->ddt_log_flushing->ddl_tree; 702 ddt_log_entry_t *ae = avl_first(al); 703 ddt_log_entry_t *fe = avl_first(fl); 704 while (ae != NULL || fe != NULL) { 705 ddt_log_entry_t *ddle; 706 if (ae == NULL) { 707 /* active exhausted, take flushing */ 708 ddle = fe; 709 fe = AVL_NEXT(fl, fe); 710 } else if (fe == NULL) { 711 /* flushing exuhausted, take active */ 712 ddle = ae; 713 ae = AVL_NEXT(al, ae); 714 } else { 715 /* compare active and flushing */ 716 int c = ddt_key_compare(&ae->ddle_key, &fe->ddle_key); 717 if (c < 0) { 718 /* active behind, take and advance */ 719 ddle = ae; 720 ae = AVL_NEXT(al, ae); 721 } else if (c > 0) { 722 /* flushing behind, take and advance */ 723 ddle = fe; 724 fe = AVL_NEXT(fl, fe); 725 } else { 726 /* match. remove from flushing, take active */ 727 ddle = fe; 728 fe = AVL_NEXT(fl, fe); 729 avl_remove(fl, ddle); 730 731 ddle = ae; 732 ae = AVL_NEXT(al, ae); 733 } 734 } 735 736 ddt_lightweight_entry_t ddlwe; 737 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 738 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 739 } 740 741 spa_config_exit(ddt->ddt_spa, SCL_STATE, FTAG); 742 743 ddt_log_update_stats(ddt); 744 745 return (0); 746 } 747 748 void 749 ddt_log_alloc(ddt_t *ddt) 750 { 751 ASSERT0P(ddt->ddt_log_active); 752 ASSERT0P(ddt->ddt_log_flushing); 753 754 avl_create(&ddt->ddt_log[0].ddl_tree, ddt_key_compare, 755 sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node)); 756 avl_create(&ddt->ddt_log[1].ddl_tree, ddt_key_compare, 757 sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node)); 758 ddt->ddt_log_active = &ddt->ddt_log[0]; 759 ddt->ddt_log_flushing = &ddt->ddt_log[1]; 760 ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING; 761 } 762 763 void 764 ddt_log_free(ddt_t *ddt) 765 { 766 ddt_log_empty(ddt, &ddt->ddt_log[0]); 767 ddt_log_empty(ddt, &ddt->ddt_log[1]); 768 avl_destroy(&ddt->ddt_log[0].ddl_tree); 769 avl_destroy(&ddt->ddt_log[1].ddl_tree); 770 } 771 772 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_txg_max, UINT, ZMOD_RW, 773 "Max transactions before starting to flush dedup logs"); 774 775 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max, U64, ZMOD_RD, 776 "Max memory for dedup logs"); 777 778 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max_percent, UINT, ZMOD_RD, 779 "Max memory for dedup logs, as % of total memory"); 780