1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2023, Klara Inc. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/ddt.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu.h> 32 #include <sys/ddt_impl.h> 33 #include <sys/dnode.h> 34 #include <sys/dbuf.h> 35 #include <sys/zap.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * No more than this many txgs before swapping logs. 40 */ 41 uint_t zfs_dedup_log_txg_max = 8; 42 43 /* 44 * Max memory for the log AVL trees. If zfs_dedup_log_mem_max is zero at module 45 * load, it will be set to zfs_dedup_log_mem_max_percent% of total memory. 46 */ 47 uint64_t zfs_dedup_log_mem_max = 0; 48 uint_t zfs_dedup_log_mem_max_percent = 1; 49 50 51 static kmem_cache_t *ddt_log_entry_flat_cache; 52 static kmem_cache_t *ddt_log_entry_trad_cache; 53 54 #define DDT_LOG_ENTRY_FLAT_SIZE \ 55 (sizeof (ddt_log_entry_t) + DDT_FLAT_PHYS_SIZE) 56 #define DDT_LOG_ENTRY_TRAD_SIZE \ 57 (sizeof (ddt_log_entry_t) + DDT_TRAD_PHYS_SIZE) 58 59 #define DDT_LOG_ENTRY_SIZE(ddt) \ 60 _DDT_PHYS_SWITCH(ddt, DDT_LOG_ENTRY_FLAT_SIZE, DDT_LOG_ENTRY_TRAD_SIZE) 61 62 void 63 ddt_log_init(void) 64 { 65 ddt_log_entry_flat_cache = kmem_cache_create("ddt_log_entry_flat_cache", 66 DDT_LOG_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 67 ddt_log_entry_trad_cache = kmem_cache_create("ddt_log_entry_trad_cache", 68 DDT_LOG_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 69 70 /* 71 * Max memory for log AVL entries. At least 1M, because we need 72 * something (that's ~3800 entries per tree). They can say 100% if they 73 * want; it just means they're at the mercy of the the txg flush limit. 74 */ 75 if (zfs_dedup_log_mem_max == 0) { 76 zfs_dedup_log_mem_max_percent = 77 MIN(zfs_dedup_log_mem_max_percent, 100); 78 zfs_dedup_log_mem_max = (physmem * PAGESIZE) * 79 zfs_dedup_log_mem_max_percent / 100; 80 } 81 zfs_dedup_log_mem_max = MAX(zfs_dedup_log_mem_max, 1*1024*1024); 82 } 83 84 void 85 ddt_log_fini(void) 86 { 87 kmem_cache_destroy(ddt_log_entry_trad_cache); 88 kmem_cache_destroy(ddt_log_entry_flat_cache); 89 } 90 91 static void 92 ddt_log_name(ddt_t *ddt, char *name, uint_t n) 93 { 94 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_LOG, 95 zio_checksum_table[ddt->ddt_checksum].ci_name, n); 96 } 97 98 static void 99 ddt_log_update_header(ddt_t *ddt, ddt_log_t *ddl, dmu_tx_t *tx) 100 { 101 dmu_buf_t *db; 102 VERIFY0(dmu_bonus_hold(ddt->ddt_os, ddl->ddl_object, FTAG, &db)); 103 dmu_buf_will_dirty(db, tx); 104 105 ddt_log_header_t *hdr = (ddt_log_header_t *)db->db_data; 106 DLH_SET_VERSION(hdr, 1); 107 DLH_SET_FLAGS(hdr, ddl->ddl_flags); 108 hdr->dlh_length = ddl->ddl_length; 109 hdr->dlh_first_txg = ddl->ddl_first_txg; 110 hdr->dlh_checkpoint = ddl->ddl_checkpoint; 111 112 dmu_buf_rele(db, FTAG); 113 } 114 115 static void 116 ddt_log_create_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx) 117 { 118 ASSERT3U(ddt->ddt_dir_object, >, 0); 119 ASSERT0(ddl->ddl_object); 120 121 char name[DDT_NAMELEN]; 122 ddt_log_name(ddt, name, n); 123 124 ddl->ddl_object = dmu_object_alloc(ddt->ddt_os, 125 DMU_OTN_UINT64_METADATA, SPA_OLD_MAXBLOCKSIZE, 126 DMU_OTN_UINT64_METADATA, sizeof (ddt_log_header_t), tx); 127 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, name, 128 sizeof (uint64_t), 1, &ddl->ddl_object, tx)); 129 ddl->ddl_length = 0; 130 ddl->ddl_first_txg = tx->tx_txg; 131 ddt_log_update_header(ddt, ddl, tx); 132 } 133 134 static void 135 ddt_log_create(ddt_t *ddt, dmu_tx_t *tx) 136 { 137 ddt_log_create_one(ddt, ddt->ddt_log_active, 0, tx); 138 ddt_log_create_one(ddt, ddt->ddt_log_flushing, 1, tx); 139 } 140 141 static void 142 ddt_log_destroy_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx) 143 { 144 ASSERT3U(ddt->ddt_dir_object, >, 0); 145 146 if (ddl->ddl_object == 0) 147 return; 148 149 ASSERT0(ddl->ddl_length); 150 151 char name[DDT_NAMELEN]; 152 ddt_log_name(ddt, name, n); 153 154 VERIFY0(zap_remove(ddt->ddt_os, ddt->ddt_dir_object, name, tx)); 155 VERIFY0(dmu_object_free(ddt->ddt_os, ddl->ddl_object, tx)); 156 157 ddl->ddl_object = 0; 158 } 159 160 void 161 ddt_log_destroy(ddt_t *ddt, dmu_tx_t *tx) 162 { 163 ddt_log_destroy_one(ddt, ddt->ddt_log_active, 0, tx); 164 ddt_log_destroy_one(ddt, ddt->ddt_log_flushing, 1, tx); 165 } 166 167 static void 168 ddt_log_update_stats(ddt_t *ddt) 169 { 170 /* 171 * Log object stats. We count the number of live entries in the log 172 * tree, even if there are more than on disk, and even if the same 173 * entry is on both append and flush trees, because that's more what 174 * the user expects to see. This does mean the on-disk size is not 175 * really correlated with the number of entries, but I don't think 176 * that's reasonable to expect anyway. 177 */ 178 dmu_object_info_t doi; 179 uint64_t nblocks = 0; 180 if (dmu_object_info(ddt->ddt_os, ddt->ddt_log_active->ddl_object, 181 &doi) == 0) 182 nblocks += doi.doi_physical_blocks_512; 183 if (dmu_object_info(ddt->ddt_os, ddt->ddt_log_flushing->ddl_object, 184 &doi) == 0) 185 nblocks += doi.doi_physical_blocks_512; 186 187 ddt_object_t *ddo = &ddt->ddt_log_stats; 188 ddo->ddo_count = 189 avl_numnodes(&ddt->ddt_log_active->ddl_tree) + 190 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 191 ddo->ddo_mspace = ddo->ddo_count * DDT_LOG_ENTRY_SIZE(ddt); 192 ddo->ddo_dspace = nblocks << 9; 193 } 194 195 void 196 ddt_log_begin(ddt_t *ddt, size_t nentries, dmu_tx_t *tx, ddt_log_update_t *dlu) 197 { 198 ASSERT3U(nentries, >, 0); 199 ASSERT0P(dlu->dlu_dbp); 200 201 if (ddt->ddt_log_active->ddl_object == 0) 202 ddt_log_create(ddt, tx); 203 204 /* 205 * We want to store as many entries as we can in a block, but never 206 * split an entry across block boundaries. 207 */ 208 size_t reclen = P2ALIGN_TYPED( 209 sizeof (ddt_log_record_t) + sizeof (ddt_log_record_entry_t) + 210 DDT_PHYS_SIZE(ddt), sizeof (uint64_t), size_t); 211 ASSERT3U(reclen, <=, UINT16_MAX); 212 dlu->dlu_reclen = reclen; 213 214 VERIFY0(dnode_hold(ddt->ddt_os, ddt->ddt_log_active->ddl_object, FTAG, 215 &dlu->dlu_dn)); 216 dnode_set_storage_type(dlu->dlu_dn, DMU_OT_DDT_ZAP); 217 218 uint64_t nblocks = howmany(nentries, 219 dlu->dlu_dn->dn_datablksz / dlu->dlu_reclen); 220 uint64_t offset = ddt->ddt_log_active->ddl_length; 221 uint64_t length = nblocks * dlu->dlu_dn->dn_datablksz; 222 223 VERIFY0(dmu_buf_hold_array_by_dnode(dlu->dlu_dn, offset, length, 224 B_FALSE, FTAG, &dlu->dlu_ndbp, &dlu->dlu_dbp, 225 DMU_READ_NO_PREFETCH)); 226 227 dlu->dlu_tx = tx; 228 dlu->dlu_block = dlu->dlu_offset = 0; 229 } 230 231 static ddt_log_entry_t * 232 ddt_log_alloc_entry(ddt_t *ddt) 233 { 234 ddt_log_entry_t *ddle; 235 236 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 237 ddle = kmem_cache_alloc(ddt_log_entry_flat_cache, KM_SLEEP); 238 memset(ddle, 0, DDT_LOG_ENTRY_FLAT_SIZE); 239 } else { 240 ddle = kmem_cache_alloc(ddt_log_entry_trad_cache, KM_SLEEP); 241 memset(ddle, 0, DDT_LOG_ENTRY_TRAD_SIZE); 242 } 243 244 return (ddle); 245 } 246 247 static void 248 ddt_log_free_entry(ddt_t *ddt, ddt_log_entry_t *ddle) 249 { 250 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 251 ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle); 252 } 253 254 static void 255 ddt_log_update_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe) 256 { 257 /* Create the log tree entry from a live or stored entry */ 258 avl_index_t where; 259 ddt_log_entry_t *ddle = 260 avl_find(&ddl->ddl_tree, &ddlwe->ddlwe_key, &where); 261 if (ddle == NULL) { 262 ddle = ddt_log_alloc_entry(ddt); 263 ddle->ddle_key = ddlwe->ddlwe_key; 264 avl_insert(&ddl->ddl_tree, ddle, where); 265 } 266 ddle->ddle_type = ddlwe->ddlwe_type; 267 ddle->ddle_class = ddlwe->ddlwe_class; 268 memcpy(ddle->ddle_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 269 } 270 271 void 272 ddt_log_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, ddt_log_update_t *dlu) 273 { 274 ASSERT3U(dlu->dlu_dbp, !=, NULL); 275 276 ddt_log_update_entry(ddt, ddt->ddt_log_active, ddlwe); 277 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, ddlwe); 278 279 /* Get our block */ 280 ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp); 281 dmu_buf_t *db = dlu->dlu_dbp[dlu->dlu_block]; 282 283 /* 284 * If this would take us past the end of the block, finish it and 285 * move to the next one. 286 */ 287 if (db->db_size < (dlu->dlu_offset + dlu->dlu_reclen)) { 288 ASSERT3U(dlu->dlu_offset, >, 0); 289 dmu_buf_fill_done(db, dlu->dlu_tx, B_FALSE); 290 dlu->dlu_block++; 291 dlu->dlu_offset = 0; 292 ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp); 293 db = dlu->dlu_dbp[dlu->dlu_block]; 294 } 295 296 /* 297 * If this is the first time touching the block, inform the DMU that 298 * we will fill it, and zero it out. 299 */ 300 if (dlu->dlu_offset == 0) { 301 dmu_buf_will_fill(db, dlu->dlu_tx, B_FALSE); 302 memset(db->db_data, 0, db->db_size); 303 } 304 305 /* Create the log record directly in the buffer */ 306 ddt_log_record_t *dlr = (db->db_data + dlu->dlu_offset); 307 DLR_SET_TYPE(dlr, DLR_ENTRY); 308 DLR_SET_RECLEN(dlr, dlu->dlu_reclen); 309 DLR_SET_ENTRY_TYPE(dlr, ddlwe->ddlwe_type); 310 DLR_SET_ENTRY_CLASS(dlr, ddlwe->ddlwe_class); 311 312 ddt_log_record_entry_t *dlre = 313 (ddt_log_record_entry_t *)&dlr->dlr_payload; 314 dlre->dlre_key = ddlwe->ddlwe_key; 315 memcpy(dlre->dlre_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 316 317 /* Advance offset for next record. */ 318 dlu->dlu_offset += dlu->dlu_reclen; 319 } 320 321 void 322 ddt_log_commit(ddt_t *ddt, ddt_log_update_t *dlu) 323 { 324 ASSERT3U(dlu->dlu_dbp, !=, NULL); 325 ASSERT3U(dlu->dlu_block+1, ==, dlu->dlu_ndbp); 326 ASSERT3U(dlu->dlu_offset, >, 0); 327 328 /* 329 * Close out the last block. Whatever we haven't used will be zeroed, 330 * which matches DLR_INVALID, so we can detect this during load. 331 */ 332 dmu_buf_fill_done(dlu->dlu_dbp[dlu->dlu_block], dlu->dlu_tx, B_FALSE); 333 334 dmu_buf_rele_array(dlu->dlu_dbp, dlu->dlu_ndbp, FTAG); 335 336 ddt->ddt_log_active->ddl_length += 337 dlu->dlu_ndbp * (uint64_t)dlu->dlu_dn->dn_datablksz; 338 dnode_rele(dlu->dlu_dn, FTAG); 339 340 ddt_log_update_header(ddt, ddt->ddt_log_active, dlu->dlu_tx); 341 342 memset(dlu, 0, sizeof (ddt_log_update_t)); 343 344 ddt_log_update_stats(ddt); 345 } 346 347 boolean_t 348 ddt_log_take_first(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe) 349 { 350 ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 351 if (ddle == NULL) 352 return (B_FALSE); 353 354 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe); 355 356 ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, ddlwe); 357 358 avl_remove(&ddl->ddl_tree, ddle); 359 ddt_log_free_entry(ddt, ddle); 360 361 return (B_TRUE); 362 } 363 364 boolean_t 365 ddt_log_remove_key(ddt_t *ddt, ddt_log_t *ddl, const ddt_key_t *ddk) 366 { 367 ddt_log_entry_t *ddle = avl_find(&ddl->ddl_tree, ddk, NULL); 368 if (ddle == NULL) 369 return (B_FALSE); 370 371 ddt_lightweight_entry_t ddlwe; 372 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 373 ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 374 375 avl_remove(&ddl->ddl_tree, ddle); 376 ddt_log_free_entry(ddt, ddle); 377 378 return (B_TRUE); 379 } 380 381 boolean_t 382 ddt_log_find_key(ddt_t *ddt, const ddt_key_t *ddk, 383 ddt_lightweight_entry_t *ddlwe) 384 { 385 ddt_log_entry_t *ddle = 386 avl_find(&ddt->ddt_log_active->ddl_tree, ddk, NULL); 387 if (!ddle) 388 ddle = avl_find(&ddt->ddt_log_flushing->ddl_tree, ddk, NULL); 389 if (!ddle) 390 return (B_FALSE); 391 if (ddlwe) 392 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe); 393 return (B_TRUE); 394 } 395 396 void 397 ddt_log_checkpoint(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 398 { 399 ddt_log_t *ddl = ddt->ddt_log_flushing; 400 401 ASSERT3U(ddl->ddl_object, !=, 0); 402 403 #ifdef ZFS_DEBUG 404 /* 405 * There should not be any entries on the log tree before the given 406 * checkpoint. Assert that this is the case. 407 */ 408 ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 409 if (ddle != NULL) 410 VERIFY3U(ddt_key_compare(&ddle->ddle_key, &ddlwe->ddlwe_key), 411 >, 0); 412 #endif 413 414 ddl->ddl_flags |= DDL_FLAG_CHECKPOINT; 415 ddl->ddl_checkpoint = ddlwe->ddlwe_key; 416 ddt_log_update_header(ddt, ddl, tx); 417 418 ddt_log_update_stats(ddt); 419 } 420 421 void 422 ddt_log_truncate(ddt_t *ddt, dmu_tx_t *tx) 423 { 424 ddt_log_t *ddl = ddt->ddt_log_flushing; 425 426 if (ddl->ddl_object == 0) 427 return; 428 429 ASSERT(avl_is_empty(&ddl->ddl_tree)); 430 431 /* Eject the entire object */ 432 dmu_free_range(ddt->ddt_os, ddl->ddl_object, 0, DMU_OBJECT_END, tx); 433 434 ddl->ddl_length = 0; 435 ddl->ddl_flags &= ~DDL_FLAG_CHECKPOINT; 436 memset(&ddl->ddl_checkpoint, 0, sizeof (ddt_key_t)); 437 ddt_log_update_header(ddt, ddl, tx); 438 439 ddt_log_update_stats(ddt); 440 } 441 442 boolean_t 443 ddt_log_swap(ddt_t *ddt, dmu_tx_t *tx) 444 { 445 /* Swap the logs. The old flushing one must be empty */ 446 VERIFY(avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)); 447 448 /* 449 * If there are still blocks on the flushing log, truncate it first. 450 * This can happen if there were entries on the flushing log that were 451 * removed in memory via ddt_lookup(); their vestigal remains are 452 * on disk. 453 */ 454 if (ddt->ddt_log_flushing->ddl_length > 0) 455 ddt_log_truncate(ddt, tx); 456 457 /* 458 * Swap policy. We swap the logs (and so begin flushing) when the 459 * active tree grows too large, or when we haven't swapped it in 460 * some amount of time, or if something has requested the logs be 461 * flushed ASAP (see ddt_walk_init()). 462 */ 463 464 /* 465 * The log tree is too large if the memory usage of its entries is over 466 * half of the memory limit. This effectively gives each log tree half 467 * the available memory. 468 */ 469 const boolean_t too_large = 470 (avl_numnodes(&ddt->ddt_log_active->ddl_tree) * 471 DDT_LOG_ENTRY_SIZE(ddt)) >= (zfs_dedup_log_mem_max >> 1); 472 473 const boolean_t too_old = 474 tx->tx_txg >= 475 (ddt->ddt_log_active->ddl_first_txg + 476 MAX(1, zfs_dedup_log_txg_max)); 477 478 const boolean_t force = 479 ddt->ddt_log_active->ddl_first_txg <= ddt->ddt_flush_force_txg; 480 481 if (!(too_large || too_old || force)) 482 return (B_FALSE); 483 484 ddt_log_t *swap = ddt->ddt_log_active; 485 ddt->ddt_log_active = ddt->ddt_log_flushing; 486 ddt->ddt_log_flushing = swap; 487 488 ASSERT(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING); 489 ddt->ddt_log_active->ddl_flags &= 490 ~(DDL_FLAG_FLUSHING | DDL_FLAG_CHECKPOINT); 491 492 ASSERT(!(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING)); 493 ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING; 494 495 ddt->ddt_log_active->ddl_first_txg = tx->tx_txg; 496 497 ddt_log_update_header(ddt, ddt->ddt_log_active, tx); 498 ddt_log_update_header(ddt, ddt->ddt_log_flushing, tx); 499 500 ddt_log_update_stats(ddt); 501 502 return (B_TRUE); 503 } 504 505 static inline void 506 ddt_log_load_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_log_record_t *dlr, 507 const ddt_key_t *checkpoint) 508 { 509 ASSERT3U(DLR_GET_TYPE(dlr), ==, DLR_ENTRY); 510 511 ddt_log_record_entry_t *dlre = 512 (ddt_log_record_entry_t *)dlr->dlr_payload; 513 if (checkpoint != NULL && 514 ddt_key_compare(&dlre->dlre_key, checkpoint) <= 0) { 515 /* Skip pre-checkpoint entries; they're already flushed. */ 516 return; 517 } 518 519 ddt_lightweight_entry_t ddlwe; 520 ddlwe.ddlwe_type = DLR_GET_ENTRY_TYPE(dlr); 521 ddlwe.ddlwe_class = DLR_GET_ENTRY_CLASS(dlr); 522 523 ddlwe.ddlwe_key = dlre->dlre_key; 524 memcpy(&ddlwe.ddlwe_phys, dlre->dlre_phys, DDT_PHYS_SIZE(ddt)); 525 526 ddt_log_update_entry(ddt, ddl, &ddlwe); 527 } 528 529 static void 530 ddt_log_empty(ddt_t *ddt, ddt_log_t *ddl) 531 { 532 void *cookie = NULL; 533 ddt_log_entry_t *ddle; 534 IMPLY(ddt->ddt_version == UINT64_MAX, avl_is_empty(&ddl->ddl_tree)); 535 while ((ddle = 536 avl_destroy_nodes(&ddl->ddl_tree, &cookie)) != NULL) { 537 ddt_log_free_entry(ddt, ddle); 538 } 539 ASSERT(avl_is_empty(&ddl->ddl_tree)); 540 } 541 542 static int 543 ddt_log_load_one(ddt_t *ddt, uint_t n) 544 { 545 ASSERT3U(n, <, 2); 546 547 ddt_log_t *ddl = &ddt->ddt_log[n]; 548 549 char name[DDT_NAMELEN]; 550 ddt_log_name(ddt, name, n); 551 552 uint64_t obj; 553 int err = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name, 554 sizeof (uint64_t), 1, &obj); 555 if (err == ENOENT) 556 return (0); 557 if (err != 0) 558 return (err); 559 560 dnode_t *dn; 561 err = dnode_hold(ddt->ddt_os, obj, FTAG, &dn); 562 if (err != 0) 563 return (err); 564 565 ddt_log_header_t hdr; 566 dmu_buf_t *db; 567 err = dmu_bonus_hold_by_dnode(dn, FTAG, &db, DMU_READ_NO_PREFETCH); 568 if (err != 0) { 569 dnode_rele(dn, FTAG); 570 return (err); 571 } 572 memcpy(&hdr, db->db_data, sizeof (ddt_log_header_t)); 573 dmu_buf_rele(db, FTAG); 574 575 if (DLH_GET_VERSION(&hdr) != 1) { 576 dnode_rele(dn, FTAG); 577 zfs_dbgmsg("ddt_log_load: spa=%s ddt_log=%s " 578 "unknown version=%llu", spa_name(ddt->ddt_spa), name, 579 (u_longlong_t)DLH_GET_VERSION(&hdr)); 580 return (SET_ERROR(EINVAL)); 581 } 582 583 ddt_key_t *checkpoint = NULL; 584 if (DLH_GET_FLAGS(&hdr) & DDL_FLAG_CHECKPOINT) { 585 /* 586 * If the log has a checkpoint, then we can ignore any entries 587 * that have already been flushed. 588 */ 589 ASSERT(DLH_GET_FLAGS(&hdr) & DDL_FLAG_FLUSHING); 590 checkpoint = &hdr.dlh_checkpoint; 591 } 592 593 if (hdr.dlh_length > 0) { 594 dmu_prefetch_by_dnode(dn, 0, 0, hdr.dlh_length, 595 ZIO_PRIORITY_SYNC_READ); 596 597 for (uint64_t offset = 0; offset < hdr.dlh_length; 598 offset += dn->dn_datablksz) { 599 err = dmu_buf_hold_by_dnode(dn, offset, FTAG, &db, 600 DMU_READ_PREFETCH); 601 if (err != 0) { 602 dnode_rele(dn, FTAG); 603 ddt_log_empty(ddt, ddl); 604 return (err); 605 } 606 607 uint64_t boffset = 0; 608 while (boffset < db->db_size) { 609 ddt_log_record_t *dlr = 610 (ddt_log_record_t *)(db->db_data + boffset); 611 612 /* Partially-filled block, skip the rest */ 613 if (DLR_GET_TYPE(dlr) == DLR_INVALID) 614 break; 615 616 switch (DLR_GET_TYPE(dlr)) { 617 case DLR_ENTRY: 618 ddt_log_load_entry(ddt, ddl, dlr, 619 checkpoint); 620 break; 621 622 default: 623 dmu_buf_rele(db, FTAG); 624 dnode_rele(dn, FTAG); 625 ddt_log_empty(ddt, ddl); 626 return (SET_ERROR(EINVAL)); 627 } 628 629 boffset += DLR_GET_RECLEN(dlr); 630 } 631 632 dmu_buf_rele(db, FTAG); 633 } 634 } 635 636 dnode_rele(dn, FTAG); 637 638 ddl->ddl_object = obj; 639 ddl->ddl_flags = DLH_GET_FLAGS(&hdr); 640 ddl->ddl_length = hdr.dlh_length; 641 ddl->ddl_first_txg = hdr.dlh_first_txg; 642 643 if (ddl->ddl_flags & DDL_FLAG_FLUSHING) 644 ddt->ddt_log_flushing = ddl; 645 else 646 ddt->ddt_log_active = ddl; 647 648 return (0); 649 } 650 651 int 652 ddt_log_load(ddt_t *ddt) 653 { 654 int err; 655 656 if (spa_load_state(ddt->ddt_spa) == SPA_LOAD_TRYIMPORT) { 657 /* 658 * The DDT is going to be freed again in a moment, so there's 659 * no point loading the log; it'll just slow down import. 660 */ 661 return (0); 662 } 663 664 ASSERT0(ddt->ddt_log[0].ddl_object); 665 ASSERT0(ddt->ddt_log[1].ddl_object); 666 if (ddt->ddt_dir_object == 0) { 667 /* 668 * If we're configured but the containing dir doesn't exist 669 * yet, then the log object can't possibly exist either. 670 */ 671 ASSERT3U(ddt->ddt_version, !=, UINT64_MAX); 672 return (SET_ERROR(ENOENT)); 673 } 674 675 if ((err = ddt_log_load_one(ddt, 0)) != 0) 676 return (err); 677 if ((err = ddt_log_load_one(ddt, 1)) != 0) 678 return (err); 679 680 VERIFY3P(ddt->ddt_log_active, !=, ddt->ddt_log_flushing); 681 VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING)); 682 VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_CHECKPOINT)); 683 VERIFY(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING); 684 685 /* 686 * We have two finalisation tasks: 687 * 688 * - rebuild the histogram. We do this at the end rather than while 689 * we're loading so we don't need to uncount and recount entries that 690 * appear multiple times in the log. 691 * 692 * - remove entries from the flushing tree that are on both trees. This 693 * happens when ddt_lookup() rehydrates an entry from the flushing 694 * tree, as ddt_log_take_key() removes the entry from the in-memory 695 * tree but doesn't remove it from disk. 696 */ 697 698 /* 699 * We don't technically need a config lock here, since there shouldn't 700 * be pool config changes during DDT load. dva_get_dsize_sync() via 701 * ddt_stat_generate() is expecting it though, and it won't hurt 702 * anything, so we take it. 703 */ 704 spa_config_enter(ddt->ddt_spa, SCL_STATE, FTAG, RW_READER); 705 706 avl_tree_t *al = &ddt->ddt_log_active->ddl_tree; 707 avl_tree_t *fl = &ddt->ddt_log_flushing->ddl_tree; 708 ddt_log_entry_t *ae = avl_first(al); 709 ddt_log_entry_t *fe = avl_first(fl); 710 while (ae != NULL || fe != NULL) { 711 ddt_log_entry_t *ddle; 712 if (ae == NULL) { 713 /* active exhausted, take flushing */ 714 ddle = fe; 715 fe = AVL_NEXT(fl, fe); 716 } else if (fe == NULL) { 717 /* flushing exuhausted, take active */ 718 ddle = ae; 719 ae = AVL_NEXT(al, ae); 720 } else { 721 /* compare active and flushing */ 722 int c = ddt_key_compare(&ae->ddle_key, &fe->ddle_key); 723 if (c < 0) { 724 /* active behind, take and advance */ 725 ddle = ae; 726 ae = AVL_NEXT(al, ae); 727 } else if (c > 0) { 728 /* flushing behind, take and advance */ 729 ddle = fe; 730 fe = AVL_NEXT(fl, fe); 731 } else { 732 /* match. remove from flushing, take active */ 733 ddle = fe; 734 fe = AVL_NEXT(fl, fe); 735 avl_remove(fl, ddle); 736 ddt_log_free_entry(ddt, ddle); 737 ddle = ae; 738 ae = AVL_NEXT(al, ae); 739 } 740 } 741 742 ddt_lightweight_entry_t ddlwe; 743 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 744 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 745 } 746 747 spa_config_exit(ddt->ddt_spa, SCL_STATE, FTAG); 748 749 ddt_log_update_stats(ddt); 750 751 return (0); 752 } 753 754 void 755 ddt_log_alloc(ddt_t *ddt) 756 { 757 ASSERT0P(ddt->ddt_log_active); 758 ASSERT0P(ddt->ddt_log_flushing); 759 760 avl_create(&ddt->ddt_log[0].ddl_tree, ddt_key_compare, 761 sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node)); 762 avl_create(&ddt->ddt_log[1].ddl_tree, ddt_key_compare, 763 sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node)); 764 ddt->ddt_log_active = &ddt->ddt_log[0]; 765 ddt->ddt_log_flushing = &ddt->ddt_log[1]; 766 ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING; 767 } 768 769 void 770 ddt_log_free(ddt_t *ddt) 771 { 772 ddt_log_empty(ddt, &ddt->ddt_log[0]); 773 ddt_log_empty(ddt, &ddt->ddt_log[1]); 774 avl_destroy(&ddt->ddt_log[0].ddl_tree); 775 avl_destroy(&ddt->ddt_log[1].ddl_tree); 776 } 777 778 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_txg_max, UINT, ZMOD_RW, 779 "Max transactions before starting to flush dedup logs"); 780 781 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max, U64, ZMOD_RD, 782 "Max memory for dedup logs"); 783 784 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max_percent, UINT, ZMOD_RD, 785 "Max memory for dedup logs, as % of total memory"); 786