1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2023, Klara Inc. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa.h> 29 #include <sys/ddt.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dmu.h> 32 #include <sys/ddt_impl.h> 33 #include <sys/dnode.h> 34 #include <sys/dbuf.h> 35 #include <sys/zap.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * No more than this many txgs before swapping logs. 40 */ 41 uint_t zfs_dedup_log_txg_max = 8; 42 43 /* 44 * Max memory for the log AVL trees. If zfs_dedup_log_mem_max is zero at module 45 * load, it will be set to zfs_dedup_log_mem_max_percent% of total memory. 46 */ 47 uint64_t zfs_dedup_log_mem_max = 0; 48 uint_t zfs_dedup_log_mem_max_percent = 1; 49 50 51 static kmem_cache_t *ddt_log_entry_flat_cache; 52 static kmem_cache_t *ddt_log_entry_trad_cache; 53 54 #define DDT_LOG_ENTRY_FLAT_SIZE \ 55 (sizeof (ddt_log_entry_t) + DDT_FLAT_PHYS_SIZE) 56 #define DDT_LOG_ENTRY_TRAD_SIZE \ 57 (sizeof (ddt_log_entry_t) + DDT_TRAD_PHYS_SIZE) 58 59 #define DDT_LOG_ENTRY_SIZE(ddt) \ 60 _DDT_PHYS_SWITCH(ddt, DDT_LOG_ENTRY_FLAT_SIZE, DDT_LOG_ENTRY_TRAD_SIZE) 61 62 void 63 ddt_log_init(void) 64 { 65 ddt_log_entry_flat_cache = kmem_cache_create("ddt_log_entry_flat_cache", 66 DDT_LOG_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 67 ddt_log_entry_trad_cache = kmem_cache_create("ddt_log_entry_trad_cache", 68 DDT_LOG_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 69 70 /* 71 * Max memory for log AVL entries. At least 1M, because we need 72 * something (that's ~3800 entries per tree). They can say 100% if they 73 * want; it just means they're at the mercy of the the txg flush limit. 74 */ 75 if (zfs_dedup_log_mem_max == 0) { 76 zfs_dedup_log_mem_max_percent = 77 MIN(zfs_dedup_log_mem_max_percent, 100); 78 zfs_dedup_log_mem_max = (physmem * PAGESIZE) * 79 zfs_dedup_log_mem_max_percent / 100; 80 } 81 zfs_dedup_log_mem_max = MAX(zfs_dedup_log_mem_max, 1*1024*1024); 82 } 83 84 void 85 ddt_log_fini(void) 86 { 87 kmem_cache_destroy(ddt_log_entry_trad_cache); 88 kmem_cache_destroy(ddt_log_entry_flat_cache); 89 } 90 91 static void 92 ddt_log_name(ddt_t *ddt, char *name, uint_t n) 93 { 94 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_LOG, 95 zio_checksum_table[ddt->ddt_checksum].ci_name, n); 96 } 97 98 static void 99 ddt_log_update_header(ddt_t *ddt, ddt_log_t *ddl, dmu_tx_t *tx) 100 { 101 dmu_buf_t *db; 102 VERIFY0(dmu_bonus_hold(ddt->ddt_os, ddl->ddl_object, FTAG, &db)); 103 dmu_buf_will_dirty(db, tx); 104 105 ddt_log_header_t *hdr = (ddt_log_header_t *)db->db_data; 106 DLH_SET_VERSION(hdr, 1); 107 DLH_SET_FLAGS(hdr, ddl->ddl_flags); 108 hdr->dlh_length = ddl->ddl_length; 109 hdr->dlh_first_txg = ddl->ddl_first_txg; 110 hdr->dlh_checkpoint = ddl->ddl_checkpoint; 111 112 dmu_buf_rele(db, FTAG); 113 } 114 115 static void 116 ddt_log_create_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx) 117 { 118 ASSERT3U(ddt->ddt_dir_object, >, 0); 119 ASSERT0(ddl->ddl_object); 120 121 char name[DDT_NAMELEN]; 122 ddt_log_name(ddt, name, n); 123 124 ddl->ddl_object = dmu_object_alloc(ddt->ddt_os, 125 DMU_OTN_UINT64_METADATA, SPA_OLD_MAXBLOCKSIZE, 126 DMU_OTN_UINT64_METADATA, sizeof (ddt_log_header_t), tx); 127 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, name, 128 sizeof (uint64_t), 1, &ddl->ddl_object, tx)); 129 ddl->ddl_length = 0; 130 ddl->ddl_first_txg = tx->tx_txg; 131 ddt_log_update_header(ddt, ddl, tx); 132 } 133 134 static void 135 ddt_log_create(ddt_t *ddt, dmu_tx_t *tx) 136 { 137 ddt_log_create_one(ddt, ddt->ddt_log_active, 0, tx); 138 ddt_log_create_one(ddt, ddt->ddt_log_flushing, 1, tx); 139 } 140 141 static void 142 ddt_log_destroy_one(ddt_t *ddt, ddt_log_t *ddl, uint_t n, dmu_tx_t *tx) 143 { 144 ASSERT3U(ddt->ddt_dir_object, >, 0); 145 146 if (ddl->ddl_object == 0) 147 return; 148 149 ASSERT0(ddl->ddl_length); 150 151 char name[DDT_NAMELEN]; 152 ddt_log_name(ddt, name, n); 153 154 VERIFY0(zap_remove(ddt->ddt_os, ddt->ddt_dir_object, name, tx)); 155 VERIFY0(dmu_object_free(ddt->ddt_os, ddl->ddl_object, tx)); 156 157 ddl->ddl_object = 0; 158 } 159 160 void 161 ddt_log_destroy(ddt_t *ddt, dmu_tx_t *tx) 162 { 163 ddt_log_destroy_one(ddt, ddt->ddt_log_active, 0, tx); 164 ddt_log_destroy_one(ddt, ddt->ddt_log_flushing, 1, tx); 165 } 166 167 static void 168 ddt_log_update_stats(ddt_t *ddt) 169 { 170 /* 171 * Log object stats. We count the number of live entries in the log 172 * tree, even if there are more than on disk, and even if the same 173 * entry is on both append and flush trees, because that's more what 174 * the user expects to see. This does mean the on-disk size is not 175 * really correlated with the number of entries, but I don't think 176 * that's reasonable to expect anyway. 177 */ 178 dmu_object_info_t doi; 179 uint64_t nblocks = 0; 180 if (dmu_object_info(ddt->ddt_os, ddt->ddt_log_active->ddl_object, 181 &doi) == 0) 182 nblocks += doi.doi_physical_blocks_512; 183 if (dmu_object_info(ddt->ddt_os, ddt->ddt_log_flushing->ddl_object, 184 &doi) == 0) 185 nblocks += doi.doi_physical_blocks_512; 186 187 ddt_object_t *ddo = &ddt->ddt_log_stats; 188 ddo->ddo_count = 189 avl_numnodes(&ddt->ddt_log_active->ddl_tree) + 190 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 191 ddo->ddo_mspace = ddo->ddo_count * DDT_LOG_ENTRY_SIZE(ddt); 192 ddo->ddo_dspace = nblocks << 9; 193 } 194 195 void 196 ddt_log_begin(ddt_t *ddt, size_t nentries, dmu_tx_t *tx, ddt_log_update_t *dlu) 197 { 198 ASSERT3U(nentries, >, 0); 199 ASSERT0P(dlu->dlu_dbp); 200 201 if (ddt->ddt_log_active->ddl_object == 0) 202 ddt_log_create(ddt, tx); 203 204 /* 205 * We want to store as many entries as we can in a block, but never 206 * split an entry across block boundaries. 207 */ 208 size_t reclen = P2ALIGN_TYPED( 209 sizeof (ddt_log_record_t) + sizeof (ddt_log_record_entry_t) + 210 DDT_PHYS_SIZE(ddt), sizeof (uint64_t), size_t); 211 ASSERT3U(reclen, <=, UINT16_MAX); 212 dlu->dlu_reclen = reclen; 213 214 VERIFY0(dnode_hold(ddt->ddt_os, ddt->ddt_log_active->ddl_object, FTAG, 215 &dlu->dlu_dn)); 216 dnode_set_storage_type(dlu->dlu_dn, DMU_OT_DDT_ZAP); 217 218 uint64_t nblocks = howmany(nentries, 219 dlu->dlu_dn->dn_datablksz / dlu->dlu_reclen); 220 uint64_t offset = ddt->ddt_log_active->ddl_length; 221 uint64_t length = nblocks * dlu->dlu_dn->dn_datablksz; 222 223 VERIFY0(dmu_buf_hold_array_by_dnode(dlu->dlu_dn, offset, length, 224 B_FALSE, FTAG, &dlu->dlu_ndbp, &dlu->dlu_dbp, 225 DMU_READ_NO_PREFETCH)); 226 227 dlu->dlu_tx = tx; 228 dlu->dlu_block = dlu->dlu_offset = 0; 229 } 230 231 static ddt_log_entry_t * 232 ddt_log_alloc_entry(ddt_t *ddt) 233 { 234 ddt_log_entry_t *ddle; 235 236 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 237 ddle = kmem_cache_alloc(ddt_log_entry_flat_cache, KM_SLEEP); 238 memset(ddle, 0, DDT_LOG_ENTRY_FLAT_SIZE); 239 } else { 240 ddle = kmem_cache_alloc(ddt_log_entry_trad_cache, KM_SLEEP); 241 memset(ddle, 0, DDT_LOG_ENTRY_TRAD_SIZE); 242 } 243 244 return (ddle); 245 } 246 247 static void 248 ddt_log_update_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe) 249 { 250 /* Create the log tree entry from a live or stored entry */ 251 avl_index_t where; 252 ddt_log_entry_t *ddle = 253 avl_find(&ddl->ddl_tree, &ddlwe->ddlwe_key, &where); 254 if (ddle == NULL) { 255 ddle = ddt_log_alloc_entry(ddt); 256 ddle->ddle_key = ddlwe->ddlwe_key; 257 avl_insert(&ddl->ddl_tree, ddle, where); 258 } 259 ddle->ddle_type = ddlwe->ddlwe_type; 260 ddle->ddle_class = ddlwe->ddlwe_class; 261 memcpy(ddle->ddle_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 262 } 263 264 void 265 ddt_log_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, ddt_log_update_t *dlu) 266 { 267 ASSERT3U(dlu->dlu_dbp, !=, NULL); 268 269 ddt_log_update_entry(ddt, ddt->ddt_log_active, ddlwe); 270 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, ddlwe); 271 272 /* Get our block */ 273 ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp); 274 dmu_buf_t *db = dlu->dlu_dbp[dlu->dlu_block]; 275 276 /* 277 * If this would take us past the end of the block, finish it and 278 * move to the next one. 279 */ 280 if (db->db_size < (dlu->dlu_offset + dlu->dlu_reclen)) { 281 ASSERT3U(dlu->dlu_offset, >, 0); 282 dmu_buf_fill_done(db, dlu->dlu_tx, B_FALSE); 283 dlu->dlu_block++; 284 dlu->dlu_offset = 0; 285 ASSERT3U(dlu->dlu_block, <, dlu->dlu_ndbp); 286 db = dlu->dlu_dbp[dlu->dlu_block]; 287 } 288 289 /* 290 * If this is the first time touching the block, inform the DMU that 291 * we will fill it, and zero it out. 292 */ 293 if (dlu->dlu_offset == 0) { 294 dmu_buf_will_fill(db, dlu->dlu_tx, B_FALSE); 295 memset(db->db_data, 0, db->db_size); 296 } 297 298 /* Create the log record directly in the buffer */ 299 ddt_log_record_t *dlr = (db->db_data + dlu->dlu_offset); 300 DLR_SET_TYPE(dlr, DLR_ENTRY); 301 DLR_SET_RECLEN(dlr, dlu->dlu_reclen); 302 DLR_SET_ENTRY_TYPE(dlr, ddlwe->ddlwe_type); 303 DLR_SET_ENTRY_CLASS(dlr, ddlwe->ddlwe_class); 304 305 ddt_log_record_entry_t *dlre = 306 (ddt_log_record_entry_t *)&dlr->dlr_payload; 307 dlre->dlre_key = ddlwe->ddlwe_key; 308 memcpy(dlre->dlre_phys, &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 309 310 /* Advance offset for next record. */ 311 dlu->dlu_offset += dlu->dlu_reclen; 312 } 313 314 void 315 ddt_log_commit(ddt_t *ddt, ddt_log_update_t *dlu) 316 { 317 ASSERT3U(dlu->dlu_dbp, !=, NULL); 318 ASSERT3U(dlu->dlu_block+1, ==, dlu->dlu_ndbp); 319 ASSERT3U(dlu->dlu_offset, >, 0); 320 321 /* 322 * Close out the last block. Whatever we haven't used will be zeroed, 323 * which matches DLR_INVALID, so we can detect this during load. 324 */ 325 dmu_buf_fill_done(dlu->dlu_dbp[dlu->dlu_block], dlu->dlu_tx, B_FALSE); 326 327 dmu_buf_rele_array(dlu->dlu_dbp, dlu->dlu_ndbp, FTAG); 328 329 ddt->ddt_log_active->ddl_length += 330 dlu->dlu_ndbp * (uint64_t)dlu->dlu_dn->dn_datablksz; 331 dnode_rele(dlu->dlu_dn, FTAG); 332 333 ddt_log_update_header(ddt, ddt->ddt_log_active, dlu->dlu_tx); 334 335 memset(dlu, 0, sizeof (ddt_log_update_t)); 336 337 ddt_log_update_stats(ddt); 338 } 339 340 boolean_t 341 ddt_log_take_first(ddt_t *ddt, ddt_log_t *ddl, ddt_lightweight_entry_t *ddlwe) 342 { 343 ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 344 if (ddle == NULL) 345 return (B_FALSE); 346 347 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe); 348 349 ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, ddlwe); 350 351 avl_remove(&ddl->ddl_tree, ddle); 352 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 353 ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle); 354 355 return (B_TRUE); 356 } 357 358 boolean_t 359 ddt_log_remove_key(ddt_t *ddt, ddt_log_t *ddl, const ddt_key_t *ddk) 360 { 361 ddt_log_entry_t *ddle = avl_find(&ddl->ddl_tree, ddk, NULL); 362 if (ddle == NULL) 363 return (B_FALSE); 364 365 ddt_lightweight_entry_t ddlwe; 366 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 367 ddt_histogram_sub_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 368 369 avl_remove(&ddl->ddl_tree, ddle); 370 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 371 ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle); 372 373 return (B_TRUE); 374 } 375 376 boolean_t 377 ddt_log_find_key(ddt_t *ddt, const ddt_key_t *ddk, 378 ddt_lightweight_entry_t *ddlwe) 379 { 380 ddt_log_entry_t *ddle = 381 avl_find(&ddt->ddt_log_active->ddl_tree, ddk, NULL); 382 if (!ddle) 383 ddle = avl_find(&ddt->ddt_log_flushing->ddl_tree, ddk, NULL); 384 if (!ddle) 385 return (B_FALSE); 386 if (ddlwe) 387 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, ddlwe); 388 return (B_TRUE); 389 } 390 391 void 392 ddt_log_checkpoint(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 393 { 394 ddt_log_t *ddl = ddt->ddt_log_flushing; 395 396 ASSERT3U(ddl->ddl_object, !=, 0); 397 398 #ifdef ZFS_DEBUG 399 /* 400 * There should not be any entries on the log tree before the given 401 * checkpoint. Assert that this is the case. 402 */ 403 ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 404 if (ddle != NULL) 405 VERIFY3U(ddt_key_compare(&ddle->ddle_key, &ddlwe->ddlwe_key), 406 >, 0); 407 #endif 408 409 ddl->ddl_flags |= DDL_FLAG_CHECKPOINT; 410 ddl->ddl_checkpoint = ddlwe->ddlwe_key; 411 ddt_log_update_header(ddt, ddl, tx); 412 413 ddt_log_update_stats(ddt); 414 } 415 416 void 417 ddt_log_truncate(ddt_t *ddt, dmu_tx_t *tx) 418 { 419 ddt_log_t *ddl = ddt->ddt_log_flushing; 420 421 if (ddl->ddl_object == 0) 422 return; 423 424 ASSERT(avl_is_empty(&ddl->ddl_tree)); 425 426 /* Eject the entire object */ 427 dmu_free_range(ddt->ddt_os, ddl->ddl_object, 0, DMU_OBJECT_END, tx); 428 429 ddl->ddl_length = 0; 430 ddl->ddl_flags &= ~DDL_FLAG_CHECKPOINT; 431 memset(&ddl->ddl_checkpoint, 0, sizeof (ddt_key_t)); 432 ddt_log_update_header(ddt, ddl, tx); 433 434 ddt_log_update_stats(ddt); 435 } 436 437 boolean_t 438 ddt_log_swap(ddt_t *ddt, dmu_tx_t *tx) 439 { 440 /* Swap the logs. The old flushing one must be empty */ 441 VERIFY(avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)); 442 443 /* 444 * If there are still blocks on the flushing log, truncate it first. 445 * This can happen if there were entries on the flushing log that were 446 * removed in memory via ddt_lookup(); their vestigal remains are 447 * on disk. 448 */ 449 if (ddt->ddt_log_flushing->ddl_length > 0) 450 ddt_log_truncate(ddt, tx); 451 452 /* 453 * Swap policy. We swap the logs (and so begin flushing) when the 454 * active tree grows too large, or when we haven't swapped it in 455 * some amount of time, or if something has requested the logs be 456 * flushed ASAP (see ddt_walk_init()). 457 */ 458 459 /* 460 * The log tree is too large if the memory usage of its entries is over 461 * half of the memory limit. This effectively gives each log tree half 462 * the available memory. 463 */ 464 const boolean_t too_large = 465 (avl_numnodes(&ddt->ddt_log_active->ddl_tree) * 466 DDT_LOG_ENTRY_SIZE(ddt)) >= (zfs_dedup_log_mem_max >> 1); 467 468 const boolean_t too_old = 469 tx->tx_txg >= 470 (ddt->ddt_log_active->ddl_first_txg + 471 MAX(1, zfs_dedup_log_txg_max)); 472 473 const boolean_t force = 474 ddt->ddt_log_active->ddl_first_txg <= ddt->ddt_flush_force_txg; 475 476 if (!(too_large || too_old || force)) 477 return (B_FALSE); 478 479 ddt_log_t *swap = ddt->ddt_log_active; 480 ddt->ddt_log_active = ddt->ddt_log_flushing; 481 ddt->ddt_log_flushing = swap; 482 483 ASSERT(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING); 484 ddt->ddt_log_active->ddl_flags &= 485 ~(DDL_FLAG_FLUSHING | DDL_FLAG_CHECKPOINT); 486 487 ASSERT(!(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING)); 488 ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING; 489 490 ddt->ddt_log_active->ddl_first_txg = tx->tx_txg; 491 492 ddt_log_update_header(ddt, ddt->ddt_log_active, tx); 493 ddt_log_update_header(ddt, ddt->ddt_log_flushing, tx); 494 495 ddt_log_update_stats(ddt); 496 497 return (B_TRUE); 498 } 499 500 static inline void 501 ddt_log_load_entry(ddt_t *ddt, ddt_log_t *ddl, ddt_log_record_t *dlr, 502 const ddt_key_t *checkpoint) 503 { 504 ASSERT3U(DLR_GET_TYPE(dlr), ==, DLR_ENTRY); 505 506 ddt_log_record_entry_t *dlre = 507 (ddt_log_record_entry_t *)dlr->dlr_payload; 508 if (checkpoint != NULL && 509 ddt_key_compare(&dlre->dlre_key, checkpoint) <= 0) { 510 /* Skip pre-checkpoint entries; they're already flushed. */ 511 return; 512 } 513 514 ddt_lightweight_entry_t ddlwe; 515 ddlwe.ddlwe_type = DLR_GET_ENTRY_TYPE(dlr); 516 ddlwe.ddlwe_class = DLR_GET_ENTRY_CLASS(dlr); 517 518 ddlwe.ddlwe_key = dlre->dlre_key; 519 memcpy(&ddlwe.ddlwe_phys, dlre->dlre_phys, DDT_PHYS_SIZE(ddt)); 520 521 ddt_log_update_entry(ddt, ddl, &ddlwe); 522 } 523 524 static void 525 ddt_log_empty(ddt_t *ddt, ddt_log_t *ddl) 526 { 527 void *cookie = NULL; 528 ddt_log_entry_t *ddle; 529 IMPLY(ddt->ddt_version == UINT64_MAX, avl_is_empty(&ddl->ddl_tree)); 530 while ((ddle = 531 avl_destroy_nodes(&ddl->ddl_tree, &cookie)) != NULL) { 532 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 533 ddt_log_entry_flat_cache : ddt_log_entry_trad_cache, ddle); 534 } 535 ASSERT(avl_is_empty(&ddl->ddl_tree)); 536 } 537 538 static int 539 ddt_log_load_one(ddt_t *ddt, uint_t n) 540 { 541 ASSERT3U(n, <, 2); 542 543 ddt_log_t *ddl = &ddt->ddt_log[n]; 544 545 char name[DDT_NAMELEN]; 546 ddt_log_name(ddt, name, n); 547 548 uint64_t obj; 549 int err = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name, 550 sizeof (uint64_t), 1, &obj); 551 if (err == ENOENT) 552 return (0); 553 if (err != 0) 554 return (err); 555 556 dnode_t *dn; 557 err = dnode_hold(ddt->ddt_os, obj, FTAG, &dn); 558 if (err != 0) 559 return (err); 560 561 ddt_log_header_t hdr; 562 dmu_buf_t *db; 563 err = dmu_bonus_hold_by_dnode(dn, FTAG, &db, DMU_READ_NO_PREFETCH); 564 if (err != 0) { 565 dnode_rele(dn, FTAG); 566 return (err); 567 } 568 memcpy(&hdr, db->db_data, sizeof (ddt_log_header_t)); 569 dmu_buf_rele(db, FTAG); 570 571 if (DLH_GET_VERSION(&hdr) != 1) { 572 dnode_rele(dn, FTAG); 573 zfs_dbgmsg("ddt_log_load: spa=%s ddt_log=%s " 574 "unknown version=%llu", spa_name(ddt->ddt_spa), name, 575 (u_longlong_t)DLH_GET_VERSION(&hdr)); 576 return (SET_ERROR(EINVAL)); 577 } 578 579 ddt_key_t *checkpoint = NULL; 580 if (DLH_GET_FLAGS(&hdr) & DDL_FLAG_CHECKPOINT) { 581 /* 582 * If the log has a checkpoint, then we can ignore any entries 583 * that have already been flushed. 584 */ 585 ASSERT(DLH_GET_FLAGS(&hdr) & DDL_FLAG_FLUSHING); 586 checkpoint = &hdr.dlh_checkpoint; 587 } 588 589 if (hdr.dlh_length > 0) { 590 dmu_prefetch_by_dnode(dn, 0, 0, hdr.dlh_length, 591 ZIO_PRIORITY_SYNC_READ); 592 593 for (uint64_t offset = 0; offset < hdr.dlh_length; 594 offset += dn->dn_datablksz) { 595 err = dmu_buf_hold_by_dnode(dn, offset, FTAG, &db, 596 DMU_READ_PREFETCH); 597 if (err != 0) { 598 dnode_rele(dn, FTAG); 599 ddt_log_empty(ddt, ddl); 600 return (err); 601 } 602 603 uint64_t boffset = 0; 604 while (boffset < db->db_size) { 605 ddt_log_record_t *dlr = 606 (ddt_log_record_t *)(db->db_data + boffset); 607 608 /* Partially-filled block, skip the rest */ 609 if (DLR_GET_TYPE(dlr) == DLR_INVALID) 610 break; 611 612 switch (DLR_GET_TYPE(dlr)) { 613 case DLR_ENTRY: 614 ddt_log_load_entry(ddt, ddl, dlr, 615 checkpoint); 616 break; 617 618 default: 619 dmu_buf_rele(db, FTAG); 620 dnode_rele(dn, FTAG); 621 ddt_log_empty(ddt, ddl); 622 return (SET_ERROR(EINVAL)); 623 } 624 625 boffset += DLR_GET_RECLEN(dlr); 626 } 627 628 dmu_buf_rele(db, FTAG); 629 } 630 } 631 632 dnode_rele(dn, FTAG); 633 634 ddl->ddl_object = obj; 635 ddl->ddl_flags = DLH_GET_FLAGS(&hdr); 636 ddl->ddl_length = hdr.dlh_length; 637 ddl->ddl_first_txg = hdr.dlh_first_txg; 638 639 if (ddl->ddl_flags & DDL_FLAG_FLUSHING) 640 ddt->ddt_log_flushing = ddl; 641 else 642 ddt->ddt_log_active = ddl; 643 644 return (0); 645 } 646 647 int 648 ddt_log_load(ddt_t *ddt) 649 { 650 int err; 651 652 if (spa_load_state(ddt->ddt_spa) == SPA_LOAD_TRYIMPORT) { 653 /* 654 * The DDT is going to be freed again in a moment, so there's 655 * no point loading the log; it'll just slow down import. 656 */ 657 return (0); 658 } 659 660 ASSERT0(ddt->ddt_log[0].ddl_object); 661 ASSERT0(ddt->ddt_log[1].ddl_object); 662 if (ddt->ddt_dir_object == 0) { 663 /* 664 * If we're configured but the containing dir doesn't exist 665 * yet, then the log object can't possibly exist either. 666 */ 667 ASSERT3U(ddt->ddt_version, !=, UINT64_MAX); 668 return (SET_ERROR(ENOENT)); 669 } 670 671 if ((err = ddt_log_load_one(ddt, 0)) != 0) 672 return (err); 673 if ((err = ddt_log_load_one(ddt, 1)) != 0) 674 return (err); 675 676 VERIFY3P(ddt->ddt_log_active, !=, ddt->ddt_log_flushing); 677 VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_FLUSHING)); 678 VERIFY(!(ddt->ddt_log_active->ddl_flags & DDL_FLAG_CHECKPOINT)); 679 VERIFY(ddt->ddt_log_flushing->ddl_flags & DDL_FLAG_FLUSHING); 680 681 /* 682 * We have two finalisation tasks: 683 * 684 * - rebuild the histogram. We do this at the end rather than while 685 * we're loading so we don't need to uncount and recount entries that 686 * appear multiple times in the log. 687 * 688 * - remove entries from the flushing tree that are on both trees. This 689 * happens when ddt_lookup() rehydrates an entry from the flushing 690 * tree, as ddt_log_take_key() removes the entry from the in-memory 691 * tree but doesn't remove it from disk. 692 */ 693 694 /* 695 * We don't technically need a config lock here, since there shouldn't 696 * be pool config changes during DDT load. dva_get_dsize_sync() via 697 * ddt_stat_generate() is expecting it though, and it won't hurt 698 * anything, so we take it. 699 */ 700 spa_config_enter(ddt->ddt_spa, SCL_STATE, FTAG, RW_READER); 701 702 avl_tree_t *al = &ddt->ddt_log_active->ddl_tree; 703 avl_tree_t *fl = &ddt->ddt_log_flushing->ddl_tree; 704 ddt_log_entry_t *ae = avl_first(al); 705 ddt_log_entry_t *fe = avl_first(fl); 706 while (ae != NULL || fe != NULL) { 707 ddt_log_entry_t *ddle; 708 if (ae == NULL) { 709 /* active exhausted, take flushing */ 710 ddle = fe; 711 fe = AVL_NEXT(fl, fe); 712 } else if (fe == NULL) { 713 /* flushing exuhausted, take active */ 714 ddle = ae; 715 ae = AVL_NEXT(al, ae); 716 } else { 717 /* compare active and flushing */ 718 int c = ddt_key_compare(&ae->ddle_key, &fe->ddle_key); 719 if (c < 0) { 720 /* active behind, take and advance */ 721 ddle = ae; 722 ae = AVL_NEXT(al, ae); 723 } else if (c > 0) { 724 /* flushing behind, take and advance */ 725 ddle = fe; 726 fe = AVL_NEXT(fl, fe); 727 } else { 728 /* match. remove from flushing, take active */ 729 ddle = fe; 730 fe = AVL_NEXT(fl, fe); 731 avl_remove(fl, ddle); 732 733 ddle = ae; 734 ae = AVL_NEXT(al, ae); 735 } 736 } 737 738 ddt_lightweight_entry_t ddlwe; 739 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 740 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 741 } 742 743 spa_config_exit(ddt->ddt_spa, SCL_STATE, FTAG); 744 745 ddt_log_update_stats(ddt); 746 747 return (0); 748 } 749 750 void 751 ddt_log_alloc(ddt_t *ddt) 752 { 753 ASSERT0P(ddt->ddt_log_active); 754 ASSERT0P(ddt->ddt_log_flushing); 755 756 avl_create(&ddt->ddt_log[0].ddl_tree, ddt_key_compare, 757 sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node)); 758 avl_create(&ddt->ddt_log[1].ddl_tree, ddt_key_compare, 759 sizeof (ddt_log_entry_t), offsetof(ddt_log_entry_t, ddle_node)); 760 ddt->ddt_log_active = &ddt->ddt_log[0]; 761 ddt->ddt_log_flushing = &ddt->ddt_log[1]; 762 ddt->ddt_log_flushing->ddl_flags |= DDL_FLAG_FLUSHING; 763 } 764 765 void 766 ddt_log_free(ddt_t *ddt) 767 { 768 ddt_log_empty(ddt, &ddt->ddt_log[0]); 769 ddt_log_empty(ddt, &ddt->ddt_log[1]); 770 avl_destroy(&ddt->ddt_log[0].ddl_tree); 771 avl_destroy(&ddt->ddt_log[1].ddl_tree); 772 } 773 774 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_txg_max, UINT, ZMOD_RW, 775 "Max transactions before starting to flush dedup logs"); 776 777 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max, U64, ZMOD_RD, 778 "Max memory for dedup logs"); 779 780 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_mem_max_percent, UINT, ZMOD_RD, 781 "Max memory for dedup logs, as % of total memory"); 782