1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 26 * Copyright (c) 2022 by Pawel Jakub Dawidek 27 * Copyright (c) 2019, 2023, Klara Inc. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/ddt.h> 35 #include <sys/ddt_impl.h> 36 #include <sys/zap.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/arc.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dsl_scan.h> 42 #include <sys/abd.h> 43 #include <sys/zfeature.h> 44 45 /* 46 * # DDT: Deduplication tables 47 * 48 * The dedup subsystem provides block-level deduplication. When enabled, blocks 49 * to be written will have the dedup (D) bit set, which causes them to be 50 * tracked in a "dedup table", or DDT. If a block has been seen before (exists 51 * in the DDT), instead of being written, it will instead be made to reference 52 * the existing on-disk data, and a refcount bumped in the DDT instead. 53 * 54 * ## Dedup tables and entries 55 * 56 * Conceptually, a DDT is a dictionary or map. Each entry has a "key" 57 * (ddt_key_t) made up a block's checksum and certian properties, and a "value" 58 * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth 59 * time and refcount. Together these are enough to track references to a 60 * specific block, to build a valid block pointer to reference that block (for 61 * freeing, scrubbing, etc), and to fill a new block pointer with the missing 62 * pieces to make it seem like it was written. 63 * 64 * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[]. 65 * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk 66 * object data formats, each with their own implementations) and "classes" 67 * (ddt_class_t, instance of a storage type object, for entries with a specific 68 * characteristic). An entry (key) will only ever exist on one of these objects 69 * at any given time, but may be moved from one to another if their type or 70 * class changes. 71 * 72 * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block 73 * is to be written, before DVAs have been allocated, ddt_lookup() is called to 74 * see if the block has been seen before. If its not found, the write proceeds 75 * as normal, and after it succeeds, a new entry is created. If it is found, we 76 * fill the BP with the DVAs from the entry, increment the refcount and cause 77 * the write IO to return immediately. 78 * 79 * Traditionally, each ddt_phys_t slot in the entry represents a separate dedup 80 * block for the same content/checksum. The slot is selected based on the 81 * zp_copies parameter the block is written with, that is, the number of DVAs 82 * in the block. The "ditto" slot (DDT_PHYS_DITTO) used to be used for 83 * now-removed "dedupditto" feature. These are no longer written, and will be 84 * freed if encountered on old pools. 85 * 86 * If the "fast_dedup" feature is enabled, new dedup tables will be created 87 * with the "flat phys" option. In this mode, there is only one ddt_phys_t 88 * slot. If a write is issued for an entry that exists, but has fewer DVAs, 89 * then only as many new DVAs are allocated and written to make up the 90 * shortfall. The existing entry is then extended (ddt_phys_extend()) with the 91 * new DVAs. 92 * 93 * ## Lifetime of an entry 94 * 95 * A DDT can be enormous, and typically is not held in memory all at once. 96 * Instead, the changes to an entry are tracked in memory, and written down to 97 * disk at the end of each txg. 98 * 99 * A "live" in-memory entry (ddt_entry_t) is a node on the live tree 100 * (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is 101 * required for IO, ddt_lookup() is called. If an entry already exists on 102 * ddt_tree, it is returned. Otherwise, a new one is created, and the 103 * type/class objects for the DDT are searched for that key. If its found, its 104 * value is copied into the live entry. If not, an empty entry is created. 105 * 106 * The live entry will be modified during the txg, usually by modifying the 107 * refcount, but sometimes by adding or updating DVAs. At the end of the txg 108 * (during spa_sync()), type and class are recalculated for entry (see 109 * ddt_sync_entry()), and the entry is written to the appropriate storage 110 * object and (if necessary), removed from an old one. ddt_tree is cleared and 111 * the next txg can start. 112 * 113 * ## Dedup quota 114 * 115 * A maximum size for all DDTs on the pool can be set with the 116 * dedup_table_quota property. This is determined in ddt_over_quota() and 117 * enforced during ddt_lookup(). If the pool is at or over its quota limit, 118 * ddt_lookup() will only return entries for existing blocks, as updates are 119 * still possible. New entries will not be created; instead, ddt_lookup() will 120 * return NULL. In response, the DDT write stage (zio_ddt_write()) will remove 121 * the D bit on the block and reissue the IO as a regular write. The block will 122 * not be deduplicated. 123 * 124 * Note that this is based on the on-disk size of the dedup store. Reclaiming 125 * this space after deleting entries relies on the ZAP "shrinking" behaviour, 126 * without which, no space would be recovered and the DDT would continue to be 127 * considered "over quota". See zap_shrink_enabled. 128 * 129 * ## Dedup table pruning 130 * 131 * As a complement to the dedup quota feature, ddtprune allows removal of older 132 * non-duplicate entries to make room for newer duplicate entries. The amount 133 * to prune can be based on a target percentage of the unique entries or based 134 * on the age (i.e., prune unique entry older than N days). 135 * 136 * ## Dedup log 137 * 138 * Historically, all entries modified on a txg were written back to dedup 139 * storage objects at the end of every txg. This could cause significant 140 * overheads, as each entry only takes up a tiny portion of a ZAP leaf node, 141 * and so required reading the whole node, updating the entry, and writing it 142 * back. On busy pools, this could add serious IO and memory overheads. 143 * 144 * To address this, the dedup log was added. If the "fast_dedup" feature is 145 * enabled, at the end of each txg, modified entries will be copied to an 146 * in-memory "log" object (ddt_log_t), and appended to an on-disk log. If the 147 * same block is requested again, the in-memory object will be checked first, 148 * and if its there, the entry inflated back onto the live tree without going 149 * to storage. The on-disk log is only read at pool import time, to reload the 150 * in-memory log. 151 * 152 * Each txg, some amount of the in-memory log will be flushed out to a DDT 153 * storage object (ie ZAP) as normal. OpenZFS will try hard to flush enough to 154 * keep up with the rate of change on dedup entries, but not so much that it 155 * would impact overall throughput, and not using too much memory. See the 156 * zfs_dedup_log_* tuneables in zfs(4) for more details. 157 * 158 * ## Repair IO 159 * 160 * If a read on a dedup block fails, but there are other copies of the block in 161 * the other ddt_phys_t slots, reads will be issued for those instead 162 * (zio_ddt_read_start()). If one of those succeeds, the read is returned to 163 * the caller, and a copy is stashed on the entry's dde_repair_abd. 164 * 165 * During the end-of-txg sync, any entries with a dde_repair_abd get a 166 * "rewrite" write issued for the original block pointer, with the data read 167 * from the alternate block. If the block is actually damaged, this will invoke 168 * the pool's "self-healing" mechanism, and repair the block. 169 * 170 * If the "fast_dedup" feature is enabled, the "flat phys" option will be in 171 * use, so there is only ever one ddt_phys_t slot. The repair process will 172 * still happen in this case, though it is unlikely to succeed as there will 173 * usually be no other equivalent blocks to fall back on (though there might 174 * be, if this was an early version of a dedup'd block that has since been 175 * extended). 176 * 177 * Note that this repair mechanism is in addition to and separate from the 178 * regular OpenZFS scrub and self-healing mechanisms. 179 * 180 * ## Scanning (scrub/resilver) 181 * 182 * If dedup is active, the scrub machinery will walk the dedup table first, and 183 * scrub all blocks with refcnt > 1 first. After that it will move on to the 184 * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them. 185 * In this way, heavily deduplicated blocks are only scrubbed once. See the 186 * commentary on dsl_scan_ddt() for more details. 187 * 188 * Walking the DDT is done via ddt_walk(). The current position is stored in a 189 * ddt_bookmark_t, which represents a stable position in the storage object. 190 * This bookmark is stored by the scan machinery, and must reference the same 191 * position on the object even if the object changes, the pool is exported, or 192 * OpenZFS is upgraded. 193 * 194 * If the "fast_dedup" feature is enabled and the table has a log, the scan 195 * cannot begin until entries on the log are flushed, as the on-disk log has no 196 * concept of a "stable position". Instead, the log flushing process will enter 197 * a more aggressive mode, to flush out as much as is necesary as soon as 198 * possible, in order to begin the scan as soon as possible. 199 * 200 * ## Interaction with block cloning 201 * 202 * If block cloning and dedup are both enabled on a pool, BRT will look for the 203 * dedup bit on an incoming block pointer. If set, it will call into the DDT 204 * (ddt_addref()) to add a reference to the block, instead of adding a 205 * reference to the BRT. See brt_pending_apply(). 206 */ 207 208 /* 209 * These are the only checksums valid for dedup. They must match the list 210 * from dedup_table in zfs_prop.c 211 */ 212 #define DDT_CHECKSUM_VALID(c) \ 213 (c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \ 214 c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \ 215 c == ZIO_CHECKSUM_BLAKE3) 216 217 static kmem_cache_t *ddt_cache; 218 219 static kmem_cache_t *ddt_entry_flat_cache; 220 static kmem_cache_t *ddt_entry_trad_cache; 221 222 #define DDT_ENTRY_FLAT_SIZE (sizeof (ddt_entry_t) + DDT_FLAT_PHYS_SIZE) 223 #define DDT_ENTRY_TRAD_SIZE (sizeof (ddt_entry_t) + DDT_TRAD_PHYS_SIZE) 224 225 #define DDT_ENTRY_SIZE(ddt) \ 226 _DDT_PHYS_SWITCH(ddt, DDT_ENTRY_FLAT_SIZE, DDT_ENTRY_TRAD_SIZE) 227 228 /* 229 * Enable/disable prefetching of dedup-ed blocks which are going to be freed. 230 */ 231 int zfs_dedup_prefetch = 0; 232 233 /* 234 * If the dedup class cannot satisfy a DDT allocation, treat as over quota 235 * for this many TXGs. 236 */ 237 uint_t dedup_class_wait_txgs = 5; 238 239 /* 240 * How many DDT prune entries to add to the DDT sync AVL tree. 241 * Note these addtional entries have a memory footprint of a 242 * ddt_entry_t (216 bytes). 243 */ 244 static uint32_t zfs_ddt_prunes_per_txg = 50000; 245 246 /* 247 * For testing, synthesize aged DDT entries 248 * (in global scope for ztest) 249 */ 250 boolean_t ddt_prune_artificial_age = B_FALSE; 251 boolean_t ddt_dump_prune_histogram = B_FALSE; 252 253 /* 254 * Minimum time to flush per txg. 255 */ 256 uint_t zfs_dedup_log_flush_min_time_ms = 1000; 257 258 /* 259 * Minimum entries to flush per txg. 260 */ 261 uint_t zfs_dedup_log_flush_entries_min = 200; 262 263 /* 264 * Target number of TXGs until the whole dedup log has been flushed. 265 * The log size will float around this value times the ingest rate. 266 */ 267 uint_t zfs_dedup_log_flush_txgs = 100; 268 269 /* 270 * Maximum entries to flush per txg. Used for testing the dedup log. 271 */ 272 uint_t zfs_dedup_log_flush_entries_max = UINT_MAX; 273 274 /* 275 * Soft cap for the size of the current dedup log. If the log is larger 276 * than this size, we slightly increase the aggressiveness of the flushing to 277 * try to bring it back down to the soft cap. 278 */ 279 uint_t zfs_dedup_log_cap = UINT_MAX; 280 281 /* 282 * If this is set to B_TRUE, the cap above acts more like a hard cap: 283 * flushing is significantly more aggressive, increasing the minimum amount we 284 * flush per txg, as well as the maximum. 285 */ 286 boolean_t zfs_dedup_log_hard_cap = B_FALSE; 287 288 /* 289 * Number of txgs to average flow rates across. 290 */ 291 uint_t zfs_dedup_log_flush_flow_rate_txgs = 10; 292 293 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = { 294 &ddt_zap_ops, 295 }; 296 297 static const char *const ddt_class_name[DDT_CLASSES] = { 298 "ditto", 299 "duplicate", 300 "unique", 301 }; 302 303 /* 304 * DDT feature flags automatically enabled for each on-disk version. Note that 305 * versions >0 cannot exist on disk without SPA_FEATURE_FAST_DEDUP enabled. 306 */ 307 static const uint64_t ddt_version_flags[] = { 308 [DDT_VERSION_LEGACY] = 0, 309 [DDT_VERSION_FDT] = DDT_FLAG_FLAT | DDT_FLAG_LOG, 310 }; 311 312 /* per-DDT kstats */ 313 typedef struct { 314 /* total lookups and whether they returned new or existing entries */ 315 kstat_named_t dds_lookup; 316 kstat_named_t dds_lookup_new; 317 kstat_named_t dds_lookup_existing; 318 319 /* entries found on live tree, and if we had to wait for load */ 320 kstat_named_t dds_lookup_live_hit; 321 kstat_named_t dds_lookup_live_wait; 322 kstat_named_t dds_lookup_live_miss; 323 324 /* entries found on log trees */ 325 kstat_named_t dds_lookup_log_hit; 326 kstat_named_t dds_lookup_log_active_hit; 327 kstat_named_t dds_lookup_log_flushing_hit; 328 kstat_named_t dds_lookup_log_miss; 329 330 /* entries found on store objects */ 331 kstat_named_t dds_lookup_stored_hit; 332 kstat_named_t dds_lookup_stored_miss; 333 334 /* number of entries on log trees */ 335 kstat_named_t dds_log_active_entries; 336 kstat_named_t dds_log_flushing_entries; 337 338 /* avg updated/flushed entries per txg */ 339 kstat_named_t dds_log_ingest_rate; 340 kstat_named_t dds_log_flush_rate; 341 kstat_named_t dds_log_flush_time_rate; 342 } ddt_kstats_t; 343 344 static const ddt_kstats_t ddt_kstats_template = { 345 { "lookup", KSTAT_DATA_UINT64 }, 346 { "lookup_new", KSTAT_DATA_UINT64 }, 347 { "lookup_existing", KSTAT_DATA_UINT64 }, 348 { "lookup_live_hit", KSTAT_DATA_UINT64 }, 349 { "lookup_live_wait", KSTAT_DATA_UINT64 }, 350 { "lookup_live_miss", KSTAT_DATA_UINT64 }, 351 { "lookup_log_hit", KSTAT_DATA_UINT64 }, 352 { "lookup_log_active_hit", KSTAT_DATA_UINT64 }, 353 { "lookup_log_flushing_hit", KSTAT_DATA_UINT64 }, 354 { "lookup_log_miss", KSTAT_DATA_UINT64 }, 355 { "lookup_stored_hit", KSTAT_DATA_UINT64 }, 356 { "lookup_stored_miss", KSTAT_DATA_UINT64 }, 357 { "log_active_entries", KSTAT_DATA_UINT64 }, 358 { "log_flushing_entries", KSTAT_DATA_UINT64 }, 359 { "log_ingest_rate", KSTAT_DATA_UINT32 }, 360 { "log_flush_rate", KSTAT_DATA_UINT32 }, 361 { "log_flush_time_rate", KSTAT_DATA_UINT32 }, 362 }; 363 364 #ifdef _KERNEL 365 #define _DDT_KSTAT_STAT(ddt, stat) \ 366 &((ddt_kstats_t *)(ddt)->ddt_ksp->ks_data)->stat.value.ui64 367 #define DDT_KSTAT_BUMP(ddt, stat) \ 368 do { atomic_inc_64(_DDT_KSTAT_STAT(ddt, stat)); } while (0) 369 #define DDT_KSTAT_ADD(ddt, stat, val) \ 370 do { atomic_add_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 371 #define DDT_KSTAT_SUB(ddt, stat, val) \ 372 do { atomic_sub_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 373 #define DDT_KSTAT_SET(ddt, stat, val) \ 374 do { atomic_store_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 375 #define DDT_KSTAT_ZERO(ddt, stat) DDT_KSTAT_SET(ddt, stat, 0) 376 #else 377 #define DDT_KSTAT_BUMP(ddt, stat) do {} while (0) 378 #define DDT_KSTAT_ADD(ddt, stat, val) do {} while (0) 379 #define DDT_KSTAT_SUB(ddt, stat, val) do {} while (0) 380 #define DDT_KSTAT_SET(ddt, stat, val) do {} while (0) 381 #define DDT_KSTAT_ZERO(ddt, stat) do {} while (0) 382 #endif /* _KERNEL */ 383 384 385 static void 386 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 387 dmu_tx_t *tx) 388 { 389 spa_t *spa = ddt->ddt_spa; 390 objset_t *os = ddt->ddt_os; 391 uint64_t *objectp = &ddt->ddt_object[type][class]; 392 boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags & 393 ZCHECKSUM_FLAG_DEDUP; 394 char name[DDT_NAMELEN]; 395 396 ASSERT3U(ddt->ddt_dir_object, >, 0); 397 398 ddt_object_name(ddt, type, class, name); 399 400 ASSERT3U(*objectp, ==, 0); 401 VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash)); 402 ASSERT3U(*objectp, !=, 0); 403 404 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 405 406 VERIFY0(zap_add(os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1, 407 objectp, tx)); 408 409 VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name, 410 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 411 &ddt->ddt_histogram[type][class], tx)); 412 } 413 414 static void 415 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 416 dmu_tx_t *tx) 417 { 418 spa_t *spa = ddt->ddt_spa; 419 objset_t *os = ddt->ddt_os; 420 uint64_t *objectp = &ddt->ddt_object[type][class]; 421 uint64_t count; 422 char name[DDT_NAMELEN]; 423 424 ASSERT3U(ddt->ddt_dir_object, >, 0); 425 426 ddt_object_name(ddt, type, class, name); 427 428 ASSERT3U(*objectp, !=, 0); 429 ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class])); 430 VERIFY0(ddt_object_count(ddt, type, class, &count)); 431 VERIFY0(count); 432 VERIFY0(zap_remove(os, ddt->ddt_dir_object, name, tx)); 433 VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx)); 434 VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx)); 435 memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t)); 436 437 *objectp = 0; 438 } 439 440 static int 441 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 442 { 443 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; 444 dmu_object_info_t doi; 445 uint64_t count; 446 char name[DDT_NAMELEN]; 447 int error; 448 449 if (ddt->ddt_dir_object == 0) { 450 /* 451 * If we're configured but the containing dir doesn't exist 452 * yet, then this object can't possibly exist either. 453 */ 454 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 455 return (SET_ERROR(ENOENT)); 456 } 457 458 ddt_object_name(ddt, type, class, name); 459 460 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name, 461 sizeof (uint64_t), 1, &ddt->ddt_object[type][class]); 462 if (error != 0) 463 return (error); 464 465 error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, 466 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 467 &ddt->ddt_histogram[type][class]); 468 if (error != 0) 469 return (error); 470 471 /* 472 * Seed the cached statistics. 473 */ 474 error = ddt_object_info(ddt, type, class, &doi); 475 if (error) 476 return (error); 477 478 error = ddt_object_count(ddt, type, class, &count); 479 if (error) 480 return (error); 481 482 ddo->ddo_count = count; 483 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; 484 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; 485 486 return (0); 487 } 488 489 static void 490 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 491 dmu_tx_t *tx) 492 { 493 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; 494 dmu_object_info_t doi; 495 uint64_t count; 496 char name[DDT_NAMELEN]; 497 498 ddt_object_name(ddt, type, class, name); 499 500 VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, 501 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 502 &ddt->ddt_histogram[type][class], tx)); 503 504 /* 505 * Cache DDT statistics; this is the only time they'll change. 506 */ 507 VERIFY0(ddt_object_info(ddt, type, class, &doi)); 508 VERIFY0(ddt_object_count(ddt, type, class, &count)); 509 510 ddo->ddo_count = count; 511 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; 512 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; 513 } 514 515 static boolean_t 516 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 517 { 518 return (!!ddt->ddt_object[type][class]); 519 } 520 521 static int 522 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 523 ddt_entry_t *dde) 524 { 525 if (!ddt_object_exists(ddt, type, class)) 526 return (SET_ERROR(ENOENT)); 527 528 return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os, 529 ddt->ddt_object[type][class], &dde->dde_key, 530 dde->dde_phys, DDT_PHYS_SIZE(ddt))); 531 } 532 533 static int 534 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 535 const ddt_key_t *ddk) 536 { 537 if (!ddt_object_exists(ddt, type, class)) 538 return (SET_ERROR(ENOENT)); 539 540 return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os, 541 ddt->ddt_object[type][class], ddk)); 542 } 543 544 static void 545 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 546 const ddt_key_t *ddk) 547 { 548 if (!ddt_object_exists(ddt, type, class)) 549 return; 550 551 ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os, 552 ddt->ddt_object[type][class], ddk); 553 } 554 555 static void 556 ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 557 { 558 if (!ddt_object_exists(ddt, type, class)) 559 return; 560 561 ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os, 562 ddt->ddt_object[type][class]); 563 } 564 565 static int 566 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 567 const ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 568 { 569 ASSERT(ddt_object_exists(ddt, type, class)); 570 571 return (ddt_ops[type]->ddt_op_update(ddt->ddt_os, 572 ddt->ddt_object[type][class], &ddlwe->ddlwe_key, 573 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt), tx)); 574 } 575 576 static int 577 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 578 const ddt_key_t *ddk, dmu_tx_t *tx) 579 { 580 ASSERT(ddt_object_exists(ddt, type, class)); 581 582 return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os, 583 ddt->ddt_object[type][class], ddk, tx)); 584 } 585 586 int 587 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 588 uint64_t *walk, ddt_lightweight_entry_t *ddlwe) 589 { 590 ASSERT(ddt_object_exists(ddt, type, class)); 591 592 int error = ddt_ops[type]->ddt_op_walk(ddt->ddt_os, 593 ddt->ddt_object[type][class], walk, &ddlwe->ddlwe_key, 594 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 595 if (error == 0) { 596 ddlwe->ddlwe_type = type; 597 ddlwe->ddlwe_class = class; 598 return (0); 599 } 600 return (error); 601 } 602 603 int 604 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 605 uint64_t *count) 606 { 607 ASSERT(ddt_object_exists(ddt, type, class)); 608 609 return (ddt_ops[type]->ddt_op_count(ddt->ddt_os, 610 ddt->ddt_object[type][class], count)); 611 } 612 613 int 614 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 615 dmu_object_info_t *doi) 616 { 617 if (!ddt_object_exists(ddt, type, class)) 618 return (SET_ERROR(ENOENT)); 619 620 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class], 621 doi)); 622 } 623 624 void 625 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 626 char *name) 627 { 628 (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT, 629 zio_checksum_table[ddt->ddt_checksum].ci_name, 630 ddt_ops[type]->ddt_op_name, ddt_class_name[class]); 631 } 632 633 void 634 ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, 635 blkptr_t *bp, uint64_t txg) 636 { 637 ASSERT3U(txg, !=, 0); 638 ASSERT3U(v, <, DDT_PHYS_NONE); 639 uint64_t phys_birth; 640 const dva_t *dvap; 641 642 if (v == DDT_PHYS_FLAT) { 643 phys_birth = ddp->ddp_flat.ddp_phys_birth; 644 dvap = ddp->ddp_flat.ddp_dva; 645 } else { 646 phys_birth = ddp->ddp_trad[v].ddp_phys_birth; 647 dvap = ddp->ddp_trad[v].ddp_dva; 648 } 649 650 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 651 bp->blk_dva[d] = dvap[d]; 652 BP_SET_BIRTH(bp, txg, phys_birth); 653 } 654 655 /* 656 * The bp created via this function may be used for repairs and scrub, but it 657 * will be missing the salt / IV required to do a full decrypting read. 658 */ 659 void 660 ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, 661 const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp) 662 { 663 BP_ZERO(bp); 664 665 if (ddp != NULL) 666 ddt_bp_fill(ddp, v, bp, ddt_phys_birth(ddp, v)); 667 668 bp->blk_cksum = ddk->ddk_cksum; 669 670 BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk)); 671 BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk)); 672 BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk)); 673 BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk)); 674 BP_SET_FILL(bp, 1); 675 BP_SET_CHECKSUM(bp, checksum); 676 BP_SET_TYPE(bp, DMU_OT_DEDUP); 677 BP_SET_LEVEL(bp, 0); 678 BP_SET_DEDUP(bp, 1); 679 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 680 } 681 682 void 683 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp) 684 { 685 ddk->ddk_cksum = bp->blk_cksum; 686 ddk->ddk_prop = 0; 687 688 ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp)); 689 690 DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp)); 691 DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp)); 692 DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp)); 693 DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp)); 694 } 695 696 void 697 ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp) 698 { 699 ASSERT3U(v, <, DDT_PHYS_NONE); 700 int bp_ndvas = BP_GET_NDVAS(bp); 701 int ddp_max_dvas = BP_IS_ENCRYPTED(bp) ? 702 SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP; 703 dva_t *dvas = (v == DDT_PHYS_FLAT) ? 704 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 705 706 int s = 0, d = 0; 707 while (s < bp_ndvas && d < ddp_max_dvas) { 708 if (DVA_IS_VALID(&dvas[d])) { 709 d++; 710 continue; 711 } 712 dvas[d] = bp->blk_dva[s]; 713 s++; d++; 714 } 715 716 /* 717 * If the caller offered us more DVAs than we can fit, something has 718 * gone wrong in their accounting. zio_ddt_write() should never ask for 719 * more than we need. 720 */ 721 ASSERT3U(s, ==, bp_ndvas); 722 723 if (BP_IS_ENCRYPTED(bp)) 724 dvas[2] = bp->blk_dva[2]; 725 726 if (ddt_phys_birth(ddp, v) == 0) { 727 if (v == DDT_PHYS_FLAT) 728 ddp->ddp_flat.ddp_phys_birth = BP_GET_BIRTH(bp); 729 else 730 ddp->ddp_trad[v].ddp_phys_birth = BP_GET_BIRTH(bp); 731 } 732 } 733 734 void 735 ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src, 736 ddt_phys_variant_t v) 737 { 738 ASSERT3U(v, <, DDT_PHYS_NONE); 739 740 if (v == DDT_PHYS_FLAT) 741 dst->ddp_flat = src->ddp_flat; 742 else 743 dst->ddp_trad[v] = src->ddp_trad[v]; 744 } 745 746 void 747 ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 748 { 749 ASSERT3U(v, <, DDT_PHYS_NONE); 750 751 if (v == DDT_PHYS_FLAT) 752 memset(&ddp->ddp_flat, 0, DDT_FLAT_PHYS_SIZE); 753 else 754 memset(&ddp->ddp_trad[v], 0, DDT_TRAD_PHYS_SIZE / DDT_PHYS_MAX); 755 } 756 757 static uint64_t 758 ddt_class_start(void) 759 { 760 uint64_t start = gethrestime_sec(); 761 762 if (ddt_prune_artificial_age) { 763 /* 764 * debug aide -- simulate a wider distribution 765 * so we don't have to wait for an aged DDT 766 * to test prune. 767 */ 768 int range = 1 << 21; 769 int percent = random_in_range(100); 770 if (percent < 50) { 771 range = range >> 4; 772 } else if (percent > 75) { 773 range /= 2; 774 } 775 start -= random_in_range(range); 776 } 777 778 return (start); 779 } 780 781 void 782 ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 783 { 784 ASSERT3U(v, <, DDT_PHYS_NONE); 785 786 if (v == DDT_PHYS_FLAT) 787 ddp->ddp_flat.ddp_refcnt++; 788 else 789 ddp->ddp_trad[v].ddp_refcnt++; 790 } 791 792 uint64_t 793 ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 794 { 795 ASSERT3U(v, <, DDT_PHYS_NONE); 796 797 uint64_t *refcntp; 798 799 if (v == DDT_PHYS_FLAT) 800 refcntp = &ddp->ddp_flat.ddp_refcnt; 801 else 802 refcntp = &ddp->ddp_trad[v].ddp_refcnt; 803 804 ASSERT3U(*refcntp, >, 0); 805 (*refcntp)--; 806 return (*refcntp); 807 } 808 809 static void 810 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_univ_phys_t *ddp, 811 ddt_phys_variant_t v, uint64_t txg) 812 { 813 blkptr_t blk; 814 815 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 816 817 /* 818 * We clear the dedup bit so that zio_free() will actually free the 819 * space, rather than just decrementing the refcount in the DDT. 820 */ 821 BP_SET_DEDUP(&blk, 0); 822 823 ddt_phys_clear(ddp, v); 824 zio_free(ddt->ddt_spa, txg, &blk); 825 } 826 827 uint64_t 828 ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 829 { 830 ASSERT3U(v, <, DDT_PHYS_NONE); 831 832 if (v == DDT_PHYS_FLAT) 833 return (ddp->ddp_flat.ddp_phys_birth); 834 else 835 return (ddp->ddp_trad[v].ddp_phys_birth); 836 } 837 838 int 839 ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, 840 boolean_t encrypted) 841 { 842 ASSERT3U(v, <, DDT_PHYS_NONE); 843 844 const dva_t *dvas = (v == DDT_PHYS_FLAT) ? 845 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 846 847 return (DVA_IS_VALID(&dvas[0]) + 848 DVA_IS_VALID(&dvas[1]) + 849 DVA_IS_VALID(&dvas[2]) * !encrypted); 850 } 851 852 ddt_phys_variant_t 853 ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp) 854 { 855 if (dde == NULL) 856 return (DDT_PHYS_NONE); 857 858 const ddt_univ_phys_t *ddp = dde->dde_phys; 859 860 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 861 if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_flat.ddp_dva[0]) && 862 BP_GET_BIRTH(bp) == ddp->ddp_flat.ddp_phys_birth) { 863 return (DDT_PHYS_FLAT); 864 } 865 } else /* traditional phys */ { 866 for (int p = 0; p < DDT_PHYS_MAX; p++) { 867 if (DVA_EQUAL(BP_IDENTITY(bp), 868 &ddp->ddp_trad[p].ddp_dva[0]) && 869 BP_GET_BIRTH(bp) == 870 ddp->ddp_trad[p].ddp_phys_birth) { 871 return (p); 872 } 873 } 874 } 875 return (DDT_PHYS_NONE); 876 } 877 878 uint64_t 879 ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 880 { 881 ASSERT3U(v, <, DDT_PHYS_NONE); 882 883 if (v == DDT_PHYS_FLAT) 884 return (ddp->ddp_flat.ddp_refcnt); 885 else 886 return (ddp->ddp_trad[v].ddp_refcnt); 887 } 888 889 uint64_t 890 ddt_phys_total_refcnt(const ddt_t *ddt, const ddt_univ_phys_t *ddp) 891 { 892 uint64_t refcnt = 0; 893 894 if (ddt->ddt_flags & DDT_FLAG_FLAT) 895 refcnt = ddp->ddp_flat.ddp_refcnt; 896 else 897 for (int v = DDT_PHYS_SINGLE; v <= DDT_PHYS_TRIPLE; v++) 898 refcnt += ddp->ddp_trad[v].ddp_refcnt; 899 900 return (refcnt); 901 } 902 903 ddt_t * 904 ddt_select(spa_t *spa, const blkptr_t *bp) 905 { 906 ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp))); 907 return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]); 908 } 909 910 void 911 ddt_enter(ddt_t *ddt) 912 { 913 mutex_enter(&ddt->ddt_lock); 914 } 915 916 void 917 ddt_exit(ddt_t *ddt) 918 { 919 mutex_exit(&ddt->ddt_lock); 920 } 921 922 void 923 ddt_init(void) 924 { 925 ddt_cache = kmem_cache_create("ddt_cache", 926 sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 927 ddt_entry_flat_cache = kmem_cache_create("ddt_entry_flat_cache", 928 DDT_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 929 ddt_entry_trad_cache = kmem_cache_create("ddt_entry_trad_cache", 930 DDT_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 931 932 ddt_log_init(); 933 } 934 935 void 936 ddt_fini(void) 937 { 938 ddt_log_fini(); 939 940 kmem_cache_destroy(ddt_entry_trad_cache); 941 kmem_cache_destroy(ddt_entry_flat_cache); 942 kmem_cache_destroy(ddt_cache); 943 } 944 945 static ddt_entry_t * 946 ddt_alloc(const ddt_t *ddt, const ddt_key_t *ddk) 947 { 948 ddt_entry_t *dde; 949 950 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 951 dde = kmem_cache_alloc(ddt_entry_flat_cache, KM_SLEEP); 952 memset(dde, 0, DDT_ENTRY_FLAT_SIZE); 953 } else { 954 dde = kmem_cache_alloc(ddt_entry_trad_cache, KM_SLEEP); 955 memset(dde, 0, DDT_ENTRY_TRAD_SIZE); 956 } 957 958 cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL); 959 960 dde->dde_key = *ddk; 961 962 return (dde); 963 } 964 965 void 966 ddt_alloc_entry_io(ddt_entry_t *dde) 967 { 968 if (dde->dde_io != NULL) 969 return; 970 971 dde->dde_io = kmem_zalloc(sizeof (ddt_entry_io_t), KM_SLEEP); 972 } 973 974 static void 975 ddt_free(const ddt_t *ddt, ddt_entry_t *dde) 976 { 977 if (dde->dde_io != NULL) { 978 for (int p = 0; p < DDT_NPHYS(ddt); p++) 979 ASSERT3P(dde->dde_io->dde_lead_zio[p], ==, NULL); 980 981 if (dde->dde_io->dde_repair_abd != NULL) 982 abd_free(dde->dde_io->dde_repair_abd); 983 984 kmem_free(dde->dde_io, sizeof (ddt_entry_io_t)); 985 } 986 987 cv_destroy(&dde->dde_cv); 988 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 989 ddt_entry_flat_cache : ddt_entry_trad_cache, dde); 990 } 991 992 void 993 ddt_remove(ddt_t *ddt, ddt_entry_t *dde) 994 { 995 ASSERT(MUTEX_HELD(&ddt->ddt_lock)); 996 997 /* Entry is still in the log, so charge the entry back to it */ 998 if (dde->dde_flags & DDE_FLAG_LOGGED) { 999 ddt_lightweight_entry_t ddlwe; 1000 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 1001 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 1002 } 1003 1004 avl_remove(&ddt->ddt_tree, dde); 1005 ddt_free(ddt, dde); 1006 } 1007 1008 static boolean_t 1009 ddt_special_over_quota(spa_t *spa, metaslab_class_t *mc) 1010 { 1011 if (mc != NULL && metaslab_class_get_space(mc) > 0) { 1012 /* Over quota if allocating outside of this special class */ 1013 if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg + 1014 dedup_class_wait_txgs) { 1015 /* Waiting for some deferred frees to be processed */ 1016 return (B_TRUE); 1017 } 1018 1019 /* 1020 * We're considered over quota when we hit 85% full, or for 1021 * larger drives, when there is less than 8GB free. 1022 */ 1023 uint64_t allocated = metaslab_class_get_alloc(mc); 1024 uint64_t capacity = metaslab_class_get_space(mc); 1025 uint64_t limit = MAX(capacity * 85 / 100, 1026 (capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0); 1027 1028 return (allocated >= limit); 1029 } 1030 return (B_FALSE); 1031 } 1032 1033 /* 1034 * Check if the DDT is over its quota. This can be due to a few conditions: 1035 * 1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize 1036 * exceeds this limit 1037 * 1038 * 2. 'dedup_table_quota' property is set to automatic and 1039 * a. the dedup or special allocation class could not satisfy a DDT 1040 * allocation in a recent transaction 1041 * b. the dedup or special allocation class has exceeded its 85% limit 1042 */ 1043 static boolean_t 1044 ddt_over_quota(spa_t *spa) 1045 { 1046 if (spa->spa_dedup_table_quota == 0) 1047 return (B_FALSE); 1048 1049 if (spa->spa_dedup_table_quota != UINT64_MAX) 1050 return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota); 1051 1052 /* 1053 * For automatic quota, table size is limited by dedup or special class 1054 */ 1055 if (ddt_special_over_quota(spa, spa_dedup_class(spa))) 1056 return (B_TRUE); 1057 else if (spa_special_has_ddt(spa) && 1058 ddt_special_over_quota(spa, spa_special_class(spa))) 1059 return (B_TRUE); 1060 1061 return (B_FALSE); 1062 } 1063 1064 void 1065 ddt_prefetch_all(spa_t *spa) 1066 { 1067 /* 1068 * Load all DDT entries for each type/class combination. This is 1069 * indended to perform a prefetch on all such blocks. For the same 1070 * reason that ddt_prefetch isn't locked, this is also not locked. 1071 */ 1072 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1073 ddt_t *ddt = spa->spa_ddt[c]; 1074 if (!ddt) 1075 continue; 1076 1077 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1078 for (ddt_class_t class = 0; class < DDT_CLASSES; 1079 class++) { 1080 ddt_object_prefetch_all(ddt, type, class); 1081 } 1082 } 1083 } 1084 } 1085 1086 static int ddt_configure(ddt_t *ddt, boolean_t new); 1087 1088 /* 1089 * If the BP passed to ddt_lookup has valid DVAs, then we need to compare them 1090 * to the ones in the entry. If they're different, then the passed-in BP is 1091 * from a previous generation of this entry (ie was previously pruned) and we 1092 * have to act like the entry doesn't exist at all. 1093 * 1094 * This should only happen during a lookup to free the block (zio_ddt_free()). 1095 * 1096 * XXX this is similar in spirit to ddt_phys_select(), maybe can combine 1097 * -- robn, 2024-02-09 1098 */ 1099 static boolean_t 1100 ddt_entry_lookup_is_valid(ddt_t *ddt, const blkptr_t *bp, ddt_entry_t *dde) 1101 { 1102 /* If the BP has no DVAs, then this entry is good */ 1103 uint_t ndvas = BP_GET_NDVAS(bp); 1104 if (ndvas == 0) 1105 return (B_TRUE); 1106 1107 /* 1108 * Only checking the phys for the copies. For flat, there's only one; 1109 * for trad it'll be the one that has the matching set of DVAs. 1110 */ 1111 const dva_t *dvas = (ddt->ddt_flags & DDT_FLAG_FLAT) ? 1112 dde->dde_phys->ddp_flat.ddp_dva : 1113 dde->dde_phys->ddp_trad[ndvas].ddp_dva; 1114 1115 /* 1116 * Compare entry DVAs with the BP. They should all be there, but 1117 * there's not really anything we can do if its only partial anyway, 1118 * that's an error somewhere else, maybe long ago. 1119 */ 1120 uint_t d; 1121 for (d = 0; d < ndvas; d++) 1122 if (!DVA_EQUAL(&dvas[d], &bp->blk_dva[d])) 1123 return (B_FALSE); 1124 ASSERT3U(d, ==, ndvas); 1125 1126 return (B_TRUE); 1127 } 1128 1129 ddt_entry_t * 1130 ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t verify) 1131 { 1132 spa_t *spa = ddt->ddt_spa; 1133 ddt_key_t search; 1134 ddt_entry_t *dde; 1135 ddt_type_t type; 1136 ddt_class_t class; 1137 avl_index_t where; 1138 int error; 1139 1140 ASSERT(MUTEX_HELD(&ddt->ddt_lock)); 1141 1142 if (ddt->ddt_version == DDT_VERSION_UNCONFIGURED) { 1143 /* 1144 * This is the first use of this DDT since the pool was 1145 * created; finish getting it ready for use. 1146 */ 1147 VERIFY0(ddt_configure(ddt, B_TRUE)); 1148 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 1149 } 1150 1151 DDT_KSTAT_BUMP(ddt, dds_lookup); 1152 1153 ddt_key_fill(&search, bp); 1154 1155 /* Find an existing live entry */ 1156 dde = avl_find(&ddt->ddt_tree, &search, &where); 1157 if (dde != NULL) { 1158 /* If we went over quota, act like we didn't find it */ 1159 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) 1160 return (NULL); 1161 1162 /* If it's already loaded, we can just return it. */ 1163 DDT_KSTAT_BUMP(ddt, dds_lookup_live_hit); 1164 if (dde->dde_flags & DDE_FLAG_LOADED) { 1165 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde)) 1166 return (dde); 1167 return (NULL); 1168 } 1169 1170 /* Someone else is loading it, wait for it. */ 1171 dde->dde_waiters++; 1172 DDT_KSTAT_BUMP(ddt, dds_lookup_live_wait); 1173 while (!(dde->dde_flags & DDE_FLAG_LOADED)) 1174 cv_wait(&dde->dde_cv, &ddt->ddt_lock); 1175 dde->dde_waiters--; 1176 1177 /* Loaded but over quota, forget we were ever here */ 1178 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) { 1179 if (dde->dde_waiters == 0) { 1180 avl_remove(&ddt->ddt_tree, dde); 1181 ddt_free(ddt, dde); 1182 } 1183 return (NULL); 1184 } 1185 1186 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1187 1188 /* Make sure the loaded entry matches the BP */ 1189 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde)) 1190 return (dde); 1191 return (NULL); 1192 } else 1193 DDT_KSTAT_BUMP(ddt, dds_lookup_live_miss); 1194 1195 /* Time to make a new entry. */ 1196 dde = ddt_alloc(ddt, &search); 1197 1198 /* Record the time this class was created (used by ddt prune) */ 1199 if (ddt->ddt_flags & DDT_FLAG_FLAT) 1200 dde->dde_phys->ddp_flat.ddp_class_start = ddt_class_start(); 1201 1202 avl_insert(&ddt->ddt_tree, dde, where); 1203 1204 /* If its in the log tree, we can "load" it from there */ 1205 if (ddt->ddt_flags & DDT_FLAG_LOG) { 1206 ddt_lightweight_entry_t ddlwe; 1207 1208 if (ddt_log_find_key(ddt, &search, &ddlwe)) { 1209 /* 1210 * See if we have the key first, and if so, set up 1211 * the entry. 1212 */ 1213 dde->dde_type = ddlwe.ddlwe_type; 1214 dde->dde_class = ddlwe.ddlwe_class; 1215 memcpy(dde->dde_phys, &ddlwe.ddlwe_phys, 1216 DDT_PHYS_SIZE(ddt)); 1217 /* Whatever we found isn't valid for this BP, eject */ 1218 if (verify && 1219 !ddt_entry_lookup_is_valid(ddt, bp, dde)) { 1220 avl_remove(&ddt->ddt_tree, dde); 1221 ddt_free(ddt, dde); 1222 return (NULL); 1223 } 1224 1225 /* Remove it and count it */ 1226 if (ddt_log_remove_key(ddt, 1227 ddt->ddt_log_active, &search)) { 1228 DDT_KSTAT_BUMP(ddt, dds_lookup_log_active_hit); 1229 } else { 1230 VERIFY(ddt_log_remove_key(ddt, 1231 ddt->ddt_log_flushing, &search)); 1232 DDT_KSTAT_BUMP(ddt, 1233 dds_lookup_log_flushing_hit); 1234 } 1235 1236 dde->dde_flags = DDE_FLAG_LOADED | DDE_FLAG_LOGGED; 1237 1238 DDT_KSTAT_BUMP(ddt, dds_lookup_log_hit); 1239 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1240 1241 return (dde); 1242 } 1243 1244 DDT_KSTAT_BUMP(ddt, dds_lookup_log_miss); 1245 } 1246 1247 /* 1248 * ddt_tree is now stable, so unlock and let everyone else keep moving. 1249 * Anyone landing on this entry will find it without DDE_FLAG_LOADED, 1250 * and go to sleep waiting for it above. 1251 */ 1252 ddt_exit(ddt); 1253 1254 /* Search all store objects for the entry. */ 1255 error = ENOENT; 1256 for (type = 0; type < DDT_TYPES; type++) { 1257 for (class = 0; class < DDT_CLASSES; class++) { 1258 error = ddt_object_lookup(ddt, type, class, dde); 1259 if (error != ENOENT) { 1260 ASSERT0(error); 1261 break; 1262 } 1263 } 1264 if (error != ENOENT) 1265 break; 1266 } 1267 1268 ddt_enter(ddt); 1269 1270 ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED)); 1271 1272 dde->dde_type = type; /* will be DDT_TYPES if no entry found */ 1273 dde->dde_class = class; /* will be DDT_CLASSES if no entry found */ 1274 1275 boolean_t valid = B_TRUE; 1276 1277 if (dde->dde_type == DDT_TYPES && 1278 dde->dde_class == DDT_CLASSES && 1279 ddt_over_quota(spa)) { 1280 /* Over quota. If no one is waiting, clean up right now. */ 1281 if (dde->dde_waiters == 0) { 1282 avl_remove(&ddt->ddt_tree, dde); 1283 ddt_free(ddt, dde); 1284 return (NULL); 1285 } 1286 1287 /* Flag cleanup required */ 1288 dde->dde_flags |= DDE_FLAG_OVERQUOTA; 1289 } else if (error == 0) { 1290 /* 1291 * If what we loaded is no good for this BP and there's no one 1292 * waiting for it, we can just remove it and get out. If its no 1293 * good but there are waiters, we have to leave it, because we 1294 * don't know what they want. If its not needed we'll end up 1295 * taking an entry log/sync, but it can only happen if more 1296 * than one previous version of this block is being deleted at 1297 * the same time. This is extremely unlikely to happen and not 1298 * worth the effort to deal with without taking an entry 1299 * update. 1300 */ 1301 valid = !verify || ddt_entry_lookup_is_valid(ddt, bp, dde); 1302 if (!valid && dde->dde_waiters == 0) { 1303 avl_remove(&ddt->ddt_tree, dde); 1304 ddt_free(ddt, dde); 1305 return (NULL); 1306 } 1307 1308 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_hit); 1309 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1310 1311 /* 1312 * The histograms only track inactive (stored or logged) blocks. 1313 * We've just put an entry onto the live list, so we need to 1314 * remove its counts. When its synced back, it'll be re-added 1315 * to the right one. 1316 * 1317 * We only do this when we successfully found it in the store. 1318 * error == ENOENT means this is a new entry, and so its already 1319 * not counted. 1320 */ 1321 ddt_histogram_t *ddh = 1322 &ddt->ddt_histogram[dde->dde_type][dde->dde_class]; 1323 1324 ddt_lightweight_entry_t ddlwe; 1325 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 1326 ddt_histogram_sub_entry(ddt, ddh, &ddlwe); 1327 } else { 1328 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_miss); 1329 DDT_KSTAT_BUMP(ddt, dds_lookup_new); 1330 } 1331 1332 /* Entry loaded, everyone can proceed now */ 1333 dde->dde_flags |= DDE_FLAG_LOADED; 1334 cv_broadcast(&dde->dde_cv); 1335 1336 if ((dde->dde_flags & DDE_FLAG_OVERQUOTA) || !valid) 1337 return (NULL); 1338 1339 return (dde); 1340 } 1341 1342 void 1343 ddt_prefetch(spa_t *spa, const blkptr_t *bp) 1344 { 1345 ddt_t *ddt; 1346 ddt_key_t ddk; 1347 1348 if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp)) 1349 return; 1350 1351 /* 1352 * We only remove the DDT once all tables are empty and only 1353 * prefetch dedup blocks when there are entries in the DDT. 1354 * Thus no locking is required as the DDT can't disappear on us. 1355 */ 1356 ddt = ddt_select(spa, bp); 1357 ddt_key_fill(&ddk, bp); 1358 1359 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1360 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1361 ddt_object_prefetch(ddt, type, class, &ddk); 1362 } 1363 } 1364 } 1365 1366 /* 1367 * ddt_key_t comparison. Any struct wanting to make use of this function must 1368 * have the key as the first element. Casts it to N uint64_ts, and checks until 1369 * we find there's a difference. This is intended to match how ddt_zap.c drives 1370 * the ZAPs (first uint64_t as the key prehash), which will minimise the number 1371 * of ZAP blocks touched when flushing logged entries from an AVL walk. This is 1372 * not an invariant for this function though, should you wish to change it. 1373 */ 1374 int 1375 ddt_key_compare(const void *x1, const void *x2) 1376 { 1377 const uint64_t *k1 = (const uint64_t *)x1; 1378 const uint64_t *k2 = (const uint64_t *)x2; 1379 1380 int cmp; 1381 for (int i = 0; i < (sizeof (ddt_key_t) / sizeof (uint64_t)); i++) 1382 if (likely((cmp = TREE_CMP(k1[i], k2[i])) != 0)) 1383 return (cmp); 1384 1385 return (0); 1386 } 1387 1388 /* Create the containing dir for this DDT and bump the feature count */ 1389 static void 1390 ddt_create_dir(ddt_t *ddt, dmu_tx_t *tx) 1391 { 1392 ASSERT3U(ddt->ddt_dir_object, ==, 0); 1393 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); 1394 1395 char name[DDT_NAMELEN]; 1396 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1397 zio_checksum_table[ddt->ddt_checksum].ci_name); 1398 1399 ddt->ddt_dir_object = zap_create_link(ddt->ddt_os, 1400 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, name, tx); 1401 1402 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION, 1403 sizeof (uint64_t), 1, &ddt->ddt_version, tx)); 1404 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS, 1405 sizeof (uint64_t), 1, &ddt->ddt_flags, tx)); 1406 1407 spa_feature_incr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); 1408 } 1409 1410 /* Destroy the containing dir and deactivate the feature */ 1411 static void 1412 ddt_destroy_dir(ddt_t *ddt, dmu_tx_t *tx) 1413 { 1414 ASSERT3U(ddt->ddt_dir_object, !=, 0); 1415 ASSERT3U(ddt->ddt_dir_object, !=, DMU_POOL_DIRECTORY_OBJECT); 1416 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); 1417 1418 char name[DDT_NAMELEN]; 1419 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1420 zio_checksum_table[ddt->ddt_checksum].ci_name); 1421 1422 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1423 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1424 ASSERT(!ddt_object_exists(ddt, type, class)); 1425 } 1426 } 1427 1428 ddt_log_destroy(ddt, tx); 1429 1430 uint64_t count; 1431 ASSERT0(zap_count(ddt->ddt_os, ddt->ddt_dir_object, &count)); 1432 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, 1433 DDT_DIR_VERSION)); 1434 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS)); 1435 ASSERT3U(count, ==, 2); 1436 1437 VERIFY0(zap_remove(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, tx)); 1438 VERIFY0(zap_destroy(ddt->ddt_os, ddt->ddt_dir_object, tx)); 1439 1440 ddt->ddt_dir_object = 0; 1441 1442 spa_feature_decr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); 1443 } 1444 1445 /* 1446 * Determine, flags and on-disk layout from what's already stored. If there's 1447 * nothing stored, then if new is false, returns ENOENT, and if true, selects 1448 * based on pool config. 1449 */ 1450 static int 1451 ddt_configure(ddt_t *ddt, boolean_t new) 1452 { 1453 spa_t *spa = ddt->ddt_spa; 1454 char name[DDT_NAMELEN]; 1455 int error; 1456 1457 ASSERT3U(spa_load_state(spa), !=, SPA_LOAD_CREATE); 1458 1459 boolean_t fdt_enabled = 1460 spa_feature_is_enabled(spa, SPA_FEATURE_FAST_DEDUP); 1461 boolean_t fdt_active = 1462 spa_feature_is_active(spa, SPA_FEATURE_FAST_DEDUP); 1463 1464 /* 1465 * First, look for the global DDT stats object. If its not there, then 1466 * there's never been a DDT written before ever, and we know we're 1467 * starting from scratch. 1468 */ 1469 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1470 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, 1471 &spa->spa_ddt_stat_object); 1472 if (error != 0) { 1473 if (error != ENOENT) 1474 return (error); 1475 goto not_found; 1476 } 1477 1478 if (fdt_active) { 1479 /* 1480 * Now look for a DDT directory. If it exists, then it has 1481 * everything we need. 1482 */ 1483 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1484 zio_checksum_table[ddt->ddt_checksum].ci_name); 1485 1486 error = zap_lookup(spa->spa_meta_objset, 1487 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, 1488 &ddt->ddt_dir_object); 1489 if (error == 0) { 1490 ASSERT3U(spa->spa_meta_objset, ==, ddt->ddt_os); 1491 1492 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, 1493 DDT_DIR_VERSION, sizeof (uint64_t), 1, 1494 &ddt->ddt_version); 1495 if (error != 0) 1496 return (error); 1497 1498 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, 1499 DDT_DIR_FLAGS, sizeof (uint64_t), 1, 1500 &ddt->ddt_flags); 1501 if (error != 0) 1502 return (error); 1503 1504 if (ddt->ddt_version != DDT_VERSION_FDT) { 1505 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " 1506 "unknown version %llu", spa_name(spa), 1507 name, (u_longlong_t)ddt->ddt_version); 1508 return (SET_ERROR(EINVAL)); 1509 } 1510 1511 if ((ddt->ddt_flags & ~DDT_FLAG_MASK) != 0) { 1512 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " 1513 "version=%llu unknown flags %llx", 1514 spa_name(spa), name, 1515 (u_longlong_t)ddt->ddt_flags, 1516 (u_longlong_t)ddt->ddt_version); 1517 return (SET_ERROR(EINVAL)); 1518 } 1519 1520 return (0); 1521 } 1522 if (error != ENOENT) 1523 return (error); 1524 } 1525 1526 /* Any object in the root indicates a traditional setup. */ 1527 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1528 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1529 ddt_object_name(ddt, type, class, name); 1530 uint64_t obj; 1531 error = zap_lookup(spa->spa_meta_objset, 1532 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1533 1, &obj); 1534 if (error == ENOENT) 1535 continue; 1536 if (error != 0) 1537 return (error); 1538 1539 ddt->ddt_version = DDT_VERSION_LEGACY; 1540 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1541 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; 1542 1543 return (0); 1544 } 1545 } 1546 1547 not_found: 1548 if (!new) 1549 return (SET_ERROR(ENOENT)); 1550 1551 /* Nothing on disk, so set up for the best version we can */ 1552 if (fdt_enabled) { 1553 ddt->ddt_version = DDT_VERSION_FDT; 1554 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1555 ddt->ddt_dir_object = 0; /* create on first use */ 1556 } else { 1557 ddt->ddt_version = DDT_VERSION_LEGACY; 1558 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1559 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; 1560 } 1561 1562 return (0); 1563 } 1564 1565 static void 1566 ddt_table_alloc_kstats(ddt_t *ddt) 1567 { 1568 char *mod = kmem_asprintf("zfs/%s", spa_name(ddt->ddt_spa)); 1569 char *name = kmem_asprintf("ddt_stats_%s", 1570 zio_checksum_table[ddt->ddt_checksum].ci_name); 1571 1572 ddt->ddt_ksp = kstat_create(mod, 0, name, "misc", KSTAT_TYPE_NAMED, 1573 sizeof (ddt_kstats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 1574 if (ddt->ddt_ksp != NULL) { 1575 ddt_kstats_t *dds = kmem_alloc(sizeof (ddt_kstats_t), KM_SLEEP); 1576 memcpy(dds, &ddt_kstats_template, sizeof (ddt_kstats_t)); 1577 ddt->ddt_ksp->ks_data = dds; 1578 kstat_install(ddt->ddt_ksp); 1579 } 1580 1581 kmem_strfree(name); 1582 kmem_strfree(mod); 1583 } 1584 1585 static ddt_t * 1586 ddt_table_alloc(spa_t *spa, enum zio_checksum c) 1587 { 1588 ddt_t *ddt; 1589 1590 ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP); 1591 memset(ddt, 0, sizeof (ddt_t)); 1592 mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL); 1593 avl_create(&ddt->ddt_tree, ddt_key_compare, 1594 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); 1595 avl_create(&ddt->ddt_repair_tree, ddt_key_compare, 1596 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); 1597 1598 ddt->ddt_checksum = c; 1599 ddt->ddt_spa = spa; 1600 ddt->ddt_os = spa->spa_meta_objset; 1601 ddt->ddt_version = DDT_VERSION_UNCONFIGURED; 1602 ddt->ddt_log_flush_pressure = 10; 1603 1604 ddt_log_alloc(ddt); 1605 ddt_table_alloc_kstats(ddt); 1606 1607 return (ddt); 1608 } 1609 1610 static void 1611 ddt_table_free(ddt_t *ddt) 1612 { 1613 if (ddt->ddt_ksp != NULL) { 1614 kmem_free(ddt->ddt_ksp->ks_data, sizeof (ddt_kstats_t)); 1615 ddt->ddt_ksp->ks_data = NULL; 1616 kstat_delete(ddt->ddt_ksp); 1617 } 1618 1619 ddt_log_free(ddt); 1620 ASSERT0(avl_numnodes(&ddt->ddt_tree)); 1621 ASSERT0(avl_numnodes(&ddt->ddt_repair_tree)); 1622 avl_destroy(&ddt->ddt_tree); 1623 avl_destroy(&ddt->ddt_repair_tree); 1624 mutex_destroy(&ddt->ddt_lock); 1625 kmem_cache_free(ddt_cache, ddt); 1626 } 1627 1628 void 1629 ddt_create(spa_t *spa) 1630 { 1631 spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM; 1632 1633 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1634 if (DDT_CHECKSUM_VALID(c)) 1635 spa->spa_ddt[c] = ddt_table_alloc(spa, c); 1636 } 1637 } 1638 1639 int 1640 ddt_load(spa_t *spa) 1641 { 1642 int error; 1643 1644 ddt_create(spa); 1645 1646 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1647 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, 1648 &spa->spa_ddt_stat_object); 1649 if (error) 1650 return (error == ENOENT ? 0 : error); 1651 1652 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1653 if (!DDT_CHECKSUM_VALID(c)) 1654 continue; 1655 1656 ddt_t *ddt = spa->spa_ddt[c]; 1657 error = ddt_configure(ddt, B_FALSE); 1658 if (error == ENOENT) 1659 continue; 1660 if (error != 0) 1661 return (error); 1662 1663 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1664 for (ddt_class_t class = 0; class < DDT_CLASSES; 1665 class++) { 1666 error = ddt_object_load(ddt, type, class); 1667 if (error != 0 && error != ENOENT) 1668 return (error); 1669 } 1670 } 1671 1672 error = ddt_log_load(ddt); 1673 if (error != 0 && error != ENOENT) 1674 return (error); 1675 1676 DDT_KSTAT_SET(ddt, dds_log_active_entries, 1677 avl_numnodes(&ddt->ddt_log_active->ddl_tree)); 1678 DDT_KSTAT_SET(ddt, dds_log_flushing_entries, 1679 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); 1680 1681 /* 1682 * Seed the cached histograms. 1683 */ 1684 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 1685 sizeof (ddt->ddt_histogram)); 1686 } 1687 1688 spa->spa_dedup_dspace = ~0ULL; 1689 spa->spa_dedup_dsize = ~0ULL; 1690 1691 return (0); 1692 } 1693 1694 void 1695 ddt_unload(spa_t *spa) 1696 { 1697 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1698 if (spa->spa_ddt[c]) { 1699 ddt_table_free(spa->spa_ddt[c]); 1700 spa->spa_ddt[c] = NULL; 1701 } 1702 } 1703 } 1704 1705 boolean_t 1706 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp) 1707 { 1708 ddt_t *ddt; 1709 ddt_key_t ddk; 1710 1711 if (!BP_GET_DEDUP(bp)) 1712 return (B_FALSE); 1713 1714 if (max_class == DDT_CLASS_UNIQUE) 1715 return (B_TRUE); 1716 1717 ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)]; 1718 1719 ddt_key_fill(&ddk, bp); 1720 1721 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1722 for (ddt_class_t class = 0; class <= max_class; class++) { 1723 if (ddt_object_contains(ddt, type, class, &ddk) == 0) 1724 return (B_TRUE); 1725 } 1726 } 1727 1728 return (B_FALSE); 1729 } 1730 1731 ddt_entry_t * 1732 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp) 1733 { 1734 ddt_key_t ddk; 1735 ddt_entry_t *dde; 1736 1737 ddt_key_fill(&ddk, bp); 1738 1739 dde = ddt_alloc(ddt, &ddk); 1740 ddt_alloc_entry_io(dde); 1741 1742 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1743 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1744 /* 1745 * We can only do repair if there are multiple copies 1746 * of the block. For anything in the UNIQUE class, 1747 * there's definitely only one copy, so don't even try. 1748 */ 1749 if (class != DDT_CLASS_UNIQUE && 1750 ddt_object_lookup(ddt, type, class, dde) == 0) 1751 return (dde); 1752 } 1753 } 1754 1755 memset(dde->dde_phys, 0, DDT_PHYS_SIZE(ddt)); 1756 1757 return (dde); 1758 } 1759 1760 void 1761 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde) 1762 { 1763 avl_index_t where; 1764 1765 ddt_enter(ddt); 1766 1767 if (dde->dde_io->dde_repair_abd != NULL && 1768 spa_writeable(ddt->ddt_spa) && 1769 avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL) 1770 avl_insert(&ddt->ddt_repair_tree, dde, where); 1771 else 1772 ddt_free(ddt, dde); 1773 1774 ddt_exit(ddt); 1775 } 1776 1777 static void 1778 ddt_repair_entry_done(zio_t *zio) 1779 { 1780 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 1781 ddt_entry_t *rdde = zio->io_private; 1782 1783 ddt_free(ddt, rdde); 1784 } 1785 1786 static void 1787 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio) 1788 { 1789 ddt_key_t *ddk = &dde->dde_key; 1790 ddt_key_t *rddk = &rdde->dde_key; 1791 zio_t *zio; 1792 blkptr_t blk; 1793 1794 zio = zio_null(rio, rio->io_spa, NULL, 1795 ddt_repair_entry_done, rdde, rio->io_flags); 1796 1797 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 1798 ddt_univ_phys_t *ddp = dde->dde_phys; 1799 ddt_univ_phys_t *rddp = rdde->dde_phys; 1800 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1801 uint64_t phys_birth = ddt_phys_birth(ddp, v); 1802 const dva_t *dvas, *rdvas; 1803 1804 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 1805 dvas = ddp->ddp_flat.ddp_dva; 1806 rdvas = rddp->ddp_flat.ddp_dva; 1807 } else { 1808 dvas = ddp->ddp_trad[p].ddp_dva; 1809 rdvas = rddp->ddp_trad[p].ddp_dva; 1810 } 1811 1812 if (phys_birth == 0 || 1813 phys_birth != ddt_phys_birth(rddp, v) || 1814 memcmp(dvas, rdvas, sizeof (dva_t) * SPA_DVAS_PER_BP)) 1815 continue; 1816 1817 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1818 zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk, 1819 rdde->dde_io->dde_repair_abd, DDK_GET_PSIZE(rddk), 1820 NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 1821 ZIO_DDT_CHILD_FLAGS(zio), NULL)); 1822 } 1823 1824 zio_nowait(zio); 1825 } 1826 1827 static void 1828 ddt_repair_table(ddt_t *ddt, zio_t *rio) 1829 { 1830 spa_t *spa = ddt->ddt_spa; 1831 ddt_entry_t *dde, *rdde_next, *rdde; 1832 avl_tree_t *t = &ddt->ddt_repair_tree; 1833 blkptr_t blk; 1834 1835 if (spa_sync_pass(spa) > 1) 1836 return; 1837 1838 ddt_enter(ddt); 1839 for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) { 1840 rdde_next = AVL_NEXT(t, rdde); 1841 avl_remove(&ddt->ddt_repair_tree, rdde); 1842 ddt_exit(ddt); 1843 ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, 1844 DDT_PHYS_NONE, &blk); 1845 dde = ddt_repair_start(ddt, &blk); 1846 ddt_repair_entry(ddt, dde, rdde, rio); 1847 ddt_repair_done(ddt, dde); 1848 ddt_enter(ddt); 1849 } 1850 ddt_exit(ddt); 1851 } 1852 1853 static void 1854 ddt_sync_update_stats(ddt_t *ddt, dmu_tx_t *tx) 1855 { 1856 /* 1857 * Count all the entries stored for each type/class, and updates the 1858 * stats within (ddt_object_sync()). If there's no entries for the 1859 * type/class, the whole object is removed. If all objects for the DDT 1860 * are removed, its containing dir is removed, effectively resetting 1861 * the entire DDT to an empty slate. 1862 */ 1863 uint64_t count = 0; 1864 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1865 uint64_t add, tcount = 0; 1866 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1867 if (ddt_object_exists(ddt, type, class)) { 1868 ddt_object_sync(ddt, type, class, tx); 1869 VERIFY0(ddt_object_count(ddt, type, class, 1870 &add)); 1871 tcount += add; 1872 } 1873 } 1874 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1875 if (tcount == 0 && ddt_object_exists(ddt, type, class)) 1876 ddt_object_destroy(ddt, type, class, tx); 1877 } 1878 count += tcount; 1879 } 1880 1881 if (ddt->ddt_flags & DDT_FLAG_LOG) { 1882 /* Include logged entries in the total count */ 1883 count += avl_numnodes(&ddt->ddt_log_active->ddl_tree); 1884 count += avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 1885 } 1886 1887 if (count == 0) { 1888 /* 1889 * No entries left on the DDT, so reset the version for next 1890 * time. This allows us to handle the feature being changed 1891 * since the DDT was originally created. New entries should get 1892 * whatever the feature currently demands. 1893 */ 1894 if (ddt->ddt_version == DDT_VERSION_FDT) 1895 ddt_destroy_dir(ddt, tx); 1896 1897 ddt->ddt_version = DDT_VERSION_UNCONFIGURED; 1898 ddt->ddt_flags = 0; 1899 } 1900 1901 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 1902 sizeof (ddt->ddt_histogram)); 1903 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 1904 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 1905 } 1906 1907 static void 1908 ddt_sync_scan_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 1909 { 1910 dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool; 1911 1912 /* 1913 * Compute the target class, so we can decide whether or not to inform 1914 * the scrub traversal (below). Note that we don't store this in the 1915 * entry, as it might change multiple times before finally being 1916 * committed (if we're logging). Instead, we recompute it in 1917 * ddt_sync_entry(). 1918 */ 1919 uint64_t refcnt = ddt_phys_total_refcnt(ddt, &ddlwe->ddlwe_phys); 1920 ddt_class_t nclass = 1921 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; 1922 1923 /* 1924 * If the class changes, the order that we scan this bp changes. If it 1925 * decreases, we could miss it, so scan it right now. (This covers both 1926 * class changing while we are doing ddt_walk(), and when we are 1927 * traversing.) 1928 * 1929 * We also do this when the refcnt goes to zero, because that change is 1930 * only in the log so far; the blocks on disk won't be freed until 1931 * the log is flushed, and the refcnt might increase before that. If it 1932 * does, then we could miss it in the same way. 1933 */ 1934 if (refcnt == 0 || nclass < ddlwe->ddlwe_class) 1935 dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, ddt, 1936 ddlwe, tx); 1937 } 1938 1939 static void 1940 ddt_sync_flush_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, 1941 ddt_type_t otype, ddt_class_t oclass, dmu_tx_t *tx) 1942 { 1943 ddt_key_t *ddk = &ddlwe->ddlwe_key; 1944 ddt_type_t ntype = DDT_TYPE_DEFAULT; 1945 uint64_t refcnt = 0; 1946 1947 /* 1948 * Compute the total refcnt. Along the way, issue frees for any DVAs 1949 * we no longer want. 1950 */ 1951 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 1952 ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1953 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1954 uint64_t phys_refcnt = ddt_phys_refcnt(ddp, v); 1955 1956 if (ddt_phys_birth(ddp, v) == 0) { 1957 ASSERT0(phys_refcnt); 1958 continue; 1959 } 1960 if (DDT_PHYS_IS_DITTO(ddt, p)) { 1961 /* 1962 * We don't want to keep any obsolete slots (eg ditto), 1963 * regardless of their refcount, but we don't want to 1964 * leak them either. So, free them. 1965 */ 1966 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); 1967 continue; 1968 } 1969 if (phys_refcnt == 0) 1970 /* No remaining references, free it! */ 1971 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); 1972 refcnt += phys_refcnt; 1973 } 1974 1975 /* Select the best class for the entry. */ 1976 ddt_class_t nclass = 1977 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; 1978 1979 /* 1980 * If an existing entry changed type or class, or its refcount reached 1981 * zero, delete it from the DDT object 1982 */ 1983 if (otype != DDT_TYPES && 1984 (otype != ntype || oclass != nclass || refcnt == 0)) { 1985 VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx)); 1986 ASSERT(ddt_object_contains(ddt, otype, oclass, ddk) == ENOENT); 1987 } 1988 1989 /* 1990 * Add or update the entry 1991 */ 1992 if (refcnt != 0) { 1993 ddt_histogram_t *ddh = 1994 &ddt->ddt_histogram[ntype][nclass]; 1995 1996 ddt_histogram_add_entry(ddt, ddh, ddlwe); 1997 1998 if (!ddt_object_exists(ddt, ntype, nclass)) 1999 ddt_object_create(ddt, ntype, nclass, tx); 2000 VERIFY0(ddt_object_update(ddt, ntype, nclass, ddlwe, tx)); 2001 } 2002 } 2003 2004 /* Calculate an exponential weighted moving average, lower limited to zero */ 2005 static inline int32_t 2006 _ewma(int32_t val, int32_t prev, uint32_t weight) 2007 { 2008 ASSERT3U(val, >=, 0); 2009 ASSERT3U(prev, >=, 0); 2010 const int32_t new = 2011 MAX(0, prev + (val-prev) / (int32_t)MAX(weight, 1)); 2012 ASSERT3U(new, >=, 0); 2013 return (new); 2014 } 2015 2016 static inline void 2017 ddt_flush_force_update_txg(ddt_t *ddt, uint64_t txg) 2018 { 2019 /* 2020 * If we're not forcing flush, and not being asked to start, then 2021 * there's nothing more to do. 2022 */ 2023 if (txg == 0) { 2024 /* Update requested, are we currently forcing flush? */ 2025 if (ddt->ddt_flush_force_txg == 0) 2026 return; 2027 txg = ddt->ddt_flush_force_txg; 2028 } 2029 2030 /* 2031 * If either of the logs have entries unflushed entries before 2032 * the wanted txg, set the force txg, otherwise clear it. 2033 */ 2034 2035 if ((!avl_is_empty(&ddt->ddt_log_active->ddl_tree) && 2036 ddt->ddt_log_active->ddl_first_txg <= txg) || 2037 (!avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && 2038 ddt->ddt_log_flushing->ddl_first_txg <= txg)) { 2039 ddt->ddt_flush_force_txg = txg; 2040 return; 2041 } 2042 2043 /* 2044 * Nothing to flush behind the given txg, so we can clear force flush 2045 * state. 2046 */ 2047 ddt->ddt_flush_force_txg = 0; 2048 } 2049 2050 static void 2051 ddt_sync_flush_log(ddt_t *ddt, dmu_tx_t *tx) 2052 { 2053 spa_t *spa = ddt->ddt_spa; 2054 ASSERT(avl_is_empty(&ddt->ddt_tree)); 2055 2056 /* 2057 * Don't do any flushing when the pool is ready to shut down, or in 2058 * passes beyond the first. 2059 */ 2060 if (spa_sync_pass(spa) > 1 || tx->tx_txg > spa_final_dirty_txg(spa)) 2061 return; 2062 2063 hrtime_t flush_start = gethrtime(); 2064 uint32_t count = 0; 2065 2066 /* 2067 * How many entries we need to flush. We need to at 2068 * least match the ingest rate, and also consider the 2069 * current backlog of entries. 2070 */ 2071 uint64_t backlog = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) + 2072 avl_numnodes(&ddt->ddt_log_active->ddl_tree); 2073 2074 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) 2075 goto housekeeping; 2076 2077 uint64_t txgs = MAX(1, zfs_dedup_log_flush_txgs); 2078 uint64_t cap = MAX(1, zfs_dedup_log_cap); 2079 uint64_t flush_min = MAX(backlog / txgs, 2080 zfs_dedup_log_flush_entries_min); 2081 2082 /* 2083 * The theory for this block is that if we increase the pressure while 2084 * we're growing above the cap, and remove it when we're significantly 2085 * below the cap, we'll stay near cap while not bouncing around too 2086 * much. 2087 * 2088 * The factor of 10 is to smooth the pressure effect by expressing it 2089 * in tenths. The addition of the cap to the backlog in the second 2090 * block is to round up, instead of down. We never let the pressure go 2091 * below 1 (10 tenths). 2092 */ 2093 if (cap != UINT_MAX && backlog > cap && 2094 backlog > ddt->ddt_log_flush_prev_backlog) { 2095 ddt->ddt_log_flush_pressure += 10 * backlog / cap; 2096 } else if (cap != UINT_MAX && backlog < cap) { 2097 ddt->ddt_log_flush_pressure -= 2098 11 - (((10 * backlog) + cap - 1) / cap); 2099 ddt->ddt_log_flush_pressure = 2100 MAX(ddt->ddt_log_flush_pressure, 10); 2101 } 2102 2103 if (zfs_dedup_log_hard_cap && cap != UINT_MAX) 2104 flush_min = MAX(flush_min, MIN(backlog - cap, 2105 (flush_min * ddt->ddt_log_flush_pressure) / 10)); 2106 2107 uint64_t flush_max; 2108 2109 /* 2110 * If we've been asked to flush everything in a hurry, 2111 * try to dump as much as possible on this txg. In 2112 * this case we're only limited by time, not amount. 2113 * 2114 * Otherwise, if we are over the cap, try to get back down to it. 2115 * 2116 * Finally if there is no cap (or no pressure), just set the max a 2117 * little higher than the min to help smooth out variations in flush 2118 * times. 2119 */ 2120 if (ddt->ddt_flush_force_txg > 0) 2121 flush_max = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 2122 else if (cap != UINT32_MAX && !zfs_dedup_log_hard_cap) 2123 flush_max = MAX(flush_min * 5 / 4, MIN(backlog - cap, 2124 (flush_min * ddt->ddt_log_flush_pressure) / 10)); 2125 else 2126 flush_max = flush_min * 5 / 4; 2127 flush_max = MIN(flush_max, zfs_dedup_log_flush_entries_max); 2128 2129 /* 2130 * When the pool is busy or someone is explicitly waiting for this txg 2131 * to complete, use the zfs_dedup_log_flush_min_time_ms. Otherwise use 2132 * half of the time in the txg timeout. 2133 */ 2134 uint64_t target_time; 2135 2136 if (txg_sync_waiting(ddt->ddt_spa->spa_dsl_pool) || 2137 vdev_queue_pool_busy(spa)) { 2138 target_time = MIN(MSEC2NSEC(zfs_dedup_log_flush_min_time_ms), 2139 SEC2NSEC(zfs_txg_timeout) / 2); 2140 } else { 2141 target_time = SEC2NSEC(zfs_txg_timeout) / 2; 2142 } 2143 2144 ddt_lightweight_entry_t ddlwe; 2145 while (ddt_log_take_first(ddt, ddt->ddt_log_flushing, &ddlwe)) { 2146 ddt_sync_flush_entry(ddt, &ddlwe, 2147 ddlwe.ddlwe_type, ddlwe.ddlwe_class, tx); 2148 2149 /* End if we've synced as much as we needed to. */ 2150 if (++count >= flush_max) 2151 break; 2152 2153 /* 2154 * As long as we've flushed the absolute minimum, 2155 * stop if we're way over our target time. 2156 */ 2157 uint64_t diff = gethrtime() - flush_start; 2158 if (count > zfs_dedup_log_flush_entries_min && 2159 diff >= target_time * 2) 2160 break; 2161 2162 /* 2163 * End if we've passed the minimum flush and we're out of time. 2164 */ 2165 if (count > flush_min && diff >= target_time) 2166 break; 2167 } 2168 2169 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) { 2170 /* We emptied it, so truncate on-disk */ 2171 DDT_KSTAT_ZERO(ddt, dds_log_flushing_entries); 2172 ddt_log_truncate(ddt, tx); 2173 } else { 2174 /* More to do next time, save checkpoint */ 2175 DDT_KSTAT_SUB(ddt, dds_log_flushing_entries, count); 2176 ddt_log_checkpoint(ddt, &ddlwe, tx); 2177 } 2178 2179 ddt_sync_update_stats(ddt, tx); 2180 2181 housekeeping: 2182 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && 2183 !avl_is_empty(&ddt->ddt_log_active->ddl_tree)) { 2184 /* 2185 * No more to flush, and the active list has stuff, so 2186 * try to swap the logs for next time. 2187 */ 2188 if (ddt_log_swap(ddt, tx)) { 2189 DDT_KSTAT_ZERO(ddt, dds_log_active_entries); 2190 DDT_KSTAT_SET(ddt, dds_log_flushing_entries, 2191 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); 2192 } 2193 } 2194 2195 /* If force flush is no longer necessary, turn it off. */ 2196 ddt_flush_force_update_txg(ddt, 0); 2197 2198 ddt->ddt_log_flush_prev_backlog = backlog; 2199 2200 /* 2201 * Update flush rate. This is an exponential weighted moving 2202 * average of the number of entries flushed over recent txgs. 2203 */ 2204 ddt->ddt_log_flush_rate = _ewma(count, ddt->ddt_log_flush_rate, 2205 zfs_dedup_log_flush_flow_rate_txgs); 2206 DDT_KSTAT_SET(ddt, dds_log_flush_rate, ddt->ddt_log_flush_rate); 2207 2208 /* 2209 * Update flush time rate. This is an exponential weighted moving 2210 * average of the total time taken to flush over recent txgs. 2211 */ 2212 ddt->ddt_log_flush_time_rate = _ewma(ddt->ddt_log_flush_time_rate, 2213 (int32_t)NSEC2MSEC(gethrtime() - flush_start), 2214 zfs_dedup_log_flush_flow_rate_txgs); 2215 DDT_KSTAT_SET(ddt, dds_log_flush_time_rate, 2216 ddt->ddt_log_flush_time_rate); 2217 if (avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) > 0 && 2218 zfs_flags & ZFS_DEBUG_DDT) { 2219 zfs_dbgmsg("%lu entries remain(%lu in active), flushed %u @ " 2220 "txg %llu, in %llu ms, flush rate %d, time rate %d", 2221 (ulong_t)avl_numnodes(&ddt->ddt_log_flushing->ddl_tree), 2222 (ulong_t)avl_numnodes(&ddt->ddt_log_active->ddl_tree), 2223 count, (u_longlong_t)tx->tx_txg, 2224 (u_longlong_t)NSEC2MSEC(gethrtime() - flush_start), 2225 ddt->ddt_log_flush_rate, ddt->ddt_log_flush_time_rate); 2226 } 2227 } 2228 2229 static void 2230 ddt_sync_table_log(ddt_t *ddt, dmu_tx_t *tx) 2231 { 2232 uint64_t count = avl_numnodes(&ddt->ddt_tree); 2233 2234 if (count > 0) { 2235 ddt_log_update_t dlu = {0}; 2236 ddt_log_begin(ddt, count, tx, &dlu); 2237 2238 ddt_entry_t *dde; 2239 void *cookie = NULL; 2240 ddt_lightweight_entry_t ddlwe; 2241 while ((dde = 2242 avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) { 2243 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2244 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 2245 ddt_log_entry(ddt, &ddlwe, &dlu); 2246 ddt_sync_scan_entry(ddt, &ddlwe, tx); 2247 ddt_free(ddt, dde); 2248 } 2249 2250 ddt_log_commit(ddt, &dlu); 2251 2252 DDT_KSTAT_SET(ddt, dds_log_active_entries, 2253 avl_numnodes(&ddt->ddt_log_active->ddl_tree)); 2254 2255 /* 2256 * Sync the stats for the store objects. Even though we haven't 2257 * modified anything on those objects, they're no longer the 2258 * source of truth for entries that are now in the log, and we 2259 * need the on-disk counts to reflect that, otherwise we'll 2260 * miscount later when importing. 2261 */ 2262 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2263 for (ddt_class_t class = 0; 2264 class < DDT_CLASSES; class++) { 2265 if (ddt_object_exists(ddt, type, class)) 2266 ddt_object_sync(ddt, type, class, tx); 2267 } 2268 } 2269 2270 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 2271 sizeof (ddt->ddt_histogram)); 2272 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 2273 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 2274 } 2275 2276 if (spa_sync_pass(ddt->ddt_spa) == 1) { 2277 /* 2278 * Update ingest rate. This is an exponential weighted moving 2279 * average of the number of entries changed over recent txgs. 2280 * The ramp-up cost shouldn't matter too much because the 2281 * flusher will be trying to take at least the minimum anyway. 2282 */ 2283 ddt->ddt_log_ingest_rate = _ewma( 2284 count, ddt->ddt_log_ingest_rate, 2285 zfs_dedup_log_flush_flow_rate_txgs); 2286 DDT_KSTAT_SET(ddt, dds_log_ingest_rate, 2287 ddt->ddt_log_ingest_rate); 2288 } 2289 } 2290 2291 static void 2292 ddt_sync_table_flush(ddt_t *ddt, dmu_tx_t *tx) 2293 { 2294 if (avl_numnodes(&ddt->ddt_tree) == 0) 2295 return; 2296 2297 ddt_entry_t *dde; 2298 void *cookie = NULL; 2299 while ((dde = avl_destroy_nodes( 2300 &ddt->ddt_tree, &cookie)) != NULL) { 2301 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2302 2303 ddt_lightweight_entry_t ddlwe; 2304 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 2305 ddt_sync_flush_entry(ddt, &ddlwe, 2306 dde->dde_type, dde->dde_class, tx); 2307 ddt_sync_scan_entry(ddt, &ddlwe, tx); 2308 ddt_free(ddt, dde); 2309 } 2310 2311 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 2312 sizeof (ddt->ddt_histogram)); 2313 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 2314 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 2315 ddt_sync_update_stats(ddt, tx); 2316 } 2317 2318 static void 2319 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx) 2320 { 2321 spa_t *spa = ddt->ddt_spa; 2322 2323 if (ddt->ddt_version == UINT64_MAX) 2324 return; 2325 2326 if (spa->spa_uberblock.ub_version < SPA_VERSION_DEDUP) { 2327 ASSERT0(avl_numnodes(&ddt->ddt_tree)); 2328 return; 2329 } 2330 2331 if (spa->spa_ddt_stat_object == 0) { 2332 spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os, 2333 DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT, 2334 DMU_POOL_DDT_STATS, tx); 2335 } 2336 2337 if (ddt->ddt_version == DDT_VERSION_FDT && ddt->ddt_dir_object == 0) 2338 ddt_create_dir(ddt, tx); 2339 2340 if (ddt->ddt_flags & DDT_FLAG_LOG) 2341 ddt_sync_table_log(ddt, tx); 2342 else 2343 ddt_sync_table_flush(ddt, tx); 2344 } 2345 2346 void 2347 ddt_sync(spa_t *spa, uint64_t txg) 2348 { 2349 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2350 dmu_tx_t *tx; 2351 zio_t *rio; 2352 2353 ASSERT3U(spa_syncing_txg(spa), ==, txg); 2354 2355 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2356 2357 rio = zio_root(spa, NULL, NULL, 2358 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL); 2359 2360 /* 2361 * This function may cause an immediate scan of ddt blocks (see 2362 * the comment above dsl_scan_ddt() for details). We set the 2363 * scan's root zio here so that we can wait for any scan IOs in 2364 * addition to the regular ddt IOs. 2365 */ 2366 ASSERT3P(scn->scn_zio_root, ==, NULL); 2367 scn->scn_zio_root = rio; 2368 2369 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2370 ddt_t *ddt = spa->spa_ddt[c]; 2371 if (ddt == NULL) 2372 continue; 2373 ddt_sync_table(ddt, tx); 2374 if (ddt->ddt_flags & DDT_FLAG_LOG) 2375 ddt_sync_flush_log(ddt, tx); 2376 ddt_repair_table(ddt, rio); 2377 } 2378 2379 (void) zio_wait(rio); 2380 scn->scn_zio_root = NULL; 2381 2382 dmu_tx_commit(tx); 2383 } 2384 2385 void 2386 ddt_walk_init(spa_t *spa, uint64_t txg) 2387 { 2388 if (txg == 0) 2389 txg = spa_syncing_txg(spa); 2390 2391 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2392 ddt_t *ddt = spa->spa_ddt[c]; 2393 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) 2394 continue; 2395 2396 ddt_enter(ddt); 2397 ddt_flush_force_update_txg(ddt, txg); 2398 ddt_exit(ddt); 2399 } 2400 } 2401 2402 boolean_t 2403 ddt_walk_ready(spa_t *spa) 2404 { 2405 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2406 ddt_t *ddt = spa->spa_ddt[c]; 2407 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) 2408 continue; 2409 2410 if (ddt->ddt_flush_force_txg > 0) 2411 return (B_FALSE); 2412 } 2413 2414 return (B_TRUE); 2415 } 2416 2417 static int 2418 ddt_walk_impl(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe, 2419 uint64_t flags, boolean_t wait) 2420 { 2421 do { 2422 do { 2423 do { 2424 ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum]; 2425 if (ddt == NULL) 2426 continue; 2427 2428 if (flags != 0 && 2429 (ddt->ddt_flags & flags) != flags) 2430 continue; 2431 2432 if (wait && ddt->ddt_flush_force_txg > 0) 2433 return (EAGAIN); 2434 2435 int error = ENOENT; 2436 if (ddt_object_exists(ddt, ddb->ddb_type, 2437 ddb->ddb_class)) { 2438 error = ddt_object_walk(ddt, 2439 ddb->ddb_type, ddb->ddb_class, 2440 &ddb->ddb_cursor, ddlwe); 2441 } 2442 if (error == 0) 2443 return (0); 2444 if (error != ENOENT) 2445 return (error); 2446 ddb->ddb_cursor = 0; 2447 } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS); 2448 ddb->ddb_checksum = 0; 2449 } while (++ddb->ddb_type < DDT_TYPES); 2450 ddb->ddb_type = 0; 2451 } while (++ddb->ddb_class < DDT_CLASSES); 2452 2453 return (SET_ERROR(ENOENT)); 2454 } 2455 2456 int 2457 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe) 2458 { 2459 return (ddt_walk_impl(spa, ddb, ddlwe, 0, B_TRUE)); 2460 } 2461 2462 /* 2463 * This function is used by Block Cloning (brt.c) to increase reference 2464 * counter for the DDT entry if the block is already in DDT. 2465 * 2466 * Return false if the block, despite having the D bit set, is not present 2467 * in the DDT. This is possible when the DDT has been pruned by an admin 2468 * or by the DDT quota mechanism. 2469 */ 2470 boolean_t 2471 ddt_addref(spa_t *spa, const blkptr_t *bp) 2472 { 2473 ddt_t *ddt; 2474 ddt_entry_t *dde; 2475 boolean_t result; 2476 2477 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 2478 ddt = ddt_select(spa, bp); 2479 ddt_enter(ddt); 2480 2481 dde = ddt_lookup(ddt, bp, B_TRUE); 2482 2483 /* Can be NULL if the entry for this block was pruned. */ 2484 if (dde == NULL) { 2485 ddt_exit(ddt); 2486 spa_config_exit(spa, SCL_ZIO, FTAG); 2487 return (B_FALSE); 2488 } 2489 2490 if ((dde->dde_type < DDT_TYPES) || (dde->dde_flags & DDE_FLAG_LOGGED)) { 2491 /* 2492 * This entry was either synced to a store object (dde_type is 2493 * real) or was logged. It must be properly on disk at this 2494 * point, so we can just bump its refcount. 2495 */ 2496 int p = DDT_PHYS_FOR_COPIES(ddt, BP_GET_NDVAS(bp)); 2497 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 2498 2499 ddt_phys_addref(dde->dde_phys, v); 2500 result = B_TRUE; 2501 } else { 2502 /* 2503 * If the block has the DEDUP flag set it still might not 2504 * exist in the DEDUP table due to DDT pruning of entries 2505 * where refcnt=1. 2506 */ 2507 ddt_remove(ddt, dde); 2508 result = B_FALSE; 2509 } 2510 2511 ddt_exit(ddt); 2512 spa_config_exit(spa, SCL_ZIO, FTAG); 2513 2514 return (result); 2515 } 2516 2517 typedef struct ddt_prune_entry { 2518 ddt_t *dpe_ddt; 2519 ddt_key_t dpe_key; 2520 list_node_t dpe_node; 2521 ddt_univ_phys_t dpe_phys[]; 2522 } ddt_prune_entry_t; 2523 2524 typedef struct ddt_prune_info { 2525 spa_t *dpi_spa; 2526 uint64_t dpi_txg_syncs; 2527 uint64_t dpi_pruned; 2528 list_t dpi_candidates; 2529 } ddt_prune_info_t; 2530 2531 /* 2532 * Add prune candidates for ddt_sync during spa_sync 2533 */ 2534 static void 2535 prune_candidates_sync(void *arg, dmu_tx_t *tx) 2536 { 2537 (void) tx; 2538 ddt_prune_info_t *dpi = arg; 2539 ddt_prune_entry_t *dpe; 2540 2541 spa_config_enter(dpi->dpi_spa, SCL_ZIO, FTAG, RW_READER); 2542 2543 /* Process the prune candidates collected so far */ 2544 while ((dpe = list_remove_head(&dpi->dpi_candidates)) != NULL) { 2545 blkptr_t blk; 2546 ddt_t *ddt = dpe->dpe_ddt; 2547 2548 ddt_enter(ddt); 2549 2550 /* 2551 * If it's on the live list, then it was loaded for update 2552 * this txg and is no longer stale; skip it. 2553 */ 2554 if (avl_find(&ddt->ddt_tree, &dpe->dpe_key, NULL)) { 2555 ddt_exit(ddt); 2556 kmem_free(dpe, sizeof (*dpe)); 2557 continue; 2558 } 2559 2560 ddt_bp_create(ddt->ddt_checksum, &dpe->dpe_key, 2561 dpe->dpe_phys, DDT_PHYS_FLAT, &blk); 2562 2563 ddt_entry_t *dde = ddt_lookup(ddt, &blk, B_TRUE); 2564 if (dde != NULL && !(dde->dde_flags & DDE_FLAG_LOGGED)) { 2565 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2566 /* 2567 * Zero the physical, so we don't try to free DVAs 2568 * at flush nor try to reuse this entry. 2569 */ 2570 ddt_phys_clear(dde->dde_phys, DDT_PHYS_FLAT); 2571 2572 dpi->dpi_pruned++; 2573 } 2574 2575 ddt_exit(ddt); 2576 kmem_free(dpe, sizeof (*dpe)); 2577 } 2578 2579 spa_config_exit(dpi->dpi_spa, SCL_ZIO, FTAG); 2580 dpi->dpi_txg_syncs++; 2581 } 2582 2583 /* 2584 * Prune candidates are collected in open context and processed 2585 * in sync context as part of ddt_sync_table(). 2586 */ 2587 static void 2588 ddt_prune_entry(list_t *list, ddt_t *ddt, const ddt_key_t *ddk, 2589 const ddt_univ_phys_t *ddp) 2590 { 2591 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT); 2592 2593 size_t dpe_size = sizeof (ddt_prune_entry_t) + DDT_FLAT_PHYS_SIZE; 2594 ddt_prune_entry_t *dpe = kmem_alloc(dpe_size, KM_SLEEP); 2595 2596 dpe->dpe_ddt = ddt; 2597 dpe->dpe_key = *ddk; 2598 memcpy(dpe->dpe_phys, ddp, DDT_FLAT_PHYS_SIZE); 2599 list_insert_head(list, dpe); 2600 } 2601 2602 /* 2603 * Interate over all the entries in the DDT unique class. 2604 * The walk will perform one of the following operations: 2605 * (a) build a histogram than can be used when pruning 2606 * (b) prune entries older than the cutoff 2607 * 2608 * Also called by zdb(8) to dump the age histogram 2609 */ 2610 void 2611 ddt_prune_walk(spa_t *spa, uint64_t cutoff, ddt_age_histo_t *histogram) 2612 { 2613 ddt_bookmark_t ddb = { 2614 .ddb_class = DDT_CLASS_UNIQUE, 2615 .ddb_type = 0, 2616 .ddb_checksum = 0, 2617 .ddb_cursor = 0 2618 }; 2619 ddt_lightweight_entry_t ddlwe = {0}; 2620 int error; 2621 int valid = 0; 2622 int candidates = 0; 2623 uint64_t now = gethrestime_sec(); 2624 ddt_prune_info_t dpi; 2625 boolean_t pruning = (cutoff != 0); 2626 2627 if (pruning) { 2628 dpi.dpi_txg_syncs = 0; 2629 dpi.dpi_pruned = 0; 2630 dpi.dpi_spa = spa; 2631 list_create(&dpi.dpi_candidates, sizeof (ddt_prune_entry_t), 2632 offsetof(ddt_prune_entry_t, dpe_node)); 2633 } 2634 2635 if (histogram != NULL) 2636 memset(histogram, 0, sizeof (ddt_age_histo_t)); 2637 2638 while ((error = 2639 ddt_walk_impl(spa, &ddb, &ddlwe, DDT_FLAG_FLAT, B_FALSE)) == 0) { 2640 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 2641 VERIFY(ddt); 2642 2643 if (spa_shutting_down(spa) || issig()) 2644 break; 2645 2646 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT); 2647 ASSERT3U(ddlwe.ddlwe_phys.ddp_flat.ddp_refcnt, <=, 1); 2648 2649 uint64_t class_start = 2650 ddlwe.ddlwe_phys.ddp_flat.ddp_class_start; 2651 2652 /* 2653 * If this entry is on the log, then the stored entry is stale 2654 * and we should skip it. 2655 */ 2656 if (ddt_log_find_key(ddt, &ddlwe.ddlwe_key, NULL)) 2657 continue; 2658 2659 /* prune older entries */ 2660 if (pruning && class_start < cutoff) { 2661 if (candidates++ >= zfs_ddt_prunes_per_txg) { 2662 /* sync prune candidates in batches */ 2663 VERIFY0(dsl_sync_task(spa_name(spa), 2664 NULL, prune_candidates_sync, 2665 &dpi, 0, ZFS_SPACE_CHECK_NONE)); 2666 candidates = 1; 2667 } 2668 ddt_prune_entry(&dpi.dpi_candidates, ddt, 2669 &ddlwe.ddlwe_key, &ddlwe.ddlwe_phys); 2670 } 2671 2672 /* build a histogram */ 2673 if (histogram != NULL) { 2674 uint64_t age = MAX(1, (now - class_start) / 3600); 2675 int bin = MIN(highbit64(age) - 1, HIST_BINS - 1); 2676 histogram->dah_entries++; 2677 histogram->dah_age_histo[bin]++; 2678 } 2679 2680 valid++; 2681 } 2682 2683 if (pruning && valid > 0) { 2684 if (!list_is_empty(&dpi.dpi_candidates)) { 2685 /* sync out final batch of prune candidates */ 2686 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2687 prune_candidates_sync, &dpi, 0, 2688 ZFS_SPACE_CHECK_NONE)); 2689 } 2690 list_destroy(&dpi.dpi_candidates); 2691 2692 zfs_dbgmsg("pruned %llu entries (%d%%) across %llu txg syncs", 2693 (u_longlong_t)dpi.dpi_pruned, 2694 (int)((dpi.dpi_pruned * 100) / valid), 2695 (u_longlong_t)dpi.dpi_txg_syncs); 2696 } 2697 } 2698 2699 static uint64_t 2700 ddt_total_entries(spa_t *spa) 2701 { 2702 ddt_object_t ddo; 2703 ddt_get_dedup_object_stats(spa, &ddo); 2704 2705 return (ddo.ddo_count); 2706 } 2707 2708 int 2709 ddt_prune_unique_entries(spa_t *spa, zpool_ddt_prune_unit_t unit, 2710 uint64_t amount) 2711 { 2712 uint64_t cutoff; 2713 uint64_t start_time = gethrtime(); 2714 2715 if (spa->spa_active_ddt_prune) 2716 return (SET_ERROR(EALREADY)); 2717 if (ddt_total_entries(spa) == 0) 2718 return (0); 2719 2720 spa->spa_active_ddt_prune = B_TRUE; 2721 2722 zfs_dbgmsg("prune %llu %s", (u_longlong_t)amount, 2723 unit == ZPOOL_DDT_PRUNE_PERCENTAGE ? "%" : "seconds old or older"); 2724 2725 if (unit == ZPOOL_DDT_PRUNE_PERCENTAGE) { 2726 ddt_age_histo_t histogram; 2727 uint64_t oldest = 0; 2728 2729 /* Make a pass over DDT to build a histogram */ 2730 ddt_prune_walk(spa, 0, &histogram); 2731 2732 int target = (histogram.dah_entries * amount) / 100; 2733 2734 /* 2735 * Figure out our cutoff date 2736 * (i.e., which bins to prune from) 2737 */ 2738 for (int i = HIST_BINS - 1; i >= 0 && target > 0; i--) { 2739 if (histogram.dah_age_histo[i] != 0) { 2740 /* less than this bucket remaining */ 2741 if (target < histogram.dah_age_histo[i]) { 2742 oldest = MAX(1, (1<<i) * 3600); 2743 target = 0; 2744 } else { 2745 target -= histogram.dah_age_histo[i]; 2746 } 2747 } 2748 } 2749 cutoff = gethrestime_sec() - oldest; 2750 2751 if (ddt_dump_prune_histogram) 2752 ddt_dump_age_histogram(&histogram, cutoff); 2753 } else if (unit == ZPOOL_DDT_PRUNE_AGE) { 2754 cutoff = gethrestime_sec() - amount; 2755 } else { 2756 return (EINVAL); 2757 } 2758 2759 if (cutoff > 0 && !spa_shutting_down(spa) && !issig()) { 2760 /* Traverse DDT to prune entries older that our cuttoff */ 2761 ddt_prune_walk(spa, cutoff, NULL); 2762 } 2763 2764 zfs_dbgmsg("%s: prune completed in %llu ms", 2765 spa_name(spa), (u_longlong_t)NSEC2MSEC(gethrtime() - start_time)); 2766 2767 spa->spa_active_ddt_prune = B_FALSE; 2768 return (0); 2769 } 2770 2771 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW, 2772 "Enable prefetching dedup-ed blks"); 2773 2774 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_min_time_ms, UINT, ZMOD_RW, 2775 "Min time to spend on incremental dedup log flush each transaction"); 2776 2777 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_min, UINT, ZMOD_RW, 2778 "Min number of log entries to flush each transaction"); 2779 2780 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_max, UINT, ZMOD_RW, 2781 "Max number of log entries to flush each transaction"); 2782 2783 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_txgs, UINT, ZMOD_RW, 2784 "Number of TXGs to try to rotate the log in"); 2785 2786 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_cap, UINT, ZMOD_RW, 2787 "Soft cap for the size of the current dedup log"); 2788 2789 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_hard_cap, UINT, ZMOD_RW, 2790 "Whether to use the soft cap as a hard cap"); 2791 2792 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_flow_rate_txgs, UINT, ZMOD_RW, 2793 "Number of txgs to average flow rates across"); 2794