xref: /freebsd/sys/contrib/openzfs/module/zfs/ddt.c (revision bd66c1b43e33540205dbc1187c2f2a15c58b57ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright (c) 2022 by Pawel Jakub Dawidek
26  * Copyright (c) 2019, 2023, Klara Inc.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/ddt.h>
34 #include <sys/ddt_impl.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dsl_scan.h>
41 #include <sys/abd.h>
42 #include <sys/zfeature.h>
43 
44 /*
45  * # DDT: Deduplication tables
46  *
47  * The dedup subsystem provides block-level deduplication. When enabled, blocks
48  * to be written will have the dedup (D) bit set, which causes them to be
49  * tracked in a "dedup table", or DDT. If a block has been seen before (exists
50  * in the DDT), instead of being written, it will instead be made to reference
51  * the existing on-disk data, and a refcount bumped in the DDT instead.
52  *
53  * ## Dedup tables and entries
54  *
55  * Conceptually, a DDT is a dictionary or map. Each entry has a "key"
56  * (ddt_key_t) made up a block's checksum and certian properties, and a "value"
57  * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth
58  * time and refcount. Together these are enough to track references to a
59  * specific block, to build a valid block pointer to reference that block (for
60  * freeing, scrubbing, etc), and to fill a new block pointer with the missing
61  * pieces to make it seem like it was written.
62  *
63  * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[].
64  * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk
65  * object data formats, each with their own implementations) and "classes"
66  * (ddt_class_t, instance of a storage type object, for entries with a specific
67  * characteristic). An entry (key) will only ever exist on one of these objects
68  * at any given time, but may be moved from one to another if their type or
69  * class changes.
70  *
71  * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block
72  * is to be written, before DVAs have been allocated, ddt_lookup() is called to
73  * see if the block has been seen before. If its not found, the write proceeds
74  * as normal, and after it succeeds, a new entry is created. If it is found, we
75  * fill the BP with the DVAs from the entry, increment the refcount and cause
76  * the write IO to return immediately.
77  *
78  * Traditionally, each ddt_phys_t slot in the entry represents a separate dedup
79  * block for the same content/checksum. The slot is selected based on the
80  * zp_copies parameter the block is written with, that is, the number of DVAs
81  * in the block. The "ditto" slot (DDT_PHYS_DITTO) used to be used for
82  * now-removed "dedupditto" feature. These are no longer written, and will be
83  * freed if encountered on old pools.
84  *
85  * If the "fast_dedup" feature is enabled, new dedup tables will be created
86  * with the "flat phys" option. In this mode, there is only one ddt_phys_t
87  * slot. If a write is issued for an entry that exists, but has fewer DVAs,
88  * then only as many new DVAs are allocated and written to make up the
89  * shortfall. The existing entry is then extended (ddt_phys_extend()) with the
90  * new DVAs.
91  *
92  * ## Lifetime of an entry
93  *
94  * A DDT can be enormous, and typically is not held in memory all at once.
95  * Instead, the changes to an entry are tracked in memory, and written down to
96  * disk at the end of each txg.
97  *
98  * A "live" in-memory entry (ddt_entry_t) is a node on the live tree
99  * (ddt_tree).  At the start of a txg, ddt_tree is empty. When an entry is
100  * required for IO, ddt_lookup() is called. If an entry already exists on
101  * ddt_tree, it is returned. Otherwise, a new one is created, and the
102  * type/class objects for the DDT are searched for that key. If its found, its
103  * value is copied into the live entry. If not, an empty entry is created.
104  *
105  * The live entry will be modified during the txg, usually by modifying the
106  * refcount, but sometimes by adding or updating DVAs. At the end of the txg
107  * (during spa_sync()), type and class are recalculated for entry (see
108  * ddt_sync_entry()), and the entry is written to the appropriate storage
109  * object and (if necessary), removed from an old one. ddt_tree is cleared and
110  * the next txg can start.
111  *
112  * ## Dedup quota
113  *
114  * A maximum size for all DDTs on the pool can be set with the
115  * dedup_table_quota property. This is determined in ddt_over_quota() and
116  * enforced during ddt_lookup(). If the pool is at or over its quota limit,
117  * ddt_lookup() will only return entries for existing blocks, as updates are
118  * still possible. New entries will not be created; instead, ddt_lookup() will
119  * return NULL. In response, the DDT write stage (zio_ddt_write()) will remove
120  * the D bit on the block and reissue the IO as a regular write. The block will
121  * not be deduplicated.
122  *
123  * Note that this is based on the on-disk size of the dedup store. Reclaiming
124  * this space after deleting entries relies on the ZAP "shrinking" behaviour,
125  * without which, no space would be recovered and the DDT would continue to be
126  * considered "over quota". See zap_shrink_enabled.
127  *
128  * ## Dedup table pruning
129  *
130  * As a complement to the dedup quota feature, ddtprune allows removal of older
131  * non-duplicate entries to make room for newer duplicate entries. The amount
132  * to prune can be based on a target percentage of the unique entries or based
133  * on the age (i.e., prune unique entry older than N days).
134  *
135  * ## Dedup log
136  *
137  * Historically, all entries modified on a txg were written back to dedup
138  * storage objects at the end of every txg. This could cause significant
139  * overheads, as each entry only takes up a tiny portion of a ZAP leaf node,
140  * and so required reading the whole node, updating the entry, and writing it
141  * back. On busy pools, this could add serious IO and memory overheads.
142  *
143  * To address this, the dedup log was added. If the "fast_dedup" feature is
144  * enabled, at the end of each txg, modified entries will be copied to an
145  * in-memory "log" object (ddt_log_t), and appended to an on-disk log. If the
146  * same block is requested again, the in-memory object will be checked first,
147  * and if its there, the entry inflated back onto the live tree without going
148  * to storage. The on-disk log is only read at pool import time, to reload the
149  * in-memory log.
150  *
151  * Each txg, some amount of the in-memory log will be flushed out to a DDT
152  * storage object (ie ZAP) as normal. OpenZFS will try hard to flush enough to
153  * keep up with the rate of change on dedup entries, but not so much that it
154  * would impact overall throughput, and not using too much memory. See the
155  * zfs_dedup_log_* tuneables in zfs(4) for more details.
156  *
157  * ## Repair IO
158  *
159  * If a read on a dedup block fails, but there are other copies of the block in
160  * the other ddt_phys_t slots, reads will be issued for those instead
161  * (zio_ddt_read_start()). If one of those succeeds, the read is returned to
162  * the caller, and a copy is stashed on the entry's dde_repair_abd.
163  *
164  * During the end-of-txg sync, any entries with a dde_repair_abd get a
165  * "rewrite" write issued for the original block pointer, with the data read
166  * from the alternate block. If the block is actually damaged, this will invoke
167  * the pool's "self-healing" mechanism, and repair the block.
168  *
169  * If the "fast_dedup" feature is enabled, the "flat phys" option will be in
170  * use, so there is only ever one ddt_phys_t slot. The repair process will
171  * still happen in this case, though it is unlikely to succeed as there will
172  * usually be no other equivalent blocks to fall back on (though there might
173  * be, if this was an early version of a dedup'd block that has since been
174  * extended).
175  *
176  * Note that this repair mechanism is in addition to and separate from the
177  * regular OpenZFS scrub and self-healing mechanisms.
178  *
179  * ## Scanning (scrub/resilver)
180  *
181  * If dedup is active, the scrub machinery will walk the dedup table first, and
182  * scrub all blocks with refcnt > 1 first. After that it will move on to the
183  * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them.
184  * In this way, heavily deduplicated blocks are only scrubbed once. See the
185  * commentary on dsl_scan_ddt() for more details.
186  *
187  * Walking the DDT is done via ddt_walk(). The current position is stored in a
188  * ddt_bookmark_t, which represents a stable position in the storage object.
189  * This bookmark is stored by the scan machinery, and must reference the same
190  * position on the object even if the object changes, the pool is exported, or
191  * OpenZFS is upgraded.
192  *
193  * If the "fast_dedup" feature is enabled and the table has a log, the scan
194  * cannot begin until entries on the log are flushed, as the on-disk log has no
195  * concept of a "stable position". Instead, the log flushing process will enter
196  * a more aggressive mode, to flush out as much as is necesary as soon as
197  * possible, in order to begin the scan as soon as possible.
198  *
199  * ## Interaction with block cloning
200  *
201  * If block cloning and dedup are both enabled on a pool, BRT will look for the
202  * dedup bit on an incoming block pointer. If set, it will call into the DDT
203  * (ddt_addref()) to add a reference to the block, instead of adding a
204  * reference to the BRT. See brt_pending_apply().
205  */
206 
207 /*
208  * These are the only checksums valid for dedup. They must match the list
209  * from dedup_table in zfs_prop.c
210  */
211 #define	DDT_CHECKSUM_VALID(c)	\
212 	(c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \
213 	c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \
214 	c == ZIO_CHECKSUM_BLAKE3)
215 
216 static kmem_cache_t *ddt_cache;
217 
218 static kmem_cache_t *ddt_entry_flat_cache;
219 static kmem_cache_t *ddt_entry_trad_cache;
220 
221 #define	DDT_ENTRY_FLAT_SIZE	(sizeof (ddt_entry_t) + DDT_FLAT_PHYS_SIZE)
222 #define	DDT_ENTRY_TRAD_SIZE	(sizeof (ddt_entry_t) + DDT_TRAD_PHYS_SIZE)
223 
224 #define	DDT_ENTRY_SIZE(ddt)	\
225 	_DDT_PHYS_SWITCH(ddt, DDT_ENTRY_FLAT_SIZE, DDT_ENTRY_TRAD_SIZE)
226 
227 /*
228  * Enable/disable prefetching of dedup-ed blocks which are going to be freed.
229  */
230 int zfs_dedup_prefetch = 0;
231 
232 /*
233  * If the dedup class cannot satisfy a DDT allocation, treat as over quota
234  * for this many TXGs.
235  */
236 uint_t dedup_class_wait_txgs = 5;
237 
238 /*
239  * How many DDT prune entries to add to the DDT sync AVL tree.
240  * Note these addtional entries have a memory footprint of a
241  * ddt_entry_t (216 bytes).
242  */
243 static uint32_t zfs_ddt_prunes_per_txg = 50000;
244 
245 /*
246  * For testing, synthesize aged DDT entries
247  * (in global scope for ztest)
248  */
249 boolean_t ddt_prune_artificial_age = B_FALSE;
250 boolean_t ddt_dump_prune_histogram = B_FALSE;
251 
252 /*
253  * Don't do more than this many incremental flush passes per txg.
254  */
255 uint_t zfs_dedup_log_flush_passes_max = 8;
256 
257 /*
258  * Minimum time to flush per txg.
259  */
260 uint_t zfs_dedup_log_flush_min_time_ms = 1000;
261 
262 /*
263  * Minimum entries to flush per txg.
264  */
265 uint_t zfs_dedup_log_flush_entries_min = 1000;
266 
267 /*
268  * Number of txgs to average flow rates across.
269  */
270 uint_t zfs_dedup_log_flush_flow_rate_txgs = 10;
271 
272 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = {
273 	&ddt_zap_ops,
274 };
275 
276 static const char *const ddt_class_name[DDT_CLASSES] = {
277 	"ditto",
278 	"duplicate",
279 	"unique",
280 };
281 
282 /*
283  * DDT feature flags automatically enabled for each on-disk version. Note that
284  * versions >0 cannot exist on disk without SPA_FEATURE_FAST_DEDUP enabled.
285  */
286 static const uint64_t ddt_version_flags[] = {
287 	[DDT_VERSION_LEGACY] = 0,
288 	[DDT_VERSION_FDT] = DDT_FLAG_FLAT | DDT_FLAG_LOG,
289 };
290 
291 /* per-DDT kstats */
292 typedef struct {
293 	/* total lookups and whether they returned new or existing entries */
294 	kstat_named_t dds_lookup;
295 	kstat_named_t dds_lookup_new;
296 	kstat_named_t dds_lookup_existing;
297 
298 	/* entries found on live tree, and if we had to wait for load */
299 	kstat_named_t dds_lookup_live_hit;
300 	kstat_named_t dds_lookup_live_wait;
301 	kstat_named_t dds_lookup_live_miss;
302 
303 	/* entries found on log trees */
304 	kstat_named_t dds_lookup_log_hit;
305 	kstat_named_t dds_lookup_log_active_hit;
306 	kstat_named_t dds_lookup_log_flushing_hit;
307 	kstat_named_t dds_lookup_log_miss;
308 
309 	/* entries found on store objects */
310 	kstat_named_t dds_lookup_stored_hit;
311 	kstat_named_t dds_lookup_stored_miss;
312 
313 	/* number of entries on log trees */
314 	kstat_named_t dds_log_active_entries;
315 	kstat_named_t dds_log_flushing_entries;
316 
317 	/* avg updated/flushed entries per txg */
318 	kstat_named_t dds_log_ingest_rate;
319 	kstat_named_t dds_log_flush_rate;
320 	kstat_named_t dds_log_flush_time_rate;
321 } ddt_kstats_t;
322 
323 static const ddt_kstats_t ddt_kstats_template = {
324 	{ "lookup",			KSTAT_DATA_UINT64 },
325 	{ "lookup_new",			KSTAT_DATA_UINT64 },
326 	{ "lookup_existing",		KSTAT_DATA_UINT64 },
327 	{ "lookup_live_hit",		KSTAT_DATA_UINT64 },
328 	{ "lookup_live_wait",		KSTAT_DATA_UINT64 },
329 	{ "lookup_live_miss",		KSTAT_DATA_UINT64 },
330 	{ "lookup_log_hit",		KSTAT_DATA_UINT64 },
331 	{ "lookup_log_active_hit",	KSTAT_DATA_UINT64 },
332 	{ "lookup_log_flushing_hit",	KSTAT_DATA_UINT64 },
333 	{ "lookup_log_miss",		KSTAT_DATA_UINT64 },
334 	{ "lookup_stored_hit",		KSTAT_DATA_UINT64 },
335 	{ "lookup_stored_miss",		KSTAT_DATA_UINT64 },
336 	{ "log_active_entries",		KSTAT_DATA_UINT64 },
337 	{ "log_flushing_entries",	KSTAT_DATA_UINT64 },
338 	{ "log_ingest_rate",		KSTAT_DATA_UINT32 },
339 	{ "log_flush_rate",		KSTAT_DATA_UINT32 },
340 	{ "log_flush_time_rate",	KSTAT_DATA_UINT32 },
341 };
342 
343 #ifdef _KERNEL
344 #define	_DDT_KSTAT_STAT(ddt, stat) \
345 	&((ddt_kstats_t *)(ddt)->ddt_ksp->ks_data)->stat.value.ui64
346 #define	DDT_KSTAT_BUMP(ddt, stat) \
347 	do { atomic_inc_64(_DDT_KSTAT_STAT(ddt, stat)); } while (0)
348 #define	DDT_KSTAT_ADD(ddt, stat, val) \
349 	do { atomic_add_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
350 #define	DDT_KSTAT_SUB(ddt, stat, val) \
351 	do { atomic_sub_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
352 #define	DDT_KSTAT_SET(ddt, stat, val) \
353 	do { atomic_store_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
354 #define	DDT_KSTAT_ZERO(ddt, stat) DDT_KSTAT_SET(ddt, stat, 0)
355 #else
356 #define	DDT_KSTAT_BUMP(ddt, stat) do {} while (0)
357 #define	DDT_KSTAT_ADD(ddt, stat, val) do {} while (0)
358 #define	DDT_KSTAT_SUB(ddt, stat, val) do {} while (0)
359 #define	DDT_KSTAT_SET(ddt, stat, val) do {} while (0)
360 #define	DDT_KSTAT_ZERO(ddt, stat) do {} while (0)
361 #endif /* _KERNEL */
362 
363 
364 static void
365 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
366     dmu_tx_t *tx)
367 {
368 	spa_t *spa = ddt->ddt_spa;
369 	objset_t *os = ddt->ddt_os;
370 	uint64_t *objectp = &ddt->ddt_object[type][class];
371 	boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags &
372 	    ZCHECKSUM_FLAG_DEDUP;
373 	char name[DDT_NAMELEN];
374 
375 	ASSERT3U(ddt->ddt_dir_object, >, 0);
376 
377 	ddt_object_name(ddt, type, class, name);
378 
379 	ASSERT3U(*objectp, ==, 0);
380 	VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash));
381 	ASSERT3U(*objectp, !=, 0);
382 
383 	ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
384 
385 	VERIFY0(zap_add(os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1,
386 	    objectp, tx));
387 
388 	VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name,
389 	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
390 	    &ddt->ddt_histogram[type][class], tx));
391 }
392 
393 static void
394 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
395     dmu_tx_t *tx)
396 {
397 	spa_t *spa = ddt->ddt_spa;
398 	objset_t *os = ddt->ddt_os;
399 	uint64_t *objectp = &ddt->ddt_object[type][class];
400 	uint64_t count;
401 	char name[DDT_NAMELEN];
402 
403 	ASSERT3U(ddt->ddt_dir_object, >, 0);
404 
405 	ddt_object_name(ddt, type, class, name);
406 
407 	ASSERT3U(*objectp, !=, 0);
408 	ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
409 	VERIFY0(ddt_object_count(ddt, type, class, &count));
410 	VERIFY0(count);
411 	VERIFY0(zap_remove(os, ddt->ddt_dir_object, name, tx));
412 	VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx));
413 	VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx));
414 	memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t));
415 
416 	*objectp = 0;
417 }
418 
419 static int
420 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
421 {
422 	ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
423 	dmu_object_info_t doi;
424 	uint64_t count;
425 	char name[DDT_NAMELEN];
426 	int error;
427 
428 	if (ddt->ddt_dir_object == 0) {
429 		/*
430 		 * If we're configured but the containing dir doesn't exist
431 		 * yet, then this object can't possibly exist either.
432 		 */
433 		ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
434 		return (SET_ERROR(ENOENT));
435 	}
436 
437 	ddt_object_name(ddt, type, class, name);
438 
439 	error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name,
440 	    sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
441 	if (error != 0)
442 		return (error);
443 
444 	error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
445 	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
446 	    &ddt->ddt_histogram[type][class]);
447 	if (error != 0)
448 		return (error);
449 
450 	/*
451 	 * Seed the cached statistics.
452 	 */
453 	error = ddt_object_info(ddt, type, class, &doi);
454 	if (error)
455 		return (error);
456 
457 	error = ddt_object_count(ddt, type, class, &count);
458 	if (error)
459 		return (error);
460 
461 	ddo->ddo_count = count;
462 	ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
463 	ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
464 
465 	return (0);
466 }
467 
468 static void
469 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
470     dmu_tx_t *tx)
471 {
472 	ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
473 	dmu_object_info_t doi;
474 	uint64_t count;
475 	char name[DDT_NAMELEN];
476 
477 	ddt_object_name(ddt, type, class, name);
478 
479 	VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
480 	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
481 	    &ddt->ddt_histogram[type][class], tx));
482 
483 	/*
484 	 * Cache DDT statistics; this is the only time they'll change.
485 	 */
486 	VERIFY0(ddt_object_info(ddt, type, class, &doi));
487 	VERIFY0(ddt_object_count(ddt, type, class, &count));
488 
489 	ddo->ddo_count = count;
490 	ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
491 	ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
492 }
493 
494 static boolean_t
495 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
496 {
497 	return (!!ddt->ddt_object[type][class]);
498 }
499 
500 static int
501 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
502     ddt_entry_t *dde)
503 {
504 	if (!ddt_object_exists(ddt, type, class))
505 		return (SET_ERROR(ENOENT));
506 
507 	return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
508 	    ddt->ddt_object[type][class], &dde->dde_key,
509 	    dde->dde_phys, DDT_PHYS_SIZE(ddt)));
510 }
511 
512 static int
513 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
514     const ddt_key_t *ddk)
515 {
516 	if (!ddt_object_exists(ddt, type, class))
517 		return (SET_ERROR(ENOENT));
518 
519 	return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os,
520 	    ddt->ddt_object[type][class], ddk));
521 }
522 
523 static void
524 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
525     const ddt_key_t *ddk)
526 {
527 	if (!ddt_object_exists(ddt, type, class))
528 		return;
529 
530 	ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
531 	    ddt->ddt_object[type][class], ddk);
532 }
533 
534 static void
535 ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
536 {
537 	if (!ddt_object_exists(ddt, type, class))
538 		return;
539 
540 	ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os,
541 	    ddt->ddt_object[type][class]);
542 }
543 
544 static int
545 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
546     const ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
547 {
548 	ASSERT(ddt_object_exists(ddt, type, class));
549 
550 	return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
551 	    ddt->ddt_object[type][class], &ddlwe->ddlwe_key,
552 	    &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt), tx));
553 }
554 
555 static int
556 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
557     const ddt_key_t *ddk, dmu_tx_t *tx)
558 {
559 	ASSERT(ddt_object_exists(ddt, type, class));
560 
561 	return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
562 	    ddt->ddt_object[type][class], ddk, tx));
563 }
564 
565 int
566 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
567     uint64_t *walk, ddt_lightweight_entry_t *ddlwe)
568 {
569 	ASSERT(ddt_object_exists(ddt, type, class));
570 
571 	int error = ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
572 	    ddt->ddt_object[type][class], walk, &ddlwe->ddlwe_key,
573 	    &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt));
574 	if (error == 0) {
575 		ddlwe->ddlwe_type = type;
576 		ddlwe->ddlwe_class = class;
577 		return (0);
578 	}
579 	return (error);
580 }
581 
582 int
583 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
584     uint64_t *count)
585 {
586 	ASSERT(ddt_object_exists(ddt, type, class));
587 
588 	return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
589 	    ddt->ddt_object[type][class], count));
590 }
591 
592 int
593 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
594     dmu_object_info_t *doi)
595 {
596 	if (!ddt_object_exists(ddt, type, class))
597 		return (SET_ERROR(ENOENT));
598 
599 	return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
600 	    doi));
601 }
602 
603 void
604 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
605     char *name)
606 {
607 	(void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT,
608 	    zio_checksum_table[ddt->ddt_checksum].ci_name,
609 	    ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
610 }
611 
612 void
613 ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
614     blkptr_t *bp, uint64_t txg)
615 {
616 	ASSERT3U(txg, !=, 0);
617 	ASSERT3U(v, <, DDT_PHYS_NONE);
618 	uint64_t phys_birth;
619 	const dva_t *dvap;
620 
621 	if (v == DDT_PHYS_FLAT) {
622 		phys_birth = ddp->ddp_flat.ddp_phys_birth;
623 		dvap = ddp->ddp_flat.ddp_dva;
624 	} else {
625 		phys_birth = ddp->ddp_trad[v].ddp_phys_birth;
626 		dvap = ddp->ddp_trad[v].ddp_dva;
627 	}
628 
629 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
630 		bp->blk_dva[d] = dvap[d];
631 	BP_SET_BIRTH(bp, txg, phys_birth);
632 }
633 
634 /*
635  * The bp created via this function may be used for repairs and scrub, but it
636  * will be missing the salt / IV required to do a full decrypting read.
637  */
638 void
639 ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk,
640     const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp)
641 {
642 	BP_ZERO(bp);
643 
644 	if (ddp != NULL)
645 		ddt_bp_fill(ddp, v, bp, ddt_phys_birth(ddp, v));
646 
647 	bp->blk_cksum = ddk->ddk_cksum;
648 
649 	BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
650 	BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
651 	BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
652 	BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk));
653 	BP_SET_FILL(bp, 1);
654 	BP_SET_CHECKSUM(bp, checksum);
655 	BP_SET_TYPE(bp, DMU_OT_DEDUP);
656 	BP_SET_LEVEL(bp, 0);
657 	BP_SET_DEDUP(bp, 1);
658 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
659 }
660 
661 void
662 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
663 {
664 	ddk->ddk_cksum = bp->blk_cksum;
665 	ddk->ddk_prop = 0;
666 
667 	ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp));
668 
669 	DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
670 	DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
671 	DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
672 	DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp));
673 }
674 
675 void
676 ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp)
677 {
678 	ASSERT3U(v, <, DDT_PHYS_NONE);
679 	int bp_ndvas = BP_GET_NDVAS(bp);
680 	int ddp_max_dvas = BP_IS_ENCRYPTED(bp) ?
681 	    SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP;
682 	dva_t *dvas = (v == DDT_PHYS_FLAT) ?
683 	    ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva;
684 
685 	int s = 0, d = 0;
686 	while (s < bp_ndvas && d < ddp_max_dvas) {
687 		if (DVA_IS_VALID(&dvas[d])) {
688 			d++;
689 			continue;
690 		}
691 		dvas[d] = bp->blk_dva[s];
692 		s++; d++;
693 	}
694 
695 	/*
696 	 * If the caller offered us more DVAs than we can fit, something has
697 	 * gone wrong in their accounting. zio_ddt_write() should never ask for
698 	 * more than we need.
699 	 */
700 	ASSERT3U(s, ==, bp_ndvas);
701 
702 	if (BP_IS_ENCRYPTED(bp))
703 		dvas[2] = bp->blk_dva[2];
704 
705 	if (ddt_phys_birth(ddp, v) == 0) {
706 		if (v == DDT_PHYS_FLAT)
707 			ddp->ddp_flat.ddp_phys_birth = BP_GET_BIRTH(bp);
708 		else
709 			ddp->ddp_trad[v].ddp_phys_birth = BP_GET_BIRTH(bp);
710 	}
711 }
712 
713 void
714 ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src,
715     ddt_phys_variant_t v)
716 {
717 	ASSERT3U(v, <, DDT_PHYS_NONE);
718 
719 	if (v == DDT_PHYS_FLAT)
720 		dst->ddp_flat = src->ddp_flat;
721 	else
722 		dst->ddp_trad[v] = src->ddp_trad[v];
723 }
724 
725 void
726 ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
727 {
728 	ASSERT3U(v, <, DDT_PHYS_NONE);
729 
730 	if (v == DDT_PHYS_FLAT)
731 		memset(&ddp->ddp_flat, 0, DDT_FLAT_PHYS_SIZE);
732 	else
733 		memset(&ddp->ddp_trad[v], 0, DDT_TRAD_PHYS_SIZE / DDT_PHYS_MAX);
734 }
735 
736 static uint64_t
737 ddt_class_start(void)
738 {
739 	uint64_t start = gethrestime_sec();
740 
741 	if (ddt_prune_artificial_age) {
742 		/*
743 		 * debug aide -- simulate a wider distribution
744 		 * so we don't have to wait for an aged DDT
745 		 * to test prune.
746 		 */
747 		int range = 1 << 21;
748 		int percent = random_in_range(100);
749 		if (percent < 50) {
750 			range = range >> 4;
751 		} else if (percent > 75) {
752 			range /= 2;
753 		}
754 		start -= random_in_range(range);
755 	}
756 
757 	return (start);
758 }
759 
760 void
761 ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
762 {
763 	ASSERT3U(v, <, DDT_PHYS_NONE);
764 
765 	if (v == DDT_PHYS_FLAT)
766 		ddp->ddp_flat.ddp_refcnt++;
767 	else
768 		ddp->ddp_trad[v].ddp_refcnt++;
769 }
770 
771 uint64_t
772 ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
773 {
774 	ASSERT3U(v, <, DDT_PHYS_NONE);
775 
776 	uint64_t *refcntp;
777 
778 	if (v == DDT_PHYS_FLAT)
779 		refcntp = &ddp->ddp_flat.ddp_refcnt;
780 	else
781 		refcntp = &ddp->ddp_trad[v].ddp_refcnt;
782 
783 	ASSERT3U(*refcntp, >, 0);
784 	(*refcntp)--;
785 	return (*refcntp);
786 }
787 
788 static void
789 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_univ_phys_t *ddp,
790     ddt_phys_variant_t v, uint64_t txg)
791 {
792 	blkptr_t blk;
793 
794 	ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
795 
796 	/*
797 	 * We clear the dedup bit so that zio_free() will actually free the
798 	 * space, rather than just decrementing the refcount in the DDT.
799 	 */
800 	BP_SET_DEDUP(&blk, 0);
801 
802 	ddt_phys_clear(ddp, v);
803 	zio_free(ddt->ddt_spa, txg, &blk);
804 }
805 
806 uint64_t
807 ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
808 {
809 	ASSERT3U(v, <, DDT_PHYS_NONE);
810 
811 	if (v == DDT_PHYS_FLAT)
812 		return (ddp->ddp_flat.ddp_phys_birth);
813 	else
814 		return (ddp->ddp_trad[v].ddp_phys_birth);
815 }
816 
817 int
818 ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
819     boolean_t encrypted)
820 {
821 	ASSERT3U(v, <, DDT_PHYS_NONE);
822 
823 	const dva_t *dvas = (v == DDT_PHYS_FLAT) ?
824 	    ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva;
825 
826 	return (DVA_IS_VALID(&dvas[0]) +
827 	    DVA_IS_VALID(&dvas[1]) +
828 	    DVA_IS_VALID(&dvas[2]) * !encrypted);
829 }
830 
831 ddt_phys_variant_t
832 ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp)
833 {
834 	if (dde == NULL)
835 		return (DDT_PHYS_NONE);
836 
837 	const ddt_univ_phys_t *ddp = dde->dde_phys;
838 
839 	if (ddt->ddt_flags & DDT_FLAG_FLAT) {
840 		if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_flat.ddp_dva[0]) &&
841 		    BP_GET_BIRTH(bp) == ddp->ddp_flat.ddp_phys_birth) {
842 			return (DDT_PHYS_FLAT);
843 		}
844 	} else /* traditional phys */ {
845 		for (int p = 0; p < DDT_PHYS_MAX; p++) {
846 			if (DVA_EQUAL(BP_IDENTITY(bp),
847 			    &ddp->ddp_trad[p].ddp_dva[0]) &&
848 			    BP_GET_BIRTH(bp) ==
849 			    ddp->ddp_trad[p].ddp_phys_birth) {
850 				return (p);
851 			}
852 		}
853 	}
854 	return (DDT_PHYS_NONE);
855 }
856 
857 uint64_t
858 ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
859 {
860 	ASSERT3U(v, <, DDT_PHYS_NONE);
861 
862 	if (v == DDT_PHYS_FLAT)
863 		return (ddp->ddp_flat.ddp_refcnt);
864 	else
865 		return (ddp->ddp_trad[v].ddp_refcnt);
866 }
867 
868 uint64_t
869 ddt_phys_total_refcnt(const ddt_t *ddt, const ddt_univ_phys_t *ddp)
870 {
871 	uint64_t refcnt = 0;
872 
873 	if (ddt->ddt_flags & DDT_FLAG_FLAT)
874 		refcnt = ddp->ddp_flat.ddp_refcnt;
875 	else
876 		for (int v = DDT_PHYS_SINGLE; v <= DDT_PHYS_TRIPLE; v++)
877 			refcnt += ddp->ddp_trad[v].ddp_refcnt;
878 
879 	return (refcnt);
880 }
881 
882 ddt_t *
883 ddt_select(spa_t *spa, const blkptr_t *bp)
884 {
885 	ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp)));
886 	return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
887 }
888 
889 void
890 ddt_enter(ddt_t *ddt)
891 {
892 	mutex_enter(&ddt->ddt_lock);
893 }
894 
895 void
896 ddt_exit(ddt_t *ddt)
897 {
898 	mutex_exit(&ddt->ddt_lock);
899 }
900 
901 void
902 ddt_init(void)
903 {
904 	ddt_cache = kmem_cache_create("ddt_cache",
905 	    sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
906 	ddt_entry_flat_cache = kmem_cache_create("ddt_entry_flat_cache",
907 	    DDT_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
908 	ddt_entry_trad_cache = kmem_cache_create("ddt_entry_trad_cache",
909 	    DDT_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
910 
911 	ddt_log_init();
912 }
913 
914 void
915 ddt_fini(void)
916 {
917 	ddt_log_fini();
918 
919 	kmem_cache_destroy(ddt_entry_trad_cache);
920 	kmem_cache_destroy(ddt_entry_flat_cache);
921 	kmem_cache_destroy(ddt_cache);
922 }
923 
924 static ddt_entry_t *
925 ddt_alloc(const ddt_t *ddt, const ddt_key_t *ddk)
926 {
927 	ddt_entry_t *dde;
928 
929 	if (ddt->ddt_flags & DDT_FLAG_FLAT) {
930 		dde = kmem_cache_alloc(ddt_entry_flat_cache, KM_SLEEP);
931 		memset(dde, 0, DDT_ENTRY_FLAT_SIZE);
932 	} else {
933 		dde = kmem_cache_alloc(ddt_entry_trad_cache, KM_SLEEP);
934 		memset(dde, 0, DDT_ENTRY_TRAD_SIZE);
935 	}
936 
937 	cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);
938 
939 	dde->dde_key = *ddk;
940 
941 	return (dde);
942 }
943 
944 void
945 ddt_alloc_entry_io(ddt_entry_t *dde)
946 {
947 	if (dde->dde_io != NULL)
948 		return;
949 
950 	dde->dde_io = kmem_zalloc(sizeof (ddt_entry_io_t), KM_SLEEP);
951 }
952 
953 static void
954 ddt_free(const ddt_t *ddt, ddt_entry_t *dde)
955 {
956 	if (dde->dde_io != NULL) {
957 		for (int p = 0; p < DDT_NPHYS(ddt); p++)
958 			ASSERT3P(dde->dde_io->dde_lead_zio[p], ==, NULL);
959 
960 		if (dde->dde_io->dde_repair_abd != NULL)
961 			abd_free(dde->dde_io->dde_repair_abd);
962 
963 		kmem_free(dde->dde_io, sizeof (ddt_entry_io_t));
964 	}
965 
966 	cv_destroy(&dde->dde_cv);
967 	kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
968 	    ddt_entry_flat_cache : ddt_entry_trad_cache, dde);
969 }
970 
971 void
972 ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
973 {
974 	ASSERT(MUTEX_HELD(&ddt->ddt_lock));
975 
976 	/* Entry is still in the log, so charge the entry back to it */
977 	if (dde->dde_flags & DDE_FLAG_LOGGED) {
978 		ddt_lightweight_entry_t ddlwe;
979 		DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
980 		ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe);
981 	}
982 
983 	avl_remove(&ddt->ddt_tree, dde);
984 	ddt_free(ddt, dde);
985 }
986 
987 static boolean_t
988 ddt_special_over_quota(spa_t *spa, metaslab_class_t *mc)
989 {
990 	if (mc != NULL && metaslab_class_get_space(mc) > 0) {
991 		/* Over quota if allocating outside of this special class */
992 		if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg +
993 		    dedup_class_wait_txgs) {
994 			/* Waiting for some deferred frees to be processed */
995 			return (B_TRUE);
996 		}
997 
998 		/*
999 		 * We're considered over quota when we hit 85% full, or for
1000 		 * larger drives, when there is less than 8GB free.
1001 		 */
1002 		uint64_t allocated = metaslab_class_get_alloc(mc);
1003 		uint64_t capacity = metaslab_class_get_space(mc);
1004 		uint64_t limit = MAX(capacity * 85 / 100,
1005 		    (capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0);
1006 
1007 		return (allocated >= limit);
1008 	}
1009 	return (B_FALSE);
1010 }
1011 
1012 /*
1013  * Check if the DDT is over its quota.  This can be due to a few conditions:
1014  *   1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize
1015  *       exceeds this limit
1016  *
1017  *   2. 'dedup_table_quota' property is set to automatic and
1018  *      a. the dedup or special allocation class could not satisfy a DDT
1019  *         allocation in a recent transaction
1020  *      b. the dedup or special allocation class has exceeded its 85% limit
1021  */
1022 static boolean_t
1023 ddt_over_quota(spa_t *spa)
1024 {
1025 	if (spa->spa_dedup_table_quota == 0)
1026 		return (B_FALSE);
1027 
1028 	if (spa->spa_dedup_table_quota != UINT64_MAX)
1029 		return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota);
1030 
1031 	/*
1032 	 * For automatic quota, table size is limited by dedup or special class
1033 	 */
1034 	if (ddt_special_over_quota(spa, spa_dedup_class(spa)))
1035 		return (B_TRUE);
1036 	else if (spa_special_has_ddt(spa) &&
1037 	    ddt_special_over_quota(spa, spa_special_class(spa)))
1038 		return (B_TRUE);
1039 
1040 	return (B_FALSE);
1041 }
1042 
1043 void
1044 ddt_prefetch_all(spa_t *spa)
1045 {
1046 	/*
1047 	 * Load all DDT entries for each type/class combination. This is
1048 	 * indended to perform a prefetch on all such blocks. For the same
1049 	 * reason that ddt_prefetch isn't locked, this is also not locked.
1050 	 */
1051 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1052 		ddt_t *ddt = spa->spa_ddt[c];
1053 		if (!ddt)
1054 			continue;
1055 
1056 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1057 			for (ddt_class_t class = 0; class < DDT_CLASSES;
1058 			    class++) {
1059 				ddt_object_prefetch_all(ddt, type, class);
1060 			}
1061 		}
1062 	}
1063 }
1064 
1065 static int ddt_configure(ddt_t *ddt, boolean_t new);
1066 
1067 /*
1068  * If the BP passed to ddt_lookup has valid DVAs, then we need to compare them
1069  * to the ones in the entry. If they're different, then the passed-in BP is
1070  * from a previous generation of this entry (ie was previously pruned) and we
1071  * have to act like the entry doesn't exist at all.
1072  *
1073  * This should only happen during a lookup to free the block (zio_ddt_free()).
1074  *
1075  * XXX this is similar in spirit to ddt_phys_select(), maybe can combine
1076  *       -- robn, 2024-02-09
1077  */
1078 static boolean_t
1079 ddt_entry_lookup_is_valid(ddt_t *ddt, const blkptr_t *bp, ddt_entry_t *dde)
1080 {
1081 	/* If the BP has no DVAs, then this entry is good */
1082 	uint_t ndvas = BP_GET_NDVAS(bp);
1083 	if (ndvas == 0)
1084 		return (B_TRUE);
1085 
1086 	/*
1087 	 * Only checking the phys for the copies. For flat, there's only one;
1088 	 * for trad it'll be the one that has the matching set of DVAs.
1089 	 */
1090 	const dva_t *dvas = (ddt->ddt_flags & DDT_FLAG_FLAT) ?
1091 	    dde->dde_phys->ddp_flat.ddp_dva :
1092 	    dde->dde_phys->ddp_trad[ndvas].ddp_dva;
1093 
1094 	/*
1095 	 * Compare entry DVAs with the BP. They should all be there, but
1096 	 * there's not really anything we can do if its only partial anyway,
1097 	 * that's an error somewhere else, maybe long ago.
1098 	 */
1099 	uint_t d;
1100 	for (d = 0; d < ndvas; d++)
1101 		if (!DVA_EQUAL(&dvas[d], &bp->blk_dva[d]))
1102 			return (B_FALSE);
1103 	ASSERT3U(d, ==, ndvas);
1104 
1105 	return (B_TRUE);
1106 }
1107 
1108 ddt_entry_t *
1109 ddt_lookup(ddt_t *ddt, const blkptr_t *bp)
1110 {
1111 	spa_t *spa = ddt->ddt_spa;
1112 	ddt_key_t search;
1113 	ddt_entry_t *dde;
1114 	ddt_type_t type;
1115 	ddt_class_t class;
1116 	avl_index_t where;
1117 	int error;
1118 
1119 	ASSERT(MUTEX_HELD(&ddt->ddt_lock));
1120 
1121 	if (ddt->ddt_version == DDT_VERSION_UNCONFIGURED) {
1122 		/*
1123 		 * This is the first use of this DDT since the pool was
1124 		 * created; finish getting it ready for use.
1125 		 */
1126 		VERIFY0(ddt_configure(ddt, B_TRUE));
1127 		ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
1128 	}
1129 
1130 	DDT_KSTAT_BUMP(ddt, dds_lookup);
1131 
1132 	ddt_key_fill(&search, bp);
1133 
1134 	/* Find an existing live entry */
1135 	dde = avl_find(&ddt->ddt_tree, &search, &where);
1136 	if (dde != NULL) {
1137 		/* If we went over quota, act like we didn't find it */
1138 		if (dde->dde_flags & DDE_FLAG_OVERQUOTA)
1139 			return (NULL);
1140 
1141 		/* If it's already loaded, we can just return it. */
1142 		DDT_KSTAT_BUMP(ddt, dds_lookup_live_hit);
1143 		if (dde->dde_flags & DDE_FLAG_LOADED) {
1144 			if (ddt_entry_lookup_is_valid(ddt, bp, dde))
1145 				return (dde);
1146 			return (NULL);
1147 		}
1148 
1149 		/* Someone else is loading it, wait for it. */
1150 		dde->dde_waiters++;
1151 		DDT_KSTAT_BUMP(ddt, dds_lookup_live_wait);
1152 		while (!(dde->dde_flags & DDE_FLAG_LOADED))
1153 			cv_wait(&dde->dde_cv, &ddt->ddt_lock);
1154 		dde->dde_waiters--;
1155 
1156 		/* Loaded but over quota, forget we were ever here */
1157 		if (dde->dde_flags & DDE_FLAG_OVERQUOTA) {
1158 			if (dde->dde_waiters == 0) {
1159 				avl_remove(&ddt->ddt_tree, dde);
1160 				ddt_free(ddt, dde);
1161 			}
1162 			return (NULL);
1163 		}
1164 
1165 		DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1166 
1167 		/* Make sure the loaded entry matches the BP */
1168 		if (ddt_entry_lookup_is_valid(ddt, bp, dde))
1169 			return (dde);
1170 		return (NULL);
1171 	} else
1172 		DDT_KSTAT_BUMP(ddt, dds_lookup_live_miss);
1173 
1174 	/* Time to make a new entry. */
1175 	dde = ddt_alloc(ddt, &search);
1176 
1177 	/* Record the time this class was created (used by ddt prune) */
1178 	if (ddt->ddt_flags & DDT_FLAG_FLAT)
1179 		dde->dde_phys->ddp_flat.ddp_class_start = ddt_class_start();
1180 
1181 	avl_insert(&ddt->ddt_tree, dde, where);
1182 
1183 	/* If its in the log tree, we can "load" it from there */
1184 	if (ddt->ddt_flags & DDT_FLAG_LOG) {
1185 		ddt_lightweight_entry_t ddlwe;
1186 
1187 		if (ddt_log_find_key(ddt, &search, &ddlwe)) {
1188 			/*
1189 			 * See if we have the key first, and if so, set up
1190 			 * the entry.
1191 			 */
1192 			dde->dde_type = ddlwe.ddlwe_type;
1193 			dde->dde_class = ddlwe.ddlwe_class;
1194 			memcpy(dde->dde_phys, &ddlwe.ddlwe_phys,
1195 			    DDT_PHYS_SIZE(ddt));
1196 			/* Whatever we found isn't valid for this BP, eject */
1197 			if (!ddt_entry_lookup_is_valid(ddt, bp, dde)) {
1198 				avl_remove(&ddt->ddt_tree, dde);
1199 				ddt_free(ddt, dde);
1200 				return (NULL);
1201 			}
1202 
1203 			/* Remove it and count it */
1204 			if (ddt_log_remove_key(ddt,
1205 			    ddt->ddt_log_active, &search)) {
1206 				DDT_KSTAT_BUMP(ddt, dds_lookup_log_active_hit);
1207 			} else {
1208 				VERIFY(ddt_log_remove_key(ddt,
1209 				    ddt->ddt_log_flushing, &search));
1210 				DDT_KSTAT_BUMP(ddt,
1211 				    dds_lookup_log_flushing_hit);
1212 			}
1213 
1214 			dde->dde_flags = DDE_FLAG_LOADED | DDE_FLAG_LOGGED;
1215 
1216 			DDT_KSTAT_BUMP(ddt, dds_lookup_log_hit);
1217 			DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1218 
1219 			return (dde);
1220 		}
1221 
1222 		DDT_KSTAT_BUMP(ddt, dds_lookup_log_miss);
1223 	}
1224 
1225 	/*
1226 	 * ddt_tree is now stable, so unlock and let everyone else keep moving.
1227 	 * Anyone landing on this entry will find it without DDE_FLAG_LOADED,
1228 	 * and go to sleep waiting for it above.
1229 	 */
1230 	ddt_exit(ddt);
1231 
1232 	/* Search all store objects for the entry. */
1233 	error = ENOENT;
1234 	for (type = 0; type < DDT_TYPES; type++) {
1235 		for (class = 0; class < DDT_CLASSES; class++) {
1236 			error = ddt_object_lookup(ddt, type, class, dde);
1237 			if (error != ENOENT) {
1238 				ASSERT0(error);
1239 				break;
1240 			}
1241 		}
1242 		if (error != ENOENT)
1243 			break;
1244 	}
1245 
1246 	ddt_enter(ddt);
1247 
1248 	ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED));
1249 
1250 	dde->dde_type = type;	/* will be DDT_TYPES if no entry found */
1251 	dde->dde_class = class;	/* will be DDT_CLASSES if no entry found */
1252 
1253 	boolean_t valid = B_TRUE;
1254 
1255 	if (dde->dde_type == DDT_TYPES &&
1256 	    dde->dde_class == DDT_CLASSES &&
1257 	    ddt_over_quota(spa)) {
1258 		/* Over quota. If no one is waiting, clean up right now. */
1259 		if (dde->dde_waiters == 0) {
1260 			avl_remove(&ddt->ddt_tree, dde);
1261 			ddt_free(ddt, dde);
1262 			return (NULL);
1263 		}
1264 
1265 		/* Flag cleanup required */
1266 		dde->dde_flags |= DDE_FLAG_OVERQUOTA;
1267 	} else if (error == 0) {
1268 		/*
1269 		 * If what we loaded is no good for this BP and there's no one
1270 		 * waiting for it, we can just remove it and get out. If its no
1271 		 * good but there are waiters, we have to leave it, because we
1272 		 * don't know what they want. If its not needed we'll end up
1273 		 * taking an entry log/sync, but it can only happen if more
1274 		 * than one previous version of this block is being deleted at
1275 		 * the same time. This is extremely unlikely to happen and not
1276 		 * worth the effort to deal with without taking an entry
1277 		 * update.
1278 		 */
1279 		valid = ddt_entry_lookup_is_valid(ddt, bp, dde);
1280 		if (!valid && dde->dde_waiters == 0) {
1281 			avl_remove(&ddt->ddt_tree, dde);
1282 			ddt_free(ddt, dde);
1283 			return (NULL);
1284 		}
1285 
1286 		DDT_KSTAT_BUMP(ddt, dds_lookup_stored_hit);
1287 		DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1288 
1289 		/*
1290 		 * The histograms only track inactive (stored or logged) blocks.
1291 		 * We've just put an entry onto the live list, so we need to
1292 		 * remove its counts. When its synced back, it'll be re-added
1293 		 * to the right one.
1294 		 *
1295 		 * We only do this when we successfully found it in the store.
1296 		 * error == ENOENT means this is a new entry, and so its already
1297 		 * not counted.
1298 		 */
1299 		ddt_histogram_t *ddh =
1300 		    &ddt->ddt_histogram[dde->dde_type][dde->dde_class];
1301 
1302 		ddt_lightweight_entry_t ddlwe;
1303 		DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
1304 		ddt_histogram_sub_entry(ddt, ddh, &ddlwe);
1305 	} else {
1306 		DDT_KSTAT_BUMP(ddt, dds_lookup_stored_miss);
1307 		DDT_KSTAT_BUMP(ddt, dds_lookup_new);
1308 	}
1309 
1310 	/* Entry loaded, everyone can proceed now */
1311 	dde->dde_flags |= DDE_FLAG_LOADED;
1312 	cv_broadcast(&dde->dde_cv);
1313 
1314 	if ((dde->dde_flags & DDE_FLAG_OVERQUOTA) || !valid)
1315 		return (NULL);
1316 
1317 	return (dde);
1318 }
1319 
1320 void
1321 ddt_prefetch(spa_t *spa, const blkptr_t *bp)
1322 {
1323 	ddt_t *ddt;
1324 	ddt_key_t ddk;
1325 
1326 	if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
1327 		return;
1328 
1329 	/*
1330 	 * We only remove the DDT once all tables are empty and only
1331 	 * prefetch dedup blocks when there are entries in the DDT.
1332 	 * Thus no locking is required as the DDT can't disappear on us.
1333 	 */
1334 	ddt = ddt_select(spa, bp);
1335 	ddt_key_fill(&ddk, bp);
1336 
1337 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1338 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1339 			ddt_object_prefetch(ddt, type, class, &ddk);
1340 		}
1341 	}
1342 }
1343 
1344 /*
1345  * ddt_key_t comparison. Any struct wanting to make use of this function must
1346  * have the key as the first element. Casts it to N uint64_ts, and checks until
1347  * we find there's a difference. This is intended to match how ddt_zap.c drives
1348  * the ZAPs (first uint64_t as the key prehash), which will minimise the number
1349  * of ZAP blocks touched when flushing logged entries from an AVL walk. This is
1350  * not an invariant for this function though, should you wish to change it.
1351  */
1352 int
1353 ddt_key_compare(const void *x1, const void *x2)
1354 {
1355 	const uint64_t *k1 = (const uint64_t *)x1;
1356 	const uint64_t *k2 = (const uint64_t *)x2;
1357 
1358 	int cmp;
1359 	for (int i = 0; i < (sizeof (ddt_key_t) / sizeof (uint64_t)); i++)
1360 		if (likely((cmp = TREE_CMP(k1[i], k2[i])) != 0))
1361 			return (cmp);
1362 
1363 	return (0);
1364 }
1365 
1366 /* Create the containing dir for this DDT and bump the feature count */
1367 static void
1368 ddt_create_dir(ddt_t *ddt, dmu_tx_t *tx)
1369 {
1370 	ASSERT3U(ddt->ddt_dir_object, ==, 0);
1371 	ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT);
1372 
1373 	char name[DDT_NAMELEN];
1374 	snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1375 	    zio_checksum_table[ddt->ddt_checksum].ci_name);
1376 
1377 	ddt->ddt_dir_object = zap_create_link(ddt->ddt_os,
1378 	    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, name, tx);
1379 
1380 	VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION,
1381 	    sizeof (uint64_t), 1, &ddt->ddt_version, tx));
1382 	VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS,
1383 	    sizeof (uint64_t), 1, &ddt->ddt_flags, tx));
1384 
1385 	spa_feature_incr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx);
1386 }
1387 
1388 /* Destroy the containing dir and deactivate the feature */
1389 static void
1390 ddt_destroy_dir(ddt_t *ddt, dmu_tx_t *tx)
1391 {
1392 	ASSERT3U(ddt->ddt_dir_object, !=, 0);
1393 	ASSERT3U(ddt->ddt_dir_object, !=, DMU_POOL_DIRECTORY_OBJECT);
1394 	ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT);
1395 
1396 	char name[DDT_NAMELEN];
1397 	snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1398 	    zio_checksum_table[ddt->ddt_checksum].ci_name);
1399 
1400 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1401 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1402 			ASSERT(!ddt_object_exists(ddt, type, class));
1403 		}
1404 	}
1405 
1406 	ddt_log_destroy(ddt, tx);
1407 
1408 	uint64_t count;
1409 	ASSERT0(zap_count(ddt->ddt_os, ddt->ddt_dir_object, &count));
1410 	ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object,
1411 	    DDT_DIR_VERSION));
1412 	ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS));
1413 	ASSERT3U(count, ==, 2);
1414 
1415 	VERIFY0(zap_remove(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, tx));
1416 	VERIFY0(zap_destroy(ddt->ddt_os, ddt->ddt_dir_object, tx));
1417 
1418 	ddt->ddt_dir_object = 0;
1419 
1420 	spa_feature_decr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx);
1421 }
1422 
1423 /*
1424  * Determine, flags and on-disk layout from what's already stored. If there's
1425  * nothing stored, then if new is false, returns ENOENT, and if true, selects
1426  * based on pool config.
1427  */
1428 static int
1429 ddt_configure(ddt_t *ddt, boolean_t new)
1430 {
1431 	spa_t *spa = ddt->ddt_spa;
1432 	char name[DDT_NAMELEN];
1433 	int error;
1434 
1435 	ASSERT3U(spa_load_state(spa), !=, SPA_LOAD_CREATE);
1436 
1437 	boolean_t fdt_enabled =
1438 	    spa_feature_is_enabled(spa, SPA_FEATURE_FAST_DEDUP);
1439 	boolean_t fdt_active =
1440 	    spa_feature_is_active(spa, SPA_FEATURE_FAST_DEDUP);
1441 
1442 	/*
1443 	 * First, look for the global DDT stats object. If its not there, then
1444 	 * there's never been a DDT written before ever, and we know we're
1445 	 * starting from scratch.
1446 	 */
1447 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1448 	    DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
1449 	    &spa->spa_ddt_stat_object);
1450 	if (error != 0) {
1451 		if (error != ENOENT)
1452 			return (error);
1453 		goto not_found;
1454 	}
1455 
1456 	if (fdt_active) {
1457 		/*
1458 		 * Now look for a DDT directory. If it exists, then it has
1459 		 * everything we need.
1460 		 */
1461 		snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1462 		    zio_checksum_table[ddt->ddt_checksum].ci_name);
1463 
1464 		error = zap_lookup(spa->spa_meta_objset,
1465 		    DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1,
1466 		    &ddt->ddt_dir_object);
1467 		if (error == 0) {
1468 			ASSERT3U(spa->spa_meta_objset, ==, ddt->ddt_os);
1469 
1470 			error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object,
1471 			    DDT_DIR_VERSION, sizeof (uint64_t), 1,
1472 			    &ddt->ddt_version);
1473 			if (error != 0)
1474 				return (error);
1475 
1476 			error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object,
1477 			    DDT_DIR_FLAGS, sizeof (uint64_t), 1,
1478 			    &ddt->ddt_flags);
1479 			if (error != 0)
1480 				return (error);
1481 
1482 			if (ddt->ddt_version != DDT_VERSION_FDT) {
1483 				zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s "
1484 				    "unknown version %llu", spa_name(spa),
1485 				    name, (u_longlong_t)ddt->ddt_version);
1486 				return (SET_ERROR(EINVAL));
1487 			}
1488 
1489 			if ((ddt->ddt_flags & ~DDT_FLAG_MASK) != 0) {
1490 				zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s "
1491 				    "version=%llu unknown flags %llx",
1492 				    spa_name(spa), name,
1493 				    (u_longlong_t)ddt->ddt_flags,
1494 				    (u_longlong_t)ddt->ddt_version);
1495 				return (SET_ERROR(EINVAL));
1496 			}
1497 
1498 			return (0);
1499 		}
1500 		if (error != ENOENT)
1501 			return (error);
1502 	}
1503 
1504 	/* Any object in the root indicates a traditional setup. */
1505 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1506 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1507 			ddt_object_name(ddt, type, class, name);
1508 			uint64_t obj;
1509 			error = zap_lookup(spa->spa_meta_objset,
1510 			    DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t),
1511 			    1, &obj);
1512 			if (error == ENOENT)
1513 				continue;
1514 			if (error != 0)
1515 				return (error);
1516 
1517 			ddt->ddt_version = DDT_VERSION_LEGACY;
1518 			ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1519 			ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT;
1520 
1521 			return (0);
1522 		}
1523 	}
1524 
1525 not_found:
1526 	if (!new)
1527 		return (SET_ERROR(ENOENT));
1528 
1529 	/* Nothing on disk, so set up for the best version we can */
1530 	if (fdt_enabled) {
1531 		ddt->ddt_version = DDT_VERSION_FDT;
1532 		ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1533 		ddt->ddt_dir_object = 0; /* create on first use */
1534 	} else {
1535 		ddt->ddt_version = DDT_VERSION_LEGACY;
1536 		ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1537 		ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT;
1538 	}
1539 
1540 	return (0);
1541 }
1542 
1543 static void
1544 ddt_table_alloc_kstats(ddt_t *ddt)
1545 {
1546 	char *mod = kmem_asprintf("zfs/%s", spa_name(ddt->ddt_spa));
1547 	char *name = kmem_asprintf("ddt_stats_%s",
1548 	    zio_checksum_table[ddt->ddt_checksum].ci_name);
1549 
1550 	ddt->ddt_ksp = kstat_create(mod, 0, name, "misc", KSTAT_TYPE_NAMED,
1551 	    sizeof (ddt_kstats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1552 	if (ddt->ddt_ksp != NULL) {
1553 		ddt_kstats_t *dds = kmem_alloc(sizeof (ddt_kstats_t), KM_SLEEP);
1554 		memcpy(dds, &ddt_kstats_template, sizeof (ddt_kstats_t));
1555 		ddt->ddt_ksp->ks_data = dds;
1556 		kstat_install(ddt->ddt_ksp);
1557 	}
1558 
1559 	kmem_strfree(name);
1560 	kmem_strfree(mod);
1561 }
1562 
1563 static ddt_t *
1564 ddt_table_alloc(spa_t *spa, enum zio_checksum c)
1565 {
1566 	ddt_t *ddt;
1567 
1568 	ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP);
1569 	memset(ddt, 0, sizeof (ddt_t));
1570 	mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
1571 	avl_create(&ddt->ddt_tree, ddt_key_compare,
1572 	    sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
1573 	avl_create(&ddt->ddt_repair_tree, ddt_key_compare,
1574 	    sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
1575 
1576 	ddt->ddt_checksum = c;
1577 	ddt->ddt_spa = spa;
1578 	ddt->ddt_os = spa->spa_meta_objset;
1579 	ddt->ddt_version = DDT_VERSION_UNCONFIGURED;
1580 
1581 	ddt_log_alloc(ddt);
1582 	ddt_table_alloc_kstats(ddt);
1583 
1584 	return (ddt);
1585 }
1586 
1587 static void
1588 ddt_table_free(ddt_t *ddt)
1589 {
1590 	if (ddt->ddt_ksp != NULL) {
1591 		kmem_free(ddt->ddt_ksp->ks_data, sizeof (ddt_kstats_t));
1592 		ddt->ddt_ksp->ks_data = NULL;
1593 		kstat_delete(ddt->ddt_ksp);
1594 	}
1595 
1596 	ddt_log_free(ddt);
1597 	ASSERT0(avl_numnodes(&ddt->ddt_tree));
1598 	ASSERT0(avl_numnodes(&ddt->ddt_repair_tree));
1599 	avl_destroy(&ddt->ddt_tree);
1600 	avl_destroy(&ddt->ddt_repair_tree);
1601 	mutex_destroy(&ddt->ddt_lock);
1602 	kmem_cache_free(ddt_cache, ddt);
1603 }
1604 
1605 void
1606 ddt_create(spa_t *spa)
1607 {
1608 	spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;
1609 
1610 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1611 		if (DDT_CHECKSUM_VALID(c))
1612 			spa->spa_ddt[c] = ddt_table_alloc(spa, c);
1613 	}
1614 }
1615 
1616 int
1617 ddt_load(spa_t *spa)
1618 {
1619 	int error;
1620 
1621 	ddt_create(spa);
1622 
1623 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1624 	    DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
1625 	    &spa->spa_ddt_stat_object);
1626 	if (error)
1627 		return (error == ENOENT ? 0 : error);
1628 
1629 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1630 		if (!DDT_CHECKSUM_VALID(c))
1631 			continue;
1632 
1633 		ddt_t *ddt = spa->spa_ddt[c];
1634 		error = ddt_configure(ddt, B_FALSE);
1635 		if (error == ENOENT)
1636 			continue;
1637 		if (error != 0)
1638 			return (error);
1639 
1640 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1641 			for (ddt_class_t class = 0; class < DDT_CLASSES;
1642 			    class++) {
1643 				error = ddt_object_load(ddt, type, class);
1644 				if (error != 0 && error != ENOENT)
1645 					return (error);
1646 			}
1647 		}
1648 
1649 		error = ddt_log_load(ddt);
1650 		if (error != 0 && error != ENOENT)
1651 			return (error);
1652 
1653 		DDT_KSTAT_SET(ddt, dds_log_active_entries,
1654 		    avl_numnodes(&ddt->ddt_log_active->ddl_tree));
1655 		DDT_KSTAT_SET(ddt, dds_log_flushing_entries,
1656 		    avl_numnodes(&ddt->ddt_log_flushing->ddl_tree));
1657 
1658 		/*
1659 		 * Seed the cached histograms.
1660 		 */
1661 		memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1662 		    sizeof (ddt->ddt_histogram));
1663 	}
1664 
1665 	spa->spa_dedup_dspace = ~0ULL;
1666 	spa->spa_dedup_dsize = ~0ULL;
1667 
1668 	return (0);
1669 }
1670 
1671 void
1672 ddt_unload(spa_t *spa)
1673 {
1674 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1675 		if (spa->spa_ddt[c]) {
1676 			ddt_table_free(spa->spa_ddt[c]);
1677 			spa->spa_ddt[c] = NULL;
1678 		}
1679 	}
1680 }
1681 
1682 boolean_t
1683 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp)
1684 {
1685 	ddt_t *ddt;
1686 	ddt_key_t ddk;
1687 
1688 	if (!BP_GET_DEDUP(bp))
1689 		return (B_FALSE);
1690 
1691 	if (max_class == DDT_CLASS_UNIQUE)
1692 		return (B_TRUE);
1693 
1694 	ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];
1695 
1696 	ddt_key_fill(&ddk, bp);
1697 
1698 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1699 		for (ddt_class_t class = 0; class <= max_class; class++) {
1700 			if (ddt_object_contains(ddt, type, class, &ddk) == 0)
1701 				return (B_TRUE);
1702 		}
1703 	}
1704 
1705 	return (B_FALSE);
1706 }
1707 
1708 ddt_entry_t *
1709 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
1710 {
1711 	ddt_key_t ddk;
1712 	ddt_entry_t *dde;
1713 
1714 	ddt_key_fill(&ddk, bp);
1715 
1716 	dde = ddt_alloc(ddt, &ddk);
1717 	ddt_alloc_entry_io(dde);
1718 
1719 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1720 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1721 			/*
1722 			 * We can only do repair if there are multiple copies
1723 			 * of the block.  For anything in the UNIQUE class,
1724 			 * there's definitely only one copy, so don't even try.
1725 			 */
1726 			if (class != DDT_CLASS_UNIQUE &&
1727 			    ddt_object_lookup(ddt, type, class, dde) == 0)
1728 				return (dde);
1729 		}
1730 	}
1731 
1732 	memset(dde->dde_phys, 0, DDT_PHYS_SIZE(ddt));
1733 
1734 	return (dde);
1735 }
1736 
1737 void
1738 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
1739 {
1740 	avl_index_t where;
1741 
1742 	ddt_enter(ddt);
1743 
1744 	if (dde->dde_io->dde_repair_abd != NULL &&
1745 	    spa_writeable(ddt->ddt_spa) &&
1746 	    avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
1747 		avl_insert(&ddt->ddt_repair_tree, dde, where);
1748 	else
1749 		ddt_free(ddt, dde);
1750 
1751 	ddt_exit(ddt);
1752 }
1753 
1754 static void
1755 ddt_repair_entry_done(zio_t *zio)
1756 {
1757 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1758 	ddt_entry_t *rdde = zio->io_private;
1759 
1760 	ddt_free(ddt, rdde);
1761 }
1762 
1763 static void
1764 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
1765 {
1766 	ddt_key_t *ddk = &dde->dde_key;
1767 	ddt_key_t *rddk = &rdde->dde_key;
1768 	zio_t *zio;
1769 	blkptr_t blk;
1770 
1771 	zio = zio_null(rio, rio->io_spa, NULL,
1772 	    ddt_repair_entry_done, rdde, rio->io_flags);
1773 
1774 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
1775 		ddt_univ_phys_t *ddp = dde->dde_phys;
1776 		ddt_univ_phys_t *rddp = rdde->dde_phys;
1777 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1778 		uint64_t phys_birth = ddt_phys_birth(ddp, v);
1779 		const dva_t *dvas, *rdvas;
1780 
1781 		if (ddt->ddt_flags & DDT_FLAG_FLAT) {
1782 			dvas = ddp->ddp_flat.ddp_dva;
1783 			rdvas = rddp->ddp_flat.ddp_dva;
1784 		} else {
1785 			dvas = ddp->ddp_trad[p].ddp_dva;
1786 			rdvas = rddp->ddp_trad[p].ddp_dva;
1787 		}
1788 
1789 		if (phys_birth == 0 ||
1790 		    phys_birth != ddt_phys_birth(rddp, v) ||
1791 		    memcmp(dvas, rdvas, sizeof (dva_t) * SPA_DVAS_PER_BP))
1792 			continue;
1793 
1794 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1795 		zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
1796 		    rdde->dde_io->dde_repair_abd, DDK_GET_PSIZE(rddk),
1797 		    NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
1798 		    ZIO_DDT_CHILD_FLAGS(zio), NULL));
1799 	}
1800 
1801 	zio_nowait(zio);
1802 }
1803 
1804 static void
1805 ddt_repair_table(ddt_t *ddt, zio_t *rio)
1806 {
1807 	spa_t *spa = ddt->ddt_spa;
1808 	ddt_entry_t *dde, *rdde_next, *rdde;
1809 	avl_tree_t *t = &ddt->ddt_repair_tree;
1810 	blkptr_t blk;
1811 
1812 	if (spa_sync_pass(spa) > 1)
1813 		return;
1814 
1815 	ddt_enter(ddt);
1816 	for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
1817 		rdde_next = AVL_NEXT(t, rdde);
1818 		avl_remove(&ddt->ddt_repair_tree, rdde);
1819 		ddt_exit(ddt);
1820 		ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL,
1821 		    DDT_PHYS_NONE, &blk);
1822 		dde = ddt_repair_start(ddt, &blk);
1823 		ddt_repair_entry(ddt, dde, rdde, rio);
1824 		ddt_repair_done(ddt, dde);
1825 		ddt_enter(ddt);
1826 	}
1827 	ddt_exit(ddt);
1828 }
1829 
1830 static void
1831 ddt_sync_update_stats(ddt_t *ddt, dmu_tx_t *tx)
1832 {
1833 	/*
1834 	 * Count all the entries stored for each type/class, and updates the
1835 	 * stats within (ddt_object_sync()). If there's no entries for the
1836 	 * type/class, the whole object is removed. If all objects for the DDT
1837 	 * are removed, its containing dir is removed, effectively resetting
1838 	 * the entire DDT to an empty slate.
1839 	 */
1840 	uint64_t count = 0;
1841 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1842 		uint64_t add, tcount = 0;
1843 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1844 			if (ddt_object_exists(ddt, type, class)) {
1845 				ddt_object_sync(ddt, type, class, tx);
1846 				VERIFY0(ddt_object_count(ddt, type, class,
1847 				    &add));
1848 				tcount += add;
1849 			}
1850 		}
1851 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1852 			if (tcount == 0 && ddt_object_exists(ddt, type, class))
1853 				ddt_object_destroy(ddt, type, class, tx);
1854 		}
1855 		count += tcount;
1856 	}
1857 
1858 	if (ddt->ddt_flags & DDT_FLAG_LOG) {
1859 		/* Include logged entries in the total count */
1860 		count += avl_numnodes(&ddt->ddt_log_active->ddl_tree);
1861 		count += avl_numnodes(&ddt->ddt_log_flushing->ddl_tree);
1862 	}
1863 
1864 	if (count == 0) {
1865 		/*
1866 		 * No entries left on the DDT, so reset the version for next
1867 		 * time. This allows us to handle the feature being changed
1868 		 * since the DDT was originally created. New entries should get
1869 		 * whatever the feature currently demands.
1870 		 */
1871 		if (ddt->ddt_version == DDT_VERSION_FDT)
1872 			ddt_destroy_dir(ddt, tx);
1873 
1874 		ddt->ddt_version = DDT_VERSION_UNCONFIGURED;
1875 		ddt->ddt_flags = 0;
1876 	}
1877 
1878 	memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1879 	    sizeof (ddt->ddt_histogram));
1880 	ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
1881 	ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
1882 }
1883 
1884 static void
1885 ddt_sync_scan_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
1886 {
1887 	dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
1888 
1889 	/*
1890 	 * Compute the target class, so we can decide whether or not to inform
1891 	 * the scrub traversal (below). Note that we don't store this in the
1892 	 * entry, as it might change multiple times before finally being
1893 	 * committed (if we're logging). Instead, we recompute it in
1894 	 * ddt_sync_entry().
1895 	 */
1896 	uint64_t refcnt = ddt_phys_total_refcnt(ddt, &ddlwe->ddlwe_phys);
1897 	ddt_class_t nclass =
1898 	    (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE;
1899 
1900 	/*
1901 	 * If the class changes, the order that we scan this bp changes. If it
1902 	 * decreases, we could miss it, so scan it right now. (This covers both
1903 	 * class changing while we are doing ddt_walk(), and when we are
1904 	 * traversing.)
1905 	 *
1906 	 * We also do this when the refcnt goes to zero, because that change is
1907 	 * only in the log so far; the blocks on disk won't be freed until
1908 	 * the log is flushed, and the refcnt might increase before that. If it
1909 	 * does, then we could miss it in the same way.
1910 	 */
1911 	if (refcnt == 0 || nclass < ddlwe->ddlwe_class)
1912 		dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, ddt,
1913 		    ddlwe, tx);
1914 }
1915 
1916 static void
1917 ddt_sync_flush_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe,
1918     ddt_type_t otype, ddt_class_t oclass, dmu_tx_t *tx)
1919 {
1920 	ddt_key_t *ddk = &ddlwe->ddlwe_key;
1921 	ddt_type_t ntype = DDT_TYPE_DEFAULT;
1922 	uint64_t refcnt = 0;
1923 
1924 	/*
1925 	 * Compute the total refcnt. Along the way, issue frees for any DVAs
1926 	 * we no longer want.
1927 	 */
1928 	for (int p = 0; p < DDT_NPHYS(ddt); p++) {
1929 		ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1930 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1931 		uint64_t phys_refcnt = ddt_phys_refcnt(ddp, v);
1932 
1933 		if (ddt_phys_birth(ddp, v) == 0) {
1934 			ASSERT0(phys_refcnt);
1935 			continue;
1936 		}
1937 		if (DDT_PHYS_IS_DITTO(ddt, p)) {
1938 			/*
1939 			 * We don't want to keep any obsolete slots (eg ditto),
1940 			 * regardless of their refcount, but we don't want to
1941 			 * leak them either. So, free them.
1942 			 */
1943 			ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg);
1944 			continue;
1945 		}
1946 		if (phys_refcnt == 0)
1947 			/* No remaining references, free it! */
1948 			ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg);
1949 		refcnt += phys_refcnt;
1950 	}
1951 
1952 	/* Select the best class for the entry. */
1953 	ddt_class_t nclass =
1954 	    (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE;
1955 
1956 	/*
1957 	 * If an existing entry changed type or class, or its refcount reached
1958 	 * zero, delete it from the DDT object
1959 	 */
1960 	if (otype != DDT_TYPES &&
1961 	    (otype != ntype || oclass != nclass || refcnt == 0)) {
1962 		VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx));
1963 		ASSERT(ddt_object_contains(ddt, otype, oclass, ddk) == ENOENT);
1964 	}
1965 
1966 	/*
1967 	 * Add or update the entry
1968 	 */
1969 	if (refcnt != 0) {
1970 		ddt_histogram_t *ddh =
1971 		    &ddt->ddt_histogram[ntype][nclass];
1972 
1973 		ddt_histogram_add_entry(ddt, ddh, ddlwe);
1974 
1975 		if (!ddt_object_exists(ddt, ntype, nclass))
1976 			ddt_object_create(ddt, ntype, nclass, tx);
1977 		VERIFY0(ddt_object_update(ddt, ntype, nclass, ddlwe, tx));
1978 	}
1979 }
1980 
1981 /* Calculate an exponential weighted moving average, lower limited to zero */
1982 static inline int32_t
1983 _ewma(int32_t val, int32_t prev, uint32_t weight)
1984 {
1985 	ASSERT3U(val, >=, 0);
1986 	ASSERT3U(prev, >=, 0);
1987 	const int32_t new =
1988 	    MAX(0, prev + (val-prev) / (int32_t)MAX(weight, 1));
1989 	ASSERT3U(new, >=, 0);
1990 	return (new);
1991 }
1992 
1993 /* Returns true if done for this txg */
1994 static boolean_t
1995 ddt_sync_flush_log_incremental(ddt_t *ddt, dmu_tx_t *tx)
1996 {
1997 	if (ddt->ddt_flush_pass == 0) {
1998 		if (spa_sync_pass(ddt->ddt_spa) == 1) {
1999 			/* First run this txg, get set up */
2000 			ddt->ddt_flush_start = gethrtime();
2001 			ddt->ddt_flush_count = 0;
2002 
2003 			/*
2004 			 * How many entries we need to flush. We want to at
2005 			 * least match the ingest rate.
2006 			 */
2007 			ddt->ddt_flush_min = MAX(
2008 			    ddt->ddt_log_ingest_rate,
2009 			    zfs_dedup_log_flush_entries_min);
2010 
2011 			/*
2012 			 * If we've been asked to flush everything in a hurry,
2013 			 * try to dump as much as possible on this txg. In
2014 			 * this case we're only limited by time, not amount.
2015 			 */
2016 			if (ddt->ddt_flush_force_txg > 0)
2017 				ddt->ddt_flush_min =
2018 				    MAX(ddt->ddt_flush_min, avl_numnodes(
2019 				    &ddt->ddt_log_flushing->ddl_tree));
2020 		} else {
2021 			/* We already decided we're done for this txg */
2022 			return (B_FALSE);
2023 		}
2024 	} else if (ddt->ddt_flush_pass == spa_sync_pass(ddt->ddt_spa)) {
2025 		/*
2026 		 * We already did some flushing on this pass, skip it. This
2027 		 * happens when dsl_process_async_destroys() runs during a scan
2028 		 * (on pass 1) and does an additional ddt_sync() to update
2029 		 * freed blocks.
2030 		 */
2031 		return (B_FALSE);
2032 	}
2033 
2034 	if (spa_sync_pass(ddt->ddt_spa) >
2035 	    MAX(zfs_dedup_log_flush_passes_max, 1)) {
2036 		/* Too many passes this txg, defer until next. */
2037 		ddt->ddt_flush_pass = 0;
2038 		return (B_TRUE);
2039 	}
2040 
2041 	if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) {
2042 		/* Nothing to flush, done for this txg. */
2043 		ddt->ddt_flush_pass = 0;
2044 		return (B_TRUE);
2045 	}
2046 
2047 	uint64_t target_time = txg_sync_waiting(ddt->ddt_spa->spa_dsl_pool) ?
2048 	    MIN(MSEC2NSEC(zfs_dedup_log_flush_min_time_ms),
2049 	    SEC2NSEC(zfs_txg_timeout)) : SEC2NSEC(zfs_txg_timeout);
2050 
2051 	uint64_t elapsed_time = gethrtime() - ddt->ddt_flush_start;
2052 
2053 	if (elapsed_time >= target_time) {
2054 		/* Too long since we started, done for this txg. */
2055 		ddt->ddt_flush_pass = 0;
2056 		return (B_TRUE);
2057 	}
2058 
2059 	ddt->ddt_flush_pass++;
2060 	ASSERT3U(spa_sync_pass(ddt->ddt_spa), ==, ddt->ddt_flush_pass);
2061 
2062 	/*
2063 	 * Estimate how much time we'll need to flush the remaining entries
2064 	 * based on how long it normally takes.
2065 	 */
2066 	uint32_t want_time;
2067 	if (ddt->ddt_flush_pass == 1) {
2068 		/* First pass, use the average time/entries */
2069 		if (ddt->ddt_log_flush_rate == 0)
2070 			/* Zero rate, just assume the whole time */
2071 			want_time = target_time;
2072 		else
2073 			want_time = ddt->ddt_flush_min *
2074 			    ddt->ddt_log_flush_time_rate /
2075 			    ddt->ddt_log_flush_rate;
2076 	} else {
2077 		/* Later pass, calculate from this txg so far */
2078 		want_time = ddt->ddt_flush_min *
2079 		    elapsed_time / ddt->ddt_flush_count;
2080 	}
2081 
2082 	/* Figure out how much time we have left */
2083 	uint32_t remain_time = target_time - elapsed_time;
2084 
2085 	/* Smear the remaining entries over the remaining passes. */
2086 	uint32_t nentries = ddt->ddt_flush_min /
2087 	    (MAX(1, zfs_dedup_log_flush_passes_max) + 1 - ddt->ddt_flush_pass);
2088 	if (want_time > remain_time) {
2089 		/*
2090 		 * We're behind; try to catch up a bit by doubling the amount
2091 		 * this pass. If we're behind that means we're in a later
2092 		 * pass and likely have most of the remaining time to
2093 		 * ourselves. If we're in the last couple of passes, then
2094 		 * doubling might just take us over the timeout, but probably
2095 		 * not be much, and it stops us falling behind. If we're
2096 		 * in the middle passes, there'll be more to do, but it
2097 		 * might just help us catch up a bit and we'll recalculate on
2098 		 * the next pass anyway.
2099 		 */
2100 		nentries = MIN(ddt->ddt_flush_min, nentries*2);
2101 	}
2102 
2103 	ddt_lightweight_entry_t ddlwe;
2104 	uint32_t count = 0;
2105 	while (ddt_log_take_first(ddt, ddt->ddt_log_flushing, &ddlwe)) {
2106 		ddt_sync_flush_entry(ddt, &ddlwe,
2107 		    ddlwe.ddlwe_type, ddlwe.ddlwe_class, tx);
2108 
2109 		/* End this pass if we've synced as much as we need to. */
2110 		if (++count >= nentries)
2111 			break;
2112 	}
2113 	ddt->ddt_flush_count += count;
2114 	ddt->ddt_flush_min -= count;
2115 
2116 	if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) {
2117 		/* We emptied it, so truncate on-disk */
2118 		DDT_KSTAT_ZERO(ddt, dds_log_flushing_entries);
2119 		ddt_log_truncate(ddt, tx);
2120 		/* No more passes needed this txg */
2121 		ddt->ddt_flush_pass = 0;
2122 	} else {
2123 		/* More to do next time, save checkpoint */
2124 		DDT_KSTAT_SUB(ddt, dds_log_flushing_entries, count);
2125 		ddt_log_checkpoint(ddt, &ddlwe, tx);
2126 	}
2127 
2128 	ddt_sync_update_stats(ddt, tx);
2129 
2130 	return (ddt->ddt_flush_pass == 0);
2131 }
2132 
2133 static inline void
2134 ddt_flush_force_update_txg(ddt_t *ddt, uint64_t txg)
2135 {
2136 	/*
2137 	 * If we're not forcing flush, and not being asked to start, then
2138 	 * there's nothing more to do.
2139 	 */
2140 	if (txg == 0) {
2141 		/* Update requested, are we currently forcing flush? */
2142 		if (ddt->ddt_flush_force_txg == 0)
2143 			return;
2144 		txg = ddt->ddt_flush_force_txg;
2145 	}
2146 
2147 	/*
2148 	 * If either of the logs have entries unflushed entries before
2149 	 * the wanted txg, set the force txg, otherwise clear it.
2150 	 */
2151 
2152 	if ((!avl_is_empty(&ddt->ddt_log_active->ddl_tree) &&
2153 	    ddt->ddt_log_active->ddl_first_txg <= txg) ||
2154 	    (!avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) &&
2155 	    ddt->ddt_log_flushing->ddl_first_txg <= txg)) {
2156 		ddt->ddt_flush_force_txg = txg;
2157 		return;
2158 	}
2159 
2160 	/*
2161 	 * Nothing to flush behind the given txg, so we can clear force flush
2162 	 * state.
2163 	 */
2164 	ddt->ddt_flush_force_txg = 0;
2165 }
2166 
2167 static void
2168 ddt_sync_flush_log(ddt_t *ddt, dmu_tx_t *tx)
2169 {
2170 	ASSERT(avl_is_empty(&ddt->ddt_tree));
2171 
2172 	/* Don't do any flushing when the pool is ready to shut down */
2173 	if (tx->tx_txg > spa_final_dirty_txg(ddt->ddt_spa))
2174 		return;
2175 
2176 	/* Try to flush some. */
2177 	if (!ddt_sync_flush_log_incremental(ddt, tx))
2178 		/* More to do next time */
2179 		return;
2180 
2181 	/* No more flushing this txg, so we can do end-of-txg housekeeping */
2182 
2183 	if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) &&
2184 	    !avl_is_empty(&ddt->ddt_log_active->ddl_tree)) {
2185 		/*
2186 		 * No more to flush, and the active list has stuff, so
2187 		 * try to swap the logs for next time.
2188 		 */
2189 		if (ddt_log_swap(ddt, tx)) {
2190 			DDT_KSTAT_ZERO(ddt, dds_log_active_entries);
2191 			DDT_KSTAT_SET(ddt, dds_log_flushing_entries,
2192 			    avl_numnodes(&ddt->ddt_log_flushing->ddl_tree));
2193 		}
2194 	}
2195 
2196 	/* If force flush is no longer necessary, turn it off. */
2197 	ddt_flush_force_update_txg(ddt, 0);
2198 
2199 	/*
2200 	 * Update flush rate. This is an exponential weighted moving average of
2201 	 * the number of entries flushed over recent txgs.
2202 	 */
2203 	ddt->ddt_log_flush_rate = _ewma(
2204 	    ddt->ddt_flush_count, ddt->ddt_log_flush_rate,
2205 	    zfs_dedup_log_flush_flow_rate_txgs);
2206 	DDT_KSTAT_SET(ddt, dds_log_flush_rate, ddt->ddt_log_flush_rate);
2207 
2208 	/*
2209 	 * Update flush time rate. This is an exponential weighted moving
2210 	 * average of the total time taken to flush over recent txgs.
2211 	 */
2212 	ddt->ddt_log_flush_time_rate = _ewma(
2213 	    ddt->ddt_log_flush_time_rate,
2214 	    ((int32_t)(NSEC2MSEC(gethrtime() - ddt->ddt_flush_start))),
2215 	    zfs_dedup_log_flush_flow_rate_txgs);
2216 	DDT_KSTAT_SET(ddt, dds_log_flush_time_rate,
2217 	    ddt->ddt_log_flush_time_rate);
2218 }
2219 
2220 static void
2221 ddt_sync_table_log(ddt_t *ddt, dmu_tx_t *tx)
2222 {
2223 	uint64_t count = avl_numnodes(&ddt->ddt_tree);
2224 
2225 	if (count > 0) {
2226 		ddt_log_update_t dlu = {0};
2227 		ddt_log_begin(ddt, count, tx, &dlu);
2228 
2229 		ddt_entry_t *dde;
2230 		void *cookie = NULL;
2231 		ddt_lightweight_entry_t ddlwe;
2232 		while ((dde =
2233 		    avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
2234 			ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2235 			DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
2236 			ddt_log_entry(ddt, &ddlwe, &dlu);
2237 			ddt_sync_scan_entry(ddt, &ddlwe, tx);
2238 			ddt_free(ddt, dde);
2239 		}
2240 
2241 		ddt_log_commit(ddt, &dlu);
2242 
2243 		DDT_KSTAT_SET(ddt, dds_log_active_entries,
2244 		    avl_numnodes(&ddt->ddt_log_active->ddl_tree));
2245 
2246 		/*
2247 		 * Sync the stats for the store objects. Even though we haven't
2248 		 * modified anything on those objects, they're no longer the
2249 		 * source of truth for entries that are now in the log, and we
2250 		 * need the on-disk counts to reflect that, otherwise we'll
2251 		 * miscount later when importing.
2252 		 */
2253 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
2254 			for (ddt_class_t class = 0;
2255 			    class < DDT_CLASSES; class++) {
2256 				if (ddt_object_exists(ddt, type, class))
2257 					ddt_object_sync(ddt, type, class, tx);
2258 			}
2259 		}
2260 
2261 		memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
2262 		    sizeof (ddt->ddt_histogram));
2263 		ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
2264 		ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
2265 	}
2266 
2267 	if (spa_sync_pass(ddt->ddt_spa) == 1) {
2268 		/*
2269 		 * Update ingest rate. This is an exponential weighted moving
2270 		 * average of the number of entries changed over recent txgs.
2271 		 * The ramp-up cost shouldn't matter too much because the
2272 		 * flusher will be trying to take at least the minimum anyway.
2273 		 */
2274 		ddt->ddt_log_ingest_rate = _ewma(
2275 		    count, ddt->ddt_log_ingest_rate,
2276 		    zfs_dedup_log_flush_flow_rate_txgs);
2277 		DDT_KSTAT_SET(ddt, dds_log_ingest_rate,
2278 		    ddt->ddt_log_ingest_rate);
2279 	}
2280 }
2281 
2282 static void
2283 ddt_sync_table_flush(ddt_t *ddt, dmu_tx_t *tx)
2284 {
2285 	if (avl_numnodes(&ddt->ddt_tree) == 0)
2286 		return;
2287 
2288 	ddt_entry_t *dde;
2289 	void *cookie = NULL;
2290 	while ((dde = avl_destroy_nodes(
2291 	    &ddt->ddt_tree, &cookie)) != NULL) {
2292 		ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2293 
2294 		ddt_lightweight_entry_t ddlwe;
2295 		DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
2296 		ddt_sync_flush_entry(ddt, &ddlwe,
2297 		    dde->dde_type, dde->dde_class, tx);
2298 		ddt_sync_scan_entry(ddt, &ddlwe, tx);
2299 		ddt_free(ddt, dde);
2300 	}
2301 
2302 	memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
2303 	    sizeof (ddt->ddt_histogram));
2304 	ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
2305 	ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
2306 	ddt_sync_update_stats(ddt, tx);
2307 }
2308 
2309 static void
2310 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx)
2311 {
2312 	spa_t *spa = ddt->ddt_spa;
2313 
2314 	if (ddt->ddt_version == UINT64_MAX)
2315 		return;
2316 
2317 	if (spa->spa_uberblock.ub_version < SPA_VERSION_DEDUP) {
2318 		ASSERT0(avl_numnodes(&ddt->ddt_tree));
2319 		return;
2320 	}
2321 
2322 	if (spa->spa_ddt_stat_object == 0) {
2323 		spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
2324 		    DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
2325 		    DMU_POOL_DDT_STATS, tx);
2326 	}
2327 
2328 	if (ddt->ddt_version == DDT_VERSION_FDT && ddt->ddt_dir_object == 0)
2329 		ddt_create_dir(ddt, tx);
2330 
2331 	if (ddt->ddt_flags & DDT_FLAG_LOG)
2332 		ddt_sync_table_log(ddt, tx);
2333 	else
2334 		ddt_sync_table_flush(ddt, tx);
2335 }
2336 
2337 void
2338 ddt_sync(spa_t *spa, uint64_t txg)
2339 {
2340 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2341 	dmu_tx_t *tx;
2342 	zio_t *rio;
2343 
2344 	ASSERT3U(spa_syncing_txg(spa), ==, txg);
2345 
2346 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2347 
2348 	rio = zio_root(spa, NULL, NULL,
2349 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);
2350 
2351 	/*
2352 	 * This function may cause an immediate scan of ddt blocks (see
2353 	 * the comment above dsl_scan_ddt() for details). We set the
2354 	 * scan's root zio here so that we can wait for any scan IOs in
2355 	 * addition to the regular ddt IOs.
2356 	 */
2357 	ASSERT3P(scn->scn_zio_root, ==, NULL);
2358 	scn->scn_zio_root = rio;
2359 
2360 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2361 		ddt_t *ddt = spa->spa_ddt[c];
2362 		if (ddt == NULL)
2363 			continue;
2364 		ddt_sync_table(ddt, tx);
2365 		if (ddt->ddt_flags & DDT_FLAG_LOG)
2366 			ddt_sync_flush_log(ddt, tx);
2367 		ddt_repair_table(ddt, rio);
2368 	}
2369 
2370 	(void) zio_wait(rio);
2371 	scn->scn_zio_root = NULL;
2372 
2373 	dmu_tx_commit(tx);
2374 }
2375 
2376 void
2377 ddt_walk_init(spa_t *spa, uint64_t txg)
2378 {
2379 	if (txg == 0)
2380 		txg = spa_syncing_txg(spa);
2381 
2382 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2383 		ddt_t *ddt = spa->spa_ddt[c];
2384 		if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG))
2385 			continue;
2386 
2387 		ddt_enter(ddt);
2388 		ddt_flush_force_update_txg(ddt, txg);
2389 		ddt_exit(ddt);
2390 	}
2391 }
2392 
2393 boolean_t
2394 ddt_walk_ready(spa_t *spa)
2395 {
2396 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2397 		ddt_t *ddt = spa->spa_ddt[c];
2398 		if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG))
2399 			continue;
2400 
2401 		if (ddt->ddt_flush_force_txg > 0)
2402 			return (B_FALSE);
2403 	}
2404 
2405 	return (B_TRUE);
2406 }
2407 
2408 static int
2409 ddt_walk_impl(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe,
2410     uint64_t flags, boolean_t wait)
2411 {
2412 	do {
2413 		do {
2414 			do {
2415 				ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
2416 				if (ddt == NULL)
2417 					continue;
2418 
2419 				if (flags != 0 &&
2420 				    (ddt->ddt_flags & flags) != flags)
2421 					continue;
2422 
2423 				if (wait && ddt->ddt_flush_force_txg > 0)
2424 					return (EAGAIN);
2425 
2426 				int error = ENOENT;
2427 				if (ddt_object_exists(ddt, ddb->ddb_type,
2428 				    ddb->ddb_class)) {
2429 					error = ddt_object_walk(ddt,
2430 					    ddb->ddb_type, ddb->ddb_class,
2431 					    &ddb->ddb_cursor, ddlwe);
2432 				}
2433 				if (error == 0)
2434 					return (0);
2435 				if (error != ENOENT)
2436 					return (error);
2437 				ddb->ddb_cursor = 0;
2438 			} while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
2439 			ddb->ddb_checksum = 0;
2440 		} while (++ddb->ddb_type < DDT_TYPES);
2441 		ddb->ddb_type = 0;
2442 	} while (++ddb->ddb_class < DDT_CLASSES);
2443 
2444 	return (SET_ERROR(ENOENT));
2445 }
2446 
2447 int
2448 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe)
2449 {
2450 	return (ddt_walk_impl(spa, ddb, ddlwe, 0, B_TRUE));
2451 }
2452 
2453 /*
2454  * This function is used by Block Cloning (brt.c) to increase reference
2455  * counter for the DDT entry if the block is already in DDT.
2456  *
2457  * Return false if the block, despite having the D bit set, is not present
2458  * in the DDT. This is possible when the DDT has been pruned by an admin
2459  * or by the DDT quota mechanism.
2460  */
2461 boolean_t
2462 ddt_addref(spa_t *spa, const blkptr_t *bp)
2463 {
2464 	ddt_t *ddt;
2465 	ddt_entry_t *dde;
2466 	boolean_t result;
2467 
2468 	spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2469 	ddt = ddt_select(spa, bp);
2470 	ddt_enter(ddt);
2471 
2472 	dde = ddt_lookup(ddt, bp);
2473 
2474 	/* Can be NULL if the entry for this block was pruned. */
2475 	if (dde == NULL) {
2476 		ddt_exit(ddt);
2477 		spa_config_exit(spa, SCL_ZIO, FTAG);
2478 		return (B_FALSE);
2479 	}
2480 
2481 	if ((dde->dde_type < DDT_TYPES) || (dde->dde_flags & DDE_FLAG_LOGGED)) {
2482 		/*
2483 		 * This entry was either synced to a store object (dde_type is
2484 		 * real) or was logged. It must be properly on disk at this
2485 		 * point, so we can just bump its refcount.
2486 		 */
2487 		int p = DDT_PHYS_FOR_COPIES(ddt, BP_GET_NDVAS(bp));
2488 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2489 
2490 		ddt_phys_addref(dde->dde_phys, v);
2491 		result = B_TRUE;
2492 	} else {
2493 		/*
2494 		 * If the block has the DEDUP flag set it still might not
2495 		 * exist in the DEDUP table due to DDT pruning of entries
2496 		 * where refcnt=1.
2497 		 */
2498 		ddt_remove(ddt, dde);
2499 		result = B_FALSE;
2500 	}
2501 
2502 	ddt_exit(ddt);
2503 	spa_config_exit(spa, SCL_ZIO, FTAG);
2504 
2505 	return (result);
2506 }
2507 
2508 typedef struct ddt_prune_entry {
2509 	ddt_t		*dpe_ddt;
2510 	ddt_key_t	dpe_key;
2511 	list_node_t	dpe_node;
2512 	ddt_univ_phys_t	dpe_phys[];
2513 } ddt_prune_entry_t;
2514 
2515 typedef struct ddt_prune_info {
2516 	spa_t		*dpi_spa;
2517 	uint64_t	dpi_txg_syncs;
2518 	uint64_t	dpi_pruned;
2519 	list_t		dpi_candidates;
2520 } ddt_prune_info_t;
2521 
2522 /*
2523  * Add prune candidates for ddt_sync during spa_sync
2524  */
2525 static void
2526 prune_candidates_sync(void *arg, dmu_tx_t *tx)
2527 {
2528 	(void) tx;
2529 	ddt_prune_info_t *dpi = arg;
2530 	ddt_prune_entry_t *dpe;
2531 
2532 	spa_config_enter(dpi->dpi_spa, SCL_ZIO, FTAG, RW_READER);
2533 
2534 	/* Process the prune candidates collected so far */
2535 	while ((dpe = list_remove_head(&dpi->dpi_candidates)) != NULL) {
2536 		blkptr_t blk;
2537 		ddt_t *ddt = dpe->dpe_ddt;
2538 
2539 		ddt_enter(ddt);
2540 
2541 		/*
2542 		 * If it's on the live list, then it was loaded for update
2543 		 * this txg and is no longer stale; skip it.
2544 		 */
2545 		if (avl_find(&ddt->ddt_tree, &dpe->dpe_key, NULL)) {
2546 			ddt_exit(ddt);
2547 			kmem_free(dpe, sizeof (*dpe));
2548 			continue;
2549 		}
2550 
2551 		ddt_bp_create(ddt->ddt_checksum, &dpe->dpe_key,
2552 		    dpe->dpe_phys, DDT_PHYS_FLAT, &blk);
2553 
2554 		ddt_entry_t *dde = ddt_lookup(ddt, &blk);
2555 		if (dde != NULL && !(dde->dde_flags & DDE_FLAG_LOGGED)) {
2556 			ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2557 			/*
2558 			 * Zero the physical, so we don't try to free DVAs
2559 			 * at flush nor try to reuse this entry.
2560 			 */
2561 			ddt_phys_clear(dde->dde_phys, DDT_PHYS_FLAT);
2562 
2563 			dpi->dpi_pruned++;
2564 		}
2565 
2566 		ddt_exit(ddt);
2567 		kmem_free(dpe, sizeof (*dpe));
2568 	}
2569 
2570 	spa_config_exit(dpi->dpi_spa, SCL_ZIO, FTAG);
2571 	dpi->dpi_txg_syncs++;
2572 }
2573 
2574 /*
2575  * Prune candidates are collected in open context and processed
2576  * in sync context as part of ddt_sync_table().
2577  */
2578 static void
2579 ddt_prune_entry(list_t *list, ddt_t *ddt, const ddt_key_t *ddk,
2580     const ddt_univ_phys_t *ddp)
2581 {
2582 	ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT);
2583 
2584 	size_t dpe_size = sizeof (ddt_prune_entry_t) + DDT_FLAT_PHYS_SIZE;
2585 	ddt_prune_entry_t *dpe = kmem_alloc(dpe_size, KM_SLEEP);
2586 
2587 	dpe->dpe_ddt = ddt;
2588 	dpe->dpe_key = *ddk;
2589 	memcpy(dpe->dpe_phys, ddp, DDT_FLAT_PHYS_SIZE);
2590 	list_insert_head(list, dpe);
2591 }
2592 
2593 /*
2594  * Interate over all the entries in the DDT unique class.
2595  * The walk will perform one of the following operations:
2596  *  (a) build a histogram than can be used when pruning
2597  *  (b) prune entries older than the cutoff
2598  *
2599  *  Also called by zdb(8) to dump the age histogram
2600  */
2601 void
2602 ddt_prune_walk(spa_t *spa, uint64_t cutoff, ddt_age_histo_t *histogram)
2603 {
2604 	ddt_bookmark_t ddb = {
2605 		.ddb_class = DDT_CLASS_UNIQUE,
2606 		.ddb_type = 0,
2607 		.ddb_checksum = 0,
2608 		.ddb_cursor = 0
2609 	};
2610 	ddt_lightweight_entry_t ddlwe = {0};
2611 	int error;
2612 	int valid = 0;
2613 	int candidates = 0;
2614 	uint64_t now = gethrestime_sec();
2615 	ddt_prune_info_t dpi;
2616 	boolean_t pruning = (cutoff != 0);
2617 
2618 	if (pruning) {
2619 		dpi.dpi_txg_syncs = 0;
2620 		dpi.dpi_pruned = 0;
2621 		dpi.dpi_spa = spa;
2622 		list_create(&dpi.dpi_candidates, sizeof (ddt_prune_entry_t),
2623 		    offsetof(ddt_prune_entry_t, dpe_node));
2624 	}
2625 
2626 	if (histogram != NULL)
2627 		memset(histogram, 0, sizeof (ddt_age_histo_t));
2628 
2629 	while ((error =
2630 	    ddt_walk_impl(spa, &ddb, &ddlwe, DDT_FLAG_FLAT, B_FALSE)) == 0) {
2631 		ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
2632 		VERIFY(ddt);
2633 
2634 		if (spa_shutting_down(spa) || issig())
2635 			break;
2636 
2637 		ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT);
2638 		ASSERT3U(ddlwe.ddlwe_phys.ddp_flat.ddp_refcnt, <=, 1);
2639 
2640 		uint64_t class_start =
2641 		    ddlwe.ddlwe_phys.ddp_flat.ddp_class_start;
2642 
2643 		/*
2644 		 * If this entry is on the log, then the stored entry is stale
2645 		 * and we should skip it.
2646 		 */
2647 		if (ddt_log_find_key(ddt, &ddlwe.ddlwe_key, NULL))
2648 			continue;
2649 
2650 		/* prune older entries */
2651 		if (pruning && class_start < cutoff) {
2652 			if (candidates++ >= zfs_ddt_prunes_per_txg) {
2653 				/* sync prune candidates in batches */
2654 				VERIFY0(dsl_sync_task(spa_name(spa),
2655 				    NULL, prune_candidates_sync,
2656 				    &dpi, 0, ZFS_SPACE_CHECK_NONE));
2657 				candidates = 1;
2658 			}
2659 			ddt_prune_entry(&dpi.dpi_candidates, ddt,
2660 			    &ddlwe.ddlwe_key, &ddlwe.ddlwe_phys);
2661 		}
2662 
2663 		/* build a histogram */
2664 		if (histogram != NULL) {
2665 			uint64_t age = MAX(1, (now - class_start) / 3600);
2666 			int bin = MIN(highbit64(age) - 1, HIST_BINS - 1);
2667 			histogram->dah_entries++;
2668 			histogram->dah_age_histo[bin]++;
2669 		}
2670 
2671 		valid++;
2672 	}
2673 
2674 	if (pruning && valid > 0) {
2675 		if (!list_is_empty(&dpi.dpi_candidates)) {
2676 			/* sync out final batch of prune candidates */
2677 			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2678 			    prune_candidates_sync, &dpi, 0,
2679 			    ZFS_SPACE_CHECK_NONE));
2680 		}
2681 		list_destroy(&dpi.dpi_candidates);
2682 
2683 		zfs_dbgmsg("pruned %llu entries (%d%%) across %llu txg syncs",
2684 		    (u_longlong_t)dpi.dpi_pruned,
2685 		    (int)((dpi.dpi_pruned * 100) / valid),
2686 		    (u_longlong_t)dpi.dpi_txg_syncs);
2687 	}
2688 }
2689 
2690 static uint64_t
2691 ddt_total_entries(spa_t *spa)
2692 {
2693 	ddt_object_t ddo;
2694 	ddt_get_dedup_object_stats(spa, &ddo);
2695 
2696 	return (ddo.ddo_count);
2697 }
2698 
2699 int
2700 ddt_prune_unique_entries(spa_t *spa, zpool_ddt_prune_unit_t unit,
2701     uint64_t amount)
2702 {
2703 	uint64_t cutoff;
2704 	uint64_t start_time = gethrtime();
2705 
2706 	if (spa->spa_active_ddt_prune)
2707 		return (SET_ERROR(EALREADY));
2708 	if (ddt_total_entries(spa) == 0)
2709 		return (0);
2710 
2711 	spa->spa_active_ddt_prune = B_TRUE;
2712 
2713 	zfs_dbgmsg("prune %llu %s", (u_longlong_t)amount,
2714 	    unit == ZPOOL_DDT_PRUNE_PERCENTAGE ? "%" : "seconds old or older");
2715 
2716 	if (unit == ZPOOL_DDT_PRUNE_PERCENTAGE) {
2717 		ddt_age_histo_t histogram;
2718 		uint64_t oldest = 0;
2719 
2720 		/* Make a pass over DDT to build a histogram */
2721 		ddt_prune_walk(spa, 0, &histogram);
2722 
2723 		int target = (histogram.dah_entries * amount) / 100;
2724 
2725 		/*
2726 		 * Figure out our cutoff date
2727 		 * (i.e., which bins to prune from)
2728 		 */
2729 		for (int i = HIST_BINS - 1; i >= 0 && target > 0; i--) {
2730 			if (histogram.dah_age_histo[i] != 0) {
2731 				/* less than this bucket remaining */
2732 				if (target < histogram.dah_age_histo[i]) {
2733 					oldest = MAX(1, (1<<i) * 3600);
2734 					target = 0;
2735 				} else {
2736 					target -= histogram.dah_age_histo[i];
2737 				}
2738 			}
2739 		}
2740 		cutoff = gethrestime_sec() - oldest;
2741 
2742 		if (ddt_dump_prune_histogram)
2743 			ddt_dump_age_histogram(&histogram, cutoff);
2744 	} else if (unit == ZPOOL_DDT_PRUNE_AGE) {
2745 		cutoff = gethrestime_sec() - amount;
2746 	} else {
2747 		return (EINVAL);
2748 	}
2749 
2750 	if (cutoff > 0 && !spa_shutting_down(spa) && !issig()) {
2751 		/* Traverse DDT to prune entries older that our cuttoff */
2752 		ddt_prune_walk(spa, cutoff, NULL);
2753 	}
2754 
2755 	zfs_dbgmsg("%s: prune completed in %llu ms",
2756 	    spa_name(spa), (u_longlong_t)NSEC2MSEC(gethrtime() - start_time));
2757 
2758 	spa->spa_active_ddt_prune = B_FALSE;
2759 	return (0);
2760 }
2761 
2762 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW,
2763 	"Enable prefetching dedup-ed blks");
2764 
2765 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_passes_max, UINT, ZMOD_RW,
2766 	"Max number of incremental dedup log flush passes per transaction");
2767 
2768 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_min_time_ms, UINT, ZMOD_RW,
2769 	"Min time to spend on incremental dedup log flush each transaction");
2770 
2771 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_min, UINT, ZMOD_RW,
2772 	"Min number of log entries to flush each transaction");
2773 
2774 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_flow_rate_txgs, UINT, ZMOD_RW,
2775 	"Number of txgs to average flow rates across");
2776