xref: /freebsd/sys/contrib/openzfs/module/zfs/ddt.c (revision a8089ea5aee578e08acab2438e82fc9a9ae50ed8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright (c) 2022 by Pawel Jakub Dawidek
26  * Copyright (c) 2023, Klara Inc.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/ddt.h>
34 #include <sys/ddt_impl.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dsl_scan.h>
41 #include <sys/abd.h>
42 
43 /*
44  * # DDT: Deduplication tables
45  *
46  * The dedup subsystem provides block-level deduplication. When enabled, blocks
47  * to be written will have the dedup (D) bit set, which causes them to be
48  * tracked in a "dedup table", or DDT. If a block has been seen before (exists
49  * in the DDT), instead of being written, it will instead be made to reference
50  * the existing on-disk data, and a refcount bumped in the DDT instead.
51  *
52  * ## Dedup tables and entries
53  *
54  * Conceptually, a DDT is a dictionary or map. Each entry has a "key"
55  * (ddt_key_t) made up a block's checksum and certian properties, and a "value"
56  * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth
57  * time and refcount. Together these are enough to track references to a
58  * specific block, to build a valid block pointer to reference that block (for
59  * freeing, scrubbing, etc), and to fill a new block pointer with the missing
60  * pieces to make it seem like it was written.
61  *
62  * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[].
63  * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk
64  * object data formats, each with their own implementations) and "classes"
65  * (ddt_class_t, instance of a storage type object, for entries with a specific
66  * characteristic). An entry (key) will only ever exist on one of these objects
67  * at any given time, but may be moved from one to another if their type or
68  * class changes.
69  *
70  * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block
71  * is to be written, before DVAs have been allocated, ddt_lookup() is called to
72  * see if the block has been seen before. If its not found, the write proceeds
73  * as normal, and after it succeeds, a new entry is created. If it is found, we
74  * fill the BP with the DVAs from the entry, increment the refcount and cause
75  * the write IO to return immediately.
76  *
77  * Each ddt_phys_t slot in the entry represents a separate dedup block for the
78  * same content/checksum. The slot is selected based on the zp_copies parameter
79  * the block is written with, that is, the number of DVAs in the block. The
80  * "ditto" slot (DDT_PHYS_DITTO) used to be used for now-removed "dedupditto"
81  * feature. These are no longer written, and will be freed if encountered on
82  * old pools.
83  *
84  * ## Lifetime of an entry
85  *
86  * A DDT can be enormous, and typically is not held in memory all at once.
87  * Instead, the changes to an entry are tracked in memory, and written down to
88  * disk at the end of each txg.
89  *
90  * A "live" in-memory entry (ddt_entry_t) is a node on the live tree
91  * (ddt_tree).  At the start of a txg, ddt_tree is empty. When an entry is
92  * required for IO, ddt_lookup() is called. If an entry already exists on
93  * ddt_tree, it is returned. Otherwise, a new one is created, and the
94  * type/class objects for the DDT are searched for that key. If its found, its
95  * value is copied into the live entry. If not, an empty entry is created.
96  *
97  * The live entry will be modified during the txg, usually by modifying the
98  * refcount, but sometimes by adding or updating DVAs. At the end of the txg
99  * (during spa_sync()), type and class are recalculated for entry (see
100  * ddt_sync_entry()), and the entry is written to the appropriate storage
101  * object and (if necessary), removed from an old one. ddt_tree is cleared and
102  * the next txg can start.
103  *
104  * ## Repair IO
105  *
106  * If a read on a dedup block fails, but there are other copies of the block in
107  * the other ddt_phys_t slots, reads will be issued for those instead
108  * (zio_ddt_read_start()). If one of those succeeds, the read is returned to
109  * the caller, and a copy is stashed on the entry's dde_repair_abd.
110  *
111  * During the end-of-txg sync, any entries with a dde_repair_abd get a
112  * "rewrite" write issued for the original block pointer, with the data read
113  * from the alternate block. If the block is actually damaged, this will invoke
114  * the pool's "self-healing" mechanism, and repair the block.
115  *
116  * ## Scanning (scrub/resilver)
117  *
118  * If dedup is active, the scrub machinery will walk the dedup table first, and
119  * scrub all blocks with refcnt > 1 first. After that it will move on to the
120  * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them.
121  * In this way, heavily deduplicated blocks are only scrubbed once. See the
122  * commentary on dsl_scan_ddt() for more details.
123  *
124  * Walking the DDT is done via ddt_walk(). The current position is stored in a
125  * ddt_bookmark_t, which represents a stable position in the storage object.
126  * This bookmark is stored by the scan machinery, and must reference the same
127  * position on the object even if the object changes, the pool is exported, or
128  * OpenZFS is upgraded.
129  *
130  * ## Interaction with block cloning
131  *
132  * If block cloning and dedup are both enabled on a pool, BRT will look for the
133  * dedup bit on an incoming block pointer. If set, it will call into the DDT
134  * (ddt_addref()) to add a reference to the block, instead of adding a
135  * reference to the BRT. See brt_pending_apply().
136  */
137 
138 /*
139  * These are the only checksums valid for dedup. They must match the list
140  * from dedup_table in zfs_prop.c
141  */
142 #define	DDT_CHECKSUM_VALID(c)	\
143 	(c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \
144 	c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \
145 	c == ZIO_CHECKSUM_BLAKE3)
146 
147 static kmem_cache_t *ddt_cache;
148 static kmem_cache_t *ddt_entry_cache;
149 
150 /*
151  * Enable/disable prefetching of dedup-ed blocks which are going to be freed.
152  */
153 int zfs_dedup_prefetch = 0;
154 
155 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = {
156 	&ddt_zap_ops,
157 };
158 
159 static const char *const ddt_class_name[DDT_CLASSES] = {
160 	"ditto",
161 	"duplicate",
162 	"unique",
163 };
164 
165 static void
166 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
167     dmu_tx_t *tx)
168 {
169 	spa_t *spa = ddt->ddt_spa;
170 	objset_t *os = ddt->ddt_os;
171 	uint64_t *objectp = &ddt->ddt_object[type][class];
172 	boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags &
173 	    ZCHECKSUM_FLAG_DEDUP;
174 	char name[DDT_NAMELEN];
175 
176 	ddt_object_name(ddt, type, class, name);
177 
178 	ASSERT3U(*objectp, ==, 0);
179 	VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash));
180 	ASSERT3U(*objectp, !=, 0);
181 
182 	VERIFY0(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name,
183 	    sizeof (uint64_t), 1, objectp, tx));
184 
185 	VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name,
186 	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
187 	    &ddt->ddt_histogram[type][class], tx));
188 }
189 
190 static void
191 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
192     dmu_tx_t *tx)
193 {
194 	spa_t *spa = ddt->ddt_spa;
195 	objset_t *os = ddt->ddt_os;
196 	uint64_t *objectp = &ddt->ddt_object[type][class];
197 	uint64_t count;
198 	char name[DDT_NAMELEN];
199 
200 	ddt_object_name(ddt, type, class, name);
201 
202 	ASSERT3U(*objectp, !=, 0);
203 	ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
204 	VERIFY0(ddt_object_count(ddt, type, class, &count));
205 	VERIFY0(count);
206 	VERIFY0(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx));
207 	VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx));
208 	VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx));
209 	memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t));
210 
211 	*objectp = 0;
212 }
213 
214 static int
215 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
216 {
217 	ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
218 	dmu_object_info_t doi;
219 	uint64_t count;
220 	char name[DDT_NAMELEN];
221 	int error;
222 
223 	ddt_object_name(ddt, type, class, name);
224 
225 	error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name,
226 	    sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
227 	if (error != 0)
228 		return (error);
229 
230 	error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
231 	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
232 	    &ddt->ddt_histogram[type][class]);
233 	if (error != 0)
234 		return (error);
235 
236 	/*
237 	 * Seed the cached statistics.
238 	 */
239 	error = ddt_object_info(ddt, type, class, &doi);
240 	if (error)
241 		return (error);
242 
243 	error = ddt_object_count(ddt, type, class, &count);
244 	if (error)
245 		return (error);
246 
247 	ddo->ddo_count = count;
248 	ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
249 	ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
250 
251 	return (0);
252 }
253 
254 static void
255 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
256     dmu_tx_t *tx)
257 {
258 	ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
259 	dmu_object_info_t doi;
260 	uint64_t count;
261 	char name[DDT_NAMELEN];
262 
263 	ddt_object_name(ddt, type, class, name);
264 
265 	VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
266 	    sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
267 	    &ddt->ddt_histogram[type][class], tx));
268 
269 	/*
270 	 * Cache DDT statistics; this is the only time they'll change.
271 	 */
272 	VERIFY0(ddt_object_info(ddt, type, class, &doi));
273 	VERIFY0(ddt_object_count(ddt, type, class, &count));
274 
275 	ddo->ddo_count = count;
276 	ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
277 	ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
278 }
279 
280 static boolean_t
281 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
282 {
283 	return (!!ddt->ddt_object[type][class]);
284 }
285 
286 static int
287 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
288     ddt_entry_t *dde)
289 {
290 	if (!ddt_object_exists(ddt, type, class))
291 		return (SET_ERROR(ENOENT));
292 
293 	return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
294 	    ddt->ddt_object[type][class], &dde->dde_key,
295 	    dde->dde_phys, sizeof (dde->dde_phys)));
296 }
297 
298 static int
299 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
300     const ddt_key_t *ddk)
301 {
302 	if (!ddt_object_exists(ddt, type, class))
303 		return (SET_ERROR(ENOENT));
304 
305 	return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os,
306 	    ddt->ddt_object[type][class], ddk));
307 }
308 
309 static void
310 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
311     const ddt_key_t *ddk)
312 {
313 	if (!ddt_object_exists(ddt, type, class))
314 		return;
315 
316 	ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
317 	    ddt->ddt_object[type][class], ddk);
318 }
319 
320 static int
321 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
322     ddt_entry_t *dde, dmu_tx_t *tx)
323 {
324 	ASSERT(ddt_object_exists(ddt, type, class));
325 
326 	return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
327 	    ddt->ddt_object[type][class], &dde->dde_key, dde->dde_phys,
328 	    sizeof (dde->dde_phys), tx));
329 }
330 
331 static int
332 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
333     const ddt_key_t *ddk, dmu_tx_t *tx)
334 {
335 	ASSERT(ddt_object_exists(ddt, type, class));
336 
337 	return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
338 	    ddt->ddt_object[type][class], ddk, tx));
339 }
340 
341 int
342 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
343     uint64_t *walk, ddt_entry_t *dde)
344 {
345 	ASSERT(ddt_object_exists(ddt, type, class));
346 
347 	return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
348 	    ddt->ddt_object[type][class], walk, &dde->dde_key,
349 	    dde->dde_phys, sizeof (dde->dde_phys)));
350 }
351 
352 int
353 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
354     uint64_t *count)
355 {
356 	ASSERT(ddt_object_exists(ddt, type, class));
357 
358 	return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
359 	    ddt->ddt_object[type][class], count));
360 }
361 
362 int
363 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
364     dmu_object_info_t *doi)
365 {
366 	if (!ddt_object_exists(ddt, type, class))
367 		return (SET_ERROR(ENOENT));
368 
369 	return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
370 	    doi));
371 }
372 
373 void
374 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
375     char *name)
376 {
377 	(void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT,
378 	    zio_checksum_table[ddt->ddt_checksum].ci_name,
379 	    ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
380 }
381 
382 void
383 ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg)
384 {
385 	ASSERT3U(txg, !=, 0);
386 
387 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
388 		bp->blk_dva[d] = ddp->ddp_dva[d];
389 	BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth);
390 }
391 
392 /*
393  * The bp created via this function may be used for repairs and scrub, but it
394  * will be missing the salt / IV required to do a full decrypting read.
395  */
396 void
397 ddt_bp_create(enum zio_checksum checksum,
398     const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp)
399 {
400 	BP_ZERO(bp);
401 
402 	if (ddp != NULL)
403 		ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth);
404 
405 	bp->blk_cksum = ddk->ddk_cksum;
406 
407 	BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
408 	BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
409 	BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
410 	BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk));
411 	BP_SET_FILL(bp, 1);
412 	BP_SET_CHECKSUM(bp, checksum);
413 	BP_SET_TYPE(bp, DMU_OT_DEDUP);
414 	BP_SET_LEVEL(bp, 0);
415 	BP_SET_DEDUP(bp, 1);
416 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
417 }
418 
419 void
420 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
421 {
422 	ddk->ddk_cksum = bp->blk_cksum;
423 	ddk->ddk_prop = 0;
424 
425 	ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp));
426 
427 	DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
428 	DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
429 	DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
430 	DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp));
431 }
432 
433 void
434 ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp)
435 {
436 	ASSERT0(ddp->ddp_phys_birth);
437 
438 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
439 		ddp->ddp_dva[d] = bp->blk_dva[d];
440 	ddp->ddp_phys_birth = BP_GET_BIRTH(bp);
441 }
442 
443 void
444 ddt_phys_clear(ddt_phys_t *ddp)
445 {
446 	memset(ddp, 0, sizeof (*ddp));
447 }
448 
449 void
450 ddt_phys_addref(ddt_phys_t *ddp)
451 {
452 	ddp->ddp_refcnt++;
453 }
454 
455 void
456 ddt_phys_decref(ddt_phys_t *ddp)
457 {
458 	if (ddp) {
459 		ASSERT3U(ddp->ddp_refcnt, >, 0);
460 		ddp->ddp_refcnt--;
461 	}
462 }
463 
464 static void
465 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg)
466 {
467 	blkptr_t blk;
468 
469 	ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
470 
471 	/*
472 	 * We clear the dedup bit so that zio_free() will actually free the
473 	 * space, rather than just decrementing the refcount in the DDT.
474 	 */
475 	BP_SET_DEDUP(&blk, 0);
476 
477 	ddt_phys_clear(ddp);
478 	zio_free(ddt->ddt_spa, txg, &blk);
479 }
480 
481 ddt_phys_t *
482 ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp)
483 {
484 	ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys;
485 
486 	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
487 		if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) &&
488 		    BP_GET_BIRTH(bp) == ddp->ddp_phys_birth)
489 			return (ddp);
490 	}
491 	return (NULL);
492 }
493 
494 uint64_t
495 ddt_phys_total_refcnt(const ddt_entry_t *dde)
496 {
497 	uint64_t refcnt = 0;
498 
499 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++)
500 		refcnt += dde->dde_phys[p].ddp_refcnt;
501 
502 	return (refcnt);
503 }
504 
505 ddt_t *
506 ddt_select(spa_t *spa, const blkptr_t *bp)
507 {
508 	ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp)));
509 	return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
510 }
511 
512 void
513 ddt_enter(ddt_t *ddt)
514 {
515 	mutex_enter(&ddt->ddt_lock);
516 }
517 
518 void
519 ddt_exit(ddt_t *ddt)
520 {
521 	mutex_exit(&ddt->ddt_lock);
522 }
523 
524 void
525 ddt_init(void)
526 {
527 	ddt_cache = kmem_cache_create("ddt_cache",
528 	    sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
529 	ddt_entry_cache = kmem_cache_create("ddt_entry_cache",
530 	    sizeof (ddt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
531 }
532 
533 void
534 ddt_fini(void)
535 {
536 	kmem_cache_destroy(ddt_entry_cache);
537 	kmem_cache_destroy(ddt_cache);
538 }
539 
540 static ddt_entry_t *
541 ddt_alloc(const ddt_key_t *ddk)
542 {
543 	ddt_entry_t *dde;
544 
545 	dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP);
546 	memset(dde, 0, sizeof (ddt_entry_t));
547 	cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);
548 
549 	dde->dde_key = *ddk;
550 
551 	return (dde);
552 }
553 
554 static void
555 ddt_free(ddt_entry_t *dde)
556 {
557 	ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
558 
559 	for (int p = 0; p < DDT_PHYS_TYPES; p++)
560 		ASSERT3P(dde->dde_lead_zio[p], ==, NULL);
561 
562 	if (dde->dde_repair_abd != NULL)
563 		abd_free(dde->dde_repair_abd);
564 
565 	cv_destroy(&dde->dde_cv);
566 	kmem_cache_free(ddt_entry_cache, dde);
567 }
568 
569 void
570 ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
571 {
572 	ASSERT(MUTEX_HELD(&ddt->ddt_lock));
573 
574 	avl_remove(&ddt->ddt_tree, dde);
575 	ddt_free(dde);
576 }
577 
578 ddt_entry_t *
579 ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add)
580 {
581 	ddt_key_t search;
582 	ddt_entry_t *dde;
583 	ddt_type_t type;
584 	ddt_class_t class;
585 	avl_index_t where;
586 	int error;
587 
588 	ASSERT(MUTEX_HELD(&ddt->ddt_lock));
589 
590 	ddt_key_fill(&search, bp);
591 
592 	/* Find an existing live entry */
593 	dde = avl_find(&ddt->ddt_tree, &search, &where);
594 	if (dde != NULL) {
595 		/* Found it. If it's already loaded, we can just return it. */
596 		if (dde->dde_flags & DDE_FLAG_LOADED)
597 			return (dde);
598 
599 		/* Someone else is loading it, wait for it. */
600 		while (!(dde->dde_flags & DDE_FLAG_LOADED))
601 			cv_wait(&dde->dde_cv, &ddt->ddt_lock);
602 
603 		return (dde);
604 	}
605 
606 	/* Not found. */
607 	if (!add)
608 		return (NULL);
609 
610 	/* Time to make a new entry. */
611 	dde = ddt_alloc(&search);
612 	avl_insert(&ddt->ddt_tree, dde, where);
613 
614 	/*
615 	 * ddt_tree is now stable, so unlock and let everyone else keep moving.
616 	 * Anyone landing on this entry will find it without DDE_FLAG_LOADED,
617 	 * and go to sleep waiting for it above.
618 	 */
619 	ddt_exit(ddt);
620 
621 	/* Search all store objects for the entry. */
622 	error = ENOENT;
623 	for (type = 0; type < DDT_TYPES; type++) {
624 		for (class = 0; class < DDT_CLASSES; class++) {
625 			error = ddt_object_lookup(ddt, type, class, dde);
626 			if (error != ENOENT) {
627 				ASSERT0(error);
628 				break;
629 			}
630 		}
631 		if (error != ENOENT)
632 			break;
633 	}
634 
635 	ddt_enter(ddt);
636 
637 	ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED));
638 
639 	dde->dde_type = type;	/* will be DDT_TYPES if no entry found */
640 	dde->dde_class = class;	/* will be DDT_CLASSES if no entry found */
641 
642 	if (error == 0)
643 		ddt_stat_update(ddt, dde, -1ULL);
644 
645 	/* Entry loaded, everyone can proceed now */
646 	dde->dde_flags |= DDE_FLAG_LOADED;
647 	cv_broadcast(&dde->dde_cv);
648 
649 	return (dde);
650 }
651 
652 void
653 ddt_prefetch(spa_t *spa, const blkptr_t *bp)
654 {
655 	ddt_t *ddt;
656 	ddt_key_t ddk;
657 
658 	if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
659 		return;
660 
661 	/*
662 	 * We only remove the DDT once all tables are empty and only
663 	 * prefetch dedup blocks when there are entries in the DDT.
664 	 * Thus no locking is required as the DDT can't disappear on us.
665 	 */
666 	ddt = ddt_select(spa, bp);
667 	ddt_key_fill(&ddk, bp);
668 
669 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
670 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
671 			ddt_object_prefetch(ddt, type, class, &ddk);
672 		}
673 	}
674 }
675 
676 /*
677  * Key comparison. Any struct wanting to make use of this function must have
678  * the key as the first element.
679  */
680 #define	DDT_KEY_CMP_LEN	(sizeof (ddt_key_t) / sizeof (uint16_t))
681 
682 typedef struct ddt_key_cmp {
683 	uint16_t	u16[DDT_KEY_CMP_LEN];
684 } ddt_key_cmp_t;
685 
686 int
687 ddt_key_compare(const void *x1, const void *x2)
688 {
689 	const ddt_key_cmp_t *k1 = (const ddt_key_cmp_t *)x1;
690 	const ddt_key_cmp_t *k2 = (const ddt_key_cmp_t *)x2;
691 	int32_t cmp = 0;
692 
693 	for (int i = 0; i < DDT_KEY_CMP_LEN; i++) {
694 		cmp = (int32_t)k1->u16[i] - (int32_t)k2->u16[i];
695 		if (likely(cmp))
696 			break;
697 	}
698 
699 	return (TREE_ISIGN(cmp));
700 }
701 
702 static ddt_t *
703 ddt_table_alloc(spa_t *spa, enum zio_checksum c)
704 {
705 	ddt_t *ddt;
706 
707 	ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP);
708 	memset(ddt, 0, sizeof (ddt_t));
709 
710 	mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
711 	avl_create(&ddt->ddt_tree, ddt_key_compare,
712 	    sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
713 	avl_create(&ddt->ddt_repair_tree, ddt_key_compare,
714 	    sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
715 	ddt->ddt_checksum = c;
716 	ddt->ddt_spa = spa;
717 	ddt->ddt_os = spa->spa_meta_objset;
718 
719 	return (ddt);
720 }
721 
722 static void
723 ddt_table_free(ddt_t *ddt)
724 {
725 	ASSERT0(avl_numnodes(&ddt->ddt_tree));
726 	ASSERT0(avl_numnodes(&ddt->ddt_repair_tree));
727 	avl_destroy(&ddt->ddt_tree);
728 	avl_destroy(&ddt->ddt_repair_tree);
729 	mutex_destroy(&ddt->ddt_lock);
730 	kmem_cache_free(ddt_cache, ddt);
731 }
732 
733 void
734 ddt_create(spa_t *spa)
735 {
736 	spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;
737 
738 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
739 		if (DDT_CHECKSUM_VALID(c))
740 			spa->spa_ddt[c] = ddt_table_alloc(spa, c);
741 	}
742 }
743 
744 int
745 ddt_load(spa_t *spa)
746 {
747 	int error;
748 
749 	ddt_create(spa);
750 
751 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
752 	    DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
753 	    &spa->spa_ddt_stat_object);
754 
755 	if (error)
756 		return (error == ENOENT ? 0 : error);
757 
758 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
759 		if (!DDT_CHECKSUM_VALID(c))
760 			continue;
761 
762 		ddt_t *ddt = spa->spa_ddt[c];
763 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
764 			for (ddt_class_t class = 0; class < DDT_CLASSES;
765 			    class++) {
766 				error = ddt_object_load(ddt, type, class);
767 				if (error != 0 && error != ENOENT)
768 					return (error);
769 			}
770 		}
771 
772 		/*
773 		 * Seed the cached histograms.
774 		 */
775 		memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
776 		    sizeof (ddt->ddt_histogram));
777 		spa->spa_dedup_dspace = ~0ULL;
778 	}
779 
780 	return (0);
781 }
782 
783 void
784 ddt_unload(spa_t *spa)
785 {
786 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
787 		if (spa->spa_ddt[c]) {
788 			ddt_table_free(spa->spa_ddt[c]);
789 			spa->spa_ddt[c] = NULL;
790 		}
791 	}
792 }
793 
794 boolean_t
795 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp)
796 {
797 	ddt_t *ddt;
798 	ddt_key_t ddk;
799 
800 	if (!BP_GET_DEDUP(bp))
801 		return (B_FALSE);
802 
803 	if (max_class == DDT_CLASS_UNIQUE)
804 		return (B_TRUE);
805 
806 	ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];
807 
808 	ddt_key_fill(&ddk, bp);
809 
810 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
811 		for (ddt_class_t class = 0; class <= max_class; class++) {
812 			if (ddt_object_contains(ddt, type, class, &ddk) == 0)
813 				return (B_TRUE);
814 		}
815 	}
816 
817 	return (B_FALSE);
818 }
819 
820 ddt_entry_t *
821 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
822 {
823 	ddt_key_t ddk;
824 	ddt_entry_t *dde;
825 
826 	ddt_key_fill(&ddk, bp);
827 
828 	dde = ddt_alloc(&ddk);
829 
830 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
831 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
832 			/*
833 			 * We can only do repair if there are multiple copies
834 			 * of the block.  For anything in the UNIQUE class,
835 			 * there's definitely only one copy, so don't even try.
836 			 */
837 			if (class != DDT_CLASS_UNIQUE &&
838 			    ddt_object_lookup(ddt, type, class, dde) == 0)
839 				return (dde);
840 		}
841 	}
842 
843 	memset(dde->dde_phys, 0, sizeof (dde->dde_phys));
844 
845 	return (dde);
846 }
847 
848 void
849 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
850 {
851 	avl_index_t where;
852 
853 	ddt_enter(ddt);
854 
855 	if (dde->dde_repair_abd != NULL && spa_writeable(ddt->ddt_spa) &&
856 	    avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
857 		avl_insert(&ddt->ddt_repair_tree, dde, where);
858 	else
859 		ddt_free(dde);
860 
861 	ddt_exit(ddt);
862 }
863 
864 static void
865 ddt_repair_entry_done(zio_t *zio)
866 {
867 	ddt_entry_t *rdde = zio->io_private;
868 
869 	ddt_free(rdde);
870 }
871 
872 static void
873 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
874 {
875 	ddt_phys_t *ddp = dde->dde_phys;
876 	ddt_phys_t *rddp = rdde->dde_phys;
877 	ddt_key_t *ddk = &dde->dde_key;
878 	ddt_key_t *rddk = &rdde->dde_key;
879 	zio_t *zio;
880 	blkptr_t blk;
881 
882 	zio = zio_null(rio, rio->io_spa, NULL,
883 	    ddt_repair_entry_done, rdde, rio->io_flags);
884 
885 	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) {
886 		if (ddp->ddp_phys_birth == 0 ||
887 		    ddp->ddp_phys_birth != rddp->ddp_phys_birth ||
888 		    memcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva)))
889 			continue;
890 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
891 		zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
892 		    rdde->dde_repair_abd, DDK_GET_PSIZE(rddk), NULL, NULL,
893 		    ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL));
894 	}
895 
896 	zio_nowait(zio);
897 }
898 
899 static void
900 ddt_repair_table(ddt_t *ddt, zio_t *rio)
901 {
902 	spa_t *spa = ddt->ddt_spa;
903 	ddt_entry_t *dde, *rdde_next, *rdde;
904 	avl_tree_t *t = &ddt->ddt_repair_tree;
905 	blkptr_t blk;
906 
907 	if (spa_sync_pass(spa) > 1)
908 		return;
909 
910 	ddt_enter(ddt);
911 	for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
912 		rdde_next = AVL_NEXT(t, rdde);
913 		avl_remove(&ddt->ddt_repair_tree, rdde);
914 		ddt_exit(ddt);
915 		ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk);
916 		dde = ddt_repair_start(ddt, &blk);
917 		ddt_repair_entry(ddt, dde, rdde, rio);
918 		ddt_repair_done(ddt, dde);
919 		ddt_enter(ddt);
920 	}
921 	ddt_exit(ddt);
922 }
923 
924 static void
925 ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg)
926 {
927 	dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
928 	ddt_phys_t *ddp = dde->dde_phys;
929 	ddt_key_t *ddk = &dde->dde_key;
930 	ddt_type_t otype = dde->dde_type;
931 	ddt_type_t ntype = DDT_TYPE_DEFAULT;
932 	ddt_class_t oclass = dde->dde_class;
933 	ddt_class_t nclass;
934 	uint64_t total_refcnt = 0;
935 
936 	ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
937 
938 	for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
939 		ASSERT3P(dde->dde_lead_zio[p], ==, NULL);
940 		if (ddp->ddp_phys_birth == 0) {
941 			ASSERT0(ddp->ddp_refcnt);
942 			continue;
943 		}
944 		if (p == DDT_PHYS_DITTO) {
945 			/*
946 			 * Note, we no longer create DDT-DITTO blocks, but we
947 			 * don't want to leak any written by older software.
948 			 */
949 			ddt_phys_free(ddt, ddk, ddp, txg);
950 			continue;
951 		}
952 		if (ddp->ddp_refcnt == 0)
953 			ddt_phys_free(ddt, ddk, ddp, txg);
954 		total_refcnt += ddp->ddp_refcnt;
955 	}
956 
957 	/* We do not create new DDT-DITTO blocks. */
958 	ASSERT0(dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth);
959 	if (total_refcnt > 1)
960 		nclass = DDT_CLASS_DUPLICATE;
961 	else
962 		nclass = DDT_CLASS_UNIQUE;
963 
964 	if (otype != DDT_TYPES &&
965 	    (otype != ntype || oclass != nclass || total_refcnt == 0)) {
966 		VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx));
967 		ASSERT3U(
968 		    ddt_object_contains(ddt, otype, oclass, ddk), ==, ENOENT);
969 	}
970 
971 	if (total_refcnt != 0) {
972 		dde->dde_type = ntype;
973 		dde->dde_class = nclass;
974 		ddt_stat_update(ddt, dde, 0);
975 		if (!ddt_object_exists(ddt, ntype, nclass))
976 			ddt_object_create(ddt, ntype, nclass, tx);
977 		VERIFY0(ddt_object_update(ddt, ntype, nclass, dde, tx));
978 
979 		/*
980 		 * If the class changes, the order that we scan this bp
981 		 * changes.  If it decreases, we could miss it, so
982 		 * scan it right now.  (This covers both class changing
983 		 * while we are doing ddt_walk(), and when we are
984 		 * traversing.)
985 		 */
986 		if (nclass < oclass) {
987 			dsl_scan_ddt_entry(dp->dp_scan,
988 			    ddt->ddt_checksum, dde, tx);
989 		}
990 	}
991 }
992 
993 static void
994 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg)
995 {
996 	spa_t *spa = ddt->ddt_spa;
997 	ddt_entry_t *dde;
998 	void *cookie = NULL;
999 
1000 	if (avl_numnodes(&ddt->ddt_tree) == 0)
1001 		return;
1002 
1003 	ASSERT3U(spa->spa_uberblock.ub_version, >=, SPA_VERSION_DEDUP);
1004 
1005 	if (spa->spa_ddt_stat_object == 0) {
1006 		spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
1007 		    DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
1008 		    DMU_POOL_DDT_STATS, tx);
1009 	}
1010 
1011 	while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
1012 		ddt_sync_entry(ddt, dde, tx, txg);
1013 		ddt_free(dde);
1014 	}
1015 
1016 	for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1017 		uint64_t add, count = 0;
1018 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1019 			if (ddt_object_exists(ddt, type, class)) {
1020 				ddt_object_sync(ddt, type, class, tx);
1021 				VERIFY0(ddt_object_count(ddt, type, class,
1022 				    &add));
1023 				count += add;
1024 			}
1025 		}
1026 		for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1027 			if (count == 0 && ddt_object_exists(ddt, type, class))
1028 				ddt_object_destroy(ddt, type, class, tx);
1029 		}
1030 	}
1031 
1032 	memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1033 	    sizeof (ddt->ddt_histogram));
1034 	spa->spa_dedup_dspace = ~0ULL;
1035 }
1036 
1037 void
1038 ddt_sync(spa_t *spa, uint64_t txg)
1039 {
1040 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1041 	dmu_tx_t *tx;
1042 	zio_t *rio;
1043 
1044 	ASSERT3U(spa_syncing_txg(spa), ==, txg);
1045 
1046 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1047 
1048 	rio = zio_root(spa, NULL, NULL,
1049 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);
1050 
1051 	/*
1052 	 * This function may cause an immediate scan of ddt blocks (see
1053 	 * the comment above dsl_scan_ddt() for details). We set the
1054 	 * scan's root zio here so that we can wait for any scan IOs in
1055 	 * addition to the regular ddt IOs.
1056 	 */
1057 	ASSERT3P(scn->scn_zio_root, ==, NULL);
1058 	scn->scn_zio_root = rio;
1059 
1060 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1061 		ddt_t *ddt = spa->spa_ddt[c];
1062 		if (ddt == NULL)
1063 			continue;
1064 		ddt_sync_table(ddt, tx, txg);
1065 		ddt_repair_table(ddt, rio);
1066 	}
1067 
1068 	(void) zio_wait(rio);
1069 	scn->scn_zio_root = NULL;
1070 
1071 	dmu_tx_commit(tx);
1072 }
1073 
1074 int
1075 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde)
1076 {
1077 	do {
1078 		do {
1079 			do {
1080 				ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
1081 				if (ddt == NULL)
1082 					continue;
1083 				int error = ENOENT;
1084 				if (ddt_object_exists(ddt, ddb->ddb_type,
1085 				    ddb->ddb_class)) {
1086 					error = ddt_object_walk(ddt,
1087 					    ddb->ddb_type, ddb->ddb_class,
1088 					    &ddb->ddb_cursor, dde);
1089 				}
1090 				dde->dde_type = ddb->ddb_type;
1091 				dde->dde_class = ddb->ddb_class;
1092 				if (error == 0)
1093 					return (0);
1094 				if (error != ENOENT)
1095 					return (error);
1096 				ddb->ddb_cursor = 0;
1097 			} while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
1098 			ddb->ddb_checksum = 0;
1099 		} while (++ddb->ddb_type < DDT_TYPES);
1100 		ddb->ddb_type = 0;
1101 	} while (++ddb->ddb_class < DDT_CLASSES);
1102 
1103 	return (SET_ERROR(ENOENT));
1104 }
1105 
1106 /*
1107  * This function is used by Block Cloning (brt.c) to increase reference
1108  * counter for the DDT entry if the block is already in DDT.
1109  *
1110  * Return false if the block, despite having the D bit set, is not present
1111  * in the DDT. Currently this is not possible but might be in the future.
1112  * See the comment below.
1113  */
1114 boolean_t
1115 ddt_addref(spa_t *spa, const blkptr_t *bp)
1116 {
1117 	ddt_t *ddt;
1118 	ddt_entry_t *dde;
1119 	boolean_t result;
1120 
1121 	spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1122 	ddt = ddt_select(spa, bp);
1123 	ddt_enter(ddt);
1124 
1125 	dde = ddt_lookup(ddt, bp, B_TRUE);
1126 	ASSERT3P(dde, !=, NULL);
1127 
1128 	if (dde->dde_type < DDT_TYPES) {
1129 		ddt_phys_t *ddp;
1130 
1131 		ASSERT3S(dde->dde_class, <, DDT_CLASSES);
1132 
1133 		ddp = &dde->dde_phys[BP_GET_NDVAS(bp)];
1134 
1135 		/*
1136 		 * This entry already existed (dde_type is real), so it must
1137 		 * have refcnt >0 at the start of this txg. We are called from
1138 		 * brt_pending_apply(), before frees are issued, so the refcnt
1139 		 * can't be lowered yet. Therefore, it must be >0. We assert
1140 		 * this because if the order of BRT and DDT interactions were
1141 		 * ever to change and the refcnt was ever zero here, then
1142 		 * likely further action is required to fill out the DDT entry,
1143 		 * and this is a place that is likely to be missed in testing.
1144 		 */
1145 		ASSERT3U(ddp->ddp_refcnt, >, 0);
1146 
1147 		ddt_phys_addref(ddp);
1148 		result = B_TRUE;
1149 	} else {
1150 		/*
1151 		 * At the time of implementating this if the block has the
1152 		 * DEDUP flag set it must exist in the DEDUP table, but
1153 		 * there are many advocates that want ability to remove
1154 		 * entries from DDT with refcnt=1. If this will happen,
1155 		 * we may have a block with the DEDUP set, but which doesn't
1156 		 * have a corresponding entry in the DDT. Be ready.
1157 		 */
1158 		ASSERT3S(dde->dde_class, ==, DDT_CLASSES);
1159 		ddt_remove(ddt, dde);
1160 		result = B_FALSE;
1161 	}
1162 
1163 	ddt_exit(ddt);
1164 	spa_config_exit(spa, SCL_ZIO, FTAG);
1165 
1166 	return (result);
1167 }
1168 
1169 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW,
1170 	"Enable prefetching dedup-ed blks");
1171