1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 26 * Copyright (c) 2022 by Pawel Jakub Dawidek 27 * Copyright (c) 2019, 2023, Klara Inc. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/ddt.h> 35 #include <sys/ddt_impl.h> 36 #include <sys/zap.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/arc.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dsl_scan.h> 42 #include <sys/abd.h> 43 #include <sys/zfeature.h> 44 45 /* 46 * # DDT: Deduplication tables 47 * 48 * The dedup subsystem provides block-level deduplication. When enabled, blocks 49 * to be written will have the dedup (D) bit set, which causes them to be 50 * tracked in a "dedup table", or DDT. If a block has been seen before (exists 51 * in the DDT), instead of being written, it will instead be made to reference 52 * the existing on-disk data, and a refcount bumped in the DDT instead. 53 * 54 * ## Dedup tables and entries 55 * 56 * Conceptually, a DDT is a dictionary or map. Each entry has a "key" 57 * (ddt_key_t) made up a block's checksum and certian properties, and a "value" 58 * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth 59 * time and refcount. Together these are enough to track references to a 60 * specific block, to build a valid block pointer to reference that block (for 61 * freeing, scrubbing, etc), and to fill a new block pointer with the missing 62 * pieces to make it seem like it was written. 63 * 64 * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[]. 65 * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk 66 * object data formats, each with their own implementations) and "classes" 67 * (ddt_class_t, instance of a storage type object, for entries with a specific 68 * characteristic). An entry (key) will only ever exist on one of these objects 69 * at any given time, but may be moved from one to another if their type or 70 * class changes. 71 * 72 * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block 73 * is to be written, before DVAs have been allocated, ddt_lookup() is called to 74 * see if the block has been seen before. If its not found, the write proceeds 75 * as normal, and after it succeeds, a new entry is created. If it is found, we 76 * fill the BP with the DVAs from the entry, increment the refcount and cause 77 * the write IO to return immediately. 78 * 79 * Traditionally, each ddt_phys_t slot in the entry represents a separate dedup 80 * block for the same content/checksum. The slot is selected based on the 81 * zp_copies parameter the block is written with, that is, the number of DVAs 82 * in the block. The "ditto" slot (DDT_PHYS_DITTO) used to be used for 83 * now-removed "dedupditto" feature. These are no longer written, and will be 84 * freed if encountered on old pools. 85 * 86 * If the "fast_dedup" feature is enabled, new dedup tables will be created 87 * with the "flat phys" option. In this mode, there is only one ddt_phys_t 88 * slot. If a write is issued for an entry that exists, but has fewer DVAs, 89 * then only as many new DVAs are allocated and written to make up the 90 * shortfall. The existing entry is then extended (ddt_phys_extend()) with the 91 * new DVAs. 92 * 93 * ## Lifetime of an entry 94 * 95 * A DDT can be enormous, and typically is not held in memory all at once. 96 * Instead, the changes to an entry are tracked in memory, and written down to 97 * disk at the end of each txg. 98 * 99 * A "live" in-memory entry (ddt_entry_t) is a node on the live tree 100 * (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is 101 * required for IO, ddt_lookup() is called. If an entry already exists on 102 * ddt_tree, it is returned. Otherwise, a new one is created, and the 103 * type/class objects for the DDT are searched for that key. If its found, its 104 * value is copied into the live entry. If not, an empty entry is created. 105 * 106 * The live entry will be modified during the txg, usually by modifying the 107 * refcount, but sometimes by adding or updating DVAs. At the end of the txg 108 * (during spa_sync()), type and class are recalculated for entry (see 109 * ddt_sync_entry()), and the entry is written to the appropriate storage 110 * object and (if necessary), removed from an old one. ddt_tree is cleared and 111 * the next txg can start. 112 * 113 * ## Dedup quota 114 * 115 * A maximum size for all DDTs on the pool can be set with the 116 * dedup_table_quota property. This is determined in ddt_over_quota() and 117 * enforced during ddt_lookup(). If the pool is at or over its quota limit, 118 * ddt_lookup() will only return entries for existing blocks, as updates are 119 * still possible. New entries will not be created; instead, ddt_lookup() will 120 * return NULL. In response, the DDT write stage (zio_ddt_write()) will remove 121 * the D bit on the block and reissue the IO as a regular write. The block will 122 * not be deduplicated. 123 * 124 * Note that this is based on the on-disk size of the dedup store. Reclaiming 125 * this space after deleting entries relies on the ZAP "shrinking" behaviour, 126 * without which, no space would be recovered and the DDT would continue to be 127 * considered "over quota". See zap_shrink_enabled. 128 * 129 * ## Dedup table pruning 130 * 131 * As a complement to the dedup quota feature, ddtprune allows removal of older 132 * non-duplicate entries to make room for newer duplicate entries. The amount 133 * to prune can be based on a target percentage of the unique entries or based 134 * on the age (i.e., prune unique entry older than N days). 135 * 136 * ## Dedup log 137 * 138 * Historically, all entries modified on a txg were written back to dedup 139 * storage objects at the end of every txg. This could cause significant 140 * overheads, as each entry only takes up a tiny portion of a ZAP leaf node, 141 * and so required reading the whole node, updating the entry, and writing it 142 * back. On busy pools, this could add serious IO and memory overheads. 143 * 144 * To address this, the dedup log was added. If the "fast_dedup" feature is 145 * enabled, at the end of each txg, modified entries will be copied to an 146 * in-memory "log" object (ddt_log_t), and appended to an on-disk log. If the 147 * same block is requested again, the in-memory object will be checked first, 148 * and if its there, the entry inflated back onto the live tree without going 149 * to storage. The on-disk log is only read at pool import time, to reload the 150 * in-memory log. 151 * 152 * Each txg, some amount of the in-memory log will be flushed out to a DDT 153 * storage object (ie ZAP) as normal. OpenZFS will try hard to flush enough to 154 * keep up with the rate of change on dedup entries, but not so much that it 155 * would impact overall throughput, and not using too much memory. See the 156 * zfs_dedup_log_* tunables in zfs(4) for more details. 157 * 158 * ## Repair IO 159 * 160 * If a read on a dedup block fails, but there are other copies of the block in 161 * the other ddt_phys_t slots, reads will be issued for those instead 162 * (zio_ddt_read_start()). If one of those succeeds, the read is returned to 163 * the caller, and a copy is stashed on the entry's dde_repair_abd. 164 * 165 * During the end-of-txg sync, any entries with a dde_repair_abd get a 166 * "rewrite" write issued for the original block pointer, with the data read 167 * from the alternate block. If the block is actually damaged, this will invoke 168 * the pool's "self-healing" mechanism, and repair the block. 169 * 170 * If the "fast_dedup" feature is enabled, the "flat phys" option will be in 171 * use, so there is only ever one ddt_phys_t slot. The repair process will 172 * still happen in this case, though it is unlikely to succeed as there will 173 * usually be no other equivalent blocks to fall back on (though there might 174 * be, if this was an early version of a dedup'd block that has since been 175 * extended). 176 * 177 * Note that this repair mechanism is in addition to and separate from the 178 * regular OpenZFS scrub and self-healing mechanisms. 179 * 180 * ## Scanning (scrub/resilver) 181 * 182 * If dedup is active, the scrub machinery will walk the dedup table first, and 183 * scrub all blocks with refcnt > 1 first. After that it will move on to the 184 * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them. 185 * In this way, heavily deduplicated blocks are only scrubbed once. See the 186 * commentary on dsl_scan_ddt() for more details. 187 * 188 * Walking the DDT is done via ddt_walk(). The current position is stored in a 189 * ddt_bookmark_t, which represents a stable position in the storage object. 190 * This bookmark is stored by the scan machinery, and must reference the same 191 * position on the object even if the object changes, the pool is exported, or 192 * OpenZFS is upgraded. 193 * 194 * If the "fast_dedup" feature is enabled and the table has a log, the scan 195 * cannot begin until entries on the log are flushed, as the on-disk log has no 196 * concept of a "stable position". Instead, the log flushing process will enter 197 * a more aggressive mode, to flush out as much as is necesary as soon as 198 * possible, in order to begin the scan as soon as possible. 199 * 200 * ## Interaction with block cloning 201 * 202 * If block cloning and dedup are both enabled on a pool, BRT will look for the 203 * dedup bit on an incoming block pointer. If set, it will call into the DDT 204 * (ddt_addref()) to add a reference to the block, instead of adding a 205 * reference to the BRT. See brt_pending_apply(). 206 */ 207 208 /* 209 * These are the only checksums valid for dedup. They must match the list 210 * from dedup_table in zfs_prop.c 211 */ 212 #define DDT_CHECKSUM_VALID(c) \ 213 (c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \ 214 c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \ 215 c == ZIO_CHECKSUM_BLAKE3) 216 217 static kmem_cache_t *ddt_cache; 218 219 static kmem_cache_t *ddt_entry_flat_cache; 220 static kmem_cache_t *ddt_entry_trad_cache; 221 222 #define DDT_ENTRY_FLAT_SIZE (sizeof (ddt_entry_t) + DDT_FLAT_PHYS_SIZE) 223 #define DDT_ENTRY_TRAD_SIZE (sizeof (ddt_entry_t) + DDT_TRAD_PHYS_SIZE) 224 225 #define DDT_ENTRY_SIZE(ddt) \ 226 _DDT_PHYS_SWITCH(ddt, DDT_ENTRY_FLAT_SIZE, DDT_ENTRY_TRAD_SIZE) 227 228 /* 229 * Enable/disable prefetching of dedup-ed blocks which are going to be freed. 230 */ 231 int zfs_dedup_prefetch = 0; 232 233 /* 234 * If the dedup class cannot satisfy a DDT allocation, treat as over quota 235 * for this many TXGs. 236 */ 237 uint_t dedup_class_wait_txgs = 5; 238 239 /* 240 * How many DDT prune entries to add to the DDT sync AVL tree. 241 * Note these addtional entries have a memory footprint of a 242 * ddt_entry_t (216 bytes). 243 */ 244 static uint32_t zfs_ddt_prunes_per_txg = 50000; 245 246 /* 247 * For testing, synthesize aged DDT entries 248 * (in global scope for ztest) 249 */ 250 boolean_t ddt_prune_artificial_age = B_FALSE; 251 boolean_t ddt_dump_prune_histogram = B_FALSE; 252 253 /* 254 * Minimum time to flush per txg. 255 */ 256 uint_t zfs_dedup_log_flush_min_time_ms = 1000; 257 258 /* 259 * Minimum entries to flush per txg. 260 */ 261 uint_t zfs_dedup_log_flush_entries_min = 200; 262 263 /* 264 * Target number of TXGs until the whole dedup log has been flushed. 265 * The log size will float around this value times the ingest rate. 266 */ 267 uint_t zfs_dedup_log_flush_txgs = 100; 268 269 /* 270 * Maximum entries to flush per txg. Used for testing the dedup log. 271 */ 272 uint_t zfs_dedup_log_flush_entries_max = UINT_MAX; 273 274 /* 275 * Soft cap for the size of the current dedup log. If the log is larger 276 * than this size, we slightly increase the aggressiveness of the flushing to 277 * try to bring it back down to the soft cap. 278 */ 279 uint_t zfs_dedup_log_cap = UINT_MAX; 280 281 /* 282 * If this is set to B_TRUE, the cap above acts more like a hard cap: 283 * flushing is significantly more aggressive, increasing the minimum amount we 284 * flush per txg, as well as the maximum. 285 */ 286 boolean_t zfs_dedup_log_hard_cap = B_FALSE; 287 288 /* 289 * Number of txgs to average flow rates across. 290 */ 291 uint_t zfs_dedup_log_flush_flow_rate_txgs = 10; 292 293 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = { 294 &ddt_zap_ops, 295 }; 296 297 static const char *const ddt_class_name[DDT_CLASSES] = { 298 "ditto", 299 "duplicate", 300 "unique", 301 }; 302 303 /* 304 * DDT feature flags automatically enabled for each on-disk version. Note that 305 * versions >0 cannot exist on disk without SPA_FEATURE_FAST_DEDUP enabled. 306 */ 307 static const uint64_t ddt_version_flags[] = { 308 [DDT_VERSION_LEGACY] = 0, 309 [DDT_VERSION_FDT] = DDT_FLAG_FLAT | DDT_FLAG_LOG, 310 }; 311 312 /* per-DDT kstats */ 313 typedef struct { 314 /* total lookups and whether they returned new or existing entries */ 315 kstat_named_t dds_lookup; 316 kstat_named_t dds_lookup_new; 317 kstat_named_t dds_lookup_existing; 318 319 /* entries found on live tree, and if we had to wait for load */ 320 kstat_named_t dds_lookup_live_hit; 321 kstat_named_t dds_lookup_live_wait; 322 kstat_named_t dds_lookup_live_miss; 323 324 /* entries found on log trees */ 325 kstat_named_t dds_lookup_log_hit; 326 kstat_named_t dds_lookup_log_active_hit; 327 kstat_named_t dds_lookup_log_flushing_hit; 328 kstat_named_t dds_lookup_log_miss; 329 330 /* entries found on store objects */ 331 kstat_named_t dds_lookup_stored_hit; 332 kstat_named_t dds_lookup_stored_miss; 333 334 /* number of entries on log trees */ 335 kstat_named_t dds_log_active_entries; 336 kstat_named_t dds_log_flushing_entries; 337 338 /* avg updated/flushed entries per txg */ 339 kstat_named_t dds_log_ingest_rate; 340 kstat_named_t dds_log_flush_rate; 341 kstat_named_t dds_log_flush_time_rate; 342 } ddt_kstats_t; 343 344 static const ddt_kstats_t ddt_kstats_template = { 345 { "lookup", KSTAT_DATA_UINT64 }, 346 { "lookup_new", KSTAT_DATA_UINT64 }, 347 { "lookup_existing", KSTAT_DATA_UINT64 }, 348 { "lookup_live_hit", KSTAT_DATA_UINT64 }, 349 { "lookup_live_wait", KSTAT_DATA_UINT64 }, 350 { "lookup_live_miss", KSTAT_DATA_UINT64 }, 351 { "lookup_log_hit", KSTAT_DATA_UINT64 }, 352 { "lookup_log_active_hit", KSTAT_DATA_UINT64 }, 353 { "lookup_log_flushing_hit", KSTAT_DATA_UINT64 }, 354 { "lookup_log_miss", KSTAT_DATA_UINT64 }, 355 { "lookup_stored_hit", KSTAT_DATA_UINT64 }, 356 { "lookup_stored_miss", KSTAT_DATA_UINT64 }, 357 { "log_active_entries", KSTAT_DATA_UINT64 }, 358 { "log_flushing_entries", KSTAT_DATA_UINT64 }, 359 { "log_ingest_rate", KSTAT_DATA_UINT32 }, 360 { "log_flush_rate", KSTAT_DATA_UINT32 }, 361 { "log_flush_time_rate", KSTAT_DATA_UINT32 }, 362 }; 363 364 #ifdef _KERNEL 365 #define _DDT_KSTAT_STAT(ddt, stat) \ 366 &((ddt_kstats_t *)(ddt)->ddt_ksp->ks_data)->stat.value.ui64 367 #define DDT_KSTAT_BUMP(ddt, stat) \ 368 do { atomic_inc_64(_DDT_KSTAT_STAT(ddt, stat)); } while (0) 369 #define DDT_KSTAT_ADD(ddt, stat, val) \ 370 do { atomic_add_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 371 #define DDT_KSTAT_SUB(ddt, stat, val) \ 372 do { atomic_sub_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 373 #define DDT_KSTAT_SET(ddt, stat, val) \ 374 do { atomic_store_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 375 #define DDT_KSTAT_ZERO(ddt, stat) DDT_KSTAT_SET(ddt, stat, 0) 376 #else 377 #define DDT_KSTAT_BUMP(ddt, stat) do {} while (0) 378 #define DDT_KSTAT_ADD(ddt, stat, val) do {} while (0) 379 #define DDT_KSTAT_SUB(ddt, stat, val) do {} while (0) 380 #define DDT_KSTAT_SET(ddt, stat, val) do {} while (0) 381 #define DDT_KSTAT_ZERO(ddt, stat) do {} while (0) 382 #endif /* _KERNEL */ 383 384 385 static void 386 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 387 dmu_tx_t *tx) 388 { 389 spa_t *spa = ddt->ddt_spa; 390 objset_t *os = ddt->ddt_os; 391 uint64_t *objectp = &ddt->ddt_object[type][class]; 392 boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags & 393 ZCHECKSUM_FLAG_DEDUP; 394 char name[DDT_NAMELEN]; 395 396 ASSERT3U(ddt->ddt_dir_object, >, 0); 397 398 ddt_object_name(ddt, type, class, name); 399 400 ASSERT0(*objectp); 401 VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash)); 402 ASSERT3U(*objectp, !=, 0); 403 404 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 405 406 VERIFY0(zap_add(os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1, 407 objectp, tx)); 408 409 VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name, 410 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 411 &ddt->ddt_histogram[type][class], tx)); 412 } 413 414 static void 415 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 416 dmu_tx_t *tx) 417 { 418 spa_t *spa = ddt->ddt_spa; 419 objset_t *os = ddt->ddt_os; 420 uint64_t *objectp = &ddt->ddt_object[type][class]; 421 uint64_t count; 422 char name[DDT_NAMELEN]; 423 424 ASSERT3U(ddt->ddt_dir_object, >, 0); 425 426 ddt_object_name(ddt, type, class, name); 427 428 ASSERT3U(*objectp, !=, 0); 429 ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class])); 430 VERIFY0(ddt_object_count(ddt, type, class, &count)); 431 VERIFY0(count); 432 VERIFY0(zap_remove(os, ddt->ddt_dir_object, name, tx)); 433 VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx)); 434 VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx)); 435 memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t)); 436 437 *objectp = 0; 438 } 439 440 static int 441 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 442 { 443 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; 444 dmu_object_info_t doi; 445 uint64_t count; 446 char name[DDT_NAMELEN]; 447 int error; 448 449 if (ddt->ddt_dir_object == 0) { 450 /* 451 * If we're configured but the containing dir doesn't exist 452 * yet, then this object can't possibly exist either. 453 */ 454 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 455 return (SET_ERROR(ENOENT)); 456 } 457 458 ddt_object_name(ddt, type, class, name); 459 460 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name, 461 sizeof (uint64_t), 1, &ddt->ddt_object[type][class]); 462 if (error != 0) 463 return (error); 464 465 error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, 466 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 467 &ddt->ddt_histogram[type][class]); 468 if (error != 0) 469 return (error); 470 471 /* 472 * Seed the cached statistics. 473 */ 474 error = ddt_object_info(ddt, type, class, &doi); 475 if (error) 476 return (error); 477 478 error = ddt_object_count(ddt, type, class, &count); 479 if (error) 480 return (error); 481 482 ddo->ddo_count = count; 483 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; 484 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; 485 486 return (0); 487 } 488 489 static void 490 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 491 dmu_tx_t *tx) 492 { 493 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; 494 dmu_object_info_t doi; 495 uint64_t count; 496 char name[DDT_NAMELEN]; 497 498 ddt_object_name(ddt, type, class, name); 499 500 VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, 501 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 502 &ddt->ddt_histogram[type][class], tx)); 503 504 /* 505 * Cache DDT statistics; this is the only time they'll change. 506 */ 507 VERIFY0(ddt_object_info(ddt, type, class, &doi)); 508 VERIFY0(ddt_object_count(ddt, type, class, &count)); 509 510 ddo->ddo_count = count; 511 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; 512 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; 513 } 514 515 static boolean_t 516 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 517 { 518 return (!!ddt->ddt_object[type][class]); 519 } 520 521 static int 522 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 523 ddt_entry_t *dde) 524 { 525 if (!ddt_object_exists(ddt, type, class)) 526 return (SET_ERROR(ENOENT)); 527 528 return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os, 529 ddt->ddt_object[type][class], &dde->dde_key, 530 dde->dde_phys, DDT_PHYS_SIZE(ddt))); 531 } 532 533 static int 534 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 535 const ddt_key_t *ddk) 536 { 537 if (!ddt_object_exists(ddt, type, class)) 538 return (SET_ERROR(ENOENT)); 539 540 return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os, 541 ddt->ddt_object[type][class], ddk)); 542 } 543 544 static void 545 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 546 const ddt_key_t *ddk) 547 { 548 if (!ddt_object_exists(ddt, type, class)) 549 return; 550 551 ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os, 552 ddt->ddt_object[type][class], ddk); 553 } 554 555 static void 556 ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 557 { 558 if (!ddt_object_exists(ddt, type, class)) 559 return; 560 561 ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os, 562 ddt->ddt_object[type][class]); 563 } 564 565 static int 566 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 567 const ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 568 { 569 ASSERT(ddt_object_exists(ddt, type, class)); 570 571 return (ddt_ops[type]->ddt_op_update(ddt->ddt_os, 572 ddt->ddt_object[type][class], &ddlwe->ddlwe_key, 573 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt), tx)); 574 } 575 576 static int 577 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 578 const ddt_key_t *ddk, dmu_tx_t *tx) 579 { 580 ASSERT(ddt_object_exists(ddt, type, class)); 581 582 return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os, 583 ddt->ddt_object[type][class], ddk, tx)); 584 } 585 586 int 587 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 588 uint64_t *walk, ddt_lightweight_entry_t *ddlwe) 589 { 590 ASSERT(ddt_object_exists(ddt, type, class)); 591 592 int error = ddt_ops[type]->ddt_op_walk(ddt->ddt_os, 593 ddt->ddt_object[type][class], walk, &ddlwe->ddlwe_key, 594 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 595 if (error == 0) { 596 ddlwe->ddlwe_type = type; 597 ddlwe->ddlwe_class = class; 598 return (0); 599 } 600 return (error); 601 } 602 603 int 604 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 605 uint64_t *count) 606 { 607 ASSERT(ddt_object_exists(ddt, type, class)); 608 609 return (ddt_ops[type]->ddt_op_count(ddt->ddt_os, 610 ddt->ddt_object[type][class], count)); 611 } 612 613 int 614 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 615 dmu_object_info_t *doi) 616 { 617 if (!ddt_object_exists(ddt, type, class)) 618 return (SET_ERROR(ENOENT)); 619 620 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class], 621 doi)); 622 } 623 624 void 625 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 626 char *name) 627 { 628 (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT, 629 zio_checksum_table[ddt->ddt_checksum].ci_name, 630 ddt_ops[type]->ddt_op_name, ddt_class_name[class]); 631 } 632 633 void 634 ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, 635 blkptr_t *bp, uint64_t txg) 636 { 637 ASSERT3U(txg, !=, 0); 638 ASSERT3U(v, <, DDT_PHYS_NONE); 639 uint64_t phys_birth; 640 const dva_t *dvap; 641 642 if (v == DDT_PHYS_FLAT) { 643 phys_birth = ddp->ddp_flat.ddp_phys_birth; 644 dvap = ddp->ddp_flat.ddp_dva; 645 } else { 646 phys_birth = ddp->ddp_trad[v].ddp_phys_birth; 647 dvap = ddp->ddp_trad[v].ddp_dva; 648 } 649 650 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 651 bp->blk_dva[d] = dvap[d]; 652 BP_SET_BIRTH(bp, txg, phys_birth); 653 } 654 655 /* 656 * The bp created via this function may be used for repairs and scrub, but it 657 * will be missing the salt / IV required to do a full decrypting read. 658 */ 659 void 660 ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, 661 const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp) 662 { 663 BP_ZERO(bp); 664 665 if (ddp != NULL) 666 ddt_bp_fill(ddp, v, bp, ddt_phys_birth(ddp, v)); 667 668 bp->blk_cksum = ddk->ddk_cksum; 669 670 BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk)); 671 BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk)); 672 BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk)); 673 BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk)); 674 BP_SET_FILL(bp, 1); 675 BP_SET_CHECKSUM(bp, checksum); 676 BP_SET_TYPE(bp, DMU_OT_DEDUP); 677 BP_SET_LEVEL(bp, 0); 678 BP_SET_DEDUP(bp, 1); 679 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 680 } 681 682 void 683 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp) 684 { 685 ddk->ddk_cksum = bp->blk_cksum; 686 ddk->ddk_prop = 0; 687 688 ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp)); 689 690 DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp)); 691 DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp)); 692 DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp)); 693 DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp)); 694 } 695 696 void 697 ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp) 698 { 699 ASSERT3U(v, <, DDT_PHYS_NONE); 700 int bp_ndvas = BP_GET_NDVAS(bp); 701 int ddp_max_dvas = BP_IS_ENCRYPTED(bp) ? 702 SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP; 703 dva_t *dvas = (v == DDT_PHYS_FLAT) ? 704 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 705 706 int s = 0, d = 0; 707 while (s < bp_ndvas && d < ddp_max_dvas) { 708 if (DVA_IS_VALID(&dvas[d])) { 709 d++; 710 continue; 711 } 712 dvas[d] = bp->blk_dva[s]; 713 s++; d++; 714 } 715 716 /* 717 * If the caller offered us more DVAs than we can fit, something has 718 * gone wrong in their accounting. zio_ddt_write() should never ask for 719 * more than we need. 720 */ 721 ASSERT3U(s, ==, bp_ndvas); 722 723 if (BP_IS_ENCRYPTED(bp)) 724 dvas[2] = bp->blk_dva[2]; 725 726 if (ddt_phys_birth(ddp, v) == 0) { 727 if (v == DDT_PHYS_FLAT) { 728 ddp->ddp_flat.ddp_phys_birth = 729 BP_GET_PHYSICAL_BIRTH(bp); 730 } else { 731 ddp->ddp_trad[v].ddp_phys_birth = 732 BP_GET_PHYSICAL_BIRTH(bp); 733 } 734 } 735 } 736 737 void 738 ddt_phys_unextend(ddt_univ_phys_t *cur, ddt_univ_phys_t *orig, 739 ddt_phys_variant_t v) 740 { 741 ASSERT3U(v, <, DDT_PHYS_NONE); 742 dva_t *cur_dvas = (v == DDT_PHYS_FLAT) ? 743 cur->ddp_flat.ddp_dva : cur->ddp_trad[v].ddp_dva; 744 dva_t *orig_dvas = (v == DDT_PHYS_FLAT) ? 745 orig->ddp_flat.ddp_dva : orig->ddp_trad[v].ddp_dva; 746 747 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 748 cur_dvas[d] = orig_dvas[d]; 749 750 if (ddt_phys_birth(orig, v) == 0) { 751 if (v == DDT_PHYS_FLAT) 752 cur->ddp_flat.ddp_phys_birth = 0; 753 else 754 cur->ddp_trad[v].ddp_phys_birth = 0; 755 } 756 } 757 758 void 759 ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src, 760 ddt_phys_variant_t v) 761 { 762 ASSERT3U(v, <, DDT_PHYS_NONE); 763 764 if (v == DDT_PHYS_FLAT) 765 dst->ddp_flat = src->ddp_flat; 766 else 767 dst->ddp_trad[v] = src->ddp_trad[v]; 768 } 769 770 void 771 ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 772 { 773 ASSERT3U(v, <, DDT_PHYS_NONE); 774 775 if (v == DDT_PHYS_FLAT) 776 memset(&ddp->ddp_flat, 0, DDT_FLAT_PHYS_SIZE); 777 else 778 memset(&ddp->ddp_trad[v], 0, DDT_TRAD_PHYS_SIZE / DDT_PHYS_MAX); 779 } 780 781 static uint64_t 782 ddt_class_start(void) 783 { 784 uint64_t start = gethrestime_sec(); 785 786 if (ddt_prune_artificial_age) { 787 /* 788 * debug aide -- simulate a wider distribution 789 * so we don't have to wait for an aged DDT 790 * to test prune. 791 */ 792 int range = 1 << 21; 793 int percent = random_in_range(100); 794 if (percent < 50) { 795 range = range >> 4; 796 } else if (percent > 75) { 797 range /= 2; 798 } 799 start -= random_in_range(range); 800 } 801 802 return (start); 803 } 804 805 void 806 ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 807 { 808 ASSERT3U(v, <, DDT_PHYS_NONE); 809 810 if (v == DDT_PHYS_FLAT) 811 ddp->ddp_flat.ddp_refcnt++; 812 else 813 ddp->ddp_trad[v].ddp_refcnt++; 814 } 815 816 uint64_t 817 ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 818 { 819 ASSERT3U(v, <, DDT_PHYS_NONE); 820 821 uint64_t *refcntp; 822 823 if (v == DDT_PHYS_FLAT) 824 refcntp = &ddp->ddp_flat.ddp_refcnt; 825 else 826 refcntp = &ddp->ddp_trad[v].ddp_refcnt; 827 828 ASSERT3U(*refcntp, >, 0); 829 (*refcntp)--; 830 return (*refcntp); 831 } 832 833 static void 834 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_univ_phys_t *ddp, 835 ddt_phys_variant_t v, uint64_t txg) 836 { 837 blkptr_t blk; 838 839 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 840 841 /* 842 * We clear the dedup bit so that zio_free() will actually free the 843 * space, rather than just decrementing the refcount in the DDT. 844 */ 845 BP_SET_DEDUP(&blk, 0); 846 847 ddt_phys_clear(ddp, v); 848 zio_free(ddt->ddt_spa, txg, &blk); 849 } 850 851 uint64_t 852 ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 853 { 854 ASSERT3U(v, <, DDT_PHYS_NONE); 855 856 if (v == DDT_PHYS_FLAT) 857 return (ddp->ddp_flat.ddp_phys_birth); 858 else 859 return (ddp->ddp_trad[v].ddp_phys_birth); 860 } 861 862 int 863 ddt_phys_is_gang(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 864 { 865 ASSERT3U(v, <, DDT_PHYS_NONE); 866 867 const dva_t *dvas = (v == DDT_PHYS_FLAT) ? 868 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 869 870 return (DVA_GET_GANG(&dvas[0])); 871 } 872 873 int 874 ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, 875 boolean_t encrypted) 876 { 877 ASSERT3U(v, <, DDT_PHYS_NONE); 878 879 const dva_t *dvas = (v == DDT_PHYS_FLAT) ? 880 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 881 882 return (DVA_IS_VALID(&dvas[0]) + 883 DVA_IS_VALID(&dvas[1]) + 884 DVA_IS_VALID(&dvas[2]) * !encrypted); 885 } 886 887 ddt_phys_variant_t 888 ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp) 889 { 890 if (dde == NULL) 891 return (DDT_PHYS_NONE); 892 893 const ddt_univ_phys_t *ddp = dde->dde_phys; 894 895 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 896 if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_flat.ddp_dva[0]) && 897 BP_GET_PHYSICAL_BIRTH(bp) == ddp->ddp_flat.ddp_phys_birth) { 898 return (DDT_PHYS_FLAT); 899 } 900 } else /* traditional phys */ { 901 for (int p = 0; p < DDT_PHYS_MAX; p++) { 902 if (DVA_EQUAL(BP_IDENTITY(bp), 903 &ddp->ddp_trad[p].ddp_dva[0]) && 904 BP_GET_PHYSICAL_BIRTH(bp) == 905 ddp->ddp_trad[p].ddp_phys_birth) { 906 return (p); 907 } 908 } 909 } 910 return (DDT_PHYS_NONE); 911 } 912 913 uint64_t 914 ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 915 { 916 ASSERT3U(v, <, DDT_PHYS_NONE); 917 918 if (v == DDT_PHYS_FLAT) 919 return (ddp->ddp_flat.ddp_refcnt); 920 else 921 return (ddp->ddp_trad[v].ddp_refcnt); 922 } 923 924 uint64_t 925 ddt_phys_total_refcnt(const ddt_t *ddt, const ddt_univ_phys_t *ddp) 926 { 927 uint64_t refcnt = 0; 928 929 if (ddt->ddt_flags & DDT_FLAG_FLAT) 930 refcnt = ddp->ddp_flat.ddp_refcnt; 931 else 932 for (int v = DDT_PHYS_SINGLE; v <= DDT_PHYS_TRIPLE; v++) 933 refcnt += ddp->ddp_trad[v].ddp_refcnt; 934 935 return (refcnt); 936 } 937 938 ddt_t * 939 ddt_select(spa_t *spa, const blkptr_t *bp) 940 { 941 ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp))); 942 return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]); 943 } 944 945 void 946 ddt_enter(ddt_t *ddt) 947 { 948 mutex_enter(&ddt->ddt_lock); 949 } 950 951 void 952 ddt_exit(ddt_t *ddt) 953 { 954 mutex_exit(&ddt->ddt_lock); 955 } 956 957 void 958 ddt_init(void) 959 { 960 ddt_cache = kmem_cache_create("ddt_cache", 961 sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 962 ddt_entry_flat_cache = kmem_cache_create("ddt_entry_flat_cache", 963 DDT_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 964 ddt_entry_trad_cache = kmem_cache_create("ddt_entry_trad_cache", 965 DDT_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 966 967 ddt_log_init(); 968 } 969 970 void 971 ddt_fini(void) 972 { 973 ddt_log_fini(); 974 975 kmem_cache_destroy(ddt_entry_trad_cache); 976 kmem_cache_destroy(ddt_entry_flat_cache); 977 kmem_cache_destroy(ddt_cache); 978 } 979 980 static ddt_entry_t * 981 ddt_alloc(const ddt_t *ddt, const ddt_key_t *ddk) 982 { 983 ddt_entry_t *dde; 984 985 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 986 dde = kmem_cache_alloc(ddt_entry_flat_cache, KM_SLEEP); 987 memset(dde, 0, DDT_ENTRY_FLAT_SIZE); 988 } else { 989 dde = kmem_cache_alloc(ddt_entry_trad_cache, KM_SLEEP); 990 memset(dde, 0, DDT_ENTRY_TRAD_SIZE); 991 } 992 993 cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL); 994 995 dde->dde_key = *ddk; 996 997 return (dde); 998 } 999 1000 void 1001 ddt_alloc_entry_io(ddt_entry_t *dde) 1002 { 1003 if (dde->dde_io != NULL) 1004 return; 1005 1006 dde->dde_io = kmem_zalloc(sizeof (ddt_entry_io_t), KM_SLEEP); 1007 } 1008 1009 static void 1010 ddt_free(const ddt_t *ddt, ddt_entry_t *dde) 1011 { 1012 if (dde->dde_io != NULL) { 1013 for (int p = 0; p < DDT_NPHYS(ddt); p++) 1014 ASSERT0P(dde->dde_io->dde_lead_zio[p]); 1015 1016 if (dde->dde_io->dde_repair_abd != NULL) 1017 abd_free(dde->dde_io->dde_repair_abd); 1018 1019 kmem_free(dde->dde_io, sizeof (ddt_entry_io_t)); 1020 } 1021 1022 cv_destroy(&dde->dde_cv); 1023 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 1024 ddt_entry_flat_cache : ddt_entry_trad_cache, dde); 1025 } 1026 1027 void 1028 ddt_remove(ddt_t *ddt, ddt_entry_t *dde) 1029 { 1030 ASSERT(MUTEX_HELD(&ddt->ddt_lock)); 1031 1032 /* Entry is still in the log, so charge the entry back to it */ 1033 if (dde->dde_flags & DDE_FLAG_LOGGED) { 1034 ddt_lightweight_entry_t ddlwe; 1035 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 1036 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 1037 } 1038 1039 avl_remove(&ddt->ddt_tree, dde); 1040 ddt_free(ddt, dde); 1041 } 1042 1043 /* 1044 * We're considered over quota when we hit 85% full, or for larger drives, 1045 * when there is less than 8GB free. 1046 */ 1047 static boolean_t 1048 ddt_special_over_quota(metaslab_class_t *mc) 1049 { 1050 uint64_t allocated = metaslab_class_get_alloc(mc); 1051 uint64_t capacity = metaslab_class_get_space(mc); 1052 uint64_t limit = MAX(capacity * 85 / 100, 1053 (capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0); 1054 return (allocated >= limit); 1055 } 1056 1057 /* 1058 * Check if the DDT is over its quota. This can be due to a few conditions: 1059 * 1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize 1060 * exceeds this limit 1061 * 1062 * 2. 'dedup_table_quota' property is set to automatic and 1063 * a. the dedup or special allocation class could not satisfy a DDT 1064 * allocation in a recent transaction 1065 * b. the dedup or special allocation class has exceeded its 85% limit 1066 */ 1067 static boolean_t 1068 ddt_over_quota(spa_t *spa) 1069 { 1070 if (spa->spa_dedup_table_quota == 0) 1071 return (B_FALSE); 1072 1073 if (spa->spa_dedup_table_quota != UINT64_MAX) 1074 return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota); 1075 1076 /* 1077 * Over quota if have to allocate outside of the dedup/special class. 1078 */ 1079 if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg + 1080 dedup_class_wait_txgs) { 1081 /* Waiting for some deferred frees to be processed */ 1082 return (B_TRUE); 1083 } 1084 1085 /* 1086 * For automatic quota, table size is limited by dedup or special class 1087 */ 1088 if (spa_has_dedup(spa)) 1089 return (ddt_special_over_quota(spa_dedup_class(spa))); 1090 else if (spa_special_has_ddt(spa)) 1091 return (ddt_special_over_quota(spa_special_class(spa))); 1092 1093 return (B_FALSE); 1094 } 1095 1096 void 1097 ddt_prefetch_all(spa_t *spa) 1098 { 1099 /* 1100 * Load all DDT entries for each type/class combination. This is 1101 * indended to perform a prefetch on all such blocks. For the same 1102 * reason that ddt_prefetch isn't locked, this is also not locked. 1103 */ 1104 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1105 ddt_t *ddt = spa->spa_ddt[c]; 1106 if (!ddt) 1107 continue; 1108 1109 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1110 for (ddt_class_t class = 0; class < DDT_CLASSES; 1111 class++) { 1112 ddt_object_prefetch_all(ddt, type, class); 1113 } 1114 } 1115 } 1116 } 1117 1118 static int ddt_configure(ddt_t *ddt, boolean_t new); 1119 1120 /* 1121 * If the BP passed to ddt_lookup has valid DVAs, then we need to compare them 1122 * to the ones in the entry. If they're different, then the passed-in BP is 1123 * from a previous generation of this entry (ie was previously pruned) and we 1124 * have to act like the entry doesn't exist at all. 1125 * 1126 * This should only happen during a lookup to free the block (zio_ddt_free()). 1127 * 1128 * XXX this is similar in spirit to ddt_phys_select(), maybe can combine 1129 * -- robn, 2024-02-09 1130 */ 1131 static boolean_t 1132 ddt_entry_lookup_is_valid(ddt_t *ddt, const blkptr_t *bp, ddt_entry_t *dde) 1133 { 1134 /* If the BP has no DVAs, then this entry is good */ 1135 uint_t ndvas = BP_GET_NDVAS(bp); 1136 if (ndvas == 0) 1137 return (B_TRUE); 1138 1139 /* 1140 * Only checking the phys for the copies. For flat, there's only one; 1141 * for trad it'll be the one that has the matching set of DVAs. 1142 */ 1143 const dva_t *dvas = (ddt->ddt_flags & DDT_FLAG_FLAT) ? 1144 dde->dde_phys->ddp_flat.ddp_dva : 1145 dde->dde_phys->ddp_trad[ndvas].ddp_dva; 1146 1147 /* 1148 * Compare entry DVAs with the BP. They should all be there, but 1149 * there's not really anything we can do if its only partial anyway, 1150 * that's an error somewhere else, maybe long ago. 1151 */ 1152 uint_t d; 1153 for (d = 0; d < ndvas; d++) 1154 if (!DVA_EQUAL(&dvas[d], &bp->blk_dva[d])) 1155 return (B_FALSE); 1156 ASSERT3U(d, ==, ndvas); 1157 1158 return (B_TRUE); 1159 } 1160 1161 ddt_entry_t * 1162 ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t verify) 1163 { 1164 spa_t *spa = ddt->ddt_spa; 1165 ddt_key_t search; 1166 ddt_entry_t *dde; 1167 ddt_type_t type; 1168 ddt_class_t class; 1169 avl_index_t where; 1170 int error; 1171 1172 ASSERT(MUTEX_HELD(&ddt->ddt_lock)); 1173 1174 if (ddt->ddt_version == DDT_VERSION_UNCONFIGURED) { 1175 /* 1176 * This is the first use of this DDT since the pool was 1177 * created; finish getting it ready for use. 1178 */ 1179 VERIFY0(ddt_configure(ddt, B_TRUE)); 1180 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 1181 } 1182 1183 DDT_KSTAT_BUMP(ddt, dds_lookup); 1184 1185 ddt_key_fill(&search, bp); 1186 1187 /* Find an existing live entry */ 1188 dde = avl_find(&ddt->ddt_tree, &search, &where); 1189 if (dde != NULL) { 1190 /* If we went over quota, act like we didn't find it */ 1191 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) 1192 return (NULL); 1193 1194 /* If it's already loaded, we can just return it. */ 1195 DDT_KSTAT_BUMP(ddt, dds_lookup_live_hit); 1196 if (dde->dde_flags & DDE_FLAG_LOADED) { 1197 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde)) 1198 return (dde); 1199 return (NULL); 1200 } 1201 1202 /* Someone else is loading it, wait for it. */ 1203 dde->dde_waiters++; 1204 DDT_KSTAT_BUMP(ddt, dds_lookup_live_wait); 1205 while (!(dde->dde_flags & DDE_FLAG_LOADED)) 1206 cv_wait(&dde->dde_cv, &ddt->ddt_lock); 1207 dde->dde_waiters--; 1208 1209 /* Loaded but over quota, forget we were ever here */ 1210 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) { 1211 if (dde->dde_waiters == 0) { 1212 avl_remove(&ddt->ddt_tree, dde); 1213 ddt_free(ddt, dde); 1214 } 1215 return (NULL); 1216 } 1217 1218 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1219 1220 /* Make sure the loaded entry matches the BP */ 1221 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde)) 1222 return (dde); 1223 return (NULL); 1224 } else 1225 DDT_KSTAT_BUMP(ddt, dds_lookup_live_miss); 1226 1227 /* Time to make a new entry. */ 1228 dde = ddt_alloc(ddt, &search); 1229 1230 /* Record the time this class was created (used by ddt prune) */ 1231 if (ddt->ddt_flags & DDT_FLAG_FLAT) 1232 dde->dde_phys->ddp_flat.ddp_class_start = ddt_class_start(); 1233 1234 avl_insert(&ddt->ddt_tree, dde, where); 1235 1236 /* If its in the log tree, we can "load" it from there */ 1237 if (ddt->ddt_flags & DDT_FLAG_LOG) { 1238 ddt_lightweight_entry_t ddlwe; 1239 1240 if (ddt_log_find_key(ddt, &search, &ddlwe)) { 1241 /* 1242 * See if we have the key first, and if so, set up 1243 * the entry. 1244 */ 1245 dde->dde_type = ddlwe.ddlwe_type; 1246 dde->dde_class = ddlwe.ddlwe_class; 1247 memcpy(dde->dde_phys, &ddlwe.ddlwe_phys, 1248 DDT_PHYS_SIZE(ddt)); 1249 /* Whatever we found isn't valid for this BP, eject */ 1250 if (verify && 1251 !ddt_entry_lookup_is_valid(ddt, bp, dde)) { 1252 avl_remove(&ddt->ddt_tree, dde); 1253 ddt_free(ddt, dde); 1254 return (NULL); 1255 } 1256 1257 /* Remove it and count it */ 1258 if (ddt_log_remove_key(ddt, 1259 ddt->ddt_log_active, &search)) { 1260 DDT_KSTAT_BUMP(ddt, dds_lookup_log_active_hit); 1261 } else { 1262 VERIFY(ddt_log_remove_key(ddt, 1263 ddt->ddt_log_flushing, &search)); 1264 DDT_KSTAT_BUMP(ddt, 1265 dds_lookup_log_flushing_hit); 1266 } 1267 1268 dde->dde_flags = DDE_FLAG_LOADED | DDE_FLAG_LOGGED; 1269 1270 DDT_KSTAT_BUMP(ddt, dds_lookup_log_hit); 1271 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1272 1273 return (dde); 1274 } 1275 1276 DDT_KSTAT_BUMP(ddt, dds_lookup_log_miss); 1277 } 1278 1279 /* 1280 * ddt_tree is now stable, so unlock and let everyone else keep moving. 1281 * Anyone landing on this entry will find it without DDE_FLAG_LOADED, 1282 * and go to sleep waiting for it above. 1283 */ 1284 ddt_exit(ddt); 1285 1286 /* Search all store objects for the entry. */ 1287 error = ENOENT; 1288 for (type = 0; type < DDT_TYPES; type++) { 1289 for (class = 0; class < DDT_CLASSES; class++) { 1290 error = ddt_object_lookup(ddt, type, class, dde); 1291 if (error != ENOENT) { 1292 ASSERT0(error); 1293 break; 1294 } 1295 } 1296 if (error != ENOENT) 1297 break; 1298 } 1299 1300 ddt_enter(ddt); 1301 1302 ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED)); 1303 1304 dde->dde_type = type; /* will be DDT_TYPES if no entry found */ 1305 dde->dde_class = class; /* will be DDT_CLASSES if no entry found */ 1306 1307 boolean_t valid = B_TRUE; 1308 1309 if (dde->dde_type == DDT_TYPES && 1310 dde->dde_class == DDT_CLASSES && 1311 ddt_over_quota(spa)) { 1312 /* Over quota. If no one is waiting, clean up right now. */ 1313 if (dde->dde_waiters == 0) { 1314 avl_remove(&ddt->ddt_tree, dde); 1315 ddt_free(ddt, dde); 1316 return (NULL); 1317 } 1318 1319 /* Flag cleanup required */ 1320 dde->dde_flags |= DDE_FLAG_OVERQUOTA; 1321 } else if (error == 0) { 1322 /* 1323 * If what we loaded is no good for this BP and there's no one 1324 * waiting for it, we can just remove it and get out. If its no 1325 * good but there are waiters, we have to leave it, because we 1326 * don't know what they want. If its not needed we'll end up 1327 * taking an entry log/sync, but it can only happen if more 1328 * than one previous version of this block is being deleted at 1329 * the same time. This is extremely unlikely to happen and not 1330 * worth the effort to deal with without taking an entry 1331 * update. 1332 */ 1333 valid = !verify || ddt_entry_lookup_is_valid(ddt, bp, dde); 1334 if (!valid && dde->dde_waiters == 0) { 1335 avl_remove(&ddt->ddt_tree, dde); 1336 ddt_free(ddt, dde); 1337 return (NULL); 1338 } 1339 1340 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_hit); 1341 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1342 1343 /* 1344 * The histograms only track inactive (stored or logged) blocks. 1345 * We've just put an entry onto the live list, so we need to 1346 * remove its counts. When its synced back, it'll be re-added 1347 * to the right one. 1348 * 1349 * We only do this when we successfully found it in the store. 1350 * error == ENOENT means this is a new entry, and so its already 1351 * not counted. 1352 */ 1353 ddt_histogram_t *ddh = 1354 &ddt->ddt_histogram[dde->dde_type][dde->dde_class]; 1355 1356 ddt_lightweight_entry_t ddlwe; 1357 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 1358 ddt_histogram_sub_entry(ddt, ddh, &ddlwe); 1359 } else { 1360 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_miss); 1361 DDT_KSTAT_BUMP(ddt, dds_lookup_new); 1362 } 1363 1364 /* Entry loaded, everyone can proceed now */ 1365 dde->dde_flags |= DDE_FLAG_LOADED; 1366 cv_broadcast(&dde->dde_cv); 1367 1368 if ((dde->dde_flags & DDE_FLAG_OVERQUOTA) || !valid) 1369 return (NULL); 1370 1371 return (dde); 1372 } 1373 1374 void 1375 ddt_prefetch(spa_t *spa, const blkptr_t *bp) 1376 { 1377 ddt_t *ddt; 1378 ddt_key_t ddk; 1379 1380 if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp)) 1381 return; 1382 1383 /* 1384 * We only remove the DDT once all tables are empty and only 1385 * prefetch dedup blocks when there are entries in the DDT. 1386 * Thus no locking is required as the DDT can't disappear on us. 1387 */ 1388 ddt = ddt_select(spa, bp); 1389 ddt_key_fill(&ddk, bp); 1390 1391 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1392 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1393 ddt_object_prefetch(ddt, type, class, &ddk); 1394 } 1395 } 1396 } 1397 1398 /* 1399 * ddt_key_t comparison. Any struct wanting to make use of this function must 1400 * have the key as the first element. Casts it to N uint64_ts, and checks until 1401 * we find there's a difference. This is intended to match how ddt_zap.c drives 1402 * the ZAPs (first uint64_t as the key prehash), which will minimise the number 1403 * of ZAP blocks touched when flushing logged entries from an AVL walk. This is 1404 * not an invariant for this function though, should you wish to change it. 1405 */ 1406 int 1407 ddt_key_compare(const void *x1, const void *x2) 1408 { 1409 const uint64_t *k1 = (const uint64_t *)x1; 1410 const uint64_t *k2 = (const uint64_t *)x2; 1411 1412 int cmp; 1413 for (int i = 0; i < (sizeof (ddt_key_t) / sizeof (uint64_t)); i++) 1414 if (likely((cmp = TREE_CMP(k1[i], k2[i])) != 0)) 1415 return (cmp); 1416 1417 return (0); 1418 } 1419 1420 /* Create the containing dir for this DDT and bump the feature count */ 1421 static void 1422 ddt_create_dir(ddt_t *ddt, dmu_tx_t *tx) 1423 { 1424 ASSERT0(ddt->ddt_dir_object); 1425 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); 1426 1427 char name[DDT_NAMELEN]; 1428 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1429 zio_checksum_table[ddt->ddt_checksum].ci_name); 1430 1431 ddt->ddt_dir_object = zap_create_link(ddt->ddt_os, 1432 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, name, tx); 1433 1434 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION, 1435 sizeof (uint64_t), 1, &ddt->ddt_version, tx)); 1436 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS, 1437 sizeof (uint64_t), 1, &ddt->ddt_flags, tx)); 1438 1439 spa_feature_incr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); 1440 } 1441 1442 /* Destroy the containing dir and deactivate the feature */ 1443 static void 1444 ddt_destroy_dir(ddt_t *ddt, dmu_tx_t *tx) 1445 { 1446 ASSERT3U(ddt->ddt_dir_object, !=, 0); 1447 ASSERT3U(ddt->ddt_dir_object, !=, DMU_POOL_DIRECTORY_OBJECT); 1448 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); 1449 1450 char name[DDT_NAMELEN]; 1451 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1452 zio_checksum_table[ddt->ddt_checksum].ci_name); 1453 1454 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1455 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1456 ASSERT(!ddt_object_exists(ddt, type, class)); 1457 } 1458 } 1459 1460 ddt_log_destroy(ddt, tx); 1461 1462 uint64_t count; 1463 ASSERT0(zap_count(ddt->ddt_os, ddt->ddt_dir_object, &count)); 1464 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, 1465 DDT_DIR_VERSION)); 1466 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS)); 1467 ASSERT3U(count, ==, 2); 1468 1469 VERIFY0(zap_remove(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, tx)); 1470 VERIFY0(zap_destroy(ddt->ddt_os, ddt->ddt_dir_object, tx)); 1471 1472 ddt->ddt_dir_object = 0; 1473 1474 spa_feature_decr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); 1475 } 1476 1477 /* 1478 * Determine, flags and on-disk layout from what's already stored. If there's 1479 * nothing stored, then if new is false, returns ENOENT, and if true, selects 1480 * based on pool config. 1481 */ 1482 static int 1483 ddt_configure(ddt_t *ddt, boolean_t new) 1484 { 1485 spa_t *spa = ddt->ddt_spa; 1486 char name[DDT_NAMELEN]; 1487 int error; 1488 1489 ASSERT3U(spa_load_state(spa), !=, SPA_LOAD_CREATE); 1490 1491 boolean_t fdt_enabled = 1492 spa_feature_is_enabled(spa, SPA_FEATURE_FAST_DEDUP); 1493 boolean_t fdt_active = 1494 spa_feature_is_active(spa, SPA_FEATURE_FAST_DEDUP); 1495 1496 /* 1497 * First, look for the global DDT stats object. If its not there, then 1498 * there's never been a DDT written before ever, and we know we're 1499 * starting from scratch. 1500 */ 1501 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1502 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, 1503 &spa->spa_ddt_stat_object); 1504 if (error != 0) { 1505 if (error != ENOENT) 1506 return (error); 1507 goto not_found; 1508 } 1509 1510 if (fdt_active) { 1511 /* 1512 * Now look for a DDT directory. If it exists, then it has 1513 * everything we need. 1514 */ 1515 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1516 zio_checksum_table[ddt->ddt_checksum].ci_name); 1517 1518 error = zap_lookup(spa->spa_meta_objset, 1519 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, 1520 &ddt->ddt_dir_object); 1521 if (error == 0) { 1522 ASSERT3U(spa->spa_meta_objset, ==, ddt->ddt_os); 1523 1524 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, 1525 DDT_DIR_VERSION, sizeof (uint64_t), 1, 1526 &ddt->ddt_version); 1527 if (error != 0) 1528 return (error); 1529 1530 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, 1531 DDT_DIR_FLAGS, sizeof (uint64_t), 1, 1532 &ddt->ddt_flags); 1533 if (error != 0) 1534 return (error); 1535 1536 if (ddt->ddt_version != DDT_VERSION_FDT) { 1537 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " 1538 "unknown version %llu", spa_name(spa), 1539 name, (u_longlong_t)ddt->ddt_version); 1540 return (SET_ERROR(EINVAL)); 1541 } 1542 1543 if ((ddt->ddt_flags & ~DDT_FLAG_MASK) != 0) { 1544 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " 1545 "version=%llu unknown flags %llx", 1546 spa_name(spa), name, 1547 (u_longlong_t)ddt->ddt_flags, 1548 (u_longlong_t)ddt->ddt_version); 1549 return (SET_ERROR(EINVAL)); 1550 } 1551 1552 return (0); 1553 } 1554 if (error != ENOENT) 1555 return (error); 1556 } 1557 1558 /* Any object in the root indicates a traditional setup. */ 1559 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1560 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1561 ddt_object_name(ddt, type, class, name); 1562 uint64_t obj; 1563 error = zap_lookup(spa->spa_meta_objset, 1564 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1565 1, &obj); 1566 if (error == ENOENT) 1567 continue; 1568 if (error != 0) 1569 return (error); 1570 1571 ddt->ddt_version = DDT_VERSION_LEGACY; 1572 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1573 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; 1574 1575 return (0); 1576 } 1577 } 1578 1579 not_found: 1580 if (!new) 1581 return (SET_ERROR(ENOENT)); 1582 1583 /* Nothing on disk, so set up for the best version we can */ 1584 if (fdt_enabled) { 1585 ddt->ddt_version = DDT_VERSION_FDT; 1586 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1587 ddt->ddt_dir_object = 0; /* create on first use */ 1588 } else { 1589 ddt->ddt_version = DDT_VERSION_LEGACY; 1590 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1591 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; 1592 } 1593 1594 return (0); 1595 } 1596 1597 static void 1598 ddt_table_alloc_kstats(ddt_t *ddt) 1599 { 1600 char *mod = kmem_asprintf("zfs/%s", spa_name(ddt->ddt_spa)); 1601 char *name = kmem_asprintf("ddt_stats_%s", 1602 zio_checksum_table[ddt->ddt_checksum].ci_name); 1603 1604 ddt->ddt_ksp = kstat_create(mod, 0, name, "misc", KSTAT_TYPE_NAMED, 1605 sizeof (ddt_kstats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 1606 if (ddt->ddt_ksp != NULL) { 1607 ddt_kstats_t *dds = kmem_alloc(sizeof (ddt_kstats_t), KM_SLEEP); 1608 memcpy(dds, &ddt_kstats_template, sizeof (ddt_kstats_t)); 1609 ddt->ddt_ksp->ks_data = dds; 1610 kstat_install(ddt->ddt_ksp); 1611 } 1612 1613 kmem_strfree(name); 1614 kmem_strfree(mod); 1615 } 1616 1617 static ddt_t * 1618 ddt_table_alloc(spa_t *spa, enum zio_checksum c) 1619 { 1620 ddt_t *ddt; 1621 1622 ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP); 1623 memset(ddt, 0, sizeof (ddt_t)); 1624 mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL); 1625 avl_create(&ddt->ddt_tree, ddt_key_compare, 1626 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); 1627 avl_create(&ddt->ddt_repair_tree, ddt_key_compare, 1628 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); 1629 1630 ddt->ddt_checksum = c; 1631 ddt->ddt_spa = spa; 1632 ddt->ddt_os = spa->spa_meta_objset; 1633 ddt->ddt_version = DDT_VERSION_UNCONFIGURED; 1634 ddt->ddt_log_flush_pressure = 10; 1635 1636 ddt_log_alloc(ddt); 1637 ddt_table_alloc_kstats(ddt); 1638 1639 return (ddt); 1640 } 1641 1642 static void 1643 ddt_table_free(ddt_t *ddt) 1644 { 1645 if (ddt->ddt_ksp != NULL) { 1646 kmem_free(ddt->ddt_ksp->ks_data, sizeof (ddt_kstats_t)); 1647 ddt->ddt_ksp->ks_data = NULL; 1648 kstat_delete(ddt->ddt_ksp); 1649 } 1650 1651 ddt_log_free(ddt); 1652 ASSERT0(avl_numnodes(&ddt->ddt_tree)); 1653 ASSERT0(avl_numnodes(&ddt->ddt_repair_tree)); 1654 avl_destroy(&ddt->ddt_tree); 1655 avl_destroy(&ddt->ddt_repair_tree); 1656 mutex_destroy(&ddt->ddt_lock); 1657 kmem_cache_free(ddt_cache, ddt); 1658 } 1659 1660 void 1661 ddt_create(spa_t *spa) 1662 { 1663 spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM; 1664 1665 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1666 if (DDT_CHECKSUM_VALID(c)) 1667 spa->spa_ddt[c] = ddt_table_alloc(spa, c); 1668 } 1669 } 1670 1671 int 1672 ddt_load(spa_t *spa) 1673 { 1674 int error; 1675 1676 ddt_create(spa); 1677 1678 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1679 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, 1680 &spa->spa_ddt_stat_object); 1681 if (error) 1682 return (error == ENOENT ? 0 : error); 1683 1684 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1685 if (!DDT_CHECKSUM_VALID(c)) 1686 continue; 1687 1688 ddt_t *ddt = spa->spa_ddt[c]; 1689 error = ddt_configure(ddt, B_FALSE); 1690 if (error == ENOENT) 1691 continue; 1692 if (error != 0) 1693 return (error); 1694 1695 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1696 for (ddt_class_t class = 0; class < DDT_CLASSES; 1697 class++) { 1698 error = ddt_object_load(ddt, type, class); 1699 if (error != 0 && error != ENOENT) 1700 return (error); 1701 } 1702 } 1703 1704 if (ddt->ddt_flags & DDT_FLAG_LOG) { 1705 error = ddt_log_load(ddt); 1706 if (error != 0 && error != ENOENT) 1707 return (error); 1708 } 1709 1710 DDT_KSTAT_SET(ddt, dds_log_active_entries, 1711 avl_numnodes(&ddt->ddt_log_active->ddl_tree)); 1712 DDT_KSTAT_SET(ddt, dds_log_flushing_entries, 1713 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); 1714 1715 /* 1716 * Seed the cached histograms. 1717 */ 1718 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 1719 sizeof (ddt->ddt_histogram)); 1720 } 1721 1722 spa->spa_dedup_dspace = ~0ULL; 1723 spa->spa_dedup_dsize = ~0ULL; 1724 1725 return (0); 1726 } 1727 1728 void 1729 ddt_unload(spa_t *spa) 1730 { 1731 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1732 if (spa->spa_ddt[c]) { 1733 ddt_table_free(spa->spa_ddt[c]); 1734 spa->spa_ddt[c] = NULL; 1735 } 1736 } 1737 } 1738 1739 boolean_t 1740 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp) 1741 { 1742 ddt_t *ddt; 1743 ddt_key_t ddk; 1744 1745 if (!BP_GET_DEDUP(bp)) 1746 return (B_FALSE); 1747 1748 if (max_class == DDT_CLASS_UNIQUE) 1749 return (B_TRUE); 1750 1751 ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)]; 1752 1753 ddt_key_fill(&ddk, bp); 1754 1755 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1756 for (ddt_class_t class = 0; class <= max_class; class++) { 1757 if (ddt_object_contains(ddt, type, class, &ddk) == 0) 1758 return (B_TRUE); 1759 } 1760 } 1761 1762 return (B_FALSE); 1763 } 1764 1765 ddt_entry_t * 1766 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp) 1767 { 1768 ddt_key_t ddk; 1769 ddt_entry_t *dde; 1770 1771 ddt_key_fill(&ddk, bp); 1772 1773 dde = ddt_alloc(ddt, &ddk); 1774 ddt_alloc_entry_io(dde); 1775 1776 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1777 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1778 /* 1779 * We can only do repair if there are multiple copies 1780 * of the block. For anything in the UNIQUE class, 1781 * there's definitely only one copy, so don't even try. 1782 */ 1783 if (class != DDT_CLASS_UNIQUE && 1784 ddt_object_lookup(ddt, type, class, dde) == 0) 1785 return (dde); 1786 } 1787 } 1788 1789 memset(dde->dde_phys, 0, DDT_PHYS_SIZE(ddt)); 1790 1791 return (dde); 1792 } 1793 1794 void 1795 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde) 1796 { 1797 avl_index_t where; 1798 1799 ddt_enter(ddt); 1800 1801 if (dde->dde_io->dde_repair_abd != NULL && 1802 spa_writeable(ddt->ddt_spa) && 1803 avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL) 1804 avl_insert(&ddt->ddt_repair_tree, dde, where); 1805 else 1806 ddt_free(ddt, dde); 1807 1808 ddt_exit(ddt); 1809 } 1810 1811 static void 1812 ddt_repair_entry_done(zio_t *zio) 1813 { 1814 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 1815 ddt_entry_t *rdde = zio->io_private; 1816 1817 ddt_free(ddt, rdde); 1818 } 1819 1820 static void 1821 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio) 1822 { 1823 ddt_key_t *ddk = &dde->dde_key; 1824 ddt_key_t *rddk = &rdde->dde_key; 1825 zio_t *zio; 1826 blkptr_t blk; 1827 1828 zio = zio_null(rio, rio->io_spa, NULL, 1829 ddt_repair_entry_done, rdde, rio->io_flags); 1830 1831 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 1832 ddt_univ_phys_t *ddp = dde->dde_phys; 1833 ddt_univ_phys_t *rddp = rdde->dde_phys; 1834 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1835 uint64_t phys_birth = ddt_phys_birth(ddp, v); 1836 const dva_t *dvas, *rdvas; 1837 1838 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 1839 dvas = ddp->ddp_flat.ddp_dva; 1840 rdvas = rddp->ddp_flat.ddp_dva; 1841 } else { 1842 dvas = ddp->ddp_trad[p].ddp_dva; 1843 rdvas = rddp->ddp_trad[p].ddp_dva; 1844 } 1845 1846 if (phys_birth == 0 || 1847 phys_birth != ddt_phys_birth(rddp, v) || 1848 memcmp(dvas, rdvas, sizeof (dva_t) * SPA_DVAS_PER_BP)) 1849 continue; 1850 1851 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1852 zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk, 1853 rdde->dde_io->dde_repair_abd, DDK_GET_PSIZE(rddk), 1854 NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 1855 ZIO_DDT_CHILD_FLAGS(zio), NULL)); 1856 } 1857 1858 zio_nowait(zio); 1859 } 1860 1861 static void 1862 ddt_repair_table(ddt_t *ddt, zio_t *rio) 1863 { 1864 spa_t *spa = ddt->ddt_spa; 1865 ddt_entry_t *dde, *rdde_next, *rdde; 1866 avl_tree_t *t = &ddt->ddt_repair_tree; 1867 blkptr_t blk; 1868 1869 if (spa_sync_pass(spa) > 1) 1870 return; 1871 1872 ddt_enter(ddt); 1873 for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) { 1874 rdde_next = AVL_NEXT(t, rdde); 1875 avl_remove(&ddt->ddt_repair_tree, rdde); 1876 ddt_exit(ddt); 1877 ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, 1878 DDT_PHYS_NONE, &blk); 1879 dde = ddt_repair_start(ddt, &blk); 1880 ddt_repair_entry(ddt, dde, rdde, rio); 1881 ddt_repair_done(ddt, dde); 1882 ddt_enter(ddt); 1883 } 1884 ddt_exit(ddt); 1885 } 1886 1887 static void 1888 ddt_sync_update_stats(ddt_t *ddt, dmu_tx_t *tx) 1889 { 1890 /* 1891 * Count all the entries stored for each type/class, and updates the 1892 * stats within (ddt_object_sync()). If there's no entries for the 1893 * type/class, the whole object is removed. If all objects for the DDT 1894 * are removed, its containing dir is removed, effectively resetting 1895 * the entire DDT to an empty slate. 1896 */ 1897 uint64_t count = 0; 1898 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1899 uint64_t add, tcount = 0; 1900 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1901 if (ddt_object_exists(ddt, type, class)) { 1902 ddt_object_sync(ddt, type, class, tx); 1903 VERIFY0(ddt_object_count(ddt, type, class, 1904 &add)); 1905 tcount += add; 1906 } 1907 } 1908 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1909 if (tcount == 0 && ddt_object_exists(ddt, type, class)) 1910 ddt_object_destroy(ddt, type, class, tx); 1911 } 1912 count += tcount; 1913 } 1914 1915 if (ddt->ddt_flags & DDT_FLAG_LOG) { 1916 /* Include logged entries in the total count */ 1917 count += avl_numnodes(&ddt->ddt_log_active->ddl_tree); 1918 count += avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 1919 } 1920 1921 if (count == 0) { 1922 /* 1923 * No entries left on the DDT, so reset the version for next 1924 * time. This allows us to handle the feature being changed 1925 * since the DDT was originally created. New entries should get 1926 * whatever the feature currently demands. 1927 */ 1928 if (ddt->ddt_version == DDT_VERSION_FDT) 1929 ddt_destroy_dir(ddt, tx); 1930 1931 ddt->ddt_version = DDT_VERSION_UNCONFIGURED; 1932 ddt->ddt_flags = 0; 1933 } 1934 1935 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 1936 sizeof (ddt->ddt_histogram)); 1937 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 1938 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 1939 } 1940 1941 static void 1942 ddt_sync_scan_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 1943 { 1944 dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool; 1945 1946 /* 1947 * Compute the target class, so we can decide whether or not to inform 1948 * the scrub traversal (below). Note that we don't store this in the 1949 * entry, as it might change multiple times before finally being 1950 * committed (if we're logging). Instead, we recompute it in 1951 * ddt_sync_entry(). 1952 */ 1953 uint64_t refcnt = ddt_phys_total_refcnt(ddt, &ddlwe->ddlwe_phys); 1954 ddt_class_t nclass = 1955 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; 1956 1957 /* 1958 * If the class changes, the order that we scan this bp changes. If it 1959 * decreases, we could miss it, so scan it right now. (This covers both 1960 * class changing while we are doing ddt_walk(), and when we are 1961 * traversing.) 1962 * 1963 * We also do this when the refcnt goes to zero, because that change is 1964 * only in the log so far; the blocks on disk won't be freed until 1965 * the log is flushed, and the refcnt might increase before that. If it 1966 * does, then we could miss it in the same way. 1967 */ 1968 if (refcnt == 0 || nclass < ddlwe->ddlwe_class) 1969 dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, ddt, 1970 ddlwe, tx); 1971 } 1972 1973 static void 1974 ddt_sync_flush_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, 1975 ddt_type_t otype, ddt_class_t oclass, dmu_tx_t *tx) 1976 { 1977 ddt_key_t *ddk = &ddlwe->ddlwe_key; 1978 ddt_type_t ntype = DDT_TYPE_DEFAULT; 1979 uint64_t refcnt = 0; 1980 1981 /* 1982 * Compute the total refcnt. Along the way, issue frees for any DVAs 1983 * we no longer want. 1984 */ 1985 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 1986 ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1987 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1988 uint64_t phys_refcnt = ddt_phys_refcnt(ddp, v); 1989 1990 if (ddt_phys_birth(ddp, v) == 0) { 1991 ASSERT0(phys_refcnt); 1992 continue; 1993 } 1994 if (DDT_PHYS_IS_DITTO(ddt, p)) { 1995 /* 1996 * We don't want to keep any obsolete slots (eg ditto), 1997 * regardless of their refcount, but we don't want to 1998 * leak them either. So, free them. 1999 */ 2000 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); 2001 continue; 2002 } 2003 if (phys_refcnt == 0) 2004 /* No remaining references, free it! */ 2005 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); 2006 refcnt += phys_refcnt; 2007 } 2008 2009 /* Select the best class for the entry. */ 2010 ddt_class_t nclass = 2011 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; 2012 2013 /* 2014 * If an existing entry changed type or class, or its refcount reached 2015 * zero, delete it from the DDT object 2016 */ 2017 if (otype != DDT_TYPES && 2018 (otype != ntype || oclass != nclass || refcnt == 0)) { 2019 VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx)); 2020 ASSERT(ddt_object_contains(ddt, otype, oclass, ddk) == ENOENT); 2021 } 2022 2023 /* 2024 * Add or update the entry 2025 */ 2026 if (refcnt != 0) { 2027 ddt_histogram_t *ddh = 2028 &ddt->ddt_histogram[ntype][nclass]; 2029 2030 ddt_histogram_add_entry(ddt, ddh, ddlwe); 2031 2032 if (!ddt_object_exists(ddt, ntype, nclass)) 2033 ddt_object_create(ddt, ntype, nclass, tx); 2034 VERIFY0(ddt_object_update(ddt, ntype, nclass, ddlwe, tx)); 2035 } 2036 } 2037 2038 /* Calculate an exponential weighted moving average, lower limited to zero */ 2039 static inline int32_t 2040 _ewma(int32_t val, int32_t prev, uint32_t weight) 2041 { 2042 ASSERT3U(val, >=, 0); 2043 ASSERT3U(prev, >=, 0); 2044 const int32_t new = 2045 MAX(0, prev + (val-prev) / (int32_t)MAX(weight, 1)); 2046 ASSERT3U(new, >=, 0); 2047 return (new); 2048 } 2049 2050 static inline void 2051 ddt_flush_force_update_txg(ddt_t *ddt, uint64_t txg) 2052 { 2053 /* 2054 * If we're not forcing flush, and not being asked to start, then 2055 * there's nothing more to do. 2056 */ 2057 if (txg == 0) { 2058 /* Update requested, are we currently forcing flush? */ 2059 if (ddt->ddt_flush_force_txg == 0) 2060 return; 2061 txg = ddt->ddt_flush_force_txg; 2062 } 2063 2064 /* 2065 * If either of the logs have entries unflushed entries before 2066 * the wanted txg, set the force txg, otherwise clear it. 2067 */ 2068 2069 if ((!avl_is_empty(&ddt->ddt_log_active->ddl_tree) && 2070 ddt->ddt_log_active->ddl_first_txg <= txg) || 2071 (!avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && 2072 ddt->ddt_log_flushing->ddl_first_txg <= txg)) { 2073 ddt->ddt_flush_force_txg = txg; 2074 return; 2075 } 2076 2077 /* 2078 * Nothing to flush behind the given txg, so we can clear force flush 2079 * state. 2080 */ 2081 ddt->ddt_flush_force_txg = 0; 2082 } 2083 2084 static void 2085 ddt_sync_flush_log(ddt_t *ddt, dmu_tx_t *tx) 2086 { 2087 spa_t *spa = ddt->ddt_spa; 2088 ASSERT(avl_is_empty(&ddt->ddt_tree)); 2089 2090 /* 2091 * Don't do any flushing when the pool is ready to shut down, or in 2092 * passes beyond the first. 2093 */ 2094 if (spa_sync_pass(spa) > 1 || tx->tx_txg > spa_final_dirty_txg(spa)) 2095 return; 2096 2097 hrtime_t flush_start = gethrtime(); 2098 uint32_t count = 0; 2099 2100 /* 2101 * How many entries we need to flush. We need to at 2102 * least match the ingest rate, and also consider the 2103 * current backlog of entries. 2104 */ 2105 uint64_t backlog = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) + 2106 avl_numnodes(&ddt->ddt_log_active->ddl_tree); 2107 2108 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) 2109 goto housekeeping; 2110 2111 uint64_t txgs = MAX(1, zfs_dedup_log_flush_txgs); 2112 uint64_t cap = MAX(1, zfs_dedup_log_cap); 2113 uint64_t flush_min = MAX(backlog / txgs, 2114 zfs_dedup_log_flush_entries_min); 2115 2116 /* 2117 * The theory for this block is that if we increase the pressure while 2118 * we're growing above the cap, and remove it when we're significantly 2119 * below the cap, we'll stay near cap while not bouncing around too 2120 * much. 2121 * 2122 * The factor of 10 is to smooth the pressure effect by expressing it 2123 * in tenths. The addition of the cap to the backlog in the second 2124 * block is to round up, instead of down. We never let the pressure go 2125 * below 1 (10 tenths). 2126 */ 2127 if (cap != UINT_MAX && backlog > cap && 2128 backlog > ddt->ddt_log_flush_prev_backlog) { 2129 ddt->ddt_log_flush_pressure += 10 * backlog / cap; 2130 } else if (cap != UINT_MAX && backlog < cap) { 2131 ddt->ddt_log_flush_pressure -= 2132 11 - (((10 * backlog) + cap - 1) / cap); 2133 ddt->ddt_log_flush_pressure = 2134 MAX(ddt->ddt_log_flush_pressure, 10); 2135 } 2136 2137 if (zfs_dedup_log_hard_cap && cap != UINT_MAX) 2138 flush_min = MAX(flush_min, MIN(backlog - cap, 2139 (flush_min * ddt->ddt_log_flush_pressure) / 10)); 2140 2141 uint64_t flush_max; 2142 2143 /* 2144 * If we've been asked to flush everything in a hurry, 2145 * try to dump as much as possible on this txg. In 2146 * this case we're only limited by time, not amount. 2147 * 2148 * Otherwise, if we are over the cap, try to get back down to it. 2149 * 2150 * Finally if there is no cap (or no pressure), just set the max a 2151 * little higher than the min to help smooth out variations in flush 2152 * times. 2153 */ 2154 if (ddt->ddt_flush_force_txg > 0) 2155 flush_max = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 2156 else if (cap != UINT32_MAX && !zfs_dedup_log_hard_cap) 2157 flush_max = MAX(flush_min * 5 / 4, MIN(backlog - cap, 2158 (flush_min * ddt->ddt_log_flush_pressure) / 10)); 2159 else 2160 flush_max = flush_min * 5 / 4; 2161 flush_max = MIN(flush_max, zfs_dedup_log_flush_entries_max); 2162 2163 /* 2164 * When the pool is busy or someone is explicitly waiting for this txg 2165 * to complete, use the zfs_dedup_log_flush_min_time_ms. Otherwise use 2166 * half of the time in the txg timeout. 2167 */ 2168 uint64_t target_time; 2169 2170 if (txg_sync_waiting(ddt->ddt_spa->spa_dsl_pool) || 2171 vdev_queue_pool_busy(spa)) { 2172 target_time = MIN(MSEC2NSEC(zfs_dedup_log_flush_min_time_ms), 2173 SEC2NSEC(zfs_txg_timeout) / 2); 2174 } else { 2175 target_time = SEC2NSEC(zfs_txg_timeout) / 2; 2176 } 2177 2178 ddt_lightweight_entry_t ddlwe; 2179 while (ddt_log_take_first(ddt, ddt->ddt_log_flushing, &ddlwe)) { 2180 ddt_sync_flush_entry(ddt, &ddlwe, 2181 ddlwe.ddlwe_type, ddlwe.ddlwe_class, tx); 2182 2183 /* End if we've synced as much as we needed to. */ 2184 if (++count >= flush_max) 2185 break; 2186 2187 /* 2188 * As long as we've flushed the absolute minimum, 2189 * stop if we're way over our target time. 2190 */ 2191 uint64_t diff = gethrtime() - flush_start; 2192 if (count > zfs_dedup_log_flush_entries_min && 2193 diff >= target_time * 2) 2194 break; 2195 2196 /* 2197 * End if we've passed the minimum flush and we're out of time. 2198 */ 2199 if (count > flush_min && diff >= target_time) 2200 break; 2201 } 2202 2203 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) { 2204 /* We emptied it, so truncate on-disk */ 2205 DDT_KSTAT_ZERO(ddt, dds_log_flushing_entries); 2206 ddt_log_truncate(ddt, tx); 2207 } else { 2208 /* More to do next time, save checkpoint */ 2209 DDT_KSTAT_SUB(ddt, dds_log_flushing_entries, count); 2210 ddt_log_checkpoint(ddt, &ddlwe, tx); 2211 } 2212 2213 ddt_sync_update_stats(ddt, tx); 2214 2215 housekeeping: 2216 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && 2217 !avl_is_empty(&ddt->ddt_log_active->ddl_tree)) { 2218 /* 2219 * No more to flush, and the active list has stuff, so 2220 * try to swap the logs for next time. 2221 */ 2222 if (ddt_log_swap(ddt, tx)) { 2223 DDT_KSTAT_ZERO(ddt, dds_log_active_entries); 2224 DDT_KSTAT_SET(ddt, dds_log_flushing_entries, 2225 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); 2226 } 2227 } 2228 2229 /* If force flush is no longer necessary, turn it off. */ 2230 ddt_flush_force_update_txg(ddt, 0); 2231 2232 ddt->ddt_log_flush_prev_backlog = backlog; 2233 2234 /* 2235 * Update flush rate. This is an exponential weighted moving 2236 * average of the number of entries flushed over recent txgs. 2237 */ 2238 ddt->ddt_log_flush_rate = _ewma(count, ddt->ddt_log_flush_rate, 2239 zfs_dedup_log_flush_flow_rate_txgs); 2240 DDT_KSTAT_SET(ddt, dds_log_flush_rate, ddt->ddt_log_flush_rate); 2241 2242 /* 2243 * Update flush time rate. This is an exponential weighted moving 2244 * average of the total time taken to flush over recent txgs. 2245 */ 2246 ddt->ddt_log_flush_time_rate = _ewma(ddt->ddt_log_flush_time_rate, 2247 (int32_t)NSEC2MSEC(gethrtime() - flush_start), 2248 zfs_dedup_log_flush_flow_rate_txgs); 2249 DDT_KSTAT_SET(ddt, dds_log_flush_time_rate, 2250 ddt->ddt_log_flush_time_rate); 2251 if (avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) > 0 && 2252 zfs_flags & ZFS_DEBUG_DDT) { 2253 zfs_dbgmsg("%lu entries remain(%lu in active), flushed %u @ " 2254 "txg %llu, in %llu ms, flush rate %d, time rate %d", 2255 (ulong_t)avl_numnodes(&ddt->ddt_log_flushing->ddl_tree), 2256 (ulong_t)avl_numnodes(&ddt->ddt_log_active->ddl_tree), 2257 count, (u_longlong_t)tx->tx_txg, 2258 (u_longlong_t)NSEC2MSEC(gethrtime() - flush_start), 2259 ddt->ddt_log_flush_rate, ddt->ddt_log_flush_time_rate); 2260 } 2261 } 2262 2263 static void 2264 ddt_sync_table_log(ddt_t *ddt, dmu_tx_t *tx) 2265 { 2266 uint64_t count = avl_numnodes(&ddt->ddt_tree); 2267 2268 if (count > 0) { 2269 ddt_log_update_t dlu = {0}; 2270 ddt_log_begin(ddt, count, tx, &dlu); 2271 2272 ddt_entry_t *dde; 2273 void *cookie = NULL; 2274 ddt_lightweight_entry_t ddlwe; 2275 while ((dde = 2276 avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) { 2277 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2278 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 2279 ddt_log_entry(ddt, &ddlwe, &dlu); 2280 ddt_sync_scan_entry(ddt, &ddlwe, tx); 2281 ddt_free(ddt, dde); 2282 } 2283 2284 ddt_log_commit(ddt, &dlu); 2285 2286 DDT_KSTAT_SET(ddt, dds_log_active_entries, 2287 avl_numnodes(&ddt->ddt_log_active->ddl_tree)); 2288 2289 /* 2290 * Sync the stats for the store objects. Even though we haven't 2291 * modified anything on those objects, they're no longer the 2292 * source of truth for entries that are now in the log, and we 2293 * need the on-disk counts to reflect that, otherwise we'll 2294 * miscount later when importing. 2295 */ 2296 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2297 for (ddt_class_t class = 0; 2298 class < DDT_CLASSES; class++) { 2299 if (ddt_object_exists(ddt, type, class)) 2300 ddt_object_sync(ddt, type, class, tx); 2301 } 2302 } 2303 2304 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 2305 sizeof (ddt->ddt_histogram)); 2306 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 2307 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 2308 } 2309 2310 if (spa_sync_pass(ddt->ddt_spa) == 1) { 2311 /* 2312 * Update ingest rate. This is an exponential weighted moving 2313 * average of the number of entries changed over recent txgs. 2314 * The ramp-up cost shouldn't matter too much because the 2315 * flusher will be trying to take at least the minimum anyway. 2316 */ 2317 ddt->ddt_log_ingest_rate = _ewma( 2318 count, ddt->ddt_log_ingest_rate, 2319 zfs_dedup_log_flush_flow_rate_txgs); 2320 DDT_KSTAT_SET(ddt, dds_log_ingest_rate, 2321 ddt->ddt_log_ingest_rate); 2322 } 2323 } 2324 2325 static void 2326 ddt_sync_table_flush(ddt_t *ddt, dmu_tx_t *tx) 2327 { 2328 if (avl_numnodes(&ddt->ddt_tree) == 0) 2329 return; 2330 2331 ddt_entry_t *dde; 2332 void *cookie = NULL; 2333 while ((dde = avl_destroy_nodes( 2334 &ddt->ddt_tree, &cookie)) != NULL) { 2335 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2336 2337 ddt_lightweight_entry_t ddlwe; 2338 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 2339 ddt_sync_flush_entry(ddt, &ddlwe, 2340 dde->dde_type, dde->dde_class, tx); 2341 ddt_sync_scan_entry(ddt, &ddlwe, tx); 2342 ddt_free(ddt, dde); 2343 } 2344 2345 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 2346 sizeof (ddt->ddt_histogram)); 2347 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 2348 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 2349 ddt_sync_update_stats(ddt, tx); 2350 } 2351 2352 static void 2353 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx) 2354 { 2355 spa_t *spa = ddt->ddt_spa; 2356 2357 if (ddt->ddt_version == UINT64_MAX) 2358 return; 2359 2360 if (spa->spa_uberblock.ub_version < SPA_VERSION_DEDUP) { 2361 ASSERT0(avl_numnodes(&ddt->ddt_tree)); 2362 return; 2363 } 2364 2365 if (spa->spa_ddt_stat_object == 0) { 2366 spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os, 2367 DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT, 2368 DMU_POOL_DDT_STATS, tx); 2369 } 2370 2371 if (ddt->ddt_version == DDT_VERSION_FDT && ddt->ddt_dir_object == 0) 2372 ddt_create_dir(ddt, tx); 2373 2374 if (ddt->ddt_flags & DDT_FLAG_LOG) 2375 ddt_sync_table_log(ddt, tx); 2376 else 2377 ddt_sync_table_flush(ddt, tx); 2378 } 2379 2380 void 2381 ddt_sync(spa_t *spa, uint64_t txg) 2382 { 2383 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2384 dmu_tx_t *tx; 2385 zio_t *rio; 2386 2387 ASSERT3U(spa_syncing_txg(spa), ==, txg); 2388 2389 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2390 2391 rio = zio_root(spa, NULL, NULL, 2392 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL); 2393 2394 /* 2395 * This function may cause an immediate scan of ddt blocks (see 2396 * the comment above dsl_scan_ddt() for details). We set the 2397 * scan's root zio here so that we can wait for any scan IOs in 2398 * addition to the regular ddt IOs. 2399 */ 2400 ASSERT0P(scn->scn_zio_root); 2401 scn->scn_zio_root = rio; 2402 2403 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2404 ddt_t *ddt = spa->spa_ddt[c]; 2405 if (ddt == NULL) 2406 continue; 2407 ddt_sync_table(ddt, tx); 2408 if (ddt->ddt_flags & DDT_FLAG_LOG) 2409 ddt_sync_flush_log(ddt, tx); 2410 ddt_repair_table(ddt, rio); 2411 } 2412 2413 (void) zio_wait(rio); 2414 scn->scn_zio_root = NULL; 2415 2416 dmu_tx_commit(tx); 2417 } 2418 2419 void 2420 ddt_walk_init(spa_t *spa, uint64_t txg) 2421 { 2422 if (txg == 0) 2423 txg = spa_syncing_txg(spa); 2424 2425 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2426 ddt_t *ddt = spa->spa_ddt[c]; 2427 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) 2428 continue; 2429 2430 ddt_enter(ddt); 2431 ddt_flush_force_update_txg(ddt, txg); 2432 ddt_exit(ddt); 2433 } 2434 } 2435 2436 boolean_t 2437 ddt_walk_ready(spa_t *spa) 2438 { 2439 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2440 ddt_t *ddt = spa->spa_ddt[c]; 2441 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) 2442 continue; 2443 2444 if (ddt->ddt_flush_force_txg > 0) 2445 return (B_FALSE); 2446 } 2447 2448 return (B_TRUE); 2449 } 2450 2451 static int 2452 ddt_walk_impl(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe, 2453 uint64_t flags, boolean_t wait) 2454 { 2455 do { 2456 do { 2457 do { 2458 ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum]; 2459 if (ddt == NULL) 2460 continue; 2461 2462 if (flags != 0 && 2463 (ddt->ddt_flags & flags) != flags) 2464 continue; 2465 2466 if (wait && ddt->ddt_flush_force_txg > 0) 2467 return (EAGAIN); 2468 2469 int error = ENOENT; 2470 if (ddt_object_exists(ddt, ddb->ddb_type, 2471 ddb->ddb_class)) { 2472 error = ddt_object_walk(ddt, 2473 ddb->ddb_type, ddb->ddb_class, 2474 &ddb->ddb_cursor, ddlwe); 2475 } 2476 if (error == 0) 2477 return (0); 2478 if (error != ENOENT) 2479 return (error); 2480 ddb->ddb_cursor = 0; 2481 } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS); 2482 ddb->ddb_checksum = 0; 2483 } while (++ddb->ddb_type < DDT_TYPES); 2484 ddb->ddb_type = 0; 2485 } while (++ddb->ddb_class < DDT_CLASSES); 2486 2487 return (SET_ERROR(ENOENT)); 2488 } 2489 2490 int 2491 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe) 2492 { 2493 return (ddt_walk_impl(spa, ddb, ddlwe, 0, B_TRUE)); 2494 } 2495 2496 /* 2497 * This function is used by Block Cloning (brt.c) to increase reference 2498 * counter for the DDT entry if the block is already in DDT. 2499 * 2500 * Return false if the block, despite having the D bit set, is not present 2501 * in the DDT. This is possible when the DDT has been pruned by an admin 2502 * or by the DDT quota mechanism. 2503 */ 2504 boolean_t 2505 ddt_addref(spa_t *spa, const blkptr_t *bp) 2506 { 2507 ddt_t *ddt; 2508 ddt_entry_t *dde; 2509 boolean_t result; 2510 2511 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 2512 ddt = ddt_select(spa, bp); 2513 ddt_enter(ddt); 2514 2515 dde = ddt_lookup(ddt, bp, B_TRUE); 2516 2517 /* Can be NULL if the entry for this block was pruned. */ 2518 if (dde == NULL) { 2519 ddt_exit(ddt); 2520 spa_config_exit(spa, SCL_ZIO, FTAG); 2521 return (B_FALSE); 2522 } 2523 2524 if ((dde->dde_type < DDT_TYPES) || (dde->dde_flags & DDE_FLAG_LOGGED)) { 2525 /* 2526 * This entry was either synced to a store object (dde_type is 2527 * real) or was logged. It must be properly on disk at this 2528 * point, so we can just bump its refcount. 2529 */ 2530 int p = DDT_PHYS_FOR_COPIES(ddt, BP_GET_NDVAS(bp)); 2531 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 2532 2533 ddt_phys_addref(dde->dde_phys, v); 2534 result = B_TRUE; 2535 } else { 2536 /* 2537 * If the block has the DEDUP flag set it still might not 2538 * exist in the DEDUP table due to DDT pruning of entries 2539 * where refcnt=1. 2540 */ 2541 ddt_remove(ddt, dde); 2542 result = B_FALSE; 2543 } 2544 2545 ddt_exit(ddt); 2546 spa_config_exit(spa, SCL_ZIO, FTAG); 2547 2548 return (result); 2549 } 2550 2551 typedef struct ddt_prune_entry { 2552 ddt_t *dpe_ddt; 2553 ddt_key_t dpe_key; 2554 list_node_t dpe_node; 2555 ddt_univ_phys_t dpe_phys[]; 2556 } ddt_prune_entry_t; 2557 2558 typedef struct ddt_prune_info { 2559 spa_t *dpi_spa; 2560 uint64_t dpi_txg_syncs; 2561 uint64_t dpi_pruned; 2562 list_t dpi_candidates; 2563 } ddt_prune_info_t; 2564 2565 /* 2566 * Add prune candidates for ddt_sync during spa_sync 2567 */ 2568 static void 2569 prune_candidates_sync(void *arg, dmu_tx_t *tx) 2570 { 2571 (void) tx; 2572 ddt_prune_info_t *dpi = arg; 2573 ddt_prune_entry_t *dpe; 2574 2575 spa_config_enter(dpi->dpi_spa, SCL_ZIO, FTAG, RW_READER); 2576 2577 /* Process the prune candidates collected so far */ 2578 while ((dpe = list_remove_head(&dpi->dpi_candidates)) != NULL) { 2579 blkptr_t blk; 2580 ddt_t *ddt = dpe->dpe_ddt; 2581 2582 ddt_enter(ddt); 2583 2584 /* 2585 * If it's on the live list, then it was loaded for update 2586 * this txg and is no longer stale; skip it. 2587 */ 2588 if (avl_find(&ddt->ddt_tree, &dpe->dpe_key, NULL)) { 2589 ddt_exit(ddt); 2590 kmem_free(dpe, sizeof (*dpe)); 2591 continue; 2592 } 2593 2594 ddt_bp_create(ddt->ddt_checksum, &dpe->dpe_key, 2595 dpe->dpe_phys, DDT_PHYS_FLAT, &blk); 2596 2597 ddt_entry_t *dde = ddt_lookup(ddt, &blk, B_TRUE); 2598 if (dde != NULL && !(dde->dde_flags & DDE_FLAG_LOGGED)) { 2599 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2600 /* 2601 * Zero the physical, so we don't try to free DVAs 2602 * at flush nor try to reuse this entry. 2603 */ 2604 ddt_phys_clear(dde->dde_phys, DDT_PHYS_FLAT); 2605 2606 dpi->dpi_pruned++; 2607 } 2608 2609 ddt_exit(ddt); 2610 kmem_free(dpe, sizeof (*dpe)); 2611 } 2612 2613 spa_config_exit(dpi->dpi_spa, SCL_ZIO, FTAG); 2614 dpi->dpi_txg_syncs++; 2615 } 2616 2617 /* 2618 * Prune candidates are collected in open context and processed 2619 * in sync context as part of ddt_sync_table(). 2620 */ 2621 static void 2622 ddt_prune_entry(list_t *list, ddt_t *ddt, const ddt_key_t *ddk, 2623 const ddt_univ_phys_t *ddp) 2624 { 2625 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT); 2626 2627 size_t dpe_size = sizeof (ddt_prune_entry_t) + DDT_FLAT_PHYS_SIZE; 2628 ddt_prune_entry_t *dpe = kmem_alloc(dpe_size, KM_SLEEP); 2629 2630 dpe->dpe_ddt = ddt; 2631 dpe->dpe_key = *ddk; 2632 memcpy(dpe->dpe_phys, ddp, DDT_FLAT_PHYS_SIZE); 2633 list_insert_head(list, dpe); 2634 } 2635 2636 /* 2637 * Interate over all the entries in the DDT unique class. 2638 * The walk will perform one of the following operations: 2639 * (a) build a histogram than can be used when pruning 2640 * (b) prune entries older than the cutoff 2641 * 2642 * Also called by zdb(8) to dump the age histogram 2643 */ 2644 void 2645 ddt_prune_walk(spa_t *spa, uint64_t cutoff, ddt_age_histo_t *histogram) 2646 { 2647 ddt_bookmark_t ddb = { 2648 .ddb_class = DDT_CLASS_UNIQUE, 2649 .ddb_type = 0, 2650 .ddb_checksum = 0, 2651 .ddb_cursor = 0 2652 }; 2653 ddt_lightweight_entry_t ddlwe = {0}; 2654 int error; 2655 int valid = 0; 2656 int candidates = 0; 2657 uint64_t now = gethrestime_sec(); 2658 ddt_prune_info_t dpi; 2659 boolean_t pruning = (cutoff != 0); 2660 2661 if (pruning) { 2662 dpi.dpi_txg_syncs = 0; 2663 dpi.dpi_pruned = 0; 2664 dpi.dpi_spa = spa; 2665 list_create(&dpi.dpi_candidates, sizeof (ddt_prune_entry_t), 2666 offsetof(ddt_prune_entry_t, dpe_node)); 2667 } 2668 2669 if (histogram != NULL) 2670 memset(histogram, 0, sizeof (ddt_age_histo_t)); 2671 2672 while ((error = 2673 ddt_walk_impl(spa, &ddb, &ddlwe, DDT_FLAG_FLAT, B_FALSE)) == 0) { 2674 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 2675 VERIFY(ddt); 2676 2677 if (spa_shutting_down(spa) || issig()) 2678 break; 2679 2680 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT); 2681 ASSERT3U(ddlwe.ddlwe_phys.ddp_flat.ddp_refcnt, <=, 1); 2682 2683 uint64_t class_start = 2684 ddlwe.ddlwe_phys.ddp_flat.ddp_class_start; 2685 2686 /* 2687 * If this entry is on the log, then the stored entry is stale 2688 * and we should skip it. 2689 */ 2690 if (ddt_log_find_key(ddt, &ddlwe.ddlwe_key, NULL)) 2691 continue; 2692 2693 /* prune older entries */ 2694 if (pruning && class_start < cutoff) { 2695 if (candidates++ >= zfs_ddt_prunes_per_txg) { 2696 /* sync prune candidates in batches */ 2697 VERIFY0(dsl_sync_task(spa_name(spa), 2698 NULL, prune_candidates_sync, 2699 &dpi, 0, ZFS_SPACE_CHECK_NONE)); 2700 candidates = 1; 2701 } 2702 ddt_prune_entry(&dpi.dpi_candidates, ddt, 2703 &ddlwe.ddlwe_key, &ddlwe.ddlwe_phys); 2704 } 2705 2706 /* build a histogram */ 2707 if (histogram != NULL) { 2708 uint64_t age = MAX(1, (now - class_start) / 3600); 2709 int bin = MIN(highbit64(age) - 1, HIST_BINS - 1); 2710 histogram->dah_entries++; 2711 histogram->dah_age_histo[bin]++; 2712 } 2713 2714 valid++; 2715 } 2716 2717 if (pruning && valid > 0) { 2718 if (!list_is_empty(&dpi.dpi_candidates)) { 2719 /* sync out final batch of prune candidates */ 2720 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2721 prune_candidates_sync, &dpi, 0, 2722 ZFS_SPACE_CHECK_NONE)); 2723 } 2724 list_destroy(&dpi.dpi_candidates); 2725 2726 zfs_dbgmsg("pruned %llu entries (%d%%) across %llu txg syncs", 2727 (u_longlong_t)dpi.dpi_pruned, 2728 (int)((dpi.dpi_pruned * 100) / valid), 2729 (u_longlong_t)dpi.dpi_txg_syncs); 2730 } 2731 } 2732 2733 static uint64_t 2734 ddt_total_entries(spa_t *spa) 2735 { 2736 ddt_object_t ddo; 2737 ddt_get_dedup_object_stats(spa, &ddo); 2738 2739 return (ddo.ddo_count); 2740 } 2741 2742 int 2743 ddt_prune_unique_entries(spa_t *spa, zpool_ddt_prune_unit_t unit, 2744 uint64_t amount) 2745 { 2746 uint64_t cutoff; 2747 uint64_t start_time = gethrtime(); 2748 2749 if (spa->spa_active_ddt_prune) 2750 return (SET_ERROR(EALREADY)); 2751 if (ddt_total_entries(spa) == 0) 2752 return (0); 2753 2754 spa->spa_active_ddt_prune = B_TRUE; 2755 2756 zfs_dbgmsg("prune %llu %s", (u_longlong_t)amount, 2757 unit == ZPOOL_DDT_PRUNE_PERCENTAGE ? "%" : "seconds old or older"); 2758 2759 if (unit == ZPOOL_DDT_PRUNE_PERCENTAGE) { 2760 ddt_age_histo_t histogram; 2761 uint64_t oldest = 0; 2762 2763 /* Make a pass over DDT to build a histogram */ 2764 ddt_prune_walk(spa, 0, &histogram); 2765 2766 int target = (histogram.dah_entries * amount) / 100; 2767 2768 /* 2769 * Figure out our cutoff date 2770 * (i.e., which bins to prune from) 2771 */ 2772 for (int i = HIST_BINS - 1; i >= 0 && target > 0; i--) { 2773 if (histogram.dah_age_histo[i] != 0) { 2774 /* less than this bucket remaining */ 2775 if (target < histogram.dah_age_histo[i]) { 2776 oldest = MAX(1, (1<<i) * 3600); 2777 target = 0; 2778 } else { 2779 target -= histogram.dah_age_histo[i]; 2780 } 2781 } 2782 } 2783 cutoff = gethrestime_sec() - oldest; 2784 2785 if (ddt_dump_prune_histogram) 2786 ddt_dump_age_histogram(&histogram, cutoff); 2787 } else if (unit == ZPOOL_DDT_PRUNE_AGE) { 2788 cutoff = gethrestime_sec() - amount; 2789 } else { 2790 return (EINVAL); 2791 } 2792 2793 if (cutoff > 0 && !spa_shutting_down(spa) && !issig()) { 2794 /* Traverse DDT to prune entries older that our cuttoff */ 2795 ddt_prune_walk(spa, cutoff, NULL); 2796 } 2797 2798 zfs_dbgmsg("%s: prune completed in %llu ms", 2799 spa_name(spa), (u_longlong_t)NSEC2MSEC(gethrtime() - start_time)); 2800 2801 spa->spa_active_ddt_prune = B_FALSE; 2802 return (0); 2803 } 2804 2805 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW, 2806 "Enable prefetching dedup-ed blks"); 2807 2808 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_min_time_ms, UINT, ZMOD_RW, 2809 "Min time to spend on incremental dedup log flush each transaction"); 2810 2811 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_min, UINT, ZMOD_RW, 2812 "Min number of log entries to flush each transaction"); 2813 2814 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_max, UINT, ZMOD_RW, 2815 "Max number of log entries to flush each transaction"); 2816 2817 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_txgs, UINT, ZMOD_RW, 2818 "Number of TXGs to try to rotate the log in"); 2819 2820 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_cap, UINT, ZMOD_RW, 2821 "Soft cap for the size of the current dedup log"); 2822 2823 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_hard_cap, UINT, ZMOD_RW, 2824 "Whether to use the soft cap as a hard cap"); 2825 2826 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_flow_rate_txgs, UINT, ZMOD_RW, 2827 "Number of txgs to average flow rates across"); 2828