1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved. 26 * Copyright (c) 2022 by Pawel Jakub Dawidek 27 * Copyright (c) 2019, 2023, Klara Inc. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/ddt.h> 35 #include <sys/ddt_impl.h> 36 #include <sys/zap.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/arc.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dsl_scan.h> 42 #include <sys/abd.h> 43 #include <sys/zfeature.h> 44 45 /* 46 * # DDT: Deduplication tables 47 * 48 * The dedup subsystem provides block-level deduplication. When enabled, blocks 49 * to be written will have the dedup (D) bit set, which causes them to be 50 * tracked in a "dedup table", or DDT. If a block has been seen before (exists 51 * in the DDT), instead of being written, it will instead be made to reference 52 * the existing on-disk data, and a refcount bumped in the DDT instead. 53 * 54 * ## Dedup tables and entries 55 * 56 * Conceptually, a DDT is a dictionary or map. Each entry has a "key" 57 * (ddt_key_t) made up a block's checksum and certian properties, and a "value" 58 * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth 59 * time and refcount. Together these are enough to track references to a 60 * specific block, to build a valid block pointer to reference that block (for 61 * freeing, scrubbing, etc), and to fill a new block pointer with the missing 62 * pieces to make it seem like it was written. 63 * 64 * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[]. 65 * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk 66 * object data formats, each with their own implementations) and "classes" 67 * (ddt_class_t, instance of a storage type object, for entries with a specific 68 * characteristic). An entry (key) will only ever exist on one of these objects 69 * at any given time, but may be moved from one to another if their type or 70 * class changes. 71 * 72 * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block 73 * is to be written, before DVAs have been allocated, ddt_lookup() is called to 74 * see if the block has been seen before. If its not found, the write proceeds 75 * as normal, and after it succeeds, a new entry is created. If it is found, we 76 * fill the BP with the DVAs from the entry, increment the refcount and cause 77 * the write IO to return immediately. 78 * 79 * Traditionally, each ddt_phys_t slot in the entry represents a separate dedup 80 * block for the same content/checksum. The slot is selected based on the 81 * zp_copies parameter the block is written with, that is, the number of DVAs 82 * in the block. The "ditto" slot (DDT_PHYS_DITTO) used to be used for 83 * now-removed "dedupditto" feature. These are no longer written, and will be 84 * freed if encountered on old pools. 85 * 86 * If the "fast_dedup" feature is enabled, new dedup tables will be created 87 * with the "flat phys" option. In this mode, there is only one ddt_phys_t 88 * slot. If a write is issued for an entry that exists, but has fewer DVAs, 89 * then only as many new DVAs are allocated and written to make up the 90 * shortfall. The existing entry is then extended (ddt_phys_extend()) with the 91 * new DVAs. 92 * 93 * ## Lifetime of an entry 94 * 95 * A DDT can be enormous, and typically is not held in memory all at once. 96 * Instead, the changes to an entry are tracked in memory, and written down to 97 * disk at the end of each txg. 98 * 99 * A "live" in-memory entry (ddt_entry_t) is a node on the live tree 100 * (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is 101 * required for IO, ddt_lookup() is called. If an entry already exists on 102 * ddt_tree, it is returned. Otherwise, a new one is created, and the 103 * type/class objects for the DDT are searched for that key. If its found, its 104 * value is copied into the live entry. If not, an empty entry is created. 105 * 106 * The live entry will be modified during the txg, usually by modifying the 107 * refcount, but sometimes by adding or updating DVAs. At the end of the txg 108 * (during spa_sync()), type and class are recalculated for entry (see 109 * ddt_sync_entry()), and the entry is written to the appropriate storage 110 * object and (if necessary), removed from an old one. ddt_tree is cleared and 111 * the next txg can start. 112 * 113 * ## Dedup quota 114 * 115 * A maximum size for all DDTs on the pool can be set with the 116 * dedup_table_quota property. This is determined in ddt_over_quota() and 117 * enforced during ddt_lookup(). If the pool is at or over its quota limit, 118 * ddt_lookup() will only return entries for existing blocks, as updates are 119 * still possible. New entries will not be created; instead, ddt_lookup() will 120 * return NULL. In response, the DDT write stage (zio_ddt_write()) will remove 121 * the D bit on the block and reissue the IO as a regular write. The block will 122 * not be deduplicated. 123 * 124 * Note that this is based on the on-disk size of the dedup store. Reclaiming 125 * this space after deleting entries relies on the ZAP "shrinking" behaviour, 126 * without which, no space would be recovered and the DDT would continue to be 127 * considered "over quota". See zap_shrink_enabled. 128 * 129 * ## Dedup table pruning 130 * 131 * As a complement to the dedup quota feature, ddtprune allows removal of older 132 * non-duplicate entries to make room for newer duplicate entries. The amount 133 * to prune can be based on a target percentage of the unique entries or based 134 * on the age (i.e., prune unique entry older than N days). 135 * 136 * ## Dedup log 137 * 138 * Historically, all entries modified on a txg were written back to dedup 139 * storage objects at the end of every txg. This could cause significant 140 * overheads, as each entry only takes up a tiny portion of a ZAP leaf node, 141 * and so required reading the whole node, updating the entry, and writing it 142 * back. On busy pools, this could add serious IO and memory overheads. 143 * 144 * To address this, the dedup log was added. If the "fast_dedup" feature is 145 * enabled, at the end of each txg, modified entries will be copied to an 146 * in-memory "log" object (ddt_log_t), and appended to an on-disk log. If the 147 * same block is requested again, the in-memory object will be checked first, 148 * and if its there, the entry inflated back onto the live tree without going 149 * to storage. The on-disk log is only read at pool import time, to reload the 150 * in-memory log. 151 * 152 * Each txg, some amount of the in-memory log will be flushed out to a DDT 153 * storage object (ie ZAP) as normal. OpenZFS will try hard to flush enough to 154 * keep up with the rate of change on dedup entries, but not so much that it 155 * would impact overall throughput, and not using too much memory. See the 156 * zfs_dedup_log_* tunables in zfs(4) for more details. 157 * 158 * ## Repair IO 159 * 160 * If a read on a dedup block fails, but there are other copies of the block in 161 * the other ddt_phys_t slots, reads will be issued for those instead 162 * (zio_ddt_read_start()). If one of those succeeds, the read is returned to 163 * the caller, and a copy is stashed on the entry's dde_repair_abd. 164 * 165 * During the end-of-txg sync, any entries with a dde_repair_abd get a 166 * "rewrite" write issued for the original block pointer, with the data read 167 * from the alternate block. If the block is actually damaged, this will invoke 168 * the pool's "self-healing" mechanism, and repair the block. 169 * 170 * If the "fast_dedup" feature is enabled, the "flat phys" option will be in 171 * use, so there is only ever one ddt_phys_t slot. The repair process will 172 * still happen in this case, though it is unlikely to succeed as there will 173 * usually be no other equivalent blocks to fall back on (though there might 174 * be, if this was an early version of a dedup'd block that has since been 175 * extended). 176 * 177 * Note that this repair mechanism is in addition to and separate from the 178 * regular OpenZFS scrub and self-healing mechanisms. 179 * 180 * ## Scanning (scrub/resilver) 181 * 182 * If dedup is active, the scrub machinery will walk the dedup table first, and 183 * scrub all blocks with refcnt > 1 first. After that it will move on to the 184 * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them. 185 * In this way, heavily deduplicated blocks are only scrubbed once. See the 186 * commentary on dsl_scan_ddt() for more details. 187 * 188 * Walking the DDT is done via ddt_walk(). The current position is stored in a 189 * ddt_bookmark_t, which represents a stable position in the storage object. 190 * This bookmark is stored by the scan machinery, and must reference the same 191 * position on the object even if the object changes, the pool is exported, or 192 * OpenZFS is upgraded. 193 * 194 * If the "fast_dedup" feature is enabled and the table has a log, the scan 195 * cannot begin until entries on the log are flushed, as the on-disk log has no 196 * concept of a "stable position". Instead, the log flushing process will enter 197 * a more aggressive mode, to flush out as much as is necesary as soon as 198 * possible, in order to begin the scan as soon as possible. 199 * 200 * ## Interaction with block cloning 201 * 202 * If block cloning and dedup are both enabled on a pool, BRT will look for the 203 * dedup bit on an incoming block pointer. If set, it will call into the DDT 204 * (ddt_addref()) to add a reference to the block, instead of adding a 205 * reference to the BRT. See brt_pending_apply(). 206 */ 207 208 /* 209 * These are the only checksums valid for dedup. They must match the list 210 * from dedup_table in zfs_prop.c 211 */ 212 #define DDT_CHECKSUM_VALID(c) \ 213 (c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \ 214 c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \ 215 c == ZIO_CHECKSUM_BLAKE3) 216 217 static kmem_cache_t *ddt_cache; 218 219 static kmem_cache_t *ddt_entry_flat_cache; 220 static kmem_cache_t *ddt_entry_trad_cache; 221 222 #define DDT_ENTRY_FLAT_SIZE (sizeof (ddt_entry_t) + DDT_FLAT_PHYS_SIZE) 223 #define DDT_ENTRY_TRAD_SIZE (sizeof (ddt_entry_t) + DDT_TRAD_PHYS_SIZE) 224 225 #define DDT_ENTRY_SIZE(ddt) \ 226 _DDT_PHYS_SWITCH(ddt, DDT_ENTRY_FLAT_SIZE, DDT_ENTRY_TRAD_SIZE) 227 228 /* 229 * Enable/disable prefetching of dedup-ed blocks which are going to be freed. 230 */ 231 int zfs_dedup_prefetch = 0; 232 233 /* 234 * If the dedup class cannot satisfy a DDT allocation, treat as over quota 235 * for this many TXGs. 236 */ 237 uint_t dedup_class_wait_txgs = 5; 238 239 /* 240 * How many DDT prune entries to add to the DDT sync AVL tree. 241 * Note these addtional entries have a memory footprint of a 242 * ddt_entry_t (216 bytes). 243 */ 244 static uint32_t zfs_ddt_prunes_per_txg = 50000; 245 246 /* 247 * For testing, synthesize aged DDT entries 248 * (in global scope for ztest) 249 */ 250 boolean_t ddt_prune_artificial_age = B_FALSE; 251 boolean_t ddt_dump_prune_histogram = B_FALSE; 252 253 /* 254 * Minimum time to flush per txg. 255 */ 256 uint_t zfs_dedup_log_flush_min_time_ms = 1000; 257 258 /* 259 * Minimum entries to flush per txg. 260 */ 261 uint_t zfs_dedup_log_flush_entries_min = 200; 262 263 /* 264 * Target number of TXGs until the whole dedup log has been flushed. 265 * The log size will float around this value times the ingest rate. 266 */ 267 uint_t zfs_dedup_log_flush_txgs = 100; 268 269 /* 270 * Maximum entries to flush per txg. Used for testing the dedup log. 271 */ 272 uint_t zfs_dedup_log_flush_entries_max = UINT_MAX; 273 274 /* 275 * Soft cap for the size of the current dedup log. If the log is larger 276 * than this size, we slightly increase the aggressiveness of the flushing to 277 * try to bring it back down to the soft cap. 278 */ 279 uint_t zfs_dedup_log_cap = UINT_MAX; 280 281 /* 282 * If this is set to B_TRUE, the cap above acts more like a hard cap: 283 * flushing is significantly more aggressive, increasing the minimum amount we 284 * flush per txg, as well as the maximum. 285 */ 286 boolean_t zfs_dedup_log_hard_cap = B_FALSE; 287 288 /* 289 * Number of txgs to average flow rates across. 290 */ 291 uint_t zfs_dedup_log_flush_flow_rate_txgs = 10; 292 293 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = { 294 &ddt_zap_ops, 295 }; 296 297 static const char *const ddt_class_name[DDT_CLASSES] = { 298 "ditto", 299 "duplicate", 300 "unique", 301 }; 302 303 /* 304 * DDT feature flags automatically enabled for each on-disk version. Note that 305 * versions >0 cannot exist on disk without SPA_FEATURE_FAST_DEDUP enabled. 306 */ 307 static const uint64_t ddt_version_flags[] = { 308 [DDT_VERSION_LEGACY] = 0, 309 [DDT_VERSION_FDT] = DDT_FLAG_FLAT | DDT_FLAG_LOG, 310 }; 311 312 /* per-DDT kstats */ 313 typedef struct { 314 /* total lookups and whether they returned new or existing entries */ 315 kstat_named_t dds_lookup; 316 kstat_named_t dds_lookup_new; 317 kstat_named_t dds_lookup_existing; 318 319 /* entries found on live tree, and if we had to wait for load */ 320 kstat_named_t dds_lookup_live_hit; 321 kstat_named_t dds_lookup_live_wait; 322 kstat_named_t dds_lookup_live_miss; 323 324 /* entries found on log trees */ 325 kstat_named_t dds_lookup_log_hit; 326 kstat_named_t dds_lookup_log_active_hit; 327 kstat_named_t dds_lookup_log_flushing_hit; 328 kstat_named_t dds_lookup_log_miss; 329 330 /* entries found on store objects */ 331 kstat_named_t dds_lookup_stored_hit; 332 kstat_named_t dds_lookup_stored_miss; 333 334 /* number of entries on log trees */ 335 kstat_named_t dds_log_active_entries; 336 kstat_named_t dds_log_flushing_entries; 337 338 /* avg updated/flushed entries per txg */ 339 kstat_named_t dds_log_ingest_rate; 340 kstat_named_t dds_log_flush_rate; 341 kstat_named_t dds_log_flush_time_rate; 342 } ddt_kstats_t; 343 344 static const ddt_kstats_t ddt_kstats_template = { 345 { "lookup", KSTAT_DATA_UINT64 }, 346 { "lookup_new", KSTAT_DATA_UINT64 }, 347 { "lookup_existing", KSTAT_DATA_UINT64 }, 348 { "lookup_live_hit", KSTAT_DATA_UINT64 }, 349 { "lookup_live_wait", KSTAT_DATA_UINT64 }, 350 { "lookup_live_miss", KSTAT_DATA_UINT64 }, 351 { "lookup_log_hit", KSTAT_DATA_UINT64 }, 352 { "lookup_log_active_hit", KSTAT_DATA_UINT64 }, 353 { "lookup_log_flushing_hit", KSTAT_DATA_UINT64 }, 354 { "lookup_log_miss", KSTAT_DATA_UINT64 }, 355 { "lookup_stored_hit", KSTAT_DATA_UINT64 }, 356 { "lookup_stored_miss", KSTAT_DATA_UINT64 }, 357 { "log_active_entries", KSTAT_DATA_UINT64 }, 358 { "log_flushing_entries", KSTAT_DATA_UINT64 }, 359 { "log_ingest_rate", KSTAT_DATA_UINT32 }, 360 { "log_flush_rate", KSTAT_DATA_UINT32 }, 361 { "log_flush_time_rate", KSTAT_DATA_UINT32 }, 362 }; 363 364 #ifdef _KERNEL 365 #define _DDT_KSTAT_STAT(ddt, stat) \ 366 &((ddt_kstats_t *)(ddt)->ddt_ksp->ks_data)->stat.value.ui64 367 #define DDT_KSTAT_BUMP(ddt, stat) \ 368 do { atomic_inc_64(_DDT_KSTAT_STAT(ddt, stat)); } while (0) 369 #define DDT_KSTAT_ADD(ddt, stat, val) \ 370 do { atomic_add_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 371 #define DDT_KSTAT_SUB(ddt, stat, val) \ 372 do { atomic_sub_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 373 #define DDT_KSTAT_SET(ddt, stat, val) \ 374 do { atomic_store_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0) 375 #define DDT_KSTAT_ZERO(ddt, stat) DDT_KSTAT_SET(ddt, stat, 0) 376 #else 377 #define DDT_KSTAT_BUMP(ddt, stat) do {} while (0) 378 #define DDT_KSTAT_ADD(ddt, stat, val) do {} while (0) 379 #define DDT_KSTAT_SUB(ddt, stat, val) do {} while (0) 380 #define DDT_KSTAT_SET(ddt, stat, val) do {} while (0) 381 #define DDT_KSTAT_ZERO(ddt, stat) do {} while (0) 382 #endif /* _KERNEL */ 383 384 385 static void 386 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 387 dmu_tx_t *tx) 388 { 389 spa_t *spa = ddt->ddt_spa; 390 objset_t *os = ddt->ddt_os; 391 uint64_t *objectp = &ddt->ddt_object[type][class]; 392 boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags & 393 ZCHECKSUM_FLAG_DEDUP; 394 char name[DDT_NAMELEN]; 395 396 ASSERT3U(ddt->ddt_dir_object, >, 0); 397 398 ddt_object_name(ddt, type, class, name); 399 400 ASSERT3U(*objectp, ==, 0); 401 VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash)); 402 ASSERT3U(*objectp, !=, 0); 403 404 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 405 406 VERIFY0(zap_add(os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1, 407 objectp, tx)); 408 409 VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name, 410 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 411 &ddt->ddt_histogram[type][class], tx)); 412 } 413 414 static void 415 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 416 dmu_tx_t *tx) 417 { 418 spa_t *spa = ddt->ddt_spa; 419 objset_t *os = ddt->ddt_os; 420 uint64_t *objectp = &ddt->ddt_object[type][class]; 421 uint64_t count; 422 char name[DDT_NAMELEN]; 423 424 ASSERT3U(ddt->ddt_dir_object, >, 0); 425 426 ddt_object_name(ddt, type, class, name); 427 428 ASSERT3U(*objectp, !=, 0); 429 ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class])); 430 VERIFY0(ddt_object_count(ddt, type, class, &count)); 431 VERIFY0(count); 432 VERIFY0(zap_remove(os, ddt->ddt_dir_object, name, tx)); 433 VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx)); 434 VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx)); 435 memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t)); 436 437 *objectp = 0; 438 } 439 440 static int 441 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 442 { 443 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; 444 dmu_object_info_t doi; 445 uint64_t count; 446 char name[DDT_NAMELEN]; 447 int error; 448 449 if (ddt->ddt_dir_object == 0) { 450 /* 451 * If we're configured but the containing dir doesn't exist 452 * yet, then this object can't possibly exist either. 453 */ 454 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 455 return (SET_ERROR(ENOENT)); 456 } 457 458 ddt_object_name(ddt, type, class, name); 459 460 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name, 461 sizeof (uint64_t), 1, &ddt->ddt_object[type][class]); 462 if (error != 0) 463 return (error); 464 465 error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, 466 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 467 &ddt->ddt_histogram[type][class]); 468 if (error != 0) 469 return (error); 470 471 /* 472 * Seed the cached statistics. 473 */ 474 error = ddt_object_info(ddt, type, class, &doi); 475 if (error) 476 return (error); 477 478 error = ddt_object_count(ddt, type, class, &count); 479 if (error) 480 return (error); 481 482 ddo->ddo_count = count; 483 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; 484 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; 485 486 return (0); 487 } 488 489 static void 490 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 491 dmu_tx_t *tx) 492 { 493 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; 494 dmu_object_info_t doi; 495 uint64_t count; 496 char name[DDT_NAMELEN]; 497 498 ddt_object_name(ddt, type, class, name); 499 500 VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, 501 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), 502 &ddt->ddt_histogram[type][class], tx)); 503 504 /* 505 * Cache DDT statistics; this is the only time they'll change. 506 */ 507 VERIFY0(ddt_object_info(ddt, type, class, &doi)); 508 VERIFY0(ddt_object_count(ddt, type, class, &count)); 509 510 ddo->ddo_count = count; 511 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; 512 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; 513 } 514 515 static boolean_t 516 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 517 { 518 return (!!ddt->ddt_object[type][class]); 519 } 520 521 static int 522 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 523 ddt_entry_t *dde) 524 { 525 if (!ddt_object_exists(ddt, type, class)) 526 return (SET_ERROR(ENOENT)); 527 528 return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os, 529 ddt->ddt_object[type][class], &dde->dde_key, 530 dde->dde_phys, DDT_PHYS_SIZE(ddt))); 531 } 532 533 static int 534 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 535 const ddt_key_t *ddk) 536 { 537 if (!ddt_object_exists(ddt, type, class)) 538 return (SET_ERROR(ENOENT)); 539 540 return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os, 541 ddt->ddt_object[type][class], ddk)); 542 } 543 544 static void 545 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 546 const ddt_key_t *ddk) 547 { 548 if (!ddt_object_exists(ddt, type, class)) 549 return; 550 551 ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os, 552 ddt->ddt_object[type][class], ddk); 553 } 554 555 static void 556 ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 557 { 558 if (!ddt_object_exists(ddt, type, class)) 559 return; 560 561 ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os, 562 ddt->ddt_object[type][class]); 563 } 564 565 static int 566 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 567 const ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 568 { 569 ASSERT(ddt_object_exists(ddt, type, class)); 570 571 return (ddt_ops[type]->ddt_op_update(ddt->ddt_os, 572 ddt->ddt_object[type][class], &ddlwe->ddlwe_key, 573 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt), tx)); 574 } 575 576 static int 577 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 578 const ddt_key_t *ddk, dmu_tx_t *tx) 579 { 580 ASSERT(ddt_object_exists(ddt, type, class)); 581 582 return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os, 583 ddt->ddt_object[type][class], ddk, tx)); 584 } 585 586 int 587 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 588 uint64_t *walk, ddt_lightweight_entry_t *ddlwe) 589 { 590 ASSERT(ddt_object_exists(ddt, type, class)); 591 592 int error = ddt_ops[type]->ddt_op_walk(ddt->ddt_os, 593 ddt->ddt_object[type][class], walk, &ddlwe->ddlwe_key, 594 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt)); 595 if (error == 0) { 596 ddlwe->ddlwe_type = type; 597 ddlwe->ddlwe_class = class; 598 return (0); 599 } 600 return (error); 601 } 602 603 int 604 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 605 uint64_t *count) 606 { 607 ASSERT(ddt_object_exists(ddt, type, class)); 608 609 return (ddt_ops[type]->ddt_op_count(ddt->ddt_os, 610 ddt->ddt_object[type][class], count)); 611 } 612 613 int 614 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 615 dmu_object_info_t *doi) 616 { 617 if (!ddt_object_exists(ddt, type, class)) 618 return (SET_ERROR(ENOENT)); 619 620 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class], 621 doi)); 622 } 623 624 void 625 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class, 626 char *name) 627 { 628 (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT, 629 zio_checksum_table[ddt->ddt_checksum].ci_name, 630 ddt_ops[type]->ddt_op_name, ddt_class_name[class]); 631 } 632 633 void 634 ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, 635 blkptr_t *bp, uint64_t txg) 636 { 637 ASSERT3U(txg, !=, 0); 638 ASSERT3U(v, <, DDT_PHYS_NONE); 639 uint64_t phys_birth; 640 const dva_t *dvap; 641 642 if (v == DDT_PHYS_FLAT) { 643 phys_birth = ddp->ddp_flat.ddp_phys_birth; 644 dvap = ddp->ddp_flat.ddp_dva; 645 } else { 646 phys_birth = ddp->ddp_trad[v].ddp_phys_birth; 647 dvap = ddp->ddp_trad[v].ddp_dva; 648 } 649 650 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 651 bp->blk_dva[d] = dvap[d]; 652 BP_SET_BIRTH(bp, txg, phys_birth); 653 } 654 655 /* 656 * The bp created via this function may be used for repairs and scrub, but it 657 * will be missing the salt / IV required to do a full decrypting read. 658 */ 659 void 660 ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, 661 const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp) 662 { 663 BP_ZERO(bp); 664 665 if (ddp != NULL) 666 ddt_bp_fill(ddp, v, bp, ddt_phys_birth(ddp, v)); 667 668 bp->blk_cksum = ddk->ddk_cksum; 669 670 BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk)); 671 BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk)); 672 BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk)); 673 BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk)); 674 BP_SET_FILL(bp, 1); 675 BP_SET_CHECKSUM(bp, checksum); 676 BP_SET_TYPE(bp, DMU_OT_DEDUP); 677 BP_SET_LEVEL(bp, 0); 678 BP_SET_DEDUP(bp, 1); 679 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 680 } 681 682 void 683 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp) 684 { 685 ddk->ddk_cksum = bp->blk_cksum; 686 ddk->ddk_prop = 0; 687 688 ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp)); 689 690 DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp)); 691 DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp)); 692 DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp)); 693 DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp)); 694 } 695 696 void 697 ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp) 698 { 699 ASSERT3U(v, <, DDT_PHYS_NONE); 700 int bp_ndvas = BP_GET_NDVAS(bp); 701 int ddp_max_dvas = BP_IS_ENCRYPTED(bp) ? 702 SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP; 703 dva_t *dvas = (v == DDT_PHYS_FLAT) ? 704 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 705 706 int s = 0, d = 0; 707 while (s < bp_ndvas && d < ddp_max_dvas) { 708 if (DVA_IS_VALID(&dvas[d])) { 709 d++; 710 continue; 711 } 712 dvas[d] = bp->blk_dva[s]; 713 s++; d++; 714 } 715 716 /* 717 * If the caller offered us more DVAs than we can fit, something has 718 * gone wrong in their accounting. zio_ddt_write() should never ask for 719 * more than we need. 720 */ 721 ASSERT3U(s, ==, bp_ndvas); 722 723 if (BP_IS_ENCRYPTED(bp)) 724 dvas[2] = bp->blk_dva[2]; 725 726 if (ddt_phys_birth(ddp, v) == 0) { 727 if (v == DDT_PHYS_FLAT) 728 ddp->ddp_flat.ddp_phys_birth = BP_GET_BIRTH(bp); 729 else 730 ddp->ddp_trad[v].ddp_phys_birth = BP_GET_BIRTH(bp); 731 } 732 } 733 734 void 735 ddt_phys_unextend(ddt_univ_phys_t *cur, ddt_univ_phys_t *orig, 736 ddt_phys_variant_t v) 737 { 738 ASSERT3U(v, <, DDT_PHYS_NONE); 739 dva_t *cur_dvas = (v == DDT_PHYS_FLAT) ? 740 cur->ddp_flat.ddp_dva : cur->ddp_trad[v].ddp_dva; 741 dva_t *orig_dvas = (v == DDT_PHYS_FLAT) ? 742 orig->ddp_flat.ddp_dva : orig->ddp_trad[v].ddp_dva; 743 744 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 745 cur_dvas[d] = orig_dvas[d]; 746 747 if (ddt_phys_birth(orig, v) == 0) { 748 if (v == DDT_PHYS_FLAT) 749 cur->ddp_flat.ddp_phys_birth = 0; 750 else 751 cur->ddp_trad[v].ddp_phys_birth = 0; 752 } 753 } 754 755 void 756 ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src, 757 ddt_phys_variant_t v) 758 { 759 ASSERT3U(v, <, DDT_PHYS_NONE); 760 761 if (v == DDT_PHYS_FLAT) 762 dst->ddp_flat = src->ddp_flat; 763 else 764 dst->ddp_trad[v] = src->ddp_trad[v]; 765 } 766 767 void 768 ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 769 { 770 ASSERT3U(v, <, DDT_PHYS_NONE); 771 772 if (v == DDT_PHYS_FLAT) 773 memset(&ddp->ddp_flat, 0, DDT_FLAT_PHYS_SIZE); 774 else 775 memset(&ddp->ddp_trad[v], 0, DDT_TRAD_PHYS_SIZE / DDT_PHYS_MAX); 776 } 777 778 static uint64_t 779 ddt_class_start(void) 780 { 781 uint64_t start = gethrestime_sec(); 782 783 if (ddt_prune_artificial_age) { 784 /* 785 * debug aide -- simulate a wider distribution 786 * so we don't have to wait for an aged DDT 787 * to test prune. 788 */ 789 int range = 1 << 21; 790 int percent = random_in_range(100); 791 if (percent < 50) { 792 range = range >> 4; 793 } else if (percent > 75) { 794 range /= 2; 795 } 796 start -= random_in_range(range); 797 } 798 799 return (start); 800 } 801 802 void 803 ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 804 { 805 ASSERT3U(v, <, DDT_PHYS_NONE); 806 807 if (v == DDT_PHYS_FLAT) 808 ddp->ddp_flat.ddp_refcnt++; 809 else 810 ddp->ddp_trad[v].ddp_refcnt++; 811 } 812 813 uint64_t 814 ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 815 { 816 ASSERT3U(v, <, DDT_PHYS_NONE); 817 818 uint64_t *refcntp; 819 820 if (v == DDT_PHYS_FLAT) 821 refcntp = &ddp->ddp_flat.ddp_refcnt; 822 else 823 refcntp = &ddp->ddp_trad[v].ddp_refcnt; 824 825 ASSERT3U(*refcntp, >, 0); 826 (*refcntp)--; 827 return (*refcntp); 828 } 829 830 static void 831 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_univ_phys_t *ddp, 832 ddt_phys_variant_t v, uint64_t txg) 833 { 834 blkptr_t blk; 835 836 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 837 838 /* 839 * We clear the dedup bit so that zio_free() will actually free the 840 * space, rather than just decrementing the refcount in the DDT. 841 */ 842 BP_SET_DEDUP(&blk, 0); 843 844 ddt_phys_clear(ddp, v); 845 zio_free(ddt->ddt_spa, txg, &blk); 846 } 847 848 uint64_t 849 ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 850 { 851 ASSERT3U(v, <, DDT_PHYS_NONE); 852 853 if (v == DDT_PHYS_FLAT) 854 return (ddp->ddp_flat.ddp_phys_birth); 855 else 856 return (ddp->ddp_trad[v].ddp_phys_birth); 857 } 858 859 int 860 ddt_phys_is_gang(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 861 { 862 ASSERT3U(v, <, DDT_PHYS_NONE); 863 864 const dva_t *dvas = (v == DDT_PHYS_FLAT) ? 865 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 866 867 return (DVA_GET_GANG(&dvas[0])); 868 } 869 870 int 871 ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, 872 boolean_t encrypted) 873 { 874 ASSERT3U(v, <, DDT_PHYS_NONE); 875 876 const dva_t *dvas = (v == DDT_PHYS_FLAT) ? 877 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva; 878 879 return (DVA_IS_VALID(&dvas[0]) + 880 DVA_IS_VALID(&dvas[1]) + 881 DVA_IS_VALID(&dvas[2]) * !encrypted); 882 } 883 884 ddt_phys_variant_t 885 ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp) 886 { 887 if (dde == NULL) 888 return (DDT_PHYS_NONE); 889 890 const ddt_univ_phys_t *ddp = dde->dde_phys; 891 892 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 893 if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_flat.ddp_dva[0]) && 894 BP_GET_BIRTH(bp) == ddp->ddp_flat.ddp_phys_birth) { 895 return (DDT_PHYS_FLAT); 896 } 897 } else /* traditional phys */ { 898 for (int p = 0; p < DDT_PHYS_MAX; p++) { 899 if (DVA_EQUAL(BP_IDENTITY(bp), 900 &ddp->ddp_trad[p].ddp_dva[0]) && 901 BP_GET_BIRTH(bp) == 902 ddp->ddp_trad[p].ddp_phys_birth) { 903 return (p); 904 } 905 } 906 } 907 return (DDT_PHYS_NONE); 908 } 909 910 uint64_t 911 ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v) 912 { 913 ASSERT3U(v, <, DDT_PHYS_NONE); 914 915 if (v == DDT_PHYS_FLAT) 916 return (ddp->ddp_flat.ddp_refcnt); 917 else 918 return (ddp->ddp_trad[v].ddp_refcnt); 919 } 920 921 uint64_t 922 ddt_phys_total_refcnt(const ddt_t *ddt, const ddt_univ_phys_t *ddp) 923 { 924 uint64_t refcnt = 0; 925 926 if (ddt->ddt_flags & DDT_FLAG_FLAT) 927 refcnt = ddp->ddp_flat.ddp_refcnt; 928 else 929 for (int v = DDT_PHYS_SINGLE; v <= DDT_PHYS_TRIPLE; v++) 930 refcnt += ddp->ddp_trad[v].ddp_refcnt; 931 932 return (refcnt); 933 } 934 935 ddt_t * 936 ddt_select(spa_t *spa, const blkptr_t *bp) 937 { 938 ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp))); 939 return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]); 940 } 941 942 void 943 ddt_enter(ddt_t *ddt) 944 { 945 mutex_enter(&ddt->ddt_lock); 946 } 947 948 void 949 ddt_exit(ddt_t *ddt) 950 { 951 mutex_exit(&ddt->ddt_lock); 952 } 953 954 void 955 ddt_init(void) 956 { 957 ddt_cache = kmem_cache_create("ddt_cache", 958 sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 959 ddt_entry_flat_cache = kmem_cache_create("ddt_entry_flat_cache", 960 DDT_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 961 ddt_entry_trad_cache = kmem_cache_create("ddt_entry_trad_cache", 962 DDT_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 963 964 ddt_log_init(); 965 } 966 967 void 968 ddt_fini(void) 969 { 970 ddt_log_fini(); 971 972 kmem_cache_destroy(ddt_entry_trad_cache); 973 kmem_cache_destroy(ddt_entry_flat_cache); 974 kmem_cache_destroy(ddt_cache); 975 } 976 977 static ddt_entry_t * 978 ddt_alloc(const ddt_t *ddt, const ddt_key_t *ddk) 979 { 980 ddt_entry_t *dde; 981 982 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 983 dde = kmem_cache_alloc(ddt_entry_flat_cache, KM_SLEEP); 984 memset(dde, 0, DDT_ENTRY_FLAT_SIZE); 985 } else { 986 dde = kmem_cache_alloc(ddt_entry_trad_cache, KM_SLEEP); 987 memset(dde, 0, DDT_ENTRY_TRAD_SIZE); 988 } 989 990 cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL); 991 992 dde->dde_key = *ddk; 993 994 return (dde); 995 } 996 997 void 998 ddt_alloc_entry_io(ddt_entry_t *dde) 999 { 1000 if (dde->dde_io != NULL) 1001 return; 1002 1003 dde->dde_io = kmem_zalloc(sizeof (ddt_entry_io_t), KM_SLEEP); 1004 } 1005 1006 static void 1007 ddt_free(const ddt_t *ddt, ddt_entry_t *dde) 1008 { 1009 if (dde->dde_io != NULL) { 1010 for (int p = 0; p < DDT_NPHYS(ddt); p++) 1011 ASSERT3P(dde->dde_io->dde_lead_zio[p], ==, NULL); 1012 1013 if (dde->dde_io->dde_repair_abd != NULL) 1014 abd_free(dde->dde_io->dde_repair_abd); 1015 1016 kmem_free(dde->dde_io, sizeof (ddt_entry_io_t)); 1017 } 1018 1019 cv_destroy(&dde->dde_cv); 1020 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ? 1021 ddt_entry_flat_cache : ddt_entry_trad_cache, dde); 1022 } 1023 1024 void 1025 ddt_remove(ddt_t *ddt, ddt_entry_t *dde) 1026 { 1027 ASSERT(MUTEX_HELD(&ddt->ddt_lock)); 1028 1029 /* Entry is still in the log, so charge the entry back to it */ 1030 if (dde->dde_flags & DDE_FLAG_LOGGED) { 1031 ddt_lightweight_entry_t ddlwe; 1032 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 1033 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe); 1034 } 1035 1036 avl_remove(&ddt->ddt_tree, dde); 1037 ddt_free(ddt, dde); 1038 } 1039 1040 /* 1041 * We're considered over quota when we hit 85% full, or for larger drives, 1042 * when there is less than 8GB free. 1043 */ 1044 static boolean_t 1045 ddt_special_over_quota(metaslab_class_t *mc) 1046 { 1047 uint64_t allocated = metaslab_class_get_alloc(mc); 1048 uint64_t capacity = metaslab_class_get_space(mc); 1049 uint64_t limit = MAX(capacity * 85 / 100, 1050 (capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0); 1051 return (allocated >= limit); 1052 } 1053 1054 /* 1055 * Check if the DDT is over its quota. This can be due to a few conditions: 1056 * 1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize 1057 * exceeds this limit 1058 * 1059 * 2. 'dedup_table_quota' property is set to automatic and 1060 * a. the dedup or special allocation class could not satisfy a DDT 1061 * allocation in a recent transaction 1062 * b. the dedup or special allocation class has exceeded its 85% limit 1063 */ 1064 static boolean_t 1065 ddt_over_quota(spa_t *spa) 1066 { 1067 if (spa->spa_dedup_table_quota == 0) 1068 return (B_FALSE); 1069 1070 if (spa->spa_dedup_table_quota != UINT64_MAX) 1071 return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota); 1072 1073 /* 1074 * Over quota if have to allocate outside of the dedup/special class. 1075 */ 1076 if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg + 1077 dedup_class_wait_txgs) { 1078 /* Waiting for some deferred frees to be processed */ 1079 return (B_TRUE); 1080 } 1081 1082 /* 1083 * For automatic quota, table size is limited by dedup or special class 1084 */ 1085 if (spa_has_dedup(spa)) 1086 return (ddt_special_over_quota(spa_dedup_class(spa))); 1087 else if (spa_special_has_ddt(spa)) 1088 return (ddt_special_over_quota(spa_special_class(spa))); 1089 1090 return (B_FALSE); 1091 } 1092 1093 void 1094 ddt_prefetch_all(spa_t *spa) 1095 { 1096 /* 1097 * Load all DDT entries for each type/class combination. This is 1098 * indended to perform a prefetch on all such blocks. For the same 1099 * reason that ddt_prefetch isn't locked, this is also not locked. 1100 */ 1101 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1102 ddt_t *ddt = spa->spa_ddt[c]; 1103 if (!ddt) 1104 continue; 1105 1106 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1107 for (ddt_class_t class = 0; class < DDT_CLASSES; 1108 class++) { 1109 ddt_object_prefetch_all(ddt, type, class); 1110 } 1111 } 1112 } 1113 } 1114 1115 static int ddt_configure(ddt_t *ddt, boolean_t new); 1116 1117 /* 1118 * If the BP passed to ddt_lookup has valid DVAs, then we need to compare them 1119 * to the ones in the entry. If they're different, then the passed-in BP is 1120 * from a previous generation of this entry (ie was previously pruned) and we 1121 * have to act like the entry doesn't exist at all. 1122 * 1123 * This should only happen during a lookup to free the block (zio_ddt_free()). 1124 * 1125 * XXX this is similar in spirit to ddt_phys_select(), maybe can combine 1126 * -- robn, 2024-02-09 1127 */ 1128 static boolean_t 1129 ddt_entry_lookup_is_valid(ddt_t *ddt, const blkptr_t *bp, ddt_entry_t *dde) 1130 { 1131 /* If the BP has no DVAs, then this entry is good */ 1132 uint_t ndvas = BP_GET_NDVAS(bp); 1133 if (ndvas == 0) 1134 return (B_TRUE); 1135 1136 /* 1137 * Only checking the phys for the copies. For flat, there's only one; 1138 * for trad it'll be the one that has the matching set of DVAs. 1139 */ 1140 const dva_t *dvas = (ddt->ddt_flags & DDT_FLAG_FLAT) ? 1141 dde->dde_phys->ddp_flat.ddp_dva : 1142 dde->dde_phys->ddp_trad[ndvas].ddp_dva; 1143 1144 /* 1145 * Compare entry DVAs with the BP. They should all be there, but 1146 * there's not really anything we can do if its only partial anyway, 1147 * that's an error somewhere else, maybe long ago. 1148 */ 1149 uint_t d; 1150 for (d = 0; d < ndvas; d++) 1151 if (!DVA_EQUAL(&dvas[d], &bp->blk_dva[d])) 1152 return (B_FALSE); 1153 ASSERT3U(d, ==, ndvas); 1154 1155 return (B_TRUE); 1156 } 1157 1158 ddt_entry_t * 1159 ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t verify) 1160 { 1161 spa_t *spa = ddt->ddt_spa; 1162 ddt_key_t search; 1163 ddt_entry_t *dde; 1164 ddt_type_t type; 1165 ddt_class_t class; 1166 avl_index_t where; 1167 int error; 1168 1169 ASSERT(MUTEX_HELD(&ddt->ddt_lock)); 1170 1171 if (ddt->ddt_version == DDT_VERSION_UNCONFIGURED) { 1172 /* 1173 * This is the first use of this DDT since the pool was 1174 * created; finish getting it ready for use. 1175 */ 1176 VERIFY0(ddt_configure(ddt, B_TRUE)); 1177 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED); 1178 } 1179 1180 DDT_KSTAT_BUMP(ddt, dds_lookup); 1181 1182 ddt_key_fill(&search, bp); 1183 1184 /* Find an existing live entry */ 1185 dde = avl_find(&ddt->ddt_tree, &search, &where); 1186 if (dde != NULL) { 1187 /* If we went over quota, act like we didn't find it */ 1188 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) 1189 return (NULL); 1190 1191 /* If it's already loaded, we can just return it. */ 1192 DDT_KSTAT_BUMP(ddt, dds_lookup_live_hit); 1193 if (dde->dde_flags & DDE_FLAG_LOADED) { 1194 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde)) 1195 return (dde); 1196 return (NULL); 1197 } 1198 1199 /* Someone else is loading it, wait for it. */ 1200 dde->dde_waiters++; 1201 DDT_KSTAT_BUMP(ddt, dds_lookup_live_wait); 1202 while (!(dde->dde_flags & DDE_FLAG_LOADED)) 1203 cv_wait(&dde->dde_cv, &ddt->ddt_lock); 1204 dde->dde_waiters--; 1205 1206 /* Loaded but over quota, forget we were ever here */ 1207 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) { 1208 if (dde->dde_waiters == 0) { 1209 avl_remove(&ddt->ddt_tree, dde); 1210 ddt_free(ddt, dde); 1211 } 1212 return (NULL); 1213 } 1214 1215 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1216 1217 /* Make sure the loaded entry matches the BP */ 1218 if (!verify || ddt_entry_lookup_is_valid(ddt, bp, dde)) 1219 return (dde); 1220 return (NULL); 1221 } else 1222 DDT_KSTAT_BUMP(ddt, dds_lookup_live_miss); 1223 1224 /* Time to make a new entry. */ 1225 dde = ddt_alloc(ddt, &search); 1226 1227 /* Record the time this class was created (used by ddt prune) */ 1228 if (ddt->ddt_flags & DDT_FLAG_FLAT) 1229 dde->dde_phys->ddp_flat.ddp_class_start = ddt_class_start(); 1230 1231 avl_insert(&ddt->ddt_tree, dde, where); 1232 1233 /* If its in the log tree, we can "load" it from there */ 1234 if (ddt->ddt_flags & DDT_FLAG_LOG) { 1235 ddt_lightweight_entry_t ddlwe; 1236 1237 if (ddt_log_find_key(ddt, &search, &ddlwe)) { 1238 /* 1239 * See if we have the key first, and if so, set up 1240 * the entry. 1241 */ 1242 dde->dde_type = ddlwe.ddlwe_type; 1243 dde->dde_class = ddlwe.ddlwe_class; 1244 memcpy(dde->dde_phys, &ddlwe.ddlwe_phys, 1245 DDT_PHYS_SIZE(ddt)); 1246 /* Whatever we found isn't valid for this BP, eject */ 1247 if (verify && 1248 !ddt_entry_lookup_is_valid(ddt, bp, dde)) { 1249 avl_remove(&ddt->ddt_tree, dde); 1250 ddt_free(ddt, dde); 1251 return (NULL); 1252 } 1253 1254 /* Remove it and count it */ 1255 if (ddt_log_remove_key(ddt, 1256 ddt->ddt_log_active, &search)) { 1257 DDT_KSTAT_BUMP(ddt, dds_lookup_log_active_hit); 1258 } else { 1259 VERIFY(ddt_log_remove_key(ddt, 1260 ddt->ddt_log_flushing, &search)); 1261 DDT_KSTAT_BUMP(ddt, 1262 dds_lookup_log_flushing_hit); 1263 } 1264 1265 dde->dde_flags = DDE_FLAG_LOADED | DDE_FLAG_LOGGED; 1266 1267 DDT_KSTAT_BUMP(ddt, dds_lookup_log_hit); 1268 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1269 1270 return (dde); 1271 } 1272 1273 DDT_KSTAT_BUMP(ddt, dds_lookup_log_miss); 1274 } 1275 1276 /* 1277 * ddt_tree is now stable, so unlock and let everyone else keep moving. 1278 * Anyone landing on this entry will find it without DDE_FLAG_LOADED, 1279 * and go to sleep waiting for it above. 1280 */ 1281 ddt_exit(ddt); 1282 1283 /* Search all store objects for the entry. */ 1284 error = ENOENT; 1285 for (type = 0; type < DDT_TYPES; type++) { 1286 for (class = 0; class < DDT_CLASSES; class++) { 1287 error = ddt_object_lookup(ddt, type, class, dde); 1288 if (error != ENOENT) { 1289 ASSERT0(error); 1290 break; 1291 } 1292 } 1293 if (error != ENOENT) 1294 break; 1295 } 1296 1297 ddt_enter(ddt); 1298 1299 ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED)); 1300 1301 dde->dde_type = type; /* will be DDT_TYPES if no entry found */ 1302 dde->dde_class = class; /* will be DDT_CLASSES if no entry found */ 1303 1304 boolean_t valid = B_TRUE; 1305 1306 if (dde->dde_type == DDT_TYPES && 1307 dde->dde_class == DDT_CLASSES && 1308 ddt_over_quota(spa)) { 1309 /* Over quota. If no one is waiting, clean up right now. */ 1310 if (dde->dde_waiters == 0) { 1311 avl_remove(&ddt->ddt_tree, dde); 1312 ddt_free(ddt, dde); 1313 return (NULL); 1314 } 1315 1316 /* Flag cleanup required */ 1317 dde->dde_flags |= DDE_FLAG_OVERQUOTA; 1318 } else if (error == 0) { 1319 /* 1320 * If what we loaded is no good for this BP and there's no one 1321 * waiting for it, we can just remove it and get out. If its no 1322 * good but there are waiters, we have to leave it, because we 1323 * don't know what they want. If its not needed we'll end up 1324 * taking an entry log/sync, but it can only happen if more 1325 * than one previous version of this block is being deleted at 1326 * the same time. This is extremely unlikely to happen and not 1327 * worth the effort to deal with without taking an entry 1328 * update. 1329 */ 1330 valid = !verify || ddt_entry_lookup_is_valid(ddt, bp, dde); 1331 if (!valid && dde->dde_waiters == 0) { 1332 avl_remove(&ddt->ddt_tree, dde); 1333 ddt_free(ddt, dde); 1334 return (NULL); 1335 } 1336 1337 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_hit); 1338 DDT_KSTAT_BUMP(ddt, dds_lookup_existing); 1339 1340 /* 1341 * The histograms only track inactive (stored or logged) blocks. 1342 * We've just put an entry onto the live list, so we need to 1343 * remove its counts. When its synced back, it'll be re-added 1344 * to the right one. 1345 * 1346 * We only do this when we successfully found it in the store. 1347 * error == ENOENT means this is a new entry, and so its already 1348 * not counted. 1349 */ 1350 ddt_histogram_t *ddh = 1351 &ddt->ddt_histogram[dde->dde_type][dde->dde_class]; 1352 1353 ddt_lightweight_entry_t ddlwe; 1354 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 1355 ddt_histogram_sub_entry(ddt, ddh, &ddlwe); 1356 } else { 1357 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_miss); 1358 DDT_KSTAT_BUMP(ddt, dds_lookup_new); 1359 } 1360 1361 /* Entry loaded, everyone can proceed now */ 1362 dde->dde_flags |= DDE_FLAG_LOADED; 1363 cv_broadcast(&dde->dde_cv); 1364 1365 if ((dde->dde_flags & DDE_FLAG_OVERQUOTA) || !valid) 1366 return (NULL); 1367 1368 return (dde); 1369 } 1370 1371 void 1372 ddt_prefetch(spa_t *spa, const blkptr_t *bp) 1373 { 1374 ddt_t *ddt; 1375 ddt_key_t ddk; 1376 1377 if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp)) 1378 return; 1379 1380 /* 1381 * We only remove the DDT once all tables are empty and only 1382 * prefetch dedup blocks when there are entries in the DDT. 1383 * Thus no locking is required as the DDT can't disappear on us. 1384 */ 1385 ddt = ddt_select(spa, bp); 1386 ddt_key_fill(&ddk, bp); 1387 1388 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1389 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1390 ddt_object_prefetch(ddt, type, class, &ddk); 1391 } 1392 } 1393 } 1394 1395 /* 1396 * ddt_key_t comparison. Any struct wanting to make use of this function must 1397 * have the key as the first element. Casts it to N uint64_ts, and checks until 1398 * we find there's a difference. This is intended to match how ddt_zap.c drives 1399 * the ZAPs (first uint64_t as the key prehash), which will minimise the number 1400 * of ZAP blocks touched when flushing logged entries from an AVL walk. This is 1401 * not an invariant for this function though, should you wish to change it. 1402 */ 1403 int 1404 ddt_key_compare(const void *x1, const void *x2) 1405 { 1406 const uint64_t *k1 = (const uint64_t *)x1; 1407 const uint64_t *k2 = (const uint64_t *)x2; 1408 1409 int cmp; 1410 for (int i = 0; i < (sizeof (ddt_key_t) / sizeof (uint64_t)); i++) 1411 if (likely((cmp = TREE_CMP(k1[i], k2[i])) != 0)) 1412 return (cmp); 1413 1414 return (0); 1415 } 1416 1417 /* Create the containing dir for this DDT and bump the feature count */ 1418 static void 1419 ddt_create_dir(ddt_t *ddt, dmu_tx_t *tx) 1420 { 1421 ASSERT3U(ddt->ddt_dir_object, ==, 0); 1422 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); 1423 1424 char name[DDT_NAMELEN]; 1425 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1426 zio_checksum_table[ddt->ddt_checksum].ci_name); 1427 1428 ddt->ddt_dir_object = zap_create_link(ddt->ddt_os, 1429 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, name, tx); 1430 1431 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION, 1432 sizeof (uint64_t), 1, &ddt->ddt_version, tx)); 1433 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS, 1434 sizeof (uint64_t), 1, &ddt->ddt_flags, tx)); 1435 1436 spa_feature_incr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); 1437 } 1438 1439 /* Destroy the containing dir and deactivate the feature */ 1440 static void 1441 ddt_destroy_dir(ddt_t *ddt, dmu_tx_t *tx) 1442 { 1443 ASSERT3U(ddt->ddt_dir_object, !=, 0); 1444 ASSERT3U(ddt->ddt_dir_object, !=, DMU_POOL_DIRECTORY_OBJECT); 1445 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT); 1446 1447 char name[DDT_NAMELEN]; 1448 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1449 zio_checksum_table[ddt->ddt_checksum].ci_name); 1450 1451 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1452 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1453 ASSERT(!ddt_object_exists(ddt, type, class)); 1454 } 1455 } 1456 1457 ddt_log_destroy(ddt, tx); 1458 1459 uint64_t count; 1460 ASSERT0(zap_count(ddt->ddt_os, ddt->ddt_dir_object, &count)); 1461 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, 1462 DDT_DIR_VERSION)); 1463 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS)); 1464 ASSERT3U(count, ==, 2); 1465 1466 VERIFY0(zap_remove(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, tx)); 1467 VERIFY0(zap_destroy(ddt->ddt_os, ddt->ddt_dir_object, tx)); 1468 1469 ddt->ddt_dir_object = 0; 1470 1471 spa_feature_decr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx); 1472 } 1473 1474 /* 1475 * Determine, flags and on-disk layout from what's already stored. If there's 1476 * nothing stored, then if new is false, returns ENOENT, and if true, selects 1477 * based on pool config. 1478 */ 1479 static int 1480 ddt_configure(ddt_t *ddt, boolean_t new) 1481 { 1482 spa_t *spa = ddt->ddt_spa; 1483 char name[DDT_NAMELEN]; 1484 int error; 1485 1486 ASSERT3U(spa_load_state(spa), !=, SPA_LOAD_CREATE); 1487 1488 boolean_t fdt_enabled = 1489 spa_feature_is_enabled(spa, SPA_FEATURE_FAST_DEDUP); 1490 boolean_t fdt_active = 1491 spa_feature_is_active(spa, SPA_FEATURE_FAST_DEDUP); 1492 1493 /* 1494 * First, look for the global DDT stats object. If its not there, then 1495 * there's never been a DDT written before ever, and we know we're 1496 * starting from scratch. 1497 */ 1498 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1499 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, 1500 &spa->spa_ddt_stat_object); 1501 if (error != 0) { 1502 if (error != ENOENT) 1503 return (error); 1504 goto not_found; 1505 } 1506 1507 if (fdt_active) { 1508 /* 1509 * Now look for a DDT directory. If it exists, then it has 1510 * everything we need. 1511 */ 1512 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR, 1513 zio_checksum_table[ddt->ddt_checksum].ci_name); 1514 1515 error = zap_lookup(spa->spa_meta_objset, 1516 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, 1517 &ddt->ddt_dir_object); 1518 if (error == 0) { 1519 ASSERT3U(spa->spa_meta_objset, ==, ddt->ddt_os); 1520 1521 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, 1522 DDT_DIR_VERSION, sizeof (uint64_t), 1, 1523 &ddt->ddt_version); 1524 if (error != 0) 1525 return (error); 1526 1527 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, 1528 DDT_DIR_FLAGS, sizeof (uint64_t), 1, 1529 &ddt->ddt_flags); 1530 if (error != 0) 1531 return (error); 1532 1533 if (ddt->ddt_version != DDT_VERSION_FDT) { 1534 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " 1535 "unknown version %llu", spa_name(spa), 1536 name, (u_longlong_t)ddt->ddt_version); 1537 return (SET_ERROR(EINVAL)); 1538 } 1539 1540 if ((ddt->ddt_flags & ~DDT_FLAG_MASK) != 0) { 1541 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s " 1542 "version=%llu unknown flags %llx", 1543 spa_name(spa), name, 1544 (u_longlong_t)ddt->ddt_flags, 1545 (u_longlong_t)ddt->ddt_version); 1546 return (SET_ERROR(EINVAL)); 1547 } 1548 1549 return (0); 1550 } 1551 if (error != ENOENT) 1552 return (error); 1553 } 1554 1555 /* Any object in the root indicates a traditional setup. */ 1556 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1557 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1558 ddt_object_name(ddt, type, class, name); 1559 uint64_t obj; 1560 error = zap_lookup(spa->spa_meta_objset, 1561 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1562 1, &obj); 1563 if (error == ENOENT) 1564 continue; 1565 if (error != 0) 1566 return (error); 1567 1568 ddt->ddt_version = DDT_VERSION_LEGACY; 1569 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1570 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; 1571 1572 return (0); 1573 } 1574 } 1575 1576 not_found: 1577 if (!new) 1578 return (SET_ERROR(ENOENT)); 1579 1580 /* Nothing on disk, so set up for the best version we can */ 1581 if (fdt_enabled) { 1582 ddt->ddt_version = DDT_VERSION_FDT; 1583 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1584 ddt->ddt_dir_object = 0; /* create on first use */ 1585 } else { 1586 ddt->ddt_version = DDT_VERSION_LEGACY; 1587 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version]; 1588 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT; 1589 } 1590 1591 return (0); 1592 } 1593 1594 static void 1595 ddt_table_alloc_kstats(ddt_t *ddt) 1596 { 1597 char *mod = kmem_asprintf("zfs/%s", spa_name(ddt->ddt_spa)); 1598 char *name = kmem_asprintf("ddt_stats_%s", 1599 zio_checksum_table[ddt->ddt_checksum].ci_name); 1600 1601 ddt->ddt_ksp = kstat_create(mod, 0, name, "misc", KSTAT_TYPE_NAMED, 1602 sizeof (ddt_kstats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 1603 if (ddt->ddt_ksp != NULL) { 1604 ddt_kstats_t *dds = kmem_alloc(sizeof (ddt_kstats_t), KM_SLEEP); 1605 memcpy(dds, &ddt_kstats_template, sizeof (ddt_kstats_t)); 1606 ddt->ddt_ksp->ks_data = dds; 1607 kstat_install(ddt->ddt_ksp); 1608 } 1609 1610 kmem_strfree(name); 1611 kmem_strfree(mod); 1612 } 1613 1614 static ddt_t * 1615 ddt_table_alloc(spa_t *spa, enum zio_checksum c) 1616 { 1617 ddt_t *ddt; 1618 1619 ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP); 1620 memset(ddt, 0, sizeof (ddt_t)); 1621 mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL); 1622 avl_create(&ddt->ddt_tree, ddt_key_compare, 1623 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); 1624 avl_create(&ddt->ddt_repair_tree, ddt_key_compare, 1625 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); 1626 1627 ddt->ddt_checksum = c; 1628 ddt->ddt_spa = spa; 1629 ddt->ddt_os = spa->spa_meta_objset; 1630 ddt->ddt_version = DDT_VERSION_UNCONFIGURED; 1631 ddt->ddt_log_flush_pressure = 10; 1632 1633 ddt_log_alloc(ddt); 1634 ddt_table_alloc_kstats(ddt); 1635 1636 return (ddt); 1637 } 1638 1639 static void 1640 ddt_table_free(ddt_t *ddt) 1641 { 1642 if (ddt->ddt_ksp != NULL) { 1643 kmem_free(ddt->ddt_ksp->ks_data, sizeof (ddt_kstats_t)); 1644 ddt->ddt_ksp->ks_data = NULL; 1645 kstat_delete(ddt->ddt_ksp); 1646 } 1647 1648 ddt_log_free(ddt); 1649 ASSERT0(avl_numnodes(&ddt->ddt_tree)); 1650 ASSERT0(avl_numnodes(&ddt->ddt_repair_tree)); 1651 avl_destroy(&ddt->ddt_tree); 1652 avl_destroy(&ddt->ddt_repair_tree); 1653 mutex_destroy(&ddt->ddt_lock); 1654 kmem_cache_free(ddt_cache, ddt); 1655 } 1656 1657 void 1658 ddt_create(spa_t *spa) 1659 { 1660 spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM; 1661 1662 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1663 if (DDT_CHECKSUM_VALID(c)) 1664 spa->spa_ddt[c] = ddt_table_alloc(spa, c); 1665 } 1666 } 1667 1668 int 1669 ddt_load(spa_t *spa) 1670 { 1671 int error; 1672 1673 ddt_create(spa); 1674 1675 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1676 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, 1677 &spa->spa_ddt_stat_object); 1678 if (error) 1679 return (error == ENOENT ? 0 : error); 1680 1681 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1682 if (!DDT_CHECKSUM_VALID(c)) 1683 continue; 1684 1685 ddt_t *ddt = spa->spa_ddt[c]; 1686 error = ddt_configure(ddt, B_FALSE); 1687 if (error == ENOENT) 1688 continue; 1689 if (error != 0) 1690 return (error); 1691 1692 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1693 for (ddt_class_t class = 0; class < DDT_CLASSES; 1694 class++) { 1695 error = ddt_object_load(ddt, type, class); 1696 if (error != 0 && error != ENOENT) 1697 return (error); 1698 } 1699 } 1700 1701 error = ddt_log_load(ddt); 1702 if (error != 0 && error != ENOENT) 1703 return (error); 1704 1705 DDT_KSTAT_SET(ddt, dds_log_active_entries, 1706 avl_numnodes(&ddt->ddt_log_active->ddl_tree)); 1707 DDT_KSTAT_SET(ddt, dds_log_flushing_entries, 1708 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); 1709 1710 /* 1711 * Seed the cached histograms. 1712 */ 1713 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 1714 sizeof (ddt->ddt_histogram)); 1715 } 1716 1717 spa->spa_dedup_dspace = ~0ULL; 1718 spa->spa_dedup_dsize = ~0ULL; 1719 1720 return (0); 1721 } 1722 1723 void 1724 ddt_unload(spa_t *spa) 1725 { 1726 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1727 if (spa->spa_ddt[c]) { 1728 ddt_table_free(spa->spa_ddt[c]); 1729 spa->spa_ddt[c] = NULL; 1730 } 1731 } 1732 } 1733 1734 boolean_t 1735 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp) 1736 { 1737 ddt_t *ddt; 1738 ddt_key_t ddk; 1739 1740 if (!BP_GET_DEDUP(bp)) 1741 return (B_FALSE); 1742 1743 if (max_class == DDT_CLASS_UNIQUE) 1744 return (B_TRUE); 1745 1746 ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)]; 1747 1748 ddt_key_fill(&ddk, bp); 1749 1750 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1751 for (ddt_class_t class = 0; class <= max_class; class++) { 1752 if (ddt_object_contains(ddt, type, class, &ddk) == 0) 1753 return (B_TRUE); 1754 } 1755 } 1756 1757 return (B_FALSE); 1758 } 1759 1760 ddt_entry_t * 1761 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp) 1762 { 1763 ddt_key_t ddk; 1764 ddt_entry_t *dde; 1765 1766 ddt_key_fill(&ddk, bp); 1767 1768 dde = ddt_alloc(ddt, &ddk); 1769 ddt_alloc_entry_io(dde); 1770 1771 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1772 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1773 /* 1774 * We can only do repair if there are multiple copies 1775 * of the block. For anything in the UNIQUE class, 1776 * there's definitely only one copy, so don't even try. 1777 */ 1778 if (class != DDT_CLASS_UNIQUE && 1779 ddt_object_lookup(ddt, type, class, dde) == 0) 1780 return (dde); 1781 } 1782 } 1783 1784 memset(dde->dde_phys, 0, DDT_PHYS_SIZE(ddt)); 1785 1786 return (dde); 1787 } 1788 1789 void 1790 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde) 1791 { 1792 avl_index_t where; 1793 1794 ddt_enter(ddt); 1795 1796 if (dde->dde_io->dde_repair_abd != NULL && 1797 spa_writeable(ddt->ddt_spa) && 1798 avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL) 1799 avl_insert(&ddt->ddt_repair_tree, dde, where); 1800 else 1801 ddt_free(ddt, dde); 1802 1803 ddt_exit(ddt); 1804 } 1805 1806 static void 1807 ddt_repair_entry_done(zio_t *zio) 1808 { 1809 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 1810 ddt_entry_t *rdde = zio->io_private; 1811 1812 ddt_free(ddt, rdde); 1813 } 1814 1815 static void 1816 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio) 1817 { 1818 ddt_key_t *ddk = &dde->dde_key; 1819 ddt_key_t *rddk = &rdde->dde_key; 1820 zio_t *zio; 1821 blkptr_t blk; 1822 1823 zio = zio_null(rio, rio->io_spa, NULL, 1824 ddt_repair_entry_done, rdde, rio->io_flags); 1825 1826 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 1827 ddt_univ_phys_t *ddp = dde->dde_phys; 1828 ddt_univ_phys_t *rddp = rdde->dde_phys; 1829 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1830 uint64_t phys_birth = ddt_phys_birth(ddp, v); 1831 const dva_t *dvas, *rdvas; 1832 1833 if (ddt->ddt_flags & DDT_FLAG_FLAT) { 1834 dvas = ddp->ddp_flat.ddp_dva; 1835 rdvas = rddp->ddp_flat.ddp_dva; 1836 } else { 1837 dvas = ddp->ddp_trad[p].ddp_dva; 1838 rdvas = rddp->ddp_trad[p].ddp_dva; 1839 } 1840 1841 if (phys_birth == 0 || 1842 phys_birth != ddt_phys_birth(rddp, v) || 1843 memcmp(dvas, rdvas, sizeof (dva_t) * SPA_DVAS_PER_BP)) 1844 continue; 1845 1846 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1847 zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk, 1848 rdde->dde_io->dde_repair_abd, DDK_GET_PSIZE(rddk), 1849 NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 1850 ZIO_DDT_CHILD_FLAGS(zio), NULL)); 1851 } 1852 1853 zio_nowait(zio); 1854 } 1855 1856 static void 1857 ddt_repair_table(ddt_t *ddt, zio_t *rio) 1858 { 1859 spa_t *spa = ddt->ddt_spa; 1860 ddt_entry_t *dde, *rdde_next, *rdde; 1861 avl_tree_t *t = &ddt->ddt_repair_tree; 1862 blkptr_t blk; 1863 1864 if (spa_sync_pass(spa) > 1) 1865 return; 1866 1867 ddt_enter(ddt); 1868 for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) { 1869 rdde_next = AVL_NEXT(t, rdde); 1870 avl_remove(&ddt->ddt_repair_tree, rdde); 1871 ddt_exit(ddt); 1872 ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, 1873 DDT_PHYS_NONE, &blk); 1874 dde = ddt_repair_start(ddt, &blk); 1875 ddt_repair_entry(ddt, dde, rdde, rio); 1876 ddt_repair_done(ddt, dde); 1877 ddt_enter(ddt); 1878 } 1879 ddt_exit(ddt); 1880 } 1881 1882 static void 1883 ddt_sync_update_stats(ddt_t *ddt, dmu_tx_t *tx) 1884 { 1885 /* 1886 * Count all the entries stored for each type/class, and updates the 1887 * stats within (ddt_object_sync()). If there's no entries for the 1888 * type/class, the whole object is removed. If all objects for the DDT 1889 * are removed, its containing dir is removed, effectively resetting 1890 * the entire DDT to an empty slate. 1891 */ 1892 uint64_t count = 0; 1893 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1894 uint64_t add, tcount = 0; 1895 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1896 if (ddt_object_exists(ddt, type, class)) { 1897 ddt_object_sync(ddt, type, class, tx); 1898 VERIFY0(ddt_object_count(ddt, type, class, 1899 &add)); 1900 tcount += add; 1901 } 1902 } 1903 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) { 1904 if (tcount == 0 && ddt_object_exists(ddt, type, class)) 1905 ddt_object_destroy(ddt, type, class, tx); 1906 } 1907 count += tcount; 1908 } 1909 1910 if (ddt->ddt_flags & DDT_FLAG_LOG) { 1911 /* Include logged entries in the total count */ 1912 count += avl_numnodes(&ddt->ddt_log_active->ddl_tree); 1913 count += avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 1914 } 1915 1916 if (count == 0) { 1917 /* 1918 * No entries left on the DDT, so reset the version for next 1919 * time. This allows us to handle the feature being changed 1920 * since the DDT was originally created. New entries should get 1921 * whatever the feature currently demands. 1922 */ 1923 if (ddt->ddt_version == DDT_VERSION_FDT) 1924 ddt_destroy_dir(ddt, tx); 1925 1926 ddt->ddt_version = DDT_VERSION_UNCONFIGURED; 1927 ddt->ddt_flags = 0; 1928 } 1929 1930 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 1931 sizeof (ddt->ddt_histogram)); 1932 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 1933 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 1934 } 1935 1936 static void 1937 ddt_sync_scan_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx) 1938 { 1939 dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool; 1940 1941 /* 1942 * Compute the target class, so we can decide whether or not to inform 1943 * the scrub traversal (below). Note that we don't store this in the 1944 * entry, as it might change multiple times before finally being 1945 * committed (if we're logging). Instead, we recompute it in 1946 * ddt_sync_entry(). 1947 */ 1948 uint64_t refcnt = ddt_phys_total_refcnt(ddt, &ddlwe->ddlwe_phys); 1949 ddt_class_t nclass = 1950 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; 1951 1952 /* 1953 * If the class changes, the order that we scan this bp changes. If it 1954 * decreases, we could miss it, so scan it right now. (This covers both 1955 * class changing while we are doing ddt_walk(), and when we are 1956 * traversing.) 1957 * 1958 * We also do this when the refcnt goes to zero, because that change is 1959 * only in the log so far; the blocks on disk won't be freed until 1960 * the log is flushed, and the refcnt might increase before that. If it 1961 * does, then we could miss it in the same way. 1962 */ 1963 if (refcnt == 0 || nclass < ddlwe->ddlwe_class) 1964 dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, ddt, 1965 ddlwe, tx); 1966 } 1967 1968 static void 1969 ddt_sync_flush_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, 1970 ddt_type_t otype, ddt_class_t oclass, dmu_tx_t *tx) 1971 { 1972 ddt_key_t *ddk = &ddlwe->ddlwe_key; 1973 ddt_type_t ntype = DDT_TYPE_DEFAULT; 1974 uint64_t refcnt = 0; 1975 1976 /* 1977 * Compute the total refcnt. Along the way, issue frees for any DVAs 1978 * we no longer want. 1979 */ 1980 for (int p = 0; p < DDT_NPHYS(ddt); p++) { 1981 ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1982 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1983 uint64_t phys_refcnt = ddt_phys_refcnt(ddp, v); 1984 1985 if (ddt_phys_birth(ddp, v) == 0) { 1986 ASSERT0(phys_refcnt); 1987 continue; 1988 } 1989 if (DDT_PHYS_IS_DITTO(ddt, p)) { 1990 /* 1991 * We don't want to keep any obsolete slots (eg ditto), 1992 * regardless of their refcount, but we don't want to 1993 * leak them either. So, free them. 1994 */ 1995 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); 1996 continue; 1997 } 1998 if (phys_refcnt == 0) 1999 /* No remaining references, free it! */ 2000 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg); 2001 refcnt += phys_refcnt; 2002 } 2003 2004 /* Select the best class for the entry. */ 2005 ddt_class_t nclass = 2006 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE; 2007 2008 /* 2009 * If an existing entry changed type or class, or its refcount reached 2010 * zero, delete it from the DDT object 2011 */ 2012 if (otype != DDT_TYPES && 2013 (otype != ntype || oclass != nclass || refcnt == 0)) { 2014 VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx)); 2015 ASSERT(ddt_object_contains(ddt, otype, oclass, ddk) == ENOENT); 2016 } 2017 2018 /* 2019 * Add or update the entry 2020 */ 2021 if (refcnt != 0) { 2022 ddt_histogram_t *ddh = 2023 &ddt->ddt_histogram[ntype][nclass]; 2024 2025 ddt_histogram_add_entry(ddt, ddh, ddlwe); 2026 2027 if (!ddt_object_exists(ddt, ntype, nclass)) 2028 ddt_object_create(ddt, ntype, nclass, tx); 2029 VERIFY0(ddt_object_update(ddt, ntype, nclass, ddlwe, tx)); 2030 } 2031 } 2032 2033 /* Calculate an exponential weighted moving average, lower limited to zero */ 2034 static inline int32_t 2035 _ewma(int32_t val, int32_t prev, uint32_t weight) 2036 { 2037 ASSERT3U(val, >=, 0); 2038 ASSERT3U(prev, >=, 0); 2039 const int32_t new = 2040 MAX(0, prev + (val-prev) / (int32_t)MAX(weight, 1)); 2041 ASSERT3U(new, >=, 0); 2042 return (new); 2043 } 2044 2045 static inline void 2046 ddt_flush_force_update_txg(ddt_t *ddt, uint64_t txg) 2047 { 2048 /* 2049 * If we're not forcing flush, and not being asked to start, then 2050 * there's nothing more to do. 2051 */ 2052 if (txg == 0) { 2053 /* Update requested, are we currently forcing flush? */ 2054 if (ddt->ddt_flush_force_txg == 0) 2055 return; 2056 txg = ddt->ddt_flush_force_txg; 2057 } 2058 2059 /* 2060 * If either of the logs have entries unflushed entries before 2061 * the wanted txg, set the force txg, otherwise clear it. 2062 */ 2063 2064 if ((!avl_is_empty(&ddt->ddt_log_active->ddl_tree) && 2065 ddt->ddt_log_active->ddl_first_txg <= txg) || 2066 (!avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && 2067 ddt->ddt_log_flushing->ddl_first_txg <= txg)) { 2068 ddt->ddt_flush_force_txg = txg; 2069 return; 2070 } 2071 2072 /* 2073 * Nothing to flush behind the given txg, so we can clear force flush 2074 * state. 2075 */ 2076 ddt->ddt_flush_force_txg = 0; 2077 } 2078 2079 static void 2080 ddt_sync_flush_log(ddt_t *ddt, dmu_tx_t *tx) 2081 { 2082 spa_t *spa = ddt->ddt_spa; 2083 ASSERT(avl_is_empty(&ddt->ddt_tree)); 2084 2085 /* 2086 * Don't do any flushing when the pool is ready to shut down, or in 2087 * passes beyond the first. 2088 */ 2089 if (spa_sync_pass(spa) > 1 || tx->tx_txg > spa_final_dirty_txg(spa)) 2090 return; 2091 2092 hrtime_t flush_start = gethrtime(); 2093 uint32_t count = 0; 2094 2095 /* 2096 * How many entries we need to flush. We need to at 2097 * least match the ingest rate, and also consider the 2098 * current backlog of entries. 2099 */ 2100 uint64_t backlog = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) + 2101 avl_numnodes(&ddt->ddt_log_active->ddl_tree); 2102 2103 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) 2104 goto housekeeping; 2105 2106 uint64_t txgs = MAX(1, zfs_dedup_log_flush_txgs); 2107 uint64_t cap = MAX(1, zfs_dedup_log_cap); 2108 uint64_t flush_min = MAX(backlog / txgs, 2109 zfs_dedup_log_flush_entries_min); 2110 2111 /* 2112 * The theory for this block is that if we increase the pressure while 2113 * we're growing above the cap, and remove it when we're significantly 2114 * below the cap, we'll stay near cap while not bouncing around too 2115 * much. 2116 * 2117 * The factor of 10 is to smooth the pressure effect by expressing it 2118 * in tenths. The addition of the cap to the backlog in the second 2119 * block is to round up, instead of down. We never let the pressure go 2120 * below 1 (10 tenths). 2121 */ 2122 if (cap != UINT_MAX && backlog > cap && 2123 backlog > ddt->ddt_log_flush_prev_backlog) { 2124 ddt->ddt_log_flush_pressure += 10 * backlog / cap; 2125 } else if (cap != UINT_MAX && backlog < cap) { 2126 ddt->ddt_log_flush_pressure -= 2127 11 - (((10 * backlog) + cap - 1) / cap); 2128 ddt->ddt_log_flush_pressure = 2129 MAX(ddt->ddt_log_flush_pressure, 10); 2130 } 2131 2132 if (zfs_dedup_log_hard_cap && cap != UINT_MAX) 2133 flush_min = MAX(flush_min, MIN(backlog - cap, 2134 (flush_min * ddt->ddt_log_flush_pressure) / 10)); 2135 2136 uint64_t flush_max; 2137 2138 /* 2139 * If we've been asked to flush everything in a hurry, 2140 * try to dump as much as possible on this txg. In 2141 * this case we're only limited by time, not amount. 2142 * 2143 * Otherwise, if we are over the cap, try to get back down to it. 2144 * 2145 * Finally if there is no cap (or no pressure), just set the max a 2146 * little higher than the min to help smooth out variations in flush 2147 * times. 2148 */ 2149 if (ddt->ddt_flush_force_txg > 0) 2150 flush_max = avl_numnodes(&ddt->ddt_log_flushing->ddl_tree); 2151 else if (cap != UINT32_MAX && !zfs_dedup_log_hard_cap) 2152 flush_max = MAX(flush_min * 5 / 4, MIN(backlog - cap, 2153 (flush_min * ddt->ddt_log_flush_pressure) / 10)); 2154 else 2155 flush_max = flush_min * 5 / 4; 2156 flush_max = MIN(flush_max, zfs_dedup_log_flush_entries_max); 2157 2158 /* 2159 * When the pool is busy or someone is explicitly waiting for this txg 2160 * to complete, use the zfs_dedup_log_flush_min_time_ms. Otherwise use 2161 * half of the time in the txg timeout. 2162 */ 2163 uint64_t target_time; 2164 2165 if (txg_sync_waiting(ddt->ddt_spa->spa_dsl_pool) || 2166 vdev_queue_pool_busy(spa)) { 2167 target_time = MIN(MSEC2NSEC(zfs_dedup_log_flush_min_time_ms), 2168 SEC2NSEC(zfs_txg_timeout) / 2); 2169 } else { 2170 target_time = SEC2NSEC(zfs_txg_timeout) / 2; 2171 } 2172 2173 ddt_lightweight_entry_t ddlwe; 2174 while (ddt_log_take_first(ddt, ddt->ddt_log_flushing, &ddlwe)) { 2175 ddt_sync_flush_entry(ddt, &ddlwe, 2176 ddlwe.ddlwe_type, ddlwe.ddlwe_class, tx); 2177 2178 /* End if we've synced as much as we needed to. */ 2179 if (++count >= flush_max) 2180 break; 2181 2182 /* 2183 * As long as we've flushed the absolute minimum, 2184 * stop if we're way over our target time. 2185 */ 2186 uint64_t diff = gethrtime() - flush_start; 2187 if (count > zfs_dedup_log_flush_entries_min && 2188 diff >= target_time * 2) 2189 break; 2190 2191 /* 2192 * End if we've passed the minimum flush and we're out of time. 2193 */ 2194 if (count > flush_min && diff >= target_time) 2195 break; 2196 } 2197 2198 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) { 2199 /* We emptied it, so truncate on-disk */ 2200 DDT_KSTAT_ZERO(ddt, dds_log_flushing_entries); 2201 ddt_log_truncate(ddt, tx); 2202 } else { 2203 /* More to do next time, save checkpoint */ 2204 DDT_KSTAT_SUB(ddt, dds_log_flushing_entries, count); 2205 ddt_log_checkpoint(ddt, &ddlwe, tx); 2206 } 2207 2208 ddt_sync_update_stats(ddt, tx); 2209 2210 housekeeping: 2211 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) && 2212 !avl_is_empty(&ddt->ddt_log_active->ddl_tree)) { 2213 /* 2214 * No more to flush, and the active list has stuff, so 2215 * try to swap the logs for next time. 2216 */ 2217 if (ddt_log_swap(ddt, tx)) { 2218 DDT_KSTAT_ZERO(ddt, dds_log_active_entries); 2219 DDT_KSTAT_SET(ddt, dds_log_flushing_entries, 2220 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree)); 2221 } 2222 } 2223 2224 /* If force flush is no longer necessary, turn it off. */ 2225 ddt_flush_force_update_txg(ddt, 0); 2226 2227 ddt->ddt_log_flush_prev_backlog = backlog; 2228 2229 /* 2230 * Update flush rate. This is an exponential weighted moving 2231 * average of the number of entries flushed over recent txgs. 2232 */ 2233 ddt->ddt_log_flush_rate = _ewma(count, ddt->ddt_log_flush_rate, 2234 zfs_dedup_log_flush_flow_rate_txgs); 2235 DDT_KSTAT_SET(ddt, dds_log_flush_rate, ddt->ddt_log_flush_rate); 2236 2237 /* 2238 * Update flush time rate. This is an exponential weighted moving 2239 * average of the total time taken to flush over recent txgs. 2240 */ 2241 ddt->ddt_log_flush_time_rate = _ewma(ddt->ddt_log_flush_time_rate, 2242 (int32_t)NSEC2MSEC(gethrtime() - flush_start), 2243 zfs_dedup_log_flush_flow_rate_txgs); 2244 DDT_KSTAT_SET(ddt, dds_log_flush_time_rate, 2245 ddt->ddt_log_flush_time_rate); 2246 if (avl_numnodes(&ddt->ddt_log_flushing->ddl_tree) > 0 && 2247 zfs_flags & ZFS_DEBUG_DDT) { 2248 zfs_dbgmsg("%lu entries remain(%lu in active), flushed %u @ " 2249 "txg %llu, in %llu ms, flush rate %d, time rate %d", 2250 (ulong_t)avl_numnodes(&ddt->ddt_log_flushing->ddl_tree), 2251 (ulong_t)avl_numnodes(&ddt->ddt_log_active->ddl_tree), 2252 count, (u_longlong_t)tx->tx_txg, 2253 (u_longlong_t)NSEC2MSEC(gethrtime() - flush_start), 2254 ddt->ddt_log_flush_rate, ddt->ddt_log_flush_time_rate); 2255 } 2256 } 2257 2258 static void 2259 ddt_sync_table_log(ddt_t *ddt, dmu_tx_t *tx) 2260 { 2261 uint64_t count = avl_numnodes(&ddt->ddt_tree); 2262 2263 if (count > 0) { 2264 ddt_log_update_t dlu = {0}; 2265 ddt_log_begin(ddt, count, tx, &dlu); 2266 2267 ddt_entry_t *dde; 2268 void *cookie = NULL; 2269 ddt_lightweight_entry_t ddlwe; 2270 while ((dde = 2271 avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) { 2272 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2273 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 2274 ddt_log_entry(ddt, &ddlwe, &dlu); 2275 ddt_sync_scan_entry(ddt, &ddlwe, tx); 2276 ddt_free(ddt, dde); 2277 } 2278 2279 ddt_log_commit(ddt, &dlu); 2280 2281 DDT_KSTAT_SET(ddt, dds_log_active_entries, 2282 avl_numnodes(&ddt->ddt_log_active->ddl_tree)); 2283 2284 /* 2285 * Sync the stats for the store objects. Even though we haven't 2286 * modified anything on those objects, they're no longer the 2287 * source of truth for entries that are now in the log, and we 2288 * need the on-disk counts to reflect that, otherwise we'll 2289 * miscount later when importing. 2290 */ 2291 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2292 for (ddt_class_t class = 0; 2293 class < DDT_CLASSES; class++) { 2294 if (ddt_object_exists(ddt, type, class)) 2295 ddt_object_sync(ddt, type, class, tx); 2296 } 2297 } 2298 2299 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 2300 sizeof (ddt->ddt_histogram)); 2301 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 2302 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 2303 } 2304 2305 if (spa_sync_pass(ddt->ddt_spa) == 1) { 2306 /* 2307 * Update ingest rate. This is an exponential weighted moving 2308 * average of the number of entries changed over recent txgs. 2309 * The ramp-up cost shouldn't matter too much because the 2310 * flusher will be trying to take at least the minimum anyway. 2311 */ 2312 ddt->ddt_log_ingest_rate = _ewma( 2313 count, ddt->ddt_log_ingest_rate, 2314 zfs_dedup_log_flush_flow_rate_txgs); 2315 DDT_KSTAT_SET(ddt, dds_log_ingest_rate, 2316 ddt->ddt_log_ingest_rate); 2317 } 2318 } 2319 2320 static void 2321 ddt_sync_table_flush(ddt_t *ddt, dmu_tx_t *tx) 2322 { 2323 if (avl_numnodes(&ddt->ddt_tree) == 0) 2324 return; 2325 2326 ddt_entry_t *dde; 2327 void *cookie = NULL; 2328 while ((dde = avl_destroy_nodes( 2329 &ddt->ddt_tree, &cookie)) != NULL) { 2330 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2331 2332 ddt_lightweight_entry_t ddlwe; 2333 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe); 2334 ddt_sync_flush_entry(ddt, &ddlwe, 2335 dde->dde_type, dde->dde_class, tx); 2336 ddt_sync_scan_entry(ddt, &ddlwe, tx); 2337 ddt_free(ddt, dde); 2338 } 2339 2340 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, 2341 sizeof (ddt->ddt_histogram)); 2342 ddt->ddt_spa->spa_dedup_dspace = ~0ULL; 2343 ddt->ddt_spa->spa_dedup_dsize = ~0ULL; 2344 ddt_sync_update_stats(ddt, tx); 2345 } 2346 2347 static void 2348 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx) 2349 { 2350 spa_t *spa = ddt->ddt_spa; 2351 2352 if (ddt->ddt_version == UINT64_MAX) 2353 return; 2354 2355 if (spa->spa_uberblock.ub_version < SPA_VERSION_DEDUP) { 2356 ASSERT0(avl_numnodes(&ddt->ddt_tree)); 2357 return; 2358 } 2359 2360 if (spa->spa_ddt_stat_object == 0) { 2361 spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os, 2362 DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT, 2363 DMU_POOL_DDT_STATS, tx); 2364 } 2365 2366 if (ddt->ddt_version == DDT_VERSION_FDT && ddt->ddt_dir_object == 0) 2367 ddt_create_dir(ddt, tx); 2368 2369 if (ddt->ddt_flags & DDT_FLAG_LOG) 2370 ddt_sync_table_log(ddt, tx); 2371 else 2372 ddt_sync_table_flush(ddt, tx); 2373 } 2374 2375 void 2376 ddt_sync(spa_t *spa, uint64_t txg) 2377 { 2378 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 2379 dmu_tx_t *tx; 2380 zio_t *rio; 2381 2382 ASSERT3U(spa_syncing_txg(spa), ==, txg); 2383 2384 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2385 2386 rio = zio_root(spa, NULL, NULL, 2387 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL); 2388 2389 /* 2390 * This function may cause an immediate scan of ddt blocks (see 2391 * the comment above dsl_scan_ddt() for details). We set the 2392 * scan's root zio here so that we can wait for any scan IOs in 2393 * addition to the regular ddt IOs. 2394 */ 2395 ASSERT3P(scn->scn_zio_root, ==, NULL); 2396 scn->scn_zio_root = rio; 2397 2398 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2399 ddt_t *ddt = spa->spa_ddt[c]; 2400 if (ddt == NULL) 2401 continue; 2402 ddt_sync_table(ddt, tx); 2403 if (ddt->ddt_flags & DDT_FLAG_LOG) 2404 ddt_sync_flush_log(ddt, tx); 2405 ddt_repair_table(ddt, rio); 2406 } 2407 2408 (void) zio_wait(rio); 2409 scn->scn_zio_root = NULL; 2410 2411 dmu_tx_commit(tx); 2412 } 2413 2414 void 2415 ddt_walk_init(spa_t *spa, uint64_t txg) 2416 { 2417 if (txg == 0) 2418 txg = spa_syncing_txg(spa); 2419 2420 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2421 ddt_t *ddt = spa->spa_ddt[c]; 2422 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) 2423 continue; 2424 2425 ddt_enter(ddt); 2426 ddt_flush_force_update_txg(ddt, txg); 2427 ddt_exit(ddt); 2428 } 2429 } 2430 2431 boolean_t 2432 ddt_walk_ready(spa_t *spa) 2433 { 2434 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2435 ddt_t *ddt = spa->spa_ddt[c]; 2436 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG)) 2437 continue; 2438 2439 if (ddt->ddt_flush_force_txg > 0) 2440 return (B_FALSE); 2441 } 2442 2443 return (B_TRUE); 2444 } 2445 2446 static int 2447 ddt_walk_impl(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe, 2448 uint64_t flags, boolean_t wait) 2449 { 2450 do { 2451 do { 2452 do { 2453 ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum]; 2454 if (ddt == NULL) 2455 continue; 2456 2457 if (flags != 0 && 2458 (ddt->ddt_flags & flags) != flags) 2459 continue; 2460 2461 if (wait && ddt->ddt_flush_force_txg > 0) 2462 return (EAGAIN); 2463 2464 int error = ENOENT; 2465 if (ddt_object_exists(ddt, ddb->ddb_type, 2466 ddb->ddb_class)) { 2467 error = ddt_object_walk(ddt, 2468 ddb->ddb_type, ddb->ddb_class, 2469 &ddb->ddb_cursor, ddlwe); 2470 } 2471 if (error == 0) 2472 return (0); 2473 if (error != ENOENT) 2474 return (error); 2475 ddb->ddb_cursor = 0; 2476 } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS); 2477 ddb->ddb_checksum = 0; 2478 } while (++ddb->ddb_type < DDT_TYPES); 2479 ddb->ddb_type = 0; 2480 } while (++ddb->ddb_class < DDT_CLASSES); 2481 2482 return (SET_ERROR(ENOENT)); 2483 } 2484 2485 int 2486 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe) 2487 { 2488 return (ddt_walk_impl(spa, ddb, ddlwe, 0, B_TRUE)); 2489 } 2490 2491 /* 2492 * This function is used by Block Cloning (brt.c) to increase reference 2493 * counter for the DDT entry if the block is already in DDT. 2494 * 2495 * Return false if the block, despite having the D bit set, is not present 2496 * in the DDT. This is possible when the DDT has been pruned by an admin 2497 * or by the DDT quota mechanism. 2498 */ 2499 boolean_t 2500 ddt_addref(spa_t *spa, const blkptr_t *bp) 2501 { 2502 ddt_t *ddt; 2503 ddt_entry_t *dde; 2504 boolean_t result; 2505 2506 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 2507 ddt = ddt_select(spa, bp); 2508 ddt_enter(ddt); 2509 2510 dde = ddt_lookup(ddt, bp, B_TRUE); 2511 2512 /* Can be NULL if the entry for this block was pruned. */ 2513 if (dde == NULL) { 2514 ddt_exit(ddt); 2515 spa_config_exit(spa, SCL_ZIO, FTAG); 2516 return (B_FALSE); 2517 } 2518 2519 if ((dde->dde_type < DDT_TYPES) || (dde->dde_flags & DDE_FLAG_LOGGED)) { 2520 /* 2521 * This entry was either synced to a store object (dde_type is 2522 * real) or was logged. It must be properly on disk at this 2523 * point, so we can just bump its refcount. 2524 */ 2525 int p = DDT_PHYS_FOR_COPIES(ddt, BP_GET_NDVAS(bp)); 2526 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 2527 2528 ddt_phys_addref(dde->dde_phys, v); 2529 result = B_TRUE; 2530 } else { 2531 /* 2532 * If the block has the DEDUP flag set it still might not 2533 * exist in the DEDUP table due to DDT pruning of entries 2534 * where refcnt=1. 2535 */ 2536 ddt_remove(ddt, dde); 2537 result = B_FALSE; 2538 } 2539 2540 ddt_exit(ddt); 2541 spa_config_exit(spa, SCL_ZIO, FTAG); 2542 2543 return (result); 2544 } 2545 2546 typedef struct ddt_prune_entry { 2547 ddt_t *dpe_ddt; 2548 ddt_key_t dpe_key; 2549 list_node_t dpe_node; 2550 ddt_univ_phys_t dpe_phys[]; 2551 } ddt_prune_entry_t; 2552 2553 typedef struct ddt_prune_info { 2554 spa_t *dpi_spa; 2555 uint64_t dpi_txg_syncs; 2556 uint64_t dpi_pruned; 2557 list_t dpi_candidates; 2558 } ddt_prune_info_t; 2559 2560 /* 2561 * Add prune candidates for ddt_sync during spa_sync 2562 */ 2563 static void 2564 prune_candidates_sync(void *arg, dmu_tx_t *tx) 2565 { 2566 (void) tx; 2567 ddt_prune_info_t *dpi = arg; 2568 ddt_prune_entry_t *dpe; 2569 2570 spa_config_enter(dpi->dpi_spa, SCL_ZIO, FTAG, RW_READER); 2571 2572 /* Process the prune candidates collected so far */ 2573 while ((dpe = list_remove_head(&dpi->dpi_candidates)) != NULL) { 2574 blkptr_t blk; 2575 ddt_t *ddt = dpe->dpe_ddt; 2576 2577 ddt_enter(ddt); 2578 2579 /* 2580 * If it's on the live list, then it was loaded for update 2581 * this txg and is no longer stale; skip it. 2582 */ 2583 if (avl_find(&ddt->ddt_tree, &dpe->dpe_key, NULL)) { 2584 ddt_exit(ddt); 2585 kmem_free(dpe, sizeof (*dpe)); 2586 continue; 2587 } 2588 2589 ddt_bp_create(ddt->ddt_checksum, &dpe->dpe_key, 2590 dpe->dpe_phys, DDT_PHYS_FLAT, &blk); 2591 2592 ddt_entry_t *dde = ddt_lookup(ddt, &blk, B_TRUE); 2593 if (dde != NULL && !(dde->dde_flags & DDE_FLAG_LOGGED)) { 2594 ASSERT(dde->dde_flags & DDE_FLAG_LOADED); 2595 /* 2596 * Zero the physical, so we don't try to free DVAs 2597 * at flush nor try to reuse this entry. 2598 */ 2599 ddt_phys_clear(dde->dde_phys, DDT_PHYS_FLAT); 2600 2601 dpi->dpi_pruned++; 2602 } 2603 2604 ddt_exit(ddt); 2605 kmem_free(dpe, sizeof (*dpe)); 2606 } 2607 2608 spa_config_exit(dpi->dpi_spa, SCL_ZIO, FTAG); 2609 dpi->dpi_txg_syncs++; 2610 } 2611 2612 /* 2613 * Prune candidates are collected in open context and processed 2614 * in sync context as part of ddt_sync_table(). 2615 */ 2616 static void 2617 ddt_prune_entry(list_t *list, ddt_t *ddt, const ddt_key_t *ddk, 2618 const ddt_univ_phys_t *ddp) 2619 { 2620 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT); 2621 2622 size_t dpe_size = sizeof (ddt_prune_entry_t) + DDT_FLAT_PHYS_SIZE; 2623 ddt_prune_entry_t *dpe = kmem_alloc(dpe_size, KM_SLEEP); 2624 2625 dpe->dpe_ddt = ddt; 2626 dpe->dpe_key = *ddk; 2627 memcpy(dpe->dpe_phys, ddp, DDT_FLAT_PHYS_SIZE); 2628 list_insert_head(list, dpe); 2629 } 2630 2631 /* 2632 * Interate over all the entries in the DDT unique class. 2633 * The walk will perform one of the following operations: 2634 * (a) build a histogram than can be used when pruning 2635 * (b) prune entries older than the cutoff 2636 * 2637 * Also called by zdb(8) to dump the age histogram 2638 */ 2639 void 2640 ddt_prune_walk(spa_t *spa, uint64_t cutoff, ddt_age_histo_t *histogram) 2641 { 2642 ddt_bookmark_t ddb = { 2643 .ddb_class = DDT_CLASS_UNIQUE, 2644 .ddb_type = 0, 2645 .ddb_checksum = 0, 2646 .ddb_cursor = 0 2647 }; 2648 ddt_lightweight_entry_t ddlwe = {0}; 2649 int error; 2650 int valid = 0; 2651 int candidates = 0; 2652 uint64_t now = gethrestime_sec(); 2653 ddt_prune_info_t dpi; 2654 boolean_t pruning = (cutoff != 0); 2655 2656 if (pruning) { 2657 dpi.dpi_txg_syncs = 0; 2658 dpi.dpi_pruned = 0; 2659 dpi.dpi_spa = spa; 2660 list_create(&dpi.dpi_candidates, sizeof (ddt_prune_entry_t), 2661 offsetof(ddt_prune_entry_t, dpe_node)); 2662 } 2663 2664 if (histogram != NULL) 2665 memset(histogram, 0, sizeof (ddt_age_histo_t)); 2666 2667 while ((error = 2668 ddt_walk_impl(spa, &ddb, &ddlwe, DDT_FLAG_FLAT, B_FALSE)) == 0) { 2669 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 2670 VERIFY(ddt); 2671 2672 if (spa_shutting_down(spa) || issig()) 2673 break; 2674 2675 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT); 2676 ASSERT3U(ddlwe.ddlwe_phys.ddp_flat.ddp_refcnt, <=, 1); 2677 2678 uint64_t class_start = 2679 ddlwe.ddlwe_phys.ddp_flat.ddp_class_start; 2680 2681 /* 2682 * If this entry is on the log, then the stored entry is stale 2683 * and we should skip it. 2684 */ 2685 if (ddt_log_find_key(ddt, &ddlwe.ddlwe_key, NULL)) 2686 continue; 2687 2688 /* prune older entries */ 2689 if (pruning && class_start < cutoff) { 2690 if (candidates++ >= zfs_ddt_prunes_per_txg) { 2691 /* sync prune candidates in batches */ 2692 VERIFY0(dsl_sync_task(spa_name(spa), 2693 NULL, prune_candidates_sync, 2694 &dpi, 0, ZFS_SPACE_CHECK_NONE)); 2695 candidates = 1; 2696 } 2697 ddt_prune_entry(&dpi.dpi_candidates, ddt, 2698 &ddlwe.ddlwe_key, &ddlwe.ddlwe_phys); 2699 } 2700 2701 /* build a histogram */ 2702 if (histogram != NULL) { 2703 uint64_t age = MAX(1, (now - class_start) / 3600); 2704 int bin = MIN(highbit64(age) - 1, HIST_BINS - 1); 2705 histogram->dah_entries++; 2706 histogram->dah_age_histo[bin]++; 2707 } 2708 2709 valid++; 2710 } 2711 2712 if (pruning && valid > 0) { 2713 if (!list_is_empty(&dpi.dpi_candidates)) { 2714 /* sync out final batch of prune candidates */ 2715 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2716 prune_candidates_sync, &dpi, 0, 2717 ZFS_SPACE_CHECK_NONE)); 2718 } 2719 list_destroy(&dpi.dpi_candidates); 2720 2721 zfs_dbgmsg("pruned %llu entries (%d%%) across %llu txg syncs", 2722 (u_longlong_t)dpi.dpi_pruned, 2723 (int)((dpi.dpi_pruned * 100) / valid), 2724 (u_longlong_t)dpi.dpi_txg_syncs); 2725 } 2726 } 2727 2728 static uint64_t 2729 ddt_total_entries(spa_t *spa) 2730 { 2731 ddt_object_t ddo; 2732 ddt_get_dedup_object_stats(spa, &ddo); 2733 2734 return (ddo.ddo_count); 2735 } 2736 2737 int 2738 ddt_prune_unique_entries(spa_t *spa, zpool_ddt_prune_unit_t unit, 2739 uint64_t amount) 2740 { 2741 uint64_t cutoff; 2742 uint64_t start_time = gethrtime(); 2743 2744 if (spa->spa_active_ddt_prune) 2745 return (SET_ERROR(EALREADY)); 2746 if (ddt_total_entries(spa) == 0) 2747 return (0); 2748 2749 spa->spa_active_ddt_prune = B_TRUE; 2750 2751 zfs_dbgmsg("prune %llu %s", (u_longlong_t)amount, 2752 unit == ZPOOL_DDT_PRUNE_PERCENTAGE ? "%" : "seconds old or older"); 2753 2754 if (unit == ZPOOL_DDT_PRUNE_PERCENTAGE) { 2755 ddt_age_histo_t histogram; 2756 uint64_t oldest = 0; 2757 2758 /* Make a pass over DDT to build a histogram */ 2759 ddt_prune_walk(spa, 0, &histogram); 2760 2761 int target = (histogram.dah_entries * amount) / 100; 2762 2763 /* 2764 * Figure out our cutoff date 2765 * (i.e., which bins to prune from) 2766 */ 2767 for (int i = HIST_BINS - 1; i >= 0 && target > 0; i--) { 2768 if (histogram.dah_age_histo[i] != 0) { 2769 /* less than this bucket remaining */ 2770 if (target < histogram.dah_age_histo[i]) { 2771 oldest = MAX(1, (1<<i) * 3600); 2772 target = 0; 2773 } else { 2774 target -= histogram.dah_age_histo[i]; 2775 } 2776 } 2777 } 2778 cutoff = gethrestime_sec() - oldest; 2779 2780 if (ddt_dump_prune_histogram) 2781 ddt_dump_age_histogram(&histogram, cutoff); 2782 } else if (unit == ZPOOL_DDT_PRUNE_AGE) { 2783 cutoff = gethrestime_sec() - amount; 2784 } else { 2785 return (EINVAL); 2786 } 2787 2788 if (cutoff > 0 && !spa_shutting_down(spa) && !issig()) { 2789 /* Traverse DDT to prune entries older that our cuttoff */ 2790 ddt_prune_walk(spa, cutoff, NULL); 2791 } 2792 2793 zfs_dbgmsg("%s: prune completed in %llu ms", 2794 spa_name(spa), (u_longlong_t)NSEC2MSEC(gethrtime() - start_time)); 2795 2796 spa->spa_active_ddt_prune = B_FALSE; 2797 return (0); 2798 } 2799 2800 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW, 2801 "Enable prefetching dedup-ed blks"); 2802 2803 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_min_time_ms, UINT, ZMOD_RW, 2804 "Min time to spend on incremental dedup log flush each transaction"); 2805 2806 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_min, UINT, ZMOD_RW, 2807 "Min number of log entries to flush each transaction"); 2808 2809 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_max, UINT, ZMOD_RW, 2810 "Max number of log entries to flush each transaction"); 2811 2812 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_txgs, UINT, ZMOD_RW, 2813 "Number of TXGs to try to rotate the log in"); 2814 2815 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_cap, UINT, ZMOD_RW, 2816 "Soft cap for the size of the current dedup log"); 2817 2818 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_hard_cap, UINT, ZMOD_RW, 2819 "Whether to use the soft cap as a hard cap"); 2820 2821 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_flow_rate_txgs, UINT, ZMOD_RW, 2822 "Number of txgs to average flow rates across"); 2823