1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 #include <sys/wmsum.h> 56 57 kstat_t *dbuf_ksp; 58 59 typedef struct dbuf_stats { 60 /* 61 * Various statistics about the size of the dbuf cache. 62 */ 63 kstat_named_t cache_count; 64 kstat_named_t cache_size_bytes; 65 kstat_named_t cache_size_bytes_max; 66 /* 67 * Statistics regarding the bounds on the dbuf cache size. 68 */ 69 kstat_named_t cache_target_bytes; 70 kstat_named_t cache_lowater_bytes; 71 kstat_named_t cache_hiwater_bytes; 72 /* 73 * Total number of dbuf cache evictions that have occurred. 74 */ 75 kstat_named_t cache_total_evicts; 76 /* 77 * The distribution of dbuf levels in the dbuf cache and 78 * the total size of all dbufs at each level. 79 */ 80 kstat_named_t cache_levels[DN_MAX_LEVELS]; 81 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 82 /* 83 * Statistics about the dbuf hash table. 84 */ 85 kstat_named_t hash_hits; 86 kstat_named_t hash_misses; 87 kstat_named_t hash_collisions; 88 kstat_named_t hash_elements; 89 kstat_named_t hash_elements_max; 90 /* 91 * Number of sublists containing more than one dbuf in the dbuf 92 * hash table. Keep track of the longest hash chain. 93 */ 94 kstat_named_t hash_chains; 95 kstat_named_t hash_chain_max; 96 /* 97 * Number of times a dbuf_create() discovers that a dbuf was 98 * already created and in the dbuf hash table. 99 */ 100 kstat_named_t hash_insert_race; 101 /* 102 * Statistics about the size of the metadata dbuf cache. 103 */ 104 kstat_named_t metadata_cache_count; 105 kstat_named_t metadata_cache_size_bytes; 106 kstat_named_t metadata_cache_size_bytes_max; 107 /* 108 * For diagnostic purposes, this is incremented whenever we can't add 109 * something to the metadata cache because it's full, and instead put 110 * the data in the regular dbuf cache. 111 */ 112 kstat_named_t metadata_cache_overflow; 113 } dbuf_stats_t; 114 115 dbuf_stats_t dbuf_stats = { 116 { "cache_count", KSTAT_DATA_UINT64 }, 117 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 118 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 119 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 120 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 121 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 122 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 123 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 124 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 125 { "hash_hits", KSTAT_DATA_UINT64 }, 126 { "hash_misses", KSTAT_DATA_UINT64 }, 127 { "hash_collisions", KSTAT_DATA_UINT64 }, 128 { "hash_elements", KSTAT_DATA_UINT64 }, 129 { "hash_elements_max", KSTAT_DATA_UINT64 }, 130 { "hash_chains", KSTAT_DATA_UINT64 }, 131 { "hash_chain_max", KSTAT_DATA_UINT64 }, 132 { "hash_insert_race", KSTAT_DATA_UINT64 }, 133 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 134 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 135 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 136 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 137 }; 138 139 struct { 140 wmsum_t cache_count; 141 wmsum_t cache_total_evicts; 142 wmsum_t cache_levels[DN_MAX_LEVELS]; 143 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 144 wmsum_t hash_hits; 145 wmsum_t hash_misses; 146 wmsum_t hash_collisions; 147 wmsum_t hash_chains; 148 wmsum_t hash_insert_race; 149 wmsum_t metadata_cache_count; 150 wmsum_t metadata_cache_overflow; 151 } dbuf_sums; 152 153 #define DBUF_STAT_INCR(stat, val) \ 154 wmsum_add(&dbuf_sums.stat, val); 155 #define DBUF_STAT_DECR(stat, val) \ 156 DBUF_STAT_INCR(stat, -(val)); 157 #define DBUF_STAT_BUMP(stat) \ 158 DBUF_STAT_INCR(stat, 1); 159 #define DBUF_STAT_BUMPDOWN(stat) \ 160 DBUF_STAT_INCR(stat, -1); 161 #define DBUF_STAT_MAX(stat, v) { \ 162 uint64_t _m; \ 163 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 164 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 165 continue; \ 166 } 167 168 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 169 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 170 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 171 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 172 173 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 174 dmu_buf_evict_func_t *evict_func_sync, 175 dmu_buf_evict_func_t *evict_func_async, 176 dmu_buf_t **clear_on_evict_dbufp); 177 178 /* 179 * Global data structures and functions for the dbuf cache. 180 */ 181 static kmem_cache_t *dbuf_kmem_cache; 182 static taskq_t *dbu_evict_taskq; 183 184 static kthread_t *dbuf_cache_evict_thread; 185 static kmutex_t dbuf_evict_lock; 186 static kcondvar_t dbuf_evict_cv; 187 static boolean_t dbuf_evict_thread_exit; 188 189 /* 190 * There are two dbuf caches; each dbuf can only be in one of them at a time. 191 * 192 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 193 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 194 * that represent the metadata that describes filesystems/snapshots/ 195 * bookmarks/properties/etc. We only evict from this cache when we export a 196 * pool, to short-circuit as much I/O as possible for all administrative 197 * commands that need the metadata. There is no eviction policy for this 198 * cache, because we try to only include types in it which would occupy a 199 * very small amount of space per object but create a large impact on the 200 * performance of these commands. Instead, after it reaches a maximum size 201 * (which should only happen on very small memory systems with a very large 202 * number of filesystem objects), we stop taking new dbufs into the 203 * metadata cache, instead putting them in the normal dbuf cache. 204 * 205 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 206 * are not currently held but have been recently released. These dbufs 207 * are not eligible for arc eviction until they are aged out of the cache. 208 * Dbufs that are aged out of the cache will be immediately destroyed and 209 * become eligible for arc eviction. 210 * 211 * Dbufs are added to these caches once the last hold is released. If a dbuf is 212 * later accessed and still exists in the dbuf cache, then it will be removed 213 * from the cache and later re-added to the head of the cache. 214 * 215 * If a given dbuf meets the requirements for the metadata cache, it will go 216 * there, otherwise it will be considered for the generic LRU dbuf cache. The 217 * caches and the refcounts tracking their sizes are stored in an array indexed 218 * by those caches' matching enum values (from dbuf_cached_state_t). 219 */ 220 typedef struct dbuf_cache { 221 multilist_t cache; 222 zfs_refcount_t size ____cacheline_aligned; 223 } dbuf_cache_t; 224 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 225 226 /* Size limits for the caches */ 227 unsigned long dbuf_cache_max_bytes = ULONG_MAX; 228 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX; 229 230 /* Set the default sizes of the caches to log2 fraction of arc size */ 231 int dbuf_cache_shift = 5; 232 int dbuf_metadata_cache_shift = 6; 233 234 static unsigned long dbuf_cache_target_bytes(void); 235 static unsigned long dbuf_metadata_cache_target_bytes(void); 236 237 /* 238 * The LRU dbuf cache uses a three-stage eviction policy: 239 * - A low water marker designates when the dbuf eviction thread 240 * should stop evicting from the dbuf cache. 241 * - When we reach the maximum size (aka mid water mark), we 242 * signal the eviction thread to run. 243 * - The high water mark indicates when the eviction thread 244 * is unable to keep up with the incoming load and eviction must 245 * happen in the context of the calling thread. 246 * 247 * The dbuf cache: 248 * (max size) 249 * low water mid water hi water 250 * +----------------------------------------+----------+----------+ 251 * | | | | 252 * | | | | 253 * | | | | 254 * | | | | 255 * +----------------------------------------+----------+----------+ 256 * stop signal evict 257 * evicting eviction directly 258 * thread 259 * 260 * The high and low water marks indicate the operating range for the eviction 261 * thread. The low water mark is, by default, 90% of the total size of the 262 * cache and the high water mark is at 110% (both of these percentages can be 263 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 264 * respectively). The eviction thread will try to ensure that the cache remains 265 * within this range by waking up every second and checking if the cache is 266 * above the low water mark. The thread can also be woken up by callers adding 267 * elements into the cache if the cache is larger than the mid water (i.e max 268 * cache size). Once the eviction thread is woken up and eviction is required, 269 * it will continue evicting buffers until it's able to reduce the cache size 270 * to the low water mark. If the cache size continues to grow and hits the high 271 * water mark, then callers adding elements to the cache will begin to evict 272 * directly from the cache until the cache is no longer above the high water 273 * mark. 274 */ 275 276 /* 277 * The percentage above and below the maximum cache size. 278 */ 279 uint_t dbuf_cache_hiwater_pct = 10; 280 uint_t dbuf_cache_lowater_pct = 10; 281 282 /* ARGSUSED */ 283 static int 284 dbuf_cons(void *vdb, void *unused, int kmflag) 285 { 286 dmu_buf_impl_t *db = vdb; 287 bzero(db, sizeof (dmu_buf_impl_t)); 288 289 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 290 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 291 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 292 multilist_link_init(&db->db_cache_link); 293 zfs_refcount_create(&db->db_holds); 294 295 return (0); 296 } 297 298 /* ARGSUSED */ 299 static void 300 dbuf_dest(void *vdb, void *unused) 301 { 302 dmu_buf_impl_t *db = vdb; 303 mutex_destroy(&db->db_mtx); 304 rw_destroy(&db->db_rwlock); 305 cv_destroy(&db->db_changed); 306 ASSERT(!multilist_link_active(&db->db_cache_link)); 307 zfs_refcount_destroy(&db->db_holds); 308 } 309 310 /* 311 * dbuf hash table routines 312 */ 313 static dbuf_hash_table_t dbuf_hash_table; 314 315 /* 316 * We use Cityhash for this. It's fast, and has good hash properties without 317 * requiring any large static buffers. 318 */ 319 static uint64_t 320 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 321 { 322 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 323 } 324 325 #define DTRACE_SET_STATE(db, why) \ 326 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 327 const char *, why) 328 329 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 330 ((dbuf)->db.db_object == (obj) && \ 331 (dbuf)->db_objset == (os) && \ 332 (dbuf)->db_level == (level) && \ 333 (dbuf)->db_blkid == (blkid)) 334 335 dmu_buf_impl_t * 336 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 337 { 338 dbuf_hash_table_t *h = &dbuf_hash_table; 339 uint64_t hv; 340 uint64_t idx; 341 dmu_buf_impl_t *db; 342 343 hv = dbuf_hash(os, obj, level, blkid); 344 idx = hv & h->hash_table_mask; 345 346 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 347 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 348 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 349 mutex_enter(&db->db_mtx); 350 if (db->db_state != DB_EVICTING) { 351 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 352 return (db); 353 } 354 mutex_exit(&db->db_mtx); 355 } 356 } 357 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 358 return (NULL); 359 } 360 361 static dmu_buf_impl_t * 362 dbuf_find_bonus(objset_t *os, uint64_t object) 363 { 364 dnode_t *dn; 365 dmu_buf_impl_t *db = NULL; 366 367 if (dnode_hold(os, object, FTAG, &dn) == 0) { 368 rw_enter(&dn->dn_struct_rwlock, RW_READER); 369 if (dn->dn_bonus != NULL) { 370 db = dn->dn_bonus; 371 mutex_enter(&db->db_mtx); 372 } 373 rw_exit(&dn->dn_struct_rwlock); 374 dnode_rele(dn, FTAG); 375 } 376 return (db); 377 } 378 379 /* 380 * Insert an entry into the hash table. If there is already an element 381 * equal to elem in the hash table, then the already existing element 382 * will be returned and the new element will not be inserted. 383 * Otherwise returns NULL. 384 */ 385 static dmu_buf_impl_t * 386 dbuf_hash_insert(dmu_buf_impl_t *db) 387 { 388 dbuf_hash_table_t *h = &dbuf_hash_table; 389 objset_t *os = db->db_objset; 390 uint64_t obj = db->db.db_object; 391 int level = db->db_level; 392 uint64_t blkid, hv, idx; 393 dmu_buf_impl_t *dbf; 394 uint32_t i; 395 396 blkid = db->db_blkid; 397 hv = dbuf_hash(os, obj, level, blkid); 398 idx = hv & h->hash_table_mask; 399 400 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 401 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 402 dbf = dbf->db_hash_next, i++) { 403 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 404 mutex_enter(&dbf->db_mtx); 405 if (dbf->db_state != DB_EVICTING) { 406 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 407 return (dbf); 408 } 409 mutex_exit(&dbf->db_mtx); 410 } 411 } 412 413 if (i > 0) { 414 DBUF_STAT_BUMP(hash_collisions); 415 if (i == 1) 416 DBUF_STAT_BUMP(hash_chains); 417 418 DBUF_STAT_MAX(hash_chain_max, i); 419 } 420 421 mutex_enter(&db->db_mtx); 422 db->db_hash_next = h->hash_table[idx]; 423 h->hash_table[idx] = db; 424 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 425 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 426 DBUF_STAT_MAX(hash_elements_max, he); 427 428 return (NULL); 429 } 430 431 /* 432 * This returns whether this dbuf should be stored in the metadata cache, which 433 * is based on whether it's from one of the dnode types that store data related 434 * to traversing dataset hierarchies. 435 */ 436 static boolean_t 437 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 438 { 439 DB_DNODE_ENTER(db); 440 dmu_object_type_t type = DB_DNODE(db)->dn_type; 441 DB_DNODE_EXIT(db); 442 443 /* Check if this dbuf is one of the types we care about */ 444 if (DMU_OT_IS_METADATA_CACHED(type)) { 445 /* If we hit this, then we set something up wrong in dmu_ot */ 446 ASSERT(DMU_OT_IS_METADATA(type)); 447 448 /* 449 * Sanity check for small-memory systems: don't allocate too 450 * much memory for this purpose. 451 */ 452 if (zfs_refcount_count( 453 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 454 dbuf_metadata_cache_target_bytes()) { 455 DBUF_STAT_BUMP(metadata_cache_overflow); 456 return (B_FALSE); 457 } 458 459 return (B_TRUE); 460 } 461 462 return (B_FALSE); 463 } 464 465 /* 466 * Remove an entry from the hash table. It must be in the EVICTING state. 467 */ 468 static void 469 dbuf_hash_remove(dmu_buf_impl_t *db) 470 { 471 dbuf_hash_table_t *h = &dbuf_hash_table; 472 uint64_t hv, idx; 473 dmu_buf_impl_t *dbf, **dbp; 474 475 hv = dbuf_hash(db->db_objset, db->db.db_object, 476 db->db_level, db->db_blkid); 477 idx = hv & h->hash_table_mask; 478 479 /* 480 * We mustn't hold db_mtx to maintain lock ordering: 481 * DBUF_HASH_MUTEX > db_mtx. 482 */ 483 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 484 ASSERT(db->db_state == DB_EVICTING); 485 ASSERT(!MUTEX_HELD(&db->db_mtx)); 486 487 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 488 dbp = &h->hash_table[idx]; 489 while ((dbf = *dbp) != db) { 490 dbp = &dbf->db_hash_next; 491 ASSERT(dbf != NULL); 492 } 493 *dbp = db->db_hash_next; 494 db->db_hash_next = NULL; 495 if (h->hash_table[idx] && 496 h->hash_table[idx]->db_hash_next == NULL) 497 DBUF_STAT_BUMPDOWN(hash_chains); 498 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 499 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 500 } 501 502 typedef enum { 503 DBVU_EVICTING, 504 DBVU_NOT_EVICTING 505 } dbvu_verify_type_t; 506 507 static void 508 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 509 { 510 #ifdef ZFS_DEBUG 511 int64_t holds; 512 513 if (db->db_user == NULL) 514 return; 515 516 /* Only data blocks support the attachment of user data. */ 517 ASSERT(db->db_level == 0); 518 519 /* Clients must resolve a dbuf before attaching user data. */ 520 ASSERT(db->db.db_data != NULL); 521 ASSERT3U(db->db_state, ==, DB_CACHED); 522 523 holds = zfs_refcount_count(&db->db_holds); 524 if (verify_type == DBVU_EVICTING) { 525 /* 526 * Immediate eviction occurs when holds == dirtycnt. 527 * For normal eviction buffers, holds is zero on 528 * eviction, except when dbuf_fix_old_data() calls 529 * dbuf_clear_data(). However, the hold count can grow 530 * during eviction even though db_mtx is held (see 531 * dmu_bonus_hold() for an example), so we can only 532 * test the generic invariant that holds >= dirtycnt. 533 */ 534 ASSERT3U(holds, >=, db->db_dirtycnt); 535 } else { 536 if (db->db_user_immediate_evict == TRUE) 537 ASSERT3U(holds, >=, db->db_dirtycnt); 538 else 539 ASSERT3U(holds, >, 0); 540 } 541 #endif 542 } 543 544 static void 545 dbuf_evict_user(dmu_buf_impl_t *db) 546 { 547 dmu_buf_user_t *dbu = db->db_user; 548 549 ASSERT(MUTEX_HELD(&db->db_mtx)); 550 551 if (dbu == NULL) 552 return; 553 554 dbuf_verify_user(db, DBVU_EVICTING); 555 db->db_user = NULL; 556 557 #ifdef ZFS_DEBUG 558 if (dbu->dbu_clear_on_evict_dbufp != NULL) 559 *dbu->dbu_clear_on_evict_dbufp = NULL; 560 #endif 561 562 /* 563 * There are two eviction callbacks - one that we call synchronously 564 * and one that we invoke via a taskq. The async one is useful for 565 * avoiding lock order reversals and limiting stack depth. 566 * 567 * Note that if we have a sync callback but no async callback, 568 * it's likely that the sync callback will free the structure 569 * containing the dbu. In that case we need to take care to not 570 * dereference dbu after calling the sync evict func. 571 */ 572 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 573 574 if (dbu->dbu_evict_func_sync != NULL) 575 dbu->dbu_evict_func_sync(dbu); 576 577 if (has_async) { 578 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 579 dbu, 0, &dbu->dbu_tqent); 580 } 581 } 582 583 boolean_t 584 dbuf_is_metadata(dmu_buf_impl_t *db) 585 { 586 /* 587 * Consider indirect blocks and spill blocks to be meta data. 588 */ 589 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 590 return (B_TRUE); 591 } else { 592 boolean_t is_metadata; 593 594 DB_DNODE_ENTER(db); 595 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 596 DB_DNODE_EXIT(db); 597 598 return (is_metadata); 599 } 600 } 601 602 603 /* 604 * This function *must* return indices evenly distributed between all 605 * sublists of the multilist. This is needed due to how the dbuf eviction 606 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 607 * distributed between all sublists and uses this assumption when 608 * deciding which sublist to evict from and how much to evict from it. 609 */ 610 static unsigned int 611 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 612 { 613 dmu_buf_impl_t *db = obj; 614 615 /* 616 * The assumption here, is the hash value for a given 617 * dmu_buf_impl_t will remain constant throughout it's lifetime 618 * (i.e. it's objset, object, level and blkid fields don't change). 619 * Thus, we don't need to store the dbuf's sublist index 620 * on insertion, as this index can be recalculated on removal. 621 * 622 * Also, the low order bits of the hash value are thought to be 623 * distributed evenly. Otherwise, in the case that the multilist 624 * has a power of two number of sublists, each sublists' usage 625 * would not be evenly distributed. In this context full 64bit 626 * division would be a waste of time, so limit it to 32 bits. 627 */ 628 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 629 db->db_level, db->db_blkid) % 630 multilist_get_num_sublists(ml)); 631 } 632 633 /* 634 * The target size of the dbuf cache can grow with the ARC target, 635 * unless limited by the tunable dbuf_cache_max_bytes. 636 */ 637 static inline unsigned long 638 dbuf_cache_target_bytes(void) 639 { 640 return (MIN(dbuf_cache_max_bytes, 641 arc_target_bytes() >> dbuf_cache_shift)); 642 } 643 644 /* 645 * The target size of the dbuf metadata cache can grow with the ARC target, 646 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 647 */ 648 static inline unsigned long 649 dbuf_metadata_cache_target_bytes(void) 650 { 651 return (MIN(dbuf_metadata_cache_max_bytes, 652 arc_target_bytes() >> dbuf_metadata_cache_shift)); 653 } 654 655 static inline uint64_t 656 dbuf_cache_hiwater_bytes(void) 657 { 658 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 659 return (dbuf_cache_target + 660 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 661 } 662 663 static inline uint64_t 664 dbuf_cache_lowater_bytes(void) 665 { 666 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 667 return (dbuf_cache_target - 668 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 669 } 670 671 static inline boolean_t 672 dbuf_cache_above_lowater(void) 673 { 674 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 675 dbuf_cache_lowater_bytes()); 676 } 677 678 /* 679 * Evict the oldest eligible dbuf from the dbuf cache. 680 */ 681 static void 682 dbuf_evict_one(void) 683 { 684 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 685 multilist_sublist_t *mls = multilist_sublist_lock( 686 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 687 688 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 689 690 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 691 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 692 db = multilist_sublist_prev(mls, db); 693 } 694 695 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 696 multilist_sublist_t *, mls); 697 698 if (db != NULL) { 699 multilist_sublist_remove(mls, db); 700 multilist_sublist_unlock(mls); 701 (void) zfs_refcount_remove_many( 702 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 703 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 704 DBUF_STAT_BUMPDOWN(cache_count); 705 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 706 db->db.db_size); 707 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 708 db->db_caching_status = DB_NO_CACHE; 709 dbuf_destroy(db); 710 DBUF_STAT_BUMP(cache_total_evicts); 711 } else { 712 multilist_sublist_unlock(mls); 713 } 714 } 715 716 /* 717 * The dbuf evict thread is responsible for aging out dbufs from the 718 * cache. Once the cache has reached it's maximum size, dbufs are removed 719 * and destroyed. The eviction thread will continue running until the size 720 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 721 * out of the cache it is destroyed and becomes eligible for arc eviction. 722 */ 723 /* ARGSUSED */ 724 static void 725 dbuf_evict_thread(void *unused) 726 { 727 callb_cpr_t cpr; 728 729 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 730 731 mutex_enter(&dbuf_evict_lock); 732 while (!dbuf_evict_thread_exit) { 733 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 734 CALLB_CPR_SAFE_BEGIN(&cpr); 735 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 736 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 737 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 738 } 739 mutex_exit(&dbuf_evict_lock); 740 741 /* 742 * Keep evicting as long as we're above the low water mark 743 * for the cache. We do this without holding the locks to 744 * minimize lock contention. 745 */ 746 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 747 dbuf_evict_one(); 748 } 749 750 mutex_enter(&dbuf_evict_lock); 751 } 752 753 dbuf_evict_thread_exit = B_FALSE; 754 cv_broadcast(&dbuf_evict_cv); 755 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 756 thread_exit(); 757 } 758 759 /* 760 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 761 * If the dbuf cache is at its high water mark, then evict a dbuf from the 762 * dbuf cache using the callers context. 763 */ 764 static void 765 dbuf_evict_notify(uint64_t size) 766 { 767 /* 768 * We check if we should evict without holding the dbuf_evict_lock, 769 * because it's OK to occasionally make the wrong decision here, 770 * and grabbing the lock results in massive lock contention. 771 */ 772 if (size > dbuf_cache_target_bytes()) { 773 if (size > dbuf_cache_hiwater_bytes()) 774 dbuf_evict_one(); 775 cv_signal(&dbuf_evict_cv); 776 } 777 } 778 779 static int 780 dbuf_kstat_update(kstat_t *ksp, int rw) 781 { 782 dbuf_stats_t *ds = ksp->ks_data; 783 784 if (rw == KSTAT_WRITE) 785 return (SET_ERROR(EACCES)); 786 787 ds->cache_count.value.ui64 = 788 wmsum_value(&dbuf_sums.cache_count); 789 ds->cache_size_bytes.value.ui64 = 790 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 791 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 792 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 793 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 794 ds->cache_total_evicts.value.ui64 = 795 wmsum_value(&dbuf_sums.cache_total_evicts); 796 for (int i = 0; i < DN_MAX_LEVELS; i++) { 797 ds->cache_levels[i].value.ui64 = 798 wmsum_value(&dbuf_sums.cache_levels[i]); 799 ds->cache_levels_bytes[i].value.ui64 = 800 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 801 } 802 ds->hash_hits.value.ui64 = 803 wmsum_value(&dbuf_sums.hash_hits); 804 ds->hash_misses.value.ui64 = 805 wmsum_value(&dbuf_sums.hash_misses); 806 ds->hash_collisions.value.ui64 = 807 wmsum_value(&dbuf_sums.hash_collisions); 808 ds->hash_chains.value.ui64 = 809 wmsum_value(&dbuf_sums.hash_chains); 810 ds->hash_insert_race.value.ui64 = 811 wmsum_value(&dbuf_sums.hash_insert_race); 812 ds->metadata_cache_count.value.ui64 = 813 wmsum_value(&dbuf_sums.metadata_cache_count); 814 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 815 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 816 ds->metadata_cache_overflow.value.ui64 = 817 wmsum_value(&dbuf_sums.metadata_cache_overflow); 818 return (0); 819 } 820 821 void 822 dbuf_init(void) 823 { 824 uint64_t hsize = 1ULL << 16; 825 dbuf_hash_table_t *h = &dbuf_hash_table; 826 int i; 827 828 /* 829 * The hash table is big enough to fill one eighth of physical memory 830 * with an average block size of zfs_arc_average_blocksize (default 8K). 831 * By default, the table will take up 832 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 833 */ 834 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 835 hsize <<= 1; 836 837 retry: 838 h->hash_table_mask = hsize - 1; 839 #if defined(_KERNEL) 840 /* 841 * Large allocations which do not require contiguous pages 842 * should be using vmem_alloc() in the linux kernel 843 */ 844 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 845 #else 846 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 847 #endif 848 if (h->hash_table == NULL) { 849 /* XXX - we should really return an error instead of assert */ 850 ASSERT(hsize > (1ULL << 10)); 851 hsize >>= 1; 852 goto retry; 853 } 854 855 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 856 sizeof (dmu_buf_impl_t), 857 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 858 859 for (i = 0; i < DBUF_MUTEXES; i++) 860 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 861 862 dbuf_stats_init(h); 863 864 /* 865 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 866 * configuration is not required. 867 */ 868 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 869 870 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 871 multilist_create(&dbuf_caches[dcs].cache, 872 sizeof (dmu_buf_impl_t), 873 offsetof(dmu_buf_impl_t, db_cache_link), 874 dbuf_cache_multilist_index_func); 875 zfs_refcount_create(&dbuf_caches[dcs].size); 876 } 877 878 dbuf_evict_thread_exit = B_FALSE; 879 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 880 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 881 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 882 NULL, 0, &p0, TS_RUN, minclsyspri); 883 884 wmsum_init(&dbuf_sums.cache_count, 0); 885 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 886 for (i = 0; i < DN_MAX_LEVELS; i++) { 887 wmsum_init(&dbuf_sums.cache_levels[i], 0); 888 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 889 } 890 wmsum_init(&dbuf_sums.hash_hits, 0); 891 wmsum_init(&dbuf_sums.hash_misses, 0); 892 wmsum_init(&dbuf_sums.hash_collisions, 0); 893 wmsum_init(&dbuf_sums.hash_chains, 0); 894 wmsum_init(&dbuf_sums.hash_insert_race, 0); 895 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 896 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 897 898 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 899 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 900 KSTAT_FLAG_VIRTUAL); 901 if (dbuf_ksp != NULL) { 902 for (i = 0; i < DN_MAX_LEVELS; i++) { 903 snprintf(dbuf_stats.cache_levels[i].name, 904 KSTAT_STRLEN, "cache_level_%d", i); 905 dbuf_stats.cache_levels[i].data_type = 906 KSTAT_DATA_UINT64; 907 snprintf(dbuf_stats.cache_levels_bytes[i].name, 908 KSTAT_STRLEN, "cache_level_%d_bytes", i); 909 dbuf_stats.cache_levels_bytes[i].data_type = 910 KSTAT_DATA_UINT64; 911 } 912 dbuf_ksp->ks_data = &dbuf_stats; 913 dbuf_ksp->ks_update = dbuf_kstat_update; 914 kstat_install(dbuf_ksp); 915 } 916 } 917 918 void 919 dbuf_fini(void) 920 { 921 dbuf_hash_table_t *h = &dbuf_hash_table; 922 int i; 923 924 dbuf_stats_destroy(); 925 926 for (i = 0; i < DBUF_MUTEXES; i++) 927 mutex_destroy(&h->hash_mutexes[i]); 928 #if defined(_KERNEL) 929 /* 930 * Large allocations which do not require contiguous pages 931 * should be using vmem_free() in the linux kernel 932 */ 933 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 934 #else 935 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 936 #endif 937 kmem_cache_destroy(dbuf_kmem_cache); 938 taskq_destroy(dbu_evict_taskq); 939 940 mutex_enter(&dbuf_evict_lock); 941 dbuf_evict_thread_exit = B_TRUE; 942 while (dbuf_evict_thread_exit) { 943 cv_signal(&dbuf_evict_cv); 944 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 945 } 946 mutex_exit(&dbuf_evict_lock); 947 948 mutex_destroy(&dbuf_evict_lock); 949 cv_destroy(&dbuf_evict_cv); 950 951 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 952 zfs_refcount_destroy(&dbuf_caches[dcs].size); 953 multilist_destroy(&dbuf_caches[dcs].cache); 954 } 955 956 if (dbuf_ksp != NULL) { 957 kstat_delete(dbuf_ksp); 958 dbuf_ksp = NULL; 959 } 960 961 wmsum_fini(&dbuf_sums.cache_count); 962 wmsum_fini(&dbuf_sums.cache_total_evicts); 963 for (i = 0; i < DN_MAX_LEVELS; i++) { 964 wmsum_fini(&dbuf_sums.cache_levels[i]); 965 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 966 } 967 wmsum_fini(&dbuf_sums.hash_hits); 968 wmsum_fini(&dbuf_sums.hash_misses); 969 wmsum_fini(&dbuf_sums.hash_collisions); 970 wmsum_fini(&dbuf_sums.hash_chains); 971 wmsum_fini(&dbuf_sums.hash_insert_race); 972 wmsum_fini(&dbuf_sums.metadata_cache_count); 973 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 974 } 975 976 /* 977 * Other stuff. 978 */ 979 980 #ifdef ZFS_DEBUG 981 static void 982 dbuf_verify(dmu_buf_impl_t *db) 983 { 984 dnode_t *dn; 985 dbuf_dirty_record_t *dr; 986 uint32_t txg_prev; 987 988 ASSERT(MUTEX_HELD(&db->db_mtx)); 989 990 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 991 return; 992 993 ASSERT(db->db_objset != NULL); 994 DB_DNODE_ENTER(db); 995 dn = DB_DNODE(db); 996 if (dn == NULL) { 997 ASSERT(db->db_parent == NULL); 998 ASSERT(db->db_blkptr == NULL); 999 } else { 1000 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1001 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1002 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1003 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1004 db->db_blkid == DMU_SPILL_BLKID || 1005 !avl_is_empty(&dn->dn_dbufs)); 1006 } 1007 if (db->db_blkid == DMU_BONUS_BLKID) { 1008 ASSERT(dn != NULL); 1009 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1010 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1011 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1012 ASSERT(dn != NULL); 1013 ASSERT0(db->db.db_offset); 1014 } else { 1015 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1016 } 1017 1018 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1019 ASSERT(dr->dr_dbuf == db); 1020 txg_prev = dr->dr_txg; 1021 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1022 dr = list_next(&db->db_dirty_records, dr)) { 1023 ASSERT(dr->dr_dbuf == db); 1024 ASSERT(txg_prev > dr->dr_txg); 1025 txg_prev = dr->dr_txg; 1026 } 1027 } 1028 1029 /* 1030 * We can't assert that db_size matches dn_datablksz because it 1031 * can be momentarily different when another thread is doing 1032 * dnode_set_blksz(). 1033 */ 1034 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1035 dr = db->db_data_pending; 1036 /* 1037 * It should only be modified in syncing context, so 1038 * make sure we only have one copy of the data. 1039 */ 1040 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1041 } 1042 1043 /* verify db->db_blkptr */ 1044 if (db->db_blkptr) { 1045 if (db->db_parent == dn->dn_dbuf) { 1046 /* db is pointed to by the dnode */ 1047 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1048 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1049 ASSERT(db->db_parent == NULL); 1050 else 1051 ASSERT(db->db_parent != NULL); 1052 if (db->db_blkid != DMU_SPILL_BLKID) 1053 ASSERT3P(db->db_blkptr, ==, 1054 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1055 } else { 1056 /* db is pointed to by an indirect block */ 1057 int epb __maybe_unused = db->db_parent->db.db_size >> 1058 SPA_BLKPTRSHIFT; 1059 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1060 ASSERT3U(db->db_parent->db.db_object, ==, 1061 db->db.db_object); 1062 /* 1063 * dnode_grow_indblksz() can make this fail if we don't 1064 * have the parent's rwlock. XXX indblksz no longer 1065 * grows. safe to do this now? 1066 */ 1067 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1068 ASSERT3P(db->db_blkptr, ==, 1069 ((blkptr_t *)db->db_parent->db.db_data + 1070 db->db_blkid % epb)); 1071 } 1072 } 1073 } 1074 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1075 (db->db_buf == NULL || db->db_buf->b_data) && 1076 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1077 db->db_state != DB_FILL && !dn->dn_free_txg) { 1078 /* 1079 * If the blkptr isn't set but they have nonzero data, 1080 * it had better be dirty, otherwise we'll lose that 1081 * data when we evict this buffer. 1082 * 1083 * There is an exception to this rule for indirect blocks; in 1084 * this case, if the indirect block is a hole, we fill in a few 1085 * fields on each of the child blocks (importantly, birth time) 1086 * to prevent hole birth times from being lost when you 1087 * partially fill in a hole. 1088 */ 1089 if (db->db_dirtycnt == 0) { 1090 if (db->db_level == 0) { 1091 uint64_t *buf = db->db.db_data; 1092 int i; 1093 1094 for (i = 0; i < db->db.db_size >> 3; i++) { 1095 ASSERT(buf[i] == 0); 1096 } 1097 } else { 1098 blkptr_t *bps = db->db.db_data; 1099 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1100 db->db.db_size); 1101 /* 1102 * We want to verify that all the blkptrs in the 1103 * indirect block are holes, but we may have 1104 * automatically set up a few fields for them. 1105 * We iterate through each blkptr and verify 1106 * they only have those fields set. 1107 */ 1108 for (int i = 0; 1109 i < db->db.db_size / sizeof (blkptr_t); 1110 i++) { 1111 blkptr_t *bp = &bps[i]; 1112 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1113 &bp->blk_cksum)); 1114 ASSERT( 1115 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1116 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1117 DVA_IS_EMPTY(&bp->blk_dva[2])); 1118 ASSERT0(bp->blk_fill); 1119 ASSERT0(bp->blk_pad[0]); 1120 ASSERT0(bp->blk_pad[1]); 1121 ASSERT(!BP_IS_EMBEDDED(bp)); 1122 ASSERT(BP_IS_HOLE(bp)); 1123 ASSERT0(bp->blk_phys_birth); 1124 } 1125 } 1126 } 1127 } 1128 DB_DNODE_EXIT(db); 1129 } 1130 #endif 1131 1132 static void 1133 dbuf_clear_data(dmu_buf_impl_t *db) 1134 { 1135 ASSERT(MUTEX_HELD(&db->db_mtx)); 1136 dbuf_evict_user(db); 1137 ASSERT3P(db->db_buf, ==, NULL); 1138 db->db.db_data = NULL; 1139 if (db->db_state != DB_NOFILL) { 1140 db->db_state = DB_UNCACHED; 1141 DTRACE_SET_STATE(db, "clear data"); 1142 } 1143 } 1144 1145 static void 1146 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1147 { 1148 ASSERT(MUTEX_HELD(&db->db_mtx)); 1149 ASSERT(buf != NULL); 1150 1151 db->db_buf = buf; 1152 ASSERT(buf->b_data != NULL); 1153 db->db.db_data = buf->b_data; 1154 } 1155 1156 static arc_buf_t * 1157 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1158 { 1159 spa_t *spa = db->db_objset->os_spa; 1160 1161 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1162 } 1163 1164 /* 1165 * Loan out an arc_buf for read. Return the loaned arc_buf. 1166 */ 1167 arc_buf_t * 1168 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1169 { 1170 arc_buf_t *abuf; 1171 1172 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1173 mutex_enter(&db->db_mtx); 1174 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1175 int blksz = db->db.db_size; 1176 spa_t *spa = db->db_objset->os_spa; 1177 1178 mutex_exit(&db->db_mtx); 1179 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1180 bcopy(db->db.db_data, abuf->b_data, blksz); 1181 } else { 1182 abuf = db->db_buf; 1183 arc_loan_inuse_buf(abuf, db); 1184 db->db_buf = NULL; 1185 dbuf_clear_data(db); 1186 mutex_exit(&db->db_mtx); 1187 } 1188 return (abuf); 1189 } 1190 1191 /* 1192 * Calculate which level n block references the data at the level 0 offset 1193 * provided. 1194 */ 1195 uint64_t 1196 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1197 { 1198 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1199 /* 1200 * The level n blkid is equal to the level 0 blkid divided by 1201 * the number of level 0s in a level n block. 1202 * 1203 * The level 0 blkid is offset >> datablkshift = 1204 * offset / 2^datablkshift. 1205 * 1206 * The number of level 0s in a level n is the number of block 1207 * pointers in an indirect block, raised to the power of level. 1208 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1209 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1210 * 1211 * Thus, the level n blkid is: offset / 1212 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1213 * = offset / 2^(datablkshift + level * 1214 * (indblkshift - SPA_BLKPTRSHIFT)) 1215 * = offset >> (datablkshift + level * 1216 * (indblkshift - SPA_BLKPTRSHIFT)) 1217 */ 1218 1219 const unsigned exp = dn->dn_datablkshift + 1220 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1221 1222 if (exp >= 8 * sizeof (offset)) { 1223 /* This only happens on the highest indirection level */ 1224 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1225 return (0); 1226 } 1227 1228 ASSERT3U(exp, <, 8 * sizeof (offset)); 1229 1230 return (offset >> exp); 1231 } else { 1232 ASSERT3U(offset, <, dn->dn_datablksz); 1233 return (0); 1234 } 1235 } 1236 1237 /* 1238 * This function is used to lock the parent of the provided dbuf. This should be 1239 * used when modifying or reading db_blkptr. 1240 */ 1241 db_lock_type_t 1242 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 1243 { 1244 enum db_lock_type ret = DLT_NONE; 1245 if (db->db_parent != NULL) { 1246 rw_enter(&db->db_parent->db_rwlock, rw); 1247 ret = DLT_PARENT; 1248 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1249 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1250 tag); 1251 ret = DLT_OBJSET; 1252 } 1253 /* 1254 * We only return a DLT_NONE lock when it's the top-most indirect block 1255 * of the meta-dnode of the MOS. 1256 */ 1257 return (ret); 1258 } 1259 1260 /* 1261 * We need to pass the lock type in because it's possible that the block will 1262 * move from being the topmost indirect block in a dnode (and thus, have no 1263 * parent) to not the top-most via an indirection increase. This would cause a 1264 * panic if we didn't pass the lock type in. 1265 */ 1266 void 1267 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 1268 { 1269 if (type == DLT_PARENT) 1270 rw_exit(&db->db_parent->db_rwlock); 1271 else if (type == DLT_OBJSET) 1272 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1273 } 1274 1275 static void 1276 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1277 arc_buf_t *buf, void *vdb) 1278 { 1279 dmu_buf_impl_t *db = vdb; 1280 1281 mutex_enter(&db->db_mtx); 1282 ASSERT3U(db->db_state, ==, DB_READ); 1283 /* 1284 * All reads are synchronous, so we must have a hold on the dbuf 1285 */ 1286 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1287 ASSERT(db->db_buf == NULL); 1288 ASSERT(db->db.db_data == NULL); 1289 if (buf == NULL) { 1290 /* i/o error */ 1291 ASSERT(zio == NULL || zio->io_error != 0); 1292 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1293 ASSERT3P(db->db_buf, ==, NULL); 1294 db->db_state = DB_UNCACHED; 1295 DTRACE_SET_STATE(db, "i/o error"); 1296 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1297 /* freed in flight */ 1298 ASSERT(zio == NULL || zio->io_error == 0); 1299 arc_release(buf, db); 1300 bzero(buf->b_data, db->db.db_size); 1301 arc_buf_freeze(buf); 1302 db->db_freed_in_flight = FALSE; 1303 dbuf_set_data(db, buf); 1304 db->db_state = DB_CACHED; 1305 DTRACE_SET_STATE(db, "freed in flight"); 1306 } else { 1307 /* success */ 1308 ASSERT(zio == NULL || zio->io_error == 0); 1309 dbuf_set_data(db, buf); 1310 db->db_state = DB_CACHED; 1311 DTRACE_SET_STATE(db, "successful read"); 1312 } 1313 cv_broadcast(&db->db_changed); 1314 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1315 } 1316 1317 /* 1318 * Shortcut for performing reads on bonus dbufs. Returns 1319 * an error if we fail to verify the dnode associated with 1320 * a decrypted block. Otherwise success. 1321 */ 1322 static int 1323 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1324 { 1325 int bonuslen, max_bonuslen, err; 1326 1327 err = dbuf_read_verify_dnode_crypt(db, flags); 1328 if (err) 1329 return (err); 1330 1331 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1332 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1333 ASSERT(MUTEX_HELD(&db->db_mtx)); 1334 ASSERT(DB_DNODE_HELD(db)); 1335 ASSERT3U(bonuslen, <=, db->db.db_size); 1336 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1337 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1338 if (bonuslen < max_bonuslen) 1339 bzero(db->db.db_data, max_bonuslen); 1340 if (bonuslen) 1341 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1342 db->db_state = DB_CACHED; 1343 DTRACE_SET_STATE(db, "bonus buffer filled"); 1344 return (0); 1345 } 1346 1347 static void 1348 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1349 { 1350 blkptr_t *bps = db->db.db_data; 1351 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1352 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1353 1354 for (int i = 0; i < n_bps; i++) { 1355 blkptr_t *bp = &bps[i]; 1356 1357 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1358 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1359 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1360 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1361 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1362 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1363 } 1364 } 1365 1366 /* 1367 * Handle reads on dbufs that are holes, if necessary. This function 1368 * requires that the dbuf's mutex is held. Returns success (0) if action 1369 * was taken, ENOENT if no action was taken. 1370 */ 1371 static int 1372 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1373 { 1374 ASSERT(MUTEX_HELD(&db->db_mtx)); 1375 1376 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1377 /* 1378 * For level 0 blocks only, if the above check fails: 1379 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1380 * processes the delete record and clears the bp while we are waiting 1381 * for the dn_mtx (resulting in a "no" from block_freed). 1382 */ 1383 if (!is_hole && db->db_level == 0) { 1384 is_hole = dnode_block_freed(dn, db->db_blkid) || 1385 BP_IS_HOLE(db->db_blkptr); 1386 } 1387 1388 if (is_hole) { 1389 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1390 bzero(db->db.db_data, db->db.db_size); 1391 1392 if (db->db_blkptr != NULL && db->db_level > 0 && 1393 BP_IS_HOLE(db->db_blkptr) && 1394 db->db_blkptr->blk_birth != 0) { 1395 dbuf_handle_indirect_hole(db, dn); 1396 } 1397 db->db_state = DB_CACHED; 1398 DTRACE_SET_STATE(db, "hole read satisfied"); 1399 return (0); 1400 } 1401 return (ENOENT); 1402 } 1403 1404 /* 1405 * This function ensures that, when doing a decrypting read of a block, 1406 * we make sure we have decrypted the dnode associated with it. We must do 1407 * this so that we ensure we are fully authenticating the checksum-of-MACs 1408 * tree from the root of the objset down to this block. Indirect blocks are 1409 * always verified against their secure checksum-of-MACs assuming that the 1410 * dnode containing them is correct. Now that we are doing a decrypting read, 1411 * we can be sure that the key is loaded and verify that assumption. This is 1412 * especially important considering that we always read encrypted dnode 1413 * blocks as raw data (without verifying their MACs) to start, and 1414 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1415 */ 1416 static int 1417 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1418 { 1419 int err = 0; 1420 objset_t *os = db->db_objset; 1421 arc_buf_t *dnode_abuf; 1422 dnode_t *dn; 1423 zbookmark_phys_t zb; 1424 1425 ASSERT(MUTEX_HELD(&db->db_mtx)); 1426 1427 if (!os->os_encrypted || os->os_raw_receive || 1428 (flags & DB_RF_NO_DECRYPT) != 0) 1429 return (0); 1430 1431 DB_DNODE_ENTER(db); 1432 dn = DB_DNODE(db); 1433 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1434 1435 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1436 DB_DNODE_EXIT(db); 1437 return (0); 1438 } 1439 1440 SET_BOOKMARK(&zb, dmu_objset_id(os), 1441 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1442 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1443 1444 /* 1445 * An error code of EACCES tells us that the key is still not 1446 * available. This is ok if we are only reading authenticated 1447 * (and therefore non-encrypted) blocks. 1448 */ 1449 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1450 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1451 (db->db_blkid == DMU_BONUS_BLKID && 1452 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1453 err = 0; 1454 1455 DB_DNODE_EXIT(db); 1456 1457 return (err); 1458 } 1459 1460 /* 1461 * Drops db_mtx and the parent lock specified by dblt and tag before 1462 * returning. 1463 */ 1464 static int 1465 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1466 db_lock_type_t dblt, void *tag) 1467 { 1468 dnode_t *dn; 1469 zbookmark_phys_t zb; 1470 uint32_t aflags = ARC_FLAG_NOWAIT; 1471 int err, zio_flags; 1472 1473 err = zio_flags = 0; 1474 DB_DNODE_ENTER(db); 1475 dn = DB_DNODE(db); 1476 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1477 ASSERT(MUTEX_HELD(&db->db_mtx)); 1478 ASSERT(db->db_state == DB_UNCACHED); 1479 ASSERT(db->db_buf == NULL); 1480 ASSERT(db->db_parent == NULL || 1481 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1482 1483 if (db->db_blkid == DMU_BONUS_BLKID) { 1484 err = dbuf_read_bonus(db, dn, flags); 1485 goto early_unlock; 1486 } 1487 1488 err = dbuf_read_hole(db, dn, flags); 1489 if (err == 0) 1490 goto early_unlock; 1491 1492 /* 1493 * Any attempt to read a redacted block should result in an error. This 1494 * will never happen under normal conditions, but can be useful for 1495 * debugging purposes. 1496 */ 1497 if (BP_IS_REDACTED(db->db_blkptr)) { 1498 ASSERT(dsl_dataset_feature_is_active( 1499 db->db_objset->os_dsl_dataset, 1500 SPA_FEATURE_REDACTED_DATASETS)); 1501 err = SET_ERROR(EIO); 1502 goto early_unlock; 1503 } 1504 1505 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1506 db->db.db_object, db->db_level, db->db_blkid); 1507 1508 /* 1509 * All bps of an encrypted os should have the encryption bit set. 1510 * If this is not true it indicates tampering and we report an error. 1511 */ 1512 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1513 spa_log_error(db->db_objset->os_spa, &zb); 1514 zfs_panic_recover("unencrypted block in encrypted " 1515 "object set %llu", dmu_objset_id(db->db_objset)); 1516 err = SET_ERROR(EIO); 1517 goto early_unlock; 1518 } 1519 1520 err = dbuf_read_verify_dnode_crypt(db, flags); 1521 if (err != 0) 1522 goto early_unlock; 1523 1524 DB_DNODE_EXIT(db); 1525 1526 db->db_state = DB_READ; 1527 DTRACE_SET_STATE(db, "read issued"); 1528 mutex_exit(&db->db_mtx); 1529 1530 if (DBUF_IS_L2CACHEABLE(db)) 1531 aflags |= ARC_FLAG_L2CACHE; 1532 1533 dbuf_add_ref(db, NULL); 1534 1535 zio_flags = (flags & DB_RF_CANFAIL) ? 1536 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1537 1538 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1539 zio_flags |= ZIO_FLAG_RAW; 1540 /* 1541 * The zio layer will copy the provided blkptr later, but we need to 1542 * do this now so that we can release the parent's rwlock. We have to 1543 * do that now so that if dbuf_read_done is called synchronously (on 1544 * an l1 cache hit) we don't acquire the db_mtx while holding the 1545 * parent's rwlock, which would be a lock ordering violation. 1546 */ 1547 blkptr_t bp = *db->db_blkptr; 1548 dmu_buf_unlock_parent(db, dblt, tag); 1549 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1550 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1551 &aflags, &zb); 1552 return (err); 1553 early_unlock: 1554 DB_DNODE_EXIT(db); 1555 mutex_exit(&db->db_mtx); 1556 dmu_buf_unlock_parent(db, dblt, tag); 1557 return (err); 1558 } 1559 1560 /* 1561 * This is our just-in-time copy function. It makes a copy of buffers that 1562 * have been modified in a previous transaction group before we access them in 1563 * the current active group. 1564 * 1565 * This function is used in three places: when we are dirtying a buffer for the 1566 * first time in a txg, when we are freeing a range in a dnode that includes 1567 * this buffer, and when we are accessing a buffer which was received compressed 1568 * and later referenced in a WRITE_BYREF record. 1569 * 1570 * Note that when we are called from dbuf_free_range() we do not put a hold on 1571 * the buffer, we just traverse the active dbuf list for the dnode. 1572 */ 1573 static void 1574 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1575 { 1576 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1577 1578 ASSERT(MUTEX_HELD(&db->db_mtx)); 1579 ASSERT(db->db.db_data != NULL); 1580 ASSERT(db->db_level == 0); 1581 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1582 1583 if (dr == NULL || 1584 (dr->dt.dl.dr_data != 1585 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1586 return; 1587 1588 /* 1589 * If the last dirty record for this dbuf has not yet synced 1590 * and its referencing the dbuf data, either: 1591 * reset the reference to point to a new copy, 1592 * or (if there a no active holders) 1593 * just null out the current db_data pointer. 1594 */ 1595 ASSERT3U(dr->dr_txg, >=, txg - 2); 1596 if (db->db_blkid == DMU_BONUS_BLKID) { 1597 dnode_t *dn = DB_DNODE(db); 1598 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1599 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1600 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1601 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1602 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1603 dnode_t *dn = DB_DNODE(db); 1604 int size = arc_buf_size(db->db_buf); 1605 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1606 spa_t *spa = db->db_objset->os_spa; 1607 enum zio_compress compress_type = 1608 arc_get_compression(db->db_buf); 1609 uint8_t complevel = arc_get_complevel(db->db_buf); 1610 1611 if (arc_is_encrypted(db->db_buf)) { 1612 boolean_t byteorder; 1613 uint8_t salt[ZIO_DATA_SALT_LEN]; 1614 uint8_t iv[ZIO_DATA_IV_LEN]; 1615 uint8_t mac[ZIO_DATA_MAC_LEN]; 1616 1617 arc_get_raw_params(db->db_buf, &byteorder, salt, 1618 iv, mac); 1619 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1620 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1621 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1622 compress_type, complevel); 1623 } else if (compress_type != ZIO_COMPRESS_OFF) { 1624 ASSERT3U(type, ==, ARC_BUFC_DATA); 1625 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1626 size, arc_buf_lsize(db->db_buf), compress_type, 1627 complevel); 1628 } else { 1629 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1630 } 1631 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size); 1632 } else { 1633 db->db_buf = NULL; 1634 dbuf_clear_data(db); 1635 } 1636 } 1637 1638 int 1639 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1640 { 1641 int err = 0; 1642 boolean_t prefetch; 1643 dnode_t *dn; 1644 1645 /* 1646 * We don't have to hold the mutex to check db_state because it 1647 * can't be freed while we have a hold on the buffer. 1648 */ 1649 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1650 1651 if (db->db_state == DB_NOFILL) 1652 return (SET_ERROR(EIO)); 1653 1654 DB_DNODE_ENTER(db); 1655 dn = DB_DNODE(db); 1656 1657 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1658 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1659 DBUF_IS_CACHEABLE(db); 1660 1661 mutex_enter(&db->db_mtx); 1662 if (db->db_state == DB_CACHED) { 1663 spa_t *spa = dn->dn_objset->os_spa; 1664 1665 /* 1666 * Ensure that this block's dnode has been decrypted if 1667 * the caller has requested decrypted data. 1668 */ 1669 err = dbuf_read_verify_dnode_crypt(db, flags); 1670 1671 /* 1672 * If the arc buf is compressed or encrypted and the caller 1673 * requested uncompressed data, we need to untransform it 1674 * before returning. We also call arc_untransform() on any 1675 * unauthenticated blocks, which will verify their MAC if 1676 * the key is now available. 1677 */ 1678 if (err == 0 && db->db_buf != NULL && 1679 (flags & DB_RF_NO_DECRYPT) == 0 && 1680 (arc_is_encrypted(db->db_buf) || 1681 arc_is_unauthenticated(db->db_buf) || 1682 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1683 zbookmark_phys_t zb; 1684 1685 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1686 db->db.db_object, db->db_level, db->db_blkid); 1687 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1688 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1689 dbuf_set_data(db, db->db_buf); 1690 } 1691 mutex_exit(&db->db_mtx); 1692 if (err == 0 && prefetch) { 1693 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1694 B_FALSE, flags & DB_RF_HAVESTRUCT); 1695 } 1696 DB_DNODE_EXIT(db); 1697 DBUF_STAT_BUMP(hash_hits); 1698 } else if (db->db_state == DB_UNCACHED) { 1699 spa_t *spa = dn->dn_objset->os_spa; 1700 boolean_t need_wait = B_FALSE; 1701 1702 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1703 1704 if (zio == NULL && 1705 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1706 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1707 need_wait = B_TRUE; 1708 } 1709 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1710 /* 1711 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1712 * for us 1713 */ 1714 if (!err && prefetch) { 1715 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1716 db->db_state != DB_CACHED, 1717 flags & DB_RF_HAVESTRUCT); 1718 } 1719 1720 DB_DNODE_EXIT(db); 1721 DBUF_STAT_BUMP(hash_misses); 1722 1723 /* 1724 * If we created a zio_root we must execute it to avoid 1725 * leaking it, even if it isn't attached to any work due 1726 * to an error in dbuf_read_impl(). 1727 */ 1728 if (need_wait) { 1729 if (err == 0) 1730 err = zio_wait(zio); 1731 else 1732 VERIFY0(zio_wait(zio)); 1733 } 1734 } else { 1735 /* 1736 * Another reader came in while the dbuf was in flight 1737 * between UNCACHED and CACHED. Either a writer will finish 1738 * writing the buffer (sending the dbuf to CACHED) or the 1739 * first reader's request will reach the read_done callback 1740 * and send the dbuf to CACHED. Otherwise, a failure 1741 * occurred and the dbuf went to UNCACHED. 1742 */ 1743 mutex_exit(&db->db_mtx); 1744 if (prefetch) { 1745 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1746 B_TRUE, flags & DB_RF_HAVESTRUCT); 1747 } 1748 DB_DNODE_EXIT(db); 1749 DBUF_STAT_BUMP(hash_misses); 1750 1751 /* Skip the wait per the caller's request. */ 1752 if ((flags & DB_RF_NEVERWAIT) == 0) { 1753 mutex_enter(&db->db_mtx); 1754 while (db->db_state == DB_READ || 1755 db->db_state == DB_FILL) { 1756 ASSERT(db->db_state == DB_READ || 1757 (flags & DB_RF_HAVESTRUCT) == 0); 1758 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1759 db, zio_t *, zio); 1760 cv_wait(&db->db_changed, &db->db_mtx); 1761 } 1762 if (db->db_state == DB_UNCACHED) 1763 err = SET_ERROR(EIO); 1764 mutex_exit(&db->db_mtx); 1765 } 1766 } 1767 1768 return (err); 1769 } 1770 1771 static void 1772 dbuf_noread(dmu_buf_impl_t *db) 1773 { 1774 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1775 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1776 mutex_enter(&db->db_mtx); 1777 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1778 cv_wait(&db->db_changed, &db->db_mtx); 1779 if (db->db_state == DB_UNCACHED) { 1780 ASSERT(db->db_buf == NULL); 1781 ASSERT(db->db.db_data == NULL); 1782 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1783 db->db_state = DB_FILL; 1784 DTRACE_SET_STATE(db, "assigning filled buffer"); 1785 } else if (db->db_state == DB_NOFILL) { 1786 dbuf_clear_data(db); 1787 } else { 1788 ASSERT3U(db->db_state, ==, DB_CACHED); 1789 } 1790 mutex_exit(&db->db_mtx); 1791 } 1792 1793 void 1794 dbuf_unoverride(dbuf_dirty_record_t *dr) 1795 { 1796 dmu_buf_impl_t *db = dr->dr_dbuf; 1797 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1798 uint64_t txg = dr->dr_txg; 1799 1800 ASSERT(MUTEX_HELD(&db->db_mtx)); 1801 /* 1802 * This assert is valid because dmu_sync() expects to be called by 1803 * a zilog's get_data while holding a range lock. This call only 1804 * comes from dbuf_dirty() callers who must also hold a range lock. 1805 */ 1806 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1807 ASSERT(db->db_level == 0); 1808 1809 if (db->db_blkid == DMU_BONUS_BLKID || 1810 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1811 return; 1812 1813 ASSERT(db->db_data_pending != dr); 1814 1815 /* free this block */ 1816 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1817 zio_free(db->db_objset->os_spa, txg, bp); 1818 1819 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1820 dr->dt.dl.dr_nopwrite = B_FALSE; 1821 dr->dt.dl.dr_has_raw_params = B_FALSE; 1822 1823 /* 1824 * Release the already-written buffer, so we leave it in 1825 * a consistent dirty state. Note that all callers are 1826 * modifying the buffer, so they will immediately do 1827 * another (redundant) arc_release(). Therefore, leave 1828 * the buf thawed to save the effort of freezing & 1829 * immediately re-thawing it. 1830 */ 1831 arc_release(dr->dt.dl.dr_data, db); 1832 } 1833 1834 /* 1835 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1836 * data blocks in the free range, so that any future readers will find 1837 * empty blocks. 1838 */ 1839 void 1840 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1841 dmu_tx_t *tx) 1842 { 1843 dmu_buf_impl_t *db_search; 1844 dmu_buf_impl_t *db, *db_next; 1845 uint64_t txg = tx->tx_txg; 1846 avl_index_t where; 1847 dbuf_dirty_record_t *dr; 1848 1849 if (end_blkid > dn->dn_maxblkid && 1850 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1851 end_blkid = dn->dn_maxblkid; 1852 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1853 (u_longlong_t)end_blkid); 1854 1855 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1856 db_search->db_level = 0; 1857 db_search->db_blkid = start_blkid; 1858 db_search->db_state = DB_SEARCH; 1859 1860 mutex_enter(&dn->dn_dbufs_mtx); 1861 db = avl_find(&dn->dn_dbufs, db_search, &where); 1862 ASSERT3P(db, ==, NULL); 1863 1864 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1865 1866 for (; db != NULL; db = db_next) { 1867 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1868 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1869 1870 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1871 break; 1872 } 1873 ASSERT3U(db->db_blkid, >=, start_blkid); 1874 1875 /* found a level 0 buffer in the range */ 1876 mutex_enter(&db->db_mtx); 1877 if (dbuf_undirty(db, tx)) { 1878 /* mutex has been dropped and dbuf destroyed */ 1879 continue; 1880 } 1881 1882 if (db->db_state == DB_UNCACHED || 1883 db->db_state == DB_NOFILL || 1884 db->db_state == DB_EVICTING) { 1885 ASSERT(db->db.db_data == NULL); 1886 mutex_exit(&db->db_mtx); 1887 continue; 1888 } 1889 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1890 /* will be handled in dbuf_read_done or dbuf_rele */ 1891 db->db_freed_in_flight = TRUE; 1892 mutex_exit(&db->db_mtx); 1893 continue; 1894 } 1895 if (zfs_refcount_count(&db->db_holds) == 0) { 1896 ASSERT(db->db_buf); 1897 dbuf_destroy(db); 1898 continue; 1899 } 1900 /* The dbuf is referenced */ 1901 1902 dr = list_head(&db->db_dirty_records); 1903 if (dr != NULL) { 1904 if (dr->dr_txg == txg) { 1905 /* 1906 * This buffer is "in-use", re-adjust the file 1907 * size to reflect that this buffer may 1908 * contain new data when we sync. 1909 */ 1910 if (db->db_blkid != DMU_SPILL_BLKID && 1911 db->db_blkid > dn->dn_maxblkid) 1912 dn->dn_maxblkid = db->db_blkid; 1913 dbuf_unoverride(dr); 1914 } else { 1915 /* 1916 * This dbuf is not dirty in the open context. 1917 * Either uncache it (if its not referenced in 1918 * the open context) or reset its contents to 1919 * empty. 1920 */ 1921 dbuf_fix_old_data(db, txg); 1922 } 1923 } 1924 /* clear the contents if its cached */ 1925 if (db->db_state == DB_CACHED) { 1926 ASSERT(db->db.db_data != NULL); 1927 arc_release(db->db_buf, db); 1928 rw_enter(&db->db_rwlock, RW_WRITER); 1929 bzero(db->db.db_data, db->db.db_size); 1930 rw_exit(&db->db_rwlock); 1931 arc_buf_freeze(db->db_buf); 1932 } 1933 1934 mutex_exit(&db->db_mtx); 1935 } 1936 1937 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 1938 mutex_exit(&dn->dn_dbufs_mtx); 1939 } 1940 1941 void 1942 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1943 { 1944 arc_buf_t *buf, *old_buf; 1945 dbuf_dirty_record_t *dr; 1946 int osize = db->db.db_size; 1947 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1948 dnode_t *dn; 1949 1950 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1951 1952 DB_DNODE_ENTER(db); 1953 dn = DB_DNODE(db); 1954 1955 /* 1956 * XXX we should be doing a dbuf_read, checking the return 1957 * value and returning that up to our callers 1958 */ 1959 dmu_buf_will_dirty(&db->db, tx); 1960 1961 /* create the data buffer for the new block */ 1962 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1963 1964 /* copy old block data to the new block */ 1965 old_buf = db->db_buf; 1966 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size)); 1967 /* zero the remainder */ 1968 if (size > osize) 1969 bzero((uint8_t *)buf->b_data + osize, size - osize); 1970 1971 mutex_enter(&db->db_mtx); 1972 dbuf_set_data(db, buf); 1973 arc_buf_destroy(old_buf, db); 1974 db->db.db_size = size; 1975 1976 dr = list_head(&db->db_dirty_records); 1977 /* dirty record added by dmu_buf_will_dirty() */ 1978 VERIFY(dr != NULL); 1979 if (db->db_level == 0) 1980 dr->dt.dl.dr_data = buf; 1981 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 1982 ASSERT3U(dr->dr_accounted, ==, osize); 1983 dr->dr_accounted = size; 1984 mutex_exit(&db->db_mtx); 1985 1986 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1987 DB_DNODE_EXIT(db); 1988 } 1989 1990 void 1991 dbuf_release_bp(dmu_buf_impl_t *db) 1992 { 1993 objset_t *os __maybe_unused = db->db_objset; 1994 1995 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1996 ASSERT(arc_released(os->os_phys_buf) || 1997 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1998 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1999 2000 (void) arc_release(db->db_buf, db); 2001 } 2002 2003 /* 2004 * We already have a dirty record for this TXG, and we are being 2005 * dirtied again. 2006 */ 2007 static void 2008 dbuf_redirty(dbuf_dirty_record_t *dr) 2009 { 2010 dmu_buf_impl_t *db = dr->dr_dbuf; 2011 2012 ASSERT(MUTEX_HELD(&db->db_mtx)); 2013 2014 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2015 /* 2016 * If this buffer has already been written out, 2017 * we now need to reset its state. 2018 */ 2019 dbuf_unoverride(dr); 2020 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2021 db->db_state != DB_NOFILL) { 2022 /* Already released on initial dirty, so just thaw. */ 2023 ASSERT(arc_released(db->db_buf)); 2024 arc_buf_thaw(db->db_buf); 2025 } 2026 } 2027 } 2028 2029 dbuf_dirty_record_t * 2030 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2031 { 2032 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2033 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2034 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2035 ASSERT(dn->dn_maxblkid >= blkid); 2036 2037 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2038 list_link_init(&dr->dr_dirty_node); 2039 list_link_init(&dr->dr_dbuf_node); 2040 dr->dr_dnode = dn; 2041 dr->dr_txg = tx->tx_txg; 2042 dr->dt.dll.dr_blkid = blkid; 2043 dr->dr_accounted = dn->dn_datablksz; 2044 2045 /* 2046 * There should not be any dbuf for the block that we're dirtying. 2047 * Otherwise the buffer contents could be inconsistent between the 2048 * dbuf and the lightweight dirty record. 2049 */ 2050 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)); 2051 2052 mutex_enter(&dn->dn_mtx); 2053 int txgoff = tx->tx_txg & TXG_MASK; 2054 if (dn->dn_free_ranges[txgoff] != NULL) { 2055 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2056 } 2057 2058 if (dn->dn_nlevels == 1) { 2059 ASSERT3U(blkid, <, dn->dn_nblkptr); 2060 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2061 mutex_exit(&dn->dn_mtx); 2062 rw_exit(&dn->dn_struct_rwlock); 2063 dnode_setdirty(dn, tx); 2064 } else { 2065 mutex_exit(&dn->dn_mtx); 2066 2067 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2068 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2069 1, blkid >> epbs, FTAG); 2070 rw_exit(&dn->dn_struct_rwlock); 2071 if (parent_db == NULL) { 2072 kmem_free(dr, sizeof (*dr)); 2073 return (NULL); 2074 } 2075 int err = dbuf_read(parent_db, NULL, 2076 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2077 if (err != 0) { 2078 dbuf_rele(parent_db, FTAG); 2079 kmem_free(dr, sizeof (*dr)); 2080 return (NULL); 2081 } 2082 2083 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2084 dbuf_rele(parent_db, FTAG); 2085 mutex_enter(&parent_dr->dt.di.dr_mtx); 2086 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2087 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2088 mutex_exit(&parent_dr->dt.di.dr_mtx); 2089 dr->dr_parent = parent_dr; 2090 } 2091 2092 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2093 2094 return (dr); 2095 } 2096 2097 dbuf_dirty_record_t * 2098 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2099 { 2100 dnode_t *dn; 2101 objset_t *os; 2102 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2103 int txgoff = tx->tx_txg & TXG_MASK; 2104 boolean_t drop_struct_rwlock = B_FALSE; 2105 2106 ASSERT(tx->tx_txg != 0); 2107 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2108 DMU_TX_DIRTY_BUF(tx, db); 2109 2110 DB_DNODE_ENTER(db); 2111 dn = DB_DNODE(db); 2112 /* 2113 * Shouldn't dirty a regular buffer in syncing context. Private 2114 * objects may be dirtied in syncing context, but only if they 2115 * were already pre-dirtied in open context. 2116 */ 2117 #ifdef ZFS_DEBUG 2118 if (dn->dn_objset->os_dsl_dataset != NULL) { 2119 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2120 RW_READER, FTAG); 2121 } 2122 ASSERT(!dmu_tx_is_syncing(tx) || 2123 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2124 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2125 dn->dn_objset->os_dsl_dataset == NULL); 2126 if (dn->dn_objset->os_dsl_dataset != NULL) 2127 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2128 #endif 2129 /* 2130 * We make this assert for private objects as well, but after we 2131 * check if we're already dirty. They are allowed to re-dirty 2132 * in syncing context. 2133 */ 2134 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2135 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2136 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2137 2138 mutex_enter(&db->db_mtx); 2139 /* 2140 * XXX make this true for indirects too? The problem is that 2141 * transactions created with dmu_tx_create_assigned() from 2142 * syncing context don't bother holding ahead. 2143 */ 2144 ASSERT(db->db_level != 0 || 2145 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2146 db->db_state == DB_NOFILL); 2147 2148 mutex_enter(&dn->dn_mtx); 2149 dnode_set_dirtyctx(dn, tx, db); 2150 if (tx->tx_txg > dn->dn_dirty_txg) 2151 dn->dn_dirty_txg = tx->tx_txg; 2152 mutex_exit(&dn->dn_mtx); 2153 2154 if (db->db_blkid == DMU_SPILL_BLKID) 2155 dn->dn_have_spill = B_TRUE; 2156 2157 /* 2158 * If this buffer is already dirty, we're done. 2159 */ 2160 dr_head = list_head(&db->db_dirty_records); 2161 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2162 db->db.db_object == DMU_META_DNODE_OBJECT); 2163 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2164 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2165 DB_DNODE_EXIT(db); 2166 2167 dbuf_redirty(dr_next); 2168 mutex_exit(&db->db_mtx); 2169 return (dr_next); 2170 } 2171 2172 /* 2173 * Only valid if not already dirty. 2174 */ 2175 ASSERT(dn->dn_object == 0 || 2176 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2177 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2178 2179 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2180 2181 /* 2182 * We should only be dirtying in syncing context if it's the 2183 * mos or we're initializing the os or it's a special object. 2184 * However, we are allowed to dirty in syncing context provided 2185 * we already dirtied it in open context. Hence we must make 2186 * this assertion only if we're not already dirty. 2187 */ 2188 os = dn->dn_objset; 2189 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2190 #ifdef ZFS_DEBUG 2191 if (dn->dn_objset->os_dsl_dataset != NULL) 2192 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2193 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2194 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2195 if (dn->dn_objset->os_dsl_dataset != NULL) 2196 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2197 #endif 2198 ASSERT(db->db.db_size != 0); 2199 2200 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2201 2202 if (db->db_blkid != DMU_BONUS_BLKID) { 2203 dmu_objset_willuse_space(os, db->db.db_size, tx); 2204 } 2205 2206 /* 2207 * If this buffer is dirty in an old transaction group we need 2208 * to make a copy of it so that the changes we make in this 2209 * transaction group won't leak out when we sync the older txg. 2210 */ 2211 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2212 list_link_init(&dr->dr_dirty_node); 2213 list_link_init(&dr->dr_dbuf_node); 2214 dr->dr_dnode = dn; 2215 if (db->db_level == 0) { 2216 void *data_old = db->db_buf; 2217 2218 if (db->db_state != DB_NOFILL) { 2219 if (db->db_blkid == DMU_BONUS_BLKID) { 2220 dbuf_fix_old_data(db, tx->tx_txg); 2221 data_old = db->db.db_data; 2222 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2223 /* 2224 * Release the data buffer from the cache so 2225 * that we can modify it without impacting 2226 * possible other users of this cached data 2227 * block. Note that indirect blocks and 2228 * private objects are not released until the 2229 * syncing state (since they are only modified 2230 * then). 2231 */ 2232 arc_release(db->db_buf, db); 2233 dbuf_fix_old_data(db, tx->tx_txg); 2234 data_old = db->db_buf; 2235 } 2236 ASSERT(data_old != NULL); 2237 } 2238 dr->dt.dl.dr_data = data_old; 2239 } else { 2240 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2241 list_create(&dr->dt.di.dr_children, 2242 sizeof (dbuf_dirty_record_t), 2243 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2244 } 2245 if (db->db_blkid != DMU_BONUS_BLKID) 2246 dr->dr_accounted = db->db.db_size; 2247 dr->dr_dbuf = db; 2248 dr->dr_txg = tx->tx_txg; 2249 list_insert_before(&db->db_dirty_records, dr_next, dr); 2250 2251 /* 2252 * We could have been freed_in_flight between the dbuf_noread 2253 * and dbuf_dirty. We win, as though the dbuf_noread() had 2254 * happened after the free. 2255 */ 2256 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2257 db->db_blkid != DMU_SPILL_BLKID) { 2258 mutex_enter(&dn->dn_mtx); 2259 if (dn->dn_free_ranges[txgoff] != NULL) { 2260 range_tree_clear(dn->dn_free_ranges[txgoff], 2261 db->db_blkid, 1); 2262 } 2263 mutex_exit(&dn->dn_mtx); 2264 db->db_freed_in_flight = FALSE; 2265 } 2266 2267 /* 2268 * This buffer is now part of this txg 2269 */ 2270 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2271 db->db_dirtycnt += 1; 2272 ASSERT3U(db->db_dirtycnt, <=, 3); 2273 2274 mutex_exit(&db->db_mtx); 2275 2276 if (db->db_blkid == DMU_BONUS_BLKID || 2277 db->db_blkid == DMU_SPILL_BLKID) { 2278 mutex_enter(&dn->dn_mtx); 2279 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2280 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2281 mutex_exit(&dn->dn_mtx); 2282 dnode_setdirty(dn, tx); 2283 DB_DNODE_EXIT(db); 2284 return (dr); 2285 } 2286 2287 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2288 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2289 drop_struct_rwlock = B_TRUE; 2290 } 2291 2292 /* 2293 * If we are overwriting a dedup BP, then unless it is snapshotted, 2294 * when we get to syncing context we will need to decrement its 2295 * refcount in the DDT. Prefetch the relevant DDT block so that 2296 * syncing context won't have to wait for the i/o. 2297 */ 2298 if (db->db_blkptr != NULL) { 2299 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2300 ddt_prefetch(os->os_spa, db->db_blkptr); 2301 dmu_buf_unlock_parent(db, dblt, FTAG); 2302 } 2303 2304 /* 2305 * We need to hold the dn_struct_rwlock to make this assertion, 2306 * because it protects dn_phys / dn_next_nlevels from changing. 2307 */ 2308 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2309 dn->dn_phys->dn_nlevels > db->db_level || 2310 dn->dn_next_nlevels[txgoff] > db->db_level || 2311 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2312 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2313 2314 2315 if (db->db_level == 0) { 2316 ASSERT(!db->db_objset->os_raw_receive || 2317 dn->dn_maxblkid >= db->db_blkid); 2318 dnode_new_blkid(dn, db->db_blkid, tx, 2319 drop_struct_rwlock, B_FALSE); 2320 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2321 } 2322 2323 if (db->db_level+1 < dn->dn_nlevels) { 2324 dmu_buf_impl_t *parent = db->db_parent; 2325 dbuf_dirty_record_t *di; 2326 int parent_held = FALSE; 2327 2328 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2329 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2330 parent = dbuf_hold_level(dn, db->db_level + 1, 2331 db->db_blkid >> epbs, FTAG); 2332 ASSERT(parent != NULL); 2333 parent_held = TRUE; 2334 } 2335 if (drop_struct_rwlock) 2336 rw_exit(&dn->dn_struct_rwlock); 2337 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2338 di = dbuf_dirty(parent, tx); 2339 if (parent_held) 2340 dbuf_rele(parent, FTAG); 2341 2342 mutex_enter(&db->db_mtx); 2343 /* 2344 * Since we've dropped the mutex, it's possible that 2345 * dbuf_undirty() might have changed this out from under us. 2346 */ 2347 if (list_head(&db->db_dirty_records) == dr || 2348 dn->dn_object == DMU_META_DNODE_OBJECT) { 2349 mutex_enter(&di->dt.di.dr_mtx); 2350 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2351 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2352 list_insert_tail(&di->dt.di.dr_children, dr); 2353 mutex_exit(&di->dt.di.dr_mtx); 2354 dr->dr_parent = di; 2355 } 2356 mutex_exit(&db->db_mtx); 2357 } else { 2358 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2359 ASSERT(db->db_blkid < dn->dn_nblkptr); 2360 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2361 mutex_enter(&dn->dn_mtx); 2362 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2363 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2364 mutex_exit(&dn->dn_mtx); 2365 if (drop_struct_rwlock) 2366 rw_exit(&dn->dn_struct_rwlock); 2367 } 2368 2369 dnode_setdirty(dn, tx); 2370 DB_DNODE_EXIT(db); 2371 return (dr); 2372 } 2373 2374 static void 2375 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2376 { 2377 dmu_buf_impl_t *db = dr->dr_dbuf; 2378 2379 if (dr->dt.dl.dr_data != db->db.db_data) { 2380 struct dnode *dn = dr->dr_dnode; 2381 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2382 2383 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2384 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2385 } 2386 db->db_data_pending = NULL; 2387 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2388 list_remove(&db->db_dirty_records, dr); 2389 if (dr->dr_dbuf->db_level != 0) { 2390 mutex_destroy(&dr->dt.di.dr_mtx); 2391 list_destroy(&dr->dt.di.dr_children); 2392 } 2393 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2394 ASSERT3U(db->db_dirtycnt, >, 0); 2395 db->db_dirtycnt -= 1; 2396 } 2397 2398 /* 2399 * Undirty a buffer in the transaction group referenced by the given 2400 * transaction. Return whether this evicted the dbuf. 2401 */ 2402 static boolean_t 2403 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2404 { 2405 uint64_t txg = tx->tx_txg; 2406 2407 ASSERT(txg != 0); 2408 2409 /* 2410 * Due to our use of dn_nlevels below, this can only be called 2411 * in open context, unless we are operating on the MOS. 2412 * From syncing context, dn_nlevels may be different from the 2413 * dn_nlevels used when dbuf was dirtied. 2414 */ 2415 ASSERT(db->db_objset == 2416 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2417 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2418 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2419 ASSERT0(db->db_level); 2420 ASSERT(MUTEX_HELD(&db->db_mtx)); 2421 2422 /* 2423 * If this buffer is not dirty, we're done. 2424 */ 2425 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2426 if (dr == NULL) 2427 return (B_FALSE); 2428 ASSERT(dr->dr_dbuf == db); 2429 2430 dnode_t *dn = dr->dr_dnode; 2431 2432 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2433 2434 ASSERT(db->db.db_size != 0); 2435 2436 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2437 dr->dr_accounted, txg); 2438 2439 list_remove(&db->db_dirty_records, dr); 2440 2441 /* 2442 * Note that there are three places in dbuf_dirty() 2443 * where this dirty record may be put on a list. 2444 * Make sure to do a list_remove corresponding to 2445 * every one of those list_insert calls. 2446 */ 2447 if (dr->dr_parent) { 2448 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2449 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2450 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2451 } else if (db->db_blkid == DMU_SPILL_BLKID || 2452 db->db_level + 1 == dn->dn_nlevels) { 2453 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2454 mutex_enter(&dn->dn_mtx); 2455 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2456 mutex_exit(&dn->dn_mtx); 2457 } 2458 2459 if (db->db_state != DB_NOFILL) { 2460 dbuf_unoverride(dr); 2461 2462 ASSERT(db->db_buf != NULL); 2463 ASSERT(dr->dt.dl.dr_data != NULL); 2464 if (dr->dt.dl.dr_data != db->db_buf) 2465 arc_buf_destroy(dr->dt.dl.dr_data, db); 2466 } 2467 2468 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2469 2470 ASSERT(db->db_dirtycnt > 0); 2471 db->db_dirtycnt -= 1; 2472 2473 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2474 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2475 dbuf_destroy(db); 2476 return (B_TRUE); 2477 } 2478 2479 return (B_FALSE); 2480 } 2481 2482 static void 2483 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2484 { 2485 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2486 2487 ASSERT(tx->tx_txg != 0); 2488 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2489 2490 /* 2491 * Quick check for dirtiness. For already dirty blocks, this 2492 * reduces runtime of this function by >90%, and overall performance 2493 * by 50% for some workloads (e.g. file deletion with indirect blocks 2494 * cached). 2495 */ 2496 mutex_enter(&db->db_mtx); 2497 2498 if (db->db_state == DB_CACHED) { 2499 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2500 /* 2501 * It's possible that it is already dirty but not cached, 2502 * because there are some calls to dbuf_dirty() that don't 2503 * go through dmu_buf_will_dirty(). 2504 */ 2505 if (dr != NULL) { 2506 /* This dbuf is already dirty and cached. */ 2507 dbuf_redirty(dr); 2508 mutex_exit(&db->db_mtx); 2509 return; 2510 } 2511 } 2512 mutex_exit(&db->db_mtx); 2513 2514 DB_DNODE_ENTER(db); 2515 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2516 flags |= DB_RF_HAVESTRUCT; 2517 DB_DNODE_EXIT(db); 2518 (void) dbuf_read(db, NULL, flags); 2519 (void) dbuf_dirty(db, tx); 2520 } 2521 2522 void 2523 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2524 { 2525 dmu_buf_will_dirty_impl(db_fake, 2526 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2527 } 2528 2529 boolean_t 2530 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2531 { 2532 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2533 dbuf_dirty_record_t *dr; 2534 2535 mutex_enter(&db->db_mtx); 2536 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2537 mutex_exit(&db->db_mtx); 2538 return (dr != NULL); 2539 } 2540 2541 void 2542 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2543 { 2544 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2545 2546 db->db_state = DB_NOFILL; 2547 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2548 dmu_buf_will_fill(db_fake, tx); 2549 } 2550 2551 void 2552 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2553 { 2554 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2555 2556 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2557 ASSERT(tx->tx_txg != 0); 2558 ASSERT(db->db_level == 0); 2559 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2560 2561 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2562 dmu_tx_private_ok(tx)); 2563 2564 dbuf_noread(db); 2565 (void) dbuf_dirty(db, tx); 2566 } 2567 2568 /* 2569 * This function is effectively the same as dmu_buf_will_dirty(), but 2570 * indicates the caller expects raw encrypted data in the db, and provides 2571 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2572 * blkptr_t when this dbuf is written. This is only used for blocks of 2573 * dnodes, during raw receive. 2574 */ 2575 void 2576 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2577 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2578 { 2579 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2580 dbuf_dirty_record_t *dr; 2581 2582 /* 2583 * dr_has_raw_params is only processed for blocks of dnodes 2584 * (see dbuf_sync_dnode_leaf_crypt()). 2585 */ 2586 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2587 ASSERT3U(db->db_level, ==, 0); 2588 ASSERT(db->db_objset->os_raw_receive); 2589 2590 dmu_buf_will_dirty_impl(db_fake, 2591 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2592 2593 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2594 2595 ASSERT3P(dr, !=, NULL); 2596 2597 dr->dt.dl.dr_has_raw_params = B_TRUE; 2598 dr->dt.dl.dr_byteorder = byteorder; 2599 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2600 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2601 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2602 } 2603 2604 static void 2605 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2606 { 2607 struct dirty_leaf *dl; 2608 dbuf_dirty_record_t *dr; 2609 2610 dr = list_head(&db->db_dirty_records); 2611 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2612 dl = &dr->dt.dl; 2613 dl->dr_overridden_by = *bp; 2614 dl->dr_override_state = DR_OVERRIDDEN; 2615 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2616 } 2617 2618 /* ARGSUSED */ 2619 void 2620 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2621 { 2622 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2623 dbuf_states_t old_state; 2624 mutex_enter(&db->db_mtx); 2625 DBUF_VERIFY(db); 2626 2627 old_state = db->db_state; 2628 db->db_state = DB_CACHED; 2629 if (old_state == DB_FILL) { 2630 if (db->db_level == 0 && db->db_freed_in_flight) { 2631 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2632 /* we were freed while filling */ 2633 /* XXX dbuf_undirty? */ 2634 bzero(db->db.db_data, db->db.db_size); 2635 db->db_freed_in_flight = FALSE; 2636 DTRACE_SET_STATE(db, 2637 "fill done handling freed in flight"); 2638 } else { 2639 DTRACE_SET_STATE(db, "fill done"); 2640 } 2641 cv_broadcast(&db->db_changed); 2642 } 2643 mutex_exit(&db->db_mtx); 2644 } 2645 2646 void 2647 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2648 bp_embedded_type_t etype, enum zio_compress comp, 2649 int uncompressed_size, int compressed_size, int byteorder, 2650 dmu_tx_t *tx) 2651 { 2652 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2653 struct dirty_leaf *dl; 2654 dmu_object_type_t type; 2655 dbuf_dirty_record_t *dr; 2656 2657 if (etype == BP_EMBEDDED_TYPE_DATA) { 2658 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2659 SPA_FEATURE_EMBEDDED_DATA)); 2660 } 2661 2662 DB_DNODE_ENTER(db); 2663 type = DB_DNODE(db)->dn_type; 2664 DB_DNODE_EXIT(db); 2665 2666 ASSERT0(db->db_level); 2667 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2668 2669 dmu_buf_will_not_fill(dbuf, tx); 2670 2671 dr = list_head(&db->db_dirty_records); 2672 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2673 dl = &dr->dt.dl; 2674 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2675 data, comp, uncompressed_size, compressed_size); 2676 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2677 BP_SET_TYPE(&dl->dr_overridden_by, type); 2678 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2679 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2680 2681 dl->dr_override_state = DR_OVERRIDDEN; 2682 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2683 } 2684 2685 void 2686 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2687 { 2688 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2689 dmu_object_type_t type; 2690 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2691 SPA_FEATURE_REDACTED_DATASETS)); 2692 2693 DB_DNODE_ENTER(db); 2694 type = DB_DNODE(db)->dn_type; 2695 DB_DNODE_EXIT(db); 2696 2697 ASSERT0(db->db_level); 2698 dmu_buf_will_not_fill(dbuf, tx); 2699 2700 blkptr_t bp = { { { {0} } } }; 2701 BP_SET_TYPE(&bp, type); 2702 BP_SET_LEVEL(&bp, 0); 2703 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2704 BP_SET_REDACTED(&bp); 2705 BPE_SET_LSIZE(&bp, dbuf->db_size); 2706 2707 dbuf_override_impl(db, &bp, tx); 2708 } 2709 2710 /* 2711 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2712 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2713 */ 2714 void 2715 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2716 { 2717 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2718 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2719 ASSERT(db->db_level == 0); 2720 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2721 ASSERT(buf != NULL); 2722 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2723 ASSERT(tx->tx_txg != 0); 2724 2725 arc_return_buf(buf, db); 2726 ASSERT(arc_released(buf)); 2727 2728 mutex_enter(&db->db_mtx); 2729 2730 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2731 cv_wait(&db->db_changed, &db->db_mtx); 2732 2733 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2734 2735 if (db->db_state == DB_CACHED && 2736 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2737 /* 2738 * In practice, we will never have a case where we have an 2739 * encrypted arc buffer while additional holds exist on the 2740 * dbuf. We don't handle this here so we simply assert that 2741 * fact instead. 2742 */ 2743 ASSERT(!arc_is_encrypted(buf)); 2744 mutex_exit(&db->db_mtx); 2745 (void) dbuf_dirty(db, tx); 2746 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2747 arc_buf_destroy(buf, db); 2748 return; 2749 } 2750 2751 if (db->db_state == DB_CACHED) { 2752 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2753 2754 ASSERT(db->db_buf != NULL); 2755 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2756 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2757 2758 if (!arc_released(db->db_buf)) { 2759 ASSERT(dr->dt.dl.dr_override_state == 2760 DR_OVERRIDDEN); 2761 arc_release(db->db_buf, db); 2762 } 2763 dr->dt.dl.dr_data = buf; 2764 arc_buf_destroy(db->db_buf, db); 2765 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2766 arc_release(db->db_buf, db); 2767 arc_buf_destroy(db->db_buf, db); 2768 } 2769 db->db_buf = NULL; 2770 } 2771 ASSERT(db->db_buf == NULL); 2772 dbuf_set_data(db, buf); 2773 db->db_state = DB_FILL; 2774 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2775 mutex_exit(&db->db_mtx); 2776 (void) dbuf_dirty(db, tx); 2777 dmu_buf_fill_done(&db->db, tx); 2778 } 2779 2780 void 2781 dbuf_destroy(dmu_buf_impl_t *db) 2782 { 2783 dnode_t *dn; 2784 dmu_buf_impl_t *parent = db->db_parent; 2785 dmu_buf_impl_t *dndb; 2786 2787 ASSERT(MUTEX_HELD(&db->db_mtx)); 2788 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2789 2790 if (db->db_buf != NULL) { 2791 arc_buf_destroy(db->db_buf, db); 2792 db->db_buf = NULL; 2793 } 2794 2795 if (db->db_blkid == DMU_BONUS_BLKID) { 2796 int slots = DB_DNODE(db)->dn_num_slots; 2797 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2798 if (db->db.db_data != NULL) { 2799 kmem_free(db->db.db_data, bonuslen); 2800 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2801 db->db_state = DB_UNCACHED; 2802 DTRACE_SET_STATE(db, "buffer cleared"); 2803 } 2804 } 2805 2806 dbuf_clear_data(db); 2807 2808 if (multilist_link_active(&db->db_cache_link)) { 2809 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2810 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2811 2812 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2813 (void) zfs_refcount_remove_many( 2814 &dbuf_caches[db->db_caching_status].size, 2815 db->db.db_size, db); 2816 2817 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2818 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2819 } else { 2820 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2821 DBUF_STAT_BUMPDOWN(cache_count); 2822 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2823 db->db.db_size); 2824 } 2825 db->db_caching_status = DB_NO_CACHE; 2826 } 2827 2828 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2829 ASSERT(db->db_data_pending == NULL); 2830 ASSERT(list_is_empty(&db->db_dirty_records)); 2831 2832 db->db_state = DB_EVICTING; 2833 DTRACE_SET_STATE(db, "buffer eviction started"); 2834 db->db_blkptr = NULL; 2835 2836 /* 2837 * Now that db_state is DB_EVICTING, nobody else can find this via 2838 * the hash table. We can now drop db_mtx, which allows us to 2839 * acquire the dn_dbufs_mtx. 2840 */ 2841 mutex_exit(&db->db_mtx); 2842 2843 DB_DNODE_ENTER(db); 2844 dn = DB_DNODE(db); 2845 dndb = dn->dn_dbuf; 2846 if (db->db_blkid != DMU_BONUS_BLKID) { 2847 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2848 if (needlock) 2849 mutex_enter_nested(&dn->dn_dbufs_mtx, 2850 NESTED_SINGLE); 2851 avl_remove(&dn->dn_dbufs, db); 2852 membar_producer(); 2853 DB_DNODE_EXIT(db); 2854 if (needlock) 2855 mutex_exit(&dn->dn_dbufs_mtx); 2856 /* 2857 * Decrementing the dbuf count means that the hold corresponding 2858 * to the removed dbuf is no longer discounted in dnode_move(), 2859 * so the dnode cannot be moved until after we release the hold. 2860 * The membar_producer() ensures visibility of the decremented 2861 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2862 * release any lock. 2863 */ 2864 mutex_enter(&dn->dn_mtx); 2865 dnode_rele_and_unlock(dn, db, B_TRUE); 2866 db->db_dnode_handle = NULL; 2867 2868 dbuf_hash_remove(db); 2869 } else { 2870 DB_DNODE_EXIT(db); 2871 } 2872 2873 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2874 2875 db->db_parent = NULL; 2876 2877 ASSERT(db->db_buf == NULL); 2878 ASSERT(db->db.db_data == NULL); 2879 ASSERT(db->db_hash_next == NULL); 2880 ASSERT(db->db_blkptr == NULL); 2881 ASSERT(db->db_data_pending == NULL); 2882 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2883 ASSERT(!multilist_link_active(&db->db_cache_link)); 2884 2885 kmem_cache_free(dbuf_kmem_cache, db); 2886 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2887 2888 /* 2889 * If this dbuf is referenced from an indirect dbuf, 2890 * decrement the ref count on the indirect dbuf. 2891 */ 2892 if (parent && parent != dndb) { 2893 mutex_enter(&parent->db_mtx); 2894 dbuf_rele_and_unlock(parent, db, B_TRUE); 2895 } 2896 } 2897 2898 /* 2899 * Note: While bpp will always be updated if the function returns success, 2900 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2901 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2902 * object. 2903 */ 2904 __attribute__((always_inline)) 2905 static inline int 2906 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2907 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2908 { 2909 *parentp = NULL; 2910 *bpp = NULL; 2911 2912 ASSERT(blkid != DMU_BONUS_BLKID); 2913 2914 if (blkid == DMU_SPILL_BLKID) { 2915 mutex_enter(&dn->dn_mtx); 2916 if (dn->dn_have_spill && 2917 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2918 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2919 else 2920 *bpp = NULL; 2921 dbuf_add_ref(dn->dn_dbuf, NULL); 2922 *parentp = dn->dn_dbuf; 2923 mutex_exit(&dn->dn_mtx); 2924 return (0); 2925 } 2926 2927 int nlevels = 2928 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2929 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2930 2931 ASSERT3U(level * epbs, <, 64); 2932 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2933 /* 2934 * This assertion shouldn't trip as long as the max indirect block size 2935 * is less than 1M. The reason for this is that up to that point, 2936 * the number of levels required to address an entire object with blocks 2937 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2938 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2939 * (i.e. we can address the entire object), objects will all use at most 2940 * N-1 levels and the assertion won't overflow. However, once epbs is 2941 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2942 * enough to address an entire object, so objects will have 5 levels, 2943 * but then this assertion will overflow. 2944 * 2945 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2946 * need to redo this logic to handle overflows. 2947 */ 2948 ASSERT(level >= nlevels || 2949 ((nlevels - level - 1) * epbs) + 2950 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2951 if (level >= nlevels || 2952 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2953 ((nlevels - level - 1) * epbs)) || 2954 (fail_sparse && 2955 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2956 /* the buffer has no parent yet */ 2957 return (SET_ERROR(ENOENT)); 2958 } else if (level < nlevels-1) { 2959 /* this block is referenced from an indirect block */ 2960 int err; 2961 2962 err = dbuf_hold_impl(dn, level + 1, 2963 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2964 2965 if (err) 2966 return (err); 2967 err = dbuf_read(*parentp, NULL, 2968 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2969 if (err) { 2970 dbuf_rele(*parentp, NULL); 2971 *parentp = NULL; 2972 return (err); 2973 } 2974 rw_enter(&(*parentp)->db_rwlock, RW_READER); 2975 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2976 (blkid & ((1ULL << epbs) - 1)); 2977 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2978 ASSERT(BP_IS_HOLE(*bpp)); 2979 rw_exit(&(*parentp)->db_rwlock); 2980 return (0); 2981 } else { 2982 /* the block is referenced from the dnode */ 2983 ASSERT3U(level, ==, nlevels-1); 2984 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2985 blkid < dn->dn_phys->dn_nblkptr); 2986 if (dn->dn_dbuf) { 2987 dbuf_add_ref(dn->dn_dbuf, NULL); 2988 *parentp = dn->dn_dbuf; 2989 } 2990 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2991 return (0); 2992 } 2993 } 2994 2995 static dmu_buf_impl_t * 2996 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2997 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2998 { 2999 objset_t *os = dn->dn_objset; 3000 dmu_buf_impl_t *db, *odb; 3001 3002 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3003 ASSERT(dn->dn_type != DMU_OT_NONE); 3004 3005 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3006 3007 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3008 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3009 3010 db->db_objset = os; 3011 db->db.db_object = dn->dn_object; 3012 db->db_level = level; 3013 db->db_blkid = blkid; 3014 db->db_dirtycnt = 0; 3015 db->db_dnode_handle = dn->dn_handle; 3016 db->db_parent = parent; 3017 db->db_blkptr = blkptr; 3018 3019 db->db_user = NULL; 3020 db->db_user_immediate_evict = FALSE; 3021 db->db_freed_in_flight = FALSE; 3022 db->db_pending_evict = FALSE; 3023 3024 if (blkid == DMU_BONUS_BLKID) { 3025 ASSERT3P(parent, ==, dn->dn_dbuf); 3026 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3027 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3028 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3029 db->db.db_offset = DMU_BONUS_BLKID; 3030 db->db_state = DB_UNCACHED; 3031 DTRACE_SET_STATE(db, "bonus buffer created"); 3032 db->db_caching_status = DB_NO_CACHE; 3033 /* the bonus dbuf is not placed in the hash table */ 3034 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3035 return (db); 3036 } else if (blkid == DMU_SPILL_BLKID) { 3037 db->db.db_size = (blkptr != NULL) ? 3038 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3039 db->db.db_offset = 0; 3040 } else { 3041 int blocksize = 3042 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3043 db->db.db_size = blocksize; 3044 db->db.db_offset = db->db_blkid * blocksize; 3045 } 3046 3047 /* 3048 * Hold the dn_dbufs_mtx while we get the new dbuf 3049 * in the hash table *and* added to the dbufs list. 3050 * This prevents a possible deadlock with someone 3051 * trying to look up this dbuf before it's added to the 3052 * dn_dbufs list. 3053 */ 3054 mutex_enter(&dn->dn_dbufs_mtx); 3055 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3056 if ((odb = dbuf_hash_insert(db)) != NULL) { 3057 /* someone else inserted it first */ 3058 mutex_exit(&dn->dn_dbufs_mtx); 3059 kmem_cache_free(dbuf_kmem_cache, db); 3060 DBUF_STAT_BUMP(hash_insert_race); 3061 return (odb); 3062 } 3063 avl_add(&dn->dn_dbufs, db); 3064 3065 db->db_state = DB_UNCACHED; 3066 DTRACE_SET_STATE(db, "regular buffer created"); 3067 db->db_caching_status = DB_NO_CACHE; 3068 mutex_exit(&dn->dn_dbufs_mtx); 3069 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3070 3071 if (parent && parent != dn->dn_dbuf) 3072 dbuf_add_ref(parent, db); 3073 3074 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3075 zfs_refcount_count(&dn->dn_holds) > 0); 3076 (void) zfs_refcount_add(&dn->dn_holds, db); 3077 3078 dprintf_dbuf(db, "db=%p\n", db); 3079 3080 return (db); 3081 } 3082 3083 /* 3084 * This function returns a block pointer and information about the object, 3085 * given a dnode and a block. This is a publicly accessible version of 3086 * dbuf_findbp that only returns some information, rather than the 3087 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3088 * should be locked as (at least) a reader. 3089 */ 3090 int 3091 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3092 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3093 { 3094 dmu_buf_impl_t *dbp = NULL; 3095 blkptr_t *bp2; 3096 int err = 0; 3097 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3098 3099 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3100 if (err == 0) { 3101 *bp = *bp2; 3102 if (dbp != NULL) 3103 dbuf_rele(dbp, NULL); 3104 if (datablkszsec != NULL) 3105 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3106 if (indblkshift != NULL) 3107 *indblkshift = dn->dn_phys->dn_indblkshift; 3108 } 3109 3110 return (err); 3111 } 3112 3113 typedef struct dbuf_prefetch_arg { 3114 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3115 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3116 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3117 int dpa_curlevel; /* The current level that we're reading */ 3118 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3119 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3120 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3121 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3122 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3123 void *dpa_arg; /* prefetch completion arg */ 3124 } dbuf_prefetch_arg_t; 3125 3126 static void 3127 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3128 { 3129 if (dpa->dpa_cb != NULL) 3130 dpa->dpa_cb(dpa->dpa_arg, io_done); 3131 kmem_free(dpa, sizeof (*dpa)); 3132 } 3133 3134 static void 3135 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3136 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3137 { 3138 dbuf_prefetch_arg_t *dpa = private; 3139 3140 dbuf_prefetch_fini(dpa, B_TRUE); 3141 if (abuf != NULL) 3142 arc_buf_destroy(abuf, private); 3143 } 3144 3145 /* 3146 * Actually issue the prefetch read for the block given. 3147 */ 3148 static void 3149 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3150 { 3151 ASSERT(!BP_IS_REDACTED(bp) || 3152 dsl_dataset_feature_is_active( 3153 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3154 SPA_FEATURE_REDACTED_DATASETS)); 3155 3156 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3157 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3158 3159 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3160 arc_flags_t aflags = 3161 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3162 ARC_FLAG_NO_BUF; 3163 3164 /* dnodes are always read as raw and then converted later */ 3165 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3166 dpa->dpa_curlevel == 0) 3167 zio_flags |= ZIO_FLAG_RAW; 3168 3169 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3170 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3171 ASSERT(dpa->dpa_zio != NULL); 3172 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3173 dbuf_issue_final_prefetch_done, dpa, 3174 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3175 } 3176 3177 /* 3178 * Called when an indirect block above our prefetch target is read in. This 3179 * will either read in the next indirect block down the tree or issue the actual 3180 * prefetch if the next block down is our target. 3181 */ 3182 static void 3183 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3184 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3185 { 3186 dbuf_prefetch_arg_t *dpa = private; 3187 3188 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3189 ASSERT3S(dpa->dpa_curlevel, >, 0); 3190 3191 if (abuf == NULL) { 3192 ASSERT(zio == NULL || zio->io_error != 0); 3193 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3194 } 3195 ASSERT(zio == NULL || zio->io_error == 0); 3196 3197 /* 3198 * The dpa_dnode is only valid if we are called with a NULL 3199 * zio. This indicates that the arc_read() returned without 3200 * first calling zio_read() to issue a physical read. Once 3201 * a physical read is made the dpa_dnode must be invalidated 3202 * as the locks guarding it may have been dropped. If the 3203 * dpa_dnode is still valid, then we want to add it to the dbuf 3204 * cache. To do so, we must hold the dbuf associated with the block 3205 * we just prefetched, read its contents so that we associate it 3206 * with an arc_buf_t, and then release it. 3207 */ 3208 if (zio != NULL) { 3209 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3210 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3211 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3212 } else { 3213 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3214 } 3215 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3216 3217 dpa->dpa_dnode = NULL; 3218 } else if (dpa->dpa_dnode != NULL) { 3219 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3220 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3221 dpa->dpa_zb.zb_level)); 3222 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3223 dpa->dpa_curlevel, curblkid, FTAG); 3224 if (db == NULL) { 3225 arc_buf_destroy(abuf, private); 3226 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3227 } 3228 (void) dbuf_read(db, NULL, 3229 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3230 dbuf_rele(db, FTAG); 3231 } 3232 3233 dpa->dpa_curlevel--; 3234 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3235 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3236 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3237 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3238 3239 ASSERT(!BP_IS_REDACTED(bp) || 3240 dsl_dataset_feature_is_active( 3241 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3242 SPA_FEATURE_REDACTED_DATASETS)); 3243 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3244 dbuf_prefetch_fini(dpa, B_TRUE); 3245 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3246 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3247 dbuf_issue_final_prefetch(dpa, bp); 3248 } else { 3249 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3250 zbookmark_phys_t zb; 3251 3252 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3253 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3254 iter_aflags |= ARC_FLAG_L2CACHE; 3255 3256 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3257 3258 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3259 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3260 3261 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3262 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 3263 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3264 &iter_aflags, &zb); 3265 } 3266 3267 arc_buf_destroy(abuf, private); 3268 } 3269 3270 /* 3271 * Issue prefetch reads for the given block on the given level. If the indirect 3272 * blocks above that block are not in memory, we will read them in 3273 * asynchronously. As a result, this call never blocks waiting for a read to 3274 * complete. Note that the prefetch might fail if the dataset is encrypted and 3275 * the encryption key is unmapped before the IO completes. 3276 */ 3277 int 3278 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3279 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3280 void *arg) 3281 { 3282 blkptr_t bp; 3283 int epbs, nlevels, curlevel; 3284 uint64_t curblkid; 3285 3286 ASSERT(blkid != DMU_BONUS_BLKID); 3287 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3288 3289 if (blkid > dn->dn_maxblkid) 3290 goto no_issue; 3291 3292 if (level == 0 && dnode_block_freed(dn, blkid)) 3293 goto no_issue; 3294 3295 /* 3296 * This dnode hasn't been written to disk yet, so there's nothing to 3297 * prefetch. 3298 */ 3299 nlevels = dn->dn_phys->dn_nlevels; 3300 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3301 goto no_issue; 3302 3303 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3304 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3305 goto no_issue; 3306 3307 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3308 level, blkid); 3309 if (db != NULL) { 3310 mutex_exit(&db->db_mtx); 3311 /* 3312 * This dbuf already exists. It is either CACHED, or 3313 * (we assume) about to be read or filled. 3314 */ 3315 goto no_issue; 3316 } 3317 3318 /* 3319 * Find the closest ancestor (indirect block) of the target block 3320 * that is present in the cache. In this indirect block, we will 3321 * find the bp that is at curlevel, curblkid. 3322 */ 3323 curlevel = level; 3324 curblkid = blkid; 3325 while (curlevel < nlevels - 1) { 3326 int parent_level = curlevel + 1; 3327 uint64_t parent_blkid = curblkid >> epbs; 3328 dmu_buf_impl_t *db; 3329 3330 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3331 FALSE, TRUE, FTAG, &db) == 0) { 3332 blkptr_t *bpp = db->db_buf->b_data; 3333 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3334 dbuf_rele(db, FTAG); 3335 break; 3336 } 3337 3338 curlevel = parent_level; 3339 curblkid = parent_blkid; 3340 } 3341 3342 if (curlevel == nlevels - 1) { 3343 /* No cached indirect blocks found. */ 3344 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3345 bp = dn->dn_phys->dn_blkptr[curblkid]; 3346 } 3347 ASSERT(!BP_IS_REDACTED(&bp) || 3348 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3349 SPA_FEATURE_REDACTED_DATASETS)); 3350 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3351 goto no_issue; 3352 3353 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3354 3355 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3356 ZIO_FLAG_CANFAIL); 3357 3358 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3359 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3360 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3361 dn->dn_object, level, blkid); 3362 dpa->dpa_curlevel = curlevel; 3363 dpa->dpa_prio = prio; 3364 dpa->dpa_aflags = aflags; 3365 dpa->dpa_spa = dn->dn_objset->os_spa; 3366 dpa->dpa_dnode = dn; 3367 dpa->dpa_epbs = epbs; 3368 dpa->dpa_zio = pio; 3369 dpa->dpa_cb = cb; 3370 dpa->dpa_arg = arg; 3371 3372 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3373 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3374 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3375 3376 /* 3377 * If we have the indirect just above us, no need to do the asynchronous 3378 * prefetch chain; we'll just run the last step ourselves. If we're at 3379 * a higher level, though, we want to issue the prefetches for all the 3380 * indirect blocks asynchronously, so we can go on with whatever we were 3381 * doing. 3382 */ 3383 if (curlevel == level) { 3384 ASSERT3U(curblkid, ==, blkid); 3385 dbuf_issue_final_prefetch(dpa, &bp); 3386 } else { 3387 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3388 zbookmark_phys_t zb; 3389 3390 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3391 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3392 iter_aflags |= ARC_FLAG_L2CACHE; 3393 3394 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3395 dn->dn_object, curlevel, curblkid); 3396 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3397 &bp, dbuf_prefetch_indirect_done, dpa, prio, 3398 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3399 &iter_aflags, &zb); 3400 } 3401 /* 3402 * We use pio here instead of dpa_zio since it's possible that 3403 * dpa may have already been freed. 3404 */ 3405 zio_nowait(pio); 3406 return (1); 3407 no_issue: 3408 if (cb != NULL) 3409 cb(arg, B_FALSE); 3410 return (0); 3411 } 3412 3413 int 3414 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3415 arc_flags_t aflags) 3416 { 3417 3418 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3419 } 3420 3421 /* 3422 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3423 * the case of encrypted, compressed and uncompressed buffers by 3424 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3425 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3426 * 3427 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3428 */ 3429 noinline static void 3430 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3431 { 3432 dbuf_dirty_record_t *dr = db->db_data_pending; 3433 arc_buf_t *data = dr->dt.dl.dr_data; 3434 enum zio_compress compress_type = arc_get_compression(data); 3435 uint8_t complevel = arc_get_complevel(data); 3436 3437 if (arc_is_encrypted(data)) { 3438 boolean_t byteorder; 3439 uint8_t salt[ZIO_DATA_SALT_LEN]; 3440 uint8_t iv[ZIO_DATA_IV_LEN]; 3441 uint8_t mac[ZIO_DATA_MAC_LEN]; 3442 3443 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3444 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3445 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3446 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3447 compress_type, complevel)); 3448 } else if (compress_type != ZIO_COMPRESS_OFF) { 3449 dbuf_set_data(db, arc_alloc_compressed_buf( 3450 dn->dn_objset->os_spa, db, arc_buf_size(data), 3451 arc_buf_lsize(data), compress_type, complevel)); 3452 } else { 3453 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3454 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3455 } 3456 3457 rw_enter(&db->db_rwlock, RW_WRITER); 3458 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 3459 rw_exit(&db->db_rwlock); 3460 } 3461 3462 /* 3463 * Returns with db_holds incremented, and db_mtx not held. 3464 * Note: dn_struct_rwlock must be held. 3465 */ 3466 int 3467 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3468 boolean_t fail_sparse, boolean_t fail_uncached, 3469 void *tag, dmu_buf_impl_t **dbp) 3470 { 3471 dmu_buf_impl_t *db, *parent = NULL; 3472 3473 /* If the pool has been created, verify the tx_sync_lock is not held */ 3474 spa_t *spa = dn->dn_objset->os_spa; 3475 dsl_pool_t *dp = spa->spa_dsl_pool; 3476 if (dp != NULL) { 3477 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3478 } 3479 3480 ASSERT(blkid != DMU_BONUS_BLKID); 3481 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3482 ASSERT3U(dn->dn_nlevels, >, level); 3483 3484 *dbp = NULL; 3485 3486 /* dbuf_find() returns with db_mtx held */ 3487 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3488 3489 if (db == NULL) { 3490 blkptr_t *bp = NULL; 3491 int err; 3492 3493 if (fail_uncached) 3494 return (SET_ERROR(ENOENT)); 3495 3496 ASSERT3P(parent, ==, NULL); 3497 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3498 if (fail_sparse) { 3499 if (err == 0 && bp && BP_IS_HOLE(bp)) 3500 err = SET_ERROR(ENOENT); 3501 if (err) { 3502 if (parent) 3503 dbuf_rele(parent, NULL); 3504 return (err); 3505 } 3506 } 3507 if (err && err != ENOENT) 3508 return (err); 3509 db = dbuf_create(dn, level, blkid, parent, bp); 3510 } 3511 3512 if (fail_uncached && db->db_state != DB_CACHED) { 3513 mutex_exit(&db->db_mtx); 3514 return (SET_ERROR(ENOENT)); 3515 } 3516 3517 if (db->db_buf != NULL) { 3518 arc_buf_access(db->db_buf); 3519 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3520 } 3521 3522 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3523 3524 /* 3525 * If this buffer is currently syncing out, and we are 3526 * still referencing it from db_data, we need to make a copy 3527 * of it in case we decide we want to dirty it again in this txg. 3528 */ 3529 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3530 dn->dn_object != DMU_META_DNODE_OBJECT && 3531 db->db_state == DB_CACHED && db->db_data_pending) { 3532 dbuf_dirty_record_t *dr = db->db_data_pending; 3533 if (dr->dt.dl.dr_data == db->db_buf) 3534 dbuf_hold_copy(dn, db); 3535 } 3536 3537 if (multilist_link_active(&db->db_cache_link)) { 3538 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3539 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3540 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3541 3542 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3543 (void) zfs_refcount_remove_many( 3544 &dbuf_caches[db->db_caching_status].size, 3545 db->db.db_size, db); 3546 3547 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3548 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3549 } else { 3550 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3551 DBUF_STAT_BUMPDOWN(cache_count); 3552 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3553 db->db.db_size); 3554 } 3555 db->db_caching_status = DB_NO_CACHE; 3556 } 3557 (void) zfs_refcount_add(&db->db_holds, tag); 3558 DBUF_VERIFY(db); 3559 mutex_exit(&db->db_mtx); 3560 3561 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3562 if (parent) 3563 dbuf_rele(parent, NULL); 3564 3565 ASSERT3P(DB_DNODE(db), ==, dn); 3566 ASSERT3U(db->db_blkid, ==, blkid); 3567 ASSERT3U(db->db_level, ==, level); 3568 *dbp = db; 3569 3570 return (0); 3571 } 3572 3573 dmu_buf_impl_t * 3574 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 3575 { 3576 return (dbuf_hold_level(dn, 0, blkid, tag)); 3577 } 3578 3579 dmu_buf_impl_t * 3580 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 3581 { 3582 dmu_buf_impl_t *db; 3583 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3584 return (err ? NULL : db); 3585 } 3586 3587 void 3588 dbuf_create_bonus(dnode_t *dn) 3589 { 3590 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3591 3592 ASSERT(dn->dn_bonus == NULL); 3593 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3594 } 3595 3596 int 3597 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3598 { 3599 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3600 3601 if (db->db_blkid != DMU_SPILL_BLKID) 3602 return (SET_ERROR(ENOTSUP)); 3603 if (blksz == 0) 3604 blksz = SPA_MINBLOCKSIZE; 3605 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3606 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3607 3608 dbuf_new_size(db, blksz, tx); 3609 3610 return (0); 3611 } 3612 3613 void 3614 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3615 { 3616 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3617 } 3618 3619 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3620 void 3621 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3622 { 3623 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3624 VERIFY3S(holds, >, 1); 3625 } 3626 3627 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3628 boolean_t 3629 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3630 void *tag) 3631 { 3632 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3633 dmu_buf_impl_t *found_db; 3634 boolean_t result = B_FALSE; 3635 3636 if (blkid == DMU_BONUS_BLKID) 3637 found_db = dbuf_find_bonus(os, obj); 3638 else 3639 found_db = dbuf_find(os, obj, 0, blkid); 3640 3641 if (found_db != NULL) { 3642 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3643 (void) zfs_refcount_add(&db->db_holds, tag); 3644 result = B_TRUE; 3645 } 3646 mutex_exit(&found_db->db_mtx); 3647 } 3648 return (result); 3649 } 3650 3651 /* 3652 * If you call dbuf_rele() you had better not be referencing the dnode handle 3653 * unless you have some other direct or indirect hold on the dnode. (An indirect 3654 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3655 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3656 * dnode's parent dbuf evicting its dnode handles. 3657 */ 3658 void 3659 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3660 { 3661 mutex_enter(&db->db_mtx); 3662 dbuf_rele_and_unlock(db, tag, B_FALSE); 3663 } 3664 3665 void 3666 dmu_buf_rele(dmu_buf_t *db, void *tag) 3667 { 3668 dbuf_rele((dmu_buf_impl_t *)db, tag); 3669 } 3670 3671 /* 3672 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3673 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3674 * argument should be set if we are already in the dbuf-evicting code 3675 * path, in which case we don't want to recursively evict. This allows us to 3676 * avoid deeply nested stacks that would have a call flow similar to this: 3677 * 3678 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3679 * ^ | 3680 * | | 3681 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3682 * 3683 */ 3684 void 3685 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3686 { 3687 int64_t holds; 3688 uint64_t size; 3689 3690 ASSERT(MUTEX_HELD(&db->db_mtx)); 3691 DBUF_VERIFY(db); 3692 3693 /* 3694 * Remove the reference to the dbuf before removing its hold on the 3695 * dnode so we can guarantee in dnode_move() that a referenced bonus 3696 * buffer has a corresponding dnode hold. 3697 */ 3698 holds = zfs_refcount_remove(&db->db_holds, tag); 3699 ASSERT(holds >= 0); 3700 3701 /* 3702 * We can't freeze indirects if there is a possibility that they 3703 * may be modified in the current syncing context. 3704 */ 3705 if (db->db_buf != NULL && 3706 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3707 arc_buf_freeze(db->db_buf); 3708 } 3709 3710 if (holds == db->db_dirtycnt && 3711 db->db_level == 0 && db->db_user_immediate_evict) 3712 dbuf_evict_user(db); 3713 3714 if (holds == 0) { 3715 if (db->db_blkid == DMU_BONUS_BLKID) { 3716 dnode_t *dn; 3717 boolean_t evict_dbuf = db->db_pending_evict; 3718 3719 /* 3720 * If the dnode moves here, we cannot cross this 3721 * barrier until the move completes. 3722 */ 3723 DB_DNODE_ENTER(db); 3724 3725 dn = DB_DNODE(db); 3726 atomic_dec_32(&dn->dn_dbufs_count); 3727 3728 /* 3729 * Decrementing the dbuf count means that the bonus 3730 * buffer's dnode hold is no longer discounted in 3731 * dnode_move(). The dnode cannot move until after 3732 * the dnode_rele() below. 3733 */ 3734 DB_DNODE_EXIT(db); 3735 3736 /* 3737 * Do not reference db after its lock is dropped. 3738 * Another thread may evict it. 3739 */ 3740 mutex_exit(&db->db_mtx); 3741 3742 if (evict_dbuf) 3743 dnode_evict_bonus(dn); 3744 3745 dnode_rele(dn, db); 3746 } else if (db->db_buf == NULL) { 3747 /* 3748 * This is a special case: we never associated this 3749 * dbuf with any data allocated from the ARC. 3750 */ 3751 ASSERT(db->db_state == DB_UNCACHED || 3752 db->db_state == DB_NOFILL); 3753 dbuf_destroy(db); 3754 } else if (arc_released(db->db_buf)) { 3755 /* 3756 * This dbuf has anonymous data associated with it. 3757 */ 3758 dbuf_destroy(db); 3759 } else { 3760 boolean_t do_arc_evict = B_FALSE; 3761 blkptr_t bp; 3762 spa_t *spa = dmu_objset_spa(db->db_objset); 3763 3764 if (!DBUF_IS_CACHEABLE(db) && 3765 db->db_blkptr != NULL && 3766 !BP_IS_HOLE(db->db_blkptr) && 3767 !BP_IS_EMBEDDED(db->db_blkptr)) { 3768 do_arc_evict = B_TRUE; 3769 bp = *db->db_blkptr; 3770 } 3771 3772 if (!DBUF_IS_CACHEABLE(db) || 3773 db->db_pending_evict) { 3774 dbuf_destroy(db); 3775 } else if (!multilist_link_active(&db->db_cache_link)) { 3776 ASSERT3U(db->db_caching_status, ==, 3777 DB_NO_CACHE); 3778 3779 dbuf_cached_state_t dcs = 3780 dbuf_include_in_metadata_cache(db) ? 3781 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3782 db->db_caching_status = dcs; 3783 3784 multilist_insert(&dbuf_caches[dcs].cache, db); 3785 uint64_t db_size = db->db.db_size; 3786 size = zfs_refcount_add_many( 3787 &dbuf_caches[dcs].size, db_size, db); 3788 uint8_t db_level = db->db_level; 3789 mutex_exit(&db->db_mtx); 3790 3791 if (dcs == DB_DBUF_METADATA_CACHE) { 3792 DBUF_STAT_BUMP(metadata_cache_count); 3793 DBUF_STAT_MAX( 3794 metadata_cache_size_bytes_max, 3795 size); 3796 } else { 3797 DBUF_STAT_BUMP(cache_count); 3798 DBUF_STAT_MAX(cache_size_bytes_max, 3799 size); 3800 DBUF_STAT_BUMP(cache_levels[db_level]); 3801 DBUF_STAT_INCR( 3802 cache_levels_bytes[db_level], 3803 db_size); 3804 } 3805 3806 if (dcs == DB_DBUF_CACHE && !evicting) 3807 dbuf_evict_notify(size); 3808 } 3809 3810 if (do_arc_evict) 3811 arc_freed(spa, &bp); 3812 } 3813 } else { 3814 mutex_exit(&db->db_mtx); 3815 } 3816 3817 } 3818 3819 #pragma weak dmu_buf_refcount = dbuf_refcount 3820 uint64_t 3821 dbuf_refcount(dmu_buf_impl_t *db) 3822 { 3823 return (zfs_refcount_count(&db->db_holds)); 3824 } 3825 3826 uint64_t 3827 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3828 { 3829 uint64_t holds; 3830 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3831 3832 mutex_enter(&db->db_mtx); 3833 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3834 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3835 mutex_exit(&db->db_mtx); 3836 3837 return (holds); 3838 } 3839 3840 void * 3841 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3842 dmu_buf_user_t *new_user) 3843 { 3844 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3845 3846 mutex_enter(&db->db_mtx); 3847 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3848 if (db->db_user == old_user) 3849 db->db_user = new_user; 3850 else 3851 old_user = db->db_user; 3852 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3853 mutex_exit(&db->db_mtx); 3854 3855 return (old_user); 3856 } 3857 3858 void * 3859 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3860 { 3861 return (dmu_buf_replace_user(db_fake, NULL, user)); 3862 } 3863 3864 void * 3865 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3866 { 3867 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3868 3869 db->db_user_immediate_evict = TRUE; 3870 return (dmu_buf_set_user(db_fake, user)); 3871 } 3872 3873 void * 3874 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3875 { 3876 return (dmu_buf_replace_user(db_fake, user, NULL)); 3877 } 3878 3879 void * 3880 dmu_buf_get_user(dmu_buf_t *db_fake) 3881 { 3882 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3883 3884 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3885 return (db->db_user); 3886 } 3887 3888 void 3889 dmu_buf_user_evict_wait() 3890 { 3891 taskq_wait(dbu_evict_taskq); 3892 } 3893 3894 blkptr_t * 3895 dmu_buf_get_blkptr(dmu_buf_t *db) 3896 { 3897 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3898 return (dbi->db_blkptr); 3899 } 3900 3901 objset_t * 3902 dmu_buf_get_objset(dmu_buf_t *db) 3903 { 3904 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3905 return (dbi->db_objset); 3906 } 3907 3908 dnode_t * 3909 dmu_buf_dnode_enter(dmu_buf_t *db) 3910 { 3911 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3912 DB_DNODE_ENTER(dbi); 3913 return (DB_DNODE(dbi)); 3914 } 3915 3916 void 3917 dmu_buf_dnode_exit(dmu_buf_t *db) 3918 { 3919 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3920 DB_DNODE_EXIT(dbi); 3921 } 3922 3923 static void 3924 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3925 { 3926 /* ASSERT(dmu_tx_is_syncing(tx) */ 3927 ASSERT(MUTEX_HELD(&db->db_mtx)); 3928 3929 if (db->db_blkptr != NULL) 3930 return; 3931 3932 if (db->db_blkid == DMU_SPILL_BLKID) { 3933 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3934 BP_ZERO(db->db_blkptr); 3935 return; 3936 } 3937 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3938 /* 3939 * This buffer was allocated at a time when there was 3940 * no available blkptrs from the dnode, or it was 3941 * inappropriate to hook it in (i.e., nlevels mismatch). 3942 */ 3943 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3944 ASSERT(db->db_parent == NULL); 3945 db->db_parent = dn->dn_dbuf; 3946 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3947 DBUF_VERIFY(db); 3948 } else { 3949 dmu_buf_impl_t *parent = db->db_parent; 3950 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3951 3952 ASSERT(dn->dn_phys->dn_nlevels > 1); 3953 if (parent == NULL) { 3954 mutex_exit(&db->db_mtx); 3955 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3956 parent = dbuf_hold_level(dn, db->db_level + 1, 3957 db->db_blkid >> epbs, db); 3958 rw_exit(&dn->dn_struct_rwlock); 3959 mutex_enter(&db->db_mtx); 3960 db->db_parent = parent; 3961 } 3962 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3963 (db->db_blkid & ((1ULL << epbs) - 1)); 3964 DBUF_VERIFY(db); 3965 } 3966 } 3967 3968 static void 3969 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3970 { 3971 dmu_buf_impl_t *db = dr->dr_dbuf; 3972 void *data = dr->dt.dl.dr_data; 3973 3974 ASSERT0(db->db_level); 3975 ASSERT(MUTEX_HELD(&db->db_mtx)); 3976 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 3977 ASSERT(data != NULL); 3978 3979 dnode_t *dn = dr->dr_dnode; 3980 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 3981 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 3982 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys)); 3983 3984 dbuf_sync_leaf_verify_bonus_dnode(dr); 3985 3986 dbuf_undirty_bonus(dr); 3987 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 3988 } 3989 3990 /* 3991 * When syncing out a blocks of dnodes, adjust the block to deal with 3992 * encryption. Normally, we make sure the block is decrypted before writing 3993 * it. If we have crypt params, then we are writing a raw (encrypted) block, 3994 * from a raw receive. In this case, set the ARC buf's crypt params so 3995 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 3996 */ 3997 static void 3998 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 3999 { 4000 int err; 4001 dmu_buf_impl_t *db = dr->dr_dbuf; 4002 4003 ASSERT(MUTEX_HELD(&db->db_mtx)); 4004 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4005 ASSERT3U(db->db_level, ==, 0); 4006 4007 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4008 zbookmark_phys_t zb; 4009 4010 /* 4011 * Unfortunately, there is currently no mechanism for 4012 * syncing context to handle decryption errors. An error 4013 * here is only possible if an attacker maliciously 4014 * changed a dnode block and updated the associated 4015 * checksums going up the block tree. 4016 */ 4017 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4018 db->db.db_object, db->db_level, db->db_blkid); 4019 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4020 &zb, B_TRUE); 4021 if (err) 4022 panic("Invalid dnode block MAC"); 4023 } else if (dr->dt.dl.dr_has_raw_params) { 4024 (void) arc_release(dr->dt.dl.dr_data, db); 4025 arc_convert_to_raw(dr->dt.dl.dr_data, 4026 dmu_objset_id(db->db_objset), 4027 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4028 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4029 } 4030 } 4031 4032 /* 4033 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4034 * is critical the we not allow the compiler to inline this function in to 4035 * dbuf_sync_list() thereby drastically bloating the stack usage. 4036 */ 4037 noinline static void 4038 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4039 { 4040 dmu_buf_impl_t *db = dr->dr_dbuf; 4041 dnode_t *dn = dr->dr_dnode; 4042 4043 ASSERT(dmu_tx_is_syncing(tx)); 4044 4045 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4046 4047 mutex_enter(&db->db_mtx); 4048 4049 ASSERT(db->db_level > 0); 4050 DBUF_VERIFY(db); 4051 4052 /* Read the block if it hasn't been read yet. */ 4053 if (db->db_buf == NULL) { 4054 mutex_exit(&db->db_mtx); 4055 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4056 mutex_enter(&db->db_mtx); 4057 } 4058 ASSERT3U(db->db_state, ==, DB_CACHED); 4059 ASSERT(db->db_buf != NULL); 4060 4061 /* Indirect block size must match what the dnode thinks it is. */ 4062 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4063 dbuf_check_blkptr(dn, db); 4064 4065 /* Provide the pending dirty record to child dbufs */ 4066 db->db_data_pending = dr; 4067 4068 mutex_exit(&db->db_mtx); 4069 4070 dbuf_write(dr, db->db_buf, tx); 4071 4072 zio_t *zio = dr->dr_zio; 4073 mutex_enter(&dr->dt.di.dr_mtx); 4074 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4075 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4076 mutex_exit(&dr->dt.di.dr_mtx); 4077 zio_nowait(zio); 4078 } 4079 4080 /* 4081 * Verify that the size of the data in our bonus buffer does not exceed 4082 * its recorded size. 4083 * 4084 * The purpose of this verification is to catch any cases in development 4085 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4086 * due to incorrect feature management, older pools expect to read more 4087 * data even though they didn't actually write it to begin with. 4088 * 4089 * For a example, this would catch an error in the feature logic where we 4090 * open an older pool and we expect to write the space map histogram of 4091 * a space map with size SPACE_MAP_SIZE_V0. 4092 */ 4093 static void 4094 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4095 { 4096 #ifdef ZFS_DEBUG 4097 dnode_t *dn = dr->dr_dnode; 4098 4099 /* 4100 * Encrypted bonus buffers can have data past their bonuslen. 4101 * Skip the verification of these blocks. 4102 */ 4103 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4104 return; 4105 4106 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4107 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4108 ASSERT3U(bonuslen, <=, maxbonuslen); 4109 4110 arc_buf_t *datap = dr->dt.dl.dr_data; 4111 char *datap_end = ((char *)datap) + bonuslen; 4112 char *datap_max = ((char *)datap) + maxbonuslen; 4113 4114 /* ensure that everything is zero after our data */ 4115 for (; datap_end < datap_max; datap_end++) 4116 ASSERT(*datap_end == 0); 4117 #endif 4118 } 4119 4120 static blkptr_t * 4121 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4122 { 4123 /* This must be a lightweight dirty record. */ 4124 ASSERT3P(dr->dr_dbuf, ==, NULL); 4125 dnode_t *dn = dr->dr_dnode; 4126 4127 if (dn->dn_phys->dn_nlevels == 1) { 4128 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4129 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4130 } else { 4131 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4132 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4133 VERIFY3U(parent_db->db_level, ==, 1); 4134 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4135 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4136 blkptr_t *bp = parent_db->db.db_data; 4137 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4138 } 4139 } 4140 4141 static void 4142 dbuf_lightweight_ready(zio_t *zio) 4143 { 4144 dbuf_dirty_record_t *dr = zio->io_private; 4145 blkptr_t *bp = zio->io_bp; 4146 4147 if (zio->io_error != 0) 4148 return; 4149 4150 dnode_t *dn = dr->dr_dnode; 4151 4152 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4153 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4154 int64_t delta = bp_get_dsize_sync(spa, bp) - 4155 bp_get_dsize_sync(spa, bp_orig); 4156 dnode_diduse_space(dn, delta); 4157 4158 uint64_t blkid = dr->dt.dll.dr_blkid; 4159 mutex_enter(&dn->dn_mtx); 4160 if (blkid > dn->dn_phys->dn_maxblkid) { 4161 ASSERT0(dn->dn_objset->os_raw_receive); 4162 dn->dn_phys->dn_maxblkid = blkid; 4163 } 4164 mutex_exit(&dn->dn_mtx); 4165 4166 if (!BP_IS_EMBEDDED(bp)) { 4167 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4168 BP_SET_FILL(bp, fill); 4169 } 4170 4171 dmu_buf_impl_t *parent_db; 4172 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4173 if (dr->dr_parent == NULL) { 4174 parent_db = dn->dn_dbuf; 4175 } else { 4176 parent_db = dr->dr_parent->dr_dbuf; 4177 } 4178 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4179 *bp_orig = *bp; 4180 rw_exit(&parent_db->db_rwlock); 4181 } 4182 4183 static void 4184 dbuf_lightweight_physdone(zio_t *zio) 4185 { 4186 dbuf_dirty_record_t *dr = zio->io_private; 4187 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4188 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4189 4190 /* 4191 * The callback will be called io_phys_children times. Retire one 4192 * portion of our dirty space each time we are called. Any rounding 4193 * error will be cleaned up by dbuf_lightweight_done(). 4194 */ 4195 int delta = dr->dr_accounted / zio->io_phys_children; 4196 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4197 } 4198 4199 static void 4200 dbuf_lightweight_done(zio_t *zio) 4201 { 4202 dbuf_dirty_record_t *dr = zio->io_private; 4203 4204 VERIFY0(zio->io_error); 4205 4206 objset_t *os = dr->dr_dnode->dn_objset; 4207 dmu_tx_t *tx = os->os_synctx; 4208 4209 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4210 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4211 } else { 4212 dsl_dataset_t *ds = os->os_dsl_dataset; 4213 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4214 dsl_dataset_block_born(ds, zio->io_bp, tx); 4215 } 4216 4217 /* 4218 * See comment in dbuf_write_done(). 4219 */ 4220 if (zio->io_phys_children == 0) { 4221 dsl_pool_undirty_space(dmu_objset_pool(os), 4222 dr->dr_accounted, zio->io_txg); 4223 } else { 4224 dsl_pool_undirty_space(dmu_objset_pool(os), 4225 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4226 } 4227 4228 abd_free(dr->dt.dll.dr_abd); 4229 kmem_free(dr, sizeof (*dr)); 4230 } 4231 4232 noinline static void 4233 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4234 { 4235 dnode_t *dn = dr->dr_dnode; 4236 zio_t *pio; 4237 if (dn->dn_phys->dn_nlevels == 1) { 4238 pio = dn->dn_zio; 4239 } else { 4240 pio = dr->dr_parent->dr_zio; 4241 } 4242 4243 zbookmark_phys_t zb = { 4244 .zb_objset = dmu_objset_id(dn->dn_objset), 4245 .zb_object = dn->dn_object, 4246 .zb_level = 0, 4247 .zb_blkid = dr->dt.dll.dr_blkid, 4248 }; 4249 4250 /* 4251 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4252 * will have the old BP in dbuf_lightweight_done(). 4253 */ 4254 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4255 4256 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4257 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4258 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4259 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4260 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4261 ZIO_PRIORITY_ASYNC_WRITE, 4262 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4263 4264 zio_nowait(dr->dr_zio); 4265 } 4266 4267 /* 4268 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4269 * critical the we not allow the compiler to inline this function in to 4270 * dbuf_sync_list() thereby drastically bloating the stack usage. 4271 */ 4272 noinline static void 4273 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4274 { 4275 arc_buf_t **datap = &dr->dt.dl.dr_data; 4276 dmu_buf_impl_t *db = dr->dr_dbuf; 4277 dnode_t *dn = dr->dr_dnode; 4278 objset_t *os; 4279 uint64_t txg = tx->tx_txg; 4280 4281 ASSERT(dmu_tx_is_syncing(tx)); 4282 4283 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4284 4285 mutex_enter(&db->db_mtx); 4286 /* 4287 * To be synced, we must be dirtied. But we 4288 * might have been freed after the dirty. 4289 */ 4290 if (db->db_state == DB_UNCACHED) { 4291 /* This buffer has been freed since it was dirtied */ 4292 ASSERT(db->db.db_data == NULL); 4293 } else if (db->db_state == DB_FILL) { 4294 /* This buffer was freed and is now being re-filled */ 4295 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4296 } else { 4297 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4298 } 4299 DBUF_VERIFY(db); 4300 4301 if (db->db_blkid == DMU_SPILL_BLKID) { 4302 mutex_enter(&dn->dn_mtx); 4303 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4304 /* 4305 * In the previous transaction group, the bonus buffer 4306 * was entirely used to store the attributes for the 4307 * dnode which overrode the dn_spill field. However, 4308 * when adding more attributes to the file a spill 4309 * block was required to hold the extra attributes. 4310 * 4311 * Make sure to clear the garbage left in the dn_spill 4312 * field from the previous attributes in the bonus 4313 * buffer. Otherwise, after writing out the spill 4314 * block to the new allocated dva, it will free 4315 * the old block pointed to by the invalid dn_spill. 4316 */ 4317 db->db_blkptr = NULL; 4318 } 4319 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4320 mutex_exit(&dn->dn_mtx); 4321 } 4322 4323 /* 4324 * If this is a bonus buffer, simply copy the bonus data into the 4325 * dnode. It will be written out when the dnode is synced (and it 4326 * will be synced, since it must have been dirty for dbuf_sync to 4327 * be called). 4328 */ 4329 if (db->db_blkid == DMU_BONUS_BLKID) { 4330 ASSERT(dr->dr_dbuf == db); 4331 dbuf_sync_bonus(dr, tx); 4332 return; 4333 } 4334 4335 os = dn->dn_objset; 4336 4337 /* 4338 * This function may have dropped the db_mtx lock allowing a dmu_sync 4339 * operation to sneak in. As a result, we need to ensure that we 4340 * don't check the dr_override_state until we have returned from 4341 * dbuf_check_blkptr. 4342 */ 4343 dbuf_check_blkptr(dn, db); 4344 4345 /* 4346 * If this buffer is in the middle of an immediate write, 4347 * wait for the synchronous IO to complete. 4348 */ 4349 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4350 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4351 cv_wait(&db->db_changed, &db->db_mtx); 4352 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4353 } 4354 4355 /* 4356 * If this is a dnode block, ensure it is appropriately encrypted 4357 * or decrypted, depending on what we are writing to it this txg. 4358 */ 4359 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4360 dbuf_prepare_encrypted_dnode_leaf(dr); 4361 4362 if (db->db_state != DB_NOFILL && 4363 dn->dn_object != DMU_META_DNODE_OBJECT && 4364 zfs_refcount_count(&db->db_holds) > 1 && 4365 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4366 *datap == db->db_buf) { 4367 /* 4368 * If this buffer is currently "in use" (i.e., there 4369 * are active holds and db_data still references it), 4370 * then make a copy before we start the write so that 4371 * any modifications from the open txg will not leak 4372 * into this write. 4373 * 4374 * NOTE: this copy does not need to be made for 4375 * objects only modified in the syncing context (e.g. 4376 * DNONE_DNODE blocks). 4377 */ 4378 int psize = arc_buf_size(*datap); 4379 int lsize = arc_buf_lsize(*datap); 4380 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4381 enum zio_compress compress_type = arc_get_compression(*datap); 4382 uint8_t complevel = arc_get_complevel(*datap); 4383 4384 if (arc_is_encrypted(*datap)) { 4385 boolean_t byteorder; 4386 uint8_t salt[ZIO_DATA_SALT_LEN]; 4387 uint8_t iv[ZIO_DATA_IV_LEN]; 4388 uint8_t mac[ZIO_DATA_MAC_LEN]; 4389 4390 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4391 *datap = arc_alloc_raw_buf(os->os_spa, db, 4392 dmu_objset_id(os), byteorder, salt, iv, mac, 4393 dn->dn_type, psize, lsize, compress_type, 4394 complevel); 4395 } else if (compress_type != ZIO_COMPRESS_OFF) { 4396 ASSERT3U(type, ==, ARC_BUFC_DATA); 4397 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4398 psize, lsize, compress_type, complevel); 4399 } else { 4400 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4401 } 4402 bcopy(db->db.db_data, (*datap)->b_data, psize); 4403 } 4404 db->db_data_pending = dr; 4405 4406 mutex_exit(&db->db_mtx); 4407 4408 dbuf_write(dr, *datap, tx); 4409 4410 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4411 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4412 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4413 } else { 4414 zio_nowait(dr->dr_zio); 4415 } 4416 } 4417 4418 void 4419 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4420 { 4421 dbuf_dirty_record_t *dr; 4422 4423 while ((dr = list_head(list))) { 4424 if (dr->dr_zio != NULL) { 4425 /* 4426 * If we find an already initialized zio then we 4427 * are processing the meta-dnode, and we have finished. 4428 * The dbufs for all dnodes are put back on the list 4429 * during processing, so that we can zio_wait() 4430 * these IOs after initiating all child IOs. 4431 */ 4432 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4433 DMU_META_DNODE_OBJECT); 4434 break; 4435 } 4436 list_remove(list, dr); 4437 if (dr->dr_dbuf == NULL) { 4438 dbuf_sync_lightweight(dr, tx); 4439 } else { 4440 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4441 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4442 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4443 } 4444 if (dr->dr_dbuf->db_level > 0) 4445 dbuf_sync_indirect(dr, tx); 4446 else 4447 dbuf_sync_leaf(dr, tx); 4448 } 4449 } 4450 } 4451 4452 /* ARGSUSED */ 4453 static void 4454 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4455 { 4456 dmu_buf_impl_t *db = vdb; 4457 dnode_t *dn; 4458 blkptr_t *bp = zio->io_bp; 4459 blkptr_t *bp_orig = &zio->io_bp_orig; 4460 spa_t *spa = zio->io_spa; 4461 int64_t delta; 4462 uint64_t fill = 0; 4463 int i; 4464 4465 ASSERT3P(db->db_blkptr, !=, NULL); 4466 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4467 4468 DB_DNODE_ENTER(db); 4469 dn = DB_DNODE(db); 4470 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4471 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4472 zio->io_prev_space_delta = delta; 4473 4474 if (bp->blk_birth != 0) { 4475 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4476 BP_GET_TYPE(bp) == dn->dn_type) || 4477 (db->db_blkid == DMU_SPILL_BLKID && 4478 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4479 BP_IS_EMBEDDED(bp)); 4480 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4481 } 4482 4483 mutex_enter(&db->db_mtx); 4484 4485 #ifdef ZFS_DEBUG 4486 if (db->db_blkid == DMU_SPILL_BLKID) { 4487 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4488 ASSERT(!(BP_IS_HOLE(bp)) && 4489 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4490 } 4491 #endif 4492 4493 if (db->db_level == 0) { 4494 mutex_enter(&dn->dn_mtx); 4495 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4496 db->db_blkid != DMU_SPILL_BLKID) { 4497 ASSERT0(db->db_objset->os_raw_receive); 4498 dn->dn_phys->dn_maxblkid = db->db_blkid; 4499 } 4500 mutex_exit(&dn->dn_mtx); 4501 4502 if (dn->dn_type == DMU_OT_DNODE) { 4503 i = 0; 4504 while (i < db->db.db_size) { 4505 dnode_phys_t *dnp = 4506 (void *)(((char *)db->db.db_data) + i); 4507 4508 i += DNODE_MIN_SIZE; 4509 if (dnp->dn_type != DMU_OT_NONE) { 4510 fill++; 4511 i += dnp->dn_extra_slots * 4512 DNODE_MIN_SIZE; 4513 } 4514 } 4515 } else { 4516 if (BP_IS_HOLE(bp)) { 4517 fill = 0; 4518 } else { 4519 fill = 1; 4520 } 4521 } 4522 } else { 4523 blkptr_t *ibp = db->db.db_data; 4524 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4525 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4526 if (BP_IS_HOLE(ibp)) 4527 continue; 4528 fill += BP_GET_FILL(ibp); 4529 } 4530 } 4531 DB_DNODE_EXIT(db); 4532 4533 if (!BP_IS_EMBEDDED(bp)) 4534 BP_SET_FILL(bp, fill); 4535 4536 mutex_exit(&db->db_mtx); 4537 4538 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4539 *db->db_blkptr = *bp; 4540 dmu_buf_unlock_parent(db, dblt, FTAG); 4541 } 4542 4543 /* ARGSUSED */ 4544 /* 4545 * This function gets called just prior to running through the compression 4546 * stage of the zio pipeline. If we're an indirect block comprised of only 4547 * holes, then we want this indirect to be compressed away to a hole. In 4548 * order to do that we must zero out any information about the holes that 4549 * this indirect points to prior to before we try to compress it. 4550 */ 4551 static void 4552 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4553 { 4554 dmu_buf_impl_t *db = vdb; 4555 dnode_t *dn; 4556 blkptr_t *bp; 4557 unsigned int epbs, i; 4558 4559 ASSERT3U(db->db_level, >, 0); 4560 DB_DNODE_ENTER(db); 4561 dn = DB_DNODE(db); 4562 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4563 ASSERT3U(epbs, <, 31); 4564 4565 /* Determine if all our children are holes */ 4566 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4567 if (!BP_IS_HOLE(bp)) 4568 break; 4569 } 4570 4571 /* 4572 * If all the children are holes, then zero them all out so that 4573 * we may get compressed away. 4574 */ 4575 if (i == 1ULL << epbs) { 4576 /* 4577 * We only found holes. Grab the rwlock to prevent 4578 * anybody from reading the blocks we're about to 4579 * zero out. 4580 */ 4581 rw_enter(&db->db_rwlock, RW_WRITER); 4582 bzero(db->db.db_data, db->db.db_size); 4583 rw_exit(&db->db_rwlock); 4584 } 4585 DB_DNODE_EXIT(db); 4586 } 4587 4588 /* 4589 * The SPA will call this callback several times for each zio - once 4590 * for every physical child i/o (zio->io_phys_children times). This 4591 * allows the DMU to monitor the progress of each logical i/o. For example, 4592 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4593 * block. There may be a long delay before all copies/fragments are completed, 4594 * so this callback allows us to retire dirty space gradually, as the physical 4595 * i/os complete. 4596 */ 4597 /* ARGSUSED */ 4598 static void 4599 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4600 { 4601 dmu_buf_impl_t *db = arg; 4602 objset_t *os = db->db_objset; 4603 dsl_pool_t *dp = dmu_objset_pool(os); 4604 dbuf_dirty_record_t *dr; 4605 int delta = 0; 4606 4607 dr = db->db_data_pending; 4608 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4609 4610 /* 4611 * The callback will be called io_phys_children times. Retire one 4612 * portion of our dirty space each time we are called. Any rounding 4613 * error will be cleaned up by dbuf_write_done(). 4614 */ 4615 delta = dr->dr_accounted / zio->io_phys_children; 4616 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4617 } 4618 4619 /* ARGSUSED */ 4620 static void 4621 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4622 { 4623 dmu_buf_impl_t *db = vdb; 4624 blkptr_t *bp_orig = &zio->io_bp_orig; 4625 blkptr_t *bp = db->db_blkptr; 4626 objset_t *os = db->db_objset; 4627 dmu_tx_t *tx = os->os_synctx; 4628 4629 ASSERT0(zio->io_error); 4630 ASSERT(db->db_blkptr == bp); 4631 4632 /* 4633 * For nopwrites and rewrites we ensure that the bp matches our 4634 * original and bypass all the accounting. 4635 */ 4636 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4637 ASSERT(BP_EQUAL(bp, bp_orig)); 4638 } else { 4639 dsl_dataset_t *ds = os->os_dsl_dataset; 4640 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4641 dsl_dataset_block_born(ds, bp, tx); 4642 } 4643 4644 mutex_enter(&db->db_mtx); 4645 4646 DBUF_VERIFY(db); 4647 4648 dbuf_dirty_record_t *dr = db->db_data_pending; 4649 dnode_t *dn = dr->dr_dnode; 4650 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4651 ASSERT(dr->dr_dbuf == db); 4652 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4653 list_remove(&db->db_dirty_records, dr); 4654 4655 #ifdef ZFS_DEBUG 4656 if (db->db_blkid == DMU_SPILL_BLKID) { 4657 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4658 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4659 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4660 } 4661 #endif 4662 4663 if (db->db_level == 0) { 4664 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4665 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4666 if (db->db_state != DB_NOFILL) { 4667 if (dr->dt.dl.dr_data != db->db_buf) 4668 arc_buf_destroy(dr->dt.dl.dr_data, db); 4669 } 4670 } else { 4671 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4672 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4673 if (!BP_IS_HOLE(db->db_blkptr)) { 4674 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4675 SPA_BLKPTRSHIFT; 4676 ASSERT3U(db->db_blkid, <=, 4677 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4678 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4679 db->db.db_size); 4680 } 4681 mutex_destroy(&dr->dt.di.dr_mtx); 4682 list_destroy(&dr->dt.di.dr_children); 4683 } 4684 4685 cv_broadcast(&db->db_changed); 4686 ASSERT(db->db_dirtycnt > 0); 4687 db->db_dirtycnt -= 1; 4688 db->db_data_pending = NULL; 4689 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4690 4691 /* 4692 * If we didn't do a physical write in this ZIO and we 4693 * still ended up here, it means that the space of the 4694 * dbuf that we just released (and undirtied) above hasn't 4695 * been marked as undirtied in the pool's accounting. 4696 * 4697 * Thus, we undirty that space in the pool's view of the 4698 * world here. For physical writes this type of update 4699 * happens in dbuf_write_physdone(). 4700 * 4701 * If we did a physical write, cleanup any rounding errors 4702 * that came up due to writing multiple copies of a block 4703 * on disk [see dbuf_write_physdone()]. 4704 */ 4705 if (zio->io_phys_children == 0) { 4706 dsl_pool_undirty_space(dmu_objset_pool(os), 4707 dr->dr_accounted, zio->io_txg); 4708 } else { 4709 dsl_pool_undirty_space(dmu_objset_pool(os), 4710 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4711 } 4712 4713 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4714 } 4715 4716 static void 4717 dbuf_write_nofill_ready(zio_t *zio) 4718 { 4719 dbuf_write_ready(zio, NULL, zio->io_private); 4720 } 4721 4722 static void 4723 dbuf_write_nofill_done(zio_t *zio) 4724 { 4725 dbuf_write_done(zio, NULL, zio->io_private); 4726 } 4727 4728 static void 4729 dbuf_write_override_ready(zio_t *zio) 4730 { 4731 dbuf_dirty_record_t *dr = zio->io_private; 4732 dmu_buf_impl_t *db = dr->dr_dbuf; 4733 4734 dbuf_write_ready(zio, NULL, db); 4735 } 4736 4737 static void 4738 dbuf_write_override_done(zio_t *zio) 4739 { 4740 dbuf_dirty_record_t *dr = zio->io_private; 4741 dmu_buf_impl_t *db = dr->dr_dbuf; 4742 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4743 4744 mutex_enter(&db->db_mtx); 4745 if (!BP_EQUAL(zio->io_bp, obp)) { 4746 if (!BP_IS_HOLE(obp)) 4747 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4748 arc_release(dr->dt.dl.dr_data, db); 4749 } 4750 mutex_exit(&db->db_mtx); 4751 4752 dbuf_write_done(zio, NULL, db); 4753 4754 if (zio->io_abd != NULL) 4755 abd_free(zio->io_abd); 4756 } 4757 4758 typedef struct dbuf_remap_impl_callback_arg { 4759 objset_t *drica_os; 4760 uint64_t drica_blk_birth; 4761 dmu_tx_t *drica_tx; 4762 } dbuf_remap_impl_callback_arg_t; 4763 4764 static void 4765 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4766 void *arg) 4767 { 4768 dbuf_remap_impl_callback_arg_t *drica = arg; 4769 objset_t *os = drica->drica_os; 4770 spa_t *spa = dmu_objset_spa(os); 4771 dmu_tx_t *tx = drica->drica_tx; 4772 4773 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4774 4775 if (os == spa_meta_objset(spa)) { 4776 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4777 } else { 4778 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4779 size, drica->drica_blk_birth, tx); 4780 } 4781 } 4782 4783 static void 4784 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4785 { 4786 blkptr_t bp_copy = *bp; 4787 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4788 dbuf_remap_impl_callback_arg_t drica; 4789 4790 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4791 4792 drica.drica_os = dn->dn_objset; 4793 drica.drica_blk_birth = bp->blk_birth; 4794 drica.drica_tx = tx; 4795 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4796 &drica)) { 4797 /* 4798 * If the blkptr being remapped is tracked by a livelist, 4799 * then we need to make sure the livelist reflects the update. 4800 * First, cancel out the old blkptr by appending a 'FREE' 4801 * entry. Next, add an 'ALLOC' to track the new version. This 4802 * way we avoid trying to free an inaccurate blkptr at delete. 4803 * Note that embedded blkptrs are not tracked in livelists. 4804 */ 4805 if (dn->dn_objset != spa_meta_objset(spa)) { 4806 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4807 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4808 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4809 ASSERT(!BP_IS_EMBEDDED(bp)); 4810 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4811 ASSERT(spa_feature_is_enabled(spa, 4812 SPA_FEATURE_LIVELIST)); 4813 bplist_append(&ds->ds_dir->dd_pending_frees, 4814 bp); 4815 bplist_append(&ds->ds_dir->dd_pending_allocs, 4816 &bp_copy); 4817 } 4818 } 4819 4820 /* 4821 * The db_rwlock prevents dbuf_read_impl() from 4822 * dereferencing the BP while we are changing it. To 4823 * avoid lock contention, only grab it when we are actually 4824 * changing the BP. 4825 */ 4826 if (rw != NULL) 4827 rw_enter(rw, RW_WRITER); 4828 *bp = bp_copy; 4829 if (rw != NULL) 4830 rw_exit(rw); 4831 } 4832 } 4833 4834 /* 4835 * Remap any existing BP's to concrete vdevs, if possible. 4836 */ 4837 static void 4838 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4839 { 4840 spa_t *spa = dmu_objset_spa(db->db_objset); 4841 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4842 4843 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4844 return; 4845 4846 if (db->db_level > 0) { 4847 blkptr_t *bp = db->db.db_data; 4848 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4849 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4850 } 4851 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4852 dnode_phys_t *dnp = db->db.db_data; 4853 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4854 DMU_OT_DNODE); 4855 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4856 i += dnp[i].dn_extra_slots + 1) { 4857 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4858 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4859 &dn->dn_dbuf->db_rwlock); 4860 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4861 tx); 4862 } 4863 } 4864 } 4865 } 4866 4867 4868 /* Issue I/O to commit a dirty buffer to disk. */ 4869 static void 4870 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4871 { 4872 dmu_buf_impl_t *db = dr->dr_dbuf; 4873 dnode_t *dn = dr->dr_dnode; 4874 objset_t *os; 4875 dmu_buf_impl_t *parent = db->db_parent; 4876 uint64_t txg = tx->tx_txg; 4877 zbookmark_phys_t zb; 4878 zio_prop_t zp; 4879 zio_t *pio; /* parent I/O */ 4880 int wp_flag = 0; 4881 4882 ASSERT(dmu_tx_is_syncing(tx)); 4883 4884 os = dn->dn_objset; 4885 4886 if (db->db_state != DB_NOFILL) { 4887 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4888 /* 4889 * Private object buffers are released here rather 4890 * than in dbuf_dirty() since they are only modified 4891 * in the syncing context and we don't want the 4892 * overhead of making multiple copies of the data. 4893 */ 4894 if (BP_IS_HOLE(db->db_blkptr)) { 4895 arc_buf_thaw(data); 4896 } else { 4897 dbuf_release_bp(db); 4898 } 4899 dbuf_remap(dn, db, tx); 4900 } 4901 } 4902 4903 if (parent != dn->dn_dbuf) { 4904 /* Our parent is an indirect block. */ 4905 /* We have a dirty parent that has been scheduled for write. */ 4906 ASSERT(parent && parent->db_data_pending); 4907 /* Our parent's buffer is one level closer to the dnode. */ 4908 ASSERT(db->db_level == parent->db_level-1); 4909 /* 4910 * We're about to modify our parent's db_data by modifying 4911 * our block pointer, so the parent must be released. 4912 */ 4913 ASSERT(arc_released(parent->db_buf)); 4914 pio = parent->db_data_pending->dr_zio; 4915 } else { 4916 /* Our parent is the dnode itself. */ 4917 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4918 db->db_blkid != DMU_SPILL_BLKID) || 4919 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4920 if (db->db_blkid != DMU_SPILL_BLKID) 4921 ASSERT3P(db->db_blkptr, ==, 4922 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4923 pio = dn->dn_zio; 4924 } 4925 4926 ASSERT(db->db_level == 0 || data == db->db_buf); 4927 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4928 ASSERT(pio); 4929 4930 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4931 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4932 db->db.db_object, db->db_level, db->db_blkid); 4933 4934 if (db->db_blkid == DMU_SPILL_BLKID) 4935 wp_flag = WP_SPILL; 4936 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 4937 4938 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 4939 4940 /* 4941 * We copy the blkptr now (rather than when we instantiate the dirty 4942 * record), because its value can change between open context and 4943 * syncing context. We do not need to hold dn_struct_rwlock to read 4944 * db_blkptr because we are in syncing context. 4945 */ 4946 dr->dr_bp_copy = *db->db_blkptr; 4947 4948 if (db->db_level == 0 && 4949 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 4950 /* 4951 * The BP for this block has been provided by open context 4952 * (by dmu_sync() or dmu_buf_write_embedded()). 4953 */ 4954 abd_t *contents = (data != NULL) ? 4955 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 4956 4957 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 4958 contents, db->db.db_size, db->db.db_size, &zp, 4959 dbuf_write_override_ready, NULL, NULL, 4960 dbuf_write_override_done, 4961 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4962 mutex_enter(&db->db_mtx); 4963 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 4964 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 4965 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 4966 mutex_exit(&db->db_mtx); 4967 } else if (db->db_state == DB_NOFILL) { 4968 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 4969 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 4970 dr->dr_zio = zio_write(pio, os->os_spa, txg, 4971 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 4972 dbuf_write_nofill_ready, NULL, NULL, 4973 dbuf_write_nofill_done, db, 4974 ZIO_PRIORITY_ASYNC_WRITE, 4975 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 4976 } else { 4977 ASSERT(arc_released(data)); 4978 4979 /* 4980 * For indirect blocks, we want to setup the children 4981 * ready callback so that we can properly handle an indirect 4982 * block that only contains holes. 4983 */ 4984 arc_write_done_func_t *children_ready_cb = NULL; 4985 if (db->db_level != 0) 4986 children_ready_cb = dbuf_write_children_ready; 4987 4988 dr->dr_zio = arc_write(pio, os->os_spa, txg, 4989 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 4990 &zp, dbuf_write_ready, 4991 children_ready_cb, dbuf_write_physdone, 4992 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 4993 ZIO_FLAG_MUSTSUCCEED, &zb); 4994 } 4995 } 4996 4997 EXPORT_SYMBOL(dbuf_find); 4998 EXPORT_SYMBOL(dbuf_is_metadata); 4999 EXPORT_SYMBOL(dbuf_destroy); 5000 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5001 EXPORT_SYMBOL(dbuf_whichblock); 5002 EXPORT_SYMBOL(dbuf_read); 5003 EXPORT_SYMBOL(dbuf_unoverride); 5004 EXPORT_SYMBOL(dbuf_free_range); 5005 EXPORT_SYMBOL(dbuf_new_size); 5006 EXPORT_SYMBOL(dbuf_release_bp); 5007 EXPORT_SYMBOL(dbuf_dirty); 5008 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5009 EXPORT_SYMBOL(dmu_buf_will_dirty); 5010 EXPORT_SYMBOL(dmu_buf_is_dirty); 5011 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5012 EXPORT_SYMBOL(dmu_buf_will_fill); 5013 EXPORT_SYMBOL(dmu_buf_fill_done); 5014 EXPORT_SYMBOL(dmu_buf_rele); 5015 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5016 EXPORT_SYMBOL(dbuf_prefetch); 5017 EXPORT_SYMBOL(dbuf_hold_impl); 5018 EXPORT_SYMBOL(dbuf_hold); 5019 EXPORT_SYMBOL(dbuf_hold_level); 5020 EXPORT_SYMBOL(dbuf_create_bonus); 5021 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5022 EXPORT_SYMBOL(dbuf_rm_spill); 5023 EXPORT_SYMBOL(dbuf_add_ref); 5024 EXPORT_SYMBOL(dbuf_rele); 5025 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5026 EXPORT_SYMBOL(dbuf_refcount); 5027 EXPORT_SYMBOL(dbuf_sync_list); 5028 EXPORT_SYMBOL(dmu_buf_set_user); 5029 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5030 EXPORT_SYMBOL(dmu_buf_get_user); 5031 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5032 5033 /* BEGIN CSTYLED */ 5034 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW, 5035 "Maximum size in bytes of the dbuf cache."); 5036 5037 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5038 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted " 5039 "directly."); 5040 5041 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5042 "Percentage below dbuf_cache_max_bytes when the evict thread stops " 5043 "evicting dbufs."); 5044 5045 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW, 5046 "Maximum size in bytes of the dbuf metadata cache."); 5047 5048 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW, 5049 "Set the size of the dbuf cache to a log2 fraction of arc size."); 5050 5051 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW, 5052 "Set the size of the dbuf metadata cache to a log2 fraction of arc " 5053 "size."); 5054 /* END CSTYLED */ 5055