1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 static taskq_t *dbu_evict_taskq; 186 187 static kthread_t *dbuf_cache_evict_thread; 188 static kmutex_t dbuf_evict_lock; 189 static kcondvar_t dbuf_evict_cv; 190 static boolean_t dbuf_evict_thread_exit; 191 192 /* 193 * There are two dbuf caches; each dbuf can only be in one of them at a time. 194 * 195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 197 * that represent the metadata that describes filesystems/snapshots/ 198 * bookmarks/properties/etc. We only evict from this cache when we export a 199 * pool, to short-circuit as much I/O as possible for all administrative 200 * commands that need the metadata. There is no eviction policy for this 201 * cache, because we try to only include types in it which would occupy a 202 * very small amount of space per object but create a large impact on the 203 * performance of these commands. Instead, after it reaches a maximum size 204 * (which should only happen on very small memory systems with a very large 205 * number of filesystem objects), we stop taking new dbufs into the 206 * metadata cache, instead putting them in the normal dbuf cache. 207 * 208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 209 * are not currently held but have been recently released. These dbufs 210 * are not eligible for arc eviction until they are aged out of the cache. 211 * Dbufs that are aged out of the cache will be immediately destroyed and 212 * become eligible for arc eviction. 213 * 214 * Dbufs are added to these caches once the last hold is released. If a dbuf is 215 * later accessed and still exists in the dbuf cache, then it will be removed 216 * from the cache and later re-added to the head of the cache. 217 * 218 * If a given dbuf meets the requirements for the metadata cache, it will go 219 * there, otherwise it will be considered for the generic LRU dbuf cache. The 220 * caches and the refcounts tracking their sizes are stored in an array indexed 221 * by those caches' matching enum values (from dbuf_cached_state_t). 222 */ 223 typedef struct dbuf_cache { 224 multilist_t cache; 225 zfs_refcount_t size ____cacheline_aligned; 226 } dbuf_cache_t; 227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 228 229 /* Size limits for the caches */ 230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 232 233 /* Set the default sizes of the caches to log2 fraction of arc size */ 234 static uint_t dbuf_cache_shift = 5; 235 static uint_t dbuf_metadata_cache_shift = 6; 236 237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 238 static uint_t dbuf_mutex_cache_shift = 0; 239 240 static unsigned long dbuf_cache_target_bytes(void); 241 static unsigned long dbuf_metadata_cache_target_bytes(void); 242 243 /* 244 * The LRU dbuf cache uses a three-stage eviction policy: 245 * - A low water marker designates when the dbuf eviction thread 246 * should stop evicting from the dbuf cache. 247 * - When we reach the maximum size (aka mid water mark), we 248 * signal the eviction thread to run. 249 * - The high water mark indicates when the eviction thread 250 * is unable to keep up with the incoming load and eviction must 251 * happen in the context of the calling thread. 252 * 253 * The dbuf cache: 254 * (max size) 255 * low water mid water hi water 256 * +----------------------------------------+----------+----------+ 257 * | | | | 258 * | | | | 259 * | | | | 260 * | | | | 261 * +----------------------------------------+----------+----------+ 262 * stop signal evict 263 * evicting eviction directly 264 * thread 265 * 266 * The high and low water marks indicate the operating range for the eviction 267 * thread. The low water mark is, by default, 90% of the total size of the 268 * cache and the high water mark is at 110% (both of these percentages can be 269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 270 * respectively). The eviction thread will try to ensure that the cache remains 271 * within this range by waking up every second and checking if the cache is 272 * above the low water mark. The thread can also be woken up by callers adding 273 * elements into the cache if the cache is larger than the mid water (i.e max 274 * cache size). Once the eviction thread is woken up and eviction is required, 275 * it will continue evicting buffers until it's able to reduce the cache size 276 * to the low water mark. If the cache size continues to grow and hits the high 277 * water mark, then callers adding elements to the cache will begin to evict 278 * directly from the cache until the cache is no longer above the high water 279 * mark. 280 */ 281 282 /* 283 * The percentage above and below the maximum cache size. 284 */ 285 static uint_t dbuf_cache_hiwater_pct = 10; 286 static uint_t dbuf_cache_lowater_pct = 10; 287 288 static int 289 dbuf_cons(void *vdb, void *unused, int kmflag) 290 { 291 (void) unused, (void) kmflag; 292 dmu_buf_impl_t *db = vdb; 293 memset(db, 0, sizeof (dmu_buf_impl_t)); 294 295 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 296 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 298 multilist_link_init(&db->db_cache_link); 299 zfs_refcount_create(&db->db_holds); 300 301 return (0); 302 } 303 304 static void 305 dbuf_dest(void *vdb, void *unused) 306 { 307 (void) unused; 308 dmu_buf_impl_t *db = vdb; 309 mutex_destroy(&db->db_mtx); 310 rw_destroy(&db->db_rwlock); 311 cv_destroy(&db->db_changed); 312 ASSERT(!multilist_link_active(&db->db_cache_link)); 313 zfs_refcount_destroy(&db->db_holds); 314 } 315 316 /* 317 * dbuf hash table routines 318 */ 319 static dbuf_hash_table_t dbuf_hash_table; 320 321 /* 322 * We use Cityhash for this. It's fast, and has good hash properties without 323 * requiring any large static buffers. 324 */ 325 static uint64_t 326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 327 { 328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 329 } 330 331 #define DTRACE_SET_STATE(db, why) \ 332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 333 const char *, why) 334 335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 336 ((dbuf)->db.db_object == (obj) && \ 337 (dbuf)->db_objset == (os) && \ 338 (dbuf)->db_level == (level) && \ 339 (dbuf)->db_blkid == (blkid)) 340 341 dmu_buf_impl_t * 342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 343 uint64_t *hash_out) 344 { 345 dbuf_hash_table_t *h = &dbuf_hash_table; 346 uint64_t hv; 347 uint64_t idx; 348 dmu_buf_impl_t *db; 349 350 hv = dbuf_hash(os, obj, level, blkid); 351 idx = hv & h->hash_table_mask; 352 353 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 355 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 356 mutex_enter(&db->db_mtx); 357 if (db->db_state != DB_EVICTING) { 358 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 359 return (db); 360 } 361 mutex_exit(&db->db_mtx); 362 } 363 } 364 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 365 if (hash_out != NULL) 366 *hash_out = hv; 367 return (NULL); 368 } 369 370 static dmu_buf_impl_t * 371 dbuf_find_bonus(objset_t *os, uint64_t object) 372 { 373 dnode_t *dn; 374 dmu_buf_impl_t *db = NULL; 375 376 if (dnode_hold(os, object, FTAG, &dn) == 0) { 377 rw_enter(&dn->dn_struct_rwlock, RW_READER); 378 if (dn->dn_bonus != NULL) { 379 db = dn->dn_bonus; 380 mutex_enter(&db->db_mtx); 381 } 382 rw_exit(&dn->dn_struct_rwlock); 383 dnode_rele(dn, FTAG); 384 } 385 return (db); 386 } 387 388 /* 389 * Insert an entry into the hash table. If there is already an element 390 * equal to elem in the hash table, then the already existing element 391 * will be returned and the new element will not be inserted. 392 * Otherwise returns NULL. 393 */ 394 static dmu_buf_impl_t * 395 dbuf_hash_insert(dmu_buf_impl_t *db) 396 { 397 dbuf_hash_table_t *h = &dbuf_hash_table; 398 objset_t *os = db->db_objset; 399 uint64_t obj = db->db.db_object; 400 int level = db->db_level; 401 uint64_t blkid, idx; 402 dmu_buf_impl_t *dbf; 403 uint32_t i; 404 405 blkid = db->db_blkid; 406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 407 idx = db->db_hash & h->hash_table_mask; 408 409 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 411 dbf = dbf->db_hash_next, i++) { 412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 413 mutex_enter(&dbf->db_mtx); 414 if (dbf->db_state != DB_EVICTING) { 415 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 416 return (dbf); 417 } 418 mutex_exit(&dbf->db_mtx); 419 } 420 } 421 422 if (i > 0) { 423 DBUF_STAT_BUMP(hash_collisions); 424 if (i == 1) 425 DBUF_STAT_BUMP(hash_chains); 426 427 DBUF_STAT_MAX(hash_chain_max, i); 428 } 429 430 mutex_enter(&db->db_mtx); 431 db->db_hash_next = h->hash_table[idx]; 432 h->hash_table[idx] = db; 433 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 435 DBUF_STAT_MAX(hash_elements_max, he); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT(db->db_level == 0); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, dbu); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 blkptr_t *bp = db->db_blkptr; 640 if (bp == NULL || BP_IS_HOLE(bp)) 641 return (B_FALSE); 642 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 643 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 644 vdev_t *vd = NULL; 645 646 if (vdev < rvd->vdev_children) 647 vd = rvd->vdev_child[vdev]; 648 649 if (vd == NULL) 650 return (B_TRUE); 651 652 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 653 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 654 return (B_TRUE); 655 } 656 return (B_FALSE); 657 } 658 659 static inline boolean_t 660 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 661 { 662 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 663 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 664 (level > 0 || 665 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 666 if (l2arc_exclude_special == 0) 667 return (B_TRUE); 668 669 if (bp == NULL || BP_IS_HOLE(bp)) 670 return (B_FALSE); 671 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 672 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 673 vdev_t *vd = NULL; 674 675 if (vdev < rvd->vdev_children) 676 vd = rvd->vdev_child[vdev]; 677 678 if (vd == NULL) 679 return (B_TRUE); 680 681 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 682 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 683 return (B_TRUE); 684 } 685 return (B_FALSE); 686 } 687 688 689 /* 690 * This function *must* return indices evenly distributed between all 691 * sublists of the multilist. This is needed due to how the dbuf eviction 692 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 693 * distributed between all sublists and uses this assumption when 694 * deciding which sublist to evict from and how much to evict from it. 695 */ 696 static unsigned int 697 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 698 { 699 dmu_buf_impl_t *db = obj; 700 701 /* 702 * The assumption here, is the hash value for a given 703 * dmu_buf_impl_t will remain constant throughout it's lifetime 704 * (i.e. it's objset, object, level and blkid fields don't change). 705 * Thus, we don't need to store the dbuf's sublist index 706 * on insertion, as this index can be recalculated on removal. 707 * 708 * Also, the low order bits of the hash value are thought to be 709 * distributed evenly. Otherwise, in the case that the multilist 710 * has a power of two number of sublists, each sublists' usage 711 * would not be evenly distributed. In this context full 64bit 712 * division would be a waste of time, so limit it to 32 bits. 713 */ 714 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 715 db->db_level, db->db_blkid) % 716 multilist_get_num_sublists(ml)); 717 } 718 719 /* 720 * The target size of the dbuf cache can grow with the ARC target, 721 * unless limited by the tunable dbuf_cache_max_bytes. 722 */ 723 static inline unsigned long 724 dbuf_cache_target_bytes(void) 725 { 726 return (MIN(dbuf_cache_max_bytes, 727 arc_target_bytes() >> dbuf_cache_shift)); 728 } 729 730 /* 731 * The target size of the dbuf metadata cache can grow with the ARC target, 732 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 733 */ 734 static inline unsigned long 735 dbuf_metadata_cache_target_bytes(void) 736 { 737 return (MIN(dbuf_metadata_cache_max_bytes, 738 arc_target_bytes() >> dbuf_metadata_cache_shift)); 739 } 740 741 static inline uint64_t 742 dbuf_cache_hiwater_bytes(void) 743 { 744 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 745 return (dbuf_cache_target + 746 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 747 } 748 749 static inline uint64_t 750 dbuf_cache_lowater_bytes(void) 751 { 752 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 753 return (dbuf_cache_target - 754 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 755 } 756 757 static inline boolean_t 758 dbuf_cache_above_lowater(void) 759 { 760 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 761 dbuf_cache_lowater_bytes()); 762 } 763 764 /* 765 * Evict the oldest eligible dbuf from the dbuf cache. 766 */ 767 static void 768 dbuf_evict_one(void) 769 { 770 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 771 multilist_sublist_t *mls = multilist_sublist_lock_idx( 772 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 773 774 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 775 776 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 777 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 778 db = multilist_sublist_prev(mls, db); 779 } 780 781 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 782 multilist_sublist_t *, mls); 783 784 if (db != NULL) { 785 multilist_sublist_remove(mls, db); 786 multilist_sublist_unlock(mls); 787 uint64_t size = db->db.db_size; 788 uint64_t usize = dmu_buf_user_size(&db->db); 789 (void) zfs_refcount_remove_many( 790 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 791 (void) zfs_refcount_remove_many( 792 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 793 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 794 DBUF_STAT_BUMPDOWN(cache_count); 795 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 796 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 797 db->db_caching_status = DB_NO_CACHE; 798 dbuf_destroy(db); 799 DBUF_STAT_BUMP(cache_total_evicts); 800 } else { 801 multilist_sublist_unlock(mls); 802 } 803 } 804 805 /* 806 * The dbuf evict thread is responsible for aging out dbufs from the 807 * cache. Once the cache has reached it's maximum size, dbufs are removed 808 * and destroyed. The eviction thread will continue running until the size 809 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 810 * out of the cache it is destroyed and becomes eligible for arc eviction. 811 */ 812 static __attribute__((noreturn)) void 813 dbuf_evict_thread(void *unused) 814 { 815 (void) unused; 816 callb_cpr_t cpr; 817 818 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 819 820 mutex_enter(&dbuf_evict_lock); 821 while (!dbuf_evict_thread_exit) { 822 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 823 CALLB_CPR_SAFE_BEGIN(&cpr); 824 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 825 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 826 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 827 } 828 mutex_exit(&dbuf_evict_lock); 829 830 /* 831 * Keep evicting as long as we're above the low water mark 832 * for the cache. We do this without holding the locks to 833 * minimize lock contention. 834 */ 835 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 836 dbuf_evict_one(); 837 } 838 839 mutex_enter(&dbuf_evict_lock); 840 } 841 842 dbuf_evict_thread_exit = B_FALSE; 843 cv_broadcast(&dbuf_evict_cv); 844 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 845 thread_exit(); 846 } 847 848 /* 849 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 850 * If the dbuf cache is at its high water mark, then evict a dbuf from the 851 * dbuf cache using the caller's context. 852 */ 853 static void 854 dbuf_evict_notify(uint64_t size) 855 { 856 /* 857 * We check if we should evict without holding the dbuf_evict_lock, 858 * because it's OK to occasionally make the wrong decision here, 859 * and grabbing the lock results in massive lock contention. 860 */ 861 if (size > dbuf_cache_target_bytes()) { 862 if (size > dbuf_cache_hiwater_bytes()) 863 dbuf_evict_one(); 864 cv_signal(&dbuf_evict_cv); 865 } 866 } 867 868 static int 869 dbuf_kstat_update(kstat_t *ksp, int rw) 870 { 871 dbuf_stats_t *ds = ksp->ks_data; 872 dbuf_hash_table_t *h = &dbuf_hash_table; 873 874 if (rw == KSTAT_WRITE) 875 return (SET_ERROR(EACCES)); 876 877 ds->cache_count.value.ui64 = 878 wmsum_value(&dbuf_sums.cache_count); 879 ds->cache_size_bytes.value.ui64 = 880 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 881 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 882 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 883 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 884 ds->cache_total_evicts.value.ui64 = 885 wmsum_value(&dbuf_sums.cache_total_evicts); 886 for (int i = 0; i < DN_MAX_LEVELS; i++) { 887 ds->cache_levels[i].value.ui64 = 888 wmsum_value(&dbuf_sums.cache_levels[i]); 889 ds->cache_levels_bytes[i].value.ui64 = 890 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 891 } 892 ds->hash_hits.value.ui64 = 893 wmsum_value(&dbuf_sums.hash_hits); 894 ds->hash_misses.value.ui64 = 895 wmsum_value(&dbuf_sums.hash_misses); 896 ds->hash_collisions.value.ui64 = 897 wmsum_value(&dbuf_sums.hash_collisions); 898 ds->hash_chains.value.ui64 = 899 wmsum_value(&dbuf_sums.hash_chains); 900 ds->hash_insert_race.value.ui64 = 901 wmsum_value(&dbuf_sums.hash_insert_race); 902 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 903 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 904 ds->metadata_cache_count.value.ui64 = 905 wmsum_value(&dbuf_sums.metadata_cache_count); 906 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 907 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 908 ds->metadata_cache_overflow.value.ui64 = 909 wmsum_value(&dbuf_sums.metadata_cache_overflow); 910 return (0); 911 } 912 913 void 914 dbuf_init(void) 915 { 916 uint64_t hmsize, hsize = 1ULL << 16; 917 dbuf_hash_table_t *h = &dbuf_hash_table; 918 919 /* 920 * The hash table is big enough to fill one eighth of physical memory 921 * with an average block size of zfs_arc_average_blocksize (default 8K). 922 * By default, the table will take up 923 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 924 */ 925 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 926 hsize <<= 1; 927 928 h->hash_table = NULL; 929 while (h->hash_table == NULL) { 930 h->hash_table_mask = hsize - 1; 931 932 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 933 if (h->hash_table == NULL) 934 hsize >>= 1; 935 936 ASSERT3U(hsize, >=, 1ULL << 10); 937 } 938 939 /* 940 * The hash table buckets are protected by an array of mutexes where 941 * each mutex is reponsible for protecting 128 buckets. A minimum 942 * array size of 8192 is targeted to avoid contention. 943 */ 944 if (dbuf_mutex_cache_shift == 0) 945 hmsize = MAX(hsize >> 7, 1ULL << 13); 946 else 947 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 948 949 h->hash_mutexes = NULL; 950 while (h->hash_mutexes == NULL) { 951 h->hash_mutex_mask = hmsize - 1; 952 953 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 954 KM_SLEEP); 955 if (h->hash_mutexes == NULL) 956 hmsize >>= 1; 957 } 958 959 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 960 sizeof (dmu_buf_impl_t), 961 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 962 963 for (int i = 0; i < hmsize; i++) 964 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 965 966 dbuf_stats_init(h); 967 968 /* 969 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 970 * configuration is not required. 971 */ 972 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 973 974 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 975 multilist_create(&dbuf_caches[dcs].cache, 976 sizeof (dmu_buf_impl_t), 977 offsetof(dmu_buf_impl_t, db_cache_link), 978 dbuf_cache_multilist_index_func); 979 zfs_refcount_create(&dbuf_caches[dcs].size); 980 } 981 982 dbuf_evict_thread_exit = B_FALSE; 983 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 984 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 985 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 986 NULL, 0, &p0, TS_RUN, minclsyspri); 987 988 wmsum_init(&dbuf_sums.cache_count, 0); 989 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 990 for (int i = 0; i < DN_MAX_LEVELS; i++) { 991 wmsum_init(&dbuf_sums.cache_levels[i], 0); 992 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 993 } 994 wmsum_init(&dbuf_sums.hash_hits, 0); 995 wmsum_init(&dbuf_sums.hash_misses, 0); 996 wmsum_init(&dbuf_sums.hash_collisions, 0); 997 wmsum_init(&dbuf_sums.hash_chains, 0); 998 wmsum_init(&dbuf_sums.hash_insert_race, 0); 999 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1000 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1001 1002 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1003 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1004 KSTAT_FLAG_VIRTUAL); 1005 if (dbuf_ksp != NULL) { 1006 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1007 snprintf(dbuf_stats.cache_levels[i].name, 1008 KSTAT_STRLEN, "cache_level_%d", i); 1009 dbuf_stats.cache_levels[i].data_type = 1010 KSTAT_DATA_UINT64; 1011 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1012 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1013 dbuf_stats.cache_levels_bytes[i].data_type = 1014 KSTAT_DATA_UINT64; 1015 } 1016 dbuf_ksp->ks_data = &dbuf_stats; 1017 dbuf_ksp->ks_update = dbuf_kstat_update; 1018 kstat_install(dbuf_ksp); 1019 } 1020 } 1021 1022 void 1023 dbuf_fini(void) 1024 { 1025 dbuf_hash_table_t *h = &dbuf_hash_table; 1026 1027 dbuf_stats_destroy(); 1028 1029 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1030 mutex_destroy(&h->hash_mutexes[i]); 1031 1032 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1033 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1034 sizeof (kmutex_t)); 1035 1036 kmem_cache_destroy(dbuf_kmem_cache); 1037 taskq_destroy(dbu_evict_taskq); 1038 1039 mutex_enter(&dbuf_evict_lock); 1040 dbuf_evict_thread_exit = B_TRUE; 1041 while (dbuf_evict_thread_exit) { 1042 cv_signal(&dbuf_evict_cv); 1043 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1044 } 1045 mutex_exit(&dbuf_evict_lock); 1046 1047 mutex_destroy(&dbuf_evict_lock); 1048 cv_destroy(&dbuf_evict_cv); 1049 1050 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1051 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1052 multilist_destroy(&dbuf_caches[dcs].cache); 1053 } 1054 1055 if (dbuf_ksp != NULL) { 1056 kstat_delete(dbuf_ksp); 1057 dbuf_ksp = NULL; 1058 } 1059 1060 wmsum_fini(&dbuf_sums.cache_count); 1061 wmsum_fini(&dbuf_sums.cache_total_evicts); 1062 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1063 wmsum_fini(&dbuf_sums.cache_levels[i]); 1064 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1065 } 1066 wmsum_fini(&dbuf_sums.hash_hits); 1067 wmsum_fini(&dbuf_sums.hash_misses); 1068 wmsum_fini(&dbuf_sums.hash_collisions); 1069 wmsum_fini(&dbuf_sums.hash_chains); 1070 wmsum_fini(&dbuf_sums.hash_insert_race); 1071 wmsum_fini(&dbuf_sums.metadata_cache_count); 1072 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1073 } 1074 1075 /* 1076 * Other stuff. 1077 */ 1078 1079 #ifdef ZFS_DEBUG 1080 static void 1081 dbuf_verify(dmu_buf_impl_t *db) 1082 { 1083 dnode_t *dn; 1084 dbuf_dirty_record_t *dr; 1085 uint32_t txg_prev; 1086 1087 ASSERT(MUTEX_HELD(&db->db_mtx)); 1088 1089 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1090 return; 1091 1092 ASSERT(db->db_objset != NULL); 1093 DB_DNODE_ENTER(db); 1094 dn = DB_DNODE(db); 1095 if (dn == NULL) { 1096 ASSERT(db->db_parent == NULL); 1097 ASSERT(db->db_blkptr == NULL); 1098 } else { 1099 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1100 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1101 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1102 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1103 db->db_blkid == DMU_SPILL_BLKID || 1104 !avl_is_empty(&dn->dn_dbufs)); 1105 } 1106 if (db->db_blkid == DMU_BONUS_BLKID) { 1107 ASSERT(dn != NULL); 1108 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1109 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1110 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1111 ASSERT(dn != NULL); 1112 ASSERT0(db->db.db_offset); 1113 } else { 1114 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1115 } 1116 1117 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1118 ASSERT(dr->dr_dbuf == db); 1119 txg_prev = dr->dr_txg; 1120 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1121 dr = list_next(&db->db_dirty_records, dr)) { 1122 ASSERT(dr->dr_dbuf == db); 1123 ASSERT(txg_prev > dr->dr_txg); 1124 txg_prev = dr->dr_txg; 1125 } 1126 } 1127 1128 /* 1129 * We can't assert that db_size matches dn_datablksz because it 1130 * can be momentarily different when another thread is doing 1131 * dnode_set_blksz(). 1132 */ 1133 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1134 dr = db->db_data_pending; 1135 /* 1136 * It should only be modified in syncing context, so 1137 * make sure we only have one copy of the data. 1138 */ 1139 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1140 } 1141 1142 /* verify db->db_blkptr */ 1143 if (db->db_blkptr) { 1144 if (db->db_parent == dn->dn_dbuf) { 1145 /* db is pointed to by the dnode */ 1146 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1147 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1148 ASSERT(db->db_parent == NULL); 1149 else 1150 ASSERT(db->db_parent != NULL); 1151 if (db->db_blkid != DMU_SPILL_BLKID) 1152 ASSERT3P(db->db_blkptr, ==, 1153 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1154 } else { 1155 /* db is pointed to by an indirect block */ 1156 int epb __maybe_unused = db->db_parent->db.db_size >> 1157 SPA_BLKPTRSHIFT; 1158 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1159 ASSERT3U(db->db_parent->db.db_object, ==, 1160 db->db.db_object); 1161 /* 1162 * dnode_grow_indblksz() can make this fail if we don't 1163 * have the parent's rwlock. XXX indblksz no longer 1164 * grows. safe to do this now? 1165 */ 1166 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1167 ASSERT3P(db->db_blkptr, ==, 1168 ((blkptr_t *)db->db_parent->db.db_data + 1169 db->db_blkid % epb)); 1170 } 1171 } 1172 } 1173 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1174 (db->db_buf == NULL || db->db_buf->b_data) && 1175 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1176 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1177 /* 1178 * If the blkptr isn't set but they have nonzero data, 1179 * it had better be dirty, otherwise we'll lose that 1180 * data when we evict this buffer. 1181 * 1182 * There is an exception to this rule for indirect blocks; in 1183 * this case, if the indirect block is a hole, we fill in a few 1184 * fields on each of the child blocks (importantly, birth time) 1185 * to prevent hole birth times from being lost when you 1186 * partially fill in a hole. 1187 */ 1188 if (db->db_dirtycnt == 0) { 1189 if (db->db_level == 0) { 1190 uint64_t *buf = db->db.db_data; 1191 int i; 1192 1193 for (i = 0; i < db->db.db_size >> 3; i++) { 1194 ASSERT(buf[i] == 0); 1195 } 1196 } else { 1197 blkptr_t *bps = db->db.db_data; 1198 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1199 db->db.db_size); 1200 /* 1201 * We want to verify that all the blkptrs in the 1202 * indirect block are holes, but we may have 1203 * automatically set up a few fields for them. 1204 * We iterate through each blkptr and verify 1205 * they only have those fields set. 1206 */ 1207 for (int i = 0; 1208 i < db->db.db_size / sizeof (blkptr_t); 1209 i++) { 1210 blkptr_t *bp = &bps[i]; 1211 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1212 &bp->blk_cksum)); 1213 ASSERT( 1214 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1215 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1216 DVA_IS_EMPTY(&bp->blk_dva[2])); 1217 ASSERT0(bp->blk_fill); 1218 ASSERT0(bp->blk_pad[0]); 1219 ASSERT0(bp->blk_pad[1]); 1220 ASSERT(!BP_IS_EMBEDDED(bp)); 1221 ASSERT(BP_IS_HOLE(bp)); 1222 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1223 } 1224 } 1225 } 1226 } 1227 DB_DNODE_EXIT(db); 1228 } 1229 #endif 1230 1231 static void 1232 dbuf_clear_data(dmu_buf_impl_t *db) 1233 { 1234 ASSERT(MUTEX_HELD(&db->db_mtx)); 1235 dbuf_evict_user(db); 1236 ASSERT3P(db->db_buf, ==, NULL); 1237 db->db.db_data = NULL; 1238 if (db->db_state != DB_NOFILL) { 1239 db->db_state = DB_UNCACHED; 1240 DTRACE_SET_STATE(db, "clear data"); 1241 } 1242 } 1243 1244 static void 1245 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1246 { 1247 ASSERT(MUTEX_HELD(&db->db_mtx)); 1248 ASSERT(buf != NULL); 1249 1250 db->db_buf = buf; 1251 ASSERT(buf->b_data != NULL); 1252 db->db.db_data = buf->b_data; 1253 } 1254 1255 static arc_buf_t * 1256 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1257 { 1258 spa_t *spa = db->db_objset->os_spa; 1259 1260 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1261 } 1262 1263 /* 1264 * Loan out an arc_buf for read. Return the loaned arc_buf. 1265 */ 1266 arc_buf_t * 1267 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1268 { 1269 arc_buf_t *abuf; 1270 1271 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1272 mutex_enter(&db->db_mtx); 1273 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1274 int blksz = db->db.db_size; 1275 spa_t *spa = db->db_objset->os_spa; 1276 1277 mutex_exit(&db->db_mtx); 1278 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1279 memcpy(abuf->b_data, db->db.db_data, blksz); 1280 } else { 1281 abuf = db->db_buf; 1282 arc_loan_inuse_buf(abuf, db); 1283 db->db_buf = NULL; 1284 dbuf_clear_data(db); 1285 mutex_exit(&db->db_mtx); 1286 } 1287 return (abuf); 1288 } 1289 1290 /* 1291 * Calculate which level n block references the data at the level 0 offset 1292 * provided. 1293 */ 1294 uint64_t 1295 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1296 { 1297 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1298 /* 1299 * The level n blkid is equal to the level 0 blkid divided by 1300 * the number of level 0s in a level n block. 1301 * 1302 * The level 0 blkid is offset >> datablkshift = 1303 * offset / 2^datablkshift. 1304 * 1305 * The number of level 0s in a level n is the number of block 1306 * pointers in an indirect block, raised to the power of level. 1307 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1308 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1309 * 1310 * Thus, the level n blkid is: offset / 1311 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1312 * = offset / 2^(datablkshift + level * 1313 * (indblkshift - SPA_BLKPTRSHIFT)) 1314 * = offset >> (datablkshift + level * 1315 * (indblkshift - SPA_BLKPTRSHIFT)) 1316 */ 1317 1318 const unsigned exp = dn->dn_datablkshift + 1319 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1320 1321 if (exp >= 8 * sizeof (offset)) { 1322 /* This only happens on the highest indirection level */ 1323 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1324 return (0); 1325 } 1326 1327 ASSERT3U(exp, <, 8 * sizeof (offset)); 1328 1329 return (offset >> exp); 1330 } else { 1331 ASSERT3U(offset, <, dn->dn_datablksz); 1332 return (0); 1333 } 1334 } 1335 1336 /* 1337 * This function is used to lock the parent of the provided dbuf. This should be 1338 * used when modifying or reading db_blkptr. 1339 */ 1340 db_lock_type_t 1341 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1342 { 1343 enum db_lock_type ret = DLT_NONE; 1344 if (db->db_parent != NULL) { 1345 rw_enter(&db->db_parent->db_rwlock, rw); 1346 ret = DLT_PARENT; 1347 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1348 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1349 tag); 1350 ret = DLT_OBJSET; 1351 } 1352 /* 1353 * We only return a DLT_NONE lock when it's the top-most indirect block 1354 * of the meta-dnode of the MOS. 1355 */ 1356 return (ret); 1357 } 1358 1359 /* 1360 * We need to pass the lock type in because it's possible that the block will 1361 * move from being the topmost indirect block in a dnode (and thus, have no 1362 * parent) to not the top-most via an indirection increase. This would cause a 1363 * panic if we didn't pass the lock type in. 1364 */ 1365 void 1366 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1367 { 1368 if (type == DLT_PARENT) 1369 rw_exit(&db->db_parent->db_rwlock); 1370 else if (type == DLT_OBJSET) 1371 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1372 } 1373 1374 static void 1375 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1376 arc_buf_t *buf, void *vdb) 1377 { 1378 (void) zb, (void) bp; 1379 dmu_buf_impl_t *db = vdb; 1380 1381 mutex_enter(&db->db_mtx); 1382 ASSERT3U(db->db_state, ==, DB_READ); 1383 /* 1384 * All reads are synchronous, so we must have a hold on the dbuf 1385 */ 1386 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1387 ASSERT(db->db_buf == NULL); 1388 ASSERT(db->db.db_data == NULL); 1389 if (buf == NULL) { 1390 /* i/o error */ 1391 ASSERT(zio == NULL || zio->io_error != 0); 1392 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1393 ASSERT3P(db->db_buf, ==, NULL); 1394 db->db_state = DB_UNCACHED; 1395 DTRACE_SET_STATE(db, "i/o error"); 1396 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1397 /* freed in flight */ 1398 ASSERT(zio == NULL || zio->io_error == 0); 1399 arc_release(buf, db); 1400 memset(buf->b_data, 0, db->db.db_size); 1401 arc_buf_freeze(buf); 1402 db->db_freed_in_flight = FALSE; 1403 dbuf_set_data(db, buf); 1404 db->db_state = DB_CACHED; 1405 DTRACE_SET_STATE(db, "freed in flight"); 1406 } else { 1407 /* success */ 1408 ASSERT(zio == NULL || zio->io_error == 0); 1409 dbuf_set_data(db, buf); 1410 db->db_state = DB_CACHED; 1411 DTRACE_SET_STATE(db, "successful read"); 1412 } 1413 cv_broadcast(&db->db_changed); 1414 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1415 } 1416 1417 /* 1418 * Shortcut for performing reads on bonus dbufs. Returns 1419 * an error if we fail to verify the dnode associated with 1420 * a decrypted block. Otherwise success. 1421 */ 1422 static int 1423 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1424 { 1425 int bonuslen, max_bonuslen; 1426 1427 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1428 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1429 ASSERT(MUTEX_HELD(&db->db_mtx)); 1430 ASSERT(DB_DNODE_HELD(db)); 1431 ASSERT3U(bonuslen, <=, db->db.db_size); 1432 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1433 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1434 if (bonuslen < max_bonuslen) 1435 memset(db->db.db_data, 0, max_bonuslen); 1436 if (bonuslen) 1437 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1438 db->db_state = DB_CACHED; 1439 DTRACE_SET_STATE(db, "bonus buffer filled"); 1440 return (0); 1441 } 1442 1443 static void 1444 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1445 { 1446 blkptr_t *bps = db->db.db_data; 1447 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1448 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1449 1450 for (int i = 0; i < n_bps; i++) { 1451 blkptr_t *bp = &bps[i]; 1452 1453 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1454 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1455 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1456 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1457 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1458 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1459 } 1460 } 1461 1462 /* 1463 * Handle reads on dbufs that are holes, if necessary. This function 1464 * requires that the dbuf's mutex is held. Returns success (0) if action 1465 * was taken, ENOENT if no action was taken. 1466 */ 1467 static int 1468 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1469 { 1470 ASSERT(MUTEX_HELD(&db->db_mtx)); 1471 1472 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1473 /* 1474 * For level 0 blocks only, if the above check fails: 1475 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1476 * processes the delete record and clears the bp while we are waiting 1477 * for the dn_mtx (resulting in a "no" from block_freed). 1478 */ 1479 if (!is_hole && db->db_level == 0) 1480 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1481 1482 if (is_hole) { 1483 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1484 memset(db->db.db_data, 0, db->db.db_size); 1485 1486 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1487 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1488 dbuf_handle_indirect_hole(db, dn, bp); 1489 } 1490 db->db_state = DB_CACHED; 1491 DTRACE_SET_STATE(db, "hole read satisfied"); 1492 return (0); 1493 } 1494 return (ENOENT); 1495 } 1496 1497 /* 1498 * This function ensures that, when doing a decrypting read of a block, 1499 * we make sure we have decrypted the dnode associated with it. We must do 1500 * this so that we ensure we are fully authenticating the checksum-of-MACs 1501 * tree from the root of the objset down to this block. Indirect blocks are 1502 * always verified against their secure checksum-of-MACs assuming that the 1503 * dnode containing them is correct. Now that we are doing a decrypting read, 1504 * we can be sure that the key is loaded and verify that assumption. This is 1505 * especially important considering that we always read encrypted dnode 1506 * blocks as raw data (without verifying their MACs) to start, and 1507 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1508 */ 1509 static int 1510 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1511 { 1512 objset_t *os = db->db_objset; 1513 dmu_buf_impl_t *dndb; 1514 arc_buf_t *dnbuf; 1515 zbookmark_phys_t zb; 1516 int err; 1517 1518 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1519 !os->os_encrypted || os->os_raw_receive || 1520 (dndb = dn->dn_dbuf) == NULL) 1521 return (0); 1522 1523 dnbuf = dndb->db_buf; 1524 if (!arc_is_encrypted(dnbuf)) 1525 return (0); 1526 1527 mutex_enter(&dndb->db_mtx); 1528 1529 /* 1530 * Since dnode buffer is modified by sync process, there can be only 1531 * one copy of it. It means we can not modify (decrypt) it while it 1532 * is being written. I don't see how this may happen now, since 1533 * encrypted dnode writes by receive should be completed before any 1534 * plain-text reads due to txg wait, but better be safe than sorry. 1535 */ 1536 while (1) { 1537 if (!arc_is_encrypted(dnbuf)) { 1538 mutex_exit(&dndb->db_mtx); 1539 return (0); 1540 } 1541 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1542 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1543 break; 1544 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1545 }; 1546 1547 SET_BOOKMARK(&zb, dmu_objset_id(os), 1548 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1549 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1550 1551 /* 1552 * An error code of EACCES tells us that the key is still not 1553 * available. This is ok if we are only reading authenticated 1554 * (and therefore non-encrypted) blocks. 1555 */ 1556 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1557 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1558 (db->db_blkid == DMU_BONUS_BLKID && 1559 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1560 err = 0; 1561 1562 mutex_exit(&dndb->db_mtx); 1563 1564 return (err); 1565 } 1566 1567 /* 1568 * Drops db_mtx and the parent lock specified by dblt and tag before 1569 * returning. 1570 */ 1571 static int 1572 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, 1573 db_lock_type_t dblt, const void *tag) 1574 { 1575 zbookmark_phys_t zb; 1576 uint32_t aflags = ARC_FLAG_NOWAIT; 1577 int err, zio_flags; 1578 blkptr_t bp, *bpp = NULL; 1579 1580 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1581 ASSERT(MUTEX_HELD(&db->db_mtx)); 1582 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1583 ASSERT(db->db_buf == NULL); 1584 ASSERT(db->db_parent == NULL || 1585 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1586 1587 if (db->db_blkid == DMU_BONUS_BLKID) { 1588 err = dbuf_read_bonus(db, dn); 1589 goto early_unlock; 1590 } 1591 1592 /* 1593 * If we have a pending block clone, we don't want to read the 1594 * underlying block, but the content of the block being cloned, 1595 * pointed by the dirty record, so we have the most recent data. 1596 * If there is no dirty record, then we hit a race in a sync 1597 * process when the dirty record is already removed, while the 1598 * dbuf is not yet destroyed. Such case is equivalent to uncached. 1599 */ 1600 if (db->db_state == DB_NOFILL) { 1601 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1602 if (dr != NULL) { 1603 if (!dr->dt.dl.dr_brtwrite) { 1604 err = EIO; 1605 goto early_unlock; 1606 } 1607 bp = dr->dt.dl.dr_overridden_by; 1608 bpp = &bp; 1609 } 1610 } 1611 1612 if (bpp == NULL && db->db_blkptr != NULL) { 1613 bp = *db->db_blkptr; 1614 bpp = &bp; 1615 } 1616 1617 err = dbuf_read_hole(db, dn, bpp); 1618 if (err == 0) 1619 goto early_unlock; 1620 1621 ASSERT(bpp != NULL); 1622 1623 /* 1624 * Any attempt to read a redacted block should result in an error. This 1625 * will never happen under normal conditions, but can be useful for 1626 * debugging purposes. 1627 */ 1628 if (BP_IS_REDACTED(bpp)) { 1629 ASSERT(dsl_dataset_feature_is_active( 1630 db->db_objset->os_dsl_dataset, 1631 SPA_FEATURE_REDACTED_DATASETS)); 1632 err = SET_ERROR(EIO); 1633 goto early_unlock; 1634 } 1635 1636 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1637 db->db.db_object, db->db_level, db->db_blkid); 1638 1639 /* 1640 * All bps of an encrypted os should have the encryption bit set. 1641 * If this is not true it indicates tampering and we report an error. 1642 */ 1643 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { 1644 spa_log_error(db->db_objset->os_spa, &zb, 1645 BP_GET_LOGICAL_BIRTH(bpp)); 1646 err = SET_ERROR(EIO); 1647 goto early_unlock; 1648 } 1649 1650 db->db_state = DB_READ; 1651 DTRACE_SET_STATE(db, "read issued"); 1652 mutex_exit(&db->db_mtx); 1653 1654 if (!DBUF_IS_CACHEABLE(db)) 1655 aflags |= ARC_FLAG_UNCACHED; 1656 else if (dbuf_is_l2cacheable(db)) 1657 aflags |= ARC_FLAG_L2CACHE; 1658 1659 dbuf_add_ref(db, NULL); 1660 1661 zio_flags = (flags & DB_RF_CANFAIL) ? 1662 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1663 1664 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1665 zio_flags |= ZIO_FLAG_RAW; 1666 /* 1667 * The zio layer will copy the provided blkptr later, but we have our 1668 * own copy so that we can release the parent's rwlock. We have to 1669 * do that so that if dbuf_read_done is called synchronously (on 1670 * an l1 cache hit) we don't acquire the db_mtx while holding the 1671 * parent's rwlock, which would be a lock ordering violation. 1672 */ 1673 dmu_buf_unlock_parent(db, dblt, tag); 1674 return (arc_read(zio, db->db_objset->os_spa, bpp, 1675 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1676 &aflags, &zb)); 1677 1678 early_unlock: 1679 mutex_exit(&db->db_mtx); 1680 dmu_buf_unlock_parent(db, dblt, tag); 1681 return (err); 1682 } 1683 1684 /* 1685 * This is our just-in-time copy function. It makes a copy of buffers that 1686 * have been modified in a previous transaction group before we access them in 1687 * the current active group. 1688 * 1689 * This function is used in three places: when we are dirtying a buffer for the 1690 * first time in a txg, when we are freeing a range in a dnode that includes 1691 * this buffer, and when we are accessing a buffer which was received compressed 1692 * and later referenced in a WRITE_BYREF record. 1693 * 1694 * Note that when we are called from dbuf_free_range() we do not put a hold on 1695 * the buffer, we just traverse the active dbuf list for the dnode. 1696 */ 1697 static void 1698 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1699 { 1700 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1701 1702 ASSERT(MUTEX_HELD(&db->db_mtx)); 1703 ASSERT(db->db.db_data != NULL); 1704 ASSERT(db->db_level == 0); 1705 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1706 1707 if (dr == NULL || 1708 (dr->dt.dl.dr_data != 1709 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1710 return; 1711 1712 /* 1713 * If the last dirty record for this dbuf has not yet synced 1714 * and its referencing the dbuf data, either: 1715 * reset the reference to point to a new copy, 1716 * or (if there a no active holders) 1717 * just null out the current db_data pointer. 1718 */ 1719 ASSERT3U(dr->dr_txg, >=, txg - 2); 1720 if (db->db_blkid == DMU_BONUS_BLKID) { 1721 dnode_t *dn = DB_DNODE(db); 1722 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1723 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1724 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1725 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1726 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1727 dnode_t *dn = DB_DNODE(db); 1728 int size = arc_buf_size(db->db_buf); 1729 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1730 spa_t *spa = db->db_objset->os_spa; 1731 enum zio_compress compress_type = 1732 arc_get_compression(db->db_buf); 1733 uint8_t complevel = arc_get_complevel(db->db_buf); 1734 1735 if (arc_is_encrypted(db->db_buf)) { 1736 boolean_t byteorder; 1737 uint8_t salt[ZIO_DATA_SALT_LEN]; 1738 uint8_t iv[ZIO_DATA_IV_LEN]; 1739 uint8_t mac[ZIO_DATA_MAC_LEN]; 1740 1741 arc_get_raw_params(db->db_buf, &byteorder, salt, 1742 iv, mac); 1743 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1744 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1745 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1746 compress_type, complevel); 1747 } else if (compress_type != ZIO_COMPRESS_OFF) { 1748 ASSERT3U(type, ==, ARC_BUFC_DATA); 1749 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1750 size, arc_buf_lsize(db->db_buf), compress_type, 1751 complevel); 1752 } else { 1753 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1754 } 1755 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1756 } else { 1757 db->db_buf = NULL; 1758 dbuf_clear_data(db); 1759 } 1760 } 1761 1762 int 1763 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) 1764 { 1765 dnode_t *dn; 1766 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1767 int err; 1768 1769 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1770 1771 DB_DNODE_ENTER(db); 1772 dn = DB_DNODE(db); 1773 1774 /* 1775 * Ensure that this block's dnode has been decrypted if the caller 1776 * has requested decrypted data. 1777 */ 1778 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1779 if (err != 0) 1780 goto done; 1781 1782 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1783 (flags & DB_RF_NOPREFETCH) == 0; 1784 1785 mutex_enter(&db->db_mtx); 1786 if (flags & DB_RF_PARTIAL_FIRST) 1787 db->db_partial_read = B_TRUE; 1788 else if (!(flags & DB_RF_PARTIAL_MORE)) 1789 db->db_partial_read = B_FALSE; 1790 miss = (db->db_state != DB_CACHED); 1791 1792 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1793 /* 1794 * Another reader came in while the dbuf was in flight between 1795 * UNCACHED and CACHED. Either a writer will finish filling 1796 * the buffer, sending the dbuf to CACHED, or the first reader's 1797 * request will reach the read_done callback and send the dbuf 1798 * to CACHED. Otherwise, a failure occurred and the dbuf will 1799 * be sent to UNCACHED. 1800 */ 1801 if (flags & DB_RF_NEVERWAIT) { 1802 mutex_exit(&db->db_mtx); 1803 DB_DNODE_EXIT(db); 1804 goto done; 1805 } 1806 do { 1807 ASSERT(db->db_state == DB_READ || 1808 (flags & DB_RF_HAVESTRUCT) == 0); 1809 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1810 zio_t *, pio); 1811 cv_wait(&db->db_changed, &db->db_mtx); 1812 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1813 if (db->db_state == DB_UNCACHED) { 1814 err = SET_ERROR(EIO); 1815 mutex_exit(&db->db_mtx); 1816 DB_DNODE_EXIT(db); 1817 goto done; 1818 } 1819 } 1820 1821 if (db->db_state == DB_CACHED) { 1822 /* 1823 * If the arc buf is compressed or encrypted and the caller 1824 * requested uncompressed data, we need to untransform it 1825 * before returning. We also call arc_untransform() on any 1826 * unauthenticated blocks, which will verify their MAC if 1827 * the key is now available. 1828 */ 1829 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL && 1830 (arc_is_encrypted(db->db_buf) || 1831 arc_is_unauthenticated(db->db_buf) || 1832 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1833 spa_t *spa = dn->dn_objset->os_spa; 1834 zbookmark_phys_t zb; 1835 1836 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1837 db->db.db_object, db->db_level, db->db_blkid); 1838 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1839 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1840 dbuf_set_data(db, db->db_buf); 1841 } 1842 mutex_exit(&db->db_mtx); 1843 } else { 1844 ASSERT(db->db_state == DB_UNCACHED || 1845 db->db_state == DB_NOFILL); 1846 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1847 if (pio == NULL && (db->db_state == DB_NOFILL || 1848 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { 1849 spa_t *spa = dn->dn_objset->os_spa; 1850 pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1851 need_wait = B_TRUE; 1852 } 1853 err = dbuf_read_impl(db, dn, pio, flags, dblt, FTAG); 1854 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1855 miss = (db->db_state != DB_CACHED); 1856 } 1857 1858 if (err == 0 && prefetch) { 1859 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1860 flags & DB_RF_HAVESTRUCT); 1861 } 1862 DB_DNODE_EXIT(db); 1863 1864 /* 1865 * If we created a zio we must execute it to avoid leaking it, even if 1866 * it isn't attached to any work due to an error in dbuf_read_impl(). 1867 */ 1868 if (need_wait) { 1869 if (err == 0) 1870 err = zio_wait(pio); 1871 else 1872 (void) zio_wait(pio); 1873 pio = NULL; 1874 } 1875 1876 done: 1877 if (miss) 1878 DBUF_STAT_BUMP(hash_misses); 1879 else 1880 DBUF_STAT_BUMP(hash_hits); 1881 if (pio && err != 0) { 1882 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1883 ZIO_FLAG_CANFAIL); 1884 zio->io_error = err; 1885 zio_nowait(zio); 1886 } 1887 1888 return (err); 1889 } 1890 1891 static void 1892 dbuf_noread(dmu_buf_impl_t *db) 1893 { 1894 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1895 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1896 mutex_enter(&db->db_mtx); 1897 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1898 cv_wait(&db->db_changed, &db->db_mtx); 1899 if (db->db_state == DB_UNCACHED) { 1900 ASSERT(db->db_buf == NULL); 1901 ASSERT(db->db.db_data == NULL); 1902 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1903 db->db_state = DB_FILL; 1904 DTRACE_SET_STATE(db, "assigning filled buffer"); 1905 } else if (db->db_state == DB_NOFILL) { 1906 dbuf_clear_data(db); 1907 } else { 1908 ASSERT3U(db->db_state, ==, DB_CACHED); 1909 } 1910 mutex_exit(&db->db_mtx); 1911 } 1912 1913 void 1914 dbuf_unoverride(dbuf_dirty_record_t *dr) 1915 { 1916 dmu_buf_impl_t *db = dr->dr_dbuf; 1917 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1918 uint64_t txg = dr->dr_txg; 1919 1920 ASSERT(MUTEX_HELD(&db->db_mtx)); 1921 /* 1922 * This assert is valid because dmu_sync() expects to be called by 1923 * a zilog's get_data while holding a range lock. This call only 1924 * comes from dbuf_dirty() callers who must also hold a range lock. 1925 */ 1926 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1927 ASSERT(db->db_level == 0); 1928 1929 if (db->db_blkid == DMU_BONUS_BLKID || 1930 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1931 return; 1932 1933 ASSERT(db->db_data_pending != dr); 1934 1935 /* free this block */ 1936 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1937 zio_free(db->db_objset->os_spa, txg, bp); 1938 1939 if (dr->dt.dl.dr_brtwrite) { 1940 ASSERT0P(dr->dt.dl.dr_data); 1941 dr->dt.dl.dr_data = db->db_buf; 1942 } 1943 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1944 dr->dt.dl.dr_nopwrite = B_FALSE; 1945 dr->dt.dl.dr_brtwrite = B_FALSE; 1946 dr->dt.dl.dr_has_raw_params = B_FALSE; 1947 1948 /* 1949 * Release the already-written buffer, so we leave it in 1950 * a consistent dirty state. Note that all callers are 1951 * modifying the buffer, so they will immediately do 1952 * another (redundant) arc_release(). Therefore, leave 1953 * the buf thawed to save the effort of freezing & 1954 * immediately re-thawing it. 1955 */ 1956 if (dr->dt.dl.dr_data) 1957 arc_release(dr->dt.dl.dr_data, db); 1958 } 1959 1960 /* 1961 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1962 * data blocks in the free range, so that any future readers will find 1963 * empty blocks. 1964 */ 1965 void 1966 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1967 dmu_tx_t *tx) 1968 { 1969 dmu_buf_impl_t *db_search; 1970 dmu_buf_impl_t *db, *db_next; 1971 uint64_t txg = tx->tx_txg; 1972 avl_index_t where; 1973 dbuf_dirty_record_t *dr; 1974 1975 if (end_blkid > dn->dn_maxblkid && 1976 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1977 end_blkid = dn->dn_maxblkid; 1978 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1979 (u_longlong_t)end_blkid); 1980 1981 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1982 db_search->db_level = 0; 1983 db_search->db_blkid = start_blkid; 1984 db_search->db_state = DB_SEARCH; 1985 1986 mutex_enter(&dn->dn_dbufs_mtx); 1987 db = avl_find(&dn->dn_dbufs, db_search, &where); 1988 ASSERT3P(db, ==, NULL); 1989 1990 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1991 1992 for (; db != NULL; db = db_next) { 1993 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1994 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1995 1996 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1997 break; 1998 } 1999 ASSERT3U(db->db_blkid, >=, start_blkid); 2000 2001 /* found a level 0 buffer in the range */ 2002 mutex_enter(&db->db_mtx); 2003 if (dbuf_undirty(db, tx)) { 2004 /* mutex has been dropped and dbuf destroyed */ 2005 continue; 2006 } 2007 2008 if (db->db_state == DB_UNCACHED || 2009 db->db_state == DB_NOFILL || 2010 db->db_state == DB_EVICTING) { 2011 ASSERT(db->db.db_data == NULL); 2012 mutex_exit(&db->db_mtx); 2013 continue; 2014 } 2015 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2016 /* will be handled in dbuf_read_done or dbuf_rele */ 2017 db->db_freed_in_flight = TRUE; 2018 mutex_exit(&db->db_mtx); 2019 continue; 2020 } 2021 if (zfs_refcount_count(&db->db_holds) == 0) { 2022 ASSERT(db->db_buf); 2023 dbuf_destroy(db); 2024 continue; 2025 } 2026 /* The dbuf is referenced */ 2027 2028 dr = list_head(&db->db_dirty_records); 2029 if (dr != NULL) { 2030 if (dr->dr_txg == txg) { 2031 /* 2032 * This buffer is "in-use", re-adjust the file 2033 * size to reflect that this buffer may 2034 * contain new data when we sync. 2035 */ 2036 if (db->db_blkid != DMU_SPILL_BLKID && 2037 db->db_blkid > dn->dn_maxblkid) 2038 dn->dn_maxblkid = db->db_blkid; 2039 dbuf_unoverride(dr); 2040 } else { 2041 /* 2042 * This dbuf is not dirty in the open context. 2043 * Either uncache it (if its not referenced in 2044 * the open context) or reset its contents to 2045 * empty. 2046 */ 2047 dbuf_fix_old_data(db, txg); 2048 } 2049 } 2050 /* clear the contents if its cached */ 2051 if (db->db_state == DB_CACHED) { 2052 ASSERT(db->db.db_data != NULL); 2053 arc_release(db->db_buf, db); 2054 rw_enter(&db->db_rwlock, RW_WRITER); 2055 memset(db->db.db_data, 0, db->db.db_size); 2056 rw_exit(&db->db_rwlock); 2057 arc_buf_freeze(db->db_buf); 2058 } 2059 2060 mutex_exit(&db->db_mtx); 2061 } 2062 2063 mutex_exit(&dn->dn_dbufs_mtx); 2064 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2065 } 2066 2067 void 2068 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2069 { 2070 arc_buf_t *buf, *old_buf; 2071 dbuf_dirty_record_t *dr; 2072 int osize = db->db.db_size; 2073 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2074 dnode_t *dn; 2075 2076 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2077 2078 DB_DNODE_ENTER(db); 2079 dn = DB_DNODE(db); 2080 2081 /* 2082 * XXX we should be doing a dbuf_read, checking the return 2083 * value and returning that up to our callers 2084 */ 2085 dmu_buf_will_dirty(&db->db, tx); 2086 2087 /* create the data buffer for the new block */ 2088 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2089 2090 /* copy old block data to the new block */ 2091 old_buf = db->db_buf; 2092 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2093 /* zero the remainder */ 2094 if (size > osize) 2095 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2096 2097 mutex_enter(&db->db_mtx); 2098 dbuf_set_data(db, buf); 2099 arc_buf_destroy(old_buf, db); 2100 db->db.db_size = size; 2101 2102 dr = list_head(&db->db_dirty_records); 2103 /* dirty record added by dmu_buf_will_dirty() */ 2104 VERIFY(dr != NULL); 2105 if (db->db_level == 0) 2106 dr->dt.dl.dr_data = buf; 2107 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2108 ASSERT3U(dr->dr_accounted, ==, osize); 2109 dr->dr_accounted = size; 2110 mutex_exit(&db->db_mtx); 2111 2112 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2113 DB_DNODE_EXIT(db); 2114 } 2115 2116 void 2117 dbuf_release_bp(dmu_buf_impl_t *db) 2118 { 2119 objset_t *os __maybe_unused = db->db_objset; 2120 2121 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2122 ASSERT(arc_released(os->os_phys_buf) || 2123 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2124 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2125 2126 (void) arc_release(db->db_buf, db); 2127 } 2128 2129 /* 2130 * We already have a dirty record for this TXG, and we are being 2131 * dirtied again. 2132 */ 2133 static void 2134 dbuf_redirty(dbuf_dirty_record_t *dr) 2135 { 2136 dmu_buf_impl_t *db = dr->dr_dbuf; 2137 2138 ASSERT(MUTEX_HELD(&db->db_mtx)); 2139 2140 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2141 /* 2142 * If this buffer has already been written out, 2143 * we now need to reset its state. 2144 */ 2145 dbuf_unoverride(dr); 2146 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2147 db->db_state != DB_NOFILL) { 2148 /* Already released on initial dirty, so just thaw. */ 2149 ASSERT(arc_released(db->db_buf)); 2150 arc_buf_thaw(db->db_buf); 2151 } 2152 } 2153 } 2154 2155 dbuf_dirty_record_t * 2156 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2157 { 2158 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2159 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2160 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2161 ASSERT(dn->dn_maxblkid >= blkid); 2162 2163 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2164 list_link_init(&dr->dr_dirty_node); 2165 list_link_init(&dr->dr_dbuf_node); 2166 dr->dr_dnode = dn; 2167 dr->dr_txg = tx->tx_txg; 2168 dr->dt.dll.dr_blkid = blkid; 2169 dr->dr_accounted = dn->dn_datablksz; 2170 2171 /* 2172 * There should not be any dbuf for the block that we're dirtying. 2173 * Otherwise the buffer contents could be inconsistent between the 2174 * dbuf and the lightweight dirty record. 2175 */ 2176 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2177 NULL)); 2178 2179 mutex_enter(&dn->dn_mtx); 2180 int txgoff = tx->tx_txg & TXG_MASK; 2181 if (dn->dn_free_ranges[txgoff] != NULL) { 2182 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2183 } 2184 2185 if (dn->dn_nlevels == 1) { 2186 ASSERT3U(blkid, <, dn->dn_nblkptr); 2187 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2188 mutex_exit(&dn->dn_mtx); 2189 rw_exit(&dn->dn_struct_rwlock); 2190 dnode_setdirty(dn, tx); 2191 } else { 2192 mutex_exit(&dn->dn_mtx); 2193 2194 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2195 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2196 1, blkid >> epbs, FTAG); 2197 rw_exit(&dn->dn_struct_rwlock); 2198 if (parent_db == NULL) { 2199 kmem_free(dr, sizeof (*dr)); 2200 return (NULL); 2201 } 2202 int err = dbuf_read(parent_db, NULL, 2203 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2204 if (err != 0) { 2205 dbuf_rele(parent_db, FTAG); 2206 kmem_free(dr, sizeof (*dr)); 2207 return (NULL); 2208 } 2209 2210 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2211 dbuf_rele(parent_db, FTAG); 2212 mutex_enter(&parent_dr->dt.di.dr_mtx); 2213 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2214 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2215 mutex_exit(&parent_dr->dt.di.dr_mtx); 2216 dr->dr_parent = parent_dr; 2217 } 2218 2219 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2220 2221 return (dr); 2222 } 2223 2224 dbuf_dirty_record_t * 2225 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2226 { 2227 dnode_t *dn; 2228 objset_t *os; 2229 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2230 int txgoff = tx->tx_txg & TXG_MASK; 2231 boolean_t drop_struct_rwlock = B_FALSE; 2232 2233 ASSERT(tx->tx_txg != 0); 2234 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2235 DMU_TX_DIRTY_BUF(tx, db); 2236 2237 DB_DNODE_ENTER(db); 2238 dn = DB_DNODE(db); 2239 /* 2240 * Shouldn't dirty a regular buffer in syncing context. Private 2241 * objects may be dirtied in syncing context, but only if they 2242 * were already pre-dirtied in open context. 2243 */ 2244 #ifdef ZFS_DEBUG 2245 if (dn->dn_objset->os_dsl_dataset != NULL) { 2246 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2247 RW_READER, FTAG); 2248 } 2249 ASSERT(!dmu_tx_is_syncing(tx) || 2250 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2251 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2252 dn->dn_objset->os_dsl_dataset == NULL); 2253 if (dn->dn_objset->os_dsl_dataset != NULL) 2254 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2255 #endif 2256 /* 2257 * We make this assert for private objects as well, but after we 2258 * check if we're already dirty. They are allowed to re-dirty 2259 * in syncing context. 2260 */ 2261 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2262 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2263 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2264 2265 mutex_enter(&db->db_mtx); 2266 /* 2267 * XXX make this true for indirects too? The problem is that 2268 * transactions created with dmu_tx_create_assigned() from 2269 * syncing context don't bother holding ahead. 2270 */ 2271 ASSERT(db->db_level != 0 || 2272 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2273 db->db_state == DB_NOFILL); 2274 2275 mutex_enter(&dn->dn_mtx); 2276 dnode_set_dirtyctx(dn, tx, db); 2277 if (tx->tx_txg > dn->dn_dirty_txg) 2278 dn->dn_dirty_txg = tx->tx_txg; 2279 mutex_exit(&dn->dn_mtx); 2280 2281 if (db->db_blkid == DMU_SPILL_BLKID) 2282 dn->dn_have_spill = B_TRUE; 2283 2284 /* 2285 * If this buffer is already dirty, we're done. 2286 */ 2287 dr_head = list_head(&db->db_dirty_records); 2288 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2289 db->db.db_object == DMU_META_DNODE_OBJECT); 2290 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2291 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2292 DB_DNODE_EXIT(db); 2293 2294 dbuf_redirty(dr_next); 2295 mutex_exit(&db->db_mtx); 2296 return (dr_next); 2297 } 2298 2299 /* 2300 * Only valid if not already dirty. 2301 */ 2302 ASSERT(dn->dn_object == 0 || 2303 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2304 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2305 2306 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2307 2308 /* 2309 * We should only be dirtying in syncing context if it's the 2310 * mos or we're initializing the os or it's a special object. 2311 * However, we are allowed to dirty in syncing context provided 2312 * we already dirtied it in open context. Hence we must make 2313 * this assertion only if we're not already dirty. 2314 */ 2315 os = dn->dn_objset; 2316 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2317 #ifdef ZFS_DEBUG 2318 if (dn->dn_objset->os_dsl_dataset != NULL) 2319 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2320 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2321 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2322 if (dn->dn_objset->os_dsl_dataset != NULL) 2323 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2324 #endif 2325 ASSERT(db->db.db_size != 0); 2326 2327 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2328 2329 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2330 dmu_objset_willuse_space(os, db->db.db_size, tx); 2331 } 2332 2333 /* 2334 * If this buffer is dirty in an old transaction group we need 2335 * to make a copy of it so that the changes we make in this 2336 * transaction group won't leak out when we sync the older txg. 2337 */ 2338 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2339 list_link_init(&dr->dr_dirty_node); 2340 list_link_init(&dr->dr_dbuf_node); 2341 dr->dr_dnode = dn; 2342 if (db->db_level == 0) { 2343 void *data_old = db->db_buf; 2344 2345 if (db->db_state != DB_NOFILL) { 2346 if (db->db_blkid == DMU_BONUS_BLKID) { 2347 dbuf_fix_old_data(db, tx->tx_txg); 2348 data_old = db->db.db_data; 2349 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2350 /* 2351 * Release the data buffer from the cache so 2352 * that we can modify it without impacting 2353 * possible other users of this cached data 2354 * block. Note that indirect blocks and 2355 * private objects are not released until the 2356 * syncing state (since they are only modified 2357 * then). 2358 */ 2359 arc_release(db->db_buf, db); 2360 dbuf_fix_old_data(db, tx->tx_txg); 2361 data_old = db->db_buf; 2362 } 2363 ASSERT(data_old != NULL); 2364 } 2365 dr->dt.dl.dr_data = data_old; 2366 } else { 2367 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2368 list_create(&dr->dt.di.dr_children, 2369 sizeof (dbuf_dirty_record_t), 2370 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2371 } 2372 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2373 dr->dr_accounted = db->db.db_size; 2374 } 2375 dr->dr_dbuf = db; 2376 dr->dr_txg = tx->tx_txg; 2377 list_insert_before(&db->db_dirty_records, dr_next, dr); 2378 2379 /* 2380 * We could have been freed_in_flight between the dbuf_noread 2381 * and dbuf_dirty. We win, as though the dbuf_noread() had 2382 * happened after the free. 2383 */ 2384 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2385 db->db_blkid != DMU_SPILL_BLKID) { 2386 mutex_enter(&dn->dn_mtx); 2387 if (dn->dn_free_ranges[txgoff] != NULL) { 2388 range_tree_clear(dn->dn_free_ranges[txgoff], 2389 db->db_blkid, 1); 2390 } 2391 mutex_exit(&dn->dn_mtx); 2392 db->db_freed_in_flight = FALSE; 2393 } 2394 2395 /* 2396 * This buffer is now part of this txg 2397 */ 2398 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2399 db->db_dirtycnt += 1; 2400 ASSERT3U(db->db_dirtycnt, <=, 3); 2401 2402 mutex_exit(&db->db_mtx); 2403 2404 if (db->db_blkid == DMU_BONUS_BLKID || 2405 db->db_blkid == DMU_SPILL_BLKID) { 2406 mutex_enter(&dn->dn_mtx); 2407 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2408 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2409 mutex_exit(&dn->dn_mtx); 2410 dnode_setdirty(dn, tx); 2411 DB_DNODE_EXIT(db); 2412 return (dr); 2413 } 2414 2415 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2416 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2417 drop_struct_rwlock = B_TRUE; 2418 } 2419 2420 /* 2421 * If we are overwriting a dedup BP, then unless it is snapshotted, 2422 * when we get to syncing context we will need to decrement its 2423 * refcount in the DDT. Prefetch the relevant DDT block so that 2424 * syncing context won't have to wait for the i/o. 2425 */ 2426 if (db->db_blkptr != NULL) { 2427 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2428 ddt_prefetch(os->os_spa, db->db_blkptr); 2429 dmu_buf_unlock_parent(db, dblt, FTAG); 2430 } 2431 2432 /* 2433 * We need to hold the dn_struct_rwlock to make this assertion, 2434 * because it protects dn_phys / dn_next_nlevels from changing. 2435 */ 2436 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2437 dn->dn_phys->dn_nlevels > db->db_level || 2438 dn->dn_next_nlevels[txgoff] > db->db_level || 2439 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2440 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2441 2442 2443 if (db->db_level == 0) { 2444 ASSERT(!db->db_objset->os_raw_receive || 2445 dn->dn_maxblkid >= db->db_blkid); 2446 dnode_new_blkid(dn, db->db_blkid, tx, 2447 drop_struct_rwlock, B_FALSE); 2448 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2449 } 2450 2451 if (db->db_level+1 < dn->dn_nlevels) { 2452 dmu_buf_impl_t *parent = db->db_parent; 2453 dbuf_dirty_record_t *di; 2454 int parent_held = FALSE; 2455 2456 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2457 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2458 parent = dbuf_hold_level(dn, db->db_level + 1, 2459 db->db_blkid >> epbs, FTAG); 2460 ASSERT(parent != NULL); 2461 parent_held = TRUE; 2462 } 2463 if (drop_struct_rwlock) 2464 rw_exit(&dn->dn_struct_rwlock); 2465 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2466 di = dbuf_dirty(parent, tx); 2467 if (parent_held) 2468 dbuf_rele(parent, FTAG); 2469 2470 mutex_enter(&db->db_mtx); 2471 /* 2472 * Since we've dropped the mutex, it's possible that 2473 * dbuf_undirty() might have changed this out from under us. 2474 */ 2475 if (list_head(&db->db_dirty_records) == dr || 2476 dn->dn_object == DMU_META_DNODE_OBJECT) { 2477 mutex_enter(&di->dt.di.dr_mtx); 2478 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2479 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2480 list_insert_tail(&di->dt.di.dr_children, dr); 2481 mutex_exit(&di->dt.di.dr_mtx); 2482 dr->dr_parent = di; 2483 } 2484 mutex_exit(&db->db_mtx); 2485 } else { 2486 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2487 ASSERT(db->db_blkid < dn->dn_nblkptr); 2488 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2489 mutex_enter(&dn->dn_mtx); 2490 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2491 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2492 mutex_exit(&dn->dn_mtx); 2493 if (drop_struct_rwlock) 2494 rw_exit(&dn->dn_struct_rwlock); 2495 } 2496 2497 dnode_setdirty(dn, tx); 2498 DB_DNODE_EXIT(db); 2499 return (dr); 2500 } 2501 2502 static void 2503 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2504 { 2505 dmu_buf_impl_t *db = dr->dr_dbuf; 2506 2507 if (dr->dt.dl.dr_data != db->db.db_data) { 2508 struct dnode *dn = dr->dr_dnode; 2509 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2510 2511 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2512 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2513 } 2514 db->db_data_pending = NULL; 2515 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2516 list_remove(&db->db_dirty_records, dr); 2517 if (dr->dr_dbuf->db_level != 0) { 2518 mutex_destroy(&dr->dt.di.dr_mtx); 2519 list_destroy(&dr->dt.di.dr_children); 2520 } 2521 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2522 ASSERT3U(db->db_dirtycnt, >, 0); 2523 db->db_dirtycnt -= 1; 2524 } 2525 2526 /* 2527 * Undirty a buffer in the transaction group referenced by the given 2528 * transaction. Return whether this evicted the dbuf. 2529 */ 2530 boolean_t 2531 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2532 { 2533 uint64_t txg = tx->tx_txg; 2534 boolean_t brtwrite; 2535 2536 ASSERT(txg != 0); 2537 2538 /* 2539 * Due to our use of dn_nlevels below, this can only be called 2540 * in open context, unless we are operating on the MOS. 2541 * From syncing context, dn_nlevels may be different from the 2542 * dn_nlevels used when dbuf was dirtied. 2543 */ 2544 ASSERT(db->db_objset == 2545 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2546 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2547 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2548 ASSERT0(db->db_level); 2549 ASSERT(MUTEX_HELD(&db->db_mtx)); 2550 2551 /* 2552 * If this buffer is not dirty, we're done. 2553 */ 2554 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2555 if (dr == NULL) 2556 return (B_FALSE); 2557 ASSERT(dr->dr_dbuf == db); 2558 2559 brtwrite = dr->dt.dl.dr_brtwrite; 2560 if (brtwrite) { 2561 /* 2562 * We are freeing a block that we cloned in the same 2563 * transaction group. 2564 */ 2565 brt_pending_remove(dmu_objset_spa(db->db_objset), 2566 &dr->dt.dl.dr_overridden_by, tx); 2567 } 2568 2569 dnode_t *dn = dr->dr_dnode; 2570 2571 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2572 2573 ASSERT(db->db.db_size != 0); 2574 2575 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2576 dr->dr_accounted, txg); 2577 2578 list_remove(&db->db_dirty_records, dr); 2579 2580 /* 2581 * Note that there are three places in dbuf_dirty() 2582 * where this dirty record may be put on a list. 2583 * Make sure to do a list_remove corresponding to 2584 * every one of those list_insert calls. 2585 */ 2586 if (dr->dr_parent) { 2587 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2588 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2589 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2590 } else if (db->db_blkid == DMU_SPILL_BLKID || 2591 db->db_level + 1 == dn->dn_nlevels) { 2592 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2593 mutex_enter(&dn->dn_mtx); 2594 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2595 mutex_exit(&dn->dn_mtx); 2596 } 2597 2598 if (db->db_state != DB_NOFILL && !brtwrite) { 2599 dbuf_unoverride(dr); 2600 2601 ASSERT(db->db_buf != NULL); 2602 ASSERT(dr->dt.dl.dr_data != NULL); 2603 if (dr->dt.dl.dr_data != db->db_buf) 2604 arc_buf_destroy(dr->dt.dl.dr_data, db); 2605 } 2606 2607 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2608 2609 ASSERT(db->db_dirtycnt > 0); 2610 db->db_dirtycnt -= 1; 2611 2612 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2613 ASSERT(db->db_state == DB_NOFILL || brtwrite || 2614 arc_released(db->db_buf)); 2615 dbuf_destroy(db); 2616 return (B_TRUE); 2617 } 2618 2619 return (B_FALSE); 2620 } 2621 2622 static void 2623 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2624 { 2625 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2626 boolean_t undirty = B_FALSE; 2627 2628 ASSERT(tx->tx_txg != 0); 2629 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2630 2631 /* 2632 * Quick check for dirtiness to improve performance for some workloads 2633 * (e.g. file deletion with indirect blocks cached). 2634 */ 2635 mutex_enter(&db->db_mtx); 2636 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2637 /* 2638 * It's possible that the dbuf is already dirty but not cached, 2639 * because there are some calls to dbuf_dirty() that don't 2640 * go through dmu_buf_will_dirty(). 2641 */ 2642 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2643 if (dr != NULL) { 2644 if (db->db_level == 0 && 2645 dr->dt.dl.dr_brtwrite) { 2646 /* 2647 * Block cloning: If we are dirtying a cloned 2648 * level 0 block, we cannot simply redirty it, 2649 * because this dr has no associated data. 2650 * We will go through a full undirtying below, 2651 * before dirtying it again. 2652 */ 2653 undirty = B_TRUE; 2654 } else { 2655 /* This dbuf is already dirty and cached. */ 2656 dbuf_redirty(dr); 2657 mutex_exit(&db->db_mtx); 2658 return; 2659 } 2660 } 2661 } 2662 mutex_exit(&db->db_mtx); 2663 2664 DB_DNODE_ENTER(db); 2665 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2666 flags |= DB_RF_HAVESTRUCT; 2667 DB_DNODE_EXIT(db); 2668 2669 /* 2670 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2671 * want to make sure dbuf_read() will read the pending cloned block and 2672 * not the uderlying block that is being replaced. dbuf_undirty() will 2673 * do dbuf_unoverride(), so we will end up with cloned block content, 2674 * without overridden BP. 2675 */ 2676 (void) dbuf_read(db, NULL, flags); 2677 if (undirty) { 2678 mutex_enter(&db->db_mtx); 2679 VERIFY(!dbuf_undirty(db, tx)); 2680 mutex_exit(&db->db_mtx); 2681 } 2682 (void) dbuf_dirty(db, tx); 2683 } 2684 2685 void 2686 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2687 { 2688 dmu_buf_will_dirty_impl(db_fake, 2689 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2690 } 2691 2692 boolean_t 2693 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2694 { 2695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2696 dbuf_dirty_record_t *dr; 2697 2698 mutex_enter(&db->db_mtx); 2699 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2700 mutex_exit(&db->db_mtx); 2701 return (dr != NULL); 2702 } 2703 2704 void 2705 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx) 2706 { 2707 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2708 ASSERT0(db->db_level); 2709 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2710 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2711 2712 /* 2713 * Block cloning: We are going to clone into this block, so undirty 2714 * modifications done to this block so far in this txg. This includes 2715 * writes and clones into this block. 2716 */ 2717 mutex_enter(&db->db_mtx); 2718 DBUF_VERIFY(db); 2719 VERIFY(!dbuf_undirty(db, tx)); 2720 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2721 if (db->db_buf != NULL) { 2722 /* 2723 * If there is an associated ARC buffer with this dbuf we can 2724 * only destroy it if the previous dirty record does not 2725 * reference it. 2726 */ 2727 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2728 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2729 arc_buf_destroy(db->db_buf, db); 2730 2731 db->db_buf = NULL; 2732 dbuf_clear_data(db); 2733 } 2734 2735 ASSERT3P(db->db_buf, ==, NULL); 2736 ASSERT3P(db->db.db_data, ==, NULL); 2737 2738 db->db_state = DB_NOFILL; 2739 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone"); 2740 2741 DBUF_VERIFY(db); 2742 mutex_exit(&db->db_mtx); 2743 2744 dbuf_noread(db); 2745 (void) dbuf_dirty(db, tx); 2746 } 2747 2748 void 2749 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2750 { 2751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2752 2753 mutex_enter(&db->db_mtx); 2754 db->db_state = DB_NOFILL; 2755 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2756 mutex_exit(&db->db_mtx); 2757 2758 dbuf_noread(db); 2759 (void) dbuf_dirty(db, tx); 2760 } 2761 2762 void 2763 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2764 { 2765 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2766 2767 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2768 ASSERT(tx->tx_txg != 0); 2769 ASSERT(db->db_level == 0); 2770 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2771 2772 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2773 dmu_tx_private_ok(tx)); 2774 2775 mutex_enter(&db->db_mtx); 2776 if (db->db_state == DB_NOFILL) { 2777 /* 2778 * Block cloning: We will be completely overwriting a block 2779 * cloned in this transaction group, so let's undirty the 2780 * pending clone and mark the block as uncached. This will be 2781 * as if the clone was never done. But if the fill can fail 2782 * we should have a way to return back to the cloned data. 2783 */ 2784 if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) { 2785 mutex_exit(&db->db_mtx); 2786 dmu_buf_will_dirty(db_fake, tx); 2787 return; 2788 } 2789 VERIFY(!dbuf_undirty(db, tx)); 2790 db->db_state = DB_UNCACHED; 2791 } 2792 mutex_exit(&db->db_mtx); 2793 2794 dbuf_noread(db); 2795 (void) dbuf_dirty(db, tx); 2796 } 2797 2798 /* 2799 * This function is effectively the same as dmu_buf_will_dirty(), but 2800 * indicates the caller expects raw encrypted data in the db, and provides 2801 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2802 * blkptr_t when this dbuf is written. This is only used for blocks of 2803 * dnodes, during raw receive. 2804 */ 2805 void 2806 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2807 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2808 { 2809 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2810 dbuf_dirty_record_t *dr; 2811 2812 /* 2813 * dr_has_raw_params is only processed for blocks of dnodes 2814 * (see dbuf_sync_dnode_leaf_crypt()). 2815 */ 2816 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2817 ASSERT3U(db->db_level, ==, 0); 2818 ASSERT(db->db_objset->os_raw_receive); 2819 2820 dmu_buf_will_dirty_impl(db_fake, 2821 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2822 2823 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2824 2825 ASSERT3P(dr, !=, NULL); 2826 2827 dr->dt.dl.dr_has_raw_params = B_TRUE; 2828 dr->dt.dl.dr_byteorder = byteorder; 2829 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2830 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2831 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2832 } 2833 2834 static void 2835 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2836 { 2837 struct dirty_leaf *dl; 2838 dbuf_dirty_record_t *dr; 2839 2840 dr = list_head(&db->db_dirty_records); 2841 ASSERT3P(dr, !=, NULL); 2842 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2843 dl = &dr->dt.dl; 2844 dl->dr_overridden_by = *bp; 2845 dl->dr_override_state = DR_OVERRIDDEN; 2846 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2847 } 2848 2849 boolean_t 2850 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2851 { 2852 (void) tx; 2853 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2854 mutex_enter(&db->db_mtx); 2855 DBUF_VERIFY(db); 2856 2857 if (db->db_state == DB_FILL) { 2858 if (db->db_level == 0 && db->db_freed_in_flight) { 2859 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2860 /* we were freed while filling */ 2861 /* XXX dbuf_undirty? */ 2862 memset(db->db.db_data, 0, db->db.db_size); 2863 db->db_freed_in_flight = FALSE; 2864 db->db_state = DB_CACHED; 2865 DTRACE_SET_STATE(db, 2866 "fill done handling freed in flight"); 2867 failed = B_FALSE; 2868 } else if (failed) { 2869 VERIFY(!dbuf_undirty(db, tx)); 2870 arc_buf_destroy(db->db_buf, db); 2871 db->db_buf = NULL; 2872 dbuf_clear_data(db); 2873 DTRACE_SET_STATE(db, "fill failed"); 2874 } else { 2875 db->db_state = DB_CACHED; 2876 DTRACE_SET_STATE(db, "fill done"); 2877 } 2878 cv_broadcast(&db->db_changed); 2879 } else { 2880 db->db_state = DB_CACHED; 2881 failed = B_FALSE; 2882 } 2883 mutex_exit(&db->db_mtx); 2884 return (failed); 2885 } 2886 2887 void 2888 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2889 bp_embedded_type_t etype, enum zio_compress comp, 2890 int uncompressed_size, int compressed_size, int byteorder, 2891 dmu_tx_t *tx) 2892 { 2893 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2894 struct dirty_leaf *dl; 2895 dmu_object_type_t type; 2896 dbuf_dirty_record_t *dr; 2897 2898 if (etype == BP_EMBEDDED_TYPE_DATA) { 2899 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2900 SPA_FEATURE_EMBEDDED_DATA)); 2901 } 2902 2903 DB_DNODE_ENTER(db); 2904 type = DB_DNODE(db)->dn_type; 2905 DB_DNODE_EXIT(db); 2906 2907 ASSERT0(db->db_level); 2908 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2909 2910 dmu_buf_will_not_fill(dbuf, tx); 2911 2912 dr = list_head(&db->db_dirty_records); 2913 ASSERT3P(dr, !=, NULL); 2914 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2915 dl = &dr->dt.dl; 2916 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2917 data, comp, uncompressed_size, compressed_size); 2918 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2919 BP_SET_TYPE(&dl->dr_overridden_by, type); 2920 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2921 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2922 2923 dl->dr_override_state = DR_OVERRIDDEN; 2924 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2925 } 2926 2927 void 2928 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2929 { 2930 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2931 dmu_object_type_t type; 2932 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2933 SPA_FEATURE_REDACTED_DATASETS)); 2934 2935 DB_DNODE_ENTER(db); 2936 type = DB_DNODE(db)->dn_type; 2937 DB_DNODE_EXIT(db); 2938 2939 ASSERT0(db->db_level); 2940 dmu_buf_will_not_fill(dbuf, tx); 2941 2942 blkptr_t bp = { { { {0} } } }; 2943 BP_SET_TYPE(&bp, type); 2944 BP_SET_LEVEL(&bp, 0); 2945 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2946 BP_SET_REDACTED(&bp); 2947 BPE_SET_LSIZE(&bp, dbuf->db_size); 2948 2949 dbuf_override_impl(db, &bp, tx); 2950 } 2951 2952 /* 2953 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2954 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2955 */ 2956 void 2957 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2958 { 2959 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2960 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2961 ASSERT(db->db_level == 0); 2962 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2963 ASSERT(buf != NULL); 2964 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2965 ASSERT(tx->tx_txg != 0); 2966 2967 arc_return_buf(buf, db); 2968 ASSERT(arc_released(buf)); 2969 2970 mutex_enter(&db->db_mtx); 2971 2972 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2973 cv_wait(&db->db_changed, &db->db_mtx); 2974 2975 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 2976 db->db_state == DB_NOFILL); 2977 2978 if (db->db_state == DB_CACHED && 2979 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2980 /* 2981 * In practice, we will never have a case where we have an 2982 * encrypted arc buffer while additional holds exist on the 2983 * dbuf. We don't handle this here so we simply assert that 2984 * fact instead. 2985 */ 2986 ASSERT(!arc_is_encrypted(buf)); 2987 mutex_exit(&db->db_mtx); 2988 (void) dbuf_dirty(db, tx); 2989 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2990 arc_buf_destroy(buf, db); 2991 return; 2992 } 2993 2994 if (db->db_state == DB_CACHED) { 2995 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2996 2997 ASSERT(db->db_buf != NULL); 2998 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2999 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3000 3001 if (!arc_released(db->db_buf)) { 3002 ASSERT(dr->dt.dl.dr_override_state == 3003 DR_OVERRIDDEN); 3004 arc_release(db->db_buf, db); 3005 } 3006 dr->dt.dl.dr_data = buf; 3007 arc_buf_destroy(db->db_buf, db); 3008 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3009 arc_release(db->db_buf, db); 3010 arc_buf_destroy(db->db_buf, db); 3011 } 3012 db->db_buf = NULL; 3013 } else if (db->db_state == DB_NOFILL) { 3014 /* 3015 * We will be completely replacing the cloned block. In case 3016 * it was cloned in this transaction group, let's undirty the 3017 * pending clone and mark the block as uncached. This will be 3018 * as if the clone was never done. 3019 */ 3020 VERIFY(!dbuf_undirty(db, tx)); 3021 db->db_state = DB_UNCACHED; 3022 } 3023 ASSERT(db->db_buf == NULL); 3024 dbuf_set_data(db, buf); 3025 db->db_state = DB_FILL; 3026 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3027 mutex_exit(&db->db_mtx); 3028 (void) dbuf_dirty(db, tx); 3029 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3030 } 3031 3032 void 3033 dbuf_destroy(dmu_buf_impl_t *db) 3034 { 3035 dnode_t *dn; 3036 dmu_buf_impl_t *parent = db->db_parent; 3037 dmu_buf_impl_t *dndb; 3038 3039 ASSERT(MUTEX_HELD(&db->db_mtx)); 3040 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3041 3042 if (db->db_buf != NULL) { 3043 arc_buf_destroy(db->db_buf, db); 3044 db->db_buf = NULL; 3045 } 3046 3047 if (db->db_blkid == DMU_BONUS_BLKID) { 3048 int slots = DB_DNODE(db)->dn_num_slots; 3049 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3050 if (db->db.db_data != NULL) { 3051 kmem_free(db->db.db_data, bonuslen); 3052 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3053 db->db_state = DB_UNCACHED; 3054 DTRACE_SET_STATE(db, "buffer cleared"); 3055 } 3056 } 3057 3058 dbuf_clear_data(db); 3059 3060 if (multilist_link_active(&db->db_cache_link)) { 3061 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3062 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3063 3064 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3065 3066 ASSERT0(dmu_buf_user_size(&db->db)); 3067 (void) zfs_refcount_remove_many( 3068 &dbuf_caches[db->db_caching_status].size, 3069 db->db.db_size, db); 3070 3071 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3072 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3073 } else { 3074 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3075 DBUF_STAT_BUMPDOWN(cache_count); 3076 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3077 db->db.db_size); 3078 } 3079 db->db_caching_status = DB_NO_CACHE; 3080 } 3081 3082 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3083 ASSERT(db->db_data_pending == NULL); 3084 ASSERT(list_is_empty(&db->db_dirty_records)); 3085 3086 db->db_state = DB_EVICTING; 3087 DTRACE_SET_STATE(db, "buffer eviction started"); 3088 db->db_blkptr = NULL; 3089 3090 /* 3091 * Now that db_state is DB_EVICTING, nobody else can find this via 3092 * the hash table. We can now drop db_mtx, which allows us to 3093 * acquire the dn_dbufs_mtx. 3094 */ 3095 mutex_exit(&db->db_mtx); 3096 3097 DB_DNODE_ENTER(db); 3098 dn = DB_DNODE(db); 3099 dndb = dn->dn_dbuf; 3100 if (db->db_blkid != DMU_BONUS_BLKID) { 3101 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3102 if (needlock) 3103 mutex_enter_nested(&dn->dn_dbufs_mtx, 3104 NESTED_SINGLE); 3105 avl_remove(&dn->dn_dbufs, db); 3106 membar_producer(); 3107 DB_DNODE_EXIT(db); 3108 if (needlock) 3109 mutex_exit(&dn->dn_dbufs_mtx); 3110 /* 3111 * Decrementing the dbuf count means that the hold corresponding 3112 * to the removed dbuf is no longer discounted in dnode_move(), 3113 * so the dnode cannot be moved until after we release the hold. 3114 * The membar_producer() ensures visibility of the decremented 3115 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3116 * release any lock. 3117 */ 3118 mutex_enter(&dn->dn_mtx); 3119 dnode_rele_and_unlock(dn, db, B_TRUE); 3120 #ifdef USE_DNODE_HANDLE 3121 db->db_dnode_handle = NULL; 3122 #else 3123 db->db_dnode = NULL; 3124 #endif 3125 3126 dbuf_hash_remove(db); 3127 } else { 3128 DB_DNODE_EXIT(db); 3129 } 3130 3131 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3132 3133 db->db_parent = NULL; 3134 3135 ASSERT(db->db_buf == NULL); 3136 ASSERT(db->db.db_data == NULL); 3137 ASSERT(db->db_hash_next == NULL); 3138 ASSERT(db->db_blkptr == NULL); 3139 ASSERT(db->db_data_pending == NULL); 3140 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3141 ASSERT(!multilist_link_active(&db->db_cache_link)); 3142 3143 /* 3144 * If this dbuf is referenced from an indirect dbuf, 3145 * decrement the ref count on the indirect dbuf. 3146 */ 3147 if (parent && parent != dndb) { 3148 mutex_enter(&parent->db_mtx); 3149 dbuf_rele_and_unlock(parent, db, B_TRUE); 3150 } 3151 3152 kmem_cache_free(dbuf_kmem_cache, db); 3153 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3154 } 3155 3156 /* 3157 * Note: While bpp will always be updated if the function returns success, 3158 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3159 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3160 * object. 3161 */ 3162 __attribute__((always_inline)) 3163 static inline int 3164 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3165 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3166 { 3167 *parentp = NULL; 3168 *bpp = NULL; 3169 3170 ASSERT(blkid != DMU_BONUS_BLKID); 3171 3172 if (blkid == DMU_SPILL_BLKID) { 3173 mutex_enter(&dn->dn_mtx); 3174 if (dn->dn_have_spill && 3175 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3176 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3177 else 3178 *bpp = NULL; 3179 dbuf_add_ref(dn->dn_dbuf, NULL); 3180 *parentp = dn->dn_dbuf; 3181 mutex_exit(&dn->dn_mtx); 3182 return (0); 3183 } 3184 3185 int nlevels = 3186 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3187 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3188 3189 ASSERT3U(level * epbs, <, 64); 3190 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3191 /* 3192 * This assertion shouldn't trip as long as the max indirect block size 3193 * is less than 1M. The reason for this is that up to that point, 3194 * the number of levels required to address an entire object with blocks 3195 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3196 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3197 * (i.e. we can address the entire object), objects will all use at most 3198 * N-1 levels and the assertion won't overflow. However, once epbs is 3199 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3200 * enough to address an entire object, so objects will have 5 levels, 3201 * but then this assertion will overflow. 3202 * 3203 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3204 * need to redo this logic to handle overflows. 3205 */ 3206 ASSERT(level >= nlevels || 3207 ((nlevels - level - 1) * epbs) + 3208 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3209 if (level >= nlevels || 3210 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3211 ((nlevels - level - 1) * epbs)) || 3212 (fail_sparse && 3213 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3214 /* the buffer has no parent yet */ 3215 return (SET_ERROR(ENOENT)); 3216 } else if (level < nlevels-1) { 3217 /* this block is referenced from an indirect block */ 3218 int err; 3219 3220 err = dbuf_hold_impl(dn, level + 1, 3221 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3222 3223 if (err) 3224 return (err); 3225 err = dbuf_read(*parentp, NULL, 3226 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3227 if (err) { 3228 dbuf_rele(*parentp, NULL); 3229 *parentp = NULL; 3230 return (err); 3231 } 3232 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3233 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3234 (blkid & ((1ULL << epbs) - 1)); 3235 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3236 ASSERT(BP_IS_HOLE(*bpp)); 3237 rw_exit(&(*parentp)->db_rwlock); 3238 return (0); 3239 } else { 3240 /* the block is referenced from the dnode */ 3241 ASSERT3U(level, ==, nlevels-1); 3242 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3243 blkid < dn->dn_phys->dn_nblkptr); 3244 if (dn->dn_dbuf) { 3245 dbuf_add_ref(dn->dn_dbuf, NULL); 3246 *parentp = dn->dn_dbuf; 3247 } 3248 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3249 return (0); 3250 } 3251 } 3252 3253 static dmu_buf_impl_t * 3254 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3255 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3256 { 3257 objset_t *os = dn->dn_objset; 3258 dmu_buf_impl_t *db, *odb; 3259 3260 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3261 ASSERT(dn->dn_type != DMU_OT_NONE); 3262 3263 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3264 3265 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3266 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3267 3268 db->db_objset = os; 3269 db->db.db_object = dn->dn_object; 3270 db->db_level = level; 3271 db->db_blkid = blkid; 3272 db->db_dirtycnt = 0; 3273 #ifdef USE_DNODE_HANDLE 3274 db->db_dnode_handle = dn->dn_handle; 3275 #else 3276 db->db_dnode = dn; 3277 #endif 3278 db->db_parent = parent; 3279 db->db_blkptr = blkptr; 3280 db->db_hash = hash; 3281 3282 db->db_user = NULL; 3283 db->db_user_immediate_evict = FALSE; 3284 db->db_freed_in_flight = FALSE; 3285 db->db_pending_evict = FALSE; 3286 3287 if (blkid == DMU_BONUS_BLKID) { 3288 ASSERT3P(parent, ==, dn->dn_dbuf); 3289 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3290 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3291 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3292 db->db.db_offset = DMU_BONUS_BLKID; 3293 db->db_state = DB_UNCACHED; 3294 DTRACE_SET_STATE(db, "bonus buffer created"); 3295 db->db_caching_status = DB_NO_CACHE; 3296 /* the bonus dbuf is not placed in the hash table */ 3297 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3298 return (db); 3299 } else if (blkid == DMU_SPILL_BLKID) { 3300 db->db.db_size = (blkptr != NULL) ? 3301 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3302 db->db.db_offset = 0; 3303 } else { 3304 int blocksize = 3305 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3306 db->db.db_size = blocksize; 3307 db->db.db_offset = db->db_blkid * blocksize; 3308 } 3309 3310 /* 3311 * Hold the dn_dbufs_mtx while we get the new dbuf 3312 * in the hash table *and* added to the dbufs list. 3313 * This prevents a possible deadlock with someone 3314 * trying to look up this dbuf before it's added to the 3315 * dn_dbufs list. 3316 */ 3317 mutex_enter(&dn->dn_dbufs_mtx); 3318 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3319 if ((odb = dbuf_hash_insert(db)) != NULL) { 3320 /* someone else inserted it first */ 3321 mutex_exit(&dn->dn_dbufs_mtx); 3322 kmem_cache_free(dbuf_kmem_cache, db); 3323 DBUF_STAT_BUMP(hash_insert_race); 3324 return (odb); 3325 } 3326 avl_add(&dn->dn_dbufs, db); 3327 3328 db->db_state = DB_UNCACHED; 3329 DTRACE_SET_STATE(db, "regular buffer created"); 3330 db->db_caching_status = DB_NO_CACHE; 3331 mutex_exit(&dn->dn_dbufs_mtx); 3332 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3333 3334 if (parent && parent != dn->dn_dbuf) 3335 dbuf_add_ref(parent, db); 3336 3337 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3338 zfs_refcount_count(&dn->dn_holds) > 0); 3339 (void) zfs_refcount_add(&dn->dn_holds, db); 3340 3341 dprintf_dbuf(db, "db=%p\n", db); 3342 3343 return (db); 3344 } 3345 3346 /* 3347 * This function returns a block pointer and information about the object, 3348 * given a dnode and a block. This is a publicly accessible version of 3349 * dbuf_findbp that only returns some information, rather than the 3350 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3351 * should be locked as (at least) a reader. 3352 */ 3353 int 3354 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3355 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3356 { 3357 dmu_buf_impl_t *dbp = NULL; 3358 blkptr_t *bp2; 3359 int err = 0; 3360 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3361 3362 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3363 if (err == 0) { 3364 ASSERT3P(bp2, !=, NULL); 3365 *bp = *bp2; 3366 if (dbp != NULL) 3367 dbuf_rele(dbp, NULL); 3368 if (datablkszsec != NULL) 3369 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3370 if (indblkshift != NULL) 3371 *indblkshift = dn->dn_phys->dn_indblkshift; 3372 } 3373 3374 return (err); 3375 } 3376 3377 typedef struct dbuf_prefetch_arg { 3378 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3379 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3380 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3381 int dpa_curlevel; /* The current level that we're reading */ 3382 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3383 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3384 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3385 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3386 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3387 void *dpa_arg; /* prefetch completion arg */ 3388 } dbuf_prefetch_arg_t; 3389 3390 static void 3391 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3392 { 3393 if (dpa->dpa_cb != NULL) { 3394 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3395 dpa->dpa_zb.zb_blkid, io_done); 3396 } 3397 kmem_free(dpa, sizeof (*dpa)); 3398 } 3399 3400 static void 3401 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3402 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3403 { 3404 (void) zio, (void) zb, (void) iobp; 3405 dbuf_prefetch_arg_t *dpa = private; 3406 3407 if (abuf != NULL) 3408 arc_buf_destroy(abuf, private); 3409 3410 dbuf_prefetch_fini(dpa, B_TRUE); 3411 } 3412 3413 /* 3414 * Actually issue the prefetch read for the block given. 3415 */ 3416 static void 3417 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3418 { 3419 ASSERT(!BP_IS_REDACTED(bp) || 3420 dsl_dataset_feature_is_active( 3421 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3422 SPA_FEATURE_REDACTED_DATASETS)); 3423 3424 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3425 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3426 3427 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3428 arc_flags_t aflags = 3429 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3430 ARC_FLAG_NO_BUF; 3431 3432 /* dnodes are always read as raw and then converted later */ 3433 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3434 dpa->dpa_curlevel == 0) 3435 zio_flags |= ZIO_FLAG_RAW; 3436 3437 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3438 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3439 ASSERT(dpa->dpa_zio != NULL); 3440 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3441 dbuf_issue_final_prefetch_done, dpa, 3442 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3443 } 3444 3445 /* 3446 * Called when an indirect block above our prefetch target is read in. This 3447 * will either read in the next indirect block down the tree or issue the actual 3448 * prefetch if the next block down is our target. 3449 */ 3450 static void 3451 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3452 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3453 { 3454 (void) zb, (void) iobp; 3455 dbuf_prefetch_arg_t *dpa = private; 3456 3457 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3458 ASSERT3S(dpa->dpa_curlevel, >, 0); 3459 3460 if (abuf == NULL) { 3461 ASSERT(zio == NULL || zio->io_error != 0); 3462 dbuf_prefetch_fini(dpa, B_TRUE); 3463 return; 3464 } 3465 ASSERT(zio == NULL || zio->io_error == 0); 3466 3467 /* 3468 * The dpa_dnode is only valid if we are called with a NULL 3469 * zio. This indicates that the arc_read() returned without 3470 * first calling zio_read() to issue a physical read. Once 3471 * a physical read is made the dpa_dnode must be invalidated 3472 * as the locks guarding it may have been dropped. If the 3473 * dpa_dnode is still valid, then we want to add it to the dbuf 3474 * cache. To do so, we must hold the dbuf associated with the block 3475 * we just prefetched, read its contents so that we associate it 3476 * with an arc_buf_t, and then release it. 3477 */ 3478 if (zio != NULL) { 3479 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3480 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3481 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3482 } else { 3483 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3484 } 3485 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3486 3487 dpa->dpa_dnode = NULL; 3488 } else if (dpa->dpa_dnode != NULL) { 3489 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3490 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3491 dpa->dpa_zb.zb_level)); 3492 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3493 dpa->dpa_curlevel, curblkid, FTAG); 3494 if (db == NULL) { 3495 arc_buf_destroy(abuf, private); 3496 dbuf_prefetch_fini(dpa, B_TRUE); 3497 return; 3498 } 3499 (void) dbuf_read(db, NULL, 3500 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3501 dbuf_rele(db, FTAG); 3502 } 3503 3504 dpa->dpa_curlevel--; 3505 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3506 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3507 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3508 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3509 3510 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3511 dsl_dataset_feature_is_active( 3512 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3513 SPA_FEATURE_REDACTED_DATASETS))); 3514 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3515 arc_buf_destroy(abuf, private); 3516 dbuf_prefetch_fini(dpa, B_TRUE); 3517 return; 3518 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3519 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3520 dbuf_issue_final_prefetch(dpa, bp); 3521 } else { 3522 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3523 zbookmark_phys_t zb; 3524 3525 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3526 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3527 iter_aflags |= ARC_FLAG_L2CACHE; 3528 3529 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3530 3531 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3532 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3533 3534 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3535 bp, dbuf_prefetch_indirect_done, dpa, 3536 ZIO_PRIORITY_SYNC_READ, 3537 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3538 &iter_aflags, &zb); 3539 } 3540 3541 arc_buf_destroy(abuf, private); 3542 } 3543 3544 /* 3545 * Issue prefetch reads for the given block on the given level. If the indirect 3546 * blocks above that block are not in memory, we will read them in 3547 * asynchronously. As a result, this call never blocks waiting for a read to 3548 * complete. Note that the prefetch might fail if the dataset is encrypted and 3549 * the encryption key is unmapped before the IO completes. 3550 */ 3551 int 3552 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3553 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3554 void *arg) 3555 { 3556 blkptr_t bp; 3557 int epbs, nlevels, curlevel; 3558 uint64_t curblkid; 3559 3560 ASSERT(blkid != DMU_BONUS_BLKID); 3561 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3562 3563 if (blkid > dn->dn_maxblkid) 3564 goto no_issue; 3565 3566 if (level == 0 && dnode_block_freed(dn, blkid)) 3567 goto no_issue; 3568 3569 /* 3570 * This dnode hasn't been written to disk yet, so there's nothing to 3571 * prefetch. 3572 */ 3573 nlevels = dn->dn_phys->dn_nlevels; 3574 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3575 goto no_issue; 3576 3577 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3578 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3579 goto no_issue; 3580 3581 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3582 level, blkid, NULL); 3583 if (db != NULL) { 3584 mutex_exit(&db->db_mtx); 3585 /* 3586 * This dbuf already exists. It is either CACHED, or 3587 * (we assume) about to be read or filled. 3588 */ 3589 goto no_issue; 3590 } 3591 3592 /* 3593 * Find the closest ancestor (indirect block) of the target block 3594 * that is present in the cache. In this indirect block, we will 3595 * find the bp that is at curlevel, curblkid. 3596 */ 3597 curlevel = level; 3598 curblkid = blkid; 3599 while (curlevel < nlevels - 1) { 3600 int parent_level = curlevel + 1; 3601 uint64_t parent_blkid = curblkid >> epbs; 3602 dmu_buf_impl_t *db; 3603 3604 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3605 FALSE, TRUE, FTAG, &db) == 0) { 3606 blkptr_t *bpp = db->db_buf->b_data; 3607 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3608 dbuf_rele(db, FTAG); 3609 break; 3610 } 3611 3612 curlevel = parent_level; 3613 curblkid = parent_blkid; 3614 } 3615 3616 if (curlevel == nlevels - 1) { 3617 /* No cached indirect blocks found. */ 3618 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3619 bp = dn->dn_phys->dn_blkptr[curblkid]; 3620 } 3621 ASSERT(!BP_IS_REDACTED(&bp) || 3622 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3623 SPA_FEATURE_REDACTED_DATASETS)); 3624 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3625 goto no_issue; 3626 3627 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3628 3629 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3630 ZIO_FLAG_CANFAIL); 3631 3632 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3633 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3634 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3635 dn->dn_object, level, blkid); 3636 dpa->dpa_curlevel = curlevel; 3637 dpa->dpa_prio = prio; 3638 dpa->dpa_aflags = aflags; 3639 dpa->dpa_spa = dn->dn_objset->os_spa; 3640 dpa->dpa_dnode = dn; 3641 dpa->dpa_epbs = epbs; 3642 dpa->dpa_zio = pio; 3643 dpa->dpa_cb = cb; 3644 dpa->dpa_arg = arg; 3645 3646 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3647 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3648 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3649 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3650 3651 /* 3652 * If we have the indirect just above us, no need to do the asynchronous 3653 * prefetch chain; we'll just run the last step ourselves. If we're at 3654 * a higher level, though, we want to issue the prefetches for all the 3655 * indirect blocks asynchronously, so we can go on with whatever we were 3656 * doing. 3657 */ 3658 if (curlevel == level) { 3659 ASSERT3U(curblkid, ==, blkid); 3660 dbuf_issue_final_prefetch(dpa, &bp); 3661 } else { 3662 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3663 zbookmark_phys_t zb; 3664 3665 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3666 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3667 iter_aflags |= ARC_FLAG_L2CACHE; 3668 3669 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3670 dn->dn_object, curlevel, curblkid); 3671 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3672 &bp, dbuf_prefetch_indirect_done, dpa, 3673 ZIO_PRIORITY_SYNC_READ, 3674 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3675 &iter_aflags, &zb); 3676 } 3677 /* 3678 * We use pio here instead of dpa_zio since it's possible that 3679 * dpa may have already been freed. 3680 */ 3681 zio_nowait(pio); 3682 return (1); 3683 no_issue: 3684 if (cb != NULL) 3685 cb(arg, level, blkid, B_FALSE); 3686 return (0); 3687 } 3688 3689 int 3690 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3691 arc_flags_t aflags) 3692 { 3693 3694 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3695 } 3696 3697 /* 3698 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3699 * the case of encrypted, compressed and uncompressed buffers by 3700 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3701 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3702 * 3703 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3704 */ 3705 noinline static void 3706 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3707 { 3708 dbuf_dirty_record_t *dr = db->db_data_pending; 3709 arc_buf_t *data = dr->dt.dl.dr_data; 3710 enum zio_compress compress_type = arc_get_compression(data); 3711 uint8_t complevel = arc_get_complevel(data); 3712 3713 if (arc_is_encrypted(data)) { 3714 boolean_t byteorder; 3715 uint8_t salt[ZIO_DATA_SALT_LEN]; 3716 uint8_t iv[ZIO_DATA_IV_LEN]; 3717 uint8_t mac[ZIO_DATA_MAC_LEN]; 3718 3719 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3720 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3721 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3722 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3723 compress_type, complevel)); 3724 } else if (compress_type != ZIO_COMPRESS_OFF) { 3725 dbuf_set_data(db, arc_alloc_compressed_buf( 3726 dn->dn_objset->os_spa, db, arc_buf_size(data), 3727 arc_buf_lsize(data), compress_type, complevel)); 3728 } else { 3729 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3730 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3731 } 3732 3733 rw_enter(&db->db_rwlock, RW_WRITER); 3734 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3735 rw_exit(&db->db_rwlock); 3736 } 3737 3738 /* 3739 * Returns with db_holds incremented, and db_mtx not held. 3740 * Note: dn_struct_rwlock must be held. 3741 */ 3742 int 3743 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3744 boolean_t fail_sparse, boolean_t fail_uncached, 3745 const void *tag, dmu_buf_impl_t **dbp) 3746 { 3747 dmu_buf_impl_t *db, *parent = NULL; 3748 uint64_t hv; 3749 3750 /* If the pool has been created, verify the tx_sync_lock is not held */ 3751 spa_t *spa = dn->dn_objset->os_spa; 3752 dsl_pool_t *dp = spa->spa_dsl_pool; 3753 if (dp != NULL) { 3754 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3755 } 3756 3757 ASSERT(blkid != DMU_BONUS_BLKID); 3758 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3759 ASSERT3U(dn->dn_nlevels, >, level); 3760 3761 *dbp = NULL; 3762 3763 /* dbuf_find() returns with db_mtx held */ 3764 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3765 3766 if (db == NULL) { 3767 blkptr_t *bp = NULL; 3768 int err; 3769 3770 if (fail_uncached) 3771 return (SET_ERROR(ENOENT)); 3772 3773 ASSERT3P(parent, ==, NULL); 3774 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3775 if (fail_sparse) { 3776 if (err == 0 && bp && BP_IS_HOLE(bp)) 3777 err = SET_ERROR(ENOENT); 3778 if (err) { 3779 if (parent) 3780 dbuf_rele(parent, NULL); 3781 return (err); 3782 } 3783 } 3784 if (err && err != ENOENT) 3785 return (err); 3786 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3787 } 3788 3789 if (fail_uncached && db->db_state != DB_CACHED) { 3790 mutex_exit(&db->db_mtx); 3791 return (SET_ERROR(ENOENT)); 3792 } 3793 3794 if (db->db_buf != NULL) { 3795 arc_buf_access(db->db_buf); 3796 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3797 } 3798 3799 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3800 3801 /* 3802 * If this buffer is currently syncing out, and we are 3803 * still referencing it from db_data, we need to make a copy 3804 * of it in case we decide we want to dirty it again in this txg. 3805 */ 3806 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3807 dn->dn_object != DMU_META_DNODE_OBJECT && 3808 db->db_state == DB_CACHED && db->db_data_pending) { 3809 dbuf_dirty_record_t *dr = db->db_data_pending; 3810 if (dr->dt.dl.dr_data == db->db_buf) { 3811 ASSERT3P(db->db_buf, !=, NULL); 3812 dbuf_hold_copy(dn, db); 3813 } 3814 } 3815 3816 if (multilist_link_active(&db->db_cache_link)) { 3817 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3818 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3819 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3820 3821 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3822 3823 uint64_t size = db->db.db_size; 3824 uint64_t usize = dmu_buf_user_size(&db->db); 3825 (void) zfs_refcount_remove_many( 3826 &dbuf_caches[db->db_caching_status].size, size, db); 3827 (void) zfs_refcount_remove_many( 3828 &dbuf_caches[db->db_caching_status].size, usize, 3829 db->db_user); 3830 3831 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3832 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3833 } else { 3834 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3835 DBUF_STAT_BUMPDOWN(cache_count); 3836 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3837 size + usize); 3838 } 3839 db->db_caching_status = DB_NO_CACHE; 3840 } 3841 (void) zfs_refcount_add(&db->db_holds, tag); 3842 DBUF_VERIFY(db); 3843 mutex_exit(&db->db_mtx); 3844 3845 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3846 if (parent) 3847 dbuf_rele(parent, NULL); 3848 3849 ASSERT3P(DB_DNODE(db), ==, dn); 3850 ASSERT3U(db->db_blkid, ==, blkid); 3851 ASSERT3U(db->db_level, ==, level); 3852 *dbp = db; 3853 3854 return (0); 3855 } 3856 3857 dmu_buf_impl_t * 3858 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3859 { 3860 return (dbuf_hold_level(dn, 0, blkid, tag)); 3861 } 3862 3863 dmu_buf_impl_t * 3864 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3865 { 3866 dmu_buf_impl_t *db; 3867 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3868 return (err ? NULL : db); 3869 } 3870 3871 void 3872 dbuf_create_bonus(dnode_t *dn) 3873 { 3874 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3875 3876 ASSERT(dn->dn_bonus == NULL); 3877 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 3878 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 3879 } 3880 3881 int 3882 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3883 { 3884 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3885 3886 if (db->db_blkid != DMU_SPILL_BLKID) 3887 return (SET_ERROR(ENOTSUP)); 3888 if (blksz == 0) 3889 blksz = SPA_MINBLOCKSIZE; 3890 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3891 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3892 3893 dbuf_new_size(db, blksz, tx); 3894 3895 return (0); 3896 } 3897 3898 void 3899 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3900 { 3901 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3902 } 3903 3904 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3905 void 3906 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3907 { 3908 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3909 VERIFY3S(holds, >, 1); 3910 } 3911 3912 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3913 boolean_t 3914 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3915 const void *tag) 3916 { 3917 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3918 dmu_buf_impl_t *found_db; 3919 boolean_t result = B_FALSE; 3920 3921 if (blkid == DMU_BONUS_BLKID) 3922 found_db = dbuf_find_bonus(os, obj); 3923 else 3924 found_db = dbuf_find(os, obj, 0, blkid, NULL); 3925 3926 if (found_db != NULL) { 3927 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3928 (void) zfs_refcount_add(&db->db_holds, tag); 3929 result = B_TRUE; 3930 } 3931 mutex_exit(&found_db->db_mtx); 3932 } 3933 return (result); 3934 } 3935 3936 /* 3937 * If you call dbuf_rele() you had better not be referencing the dnode handle 3938 * unless you have some other direct or indirect hold on the dnode. (An indirect 3939 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3940 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3941 * dnode's parent dbuf evicting its dnode handles. 3942 */ 3943 void 3944 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3945 { 3946 mutex_enter(&db->db_mtx); 3947 dbuf_rele_and_unlock(db, tag, B_FALSE); 3948 } 3949 3950 void 3951 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3952 { 3953 dbuf_rele((dmu_buf_impl_t *)db, tag); 3954 } 3955 3956 /* 3957 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3958 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3959 * argument should be set if we are already in the dbuf-evicting code 3960 * path, in which case we don't want to recursively evict. This allows us to 3961 * avoid deeply nested stacks that would have a call flow similar to this: 3962 * 3963 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3964 * ^ | 3965 * | | 3966 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3967 * 3968 */ 3969 void 3970 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3971 { 3972 int64_t holds; 3973 uint64_t size; 3974 3975 ASSERT(MUTEX_HELD(&db->db_mtx)); 3976 DBUF_VERIFY(db); 3977 3978 /* 3979 * Remove the reference to the dbuf before removing its hold on the 3980 * dnode so we can guarantee in dnode_move() that a referenced bonus 3981 * buffer has a corresponding dnode hold. 3982 */ 3983 holds = zfs_refcount_remove(&db->db_holds, tag); 3984 ASSERT(holds >= 0); 3985 3986 /* 3987 * We can't freeze indirects if there is a possibility that they 3988 * may be modified in the current syncing context. 3989 */ 3990 if (db->db_buf != NULL && 3991 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3992 arc_buf_freeze(db->db_buf); 3993 } 3994 3995 if (holds == db->db_dirtycnt && 3996 db->db_level == 0 && db->db_user_immediate_evict) 3997 dbuf_evict_user(db); 3998 3999 if (holds == 0) { 4000 if (db->db_blkid == DMU_BONUS_BLKID) { 4001 dnode_t *dn; 4002 boolean_t evict_dbuf = db->db_pending_evict; 4003 4004 /* 4005 * If the dnode moves here, we cannot cross this 4006 * barrier until the move completes. 4007 */ 4008 DB_DNODE_ENTER(db); 4009 4010 dn = DB_DNODE(db); 4011 atomic_dec_32(&dn->dn_dbufs_count); 4012 4013 /* 4014 * Decrementing the dbuf count means that the bonus 4015 * buffer's dnode hold is no longer discounted in 4016 * dnode_move(). The dnode cannot move until after 4017 * the dnode_rele() below. 4018 */ 4019 DB_DNODE_EXIT(db); 4020 4021 /* 4022 * Do not reference db after its lock is dropped. 4023 * Another thread may evict it. 4024 */ 4025 mutex_exit(&db->db_mtx); 4026 4027 if (evict_dbuf) 4028 dnode_evict_bonus(dn); 4029 4030 dnode_rele(dn, db); 4031 } else if (db->db_buf == NULL) { 4032 /* 4033 * This is a special case: we never associated this 4034 * dbuf with any data allocated from the ARC. 4035 */ 4036 ASSERT(db->db_state == DB_UNCACHED || 4037 db->db_state == DB_NOFILL); 4038 dbuf_destroy(db); 4039 } else if (arc_released(db->db_buf)) { 4040 /* 4041 * This dbuf has anonymous data associated with it. 4042 */ 4043 dbuf_destroy(db); 4044 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4045 db->db_pending_evict) { 4046 dbuf_destroy(db); 4047 } else if (!multilist_link_active(&db->db_cache_link)) { 4048 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4049 4050 dbuf_cached_state_t dcs = 4051 dbuf_include_in_metadata_cache(db) ? 4052 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4053 db->db_caching_status = dcs; 4054 4055 multilist_insert(&dbuf_caches[dcs].cache, db); 4056 uint64_t db_size = db->db.db_size; 4057 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4058 (void) zfs_refcount_add_many( 4059 &dbuf_caches[dcs].size, db_size, db); 4060 size = zfs_refcount_add_many( 4061 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4062 uint8_t db_level = db->db_level; 4063 mutex_exit(&db->db_mtx); 4064 4065 if (dcs == DB_DBUF_METADATA_CACHE) { 4066 DBUF_STAT_BUMP(metadata_cache_count); 4067 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4068 size); 4069 } else { 4070 DBUF_STAT_BUMP(cache_count); 4071 DBUF_STAT_MAX(cache_size_bytes_max, size); 4072 DBUF_STAT_BUMP(cache_levels[db_level]); 4073 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4074 db_size + dbu_size); 4075 } 4076 4077 if (dcs == DB_DBUF_CACHE && !evicting) 4078 dbuf_evict_notify(size); 4079 } 4080 } else { 4081 mutex_exit(&db->db_mtx); 4082 } 4083 4084 } 4085 4086 #pragma weak dmu_buf_refcount = dbuf_refcount 4087 uint64_t 4088 dbuf_refcount(dmu_buf_impl_t *db) 4089 { 4090 return (zfs_refcount_count(&db->db_holds)); 4091 } 4092 4093 uint64_t 4094 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4095 { 4096 uint64_t holds; 4097 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4098 4099 mutex_enter(&db->db_mtx); 4100 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4101 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4102 mutex_exit(&db->db_mtx); 4103 4104 return (holds); 4105 } 4106 4107 void * 4108 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4109 dmu_buf_user_t *new_user) 4110 { 4111 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4112 4113 mutex_enter(&db->db_mtx); 4114 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4115 if (db->db_user == old_user) 4116 db->db_user = new_user; 4117 else 4118 old_user = db->db_user; 4119 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4120 mutex_exit(&db->db_mtx); 4121 4122 return (old_user); 4123 } 4124 4125 void * 4126 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4127 { 4128 return (dmu_buf_replace_user(db_fake, NULL, user)); 4129 } 4130 4131 void * 4132 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4133 { 4134 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4135 4136 db->db_user_immediate_evict = TRUE; 4137 return (dmu_buf_set_user(db_fake, user)); 4138 } 4139 4140 void * 4141 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4142 { 4143 return (dmu_buf_replace_user(db_fake, user, NULL)); 4144 } 4145 4146 void * 4147 dmu_buf_get_user(dmu_buf_t *db_fake) 4148 { 4149 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4150 4151 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4152 return (db->db_user); 4153 } 4154 4155 uint64_t 4156 dmu_buf_user_size(dmu_buf_t *db_fake) 4157 { 4158 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4159 if (db->db_user == NULL) 4160 return (0); 4161 return (atomic_load_64(&db->db_user->dbu_size)); 4162 } 4163 4164 void 4165 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4166 { 4167 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4168 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4169 ASSERT3P(db->db_user, !=, NULL); 4170 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4171 atomic_add_64(&db->db_user->dbu_size, nadd); 4172 } 4173 4174 void 4175 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4176 { 4177 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4178 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4179 ASSERT3P(db->db_user, !=, NULL); 4180 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4181 atomic_sub_64(&db->db_user->dbu_size, nsub); 4182 } 4183 4184 void 4185 dmu_buf_user_evict_wait(void) 4186 { 4187 taskq_wait(dbu_evict_taskq); 4188 } 4189 4190 blkptr_t * 4191 dmu_buf_get_blkptr(dmu_buf_t *db) 4192 { 4193 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4194 return (dbi->db_blkptr); 4195 } 4196 4197 objset_t * 4198 dmu_buf_get_objset(dmu_buf_t *db) 4199 { 4200 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4201 return (dbi->db_objset); 4202 } 4203 4204 static void 4205 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4206 { 4207 /* ASSERT(dmu_tx_is_syncing(tx) */ 4208 ASSERT(MUTEX_HELD(&db->db_mtx)); 4209 4210 if (db->db_blkptr != NULL) 4211 return; 4212 4213 if (db->db_blkid == DMU_SPILL_BLKID) { 4214 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4215 BP_ZERO(db->db_blkptr); 4216 return; 4217 } 4218 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4219 /* 4220 * This buffer was allocated at a time when there was 4221 * no available blkptrs from the dnode, or it was 4222 * inappropriate to hook it in (i.e., nlevels mismatch). 4223 */ 4224 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4225 ASSERT(db->db_parent == NULL); 4226 db->db_parent = dn->dn_dbuf; 4227 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4228 DBUF_VERIFY(db); 4229 } else { 4230 dmu_buf_impl_t *parent = db->db_parent; 4231 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4232 4233 ASSERT(dn->dn_phys->dn_nlevels > 1); 4234 if (parent == NULL) { 4235 mutex_exit(&db->db_mtx); 4236 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4237 parent = dbuf_hold_level(dn, db->db_level + 1, 4238 db->db_blkid >> epbs, db); 4239 rw_exit(&dn->dn_struct_rwlock); 4240 mutex_enter(&db->db_mtx); 4241 db->db_parent = parent; 4242 } 4243 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4244 (db->db_blkid & ((1ULL << epbs) - 1)); 4245 DBUF_VERIFY(db); 4246 } 4247 } 4248 4249 static void 4250 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4251 { 4252 dmu_buf_impl_t *db = dr->dr_dbuf; 4253 void *data = dr->dt.dl.dr_data; 4254 4255 ASSERT0(db->db_level); 4256 ASSERT(MUTEX_HELD(&db->db_mtx)); 4257 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4258 ASSERT(data != NULL); 4259 4260 dnode_t *dn = dr->dr_dnode; 4261 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4262 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4263 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4264 4265 dbuf_sync_leaf_verify_bonus_dnode(dr); 4266 4267 dbuf_undirty_bonus(dr); 4268 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4269 } 4270 4271 /* 4272 * When syncing out a blocks of dnodes, adjust the block to deal with 4273 * encryption. Normally, we make sure the block is decrypted before writing 4274 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4275 * from a raw receive. In this case, set the ARC buf's crypt params so 4276 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4277 */ 4278 static void 4279 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4280 { 4281 int err; 4282 dmu_buf_impl_t *db = dr->dr_dbuf; 4283 4284 ASSERT(MUTEX_HELD(&db->db_mtx)); 4285 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4286 ASSERT3U(db->db_level, ==, 0); 4287 4288 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4289 zbookmark_phys_t zb; 4290 4291 /* 4292 * Unfortunately, there is currently no mechanism for 4293 * syncing context to handle decryption errors. An error 4294 * here is only possible if an attacker maliciously 4295 * changed a dnode block and updated the associated 4296 * checksums going up the block tree. 4297 */ 4298 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4299 db->db.db_object, db->db_level, db->db_blkid); 4300 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4301 &zb, B_TRUE); 4302 if (err) 4303 panic("Invalid dnode block MAC"); 4304 } else if (dr->dt.dl.dr_has_raw_params) { 4305 (void) arc_release(dr->dt.dl.dr_data, db); 4306 arc_convert_to_raw(dr->dt.dl.dr_data, 4307 dmu_objset_id(db->db_objset), 4308 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4309 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4310 } 4311 } 4312 4313 /* 4314 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4315 * is critical the we not allow the compiler to inline this function in to 4316 * dbuf_sync_list() thereby drastically bloating the stack usage. 4317 */ 4318 noinline static void 4319 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4320 { 4321 dmu_buf_impl_t *db = dr->dr_dbuf; 4322 dnode_t *dn = dr->dr_dnode; 4323 4324 ASSERT(dmu_tx_is_syncing(tx)); 4325 4326 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4327 4328 mutex_enter(&db->db_mtx); 4329 4330 ASSERT(db->db_level > 0); 4331 DBUF_VERIFY(db); 4332 4333 /* Read the block if it hasn't been read yet. */ 4334 if (db->db_buf == NULL) { 4335 mutex_exit(&db->db_mtx); 4336 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4337 mutex_enter(&db->db_mtx); 4338 } 4339 ASSERT3U(db->db_state, ==, DB_CACHED); 4340 ASSERT(db->db_buf != NULL); 4341 4342 /* Indirect block size must match what the dnode thinks it is. */ 4343 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4344 dbuf_check_blkptr(dn, db); 4345 4346 /* Provide the pending dirty record to child dbufs */ 4347 db->db_data_pending = dr; 4348 4349 mutex_exit(&db->db_mtx); 4350 4351 dbuf_write(dr, db->db_buf, tx); 4352 4353 zio_t *zio = dr->dr_zio; 4354 mutex_enter(&dr->dt.di.dr_mtx); 4355 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4356 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4357 mutex_exit(&dr->dt.di.dr_mtx); 4358 zio_nowait(zio); 4359 } 4360 4361 /* 4362 * Verify that the size of the data in our bonus buffer does not exceed 4363 * its recorded size. 4364 * 4365 * The purpose of this verification is to catch any cases in development 4366 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4367 * due to incorrect feature management, older pools expect to read more 4368 * data even though they didn't actually write it to begin with. 4369 * 4370 * For a example, this would catch an error in the feature logic where we 4371 * open an older pool and we expect to write the space map histogram of 4372 * a space map with size SPACE_MAP_SIZE_V0. 4373 */ 4374 static void 4375 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4376 { 4377 #ifdef ZFS_DEBUG 4378 dnode_t *dn = dr->dr_dnode; 4379 4380 /* 4381 * Encrypted bonus buffers can have data past their bonuslen. 4382 * Skip the verification of these blocks. 4383 */ 4384 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4385 return; 4386 4387 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4388 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4389 ASSERT3U(bonuslen, <=, maxbonuslen); 4390 4391 arc_buf_t *datap = dr->dt.dl.dr_data; 4392 char *datap_end = ((char *)datap) + bonuslen; 4393 char *datap_max = ((char *)datap) + maxbonuslen; 4394 4395 /* ensure that everything is zero after our data */ 4396 for (; datap_end < datap_max; datap_end++) 4397 ASSERT(*datap_end == 0); 4398 #endif 4399 } 4400 4401 static blkptr_t * 4402 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4403 { 4404 /* This must be a lightweight dirty record. */ 4405 ASSERT3P(dr->dr_dbuf, ==, NULL); 4406 dnode_t *dn = dr->dr_dnode; 4407 4408 if (dn->dn_phys->dn_nlevels == 1) { 4409 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4410 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4411 } else { 4412 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4413 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4414 VERIFY3U(parent_db->db_level, ==, 1); 4415 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4416 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4417 blkptr_t *bp = parent_db->db.db_data; 4418 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4419 } 4420 } 4421 4422 static void 4423 dbuf_lightweight_ready(zio_t *zio) 4424 { 4425 dbuf_dirty_record_t *dr = zio->io_private; 4426 blkptr_t *bp = zio->io_bp; 4427 4428 if (zio->io_error != 0) 4429 return; 4430 4431 dnode_t *dn = dr->dr_dnode; 4432 4433 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4434 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4435 int64_t delta = bp_get_dsize_sync(spa, bp) - 4436 bp_get_dsize_sync(spa, bp_orig); 4437 dnode_diduse_space(dn, delta); 4438 4439 uint64_t blkid = dr->dt.dll.dr_blkid; 4440 mutex_enter(&dn->dn_mtx); 4441 if (blkid > dn->dn_phys->dn_maxblkid) { 4442 ASSERT0(dn->dn_objset->os_raw_receive); 4443 dn->dn_phys->dn_maxblkid = blkid; 4444 } 4445 mutex_exit(&dn->dn_mtx); 4446 4447 if (!BP_IS_EMBEDDED(bp)) { 4448 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4449 BP_SET_FILL(bp, fill); 4450 } 4451 4452 dmu_buf_impl_t *parent_db; 4453 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4454 if (dr->dr_parent == NULL) { 4455 parent_db = dn->dn_dbuf; 4456 } else { 4457 parent_db = dr->dr_parent->dr_dbuf; 4458 } 4459 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4460 *bp_orig = *bp; 4461 rw_exit(&parent_db->db_rwlock); 4462 } 4463 4464 static void 4465 dbuf_lightweight_done(zio_t *zio) 4466 { 4467 dbuf_dirty_record_t *dr = zio->io_private; 4468 4469 VERIFY0(zio->io_error); 4470 4471 objset_t *os = dr->dr_dnode->dn_objset; 4472 dmu_tx_t *tx = os->os_synctx; 4473 4474 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4475 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4476 } else { 4477 dsl_dataset_t *ds = os->os_dsl_dataset; 4478 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4479 dsl_dataset_block_born(ds, zio->io_bp, tx); 4480 } 4481 4482 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4483 zio->io_txg); 4484 4485 abd_free(dr->dt.dll.dr_abd); 4486 kmem_free(dr, sizeof (*dr)); 4487 } 4488 4489 noinline static void 4490 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4491 { 4492 dnode_t *dn = dr->dr_dnode; 4493 zio_t *pio; 4494 if (dn->dn_phys->dn_nlevels == 1) { 4495 pio = dn->dn_zio; 4496 } else { 4497 pio = dr->dr_parent->dr_zio; 4498 } 4499 4500 zbookmark_phys_t zb = { 4501 .zb_objset = dmu_objset_id(dn->dn_objset), 4502 .zb_object = dn->dn_object, 4503 .zb_level = 0, 4504 .zb_blkid = dr->dt.dll.dr_blkid, 4505 }; 4506 4507 /* 4508 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4509 * will have the old BP in dbuf_lightweight_done(). 4510 */ 4511 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4512 4513 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4514 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4515 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4516 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4517 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4518 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4519 4520 zio_nowait(dr->dr_zio); 4521 } 4522 4523 /* 4524 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4525 * critical the we not allow the compiler to inline this function in to 4526 * dbuf_sync_list() thereby drastically bloating the stack usage. 4527 */ 4528 noinline static void 4529 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4530 { 4531 arc_buf_t **datap = &dr->dt.dl.dr_data; 4532 dmu_buf_impl_t *db = dr->dr_dbuf; 4533 dnode_t *dn = dr->dr_dnode; 4534 objset_t *os; 4535 uint64_t txg = tx->tx_txg; 4536 4537 ASSERT(dmu_tx_is_syncing(tx)); 4538 4539 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4540 4541 mutex_enter(&db->db_mtx); 4542 /* 4543 * To be synced, we must be dirtied. But we 4544 * might have been freed after the dirty. 4545 */ 4546 if (db->db_state == DB_UNCACHED) { 4547 /* This buffer has been freed since it was dirtied */ 4548 ASSERT(db->db.db_data == NULL); 4549 } else if (db->db_state == DB_FILL) { 4550 /* This buffer was freed and is now being re-filled */ 4551 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4552 } else if (db->db_state == DB_READ) { 4553 /* 4554 * This buffer has a clone we need to write, and an in-flight 4555 * read on the BP we're about to clone. Its safe to issue the 4556 * write here because the read has already been issued and the 4557 * contents won't change. 4558 */ 4559 ASSERT(dr->dt.dl.dr_brtwrite && 4560 dr->dt.dl.dr_override_state == DR_OVERRIDDEN); 4561 } else { 4562 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4563 } 4564 DBUF_VERIFY(db); 4565 4566 if (db->db_blkid == DMU_SPILL_BLKID) { 4567 mutex_enter(&dn->dn_mtx); 4568 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4569 /* 4570 * In the previous transaction group, the bonus buffer 4571 * was entirely used to store the attributes for the 4572 * dnode which overrode the dn_spill field. However, 4573 * when adding more attributes to the file a spill 4574 * block was required to hold the extra attributes. 4575 * 4576 * Make sure to clear the garbage left in the dn_spill 4577 * field from the previous attributes in the bonus 4578 * buffer. Otherwise, after writing out the spill 4579 * block to the new allocated dva, it will free 4580 * the old block pointed to by the invalid dn_spill. 4581 */ 4582 db->db_blkptr = NULL; 4583 } 4584 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4585 mutex_exit(&dn->dn_mtx); 4586 } 4587 4588 /* 4589 * If this is a bonus buffer, simply copy the bonus data into the 4590 * dnode. It will be written out when the dnode is synced (and it 4591 * will be synced, since it must have been dirty for dbuf_sync to 4592 * be called). 4593 */ 4594 if (db->db_blkid == DMU_BONUS_BLKID) { 4595 ASSERT(dr->dr_dbuf == db); 4596 dbuf_sync_bonus(dr, tx); 4597 return; 4598 } 4599 4600 os = dn->dn_objset; 4601 4602 /* 4603 * This function may have dropped the db_mtx lock allowing a dmu_sync 4604 * operation to sneak in. As a result, we need to ensure that we 4605 * don't check the dr_override_state until we have returned from 4606 * dbuf_check_blkptr. 4607 */ 4608 dbuf_check_blkptr(dn, db); 4609 4610 /* 4611 * If this buffer is in the middle of an immediate write, 4612 * wait for the synchronous IO to complete. 4613 */ 4614 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4615 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4616 cv_wait(&db->db_changed, &db->db_mtx); 4617 } 4618 4619 /* 4620 * If this is a dnode block, ensure it is appropriately encrypted 4621 * or decrypted, depending on what we are writing to it this txg. 4622 */ 4623 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4624 dbuf_prepare_encrypted_dnode_leaf(dr); 4625 4626 if (*datap != NULL && *datap == db->db_buf && 4627 dn->dn_object != DMU_META_DNODE_OBJECT && 4628 zfs_refcount_count(&db->db_holds) > 1 && 4629 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) { 4630 /* 4631 * If this buffer is currently "in use" (i.e., there 4632 * are active holds and db_data still references it), 4633 * then make a copy before we start the write so that 4634 * any modifications from the open txg will not leak 4635 * into this write. 4636 * 4637 * NOTE: this copy does not need to be made for 4638 * objects only modified in the syncing context (e.g. 4639 * DNONE_DNODE blocks). 4640 */ 4641 int psize = arc_buf_size(*datap); 4642 int lsize = arc_buf_lsize(*datap); 4643 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4644 enum zio_compress compress_type = arc_get_compression(*datap); 4645 uint8_t complevel = arc_get_complevel(*datap); 4646 4647 if (arc_is_encrypted(*datap)) { 4648 boolean_t byteorder; 4649 uint8_t salt[ZIO_DATA_SALT_LEN]; 4650 uint8_t iv[ZIO_DATA_IV_LEN]; 4651 uint8_t mac[ZIO_DATA_MAC_LEN]; 4652 4653 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4654 *datap = arc_alloc_raw_buf(os->os_spa, db, 4655 dmu_objset_id(os), byteorder, salt, iv, mac, 4656 dn->dn_type, psize, lsize, compress_type, 4657 complevel); 4658 } else if (compress_type != ZIO_COMPRESS_OFF) { 4659 ASSERT3U(type, ==, ARC_BUFC_DATA); 4660 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4661 psize, lsize, compress_type, complevel); 4662 } else { 4663 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4664 } 4665 memcpy((*datap)->b_data, db->db.db_data, psize); 4666 } 4667 db->db_data_pending = dr; 4668 4669 mutex_exit(&db->db_mtx); 4670 4671 dbuf_write(dr, *datap, tx); 4672 4673 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4674 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4675 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4676 } else { 4677 zio_nowait(dr->dr_zio); 4678 } 4679 } 4680 4681 /* 4682 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4683 * called recursively from dbuf_sync_indirect(). 4684 */ 4685 void 4686 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4687 { 4688 dbuf_dirty_record_t *dr; 4689 4690 while ((dr = list_head(list))) { 4691 if (dr->dr_zio != NULL) { 4692 /* 4693 * If we find an already initialized zio then we 4694 * are processing the meta-dnode, and we have finished. 4695 * The dbufs for all dnodes are put back on the list 4696 * during processing, so that we can zio_wait() 4697 * these IOs after initiating all child IOs. 4698 */ 4699 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4700 DMU_META_DNODE_OBJECT); 4701 break; 4702 } 4703 list_remove(list, dr); 4704 if (dr->dr_dbuf == NULL) { 4705 dbuf_sync_lightweight(dr, tx); 4706 } else { 4707 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4708 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4709 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4710 } 4711 if (dr->dr_dbuf->db_level > 0) 4712 dbuf_sync_indirect(dr, tx); 4713 else 4714 dbuf_sync_leaf(dr, tx); 4715 } 4716 } 4717 } 4718 4719 static void 4720 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4721 { 4722 (void) buf; 4723 dmu_buf_impl_t *db = vdb; 4724 dnode_t *dn; 4725 blkptr_t *bp = zio->io_bp; 4726 blkptr_t *bp_orig = &zio->io_bp_orig; 4727 spa_t *spa = zio->io_spa; 4728 int64_t delta; 4729 uint64_t fill = 0; 4730 int i; 4731 4732 ASSERT3P(db->db_blkptr, !=, NULL); 4733 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4734 4735 DB_DNODE_ENTER(db); 4736 dn = DB_DNODE(db); 4737 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4738 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4739 zio->io_prev_space_delta = delta; 4740 4741 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4742 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4743 BP_GET_TYPE(bp) == dn->dn_type) || 4744 (db->db_blkid == DMU_SPILL_BLKID && 4745 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4746 BP_IS_EMBEDDED(bp)); 4747 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4748 } 4749 4750 mutex_enter(&db->db_mtx); 4751 4752 #ifdef ZFS_DEBUG 4753 if (db->db_blkid == DMU_SPILL_BLKID) { 4754 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4755 ASSERT(!(BP_IS_HOLE(bp)) && 4756 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4757 } 4758 #endif 4759 4760 if (db->db_level == 0) { 4761 mutex_enter(&dn->dn_mtx); 4762 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4763 db->db_blkid != DMU_SPILL_BLKID) { 4764 ASSERT0(db->db_objset->os_raw_receive); 4765 dn->dn_phys->dn_maxblkid = db->db_blkid; 4766 } 4767 mutex_exit(&dn->dn_mtx); 4768 4769 if (dn->dn_type == DMU_OT_DNODE) { 4770 i = 0; 4771 while (i < db->db.db_size) { 4772 dnode_phys_t *dnp = 4773 (void *)(((char *)db->db.db_data) + i); 4774 4775 i += DNODE_MIN_SIZE; 4776 if (dnp->dn_type != DMU_OT_NONE) { 4777 fill++; 4778 for (int j = 0; j < dnp->dn_nblkptr; 4779 j++) { 4780 (void) zfs_blkptr_verify(spa, 4781 &dnp->dn_blkptr[j], 4782 BLK_CONFIG_SKIP, 4783 BLK_VERIFY_HALT); 4784 } 4785 if (dnp->dn_flags & 4786 DNODE_FLAG_SPILL_BLKPTR) { 4787 (void) zfs_blkptr_verify(spa, 4788 DN_SPILL_BLKPTR(dnp), 4789 BLK_CONFIG_SKIP, 4790 BLK_VERIFY_HALT); 4791 } 4792 i += dnp->dn_extra_slots * 4793 DNODE_MIN_SIZE; 4794 } 4795 } 4796 } else { 4797 if (BP_IS_HOLE(bp)) { 4798 fill = 0; 4799 } else { 4800 fill = 1; 4801 } 4802 } 4803 } else { 4804 blkptr_t *ibp = db->db.db_data; 4805 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4806 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4807 if (BP_IS_HOLE(ibp)) 4808 continue; 4809 (void) zfs_blkptr_verify(spa, ibp, 4810 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4811 fill += BP_GET_FILL(ibp); 4812 } 4813 } 4814 DB_DNODE_EXIT(db); 4815 4816 if (!BP_IS_EMBEDDED(bp)) 4817 BP_SET_FILL(bp, fill); 4818 4819 mutex_exit(&db->db_mtx); 4820 4821 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4822 *db->db_blkptr = *bp; 4823 dmu_buf_unlock_parent(db, dblt, FTAG); 4824 } 4825 4826 /* 4827 * This function gets called just prior to running through the compression 4828 * stage of the zio pipeline. If we're an indirect block comprised of only 4829 * holes, then we want this indirect to be compressed away to a hole. In 4830 * order to do that we must zero out any information about the holes that 4831 * this indirect points to prior to before we try to compress it. 4832 */ 4833 static void 4834 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4835 { 4836 (void) zio, (void) buf; 4837 dmu_buf_impl_t *db = vdb; 4838 blkptr_t *bp; 4839 unsigned int epbs, i; 4840 4841 ASSERT3U(db->db_level, >, 0); 4842 DB_DNODE_ENTER(db); 4843 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4844 DB_DNODE_EXIT(db); 4845 ASSERT3U(epbs, <, 31); 4846 4847 /* Determine if all our children are holes */ 4848 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4849 if (!BP_IS_HOLE(bp)) 4850 break; 4851 } 4852 4853 /* 4854 * If all the children are holes, then zero them all out so that 4855 * we may get compressed away. 4856 */ 4857 if (i == 1ULL << epbs) { 4858 /* 4859 * We only found holes. Grab the rwlock to prevent 4860 * anybody from reading the blocks we're about to 4861 * zero out. 4862 */ 4863 rw_enter(&db->db_rwlock, RW_WRITER); 4864 memset(db->db.db_data, 0, db->db.db_size); 4865 rw_exit(&db->db_rwlock); 4866 } 4867 } 4868 4869 static void 4870 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4871 { 4872 (void) buf; 4873 dmu_buf_impl_t *db = vdb; 4874 blkptr_t *bp_orig = &zio->io_bp_orig; 4875 blkptr_t *bp = db->db_blkptr; 4876 objset_t *os = db->db_objset; 4877 dmu_tx_t *tx = os->os_synctx; 4878 4879 ASSERT0(zio->io_error); 4880 ASSERT(db->db_blkptr == bp); 4881 4882 /* 4883 * For nopwrites and rewrites we ensure that the bp matches our 4884 * original and bypass all the accounting. 4885 */ 4886 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4887 ASSERT(BP_EQUAL(bp, bp_orig)); 4888 } else { 4889 dsl_dataset_t *ds = os->os_dsl_dataset; 4890 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4891 dsl_dataset_block_born(ds, bp, tx); 4892 } 4893 4894 mutex_enter(&db->db_mtx); 4895 4896 DBUF_VERIFY(db); 4897 4898 dbuf_dirty_record_t *dr = db->db_data_pending; 4899 dnode_t *dn = dr->dr_dnode; 4900 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4901 ASSERT(dr->dr_dbuf == db); 4902 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4903 list_remove(&db->db_dirty_records, dr); 4904 4905 #ifdef ZFS_DEBUG 4906 if (db->db_blkid == DMU_SPILL_BLKID) { 4907 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4908 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4909 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4910 } 4911 #endif 4912 4913 if (db->db_level == 0) { 4914 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4915 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4916 if (dr->dt.dl.dr_data != NULL && 4917 dr->dt.dl.dr_data != db->db_buf) { 4918 arc_buf_destroy(dr->dt.dl.dr_data, db); 4919 } 4920 } else { 4921 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4922 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4923 if (!BP_IS_HOLE(db->db_blkptr)) { 4924 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4925 SPA_BLKPTRSHIFT; 4926 ASSERT3U(db->db_blkid, <=, 4927 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4928 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4929 db->db.db_size); 4930 } 4931 mutex_destroy(&dr->dt.di.dr_mtx); 4932 list_destroy(&dr->dt.di.dr_children); 4933 } 4934 4935 cv_broadcast(&db->db_changed); 4936 ASSERT(db->db_dirtycnt > 0); 4937 db->db_dirtycnt -= 1; 4938 db->db_data_pending = NULL; 4939 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4940 4941 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4942 zio->io_txg); 4943 4944 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4945 } 4946 4947 static void 4948 dbuf_write_nofill_ready(zio_t *zio) 4949 { 4950 dbuf_write_ready(zio, NULL, zio->io_private); 4951 } 4952 4953 static void 4954 dbuf_write_nofill_done(zio_t *zio) 4955 { 4956 dbuf_write_done(zio, NULL, zio->io_private); 4957 } 4958 4959 static void 4960 dbuf_write_override_ready(zio_t *zio) 4961 { 4962 dbuf_dirty_record_t *dr = zio->io_private; 4963 dmu_buf_impl_t *db = dr->dr_dbuf; 4964 4965 dbuf_write_ready(zio, NULL, db); 4966 } 4967 4968 static void 4969 dbuf_write_override_done(zio_t *zio) 4970 { 4971 dbuf_dirty_record_t *dr = zio->io_private; 4972 dmu_buf_impl_t *db = dr->dr_dbuf; 4973 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4974 4975 mutex_enter(&db->db_mtx); 4976 if (!BP_EQUAL(zio->io_bp, obp)) { 4977 if (!BP_IS_HOLE(obp)) 4978 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4979 arc_release(dr->dt.dl.dr_data, db); 4980 } 4981 mutex_exit(&db->db_mtx); 4982 4983 dbuf_write_done(zio, NULL, db); 4984 4985 if (zio->io_abd != NULL) 4986 abd_free(zio->io_abd); 4987 } 4988 4989 typedef struct dbuf_remap_impl_callback_arg { 4990 objset_t *drica_os; 4991 uint64_t drica_blk_birth; 4992 dmu_tx_t *drica_tx; 4993 } dbuf_remap_impl_callback_arg_t; 4994 4995 static void 4996 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4997 void *arg) 4998 { 4999 dbuf_remap_impl_callback_arg_t *drica = arg; 5000 objset_t *os = drica->drica_os; 5001 spa_t *spa = dmu_objset_spa(os); 5002 dmu_tx_t *tx = drica->drica_tx; 5003 5004 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5005 5006 if (os == spa_meta_objset(spa)) { 5007 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5008 } else { 5009 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5010 size, drica->drica_blk_birth, tx); 5011 } 5012 } 5013 5014 static void 5015 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5016 { 5017 blkptr_t bp_copy = *bp; 5018 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5019 dbuf_remap_impl_callback_arg_t drica; 5020 5021 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5022 5023 drica.drica_os = dn->dn_objset; 5024 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5025 drica.drica_tx = tx; 5026 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5027 &drica)) { 5028 /* 5029 * If the blkptr being remapped is tracked by a livelist, 5030 * then we need to make sure the livelist reflects the update. 5031 * First, cancel out the old blkptr by appending a 'FREE' 5032 * entry. Next, add an 'ALLOC' to track the new version. This 5033 * way we avoid trying to free an inaccurate blkptr at delete. 5034 * Note that embedded blkptrs are not tracked in livelists. 5035 */ 5036 if (dn->dn_objset != spa_meta_objset(spa)) { 5037 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5038 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5039 BP_GET_LOGICAL_BIRTH(bp) > 5040 ds->ds_dir->dd_origin_txg) { 5041 ASSERT(!BP_IS_EMBEDDED(bp)); 5042 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5043 ASSERT(spa_feature_is_enabled(spa, 5044 SPA_FEATURE_LIVELIST)); 5045 bplist_append(&ds->ds_dir->dd_pending_frees, 5046 bp); 5047 bplist_append(&ds->ds_dir->dd_pending_allocs, 5048 &bp_copy); 5049 } 5050 } 5051 5052 /* 5053 * The db_rwlock prevents dbuf_read_impl() from 5054 * dereferencing the BP while we are changing it. To 5055 * avoid lock contention, only grab it when we are actually 5056 * changing the BP. 5057 */ 5058 if (rw != NULL) 5059 rw_enter(rw, RW_WRITER); 5060 *bp = bp_copy; 5061 if (rw != NULL) 5062 rw_exit(rw); 5063 } 5064 } 5065 5066 /* 5067 * Remap any existing BP's to concrete vdevs, if possible. 5068 */ 5069 static void 5070 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5071 { 5072 spa_t *spa = dmu_objset_spa(db->db_objset); 5073 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5074 5075 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5076 return; 5077 5078 if (db->db_level > 0) { 5079 blkptr_t *bp = db->db.db_data; 5080 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5081 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5082 } 5083 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5084 dnode_phys_t *dnp = db->db.db_data; 5085 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5086 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5087 i += dnp[i].dn_extra_slots + 1) { 5088 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5089 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5090 &dn->dn_dbuf->db_rwlock); 5091 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5092 tx); 5093 } 5094 } 5095 } 5096 } 5097 5098 5099 /* 5100 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5101 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5102 */ 5103 static void 5104 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5105 { 5106 dmu_buf_impl_t *db = dr->dr_dbuf; 5107 dnode_t *dn = dr->dr_dnode; 5108 objset_t *os; 5109 dmu_buf_impl_t *parent = db->db_parent; 5110 uint64_t txg = tx->tx_txg; 5111 zbookmark_phys_t zb; 5112 zio_prop_t zp; 5113 zio_t *pio; /* parent I/O */ 5114 int wp_flag = 0; 5115 5116 ASSERT(dmu_tx_is_syncing(tx)); 5117 5118 os = dn->dn_objset; 5119 5120 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5121 /* 5122 * Private object buffers are released here rather than in 5123 * dbuf_dirty() since they are only modified in the syncing 5124 * context and we don't want the overhead of making multiple 5125 * copies of the data. 5126 */ 5127 if (BP_IS_HOLE(db->db_blkptr)) 5128 arc_buf_thaw(data); 5129 else 5130 dbuf_release_bp(db); 5131 dbuf_remap(dn, db, tx); 5132 } 5133 5134 if (parent != dn->dn_dbuf) { 5135 /* Our parent is an indirect block. */ 5136 /* We have a dirty parent that has been scheduled for write. */ 5137 ASSERT(parent && parent->db_data_pending); 5138 /* Our parent's buffer is one level closer to the dnode. */ 5139 ASSERT(db->db_level == parent->db_level-1); 5140 /* 5141 * We're about to modify our parent's db_data by modifying 5142 * our block pointer, so the parent must be released. 5143 */ 5144 ASSERT(arc_released(parent->db_buf)); 5145 pio = parent->db_data_pending->dr_zio; 5146 } else { 5147 /* Our parent is the dnode itself. */ 5148 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5149 db->db_blkid != DMU_SPILL_BLKID) || 5150 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5151 if (db->db_blkid != DMU_SPILL_BLKID) 5152 ASSERT3P(db->db_blkptr, ==, 5153 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5154 pio = dn->dn_zio; 5155 } 5156 5157 ASSERT(db->db_level == 0 || data == db->db_buf); 5158 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5159 ASSERT(pio); 5160 5161 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5162 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5163 db->db.db_object, db->db_level, db->db_blkid); 5164 5165 if (db->db_blkid == DMU_SPILL_BLKID) 5166 wp_flag = WP_SPILL; 5167 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5168 5169 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5170 5171 /* 5172 * We copy the blkptr now (rather than when we instantiate the dirty 5173 * record), because its value can change between open context and 5174 * syncing context. We do not need to hold dn_struct_rwlock to read 5175 * db_blkptr because we are in syncing context. 5176 */ 5177 dr->dr_bp_copy = *db->db_blkptr; 5178 5179 if (db->db_level == 0 && 5180 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5181 /* 5182 * The BP for this block has been provided by open context 5183 * (by dmu_sync() or dmu_buf_write_embedded()). 5184 */ 5185 abd_t *contents = (data != NULL) ? 5186 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5187 5188 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5189 contents, db->db.db_size, db->db.db_size, &zp, 5190 dbuf_write_override_ready, NULL, 5191 dbuf_write_override_done, 5192 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5193 mutex_enter(&db->db_mtx); 5194 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5195 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5196 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5197 dr->dt.dl.dr_brtwrite); 5198 mutex_exit(&db->db_mtx); 5199 } else if (data == NULL) { 5200 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5201 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5202 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5203 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5204 dbuf_write_nofill_ready, NULL, 5205 dbuf_write_nofill_done, db, 5206 ZIO_PRIORITY_ASYNC_WRITE, 5207 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5208 } else { 5209 ASSERT(arc_released(data)); 5210 5211 /* 5212 * For indirect blocks, we want to setup the children 5213 * ready callback so that we can properly handle an indirect 5214 * block that only contains holes. 5215 */ 5216 arc_write_done_func_t *children_ready_cb = NULL; 5217 if (db->db_level != 0) 5218 children_ready_cb = dbuf_write_children_ready; 5219 5220 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5221 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5222 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, 5223 children_ready_cb, dbuf_write_done, db, 5224 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5225 } 5226 } 5227 5228 EXPORT_SYMBOL(dbuf_find); 5229 EXPORT_SYMBOL(dbuf_is_metadata); 5230 EXPORT_SYMBOL(dbuf_destroy); 5231 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5232 EXPORT_SYMBOL(dbuf_whichblock); 5233 EXPORT_SYMBOL(dbuf_read); 5234 EXPORT_SYMBOL(dbuf_unoverride); 5235 EXPORT_SYMBOL(dbuf_free_range); 5236 EXPORT_SYMBOL(dbuf_new_size); 5237 EXPORT_SYMBOL(dbuf_release_bp); 5238 EXPORT_SYMBOL(dbuf_dirty); 5239 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5240 EXPORT_SYMBOL(dmu_buf_will_dirty); 5241 EXPORT_SYMBOL(dmu_buf_is_dirty); 5242 EXPORT_SYMBOL(dmu_buf_will_clone); 5243 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5244 EXPORT_SYMBOL(dmu_buf_will_fill); 5245 EXPORT_SYMBOL(dmu_buf_fill_done); 5246 EXPORT_SYMBOL(dmu_buf_rele); 5247 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5248 EXPORT_SYMBOL(dbuf_prefetch); 5249 EXPORT_SYMBOL(dbuf_hold_impl); 5250 EXPORT_SYMBOL(dbuf_hold); 5251 EXPORT_SYMBOL(dbuf_hold_level); 5252 EXPORT_SYMBOL(dbuf_create_bonus); 5253 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5254 EXPORT_SYMBOL(dbuf_rm_spill); 5255 EXPORT_SYMBOL(dbuf_add_ref); 5256 EXPORT_SYMBOL(dbuf_rele); 5257 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5258 EXPORT_SYMBOL(dbuf_refcount); 5259 EXPORT_SYMBOL(dbuf_sync_list); 5260 EXPORT_SYMBOL(dmu_buf_set_user); 5261 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5262 EXPORT_SYMBOL(dmu_buf_get_user); 5263 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5264 5265 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5266 "Maximum size in bytes of the dbuf cache."); 5267 5268 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5269 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5270 5271 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5272 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5273 5274 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5275 "Maximum size in bytes of dbuf metadata cache."); 5276 5277 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5278 "Set size of dbuf cache to log2 fraction of arc size."); 5279 5280 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5281 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5282 5283 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5284 "Set size of dbuf cache mutex array as log2 shift."); 5285