1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val); 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)); 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1); 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1); 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 181 182 /* 183 * Global data structures and functions for the dbuf cache. 184 */ 185 static kmem_cache_t *dbuf_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 436 DBUF_STAT_MAX(hash_elements_max, he); 437 438 return (NULL); 439 } 440 441 /* 442 * This returns whether this dbuf should be stored in the metadata cache, which 443 * is based on whether it's from one of the dnode types that store data related 444 * to traversing dataset hierarchies. 445 */ 446 static boolean_t 447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 448 { 449 DB_DNODE_ENTER(db); 450 dmu_object_type_t type = DB_DNODE(db)->dn_type; 451 DB_DNODE_EXIT(db); 452 453 /* Check if this dbuf is one of the types we care about */ 454 if (DMU_OT_IS_METADATA_CACHED(type)) { 455 /* If we hit this, then we set something up wrong in dmu_ot */ 456 ASSERT(DMU_OT_IS_METADATA(type)); 457 458 /* 459 * Sanity check for small-memory systems: don't allocate too 460 * much memory for this purpose. 461 */ 462 if (zfs_refcount_count( 463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 464 dbuf_metadata_cache_target_bytes()) { 465 DBUF_STAT_BUMP(metadata_cache_overflow); 466 return (B_FALSE); 467 } 468 469 return (B_TRUE); 470 } 471 472 return (B_FALSE); 473 } 474 475 /* 476 * Remove an entry from the hash table. It must be in the EVICTING state. 477 */ 478 static void 479 dbuf_hash_remove(dmu_buf_impl_t *db) 480 { 481 dbuf_hash_table_t *h = &dbuf_hash_table; 482 uint64_t idx; 483 dmu_buf_impl_t *dbf, **dbp; 484 485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 486 db->db_blkid), ==, db->db_hash); 487 idx = db->db_hash & h->hash_table_mask; 488 489 /* 490 * We mustn't hold db_mtx to maintain lock ordering: 491 * DBUF_HASH_MUTEX > db_mtx. 492 */ 493 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 494 ASSERT(db->db_state == DB_EVICTING); 495 ASSERT(!MUTEX_HELD(&db->db_mtx)); 496 497 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 498 dbp = &h->hash_table[idx]; 499 while ((dbf = *dbp) != db) { 500 dbp = &dbf->db_hash_next; 501 ASSERT(dbf != NULL); 502 } 503 *dbp = db->db_hash_next; 504 db->db_hash_next = NULL; 505 if (h->hash_table[idx] && 506 h->hash_table[idx]->db_hash_next == NULL) 507 DBUF_STAT_BUMPDOWN(hash_chains); 508 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 510 } 511 512 typedef enum { 513 DBVU_EVICTING, 514 DBVU_NOT_EVICTING 515 } dbvu_verify_type_t; 516 517 static void 518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 519 { 520 #ifdef ZFS_DEBUG 521 int64_t holds; 522 523 if (db->db_user == NULL) 524 return; 525 526 /* Only data blocks support the attachment of user data. */ 527 ASSERT(db->db_level == 0); 528 529 /* Clients must resolve a dbuf before attaching user data. */ 530 ASSERT(db->db.db_data != NULL); 531 ASSERT3U(db->db_state, ==, DB_CACHED); 532 533 holds = zfs_refcount_count(&db->db_holds); 534 if (verify_type == DBVU_EVICTING) { 535 /* 536 * Immediate eviction occurs when holds == dirtycnt. 537 * For normal eviction buffers, holds is zero on 538 * eviction, except when dbuf_fix_old_data() calls 539 * dbuf_clear_data(). However, the hold count can grow 540 * during eviction even though db_mtx is held (see 541 * dmu_bonus_hold() for an example), so we can only 542 * test the generic invariant that holds >= dirtycnt. 543 */ 544 ASSERT3U(holds, >=, db->db_dirtycnt); 545 } else { 546 if (db->db_user_immediate_evict == TRUE) 547 ASSERT3U(holds, >=, db->db_dirtycnt); 548 else 549 ASSERT3U(holds, >, 0); 550 } 551 #endif 552 } 553 554 static void 555 dbuf_evict_user(dmu_buf_impl_t *db) 556 { 557 dmu_buf_user_t *dbu = db->db_user; 558 559 ASSERT(MUTEX_HELD(&db->db_mtx)); 560 561 if (dbu == NULL) 562 return; 563 564 dbuf_verify_user(db, DBVU_EVICTING); 565 db->db_user = NULL; 566 567 #ifdef ZFS_DEBUG 568 if (dbu->dbu_clear_on_evict_dbufp != NULL) 569 *dbu->dbu_clear_on_evict_dbufp = NULL; 570 #endif 571 572 /* 573 * There are two eviction callbacks - one that we call synchronously 574 * and one that we invoke via a taskq. The async one is useful for 575 * avoiding lock order reversals and limiting stack depth. 576 * 577 * Note that if we have a sync callback but no async callback, 578 * it's likely that the sync callback will free the structure 579 * containing the dbu. In that case we need to take care to not 580 * dereference dbu after calling the sync evict func. 581 */ 582 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 583 584 if (dbu->dbu_evict_func_sync != NULL) 585 dbu->dbu_evict_func_sync(dbu); 586 587 if (has_async) { 588 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 589 dbu, 0, &dbu->dbu_tqent); 590 } 591 } 592 593 boolean_t 594 dbuf_is_metadata(dmu_buf_impl_t *db) 595 { 596 /* 597 * Consider indirect blocks and spill blocks to be meta data. 598 */ 599 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 600 return (B_TRUE); 601 } else { 602 boolean_t is_metadata; 603 604 DB_DNODE_ENTER(db); 605 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 606 DB_DNODE_EXIT(db); 607 608 return (is_metadata); 609 } 610 } 611 612 /* 613 * We want to exclude buffers that are on a special allocation class from 614 * L2ARC. 615 */ 616 boolean_t 617 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 618 { 619 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 620 (db->db_objset->os_secondary_cache == 621 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 622 if (l2arc_exclude_special == 0) 623 return (B_TRUE); 624 625 blkptr_t *bp = db->db_blkptr; 626 if (bp == NULL || BP_IS_HOLE(bp)) 627 return (B_FALSE); 628 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 629 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 630 vdev_t *vd = NULL; 631 632 if (vdev < rvd->vdev_children) 633 vd = rvd->vdev_child[vdev]; 634 635 if (vd == NULL) 636 return (B_TRUE); 637 638 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 639 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 640 return (B_TRUE); 641 } 642 return (B_FALSE); 643 } 644 645 static inline boolean_t 646 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 647 { 648 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 649 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 650 (level > 0 || 651 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 652 if (l2arc_exclude_special == 0) 653 return (B_TRUE); 654 655 if (bp == NULL || BP_IS_HOLE(bp)) 656 return (B_FALSE); 657 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 658 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 659 vdev_t *vd = NULL; 660 661 if (vdev < rvd->vdev_children) 662 vd = rvd->vdev_child[vdev]; 663 664 if (vd == NULL) 665 return (B_TRUE); 666 667 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 668 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 669 return (B_TRUE); 670 } 671 return (B_FALSE); 672 } 673 674 675 /* 676 * This function *must* return indices evenly distributed between all 677 * sublists of the multilist. This is needed due to how the dbuf eviction 678 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 679 * distributed between all sublists and uses this assumption when 680 * deciding which sublist to evict from and how much to evict from it. 681 */ 682 static unsigned int 683 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 684 { 685 dmu_buf_impl_t *db = obj; 686 687 /* 688 * The assumption here, is the hash value for a given 689 * dmu_buf_impl_t will remain constant throughout it's lifetime 690 * (i.e. it's objset, object, level and blkid fields don't change). 691 * Thus, we don't need to store the dbuf's sublist index 692 * on insertion, as this index can be recalculated on removal. 693 * 694 * Also, the low order bits of the hash value are thought to be 695 * distributed evenly. Otherwise, in the case that the multilist 696 * has a power of two number of sublists, each sublists' usage 697 * would not be evenly distributed. In this context full 64bit 698 * division would be a waste of time, so limit it to 32 bits. 699 */ 700 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 701 db->db_level, db->db_blkid) % 702 multilist_get_num_sublists(ml)); 703 } 704 705 /* 706 * The target size of the dbuf cache can grow with the ARC target, 707 * unless limited by the tunable dbuf_cache_max_bytes. 708 */ 709 static inline unsigned long 710 dbuf_cache_target_bytes(void) 711 { 712 return (MIN(dbuf_cache_max_bytes, 713 arc_target_bytes() >> dbuf_cache_shift)); 714 } 715 716 /* 717 * The target size of the dbuf metadata cache can grow with the ARC target, 718 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 719 */ 720 static inline unsigned long 721 dbuf_metadata_cache_target_bytes(void) 722 { 723 return (MIN(dbuf_metadata_cache_max_bytes, 724 arc_target_bytes() >> dbuf_metadata_cache_shift)); 725 } 726 727 static inline uint64_t 728 dbuf_cache_hiwater_bytes(void) 729 { 730 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 731 return (dbuf_cache_target + 732 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 733 } 734 735 static inline uint64_t 736 dbuf_cache_lowater_bytes(void) 737 { 738 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 739 return (dbuf_cache_target - 740 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 741 } 742 743 static inline boolean_t 744 dbuf_cache_above_lowater(void) 745 { 746 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 747 dbuf_cache_lowater_bytes()); 748 } 749 750 /* 751 * Evict the oldest eligible dbuf from the dbuf cache. 752 */ 753 static void 754 dbuf_evict_one(void) 755 { 756 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 757 multilist_sublist_t *mls = multilist_sublist_lock( 758 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 759 760 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 761 762 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 763 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 764 db = multilist_sublist_prev(mls, db); 765 } 766 767 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 768 multilist_sublist_t *, mls); 769 770 if (db != NULL) { 771 multilist_sublist_remove(mls, db); 772 multilist_sublist_unlock(mls); 773 (void) zfs_refcount_remove_many( 774 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 775 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 776 DBUF_STAT_BUMPDOWN(cache_count); 777 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 778 db->db.db_size); 779 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 780 db->db_caching_status = DB_NO_CACHE; 781 dbuf_destroy(db); 782 DBUF_STAT_BUMP(cache_total_evicts); 783 } else { 784 multilist_sublist_unlock(mls); 785 } 786 } 787 788 /* 789 * The dbuf evict thread is responsible for aging out dbufs from the 790 * cache. Once the cache has reached it's maximum size, dbufs are removed 791 * and destroyed. The eviction thread will continue running until the size 792 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 793 * out of the cache it is destroyed and becomes eligible for arc eviction. 794 */ 795 static __attribute__((noreturn)) void 796 dbuf_evict_thread(void *unused) 797 { 798 (void) unused; 799 callb_cpr_t cpr; 800 801 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 802 803 mutex_enter(&dbuf_evict_lock); 804 while (!dbuf_evict_thread_exit) { 805 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 806 CALLB_CPR_SAFE_BEGIN(&cpr); 807 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 808 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 809 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 810 } 811 mutex_exit(&dbuf_evict_lock); 812 813 /* 814 * Keep evicting as long as we're above the low water mark 815 * for the cache. We do this without holding the locks to 816 * minimize lock contention. 817 */ 818 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 819 dbuf_evict_one(); 820 } 821 822 mutex_enter(&dbuf_evict_lock); 823 } 824 825 dbuf_evict_thread_exit = B_FALSE; 826 cv_broadcast(&dbuf_evict_cv); 827 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 828 thread_exit(); 829 } 830 831 /* 832 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 833 * If the dbuf cache is at its high water mark, then evict a dbuf from the 834 * dbuf cache using the caller's context. 835 */ 836 static void 837 dbuf_evict_notify(uint64_t size) 838 { 839 /* 840 * We check if we should evict without holding the dbuf_evict_lock, 841 * because it's OK to occasionally make the wrong decision here, 842 * and grabbing the lock results in massive lock contention. 843 */ 844 if (size > dbuf_cache_target_bytes()) { 845 if (size > dbuf_cache_hiwater_bytes()) 846 dbuf_evict_one(); 847 cv_signal(&dbuf_evict_cv); 848 } 849 } 850 851 static int 852 dbuf_kstat_update(kstat_t *ksp, int rw) 853 { 854 dbuf_stats_t *ds = ksp->ks_data; 855 dbuf_hash_table_t *h = &dbuf_hash_table; 856 857 if (rw == KSTAT_WRITE) 858 return (SET_ERROR(EACCES)); 859 860 ds->cache_count.value.ui64 = 861 wmsum_value(&dbuf_sums.cache_count); 862 ds->cache_size_bytes.value.ui64 = 863 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 864 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 865 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 866 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 867 ds->cache_total_evicts.value.ui64 = 868 wmsum_value(&dbuf_sums.cache_total_evicts); 869 for (int i = 0; i < DN_MAX_LEVELS; i++) { 870 ds->cache_levels[i].value.ui64 = 871 wmsum_value(&dbuf_sums.cache_levels[i]); 872 ds->cache_levels_bytes[i].value.ui64 = 873 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 874 } 875 ds->hash_hits.value.ui64 = 876 wmsum_value(&dbuf_sums.hash_hits); 877 ds->hash_misses.value.ui64 = 878 wmsum_value(&dbuf_sums.hash_misses); 879 ds->hash_collisions.value.ui64 = 880 wmsum_value(&dbuf_sums.hash_collisions); 881 ds->hash_chains.value.ui64 = 882 wmsum_value(&dbuf_sums.hash_chains); 883 ds->hash_insert_race.value.ui64 = 884 wmsum_value(&dbuf_sums.hash_insert_race); 885 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 886 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 887 ds->metadata_cache_count.value.ui64 = 888 wmsum_value(&dbuf_sums.metadata_cache_count); 889 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 890 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 891 ds->metadata_cache_overflow.value.ui64 = 892 wmsum_value(&dbuf_sums.metadata_cache_overflow); 893 return (0); 894 } 895 896 void 897 dbuf_init(void) 898 { 899 uint64_t hmsize, hsize = 1ULL << 16; 900 dbuf_hash_table_t *h = &dbuf_hash_table; 901 902 /* 903 * The hash table is big enough to fill one eighth of physical memory 904 * with an average block size of zfs_arc_average_blocksize (default 8K). 905 * By default, the table will take up 906 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 907 */ 908 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 909 hsize <<= 1; 910 911 h->hash_table = NULL; 912 while (h->hash_table == NULL) { 913 h->hash_table_mask = hsize - 1; 914 915 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 916 if (h->hash_table == NULL) 917 hsize >>= 1; 918 919 ASSERT3U(hsize, >=, 1ULL << 10); 920 } 921 922 /* 923 * The hash table buckets are protected by an array of mutexes where 924 * each mutex is reponsible for protecting 128 buckets. A minimum 925 * array size of 8192 is targeted to avoid contention. 926 */ 927 if (dbuf_mutex_cache_shift == 0) 928 hmsize = MAX(hsize >> 7, 1ULL << 13); 929 else 930 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 931 932 h->hash_mutexes = NULL; 933 while (h->hash_mutexes == NULL) { 934 h->hash_mutex_mask = hmsize - 1; 935 936 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 937 KM_SLEEP); 938 if (h->hash_mutexes == NULL) 939 hmsize >>= 1; 940 } 941 942 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 943 sizeof (dmu_buf_impl_t), 944 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 945 946 for (int i = 0; i < hmsize; i++) 947 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 948 949 dbuf_stats_init(h); 950 951 /* 952 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 953 * configuration is not required. 954 */ 955 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 956 957 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 958 multilist_create(&dbuf_caches[dcs].cache, 959 sizeof (dmu_buf_impl_t), 960 offsetof(dmu_buf_impl_t, db_cache_link), 961 dbuf_cache_multilist_index_func); 962 zfs_refcount_create(&dbuf_caches[dcs].size); 963 } 964 965 dbuf_evict_thread_exit = B_FALSE; 966 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 967 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 968 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 969 NULL, 0, &p0, TS_RUN, minclsyspri); 970 971 wmsum_init(&dbuf_sums.cache_count, 0); 972 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 973 for (int i = 0; i < DN_MAX_LEVELS; i++) { 974 wmsum_init(&dbuf_sums.cache_levels[i], 0); 975 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 976 } 977 wmsum_init(&dbuf_sums.hash_hits, 0); 978 wmsum_init(&dbuf_sums.hash_misses, 0); 979 wmsum_init(&dbuf_sums.hash_collisions, 0); 980 wmsum_init(&dbuf_sums.hash_chains, 0); 981 wmsum_init(&dbuf_sums.hash_insert_race, 0); 982 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 983 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 984 985 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 986 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 987 KSTAT_FLAG_VIRTUAL); 988 if (dbuf_ksp != NULL) { 989 for (int i = 0; i < DN_MAX_LEVELS; i++) { 990 snprintf(dbuf_stats.cache_levels[i].name, 991 KSTAT_STRLEN, "cache_level_%d", i); 992 dbuf_stats.cache_levels[i].data_type = 993 KSTAT_DATA_UINT64; 994 snprintf(dbuf_stats.cache_levels_bytes[i].name, 995 KSTAT_STRLEN, "cache_level_%d_bytes", i); 996 dbuf_stats.cache_levels_bytes[i].data_type = 997 KSTAT_DATA_UINT64; 998 } 999 dbuf_ksp->ks_data = &dbuf_stats; 1000 dbuf_ksp->ks_update = dbuf_kstat_update; 1001 kstat_install(dbuf_ksp); 1002 } 1003 } 1004 1005 void 1006 dbuf_fini(void) 1007 { 1008 dbuf_hash_table_t *h = &dbuf_hash_table; 1009 1010 dbuf_stats_destroy(); 1011 1012 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1013 mutex_destroy(&h->hash_mutexes[i]); 1014 1015 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1016 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1017 sizeof (kmutex_t)); 1018 1019 kmem_cache_destroy(dbuf_kmem_cache); 1020 taskq_destroy(dbu_evict_taskq); 1021 1022 mutex_enter(&dbuf_evict_lock); 1023 dbuf_evict_thread_exit = B_TRUE; 1024 while (dbuf_evict_thread_exit) { 1025 cv_signal(&dbuf_evict_cv); 1026 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1027 } 1028 mutex_exit(&dbuf_evict_lock); 1029 1030 mutex_destroy(&dbuf_evict_lock); 1031 cv_destroy(&dbuf_evict_cv); 1032 1033 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1034 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1035 multilist_destroy(&dbuf_caches[dcs].cache); 1036 } 1037 1038 if (dbuf_ksp != NULL) { 1039 kstat_delete(dbuf_ksp); 1040 dbuf_ksp = NULL; 1041 } 1042 1043 wmsum_fini(&dbuf_sums.cache_count); 1044 wmsum_fini(&dbuf_sums.cache_total_evicts); 1045 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1046 wmsum_fini(&dbuf_sums.cache_levels[i]); 1047 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1048 } 1049 wmsum_fini(&dbuf_sums.hash_hits); 1050 wmsum_fini(&dbuf_sums.hash_misses); 1051 wmsum_fini(&dbuf_sums.hash_collisions); 1052 wmsum_fini(&dbuf_sums.hash_chains); 1053 wmsum_fini(&dbuf_sums.hash_insert_race); 1054 wmsum_fini(&dbuf_sums.metadata_cache_count); 1055 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1056 } 1057 1058 /* 1059 * Other stuff. 1060 */ 1061 1062 #ifdef ZFS_DEBUG 1063 static void 1064 dbuf_verify(dmu_buf_impl_t *db) 1065 { 1066 dnode_t *dn; 1067 dbuf_dirty_record_t *dr; 1068 uint32_t txg_prev; 1069 1070 ASSERT(MUTEX_HELD(&db->db_mtx)); 1071 1072 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1073 return; 1074 1075 ASSERT(db->db_objset != NULL); 1076 DB_DNODE_ENTER(db); 1077 dn = DB_DNODE(db); 1078 if (dn == NULL) { 1079 ASSERT(db->db_parent == NULL); 1080 ASSERT(db->db_blkptr == NULL); 1081 } else { 1082 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1083 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1084 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1085 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1086 db->db_blkid == DMU_SPILL_BLKID || 1087 !avl_is_empty(&dn->dn_dbufs)); 1088 } 1089 if (db->db_blkid == DMU_BONUS_BLKID) { 1090 ASSERT(dn != NULL); 1091 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1092 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1093 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1094 ASSERT(dn != NULL); 1095 ASSERT0(db->db.db_offset); 1096 } else { 1097 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1098 } 1099 1100 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1101 ASSERT(dr->dr_dbuf == db); 1102 txg_prev = dr->dr_txg; 1103 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1104 dr = list_next(&db->db_dirty_records, dr)) { 1105 ASSERT(dr->dr_dbuf == db); 1106 ASSERT(txg_prev > dr->dr_txg); 1107 txg_prev = dr->dr_txg; 1108 } 1109 } 1110 1111 /* 1112 * We can't assert that db_size matches dn_datablksz because it 1113 * can be momentarily different when another thread is doing 1114 * dnode_set_blksz(). 1115 */ 1116 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1117 dr = db->db_data_pending; 1118 /* 1119 * It should only be modified in syncing context, so 1120 * make sure we only have one copy of the data. 1121 */ 1122 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1123 } 1124 1125 /* verify db->db_blkptr */ 1126 if (db->db_blkptr) { 1127 if (db->db_parent == dn->dn_dbuf) { 1128 /* db is pointed to by the dnode */ 1129 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1130 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1131 ASSERT(db->db_parent == NULL); 1132 else 1133 ASSERT(db->db_parent != NULL); 1134 if (db->db_blkid != DMU_SPILL_BLKID) 1135 ASSERT3P(db->db_blkptr, ==, 1136 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1137 } else { 1138 /* db is pointed to by an indirect block */ 1139 int epb __maybe_unused = db->db_parent->db.db_size >> 1140 SPA_BLKPTRSHIFT; 1141 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1142 ASSERT3U(db->db_parent->db.db_object, ==, 1143 db->db.db_object); 1144 /* 1145 * dnode_grow_indblksz() can make this fail if we don't 1146 * have the parent's rwlock. XXX indblksz no longer 1147 * grows. safe to do this now? 1148 */ 1149 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1150 ASSERT3P(db->db_blkptr, ==, 1151 ((blkptr_t *)db->db_parent->db.db_data + 1152 db->db_blkid % epb)); 1153 } 1154 } 1155 } 1156 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1157 (db->db_buf == NULL || db->db_buf->b_data) && 1158 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1159 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1160 /* 1161 * If the blkptr isn't set but they have nonzero data, 1162 * it had better be dirty, otherwise we'll lose that 1163 * data when we evict this buffer. 1164 * 1165 * There is an exception to this rule for indirect blocks; in 1166 * this case, if the indirect block is a hole, we fill in a few 1167 * fields on each of the child blocks (importantly, birth time) 1168 * to prevent hole birth times from being lost when you 1169 * partially fill in a hole. 1170 */ 1171 if (db->db_dirtycnt == 0) { 1172 if (db->db_level == 0) { 1173 uint64_t *buf = db->db.db_data; 1174 int i; 1175 1176 for (i = 0; i < db->db.db_size >> 3; i++) { 1177 ASSERT(buf[i] == 0); 1178 } 1179 } else { 1180 blkptr_t *bps = db->db.db_data; 1181 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1182 db->db.db_size); 1183 /* 1184 * We want to verify that all the blkptrs in the 1185 * indirect block are holes, but we may have 1186 * automatically set up a few fields for them. 1187 * We iterate through each blkptr and verify 1188 * they only have those fields set. 1189 */ 1190 for (int i = 0; 1191 i < db->db.db_size / sizeof (blkptr_t); 1192 i++) { 1193 blkptr_t *bp = &bps[i]; 1194 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1195 &bp->blk_cksum)); 1196 ASSERT( 1197 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1198 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1199 DVA_IS_EMPTY(&bp->blk_dva[2])); 1200 ASSERT0(bp->blk_fill); 1201 ASSERT0(bp->blk_pad[0]); 1202 ASSERT0(bp->blk_pad[1]); 1203 ASSERT(!BP_IS_EMBEDDED(bp)); 1204 ASSERT(BP_IS_HOLE(bp)); 1205 ASSERT0(bp->blk_phys_birth); 1206 } 1207 } 1208 } 1209 } 1210 DB_DNODE_EXIT(db); 1211 } 1212 #endif 1213 1214 static void 1215 dbuf_clear_data(dmu_buf_impl_t *db) 1216 { 1217 ASSERT(MUTEX_HELD(&db->db_mtx)); 1218 dbuf_evict_user(db); 1219 ASSERT3P(db->db_buf, ==, NULL); 1220 db->db.db_data = NULL; 1221 if (db->db_state != DB_NOFILL) { 1222 db->db_state = DB_UNCACHED; 1223 DTRACE_SET_STATE(db, "clear data"); 1224 } 1225 } 1226 1227 static void 1228 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1229 { 1230 ASSERT(MUTEX_HELD(&db->db_mtx)); 1231 ASSERT(buf != NULL); 1232 1233 db->db_buf = buf; 1234 ASSERT(buf->b_data != NULL); 1235 db->db.db_data = buf->b_data; 1236 } 1237 1238 static arc_buf_t * 1239 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1240 { 1241 spa_t *spa = db->db_objset->os_spa; 1242 1243 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1244 } 1245 1246 /* 1247 * Loan out an arc_buf for read. Return the loaned arc_buf. 1248 */ 1249 arc_buf_t * 1250 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1251 { 1252 arc_buf_t *abuf; 1253 1254 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1255 mutex_enter(&db->db_mtx); 1256 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1257 int blksz = db->db.db_size; 1258 spa_t *spa = db->db_objset->os_spa; 1259 1260 mutex_exit(&db->db_mtx); 1261 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1262 memcpy(abuf->b_data, db->db.db_data, blksz); 1263 } else { 1264 abuf = db->db_buf; 1265 arc_loan_inuse_buf(abuf, db); 1266 db->db_buf = NULL; 1267 dbuf_clear_data(db); 1268 mutex_exit(&db->db_mtx); 1269 } 1270 return (abuf); 1271 } 1272 1273 /* 1274 * Calculate which level n block references the data at the level 0 offset 1275 * provided. 1276 */ 1277 uint64_t 1278 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1279 { 1280 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1281 /* 1282 * The level n blkid is equal to the level 0 blkid divided by 1283 * the number of level 0s in a level n block. 1284 * 1285 * The level 0 blkid is offset >> datablkshift = 1286 * offset / 2^datablkshift. 1287 * 1288 * The number of level 0s in a level n is the number of block 1289 * pointers in an indirect block, raised to the power of level. 1290 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1291 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1292 * 1293 * Thus, the level n blkid is: offset / 1294 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1295 * = offset / 2^(datablkshift + level * 1296 * (indblkshift - SPA_BLKPTRSHIFT)) 1297 * = offset >> (datablkshift + level * 1298 * (indblkshift - SPA_BLKPTRSHIFT)) 1299 */ 1300 1301 const unsigned exp = dn->dn_datablkshift + 1302 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1303 1304 if (exp >= 8 * sizeof (offset)) { 1305 /* This only happens on the highest indirection level */ 1306 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1307 return (0); 1308 } 1309 1310 ASSERT3U(exp, <, 8 * sizeof (offset)); 1311 1312 return (offset >> exp); 1313 } else { 1314 ASSERT3U(offset, <, dn->dn_datablksz); 1315 return (0); 1316 } 1317 } 1318 1319 /* 1320 * This function is used to lock the parent of the provided dbuf. This should be 1321 * used when modifying or reading db_blkptr. 1322 */ 1323 db_lock_type_t 1324 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1325 { 1326 enum db_lock_type ret = DLT_NONE; 1327 if (db->db_parent != NULL) { 1328 rw_enter(&db->db_parent->db_rwlock, rw); 1329 ret = DLT_PARENT; 1330 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1331 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1332 tag); 1333 ret = DLT_OBJSET; 1334 } 1335 /* 1336 * We only return a DLT_NONE lock when it's the top-most indirect block 1337 * of the meta-dnode of the MOS. 1338 */ 1339 return (ret); 1340 } 1341 1342 /* 1343 * We need to pass the lock type in because it's possible that the block will 1344 * move from being the topmost indirect block in a dnode (and thus, have no 1345 * parent) to not the top-most via an indirection increase. This would cause a 1346 * panic if we didn't pass the lock type in. 1347 */ 1348 void 1349 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1350 { 1351 if (type == DLT_PARENT) 1352 rw_exit(&db->db_parent->db_rwlock); 1353 else if (type == DLT_OBJSET) 1354 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1355 } 1356 1357 static void 1358 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1359 arc_buf_t *buf, void *vdb) 1360 { 1361 (void) zb, (void) bp; 1362 dmu_buf_impl_t *db = vdb; 1363 1364 mutex_enter(&db->db_mtx); 1365 ASSERT3U(db->db_state, ==, DB_READ); 1366 /* 1367 * All reads are synchronous, so we must have a hold on the dbuf 1368 */ 1369 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1370 ASSERT(db->db_buf == NULL); 1371 ASSERT(db->db.db_data == NULL); 1372 if (buf == NULL) { 1373 /* i/o error */ 1374 ASSERT(zio == NULL || zio->io_error != 0); 1375 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1376 ASSERT3P(db->db_buf, ==, NULL); 1377 db->db_state = DB_UNCACHED; 1378 DTRACE_SET_STATE(db, "i/o error"); 1379 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1380 /* freed in flight */ 1381 ASSERT(zio == NULL || zio->io_error == 0); 1382 arc_release(buf, db); 1383 memset(buf->b_data, 0, db->db.db_size); 1384 arc_buf_freeze(buf); 1385 db->db_freed_in_flight = FALSE; 1386 dbuf_set_data(db, buf); 1387 db->db_state = DB_CACHED; 1388 DTRACE_SET_STATE(db, "freed in flight"); 1389 } else { 1390 /* success */ 1391 ASSERT(zio == NULL || zio->io_error == 0); 1392 dbuf_set_data(db, buf); 1393 db->db_state = DB_CACHED; 1394 DTRACE_SET_STATE(db, "successful read"); 1395 } 1396 cv_broadcast(&db->db_changed); 1397 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1398 } 1399 1400 /* 1401 * Shortcut for performing reads on bonus dbufs. Returns 1402 * an error if we fail to verify the dnode associated with 1403 * a decrypted block. Otherwise success. 1404 */ 1405 static int 1406 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1407 { 1408 int bonuslen, max_bonuslen, err; 1409 1410 err = dbuf_read_verify_dnode_crypt(db, flags); 1411 if (err) 1412 return (err); 1413 1414 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1415 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1416 ASSERT(MUTEX_HELD(&db->db_mtx)); 1417 ASSERT(DB_DNODE_HELD(db)); 1418 ASSERT3U(bonuslen, <=, db->db.db_size); 1419 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1420 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1421 if (bonuslen < max_bonuslen) 1422 memset(db->db.db_data, 0, max_bonuslen); 1423 if (bonuslen) 1424 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1425 db->db_state = DB_CACHED; 1426 DTRACE_SET_STATE(db, "bonus buffer filled"); 1427 return (0); 1428 } 1429 1430 static void 1431 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1432 { 1433 blkptr_t *bps = db->db.db_data; 1434 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1435 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1436 1437 for (int i = 0; i < n_bps; i++) { 1438 blkptr_t *bp = &bps[i]; 1439 1440 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1441 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1442 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1443 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1444 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1445 BP_SET_BIRTH(bp, dbbp->blk_birth, 0); 1446 } 1447 } 1448 1449 /* 1450 * Handle reads on dbufs that are holes, if necessary. This function 1451 * requires that the dbuf's mutex is held. Returns success (0) if action 1452 * was taken, ENOENT if no action was taken. 1453 */ 1454 static int 1455 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1456 { 1457 ASSERT(MUTEX_HELD(&db->db_mtx)); 1458 1459 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1460 /* 1461 * For level 0 blocks only, if the above check fails: 1462 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1463 * processes the delete record and clears the bp while we are waiting 1464 * for the dn_mtx (resulting in a "no" from block_freed). 1465 */ 1466 if (!is_hole && db->db_level == 0) 1467 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1468 1469 if (is_hole) { 1470 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1471 memset(db->db.db_data, 0, db->db.db_size); 1472 1473 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1474 bp->blk_birth != 0) { 1475 dbuf_handle_indirect_hole(db, dn, bp); 1476 } 1477 db->db_state = DB_CACHED; 1478 DTRACE_SET_STATE(db, "hole read satisfied"); 1479 return (0); 1480 } 1481 return (ENOENT); 1482 } 1483 1484 /* 1485 * This function ensures that, when doing a decrypting read of a block, 1486 * we make sure we have decrypted the dnode associated with it. We must do 1487 * this so that we ensure we are fully authenticating the checksum-of-MACs 1488 * tree from the root of the objset down to this block. Indirect blocks are 1489 * always verified against their secure checksum-of-MACs assuming that the 1490 * dnode containing them is correct. Now that we are doing a decrypting read, 1491 * we can be sure that the key is loaded and verify that assumption. This is 1492 * especially important considering that we always read encrypted dnode 1493 * blocks as raw data (without verifying their MACs) to start, and 1494 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1495 */ 1496 static int 1497 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1498 { 1499 int err = 0; 1500 objset_t *os = db->db_objset; 1501 arc_buf_t *dnode_abuf; 1502 dnode_t *dn; 1503 zbookmark_phys_t zb; 1504 1505 ASSERT(MUTEX_HELD(&db->db_mtx)); 1506 1507 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1508 !os->os_encrypted || os->os_raw_receive) 1509 return (0); 1510 1511 DB_DNODE_ENTER(db); 1512 dn = DB_DNODE(db); 1513 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1514 1515 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1516 DB_DNODE_EXIT(db); 1517 return (0); 1518 } 1519 1520 SET_BOOKMARK(&zb, dmu_objset_id(os), 1521 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1522 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1523 1524 /* 1525 * An error code of EACCES tells us that the key is still not 1526 * available. This is ok if we are only reading authenticated 1527 * (and therefore non-encrypted) blocks. 1528 */ 1529 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1530 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1531 (db->db_blkid == DMU_BONUS_BLKID && 1532 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1533 err = 0; 1534 1535 DB_DNODE_EXIT(db); 1536 1537 return (err); 1538 } 1539 1540 /* 1541 * Drops db_mtx and the parent lock specified by dblt and tag before 1542 * returning. 1543 */ 1544 static int 1545 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1546 db_lock_type_t dblt, const void *tag) 1547 { 1548 dnode_t *dn; 1549 zbookmark_phys_t zb; 1550 uint32_t aflags = ARC_FLAG_NOWAIT; 1551 int err, zio_flags; 1552 blkptr_t bp, *bpp; 1553 1554 DB_DNODE_ENTER(db); 1555 dn = DB_DNODE(db); 1556 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1557 ASSERT(MUTEX_HELD(&db->db_mtx)); 1558 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1559 ASSERT(db->db_buf == NULL); 1560 ASSERT(db->db_parent == NULL || 1561 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1562 1563 if (db->db_blkid == DMU_BONUS_BLKID) { 1564 err = dbuf_read_bonus(db, dn, flags); 1565 goto early_unlock; 1566 } 1567 1568 if (db->db_state == DB_UNCACHED) { 1569 if (db->db_blkptr == NULL) { 1570 bpp = NULL; 1571 } else { 1572 bp = *db->db_blkptr; 1573 bpp = &bp; 1574 } 1575 } else { 1576 dbuf_dirty_record_t *dr; 1577 1578 ASSERT3S(db->db_state, ==, DB_NOFILL); 1579 1580 /* 1581 * Block cloning: If we have a pending block clone, 1582 * we don't want to read the underlying block, but the content 1583 * of the block being cloned, so we have the most recent data. 1584 */ 1585 dr = list_head(&db->db_dirty_records); 1586 if (dr == NULL || !dr->dt.dl.dr_brtwrite) { 1587 err = EIO; 1588 goto early_unlock; 1589 } 1590 bp = dr->dt.dl.dr_overridden_by; 1591 bpp = &bp; 1592 } 1593 1594 err = dbuf_read_hole(db, dn, bpp); 1595 if (err == 0) 1596 goto early_unlock; 1597 1598 ASSERT(bpp != NULL); 1599 1600 /* 1601 * Any attempt to read a redacted block should result in an error. This 1602 * will never happen under normal conditions, but can be useful for 1603 * debugging purposes. 1604 */ 1605 if (BP_IS_REDACTED(bpp)) { 1606 ASSERT(dsl_dataset_feature_is_active( 1607 db->db_objset->os_dsl_dataset, 1608 SPA_FEATURE_REDACTED_DATASETS)); 1609 err = SET_ERROR(EIO); 1610 goto early_unlock; 1611 } 1612 1613 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1614 db->db.db_object, db->db_level, db->db_blkid); 1615 1616 /* 1617 * All bps of an encrypted os should have the encryption bit set. 1618 * If this is not true it indicates tampering and we report an error. 1619 */ 1620 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { 1621 spa_log_error(db->db_objset->os_spa, &zb, &bpp->blk_birth); 1622 zfs_panic_recover("unencrypted block in encrypted " 1623 "object set %llu", dmu_objset_id(db->db_objset)); 1624 err = SET_ERROR(EIO); 1625 goto early_unlock; 1626 } 1627 1628 err = dbuf_read_verify_dnode_crypt(db, flags); 1629 if (err != 0) 1630 goto early_unlock; 1631 1632 DB_DNODE_EXIT(db); 1633 1634 db->db_state = DB_READ; 1635 DTRACE_SET_STATE(db, "read issued"); 1636 mutex_exit(&db->db_mtx); 1637 1638 if (!DBUF_IS_CACHEABLE(db)) 1639 aflags |= ARC_FLAG_UNCACHED; 1640 else if (dbuf_is_l2cacheable(db)) 1641 aflags |= ARC_FLAG_L2CACHE; 1642 1643 dbuf_add_ref(db, NULL); 1644 1645 zio_flags = (flags & DB_RF_CANFAIL) ? 1646 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1647 1648 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1649 zio_flags |= ZIO_FLAG_RAW; 1650 /* 1651 * The zio layer will copy the provided blkptr later, but we have our 1652 * own copy so that we can release the parent's rwlock. We have to 1653 * do that so that if dbuf_read_done is called synchronously (on 1654 * an l1 cache hit) we don't acquire the db_mtx while holding the 1655 * parent's rwlock, which would be a lock ordering violation. 1656 */ 1657 dmu_buf_unlock_parent(db, dblt, tag); 1658 (void) arc_read(zio, db->db_objset->os_spa, bpp, 1659 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1660 &aflags, &zb); 1661 return (err); 1662 early_unlock: 1663 DB_DNODE_EXIT(db); 1664 mutex_exit(&db->db_mtx); 1665 dmu_buf_unlock_parent(db, dblt, tag); 1666 return (err); 1667 } 1668 1669 /* 1670 * This is our just-in-time copy function. It makes a copy of buffers that 1671 * have been modified in a previous transaction group before we access them in 1672 * the current active group. 1673 * 1674 * This function is used in three places: when we are dirtying a buffer for the 1675 * first time in a txg, when we are freeing a range in a dnode that includes 1676 * this buffer, and when we are accessing a buffer which was received compressed 1677 * and later referenced in a WRITE_BYREF record. 1678 * 1679 * Note that when we are called from dbuf_free_range() we do not put a hold on 1680 * the buffer, we just traverse the active dbuf list for the dnode. 1681 */ 1682 static void 1683 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1684 { 1685 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1686 1687 ASSERT(MUTEX_HELD(&db->db_mtx)); 1688 ASSERT(db->db.db_data != NULL); 1689 ASSERT(db->db_level == 0); 1690 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1691 1692 if (dr == NULL || 1693 (dr->dt.dl.dr_data != 1694 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1695 return; 1696 1697 /* 1698 * If the last dirty record for this dbuf has not yet synced 1699 * and its referencing the dbuf data, either: 1700 * reset the reference to point to a new copy, 1701 * or (if there a no active holders) 1702 * just null out the current db_data pointer. 1703 */ 1704 ASSERT3U(dr->dr_txg, >=, txg - 2); 1705 if (db->db_blkid == DMU_BONUS_BLKID) { 1706 dnode_t *dn = DB_DNODE(db); 1707 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1708 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1709 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1710 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1711 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1712 dnode_t *dn = DB_DNODE(db); 1713 int size = arc_buf_size(db->db_buf); 1714 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1715 spa_t *spa = db->db_objset->os_spa; 1716 enum zio_compress compress_type = 1717 arc_get_compression(db->db_buf); 1718 uint8_t complevel = arc_get_complevel(db->db_buf); 1719 1720 if (arc_is_encrypted(db->db_buf)) { 1721 boolean_t byteorder; 1722 uint8_t salt[ZIO_DATA_SALT_LEN]; 1723 uint8_t iv[ZIO_DATA_IV_LEN]; 1724 uint8_t mac[ZIO_DATA_MAC_LEN]; 1725 1726 arc_get_raw_params(db->db_buf, &byteorder, salt, 1727 iv, mac); 1728 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1729 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1730 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1731 compress_type, complevel); 1732 } else if (compress_type != ZIO_COMPRESS_OFF) { 1733 ASSERT3U(type, ==, ARC_BUFC_DATA); 1734 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1735 size, arc_buf_lsize(db->db_buf), compress_type, 1736 complevel); 1737 } else { 1738 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1739 } 1740 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1741 } else { 1742 db->db_buf = NULL; 1743 dbuf_clear_data(db); 1744 } 1745 } 1746 1747 int 1748 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1749 { 1750 int err = 0; 1751 boolean_t prefetch; 1752 dnode_t *dn; 1753 1754 /* 1755 * We don't have to hold the mutex to check db_state because it 1756 * can't be freed while we have a hold on the buffer. 1757 */ 1758 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1759 1760 DB_DNODE_ENTER(db); 1761 dn = DB_DNODE(db); 1762 1763 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1764 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL; 1765 1766 mutex_enter(&db->db_mtx); 1767 if (flags & DB_RF_PARTIAL_FIRST) 1768 db->db_partial_read = B_TRUE; 1769 else if (!(flags & DB_RF_PARTIAL_MORE)) 1770 db->db_partial_read = B_FALSE; 1771 if (db->db_state == DB_CACHED) { 1772 /* 1773 * Ensure that this block's dnode has been decrypted if 1774 * the caller has requested decrypted data. 1775 */ 1776 err = dbuf_read_verify_dnode_crypt(db, flags); 1777 1778 /* 1779 * If the arc buf is compressed or encrypted and the caller 1780 * requested uncompressed data, we need to untransform it 1781 * before returning. We also call arc_untransform() on any 1782 * unauthenticated blocks, which will verify their MAC if 1783 * the key is now available. 1784 */ 1785 if (err == 0 && db->db_buf != NULL && 1786 (flags & DB_RF_NO_DECRYPT) == 0 && 1787 (arc_is_encrypted(db->db_buf) || 1788 arc_is_unauthenticated(db->db_buf) || 1789 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1790 spa_t *spa = dn->dn_objset->os_spa; 1791 zbookmark_phys_t zb; 1792 1793 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1794 db->db.db_object, db->db_level, db->db_blkid); 1795 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1796 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1797 dbuf_set_data(db, db->db_buf); 1798 } 1799 mutex_exit(&db->db_mtx); 1800 if (err == 0 && prefetch) { 1801 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1802 B_FALSE, flags & DB_RF_HAVESTRUCT); 1803 } 1804 DB_DNODE_EXIT(db); 1805 DBUF_STAT_BUMP(hash_hits); 1806 } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) { 1807 boolean_t need_wait = B_FALSE; 1808 1809 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1810 1811 if (zio == NULL && (db->db_state == DB_NOFILL || 1812 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { 1813 spa_t *spa = dn->dn_objset->os_spa; 1814 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1815 need_wait = B_TRUE; 1816 } 1817 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1818 /* 1819 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1820 * for us 1821 */ 1822 if (!err && prefetch) { 1823 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1824 db->db_state != DB_CACHED, 1825 flags & DB_RF_HAVESTRUCT); 1826 } 1827 1828 DB_DNODE_EXIT(db); 1829 DBUF_STAT_BUMP(hash_misses); 1830 1831 /* 1832 * If we created a zio_root we must execute it to avoid 1833 * leaking it, even if it isn't attached to any work due 1834 * to an error in dbuf_read_impl(). 1835 */ 1836 if (need_wait) { 1837 if (err == 0) 1838 err = zio_wait(zio); 1839 else 1840 VERIFY0(zio_wait(zio)); 1841 } 1842 } else { 1843 /* 1844 * Another reader came in while the dbuf was in flight 1845 * between UNCACHED and CACHED. Either a writer will finish 1846 * writing the buffer (sending the dbuf to CACHED) or the 1847 * first reader's request will reach the read_done callback 1848 * and send the dbuf to CACHED. Otherwise, a failure 1849 * occurred and the dbuf went to UNCACHED. 1850 */ 1851 mutex_exit(&db->db_mtx); 1852 if (prefetch) { 1853 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1854 B_TRUE, flags & DB_RF_HAVESTRUCT); 1855 } 1856 DB_DNODE_EXIT(db); 1857 DBUF_STAT_BUMP(hash_misses); 1858 1859 /* Skip the wait per the caller's request. */ 1860 if ((flags & DB_RF_NEVERWAIT) == 0) { 1861 mutex_enter(&db->db_mtx); 1862 while (db->db_state == DB_READ || 1863 db->db_state == DB_FILL) { 1864 ASSERT(db->db_state == DB_READ || 1865 (flags & DB_RF_HAVESTRUCT) == 0); 1866 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1867 db, zio_t *, zio); 1868 cv_wait(&db->db_changed, &db->db_mtx); 1869 } 1870 if (db->db_state == DB_UNCACHED) 1871 err = SET_ERROR(EIO); 1872 mutex_exit(&db->db_mtx); 1873 } 1874 } 1875 1876 return (err); 1877 } 1878 1879 static void 1880 dbuf_noread(dmu_buf_impl_t *db) 1881 { 1882 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1883 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1884 mutex_enter(&db->db_mtx); 1885 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1886 cv_wait(&db->db_changed, &db->db_mtx); 1887 if (db->db_state == DB_UNCACHED) { 1888 ASSERT(db->db_buf == NULL); 1889 ASSERT(db->db.db_data == NULL); 1890 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1891 db->db_state = DB_FILL; 1892 DTRACE_SET_STATE(db, "assigning filled buffer"); 1893 } else if (db->db_state == DB_NOFILL) { 1894 dbuf_clear_data(db); 1895 } else { 1896 ASSERT3U(db->db_state, ==, DB_CACHED); 1897 } 1898 mutex_exit(&db->db_mtx); 1899 } 1900 1901 void 1902 dbuf_unoverride(dbuf_dirty_record_t *dr) 1903 { 1904 dmu_buf_impl_t *db = dr->dr_dbuf; 1905 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1906 uint64_t txg = dr->dr_txg; 1907 boolean_t release; 1908 1909 ASSERT(MUTEX_HELD(&db->db_mtx)); 1910 /* 1911 * This assert is valid because dmu_sync() expects to be called by 1912 * a zilog's get_data while holding a range lock. This call only 1913 * comes from dbuf_dirty() callers who must also hold a range lock. 1914 */ 1915 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1916 ASSERT(db->db_level == 0); 1917 1918 if (db->db_blkid == DMU_BONUS_BLKID || 1919 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1920 return; 1921 1922 ASSERT(db->db_data_pending != dr); 1923 1924 /* free this block */ 1925 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1926 zio_free(db->db_objset->os_spa, txg, bp); 1927 1928 release = !dr->dt.dl.dr_brtwrite; 1929 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1930 dr->dt.dl.dr_nopwrite = B_FALSE; 1931 dr->dt.dl.dr_brtwrite = B_FALSE; 1932 dr->dt.dl.dr_has_raw_params = B_FALSE; 1933 1934 /* 1935 * Release the already-written buffer, so we leave it in 1936 * a consistent dirty state. Note that all callers are 1937 * modifying the buffer, so they will immediately do 1938 * another (redundant) arc_release(). Therefore, leave 1939 * the buf thawed to save the effort of freezing & 1940 * immediately re-thawing it. 1941 */ 1942 if (release) 1943 arc_release(dr->dt.dl.dr_data, db); 1944 } 1945 1946 /* 1947 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1948 * data blocks in the free range, so that any future readers will find 1949 * empty blocks. 1950 */ 1951 void 1952 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1953 dmu_tx_t *tx) 1954 { 1955 dmu_buf_impl_t *db_search; 1956 dmu_buf_impl_t *db, *db_next; 1957 uint64_t txg = tx->tx_txg; 1958 avl_index_t where; 1959 dbuf_dirty_record_t *dr; 1960 1961 if (end_blkid > dn->dn_maxblkid && 1962 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1963 end_blkid = dn->dn_maxblkid; 1964 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1965 (u_longlong_t)end_blkid); 1966 1967 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1968 db_search->db_level = 0; 1969 db_search->db_blkid = start_blkid; 1970 db_search->db_state = DB_SEARCH; 1971 1972 mutex_enter(&dn->dn_dbufs_mtx); 1973 db = avl_find(&dn->dn_dbufs, db_search, &where); 1974 ASSERT3P(db, ==, NULL); 1975 1976 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1977 1978 for (; db != NULL; db = db_next) { 1979 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1980 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1981 1982 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1983 break; 1984 } 1985 ASSERT3U(db->db_blkid, >=, start_blkid); 1986 1987 /* found a level 0 buffer in the range */ 1988 mutex_enter(&db->db_mtx); 1989 if (dbuf_undirty(db, tx)) { 1990 /* mutex has been dropped and dbuf destroyed */ 1991 continue; 1992 } 1993 1994 if (db->db_state == DB_UNCACHED || 1995 db->db_state == DB_NOFILL || 1996 db->db_state == DB_EVICTING) { 1997 ASSERT(db->db.db_data == NULL); 1998 mutex_exit(&db->db_mtx); 1999 continue; 2000 } 2001 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2002 /* will be handled in dbuf_read_done or dbuf_rele */ 2003 db->db_freed_in_flight = TRUE; 2004 mutex_exit(&db->db_mtx); 2005 continue; 2006 } 2007 if (zfs_refcount_count(&db->db_holds) == 0) { 2008 ASSERT(db->db_buf); 2009 dbuf_destroy(db); 2010 continue; 2011 } 2012 /* The dbuf is referenced */ 2013 2014 dr = list_head(&db->db_dirty_records); 2015 if (dr != NULL) { 2016 if (dr->dr_txg == txg) { 2017 /* 2018 * This buffer is "in-use", re-adjust the file 2019 * size to reflect that this buffer may 2020 * contain new data when we sync. 2021 */ 2022 if (db->db_blkid != DMU_SPILL_BLKID && 2023 db->db_blkid > dn->dn_maxblkid) 2024 dn->dn_maxblkid = db->db_blkid; 2025 dbuf_unoverride(dr); 2026 } else { 2027 /* 2028 * This dbuf is not dirty in the open context. 2029 * Either uncache it (if its not referenced in 2030 * the open context) or reset its contents to 2031 * empty. 2032 */ 2033 dbuf_fix_old_data(db, txg); 2034 } 2035 } 2036 /* clear the contents if its cached */ 2037 if (db->db_state == DB_CACHED) { 2038 ASSERT(db->db.db_data != NULL); 2039 arc_release(db->db_buf, db); 2040 rw_enter(&db->db_rwlock, RW_WRITER); 2041 memset(db->db.db_data, 0, db->db.db_size); 2042 rw_exit(&db->db_rwlock); 2043 arc_buf_freeze(db->db_buf); 2044 } 2045 2046 mutex_exit(&db->db_mtx); 2047 } 2048 2049 mutex_exit(&dn->dn_dbufs_mtx); 2050 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2051 } 2052 2053 void 2054 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2055 { 2056 arc_buf_t *buf, *old_buf; 2057 dbuf_dirty_record_t *dr; 2058 int osize = db->db.db_size; 2059 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2060 dnode_t *dn; 2061 2062 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2063 2064 DB_DNODE_ENTER(db); 2065 dn = DB_DNODE(db); 2066 2067 /* 2068 * XXX we should be doing a dbuf_read, checking the return 2069 * value and returning that up to our callers 2070 */ 2071 dmu_buf_will_dirty(&db->db, tx); 2072 2073 /* create the data buffer for the new block */ 2074 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2075 2076 /* copy old block data to the new block */ 2077 old_buf = db->db_buf; 2078 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2079 /* zero the remainder */ 2080 if (size > osize) 2081 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2082 2083 mutex_enter(&db->db_mtx); 2084 dbuf_set_data(db, buf); 2085 arc_buf_destroy(old_buf, db); 2086 db->db.db_size = size; 2087 2088 dr = list_head(&db->db_dirty_records); 2089 /* dirty record added by dmu_buf_will_dirty() */ 2090 VERIFY(dr != NULL); 2091 if (db->db_level == 0) 2092 dr->dt.dl.dr_data = buf; 2093 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2094 ASSERT3U(dr->dr_accounted, ==, osize); 2095 dr->dr_accounted = size; 2096 mutex_exit(&db->db_mtx); 2097 2098 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2099 DB_DNODE_EXIT(db); 2100 } 2101 2102 void 2103 dbuf_release_bp(dmu_buf_impl_t *db) 2104 { 2105 objset_t *os __maybe_unused = db->db_objset; 2106 2107 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2108 ASSERT(arc_released(os->os_phys_buf) || 2109 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2110 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2111 2112 (void) arc_release(db->db_buf, db); 2113 } 2114 2115 /* 2116 * We already have a dirty record for this TXG, and we are being 2117 * dirtied again. 2118 */ 2119 static void 2120 dbuf_redirty(dbuf_dirty_record_t *dr) 2121 { 2122 dmu_buf_impl_t *db = dr->dr_dbuf; 2123 2124 ASSERT(MUTEX_HELD(&db->db_mtx)); 2125 2126 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2127 /* 2128 * If this buffer has already been written out, 2129 * we now need to reset its state. 2130 */ 2131 dbuf_unoverride(dr); 2132 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2133 db->db_state != DB_NOFILL) { 2134 /* Already released on initial dirty, so just thaw. */ 2135 ASSERT(arc_released(db->db_buf)); 2136 arc_buf_thaw(db->db_buf); 2137 } 2138 } 2139 } 2140 2141 dbuf_dirty_record_t * 2142 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2143 { 2144 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2145 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2146 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2147 ASSERT(dn->dn_maxblkid >= blkid); 2148 2149 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2150 list_link_init(&dr->dr_dirty_node); 2151 list_link_init(&dr->dr_dbuf_node); 2152 dr->dr_dnode = dn; 2153 dr->dr_txg = tx->tx_txg; 2154 dr->dt.dll.dr_blkid = blkid; 2155 dr->dr_accounted = dn->dn_datablksz; 2156 2157 /* 2158 * There should not be any dbuf for the block that we're dirtying. 2159 * Otherwise the buffer contents could be inconsistent between the 2160 * dbuf and the lightweight dirty record. 2161 */ 2162 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2163 NULL)); 2164 2165 mutex_enter(&dn->dn_mtx); 2166 int txgoff = tx->tx_txg & TXG_MASK; 2167 if (dn->dn_free_ranges[txgoff] != NULL) { 2168 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2169 } 2170 2171 if (dn->dn_nlevels == 1) { 2172 ASSERT3U(blkid, <, dn->dn_nblkptr); 2173 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2174 mutex_exit(&dn->dn_mtx); 2175 rw_exit(&dn->dn_struct_rwlock); 2176 dnode_setdirty(dn, tx); 2177 } else { 2178 mutex_exit(&dn->dn_mtx); 2179 2180 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2181 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2182 1, blkid >> epbs, FTAG); 2183 rw_exit(&dn->dn_struct_rwlock); 2184 if (parent_db == NULL) { 2185 kmem_free(dr, sizeof (*dr)); 2186 return (NULL); 2187 } 2188 int err = dbuf_read(parent_db, NULL, 2189 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2190 if (err != 0) { 2191 dbuf_rele(parent_db, FTAG); 2192 kmem_free(dr, sizeof (*dr)); 2193 return (NULL); 2194 } 2195 2196 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2197 dbuf_rele(parent_db, FTAG); 2198 mutex_enter(&parent_dr->dt.di.dr_mtx); 2199 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2200 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2201 mutex_exit(&parent_dr->dt.di.dr_mtx); 2202 dr->dr_parent = parent_dr; 2203 } 2204 2205 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2206 2207 return (dr); 2208 } 2209 2210 dbuf_dirty_record_t * 2211 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2212 { 2213 dnode_t *dn; 2214 objset_t *os; 2215 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2216 int txgoff = tx->tx_txg & TXG_MASK; 2217 boolean_t drop_struct_rwlock = B_FALSE; 2218 2219 ASSERT(tx->tx_txg != 0); 2220 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2221 DMU_TX_DIRTY_BUF(tx, db); 2222 2223 DB_DNODE_ENTER(db); 2224 dn = DB_DNODE(db); 2225 /* 2226 * Shouldn't dirty a regular buffer in syncing context. Private 2227 * objects may be dirtied in syncing context, but only if they 2228 * were already pre-dirtied in open context. 2229 */ 2230 #ifdef ZFS_DEBUG 2231 if (dn->dn_objset->os_dsl_dataset != NULL) { 2232 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2233 RW_READER, FTAG); 2234 } 2235 ASSERT(!dmu_tx_is_syncing(tx) || 2236 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2237 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2238 dn->dn_objset->os_dsl_dataset == NULL); 2239 if (dn->dn_objset->os_dsl_dataset != NULL) 2240 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2241 #endif 2242 /* 2243 * We make this assert for private objects as well, but after we 2244 * check if we're already dirty. They are allowed to re-dirty 2245 * in syncing context. 2246 */ 2247 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2248 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2249 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2250 2251 mutex_enter(&db->db_mtx); 2252 /* 2253 * XXX make this true for indirects too? The problem is that 2254 * transactions created with dmu_tx_create_assigned() from 2255 * syncing context don't bother holding ahead. 2256 */ 2257 ASSERT(db->db_level != 0 || 2258 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2259 db->db_state == DB_NOFILL); 2260 2261 mutex_enter(&dn->dn_mtx); 2262 dnode_set_dirtyctx(dn, tx, db); 2263 if (tx->tx_txg > dn->dn_dirty_txg) 2264 dn->dn_dirty_txg = tx->tx_txg; 2265 mutex_exit(&dn->dn_mtx); 2266 2267 if (db->db_blkid == DMU_SPILL_BLKID) 2268 dn->dn_have_spill = B_TRUE; 2269 2270 /* 2271 * If this buffer is already dirty, we're done. 2272 */ 2273 dr_head = list_head(&db->db_dirty_records); 2274 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2275 db->db.db_object == DMU_META_DNODE_OBJECT); 2276 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2277 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2278 DB_DNODE_EXIT(db); 2279 2280 dbuf_redirty(dr_next); 2281 mutex_exit(&db->db_mtx); 2282 return (dr_next); 2283 } 2284 2285 /* 2286 * Only valid if not already dirty. 2287 */ 2288 ASSERT(dn->dn_object == 0 || 2289 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2290 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2291 2292 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2293 2294 /* 2295 * We should only be dirtying in syncing context if it's the 2296 * mos or we're initializing the os or it's a special object. 2297 * However, we are allowed to dirty in syncing context provided 2298 * we already dirtied it in open context. Hence we must make 2299 * this assertion only if we're not already dirty. 2300 */ 2301 os = dn->dn_objset; 2302 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2303 #ifdef ZFS_DEBUG 2304 if (dn->dn_objset->os_dsl_dataset != NULL) 2305 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2306 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2307 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2308 if (dn->dn_objset->os_dsl_dataset != NULL) 2309 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2310 #endif 2311 ASSERT(db->db.db_size != 0); 2312 2313 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2314 2315 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2316 dmu_objset_willuse_space(os, db->db.db_size, tx); 2317 } 2318 2319 /* 2320 * If this buffer is dirty in an old transaction group we need 2321 * to make a copy of it so that the changes we make in this 2322 * transaction group won't leak out when we sync the older txg. 2323 */ 2324 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2325 list_link_init(&dr->dr_dirty_node); 2326 list_link_init(&dr->dr_dbuf_node); 2327 dr->dr_dnode = dn; 2328 if (db->db_level == 0) { 2329 void *data_old = db->db_buf; 2330 2331 if (db->db_state != DB_NOFILL) { 2332 if (db->db_blkid == DMU_BONUS_BLKID) { 2333 dbuf_fix_old_data(db, tx->tx_txg); 2334 data_old = db->db.db_data; 2335 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2336 /* 2337 * Release the data buffer from the cache so 2338 * that we can modify it without impacting 2339 * possible other users of this cached data 2340 * block. Note that indirect blocks and 2341 * private objects are not released until the 2342 * syncing state (since they are only modified 2343 * then). 2344 */ 2345 arc_release(db->db_buf, db); 2346 dbuf_fix_old_data(db, tx->tx_txg); 2347 data_old = db->db_buf; 2348 } 2349 ASSERT(data_old != NULL); 2350 } 2351 dr->dt.dl.dr_data = data_old; 2352 } else { 2353 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2354 list_create(&dr->dt.di.dr_children, 2355 sizeof (dbuf_dirty_record_t), 2356 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2357 } 2358 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2359 dr->dr_accounted = db->db.db_size; 2360 } 2361 dr->dr_dbuf = db; 2362 dr->dr_txg = tx->tx_txg; 2363 list_insert_before(&db->db_dirty_records, dr_next, dr); 2364 2365 /* 2366 * We could have been freed_in_flight between the dbuf_noread 2367 * and dbuf_dirty. We win, as though the dbuf_noread() had 2368 * happened after the free. 2369 */ 2370 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2371 db->db_blkid != DMU_SPILL_BLKID) { 2372 mutex_enter(&dn->dn_mtx); 2373 if (dn->dn_free_ranges[txgoff] != NULL) { 2374 range_tree_clear(dn->dn_free_ranges[txgoff], 2375 db->db_blkid, 1); 2376 } 2377 mutex_exit(&dn->dn_mtx); 2378 db->db_freed_in_flight = FALSE; 2379 } 2380 2381 /* 2382 * This buffer is now part of this txg 2383 */ 2384 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2385 db->db_dirtycnt += 1; 2386 ASSERT3U(db->db_dirtycnt, <=, 3); 2387 2388 mutex_exit(&db->db_mtx); 2389 2390 if (db->db_blkid == DMU_BONUS_BLKID || 2391 db->db_blkid == DMU_SPILL_BLKID) { 2392 mutex_enter(&dn->dn_mtx); 2393 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2394 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2395 mutex_exit(&dn->dn_mtx); 2396 dnode_setdirty(dn, tx); 2397 DB_DNODE_EXIT(db); 2398 return (dr); 2399 } 2400 2401 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2402 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2403 drop_struct_rwlock = B_TRUE; 2404 } 2405 2406 /* 2407 * If we are overwriting a dedup BP, then unless it is snapshotted, 2408 * when we get to syncing context we will need to decrement its 2409 * refcount in the DDT. Prefetch the relevant DDT block so that 2410 * syncing context won't have to wait for the i/o. 2411 */ 2412 if (db->db_blkptr != NULL) { 2413 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2414 ddt_prefetch(os->os_spa, db->db_blkptr); 2415 dmu_buf_unlock_parent(db, dblt, FTAG); 2416 } 2417 2418 /* 2419 * We need to hold the dn_struct_rwlock to make this assertion, 2420 * because it protects dn_phys / dn_next_nlevels from changing. 2421 */ 2422 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2423 dn->dn_phys->dn_nlevels > db->db_level || 2424 dn->dn_next_nlevels[txgoff] > db->db_level || 2425 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2426 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2427 2428 2429 if (db->db_level == 0) { 2430 ASSERT(!db->db_objset->os_raw_receive || 2431 dn->dn_maxblkid >= db->db_blkid); 2432 dnode_new_blkid(dn, db->db_blkid, tx, 2433 drop_struct_rwlock, B_FALSE); 2434 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2435 } 2436 2437 if (db->db_level+1 < dn->dn_nlevels) { 2438 dmu_buf_impl_t *parent = db->db_parent; 2439 dbuf_dirty_record_t *di; 2440 int parent_held = FALSE; 2441 2442 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2443 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2444 parent = dbuf_hold_level(dn, db->db_level + 1, 2445 db->db_blkid >> epbs, FTAG); 2446 ASSERT(parent != NULL); 2447 parent_held = TRUE; 2448 } 2449 if (drop_struct_rwlock) 2450 rw_exit(&dn->dn_struct_rwlock); 2451 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2452 di = dbuf_dirty(parent, tx); 2453 if (parent_held) 2454 dbuf_rele(parent, FTAG); 2455 2456 mutex_enter(&db->db_mtx); 2457 /* 2458 * Since we've dropped the mutex, it's possible that 2459 * dbuf_undirty() might have changed this out from under us. 2460 */ 2461 if (list_head(&db->db_dirty_records) == dr || 2462 dn->dn_object == DMU_META_DNODE_OBJECT) { 2463 mutex_enter(&di->dt.di.dr_mtx); 2464 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2465 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2466 list_insert_tail(&di->dt.di.dr_children, dr); 2467 mutex_exit(&di->dt.di.dr_mtx); 2468 dr->dr_parent = di; 2469 } 2470 mutex_exit(&db->db_mtx); 2471 } else { 2472 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2473 ASSERT(db->db_blkid < dn->dn_nblkptr); 2474 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2475 mutex_enter(&dn->dn_mtx); 2476 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2477 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2478 mutex_exit(&dn->dn_mtx); 2479 if (drop_struct_rwlock) 2480 rw_exit(&dn->dn_struct_rwlock); 2481 } 2482 2483 dnode_setdirty(dn, tx); 2484 DB_DNODE_EXIT(db); 2485 return (dr); 2486 } 2487 2488 static void 2489 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2490 { 2491 dmu_buf_impl_t *db = dr->dr_dbuf; 2492 2493 if (dr->dt.dl.dr_data != db->db.db_data) { 2494 struct dnode *dn = dr->dr_dnode; 2495 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2496 2497 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2498 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2499 } 2500 db->db_data_pending = NULL; 2501 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2502 list_remove(&db->db_dirty_records, dr); 2503 if (dr->dr_dbuf->db_level != 0) { 2504 mutex_destroy(&dr->dt.di.dr_mtx); 2505 list_destroy(&dr->dt.di.dr_children); 2506 } 2507 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2508 ASSERT3U(db->db_dirtycnt, >, 0); 2509 db->db_dirtycnt -= 1; 2510 } 2511 2512 /* 2513 * Undirty a buffer in the transaction group referenced by the given 2514 * transaction. Return whether this evicted the dbuf. 2515 */ 2516 boolean_t 2517 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2518 { 2519 uint64_t txg = tx->tx_txg; 2520 boolean_t brtwrite; 2521 2522 ASSERT(txg != 0); 2523 2524 /* 2525 * Due to our use of dn_nlevels below, this can only be called 2526 * in open context, unless we are operating on the MOS. 2527 * From syncing context, dn_nlevels may be different from the 2528 * dn_nlevels used when dbuf was dirtied. 2529 */ 2530 ASSERT(db->db_objset == 2531 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2532 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2533 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2534 ASSERT0(db->db_level); 2535 ASSERT(MUTEX_HELD(&db->db_mtx)); 2536 2537 /* 2538 * If this buffer is not dirty, we're done. 2539 */ 2540 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2541 if (dr == NULL) 2542 return (B_FALSE); 2543 ASSERT(dr->dr_dbuf == db); 2544 2545 brtwrite = dr->dt.dl.dr_brtwrite; 2546 if (brtwrite) { 2547 /* 2548 * We are freeing a block that we cloned in the same 2549 * transaction group. 2550 */ 2551 brt_pending_remove(dmu_objset_spa(db->db_objset), 2552 &dr->dt.dl.dr_overridden_by, tx); 2553 } 2554 2555 dnode_t *dn = dr->dr_dnode; 2556 2557 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2558 2559 ASSERT(db->db.db_size != 0); 2560 2561 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2562 dr->dr_accounted, txg); 2563 2564 list_remove(&db->db_dirty_records, dr); 2565 2566 /* 2567 * Note that there are three places in dbuf_dirty() 2568 * where this dirty record may be put on a list. 2569 * Make sure to do a list_remove corresponding to 2570 * every one of those list_insert calls. 2571 */ 2572 if (dr->dr_parent) { 2573 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2574 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2575 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2576 } else if (db->db_blkid == DMU_SPILL_BLKID || 2577 db->db_level + 1 == dn->dn_nlevels) { 2578 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2579 mutex_enter(&dn->dn_mtx); 2580 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2581 mutex_exit(&dn->dn_mtx); 2582 } 2583 2584 if (db->db_state != DB_NOFILL && !brtwrite) { 2585 dbuf_unoverride(dr); 2586 2587 ASSERT(db->db_buf != NULL); 2588 ASSERT(dr->dt.dl.dr_data != NULL); 2589 if (dr->dt.dl.dr_data != db->db_buf) 2590 arc_buf_destroy(dr->dt.dl.dr_data, db); 2591 } 2592 2593 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2594 2595 ASSERT(db->db_dirtycnt > 0); 2596 db->db_dirtycnt -= 1; 2597 2598 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2599 ASSERT(db->db_state == DB_NOFILL || brtwrite || 2600 arc_released(db->db_buf)); 2601 dbuf_destroy(db); 2602 return (B_TRUE); 2603 } 2604 2605 return (B_FALSE); 2606 } 2607 2608 static void 2609 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2610 { 2611 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2612 boolean_t undirty = B_FALSE; 2613 2614 ASSERT(tx->tx_txg != 0); 2615 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2616 2617 /* 2618 * Quick check for dirtiness. For already dirty blocks, this 2619 * reduces runtime of this function by >90%, and overall performance 2620 * by 50% for some workloads (e.g. file deletion with indirect blocks 2621 * cached). 2622 */ 2623 mutex_enter(&db->db_mtx); 2624 2625 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2626 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2627 /* 2628 * It's possible that it is already dirty but not cached, 2629 * because there are some calls to dbuf_dirty() that don't 2630 * go through dmu_buf_will_dirty(). 2631 */ 2632 if (dr != NULL) { 2633 if (dr->dt.dl.dr_brtwrite) { 2634 /* 2635 * Block cloning: If we are dirtying a cloned 2636 * block, we cannot simply redirty it, because 2637 * this dr has no data associated with it. 2638 * We will go through a full undirtying below, 2639 * before dirtying it again. 2640 */ 2641 undirty = B_TRUE; 2642 } else { 2643 /* This dbuf is already dirty and cached. */ 2644 dbuf_redirty(dr); 2645 mutex_exit(&db->db_mtx); 2646 return; 2647 } 2648 } 2649 } 2650 mutex_exit(&db->db_mtx); 2651 2652 DB_DNODE_ENTER(db); 2653 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2654 flags |= DB_RF_HAVESTRUCT; 2655 DB_DNODE_EXIT(db); 2656 2657 /* 2658 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2659 * want to make sure dbuf_read() will read the pending cloned block and 2660 * not the uderlying block that is being replaced. dbuf_undirty() will 2661 * do dbuf_unoverride(), so we will end up with cloned block content, 2662 * without overridden BP. 2663 */ 2664 (void) dbuf_read(db, NULL, flags); 2665 if (undirty) { 2666 mutex_enter(&db->db_mtx); 2667 VERIFY(!dbuf_undirty(db, tx)); 2668 mutex_exit(&db->db_mtx); 2669 } 2670 (void) dbuf_dirty(db, tx); 2671 } 2672 2673 void 2674 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2675 { 2676 dmu_buf_will_dirty_impl(db_fake, 2677 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2678 } 2679 2680 boolean_t 2681 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2682 { 2683 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2684 dbuf_dirty_record_t *dr; 2685 2686 mutex_enter(&db->db_mtx); 2687 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2688 mutex_exit(&db->db_mtx); 2689 return (dr != NULL); 2690 } 2691 2692 void 2693 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx) 2694 { 2695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2696 2697 /* 2698 * Block cloning: We are going to clone into this block, so undirty 2699 * modifications done to this block so far in this txg. This includes 2700 * writes and clones into this block. 2701 */ 2702 mutex_enter(&db->db_mtx); 2703 VERIFY(!dbuf_undirty(db, tx)); 2704 ASSERT(list_head(&db->db_dirty_records) == NULL); 2705 if (db->db_buf != NULL) { 2706 arc_buf_destroy(db->db_buf, db); 2707 db->db_buf = NULL; 2708 } 2709 mutex_exit(&db->db_mtx); 2710 2711 dmu_buf_will_not_fill(db_fake, tx); 2712 } 2713 2714 void 2715 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2716 { 2717 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2718 2719 db->db_state = DB_NOFILL; 2720 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2721 2722 dbuf_noread(db); 2723 (void) dbuf_dirty(db, tx); 2724 } 2725 2726 void 2727 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2728 { 2729 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2730 2731 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2732 ASSERT(tx->tx_txg != 0); 2733 ASSERT(db->db_level == 0); 2734 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2735 2736 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2737 dmu_tx_private_ok(tx)); 2738 2739 if (db->db_state == DB_NOFILL) { 2740 /* 2741 * Block cloning: We will be completely overwriting a block 2742 * cloned in this transaction group, so let's undirty the 2743 * pending clone and mark the block as uncached. This will be 2744 * as if the clone was never done. 2745 */ 2746 mutex_enter(&db->db_mtx); 2747 VERIFY(!dbuf_undirty(db, tx)); 2748 mutex_exit(&db->db_mtx); 2749 db->db_state = DB_UNCACHED; 2750 } 2751 2752 dbuf_noread(db); 2753 (void) dbuf_dirty(db, tx); 2754 } 2755 2756 /* 2757 * This function is effectively the same as dmu_buf_will_dirty(), but 2758 * indicates the caller expects raw encrypted data in the db, and provides 2759 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2760 * blkptr_t when this dbuf is written. This is only used for blocks of 2761 * dnodes, during raw receive. 2762 */ 2763 void 2764 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2765 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2766 { 2767 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2768 dbuf_dirty_record_t *dr; 2769 2770 /* 2771 * dr_has_raw_params is only processed for blocks of dnodes 2772 * (see dbuf_sync_dnode_leaf_crypt()). 2773 */ 2774 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2775 ASSERT3U(db->db_level, ==, 0); 2776 ASSERT(db->db_objset->os_raw_receive); 2777 2778 dmu_buf_will_dirty_impl(db_fake, 2779 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2780 2781 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2782 2783 ASSERT3P(dr, !=, NULL); 2784 2785 dr->dt.dl.dr_has_raw_params = B_TRUE; 2786 dr->dt.dl.dr_byteorder = byteorder; 2787 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2788 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2789 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2790 } 2791 2792 static void 2793 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2794 { 2795 struct dirty_leaf *dl; 2796 dbuf_dirty_record_t *dr; 2797 2798 dr = list_head(&db->db_dirty_records); 2799 ASSERT3P(dr, !=, NULL); 2800 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2801 dl = &dr->dt.dl; 2802 dl->dr_overridden_by = *bp; 2803 dl->dr_override_state = DR_OVERRIDDEN; 2804 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2805 } 2806 2807 void 2808 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2809 { 2810 (void) tx; 2811 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2812 dbuf_states_t old_state; 2813 mutex_enter(&db->db_mtx); 2814 DBUF_VERIFY(db); 2815 2816 old_state = db->db_state; 2817 db->db_state = DB_CACHED; 2818 if (old_state == DB_FILL) { 2819 if (db->db_level == 0 && db->db_freed_in_flight) { 2820 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2821 /* we were freed while filling */ 2822 /* XXX dbuf_undirty? */ 2823 memset(db->db.db_data, 0, db->db.db_size); 2824 db->db_freed_in_flight = FALSE; 2825 DTRACE_SET_STATE(db, 2826 "fill done handling freed in flight"); 2827 } else { 2828 DTRACE_SET_STATE(db, "fill done"); 2829 } 2830 cv_broadcast(&db->db_changed); 2831 } 2832 mutex_exit(&db->db_mtx); 2833 } 2834 2835 void 2836 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2837 bp_embedded_type_t etype, enum zio_compress comp, 2838 int uncompressed_size, int compressed_size, int byteorder, 2839 dmu_tx_t *tx) 2840 { 2841 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2842 struct dirty_leaf *dl; 2843 dmu_object_type_t type; 2844 dbuf_dirty_record_t *dr; 2845 2846 if (etype == BP_EMBEDDED_TYPE_DATA) { 2847 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2848 SPA_FEATURE_EMBEDDED_DATA)); 2849 } 2850 2851 DB_DNODE_ENTER(db); 2852 type = DB_DNODE(db)->dn_type; 2853 DB_DNODE_EXIT(db); 2854 2855 ASSERT0(db->db_level); 2856 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2857 2858 dmu_buf_will_not_fill(dbuf, tx); 2859 2860 dr = list_head(&db->db_dirty_records); 2861 ASSERT3P(dr, !=, NULL); 2862 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2863 dl = &dr->dt.dl; 2864 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2865 data, comp, uncompressed_size, compressed_size); 2866 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2867 BP_SET_TYPE(&dl->dr_overridden_by, type); 2868 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2869 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2870 2871 dl->dr_override_state = DR_OVERRIDDEN; 2872 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2873 } 2874 2875 void 2876 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2877 { 2878 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2879 dmu_object_type_t type; 2880 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2881 SPA_FEATURE_REDACTED_DATASETS)); 2882 2883 DB_DNODE_ENTER(db); 2884 type = DB_DNODE(db)->dn_type; 2885 DB_DNODE_EXIT(db); 2886 2887 ASSERT0(db->db_level); 2888 dmu_buf_will_not_fill(dbuf, tx); 2889 2890 blkptr_t bp = { { { {0} } } }; 2891 BP_SET_TYPE(&bp, type); 2892 BP_SET_LEVEL(&bp, 0); 2893 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2894 BP_SET_REDACTED(&bp); 2895 BPE_SET_LSIZE(&bp, dbuf->db_size); 2896 2897 dbuf_override_impl(db, &bp, tx); 2898 } 2899 2900 /* 2901 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2902 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2903 */ 2904 void 2905 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2906 { 2907 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2908 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2909 ASSERT(db->db_level == 0); 2910 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2911 ASSERT(buf != NULL); 2912 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2913 ASSERT(tx->tx_txg != 0); 2914 2915 arc_return_buf(buf, db); 2916 ASSERT(arc_released(buf)); 2917 2918 mutex_enter(&db->db_mtx); 2919 2920 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2921 cv_wait(&db->db_changed, &db->db_mtx); 2922 2923 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2924 2925 if (db->db_state == DB_CACHED && 2926 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2927 /* 2928 * In practice, we will never have a case where we have an 2929 * encrypted arc buffer while additional holds exist on the 2930 * dbuf. We don't handle this here so we simply assert that 2931 * fact instead. 2932 */ 2933 ASSERT(!arc_is_encrypted(buf)); 2934 mutex_exit(&db->db_mtx); 2935 (void) dbuf_dirty(db, tx); 2936 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2937 arc_buf_destroy(buf, db); 2938 return; 2939 } 2940 2941 if (db->db_state == DB_CACHED) { 2942 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2943 2944 ASSERT(db->db_buf != NULL); 2945 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2946 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2947 2948 if (!arc_released(db->db_buf)) { 2949 ASSERT(dr->dt.dl.dr_override_state == 2950 DR_OVERRIDDEN); 2951 arc_release(db->db_buf, db); 2952 } 2953 dr->dt.dl.dr_data = buf; 2954 arc_buf_destroy(db->db_buf, db); 2955 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2956 arc_release(db->db_buf, db); 2957 arc_buf_destroy(db->db_buf, db); 2958 } 2959 db->db_buf = NULL; 2960 } 2961 ASSERT(db->db_buf == NULL); 2962 dbuf_set_data(db, buf); 2963 db->db_state = DB_FILL; 2964 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2965 mutex_exit(&db->db_mtx); 2966 (void) dbuf_dirty(db, tx); 2967 dmu_buf_fill_done(&db->db, tx); 2968 } 2969 2970 void 2971 dbuf_destroy(dmu_buf_impl_t *db) 2972 { 2973 dnode_t *dn; 2974 dmu_buf_impl_t *parent = db->db_parent; 2975 dmu_buf_impl_t *dndb; 2976 2977 ASSERT(MUTEX_HELD(&db->db_mtx)); 2978 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2979 2980 if (db->db_buf != NULL) { 2981 arc_buf_destroy(db->db_buf, db); 2982 db->db_buf = NULL; 2983 } 2984 2985 if (db->db_blkid == DMU_BONUS_BLKID) { 2986 int slots = DB_DNODE(db)->dn_num_slots; 2987 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2988 if (db->db.db_data != NULL) { 2989 kmem_free(db->db.db_data, bonuslen); 2990 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2991 db->db_state = DB_UNCACHED; 2992 DTRACE_SET_STATE(db, "buffer cleared"); 2993 } 2994 } 2995 2996 dbuf_clear_data(db); 2997 2998 if (multilist_link_active(&db->db_cache_link)) { 2999 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3000 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3001 3002 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3003 (void) zfs_refcount_remove_many( 3004 &dbuf_caches[db->db_caching_status].size, 3005 db->db.db_size, db); 3006 3007 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3008 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3009 } else { 3010 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3011 DBUF_STAT_BUMPDOWN(cache_count); 3012 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3013 db->db.db_size); 3014 } 3015 db->db_caching_status = DB_NO_CACHE; 3016 } 3017 3018 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3019 ASSERT(db->db_data_pending == NULL); 3020 ASSERT(list_is_empty(&db->db_dirty_records)); 3021 3022 db->db_state = DB_EVICTING; 3023 DTRACE_SET_STATE(db, "buffer eviction started"); 3024 db->db_blkptr = NULL; 3025 3026 /* 3027 * Now that db_state is DB_EVICTING, nobody else can find this via 3028 * the hash table. We can now drop db_mtx, which allows us to 3029 * acquire the dn_dbufs_mtx. 3030 */ 3031 mutex_exit(&db->db_mtx); 3032 3033 DB_DNODE_ENTER(db); 3034 dn = DB_DNODE(db); 3035 dndb = dn->dn_dbuf; 3036 if (db->db_blkid != DMU_BONUS_BLKID) { 3037 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3038 if (needlock) 3039 mutex_enter_nested(&dn->dn_dbufs_mtx, 3040 NESTED_SINGLE); 3041 avl_remove(&dn->dn_dbufs, db); 3042 membar_producer(); 3043 DB_DNODE_EXIT(db); 3044 if (needlock) 3045 mutex_exit(&dn->dn_dbufs_mtx); 3046 /* 3047 * Decrementing the dbuf count means that the hold corresponding 3048 * to the removed dbuf is no longer discounted in dnode_move(), 3049 * so the dnode cannot be moved until after we release the hold. 3050 * The membar_producer() ensures visibility of the decremented 3051 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3052 * release any lock. 3053 */ 3054 mutex_enter(&dn->dn_mtx); 3055 dnode_rele_and_unlock(dn, db, B_TRUE); 3056 db->db_dnode_handle = NULL; 3057 3058 dbuf_hash_remove(db); 3059 } else { 3060 DB_DNODE_EXIT(db); 3061 } 3062 3063 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3064 3065 db->db_parent = NULL; 3066 3067 ASSERT(db->db_buf == NULL); 3068 ASSERT(db->db.db_data == NULL); 3069 ASSERT(db->db_hash_next == NULL); 3070 ASSERT(db->db_blkptr == NULL); 3071 ASSERT(db->db_data_pending == NULL); 3072 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3073 ASSERT(!multilist_link_active(&db->db_cache_link)); 3074 3075 /* 3076 * If this dbuf is referenced from an indirect dbuf, 3077 * decrement the ref count on the indirect dbuf. 3078 */ 3079 if (parent && parent != dndb) { 3080 mutex_enter(&parent->db_mtx); 3081 dbuf_rele_and_unlock(parent, db, B_TRUE); 3082 } 3083 3084 kmem_cache_free(dbuf_kmem_cache, db); 3085 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3086 } 3087 3088 /* 3089 * Note: While bpp will always be updated if the function returns success, 3090 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3091 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3092 * object. 3093 */ 3094 __attribute__((always_inline)) 3095 static inline int 3096 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3097 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3098 { 3099 *parentp = NULL; 3100 *bpp = NULL; 3101 3102 ASSERT(blkid != DMU_BONUS_BLKID); 3103 3104 if (blkid == DMU_SPILL_BLKID) { 3105 mutex_enter(&dn->dn_mtx); 3106 if (dn->dn_have_spill && 3107 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3108 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3109 else 3110 *bpp = NULL; 3111 dbuf_add_ref(dn->dn_dbuf, NULL); 3112 *parentp = dn->dn_dbuf; 3113 mutex_exit(&dn->dn_mtx); 3114 return (0); 3115 } 3116 3117 int nlevels = 3118 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3119 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3120 3121 ASSERT3U(level * epbs, <, 64); 3122 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3123 /* 3124 * This assertion shouldn't trip as long as the max indirect block size 3125 * is less than 1M. The reason for this is that up to that point, 3126 * the number of levels required to address an entire object with blocks 3127 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3128 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3129 * (i.e. we can address the entire object), objects will all use at most 3130 * N-1 levels and the assertion won't overflow. However, once epbs is 3131 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3132 * enough to address an entire object, so objects will have 5 levels, 3133 * but then this assertion will overflow. 3134 * 3135 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3136 * need to redo this logic to handle overflows. 3137 */ 3138 ASSERT(level >= nlevels || 3139 ((nlevels - level - 1) * epbs) + 3140 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3141 if (level >= nlevels || 3142 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3143 ((nlevels - level - 1) * epbs)) || 3144 (fail_sparse && 3145 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3146 /* the buffer has no parent yet */ 3147 return (SET_ERROR(ENOENT)); 3148 } else if (level < nlevels-1) { 3149 /* this block is referenced from an indirect block */ 3150 int err; 3151 3152 err = dbuf_hold_impl(dn, level + 1, 3153 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3154 3155 if (err) 3156 return (err); 3157 err = dbuf_read(*parentp, NULL, 3158 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3159 if (err) { 3160 dbuf_rele(*parentp, NULL); 3161 *parentp = NULL; 3162 return (err); 3163 } 3164 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3165 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3166 (blkid & ((1ULL << epbs) - 1)); 3167 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3168 ASSERT(BP_IS_HOLE(*bpp)); 3169 rw_exit(&(*parentp)->db_rwlock); 3170 return (0); 3171 } else { 3172 /* the block is referenced from the dnode */ 3173 ASSERT3U(level, ==, nlevels-1); 3174 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3175 blkid < dn->dn_phys->dn_nblkptr); 3176 if (dn->dn_dbuf) { 3177 dbuf_add_ref(dn->dn_dbuf, NULL); 3178 *parentp = dn->dn_dbuf; 3179 } 3180 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3181 return (0); 3182 } 3183 } 3184 3185 static dmu_buf_impl_t * 3186 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3187 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3188 { 3189 objset_t *os = dn->dn_objset; 3190 dmu_buf_impl_t *db, *odb; 3191 3192 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3193 ASSERT(dn->dn_type != DMU_OT_NONE); 3194 3195 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3196 3197 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3198 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3199 3200 db->db_objset = os; 3201 db->db.db_object = dn->dn_object; 3202 db->db_level = level; 3203 db->db_blkid = blkid; 3204 db->db_dirtycnt = 0; 3205 db->db_dnode_handle = dn->dn_handle; 3206 db->db_parent = parent; 3207 db->db_blkptr = blkptr; 3208 db->db_hash = hash; 3209 3210 db->db_user = NULL; 3211 db->db_user_immediate_evict = FALSE; 3212 db->db_freed_in_flight = FALSE; 3213 db->db_pending_evict = FALSE; 3214 3215 if (blkid == DMU_BONUS_BLKID) { 3216 ASSERT3P(parent, ==, dn->dn_dbuf); 3217 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3218 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3219 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3220 db->db.db_offset = DMU_BONUS_BLKID; 3221 db->db_state = DB_UNCACHED; 3222 DTRACE_SET_STATE(db, "bonus buffer created"); 3223 db->db_caching_status = DB_NO_CACHE; 3224 /* the bonus dbuf is not placed in the hash table */ 3225 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3226 return (db); 3227 } else if (blkid == DMU_SPILL_BLKID) { 3228 db->db.db_size = (blkptr != NULL) ? 3229 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3230 db->db.db_offset = 0; 3231 } else { 3232 int blocksize = 3233 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3234 db->db.db_size = blocksize; 3235 db->db.db_offset = db->db_blkid * blocksize; 3236 } 3237 3238 /* 3239 * Hold the dn_dbufs_mtx while we get the new dbuf 3240 * in the hash table *and* added to the dbufs list. 3241 * This prevents a possible deadlock with someone 3242 * trying to look up this dbuf before it's added to the 3243 * dn_dbufs list. 3244 */ 3245 mutex_enter(&dn->dn_dbufs_mtx); 3246 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3247 if ((odb = dbuf_hash_insert(db)) != NULL) { 3248 /* someone else inserted it first */ 3249 mutex_exit(&dn->dn_dbufs_mtx); 3250 kmem_cache_free(dbuf_kmem_cache, db); 3251 DBUF_STAT_BUMP(hash_insert_race); 3252 return (odb); 3253 } 3254 avl_add(&dn->dn_dbufs, db); 3255 3256 db->db_state = DB_UNCACHED; 3257 DTRACE_SET_STATE(db, "regular buffer created"); 3258 db->db_caching_status = DB_NO_CACHE; 3259 mutex_exit(&dn->dn_dbufs_mtx); 3260 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3261 3262 if (parent && parent != dn->dn_dbuf) 3263 dbuf_add_ref(parent, db); 3264 3265 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3266 zfs_refcount_count(&dn->dn_holds) > 0); 3267 (void) zfs_refcount_add(&dn->dn_holds, db); 3268 3269 dprintf_dbuf(db, "db=%p\n", db); 3270 3271 return (db); 3272 } 3273 3274 /* 3275 * This function returns a block pointer and information about the object, 3276 * given a dnode and a block. This is a publicly accessible version of 3277 * dbuf_findbp that only returns some information, rather than the 3278 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3279 * should be locked as (at least) a reader. 3280 */ 3281 int 3282 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3283 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3284 { 3285 dmu_buf_impl_t *dbp = NULL; 3286 blkptr_t *bp2; 3287 int err = 0; 3288 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3289 3290 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3291 if (err == 0) { 3292 ASSERT3P(bp2, !=, NULL); 3293 *bp = *bp2; 3294 if (dbp != NULL) 3295 dbuf_rele(dbp, NULL); 3296 if (datablkszsec != NULL) 3297 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3298 if (indblkshift != NULL) 3299 *indblkshift = dn->dn_phys->dn_indblkshift; 3300 } 3301 3302 return (err); 3303 } 3304 3305 typedef struct dbuf_prefetch_arg { 3306 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3307 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3308 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3309 int dpa_curlevel; /* The current level that we're reading */ 3310 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3311 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3312 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3313 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3314 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3315 void *dpa_arg; /* prefetch completion arg */ 3316 } dbuf_prefetch_arg_t; 3317 3318 static void 3319 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3320 { 3321 if (dpa->dpa_cb != NULL) { 3322 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3323 dpa->dpa_zb.zb_blkid, io_done); 3324 } 3325 kmem_free(dpa, sizeof (*dpa)); 3326 } 3327 3328 static void 3329 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3330 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3331 { 3332 (void) zio, (void) zb, (void) iobp; 3333 dbuf_prefetch_arg_t *dpa = private; 3334 3335 if (abuf != NULL) 3336 arc_buf_destroy(abuf, private); 3337 3338 dbuf_prefetch_fini(dpa, B_TRUE); 3339 } 3340 3341 /* 3342 * Actually issue the prefetch read for the block given. 3343 */ 3344 static void 3345 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3346 { 3347 ASSERT(!BP_IS_REDACTED(bp) || 3348 dsl_dataset_feature_is_active( 3349 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3350 SPA_FEATURE_REDACTED_DATASETS)); 3351 3352 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3353 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3354 3355 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3356 arc_flags_t aflags = 3357 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3358 ARC_FLAG_NO_BUF; 3359 3360 /* dnodes are always read as raw and then converted later */ 3361 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3362 dpa->dpa_curlevel == 0) 3363 zio_flags |= ZIO_FLAG_RAW; 3364 3365 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3366 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3367 ASSERT(dpa->dpa_zio != NULL); 3368 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3369 dbuf_issue_final_prefetch_done, dpa, 3370 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3371 } 3372 3373 /* 3374 * Called when an indirect block above our prefetch target is read in. This 3375 * will either read in the next indirect block down the tree or issue the actual 3376 * prefetch if the next block down is our target. 3377 */ 3378 static void 3379 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3380 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3381 { 3382 (void) zb, (void) iobp; 3383 dbuf_prefetch_arg_t *dpa = private; 3384 3385 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3386 ASSERT3S(dpa->dpa_curlevel, >, 0); 3387 3388 if (abuf == NULL) { 3389 ASSERT(zio == NULL || zio->io_error != 0); 3390 dbuf_prefetch_fini(dpa, B_TRUE); 3391 return; 3392 } 3393 ASSERT(zio == NULL || zio->io_error == 0); 3394 3395 /* 3396 * The dpa_dnode is only valid if we are called with a NULL 3397 * zio. This indicates that the arc_read() returned without 3398 * first calling zio_read() to issue a physical read. Once 3399 * a physical read is made the dpa_dnode must be invalidated 3400 * as the locks guarding it may have been dropped. If the 3401 * dpa_dnode is still valid, then we want to add it to the dbuf 3402 * cache. To do so, we must hold the dbuf associated with the block 3403 * we just prefetched, read its contents so that we associate it 3404 * with an arc_buf_t, and then release it. 3405 */ 3406 if (zio != NULL) { 3407 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3408 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3409 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3410 } else { 3411 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3412 } 3413 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3414 3415 dpa->dpa_dnode = NULL; 3416 } else if (dpa->dpa_dnode != NULL) { 3417 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3418 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3419 dpa->dpa_zb.zb_level)); 3420 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3421 dpa->dpa_curlevel, curblkid, FTAG); 3422 if (db == NULL) { 3423 arc_buf_destroy(abuf, private); 3424 dbuf_prefetch_fini(dpa, B_TRUE); 3425 return; 3426 } 3427 (void) dbuf_read(db, NULL, 3428 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3429 dbuf_rele(db, FTAG); 3430 } 3431 3432 dpa->dpa_curlevel--; 3433 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3434 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3435 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3436 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3437 3438 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3439 dsl_dataset_feature_is_active( 3440 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3441 SPA_FEATURE_REDACTED_DATASETS))); 3442 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3443 arc_buf_destroy(abuf, private); 3444 dbuf_prefetch_fini(dpa, B_TRUE); 3445 return; 3446 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3447 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3448 dbuf_issue_final_prefetch(dpa, bp); 3449 } else { 3450 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3451 zbookmark_phys_t zb; 3452 3453 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3454 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3455 iter_aflags |= ARC_FLAG_L2CACHE; 3456 3457 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3458 3459 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3460 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3461 3462 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3463 bp, dbuf_prefetch_indirect_done, dpa, 3464 ZIO_PRIORITY_SYNC_READ, 3465 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3466 &iter_aflags, &zb); 3467 } 3468 3469 arc_buf_destroy(abuf, private); 3470 } 3471 3472 /* 3473 * Issue prefetch reads for the given block on the given level. If the indirect 3474 * blocks above that block are not in memory, we will read them in 3475 * asynchronously. As a result, this call never blocks waiting for a read to 3476 * complete. Note that the prefetch might fail if the dataset is encrypted and 3477 * the encryption key is unmapped before the IO completes. 3478 */ 3479 int 3480 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3481 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3482 void *arg) 3483 { 3484 blkptr_t bp; 3485 int epbs, nlevels, curlevel; 3486 uint64_t curblkid; 3487 3488 ASSERT(blkid != DMU_BONUS_BLKID); 3489 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3490 3491 if (blkid > dn->dn_maxblkid) 3492 goto no_issue; 3493 3494 if (level == 0 && dnode_block_freed(dn, blkid)) 3495 goto no_issue; 3496 3497 /* 3498 * This dnode hasn't been written to disk yet, so there's nothing to 3499 * prefetch. 3500 */ 3501 nlevels = dn->dn_phys->dn_nlevels; 3502 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3503 goto no_issue; 3504 3505 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3506 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3507 goto no_issue; 3508 3509 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3510 level, blkid, NULL); 3511 if (db != NULL) { 3512 mutex_exit(&db->db_mtx); 3513 /* 3514 * This dbuf already exists. It is either CACHED, or 3515 * (we assume) about to be read or filled. 3516 */ 3517 goto no_issue; 3518 } 3519 3520 /* 3521 * Find the closest ancestor (indirect block) of the target block 3522 * that is present in the cache. In this indirect block, we will 3523 * find the bp that is at curlevel, curblkid. 3524 */ 3525 curlevel = level; 3526 curblkid = blkid; 3527 while (curlevel < nlevels - 1) { 3528 int parent_level = curlevel + 1; 3529 uint64_t parent_blkid = curblkid >> epbs; 3530 dmu_buf_impl_t *db; 3531 3532 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3533 FALSE, TRUE, FTAG, &db) == 0) { 3534 blkptr_t *bpp = db->db_buf->b_data; 3535 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3536 dbuf_rele(db, FTAG); 3537 break; 3538 } 3539 3540 curlevel = parent_level; 3541 curblkid = parent_blkid; 3542 } 3543 3544 if (curlevel == nlevels - 1) { 3545 /* No cached indirect blocks found. */ 3546 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3547 bp = dn->dn_phys->dn_blkptr[curblkid]; 3548 } 3549 ASSERT(!BP_IS_REDACTED(&bp) || 3550 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3551 SPA_FEATURE_REDACTED_DATASETS)); 3552 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3553 goto no_issue; 3554 3555 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3556 3557 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3558 ZIO_FLAG_CANFAIL); 3559 3560 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3561 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3562 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3563 dn->dn_object, level, blkid); 3564 dpa->dpa_curlevel = curlevel; 3565 dpa->dpa_prio = prio; 3566 dpa->dpa_aflags = aflags; 3567 dpa->dpa_spa = dn->dn_objset->os_spa; 3568 dpa->dpa_dnode = dn; 3569 dpa->dpa_epbs = epbs; 3570 dpa->dpa_zio = pio; 3571 dpa->dpa_cb = cb; 3572 dpa->dpa_arg = arg; 3573 3574 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3575 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3576 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3577 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3578 3579 /* 3580 * If we have the indirect just above us, no need to do the asynchronous 3581 * prefetch chain; we'll just run the last step ourselves. If we're at 3582 * a higher level, though, we want to issue the prefetches for all the 3583 * indirect blocks asynchronously, so we can go on with whatever we were 3584 * doing. 3585 */ 3586 if (curlevel == level) { 3587 ASSERT3U(curblkid, ==, blkid); 3588 dbuf_issue_final_prefetch(dpa, &bp); 3589 } else { 3590 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3591 zbookmark_phys_t zb; 3592 3593 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3594 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3595 iter_aflags |= ARC_FLAG_L2CACHE; 3596 3597 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3598 dn->dn_object, curlevel, curblkid); 3599 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3600 &bp, dbuf_prefetch_indirect_done, dpa, 3601 ZIO_PRIORITY_SYNC_READ, 3602 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3603 &iter_aflags, &zb); 3604 } 3605 /* 3606 * We use pio here instead of dpa_zio since it's possible that 3607 * dpa may have already been freed. 3608 */ 3609 zio_nowait(pio); 3610 return (1); 3611 no_issue: 3612 if (cb != NULL) 3613 cb(arg, level, blkid, B_FALSE); 3614 return (0); 3615 } 3616 3617 int 3618 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3619 arc_flags_t aflags) 3620 { 3621 3622 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3623 } 3624 3625 /* 3626 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3627 * the case of encrypted, compressed and uncompressed buffers by 3628 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3629 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3630 * 3631 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3632 */ 3633 noinline static void 3634 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3635 { 3636 dbuf_dirty_record_t *dr = db->db_data_pending; 3637 arc_buf_t *data = dr->dt.dl.dr_data; 3638 enum zio_compress compress_type = arc_get_compression(data); 3639 uint8_t complevel = arc_get_complevel(data); 3640 3641 if (arc_is_encrypted(data)) { 3642 boolean_t byteorder; 3643 uint8_t salt[ZIO_DATA_SALT_LEN]; 3644 uint8_t iv[ZIO_DATA_IV_LEN]; 3645 uint8_t mac[ZIO_DATA_MAC_LEN]; 3646 3647 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3648 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3649 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3650 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3651 compress_type, complevel)); 3652 } else if (compress_type != ZIO_COMPRESS_OFF) { 3653 dbuf_set_data(db, arc_alloc_compressed_buf( 3654 dn->dn_objset->os_spa, db, arc_buf_size(data), 3655 arc_buf_lsize(data), compress_type, complevel)); 3656 } else { 3657 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3658 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3659 } 3660 3661 rw_enter(&db->db_rwlock, RW_WRITER); 3662 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3663 rw_exit(&db->db_rwlock); 3664 } 3665 3666 /* 3667 * Returns with db_holds incremented, and db_mtx not held. 3668 * Note: dn_struct_rwlock must be held. 3669 */ 3670 int 3671 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3672 boolean_t fail_sparse, boolean_t fail_uncached, 3673 const void *tag, dmu_buf_impl_t **dbp) 3674 { 3675 dmu_buf_impl_t *db, *parent = NULL; 3676 uint64_t hv; 3677 3678 /* If the pool has been created, verify the tx_sync_lock is not held */ 3679 spa_t *spa = dn->dn_objset->os_spa; 3680 dsl_pool_t *dp = spa->spa_dsl_pool; 3681 if (dp != NULL) { 3682 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3683 } 3684 3685 ASSERT(blkid != DMU_BONUS_BLKID); 3686 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3687 ASSERT3U(dn->dn_nlevels, >, level); 3688 3689 *dbp = NULL; 3690 3691 /* dbuf_find() returns with db_mtx held */ 3692 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3693 3694 if (db == NULL) { 3695 blkptr_t *bp = NULL; 3696 int err; 3697 3698 if (fail_uncached) 3699 return (SET_ERROR(ENOENT)); 3700 3701 ASSERT3P(parent, ==, NULL); 3702 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3703 if (fail_sparse) { 3704 if (err == 0 && bp && BP_IS_HOLE(bp)) 3705 err = SET_ERROR(ENOENT); 3706 if (err) { 3707 if (parent) 3708 dbuf_rele(parent, NULL); 3709 return (err); 3710 } 3711 } 3712 if (err && err != ENOENT) 3713 return (err); 3714 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3715 } 3716 3717 if (fail_uncached && db->db_state != DB_CACHED) { 3718 mutex_exit(&db->db_mtx); 3719 return (SET_ERROR(ENOENT)); 3720 } 3721 3722 if (db->db_buf != NULL) { 3723 arc_buf_access(db->db_buf); 3724 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3725 } 3726 3727 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3728 3729 /* 3730 * If this buffer is currently syncing out, and we are 3731 * still referencing it from db_data, we need to make a copy 3732 * of it in case we decide we want to dirty it again in this txg. 3733 */ 3734 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3735 dn->dn_object != DMU_META_DNODE_OBJECT && 3736 db->db_state == DB_CACHED && db->db_data_pending) { 3737 dbuf_dirty_record_t *dr = db->db_data_pending; 3738 if (dr->dt.dl.dr_data == db->db_buf) { 3739 ASSERT3P(db->db_buf, !=, NULL); 3740 dbuf_hold_copy(dn, db); 3741 } 3742 } 3743 3744 if (multilist_link_active(&db->db_cache_link)) { 3745 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3746 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3747 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3748 3749 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3750 (void) zfs_refcount_remove_many( 3751 &dbuf_caches[db->db_caching_status].size, 3752 db->db.db_size, db); 3753 3754 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3755 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3756 } else { 3757 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3758 DBUF_STAT_BUMPDOWN(cache_count); 3759 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3760 db->db.db_size); 3761 } 3762 db->db_caching_status = DB_NO_CACHE; 3763 } 3764 (void) zfs_refcount_add(&db->db_holds, tag); 3765 DBUF_VERIFY(db); 3766 mutex_exit(&db->db_mtx); 3767 3768 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3769 if (parent) 3770 dbuf_rele(parent, NULL); 3771 3772 ASSERT3P(DB_DNODE(db), ==, dn); 3773 ASSERT3U(db->db_blkid, ==, blkid); 3774 ASSERT3U(db->db_level, ==, level); 3775 *dbp = db; 3776 3777 return (0); 3778 } 3779 3780 dmu_buf_impl_t * 3781 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3782 { 3783 return (dbuf_hold_level(dn, 0, blkid, tag)); 3784 } 3785 3786 dmu_buf_impl_t * 3787 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3788 { 3789 dmu_buf_impl_t *db; 3790 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3791 return (err ? NULL : db); 3792 } 3793 3794 void 3795 dbuf_create_bonus(dnode_t *dn) 3796 { 3797 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3798 3799 ASSERT(dn->dn_bonus == NULL); 3800 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 3801 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 3802 } 3803 3804 int 3805 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3806 { 3807 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3808 3809 if (db->db_blkid != DMU_SPILL_BLKID) 3810 return (SET_ERROR(ENOTSUP)); 3811 if (blksz == 0) 3812 blksz = SPA_MINBLOCKSIZE; 3813 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3814 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3815 3816 dbuf_new_size(db, blksz, tx); 3817 3818 return (0); 3819 } 3820 3821 void 3822 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3823 { 3824 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3825 } 3826 3827 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3828 void 3829 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3830 { 3831 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3832 VERIFY3S(holds, >, 1); 3833 } 3834 3835 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3836 boolean_t 3837 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3838 const void *tag) 3839 { 3840 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3841 dmu_buf_impl_t *found_db; 3842 boolean_t result = B_FALSE; 3843 3844 if (blkid == DMU_BONUS_BLKID) 3845 found_db = dbuf_find_bonus(os, obj); 3846 else 3847 found_db = dbuf_find(os, obj, 0, blkid, NULL); 3848 3849 if (found_db != NULL) { 3850 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3851 (void) zfs_refcount_add(&db->db_holds, tag); 3852 result = B_TRUE; 3853 } 3854 mutex_exit(&found_db->db_mtx); 3855 } 3856 return (result); 3857 } 3858 3859 /* 3860 * If you call dbuf_rele() you had better not be referencing the dnode handle 3861 * unless you have some other direct or indirect hold on the dnode. (An indirect 3862 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3863 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3864 * dnode's parent dbuf evicting its dnode handles. 3865 */ 3866 void 3867 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3868 { 3869 mutex_enter(&db->db_mtx); 3870 dbuf_rele_and_unlock(db, tag, B_FALSE); 3871 } 3872 3873 void 3874 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3875 { 3876 dbuf_rele((dmu_buf_impl_t *)db, tag); 3877 } 3878 3879 /* 3880 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3881 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3882 * argument should be set if we are already in the dbuf-evicting code 3883 * path, in which case we don't want to recursively evict. This allows us to 3884 * avoid deeply nested stacks that would have a call flow similar to this: 3885 * 3886 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3887 * ^ | 3888 * | | 3889 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3890 * 3891 */ 3892 void 3893 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3894 { 3895 int64_t holds; 3896 uint64_t size; 3897 3898 ASSERT(MUTEX_HELD(&db->db_mtx)); 3899 DBUF_VERIFY(db); 3900 3901 /* 3902 * Remove the reference to the dbuf before removing its hold on the 3903 * dnode so we can guarantee in dnode_move() that a referenced bonus 3904 * buffer has a corresponding dnode hold. 3905 */ 3906 holds = zfs_refcount_remove(&db->db_holds, tag); 3907 ASSERT(holds >= 0); 3908 3909 /* 3910 * We can't freeze indirects if there is a possibility that they 3911 * may be modified in the current syncing context. 3912 */ 3913 if (db->db_buf != NULL && 3914 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3915 arc_buf_freeze(db->db_buf); 3916 } 3917 3918 if (holds == db->db_dirtycnt && 3919 db->db_level == 0 && db->db_user_immediate_evict) 3920 dbuf_evict_user(db); 3921 3922 if (holds == 0) { 3923 if (db->db_blkid == DMU_BONUS_BLKID) { 3924 dnode_t *dn; 3925 boolean_t evict_dbuf = db->db_pending_evict; 3926 3927 /* 3928 * If the dnode moves here, we cannot cross this 3929 * barrier until the move completes. 3930 */ 3931 DB_DNODE_ENTER(db); 3932 3933 dn = DB_DNODE(db); 3934 atomic_dec_32(&dn->dn_dbufs_count); 3935 3936 /* 3937 * Decrementing the dbuf count means that the bonus 3938 * buffer's dnode hold is no longer discounted in 3939 * dnode_move(). The dnode cannot move until after 3940 * the dnode_rele() below. 3941 */ 3942 DB_DNODE_EXIT(db); 3943 3944 /* 3945 * Do not reference db after its lock is dropped. 3946 * Another thread may evict it. 3947 */ 3948 mutex_exit(&db->db_mtx); 3949 3950 if (evict_dbuf) 3951 dnode_evict_bonus(dn); 3952 3953 dnode_rele(dn, db); 3954 } else if (db->db_buf == NULL) { 3955 /* 3956 * This is a special case: we never associated this 3957 * dbuf with any data allocated from the ARC. 3958 */ 3959 ASSERT(db->db_state == DB_UNCACHED || 3960 db->db_state == DB_NOFILL); 3961 dbuf_destroy(db); 3962 } else if (arc_released(db->db_buf)) { 3963 /* 3964 * This dbuf has anonymous data associated with it. 3965 */ 3966 dbuf_destroy(db); 3967 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 3968 db->db_pending_evict) { 3969 dbuf_destroy(db); 3970 } else if (!multilist_link_active(&db->db_cache_link)) { 3971 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3972 3973 dbuf_cached_state_t dcs = 3974 dbuf_include_in_metadata_cache(db) ? 3975 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3976 db->db_caching_status = dcs; 3977 3978 multilist_insert(&dbuf_caches[dcs].cache, db); 3979 uint64_t db_size = db->db.db_size; 3980 size = zfs_refcount_add_many( 3981 &dbuf_caches[dcs].size, db_size, db); 3982 uint8_t db_level = db->db_level; 3983 mutex_exit(&db->db_mtx); 3984 3985 if (dcs == DB_DBUF_METADATA_CACHE) { 3986 DBUF_STAT_BUMP(metadata_cache_count); 3987 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 3988 size); 3989 } else { 3990 DBUF_STAT_BUMP(cache_count); 3991 DBUF_STAT_MAX(cache_size_bytes_max, size); 3992 DBUF_STAT_BUMP(cache_levels[db_level]); 3993 DBUF_STAT_INCR(cache_levels_bytes[db_level], 3994 db_size); 3995 } 3996 3997 if (dcs == DB_DBUF_CACHE && !evicting) 3998 dbuf_evict_notify(size); 3999 } 4000 } else { 4001 mutex_exit(&db->db_mtx); 4002 } 4003 4004 } 4005 4006 #pragma weak dmu_buf_refcount = dbuf_refcount 4007 uint64_t 4008 dbuf_refcount(dmu_buf_impl_t *db) 4009 { 4010 return (zfs_refcount_count(&db->db_holds)); 4011 } 4012 4013 uint64_t 4014 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4015 { 4016 uint64_t holds; 4017 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4018 4019 mutex_enter(&db->db_mtx); 4020 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4021 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4022 mutex_exit(&db->db_mtx); 4023 4024 return (holds); 4025 } 4026 4027 void * 4028 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4029 dmu_buf_user_t *new_user) 4030 { 4031 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4032 4033 mutex_enter(&db->db_mtx); 4034 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4035 if (db->db_user == old_user) 4036 db->db_user = new_user; 4037 else 4038 old_user = db->db_user; 4039 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4040 mutex_exit(&db->db_mtx); 4041 4042 return (old_user); 4043 } 4044 4045 void * 4046 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4047 { 4048 return (dmu_buf_replace_user(db_fake, NULL, user)); 4049 } 4050 4051 void * 4052 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4053 { 4054 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4055 4056 db->db_user_immediate_evict = TRUE; 4057 return (dmu_buf_set_user(db_fake, user)); 4058 } 4059 4060 void * 4061 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4062 { 4063 return (dmu_buf_replace_user(db_fake, user, NULL)); 4064 } 4065 4066 void * 4067 dmu_buf_get_user(dmu_buf_t *db_fake) 4068 { 4069 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4070 4071 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4072 return (db->db_user); 4073 } 4074 4075 void 4076 dmu_buf_user_evict_wait(void) 4077 { 4078 taskq_wait(dbu_evict_taskq); 4079 } 4080 4081 blkptr_t * 4082 dmu_buf_get_blkptr(dmu_buf_t *db) 4083 { 4084 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4085 return (dbi->db_blkptr); 4086 } 4087 4088 objset_t * 4089 dmu_buf_get_objset(dmu_buf_t *db) 4090 { 4091 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4092 return (dbi->db_objset); 4093 } 4094 4095 dnode_t * 4096 dmu_buf_dnode_enter(dmu_buf_t *db) 4097 { 4098 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4099 DB_DNODE_ENTER(dbi); 4100 return (DB_DNODE(dbi)); 4101 } 4102 4103 void 4104 dmu_buf_dnode_exit(dmu_buf_t *db) 4105 { 4106 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4107 DB_DNODE_EXIT(dbi); 4108 } 4109 4110 static void 4111 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4112 { 4113 /* ASSERT(dmu_tx_is_syncing(tx) */ 4114 ASSERT(MUTEX_HELD(&db->db_mtx)); 4115 4116 if (db->db_blkptr != NULL) 4117 return; 4118 4119 if (db->db_blkid == DMU_SPILL_BLKID) { 4120 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4121 BP_ZERO(db->db_blkptr); 4122 return; 4123 } 4124 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4125 /* 4126 * This buffer was allocated at a time when there was 4127 * no available blkptrs from the dnode, or it was 4128 * inappropriate to hook it in (i.e., nlevels mismatch). 4129 */ 4130 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4131 ASSERT(db->db_parent == NULL); 4132 db->db_parent = dn->dn_dbuf; 4133 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4134 DBUF_VERIFY(db); 4135 } else { 4136 dmu_buf_impl_t *parent = db->db_parent; 4137 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4138 4139 ASSERT(dn->dn_phys->dn_nlevels > 1); 4140 if (parent == NULL) { 4141 mutex_exit(&db->db_mtx); 4142 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4143 parent = dbuf_hold_level(dn, db->db_level + 1, 4144 db->db_blkid >> epbs, db); 4145 rw_exit(&dn->dn_struct_rwlock); 4146 mutex_enter(&db->db_mtx); 4147 db->db_parent = parent; 4148 } 4149 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4150 (db->db_blkid & ((1ULL << epbs) - 1)); 4151 DBUF_VERIFY(db); 4152 } 4153 } 4154 4155 static void 4156 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4157 { 4158 dmu_buf_impl_t *db = dr->dr_dbuf; 4159 void *data = dr->dt.dl.dr_data; 4160 4161 ASSERT0(db->db_level); 4162 ASSERT(MUTEX_HELD(&db->db_mtx)); 4163 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4164 ASSERT(data != NULL); 4165 4166 dnode_t *dn = dr->dr_dnode; 4167 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4168 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4169 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4170 4171 dbuf_sync_leaf_verify_bonus_dnode(dr); 4172 4173 dbuf_undirty_bonus(dr); 4174 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4175 } 4176 4177 /* 4178 * When syncing out a blocks of dnodes, adjust the block to deal with 4179 * encryption. Normally, we make sure the block is decrypted before writing 4180 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4181 * from a raw receive. In this case, set the ARC buf's crypt params so 4182 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4183 */ 4184 static void 4185 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4186 { 4187 int err; 4188 dmu_buf_impl_t *db = dr->dr_dbuf; 4189 4190 ASSERT(MUTEX_HELD(&db->db_mtx)); 4191 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4192 ASSERT3U(db->db_level, ==, 0); 4193 4194 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4195 zbookmark_phys_t zb; 4196 4197 /* 4198 * Unfortunately, there is currently no mechanism for 4199 * syncing context to handle decryption errors. An error 4200 * here is only possible if an attacker maliciously 4201 * changed a dnode block and updated the associated 4202 * checksums going up the block tree. 4203 */ 4204 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4205 db->db.db_object, db->db_level, db->db_blkid); 4206 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4207 &zb, B_TRUE); 4208 if (err) 4209 panic("Invalid dnode block MAC"); 4210 } else if (dr->dt.dl.dr_has_raw_params) { 4211 (void) arc_release(dr->dt.dl.dr_data, db); 4212 arc_convert_to_raw(dr->dt.dl.dr_data, 4213 dmu_objset_id(db->db_objset), 4214 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4215 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4216 } 4217 } 4218 4219 /* 4220 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4221 * is critical the we not allow the compiler to inline this function in to 4222 * dbuf_sync_list() thereby drastically bloating the stack usage. 4223 */ 4224 noinline static void 4225 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4226 { 4227 dmu_buf_impl_t *db = dr->dr_dbuf; 4228 dnode_t *dn = dr->dr_dnode; 4229 4230 ASSERT(dmu_tx_is_syncing(tx)); 4231 4232 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4233 4234 mutex_enter(&db->db_mtx); 4235 4236 ASSERT(db->db_level > 0); 4237 DBUF_VERIFY(db); 4238 4239 /* Read the block if it hasn't been read yet. */ 4240 if (db->db_buf == NULL) { 4241 mutex_exit(&db->db_mtx); 4242 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4243 mutex_enter(&db->db_mtx); 4244 } 4245 ASSERT3U(db->db_state, ==, DB_CACHED); 4246 ASSERT(db->db_buf != NULL); 4247 4248 /* Indirect block size must match what the dnode thinks it is. */ 4249 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4250 dbuf_check_blkptr(dn, db); 4251 4252 /* Provide the pending dirty record to child dbufs */ 4253 db->db_data_pending = dr; 4254 4255 mutex_exit(&db->db_mtx); 4256 4257 dbuf_write(dr, db->db_buf, tx); 4258 4259 zio_t *zio = dr->dr_zio; 4260 mutex_enter(&dr->dt.di.dr_mtx); 4261 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4262 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4263 mutex_exit(&dr->dt.di.dr_mtx); 4264 zio_nowait(zio); 4265 } 4266 4267 /* 4268 * Verify that the size of the data in our bonus buffer does not exceed 4269 * its recorded size. 4270 * 4271 * The purpose of this verification is to catch any cases in development 4272 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4273 * due to incorrect feature management, older pools expect to read more 4274 * data even though they didn't actually write it to begin with. 4275 * 4276 * For a example, this would catch an error in the feature logic where we 4277 * open an older pool and we expect to write the space map histogram of 4278 * a space map with size SPACE_MAP_SIZE_V0. 4279 */ 4280 static void 4281 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4282 { 4283 #ifdef ZFS_DEBUG 4284 dnode_t *dn = dr->dr_dnode; 4285 4286 /* 4287 * Encrypted bonus buffers can have data past their bonuslen. 4288 * Skip the verification of these blocks. 4289 */ 4290 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4291 return; 4292 4293 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4294 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4295 ASSERT3U(bonuslen, <=, maxbonuslen); 4296 4297 arc_buf_t *datap = dr->dt.dl.dr_data; 4298 char *datap_end = ((char *)datap) + bonuslen; 4299 char *datap_max = ((char *)datap) + maxbonuslen; 4300 4301 /* ensure that everything is zero after our data */ 4302 for (; datap_end < datap_max; datap_end++) 4303 ASSERT(*datap_end == 0); 4304 #endif 4305 } 4306 4307 static blkptr_t * 4308 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4309 { 4310 /* This must be a lightweight dirty record. */ 4311 ASSERT3P(dr->dr_dbuf, ==, NULL); 4312 dnode_t *dn = dr->dr_dnode; 4313 4314 if (dn->dn_phys->dn_nlevels == 1) { 4315 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4316 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4317 } else { 4318 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4319 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4320 VERIFY3U(parent_db->db_level, ==, 1); 4321 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4322 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4323 blkptr_t *bp = parent_db->db.db_data; 4324 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4325 } 4326 } 4327 4328 static void 4329 dbuf_lightweight_ready(zio_t *zio) 4330 { 4331 dbuf_dirty_record_t *dr = zio->io_private; 4332 blkptr_t *bp = zio->io_bp; 4333 4334 if (zio->io_error != 0) 4335 return; 4336 4337 dnode_t *dn = dr->dr_dnode; 4338 4339 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4340 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4341 int64_t delta = bp_get_dsize_sync(spa, bp) - 4342 bp_get_dsize_sync(spa, bp_orig); 4343 dnode_diduse_space(dn, delta); 4344 4345 uint64_t blkid = dr->dt.dll.dr_blkid; 4346 mutex_enter(&dn->dn_mtx); 4347 if (blkid > dn->dn_phys->dn_maxblkid) { 4348 ASSERT0(dn->dn_objset->os_raw_receive); 4349 dn->dn_phys->dn_maxblkid = blkid; 4350 } 4351 mutex_exit(&dn->dn_mtx); 4352 4353 if (!BP_IS_EMBEDDED(bp)) { 4354 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4355 BP_SET_FILL(bp, fill); 4356 } 4357 4358 dmu_buf_impl_t *parent_db; 4359 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4360 if (dr->dr_parent == NULL) { 4361 parent_db = dn->dn_dbuf; 4362 } else { 4363 parent_db = dr->dr_parent->dr_dbuf; 4364 } 4365 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4366 *bp_orig = *bp; 4367 rw_exit(&parent_db->db_rwlock); 4368 } 4369 4370 static void 4371 dbuf_lightweight_physdone(zio_t *zio) 4372 { 4373 dbuf_dirty_record_t *dr = zio->io_private; 4374 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4375 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4376 4377 /* 4378 * The callback will be called io_phys_children times. Retire one 4379 * portion of our dirty space each time we are called. Any rounding 4380 * error will be cleaned up by dbuf_lightweight_done(). 4381 */ 4382 int delta = dr->dr_accounted / zio->io_phys_children; 4383 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4384 } 4385 4386 static void 4387 dbuf_lightweight_done(zio_t *zio) 4388 { 4389 dbuf_dirty_record_t *dr = zio->io_private; 4390 4391 VERIFY0(zio->io_error); 4392 4393 objset_t *os = dr->dr_dnode->dn_objset; 4394 dmu_tx_t *tx = os->os_synctx; 4395 4396 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4397 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4398 } else { 4399 dsl_dataset_t *ds = os->os_dsl_dataset; 4400 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4401 dsl_dataset_block_born(ds, zio->io_bp, tx); 4402 } 4403 4404 /* 4405 * See comment in dbuf_write_done(). 4406 */ 4407 if (zio->io_phys_children == 0) { 4408 dsl_pool_undirty_space(dmu_objset_pool(os), 4409 dr->dr_accounted, zio->io_txg); 4410 } else { 4411 dsl_pool_undirty_space(dmu_objset_pool(os), 4412 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4413 } 4414 4415 abd_free(dr->dt.dll.dr_abd); 4416 kmem_free(dr, sizeof (*dr)); 4417 } 4418 4419 noinline static void 4420 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4421 { 4422 dnode_t *dn = dr->dr_dnode; 4423 zio_t *pio; 4424 if (dn->dn_phys->dn_nlevels == 1) { 4425 pio = dn->dn_zio; 4426 } else { 4427 pio = dr->dr_parent->dr_zio; 4428 } 4429 4430 zbookmark_phys_t zb = { 4431 .zb_objset = dmu_objset_id(dn->dn_objset), 4432 .zb_object = dn->dn_object, 4433 .zb_level = 0, 4434 .zb_blkid = dr->dt.dll.dr_blkid, 4435 }; 4436 4437 /* 4438 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4439 * will have the old BP in dbuf_lightweight_done(). 4440 */ 4441 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4442 4443 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4444 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4445 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4446 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4447 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4448 ZIO_PRIORITY_ASYNC_WRITE, 4449 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4450 4451 zio_nowait(dr->dr_zio); 4452 } 4453 4454 /* 4455 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4456 * critical the we not allow the compiler to inline this function in to 4457 * dbuf_sync_list() thereby drastically bloating the stack usage. 4458 */ 4459 noinline static void 4460 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4461 { 4462 arc_buf_t **datap = &dr->dt.dl.dr_data; 4463 dmu_buf_impl_t *db = dr->dr_dbuf; 4464 dnode_t *dn = dr->dr_dnode; 4465 objset_t *os; 4466 uint64_t txg = tx->tx_txg; 4467 4468 ASSERT(dmu_tx_is_syncing(tx)); 4469 4470 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4471 4472 mutex_enter(&db->db_mtx); 4473 /* 4474 * To be synced, we must be dirtied. But we 4475 * might have been freed after the dirty. 4476 */ 4477 if (db->db_state == DB_UNCACHED) { 4478 /* This buffer has been freed since it was dirtied */ 4479 ASSERT(db->db.db_data == NULL); 4480 } else if (db->db_state == DB_FILL) { 4481 /* This buffer was freed and is now being re-filled */ 4482 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4483 } else { 4484 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4485 } 4486 DBUF_VERIFY(db); 4487 4488 if (db->db_blkid == DMU_SPILL_BLKID) { 4489 mutex_enter(&dn->dn_mtx); 4490 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4491 /* 4492 * In the previous transaction group, the bonus buffer 4493 * was entirely used to store the attributes for the 4494 * dnode which overrode the dn_spill field. However, 4495 * when adding more attributes to the file a spill 4496 * block was required to hold the extra attributes. 4497 * 4498 * Make sure to clear the garbage left in the dn_spill 4499 * field from the previous attributes in the bonus 4500 * buffer. Otherwise, after writing out the spill 4501 * block to the new allocated dva, it will free 4502 * the old block pointed to by the invalid dn_spill. 4503 */ 4504 db->db_blkptr = NULL; 4505 } 4506 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4507 mutex_exit(&dn->dn_mtx); 4508 } 4509 4510 /* 4511 * If this is a bonus buffer, simply copy the bonus data into the 4512 * dnode. It will be written out when the dnode is synced (and it 4513 * will be synced, since it must have been dirty for dbuf_sync to 4514 * be called). 4515 */ 4516 if (db->db_blkid == DMU_BONUS_BLKID) { 4517 ASSERT(dr->dr_dbuf == db); 4518 dbuf_sync_bonus(dr, tx); 4519 return; 4520 } 4521 4522 os = dn->dn_objset; 4523 4524 /* 4525 * This function may have dropped the db_mtx lock allowing a dmu_sync 4526 * operation to sneak in. As a result, we need to ensure that we 4527 * don't check the dr_override_state until we have returned from 4528 * dbuf_check_blkptr. 4529 */ 4530 dbuf_check_blkptr(dn, db); 4531 4532 /* 4533 * If this buffer is in the middle of an immediate write, 4534 * wait for the synchronous IO to complete. 4535 */ 4536 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4537 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4538 cv_wait(&db->db_changed, &db->db_mtx); 4539 } 4540 4541 /* 4542 * If this is a dnode block, ensure it is appropriately encrypted 4543 * or decrypted, depending on what we are writing to it this txg. 4544 */ 4545 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4546 dbuf_prepare_encrypted_dnode_leaf(dr); 4547 4548 if (db->db_state != DB_NOFILL && 4549 dn->dn_object != DMU_META_DNODE_OBJECT && 4550 zfs_refcount_count(&db->db_holds) > 1 && 4551 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4552 *datap == db->db_buf) { 4553 /* 4554 * If this buffer is currently "in use" (i.e., there 4555 * are active holds and db_data still references it), 4556 * then make a copy before we start the write so that 4557 * any modifications from the open txg will not leak 4558 * into this write. 4559 * 4560 * NOTE: this copy does not need to be made for 4561 * objects only modified in the syncing context (e.g. 4562 * DNONE_DNODE blocks). 4563 */ 4564 int psize = arc_buf_size(*datap); 4565 int lsize = arc_buf_lsize(*datap); 4566 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4567 enum zio_compress compress_type = arc_get_compression(*datap); 4568 uint8_t complevel = arc_get_complevel(*datap); 4569 4570 if (arc_is_encrypted(*datap)) { 4571 boolean_t byteorder; 4572 uint8_t salt[ZIO_DATA_SALT_LEN]; 4573 uint8_t iv[ZIO_DATA_IV_LEN]; 4574 uint8_t mac[ZIO_DATA_MAC_LEN]; 4575 4576 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4577 *datap = arc_alloc_raw_buf(os->os_spa, db, 4578 dmu_objset_id(os), byteorder, salt, iv, mac, 4579 dn->dn_type, psize, lsize, compress_type, 4580 complevel); 4581 } else if (compress_type != ZIO_COMPRESS_OFF) { 4582 ASSERT3U(type, ==, ARC_BUFC_DATA); 4583 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4584 psize, lsize, compress_type, complevel); 4585 } else { 4586 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4587 } 4588 memcpy((*datap)->b_data, db->db.db_data, psize); 4589 } 4590 db->db_data_pending = dr; 4591 4592 mutex_exit(&db->db_mtx); 4593 4594 dbuf_write(dr, *datap, tx); 4595 4596 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4597 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4598 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4599 } else { 4600 zio_nowait(dr->dr_zio); 4601 } 4602 } 4603 4604 void 4605 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4606 { 4607 dbuf_dirty_record_t *dr; 4608 4609 while ((dr = list_head(list))) { 4610 if (dr->dr_zio != NULL) { 4611 /* 4612 * If we find an already initialized zio then we 4613 * are processing the meta-dnode, and we have finished. 4614 * The dbufs for all dnodes are put back on the list 4615 * during processing, so that we can zio_wait() 4616 * these IOs after initiating all child IOs. 4617 */ 4618 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4619 DMU_META_DNODE_OBJECT); 4620 break; 4621 } 4622 list_remove(list, dr); 4623 if (dr->dr_dbuf == NULL) { 4624 dbuf_sync_lightweight(dr, tx); 4625 } else { 4626 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4627 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4628 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4629 } 4630 if (dr->dr_dbuf->db_level > 0) 4631 dbuf_sync_indirect(dr, tx); 4632 else 4633 dbuf_sync_leaf(dr, tx); 4634 } 4635 } 4636 } 4637 4638 static void 4639 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4640 { 4641 (void) buf; 4642 dmu_buf_impl_t *db = vdb; 4643 dnode_t *dn; 4644 blkptr_t *bp = zio->io_bp; 4645 blkptr_t *bp_orig = &zio->io_bp_orig; 4646 spa_t *spa = zio->io_spa; 4647 int64_t delta; 4648 uint64_t fill = 0; 4649 int i; 4650 4651 ASSERT3P(db->db_blkptr, !=, NULL); 4652 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4653 4654 DB_DNODE_ENTER(db); 4655 dn = DB_DNODE(db); 4656 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4657 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4658 zio->io_prev_space_delta = delta; 4659 4660 if (bp->blk_birth != 0) { 4661 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4662 BP_GET_TYPE(bp) == dn->dn_type) || 4663 (db->db_blkid == DMU_SPILL_BLKID && 4664 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4665 BP_IS_EMBEDDED(bp)); 4666 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4667 } 4668 4669 mutex_enter(&db->db_mtx); 4670 4671 #ifdef ZFS_DEBUG 4672 if (db->db_blkid == DMU_SPILL_BLKID) { 4673 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4674 ASSERT(!(BP_IS_HOLE(bp)) && 4675 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4676 } 4677 #endif 4678 4679 if (db->db_level == 0) { 4680 mutex_enter(&dn->dn_mtx); 4681 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4682 db->db_blkid != DMU_SPILL_BLKID) { 4683 ASSERT0(db->db_objset->os_raw_receive); 4684 dn->dn_phys->dn_maxblkid = db->db_blkid; 4685 } 4686 mutex_exit(&dn->dn_mtx); 4687 4688 if (dn->dn_type == DMU_OT_DNODE) { 4689 i = 0; 4690 while (i < db->db.db_size) { 4691 dnode_phys_t *dnp = 4692 (void *)(((char *)db->db.db_data) + i); 4693 4694 i += DNODE_MIN_SIZE; 4695 if (dnp->dn_type != DMU_OT_NONE) { 4696 fill++; 4697 for (int j = 0; j < dnp->dn_nblkptr; 4698 j++) { 4699 (void) zfs_blkptr_verify(spa, 4700 &dnp->dn_blkptr[j], 4701 BLK_CONFIG_SKIP, 4702 BLK_VERIFY_HALT); 4703 } 4704 if (dnp->dn_flags & 4705 DNODE_FLAG_SPILL_BLKPTR) { 4706 (void) zfs_blkptr_verify(spa, 4707 DN_SPILL_BLKPTR(dnp), 4708 BLK_CONFIG_SKIP, 4709 BLK_VERIFY_HALT); 4710 } 4711 i += dnp->dn_extra_slots * 4712 DNODE_MIN_SIZE; 4713 } 4714 } 4715 } else { 4716 if (BP_IS_HOLE(bp)) { 4717 fill = 0; 4718 } else { 4719 fill = 1; 4720 } 4721 } 4722 } else { 4723 blkptr_t *ibp = db->db.db_data; 4724 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4725 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4726 if (BP_IS_HOLE(ibp)) 4727 continue; 4728 (void) zfs_blkptr_verify(spa, ibp, 4729 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4730 fill += BP_GET_FILL(ibp); 4731 } 4732 } 4733 DB_DNODE_EXIT(db); 4734 4735 if (!BP_IS_EMBEDDED(bp)) 4736 BP_SET_FILL(bp, fill); 4737 4738 mutex_exit(&db->db_mtx); 4739 4740 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4741 *db->db_blkptr = *bp; 4742 dmu_buf_unlock_parent(db, dblt, FTAG); 4743 } 4744 4745 /* 4746 * This function gets called just prior to running through the compression 4747 * stage of the zio pipeline. If we're an indirect block comprised of only 4748 * holes, then we want this indirect to be compressed away to a hole. In 4749 * order to do that we must zero out any information about the holes that 4750 * this indirect points to prior to before we try to compress it. 4751 */ 4752 static void 4753 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4754 { 4755 (void) zio, (void) buf; 4756 dmu_buf_impl_t *db = vdb; 4757 dnode_t *dn; 4758 blkptr_t *bp; 4759 unsigned int epbs, i; 4760 4761 ASSERT3U(db->db_level, >, 0); 4762 DB_DNODE_ENTER(db); 4763 dn = DB_DNODE(db); 4764 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4765 ASSERT3U(epbs, <, 31); 4766 4767 /* Determine if all our children are holes */ 4768 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4769 if (!BP_IS_HOLE(bp)) 4770 break; 4771 } 4772 4773 /* 4774 * If all the children are holes, then zero them all out so that 4775 * we may get compressed away. 4776 */ 4777 if (i == 1ULL << epbs) { 4778 /* 4779 * We only found holes. Grab the rwlock to prevent 4780 * anybody from reading the blocks we're about to 4781 * zero out. 4782 */ 4783 rw_enter(&db->db_rwlock, RW_WRITER); 4784 memset(db->db.db_data, 0, db->db.db_size); 4785 rw_exit(&db->db_rwlock); 4786 } 4787 DB_DNODE_EXIT(db); 4788 } 4789 4790 /* 4791 * The SPA will call this callback several times for each zio - once 4792 * for every physical child i/o (zio->io_phys_children times). This 4793 * allows the DMU to monitor the progress of each logical i/o. For example, 4794 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4795 * block. There may be a long delay before all copies/fragments are completed, 4796 * so this callback allows us to retire dirty space gradually, as the physical 4797 * i/os complete. 4798 */ 4799 static void 4800 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4801 { 4802 (void) buf; 4803 dmu_buf_impl_t *db = arg; 4804 objset_t *os = db->db_objset; 4805 dsl_pool_t *dp = dmu_objset_pool(os); 4806 dbuf_dirty_record_t *dr; 4807 int delta = 0; 4808 4809 dr = db->db_data_pending; 4810 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4811 4812 /* 4813 * The callback will be called io_phys_children times. Retire one 4814 * portion of our dirty space each time we are called. Any rounding 4815 * error will be cleaned up by dbuf_write_done(). 4816 */ 4817 delta = dr->dr_accounted / zio->io_phys_children; 4818 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4819 } 4820 4821 static void 4822 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4823 { 4824 (void) buf; 4825 dmu_buf_impl_t *db = vdb; 4826 blkptr_t *bp_orig = &zio->io_bp_orig; 4827 blkptr_t *bp = db->db_blkptr; 4828 objset_t *os = db->db_objset; 4829 dmu_tx_t *tx = os->os_synctx; 4830 4831 ASSERT0(zio->io_error); 4832 ASSERT(db->db_blkptr == bp); 4833 4834 /* 4835 * For nopwrites and rewrites we ensure that the bp matches our 4836 * original and bypass all the accounting. 4837 */ 4838 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4839 ASSERT(BP_EQUAL(bp, bp_orig)); 4840 } else { 4841 dsl_dataset_t *ds = os->os_dsl_dataset; 4842 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4843 dsl_dataset_block_born(ds, bp, tx); 4844 } 4845 4846 mutex_enter(&db->db_mtx); 4847 4848 DBUF_VERIFY(db); 4849 4850 dbuf_dirty_record_t *dr = db->db_data_pending; 4851 dnode_t *dn = dr->dr_dnode; 4852 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4853 ASSERT(dr->dr_dbuf == db); 4854 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4855 list_remove(&db->db_dirty_records, dr); 4856 4857 #ifdef ZFS_DEBUG 4858 if (db->db_blkid == DMU_SPILL_BLKID) { 4859 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4860 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4861 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4862 } 4863 #endif 4864 4865 if (db->db_level == 0) { 4866 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4867 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4868 if (db->db_state != DB_NOFILL) { 4869 if (dr->dt.dl.dr_data != NULL && 4870 dr->dt.dl.dr_data != db->db_buf) { 4871 arc_buf_destroy(dr->dt.dl.dr_data, db); 4872 } 4873 } 4874 } else { 4875 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4876 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4877 if (!BP_IS_HOLE(db->db_blkptr)) { 4878 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4879 SPA_BLKPTRSHIFT; 4880 ASSERT3U(db->db_blkid, <=, 4881 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4882 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4883 db->db.db_size); 4884 } 4885 mutex_destroy(&dr->dt.di.dr_mtx); 4886 list_destroy(&dr->dt.di.dr_children); 4887 } 4888 4889 cv_broadcast(&db->db_changed); 4890 ASSERT(db->db_dirtycnt > 0); 4891 db->db_dirtycnt -= 1; 4892 db->db_data_pending = NULL; 4893 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4894 4895 /* 4896 * If we didn't do a physical write in this ZIO and we 4897 * still ended up here, it means that the space of the 4898 * dbuf that we just released (and undirtied) above hasn't 4899 * been marked as undirtied in the pool's accounting. 4900 * 4901 * Thus, we undirty that space in the pool's view of the 4902 * world here. For physical writes this type of update 4903 * happens in dbuf_write_physdone(). 4904 * 4905 * If we did a physical write, cleanup any rounding errors 4906 * that came up due to writing multiple copies of a block 4907 * on disk [see dbuf_write_physdone()]. 4908 */ 4909 if (zio->io_phys_children == 0) { 4910 dsl_pool_undirty_space(dmu_objset_pool(os), 4911 dr->dr_accounted, zio->io_txg); 4912 } else { 4913 dsl_pool_undirty_space(dmu_objset_pool(os), 4914 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4915 } 4916 4917 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4918 } 4919 4920 static void 4921 dbuf_write_nofill_ready(zio_t *zio) 4922 { 4923 dbuf_write_ready(zio, NULL, zio->io_private); 4924 } 4925 4926 static void 4927 dbuf_write_nofill_done(zio_t *zio) 4928 { 4929 dbuf_write_done(zio, NULL, zio->io_private); 4930 } 4931 4932 static void 4933 dbuf_write_override_ready(zio_t *zio) 4934 { 4935 dbuf_dirty_record_t *dr = zio->io_private; 4936 dmu_buf_impl_t *db = dr->dr_dbuf; 4937 4938 dbuf_write_ready(zio, NULL, db); 4939 } 4940 4941 static void 4942 dbuf_write_override_done(zio_t *zio) 4943 { 4944 dbuf_dirty_record_t *dr = zio->io_private; 4945 dmu_buf_impl_t *db = dr->dr_dbuf; 4946 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4947 4948 mutex_enter(&db->db_mtx); 4949 if (!BP_EQUAL(zio->io_bp, obp)) { 4950 if (!BP_IS_HOLE(obp)) 4951 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4952 arc_release(dr->dt.dl.dr_data, db); 4953 } 4954 mutex_exit(&db->db_mtx); 4955 4956 dbuf_write_done(zio, NULL, db); 4957 4958 if (zio->io_abd != NULL) 4959 abd_free(zio->io_abd); 4960 } 4961 4962 typedef struct dbuf_remap_impl_callback_arg { 4963 objset_t *drica_os; 4964 uint64_t drica_blk_birth; 4965 dmu_tx_t *drica_tx; 4966 } dbuf_remap_impl_callback_arg_t; 4967 4968 static void 4969 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4970 void *arg) 4971 { 4972 dbuf_remap_impl_callback_arg_t *drica = arg; 4973 objset_t *os = drica->drica_os; 4974 spa_t *spa = dmu_objset_spa(os); 4975 dmu_tx_t *tx = drica->drica_tx; 4976 4977 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4978 4979 if (os == spa_meta_objset(spa)) { 4980 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4981 } else { 4982 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4983 size, drica->drica_blk_birth, tx); 4984 } 4985 } 4986 4987 static void 4988 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4989 { 4990 blkptr_t bp_copy = *bp; 4991 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4992 dbuf_remap_impl_callback_arg_t drica; 4993 4994 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4995 4996 drica.drica_os = dn->dn_objset; 4997 drica.drica_blk_birth = bp->blk_birth; 4998 drica.drica_tx = tx; 4999 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5000 &drica)) { 5001 /* 5002 * If the blkptr being remapped is tracked by a livelist, 5003 * then we need to make sure the livelist reflects the update. 5004 * First, cancel out the old blkptr by appending a 'FREE' 5005 * entry. Next, add an 'ALLOC' to track the new version. This 5006 * way we avoid trying to free an inaccurate blkptr at delete. 5007 * Note that embedded blkptrs are not tracked in livelists. 5008 */ 5009 if (dn->dn_objset != spa_meta_objset(spa)) { 5010 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5011 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5012 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 5013 ASSERT(!BP_IS_EMBEDDED(bp)); 5014 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5015 ASSERT(spa_feature_is_enabled(spa, 5016 SPA_FEATURE_LIVELIST)); 5017 bplist_append(&ds->ds_dir->dd_pending_frees, 5018 bp); 5019 bplist_append(&ds->ds_dir->dd_pending_allocs, 5020 &bp_copy); 5021 } 5022 } 5023 5024 /* 5025 * The db_rwlock prevents dbuf_read_impl() from 5026 * dereferencing the BP while we are changing it. To 5027 * avoid lock contention, only grab it when we are actually 5028 * changing the BP. 5029 */ 5030 if (rw != NULL) 5031 rw_enter(rw, RW_WRITER); 5032 *bp = bp_copy; 5033 if (rw != NULL) 5034 rw_exit(rw); 5035 } 5036 } 5037 5038 /* 5039 * Remap any existing BP's to concrete vdevs, if possible. 5040 */ 5041 static void 5042 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5043 { 5044 spa_t *spa = dmu_objset_spa(db->db_objset); 5045 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5046 5047 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5048 return; 5049 5050 if (db->db_level > 0) { 5051 blkptr_t *bp = db->db.db_data; 5052 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5053 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5054 } 5055 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5056 dnode_phys_t *dnp = db->db.db_data; 5057 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 5058 DMU_OT_DNODE); 5059 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5060 i += dnp[i].dn_extra_slots + 1) { 5061 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5062 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5063 &dn->dn_dbuf->db_rwlock); 5064 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5065 tx); 5066 } 5067 } 5068 } 5069 } 5070 5071 5072 /* Issue I/O to commit a dirty buffer to disk. */ 5073 static void 5074 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5075 { 5076 dmu_buf_impl_t *db = dr->dr_dbuf; 5077 dnode_t *dn = dr->dr_dnode; 5078 objset_t *os; 5079 dmu_buf_impl_t *parent = db->db_parent; 5080 uint64_t txg = tx->tx_txg; 5081 zbookmark_phys_t zb; 5082 zio_prop_t zp; 5083 zio_t *pio; /* parent I/O */ 5084 int wp_flag = 0; 5085 5086 ASSERT(dmu_tx_is_syncing(tx)); 5087 5088 os = dn->dn_objset; 5089 5090 if (db->db_state != DB_NOFILL) { 5091 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5092 /* 5093 * Private object buffers are released here rather 5094 * than in dbuf_dirty() since they are only modified 5095 * in the syncing context and we don't want the 5096 * overhead of making multiple copies of the data. 5097 */ 5098 if (BP_IS_HOLE(db->db_blkptr)) { 5099 arc_buf_thaw(data); 5100 } else { 5101 dbuf_release_bp(db); 5102 } 5103 dbuf_remap(dn, db, tx); 5104 } 5105 } 5106 5107 if (parent != dn->dn_dbuf) { 5108 /* Our parent is an indirect block. */ 5109 /* We have a dirty parent that has been scheduled for write. */ 5110 ASSERT(parent && parent->db_data_pending); 5111 /* Our parent's buffer is one level closer to the dnode. */ 5112 ASSERT(db->db_level == parent->db_level-1); 5113 /* 5114 * We're about to modify our parent's db_data by modifying 5115 * our block pointer, so the parent must be released. 5116 */ 5117 ASSERT(arc_released(parent->db_buf)); 5118 pio = parent->db_data_pending->dr_zio; 5119 } else { 5120 /* Our parent is the dnode itself. */ 5121 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5122 db->db_blkid != DMU_SPILL_BLKID) || 5123 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5124 if (db->db_blkid != DMU_SPILL_BLKID) 5125 ASSERT3P(db->db_blkptr, ==, 5126 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5127 pio = dn->dn_zio; 5128 } 5129 5130 ASSERT(db->db_level == 0 || data == db->db_buf); 5131 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 5132 ASSERT(pio); 5133 5134 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5135 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5136 db->db.db_object, db->db_level, db->db_blkid); 5137 5138 if (db->db_blkid == DMU_SPILL_BLKID) 5139 wp_flag = WP_SPILL; 5140 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 5141 5142 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5143 5144 /* 5145 * We copy the blkptr now (rather than when we instantiate the dirty 5146 * record), because its value can change between open context and 5147 * syncing context. We do not need to hold dn_struct_rwlock to read 5148 * db_blkptr because we are in syncing context. 5149 */ 5150 dr->dr_bp_copy = *db->db_blkptr; 5151 5152 if (db->db_level == 0 && 5153 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5154 /* 5155 * The BP for this block has been provided by open context 5156 * (by dmu_sync() or dmu_buf_write_embedded()). 5157 */ 5158 abd_t *contents = (data != NULL) ? 5159 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5160 5161 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5162 contents, db->db.db_size, db->db.db_size, &zp, 5163 dbuf_write_override_ready, NULL, NULL, 5164 dbuf_write_override_done, 5165 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5166 mutex_enter(&db->db_mtx); 5167 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5168 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5169 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5170 dr->dt.dl.dr_brtwrite); 5171 mutex_exit(&db->db_mtx); 5172 } else if (db->db_state == DB_NOFILL) { 5173 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5174 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5175 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5176 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5177 dbuf_write_nofill_ready, NULL, NULL, 5178 dbuf_write_nofill_done, db, 5179 ZIO_PRIORITY_ASYNC_WRITE, 5180 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5181 } else { 5182 ASSERT(arc_released(data)); 5183 5184 /* 5185 * For indirect blocks, we want to setup the children 5186 * ready callback so that we can properly handle an indirect 5187 * block that only contains holes. 5188 */ 5189 arc_write_done_func_t *children_ready_cb = NULL; 5190 if (db->db_level != 0) 5191 children_ready_cb = dbuf_write_children_ready; 5192 5193 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5194 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5195 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, 5196 children_ready_cb, dbuf_write_physdone, 5197 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 5198 ZIO_FLAG_MUSTSUCCEED, &zb); 5199 } 5200 } 5201 5202 EXPORT_SYMBOL(dbuf_find); 5203 EXPORT_SYMBOL(dbuf_is_metadata); 5204 EXPORT_SYMBOL(dbuf_destroy); 5205 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5206 EXPORT_SYMBOL(dbuf_whichblock); 5207 EXPORT_SYMBOL(dbuf_read); 5208 EXPORT_SYMBOL(dbuf_unoverride); 5209 EXPORT_SYMBOL(dbuf_free_range); 5210 EXPORT_SYMBOL(dbuf_new_size); 5211 EXPORT_SYMBOL(dbuf_release_bp); 5212 EXPORT_SYMBOL(dbuf_dirty); 5213 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5214 EXPORT_SYMBOL(dmu_buf_will_dirty); 5215 EXPORT_SYMBOL(dmu_buf_is_dirty); 5216 EXPORT_SYMBOL(dmu_buf_will_clone); 5217 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5218 EXPORT_SYMBOL(dmu_buf_will_fill); 5219 EXPORT_SYMBOL(dmu_buf_fill_done); 5220 EXPORT_SYMBOL(dmu_buf_rele); 5221 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5222 EXPORT_SYMBOL(dbuf_prefetch); 5223 EXPORT_SYMBOL(dbuf_hold_impl); 5224 EXPORT_SYMBOL(dbuf_hold); 5225 EXPORT_SYMBOL(dbuf_hold_level); 5226 EXPORT_SYMBOL(dbuf_create_bonus); 5227 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5228 EXPORT_SYMBOL(dbuf_rm_spill); 5229 EXPORT_SYMBOL(dbuf_add_ref); 5230 EXPORT_SYMBOL(dbuf_rele); 5231 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5232 EXPORT_SYMBOL(dbuf_refcount); 5233 EXPORT_SYMBOL(dbuf_sync_list); 5234 EXPORT_SYMBOL(dmu_buf_set_user); 5235 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5236 EXPORT_SYMBOL(dmu_buf_get_user); 5237 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5238 5239 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5240 "Maximum size in bytes of the dbuf cache."); 5241 5242 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5243 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5244 5245 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5246 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5247 5248 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5249 "Maximum size in bytes of dbuf metadata cache."); 5250 5251 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5252 "Set size of dbuf cache to log2 fraction of arc size."); 5253 5254 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5255 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5256 5257 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5258 "Set size of dbuf cache mutex array as log2 shift."); 5259