1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/arc.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_send.h> 37 #include <sys/dmu_impl.h> 38 #include <sys/dbuf.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/spa.h> 44 #include <sys/zio.h> 45 #include <sys/dmu_zfetch.h> 46 #include <sys/sa.h> 47 #include <sys/sa_impl.h> 48 #include <sys/zfeature.h> 49 #include <sys/blkptr.h> 50 #include <sys/range_tree.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/callb.h> 53 #include <sys/abd.h> 54 #include <sys/brt.h> 55 #include <sys/vdev.h> 56 #include <cityhash.h> 57 #include <sys/spa_impl.h> 58 #include <sys/wmsum.h> 59 #include <sys/vdev_impl.h> 60 61 static kstat_t *dbuf_ksp; 62 63 typedef struct dbuf_stats { 64 /* 65 * Various statistics about the size of the dbuf cache. 66 */ 67 kstat_named_t cache_count; 68 kstat_named_t cache_size_bytes; 69 kstat_named_t cache_size_bytes_max; 70 /* 71 * Statistics regarding the bounds on the dbuf cache size. 72 */ 73 kstat_named_t cache_target_bytes; 74 kstat_named_t cache_lowater_bytes; 75 kstat_named_t cache_hiwater_bytes; 76 /* 77 * Total number of dbuf cache evictions that have occurred. 78 */ 79 kstat_named_t cache_total_evicts; 80 /* 81 * The distribution of dbuf levels in the dbuf cache and 82 * the total size of all dbufs at each level. 83 */ 84 kstat_named_t cache_levels[DN_MAX_LEVELS]; 85 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 86 /* 87 * Statistics about the dbuf hash table. 88 */ 89 kstat_named_t hash_hits; 90 kstat_named_t hash_misses; 91 kstat_named_t hash_collisions; 92 kstat_named_t hash_elements; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_chains", KSTAT_DATA_UINT64 }, 138 { "hash_chain_max", KSTAT_DATA_UINT64 }, 139 { "hash_insert_race", KSTAT_DATA_UINT64 }, 140 { "hash_table_count", KSTAT_DATA_UINT64 }, 141 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 142 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 146 }; 147 148 struct { 149 wmsum_t cache_count; 150 wmsum_t cache_total_evicts; 151 wmsum_t cache_levels[DN_MAX_LEVELS]; 152 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 153 wmsum_t hash_hits; 154 wmsum_t hash_misses; 155 wmsum_t hash_collisions; 156 wmsum_t hash_elements; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 kmem_cache_t *dbuf_dirty_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 DBUF_STAT_BUMP(hash_elements); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 DBUF_STAT_BUMPDOWN(hash_elements); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT(db->db_level == 0); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, dbu); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 /* 640 * bp must be checked in the event it was passed from 641 * dbuf_read_impl() as the result of a the BP being set from 642 * a Direct I/O write in dbuf_read(). See comments in 643 * dbuf_read(). 644 */ 645 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp; 646 647 if (db_bp == NULL || BP_IS_HOLE(db_bp)) 648 return (B_FALSE); 649 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva); 650 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 651 vdev_t *vd = NULL; 652 653 if (vdev < rvd->vdev_children) 654 vd = rvd->vdev_child[vdev]; 655 656 if (vd == NULL) 657 return (B_TRUE); 658 659 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 660 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 661 return (B_TRUE); 662 } 663 return (B_FALSE); 664 } 665 666 static inline boolean_t 667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 668 { 669 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 670 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 671 (level > 0 || 672 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 673 if (l2arc_exclude_special == 0) 674 return (B_TRUE); 675 676 if (bp == NULL || BP_IS_HOLE(bp)) 677 return (B_FALSE); 678 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 679 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 680 vdev_t *vd = NULL; 681 682 if (vdev < rvd->vdev_children) 683 vd = rvd->vdev_child[vdev]; 684 685 if (vd == NULL) 686 return (B_TRUE); 687 688 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 689 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 690 return (B_TRUE); 691 } 692 return (B_FALSE); 693 } 694 695 696 /* 697 * This function *must* return indices evenly distributed between all 698 * sublists of the multilist. This is needed due to how the dbuf eviction 699 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 700 * distributed between all sublists and uses this assumption when 701 * deciding which sublist to evict from and how much to evict from it. 702 */ 703 static unsigned int 704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 705 { 706 dmu_buf_impl_t *db = obj; 707 708 /* 709 * The assumption here, is the hash value for a given 710 * dmu_buf_impl_t will remain constant throughout it's lifetime 711 * (i.e. it's objset, object, level and blkid fields don't change). 712 * Thus, we don't need to store the dbuf's sublist index 713 * on insertion, as this index can be recalculated on removal. 714 * 715 * Also, the low order bits of the hash value are thought to be 716 * distributed evenly. Otherwise, in the case that the multilist 717 * has a power of two number of sublists, each sublists' usage 718 * would not be evenly distributed. In this context full 64bit 719 * division would be a waste of time, so limit it to 32 bits. 720 */ 721 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 722 db->db_level, db->db_blkid) % 723 multilist_get_num_sublists(ml)); 724 } 725 726 /* 727 * The target size of the dbuf cache can grow with the ARC target, 728 * unless limited by the tunable dbuf_cache_max_bytes. 729 */ 730 static inline unsigned long 731 dbuf_cache_target_bytes(void) 732 { 733 return (MIN(dbuf_cache_max_bytes, 734 arc_target_bytes() >> dbuf_cache_shift)); 735 } 736 737 /* 738 * The target size of the dbuf metadata cache can grow with the ARC target, 739 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 740 */ 741 static inline unsigned long 742 dbuf_metadata_cache_target_bytes(void) 743 { 744 return (MIN(dbuf_metadata_cache_max_bytes, 745 arc_target_bytes() >> dbuf_metadata_cache_shift)); 746 } 747 748 static inline uint64_t 749 dbuf_cache_hiwater_bytes(void) 750 { 751 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 752 return (dbuf_cache_target + 753 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 754 } 755 756 static inline uint64_t 757 dbuf_cache_lowater_bytes(void) 758 { 759 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 760 return (dbuf_cache_target - 761 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 762 } 763 764 static inline boolean_t 765 dbuf_cache_above_lowater(void) 766 { 767 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 768 dbuf_cache_lowater_bytes()); 769 } 770 771 /* 772 * Evict the oldest eligible dbuf from the dbuf cache. 773 */ 774 static void 775 dbuf_evict_one(void) 776 { 777 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 778 multilist_sublist_t *mls = multilist_sublist_lock_idx( 779 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 780 781 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 782 783 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 784 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 785 db = multilist_sublist_prev(mls, db); 786 } 787 788 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 789 multilist_sublist_t *, mls); 790 791 if (db != NULL) { 792 multilist_sublist_remove(mls, db); 793 multilist_sublist_unlock(mls); 794 uint64_t size = db->db.db_size; 795 uint64_t usize = dmu_buf_user_size(&db->db); 796 (void) zfs_refcount_remove_many( 797 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 798 (void) zfs_refcount_remove_many( 799 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 800 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 801 DBUF_STAT_BUMPDOWN(cache_count); 802 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 803 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 804 db->db_caching_status = DB_NO_CACHE; 805 dbuf_destroy(db); 806 DBUF_STAT_BUMP(cache_total_evicts); 807 } else { 808 multilist_sublist_unlock(mls); 809 } 810 } 811 812 /* 813 * The dbuf evict thread is responsible for aging out dbufs from the 814 * cache. Once the cache has reached it's maximum size, dbufs are removed 815 * and destroyed. The eviction thread will continue running until the size 816 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 817 * out of the cache it is destroyed and becomes eligible for arc eviction. 818 */ 819 static __attribute__((noreturn)) void 820 dbuf_evict_thread(void *unused) 821 { 822 (void) unused; 823 callb_cpr_t cpr; 824 825 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 826 827 mutex_enter(&dbuf_evict_lock); 828 while (!dbuf_evict_thread_exit) { 829 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 830 CALLB_CPR_SAFE_BEGIN(&cpr); 831 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 832 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 833 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 834 } 835 mutex_exit(&dbuf_evict_lock); 836 837 /* 838 * Keep evicting as long as we're above the low water mark 839 * for the cache. We do this without holding the locks to 840 * minimize lock contention. 841 */ 842 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 843 dbuf_evict_one(); 844 } 845 846 mutex_enter(&dbuf_evict_lock); 847 } 848 849 dbuf_evict_thread_exit = B_FALSE; 850 cv_broadcast(&dbuf_evict_cv); 851 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 852 thread_exit(); 853 } 854 855 /* 856 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 857 * If the dbuf cache is at its high water mark, then evict a dbuf from the 858 * dbuf cache using the caller's context. 859 */ 860 static void 861 dbuf_evict_notify(uint64_t size) 862 { 863 /* 864 * We check if we should evict without holding the dbuf_evict_lock, 865 * because it's OK to occasionally make the wrong decision here, 866 * and grabbing the lock results in massive lock contention. 867 */ 868 if (size > dbuf_cache_target_bytes()) { 869 /* 870 * Avoid calling dbuf_evict_one() from memory reclaim context 871 * (e.g. Linux kswapd, FreeBSD pagedaemon) to prevent deadlocks. 872 * Memory reclaim threads can get stuck waiting for the dbuf 873 * hash lock. 874 */ 875 if (size > dbuf_cache_hiwater_bytes() && 876 !current_is_reclaim_thread()) { 877 dbuf_evict_one(); 878 } 879 cv_signal(&dbuf_evict_cv); 880 } 881 } 882 883 /* 884 * Since dbuf cache size is a fraction of target ARC size, ARC calls this when 885 * its target size is reduced due to memory pressure. 886 */ 887 void 888 dbuf_cache_reduce_target_size(void) 889 { 890 uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 891 892 if (size > dbuf_cache_target_bytes()) 893 cv_signal(&dbuf_evict_cv); 894 } 895 896 static int 897 dbuf_kstat_update(kstat_t *ksp, int rw) 898 { 899 dbuf_stats_t *ds = ksp->ks_data; 900 dbuf_hash_table_t *h = &dbuf_hash_table; 901 902 if (rw == KSTAT_WRITE) 903 return (SET_ERROR(EACCES)); 904 905 ds->cache_count.value.ui64 = 906 wmsum_value(&dbuf_sums.cache_count); 907 ds->cache_size_bytes.value.ui64 = 908 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 909 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 910 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 911 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 912 ds->cache_total_evicts.value.ui64 = 913 wmsum_value(&dbuf_sums.cache_total_evicts); 914 for (int i = 0; i < DN_MAX_LEVELS; i++) { 915 ds->cache_levels[i].value.ui64 = 916 wmsum_value(&dbuf_sums.cache_levels[i]); 917 ds->cache_levels_bytes[i].value.ui64 = 918 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 919 } 920 ds->hash_hits.value.ui64 = 921 wmsum_value(&dbuf_sums.hash_hits); 922 ds->hash_misses.value.ui64 = 923 wmsum_value(&dbuf_sums.hash_misses); 924 ds->hash_collisions.value.ui64 = 925 wmsum_value(&dbuf_sums.hash_collisions); 926 ds->hash_elements.value.ui64 = 927 wmsum_value(&dbuf_sums.hash_elements); 928 ds->hash_chains.value.ui64 = 929 wmsum_value(&dbuf_sums.hash_chains); 930 ds->hash_insert_race.value.ui64 = 931 wmsum_value(&dbuf_sums.hash_insert_race); 932 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 933 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 934 ds->metadata_cache_count.value.ui64 = 935 wmsum_value(&dbuf_sums.metadata_cache_count); 936 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 937 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 938 ds->metadata_cache_overflow.value.ui64 = 939 wmsum_value(&dbuf_sums.metadata_cache_overflow); 940 return (0); 941 } 942 943 void 944 dbuf_init(void) 945 { 946 uint64_t hmsize, hsize = 1ULL << 16; 947 dbuf_hash_table_t *h = &dbuf_hash_table; 948 949 /* 950 * The hash table is big enough to fill one eighth of physical memory 951 * with an average block size of zfs_arc_average_blocksize (default 8K). 952 * By default, the table will take up 953 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 954 */ 955 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 956 hsize <<= 1; 957 958 h->hash_table = NULL; 959 while (h->hash_table == NULL) { 960 h->hash_table_mask = hsize - 1; 961 962 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 963 if (h->hash_table == NULL) 964 hsize >>= 1; 965 966 ASSERT3U(hsize, >=, 1ULL << 10); 967 } 968 969 /* 970 * The hash table buckets are protected by an array of mutexes where 971 * each mutex is reponsible for protecting 128 buckets. A minimum 972 * array size of 8192 is targeted to avoid contention. 973 */ 974 if (dbuf_mutex_cache_shift == 0) 975 hmsize = MAX(hsize >> 7, 1ULL << 13); 976 else 977 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 978 979 h->hash_mutexes = NULL; 980 while (h->hash_mutexes == NULL) { 981 h->hash_mutex_mask = hmsize - 1; 982 983 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 984 KM_SLEEP); 985 if (h->hash_mutexes == NULL) 986 hmsize >>= 1; 987 } 988 989 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 990 sizeof (dmu_buf_impl_t), 991 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 992 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t", 993 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 994 995 for (int i = 0; i < hmsize; i++) 996 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 997 998 dbuf_stats_init(h); 999 1000 /* 1001 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 1002 * configuration is not required. 1003 */ 1004 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 1005 1006 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1007 multilist_create(&dbuf_caches[dcs].cache, 1008 sizeof (dmu_buf_impl_t), 1009 offsetof(dmu_buf_impl_t, db_cache_link), 1010 dbuf_cache_multilist_index_func); 1011 zfs_refcount_create(&dbuf_caches[dcs].size); 1012 } 1013 1014 dbuf_evict_thread_exit = B_FALSE; 1015 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1016 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 1017 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 1018 NULL, 0, &p0, TS_RUN, minclsyspri); 1019 1020 wmsum_init(&dbuf_sums.cache_count, 0); 1021 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 1022 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1023 wmsum_init(&dbuf_sums.cache_levels[i], 0); 1024 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 1025 } 1026 wmsum_init(&dbuf_sums.hash_hits, 0); 1027 wmsum_init(&dbuf_sums.hash_misses, 0); 1028 wmsum_init(&dbuf_sums.hash_collisions, 0); 1029 wmsum_init(&dbuf_sums.hash_elements, 0); 1030 wmsum_init(&dbuf_sums.hash_chains, 0); 1031 wmsum_init(&dbuf_sums.hash_insert_race, 0); 1032 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1033 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1034 1035 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1036 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1037 KSTAT_FLAG_VIRTUAL); 1038 if (dbuf_ksp != NULL) { 1039 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1040 snprintf(dbuf_stats.cache_levels[i].name, 1041 KSTAT_STRLEN, "cache_level_%d", i); 1042 dbuf_stats.cache_levels[i].data_type = 1043 KSTAT_DATA_UINT64; 1044 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1045 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1046 dbuf_stats.cache_levels_bytes[i].data_type = 1047 KSTAT_DATA_UINT64; 1048 } 1049 dbuf_ksp->ks_data = &dbuf_stats; 1050 dbuf_ksp->ks_update = dbuf_kstat_update; 1051 kstat_install(dbuf_ksp); 1052 } 1053 } 1054 1055 void 1056 dbuf_fini(void) 1057 { 1058 dbuf_hash_table_t *h = &dbuf_hash_table; 1059 1060 dbuf_stats_destroy(); 1061 1062 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1063 mutex_destroy(&h->hash_mutexes[i]); 1064 1065 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1066 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1067 sizeof (kmutex_t)); 1068 1069 kmem_cache_destroy(dbuf_kmem_cache); 1070 kmem_cache_destroy(dbuf_dirty_kmem_cache); 1071 taskq_destroy(dbu_evict_taskq); 1072 1073 mutex_enter(&dbuf_evict_lock); 1074 dbuf_evict_thread_exit = B_TRUE; 1075 while (dbuf_evict_thread_exit) { 1076 cv_signal(&dbuf_evict_cv); 1077 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1078 } 1079 mutex_exit(&dbuf_evict_lock); 1080 1081 mutex_destroy(&dbuf_evict_lock); 1082 cv_destroy(&dbuf_evict_cv); 1083 1084 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1085 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1086 multilist_destroy(&dbuf_caches[dcs].cache); 1087 } 1088 1089 if (dbuf_ksp != NULL) { 1090 kstat_delete(dbuf_ksp); 1091 dbuf_ksp = NULL; 1092 } 1093 1094 wmsum_fini(&dbuf_sums.cache_count); 1095 wmsum_fini(&dbuf_sums.cache_total_evicts); 1096 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1097 wmsum_fini(&dbuf_sums.cache_levels[i]); 1098 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1099 } 1100 wmsum_fini(&dbuf_sums.hash_hits); 1101 wmsum_fini(&dbuf_sums.hash_misses); 1102 wmsum_fini(&dbuf_sums.hash_collisions); 1103 wmsum_fini(&dbuf_sums.hash_elements); 1104 wmsum_fini(&dbuf_sums.hash_chains); 1105 wmsum_fini(&dbuf_sums.hash_insert_race); 1106 wmsum_fini(&dbuf_sums.metadata_cache_count); 1107 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1108 } 1109 1110 /* 1111 * Other stuff. 1112 */ 1113 1114 #ifdef ZFS_DEBUG 1115 static void 1116 dbuf_verify(dmu_buf_impl_t *db) 1117 { 1118 dnode_t *dn; 1119 dbuf_dirty_record_t *dr; 1120 uint32_t txg_prev; 1121 1122 ASSERT(MUTEX_HELD(&db->db_mtx)); 1123 1124 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1125 return; 1126 1127 ASSERT(db->db_objset != NULL); 1128 DB_DNODE_ENTER(db); 1129 dn = DB_DNODE(db); 1130 if (dn == NULL) { 1131 ASSERT(db->db_parent == NULL); 1132 ASSERT(db->db_blkptr == NULL); 1133 } else { 1134 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1135 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1136 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1137 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1138 db->db_blkid == DMU_SPILL_BLKID || 1139 !avl_is_empty(&dn->dn_dbufs)); 1140 } 1141 if (db->db_blkid == DMU_BONUS_BLKID) { 1142 ASSERT(dn != NULL); 1143 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1144 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1145 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1146 ASSERT(dn != NULL); 1147 ASSERT0(db->db.db_offset); 1148 } else { 1149 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1150 } 1151 1152 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1153 ASSERT(dr->dr_dbuf == db); 1154 txg_prev = dr->dr_txg; 1155 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1156 dr = list_next(&db->db_dirty_records, dr)) { 1157 ASSERT(dr->dr_dbuf == db); 1158 ASSERT(txg_prev > dr->dr_txg); 1159 txg_prev = dr->dr_txg; 1160 } 1161 } 1162 1163 /* 1164 * We can't assert that db_size matches dn_datablksz because it 1165 * can be momentarily different when another thread is doing 1166 * dnode_set_blksz(). 1167 */ 1168 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1169 dr = db->db_data_pending; 1170 /* 1171 * It should only be modified in syncing context, so 1172 * make sure we only have one copy of the data. 1173 */ 1174 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1175 } 1176 1177 /* verify db->db_blkptr */ 1178 if (db->db_blkptr) { 1179 if (db->db_parent == dn->dn_dbuf) { 1180 /* db is pointed to by the dnode */ 1181 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1182 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1183 ASSERT(db->db_parent == NULL); 1184 else 1185 ASSERT(db->db_parent != NULL); 1186 if (db->db_blkid != DMU_SPILL_BLKID) 1187 ASSERT3P(db->db_blkptr, ==, 1188 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1189 } else { 1190 /* db is pointed to by an indirect block */ 1191 int epb __maybe_unused = db->db_parent->db.db_size >> 1192 SPA_BLKPTRSHIFT; 1193 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1194 ASSERT3U(db->db_parent->db.db_object, ==, 1195 db->db.db_object); 1196 ASSERT3P(db->db_blkptr, ==, 1197 ((blkptr_t *)db->db_parent->db.db_data + 1198 db->db_blkid % epb)); 1199 } 1200 } 1201 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1202 (db->db_buf == NULL || db->db_buf->b_data) && 1203 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1204 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1205 /* 1206 * If the blkptr isn't set but they have nonzero data, 1207 * it had better be dirty, otherwise we'll lose that 1208 * data when we evict this buffer. 1209 * 1210 * There is an exception to this rule for indirect blocks; in 1211 * this case, if the indirect block is a hole, we fill in a few 1212 * fields on each of the child blocks (importantly, birth time) 1213 * to prevent hole birth times from being lost when you 1214 * partially fill in a hole. 1215 */ 1216 if (db->db_dirtycnt == 0) { 1217 if (db->db_level == 0) { 1218 uint64_t *buf = db->db.db_data; 1219 int i; 1220 1221 for (i = 0; i < db->db.db_size >> 3; i++) { 1222 ASSERT(buf[i] == 0); 1223 } 1224 } else { 1225 blkptr_t *bps = db->db.db_data; 1226 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1227 db->db.db_size); 1228 /* 1229 * We want to verify that all the blkptrs in the 1230 * indirect block are holes, but we may have 1231 * automatically set up a few fields for them. 1232 * We iterate through each blkptr and verify 1233 * they only have those fields set. 1234 */ 1235 for (int i = 0; 1236 i < db->db.db_size / sizeof (blkptr_t); 1237 i++) { 1238 blkptr_t *bp = &bps[i]; 1239 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1240 &bp->blk_cksum)); 1241 ASSERT( 1242 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1243 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1244 DVA_IS_EMPTY(&bp->blk_dva[2])); 1245 ASSERT0(bp->blk_fill); 1246 ASSERT(!BP_IS_EMBEDDED(bp)); 1247 ASSERT(BP_IS_HOLE(bp)); 1248 ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp)); 1249 } 1250 } 1251 } 1252 } 1253 DB_DNODE_EXIT(db); 1254 } 1255 #endif 1256 1257 static void 1258 dbuf_clear_data(dmu_buf_impl_t *db) 1259 { 1260 ASSERT(MUTEX_HELD(&db->db_mtx)); 1261 dbuf_evict_user(db); 1262 ASSERT3P(db->db_buf, ==, NULL); 1263 db->db.db_data = NULL; 1264 if (db->db_state != DB_NOFILL) { 1265 db->db_state = DB_UNCACHED; 1266 DTRACE_SET_STATE(db, "clear data"); 1267 } 1268 } 1269 1270 static void 1271 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1272 { 1273 ASSERT(MUTEX_HELD(&db->db_mtx)); 1274 ASSERT(buf != NULL); 1275 1276 db->db_buf = buf; 1277 ASSERT(buf->b_data != NULL); 1278 db->db.db_data = buf->b_data; 1279 } 1280 1281 static arc_buf_t * 1282 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1283 { 1284 spa_t *spa = db->db_objset->os_spa; 1285 1286 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1287 } 1288 1289 /* 1290 * Calculate which level n block references the data at the level 0 offset 1291 * provided. 1292 */ 1293 uint64_t 1294 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1295 { 1296 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1297 /* 1298 * The level n blkid is equal to the level 0 blkid divided by 1299 * the number of level 0s in a level n block. 1300 * 1301 * The level 0 blkid is offset >> datablkshift = 1302 * offset / 2^datablkshift. 1303 * 1304 * The number of level 0s in a level n is the number of block 1305 * pointers in an indirect block, raised to the power of level. 1306 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1307 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1308 * 1309 * Thus, the level n blkid is: offset / 1310 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1311 * = offset / 2^(datablkshift + level * 1312 * (indblkshift - SPA_BLKPTRSHIFT)) 1313 * = offset >> (datablkshift + level * 1314 * (indblkshift - SPA_BLKPTRSHIFT)) 1315 */ 1316 1317 const unsigned exp = dn->dn_datablkshift + 1318 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1319 1320 if (exp >= 8 * sizeof (offset)) { 1321 /* This only happens on the highest indirection level */ 1322 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1323 return (0); 1324 } 1325 1326 ASSERT3U(exp, <, 8 * sizeof (offset)); 1327 1328 return (offset >> exp); 1329 } else { 1330 ASSERT3U(offset, <, dn->dn_datablksz); 1331 return (0); 1332 } 1333 } 1334 1335 /* 1336 * This function is used to lock the parent of the provided dbuf. This should be 1337 * used when modifying or reading db_blkptr. 1338 */ 1339 db_lock_type_t 1340 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1341 { 1342 enum db_lock_type ret = DLT_NONE; 1343 if (db->db_parent != NULL) { 1344 rw_enter(&db->db_parent->db_rwlock, rw); 1345 ret = DLT_PARENT; 1346 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1347 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1348 tag); 1349 ret = DLT_OBJSET; 1350 } 1351 /* 1352 * We only return a DLT_NONE lock when it's the top-most indirect block 1353 * of the meta-dnode of the MOS. 1354 */ 1355 return (ret); 1356 } 1357 1358 /* 1359 * We need to pass the lock type in because it's possible that the block will 1360 * move from being the topmost indirect block in a dnode (and thus, have no 1361 * parent) to not the top-most via an indirection increase. This would cause a 1362 * panic if we didn't pass the lock type in. 1363 */ 1364 void 1365 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1366 { 1367 if (type == DLT_PARENT) 1368 rw_exit(&db->db_parent->db_rwlock); 1369 else if (type == DLT_OBJSET) 1370 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1371 } 1372 1373 static void 1374 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1375 arc_buf_t *buf, void *vdb) 1376 { 1377 (void) zb, (void) bp; 1378 dmu_buf_impl_t *db = vdb; 1379 1380 mutex_enter(&db->db_mtx); 1381 ASSERT3U(db->db_state, ==, DB_READ); 1382 1383 /* 1384 * All reads are synchronous, so we must have a hold on the dbuf 1385 */ 1386 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1387 ASSERT(db->db_buf == NULL); 1388 ASSERT(db->db.db_data == NULL); 1389 if (buf == NULL) { 1390 /* i/o error */ 1391 ASSERT(zio == NULL || zio->io_error != 0); 1392 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1393 ASSERT3P(db->db_buf, ==, NULL); 1394 db->db_state = DB_UNCACHED; 1395 DTRACE_SET_STATE(db, "i/o error"); 1396 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1397 /* freed in flight */ 1398 ASSERT(zio == NULL || zio->io_error == 0); 1399 arc_release(buf, db); 1400 memset(buf->b_data, 0, db->db.db_size); 1401 arc_buf_freeze(buf); 1402 db->db_freed_in_flight = FALSE; 1403 dbuf_set_data(db, buf); 1404 db->db_state = DB_CACHED; 1405 DTRACE_SET_STATE(db, "freed in flight"); 1406 } else { 1407 /* success */ 1408 ASSERT(zio == NULL || zio->io_error == 0); 1409 dbuf_set_data(db, buf); 1410 db->db_state = DB_CACHED; 1411 DTRACE_SET_STATE(db, "successful read"); 1412 } 1413 cv_broadcast(&db->db_changed); 1414 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1415 } 1416 1417 /* 1418 * Shortcut for performing reads on bonus dbufs. Returns 1419 * an error if we fail to verify the dnode associated with 1420 * a decrypted block. Otherwise success. 1421 */ 1422 static int 1423 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1424 { 1425 void* db_data; 1426 int bonuslen, max_bonuslen; 1427 1428 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1429 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1430 ASSERT(MUTEX_HELD(&db->db_mtx)); 1431 ASSERT(DB_DNODE_HELD(db)); 1432 ASSERT3U(bonuslen, <=, db->db.db_size); 1433 db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1434 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1435 if (bonuslen < max_bonuslen) 1436 memset(db_data, 0, max_bonuslen); 1437 if (bonuslen) 1438 memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen); 1439 db->db.db_data = db_data; 1440 db->db_state = DB_CACHED; 1441 DTRACE_SET_STATE(db, "bonus buffer filled"); 1442 return (0); 1443 } 1444 1445 static void 1446 dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp) 1447 { 1448 blkptr_t *bps = data; 1449 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1450 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1451 1452 for (int i = 0; i < n_bps; i++) { 1453 blkptr_t *bp = &bps[i]; 1454 1455 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1456 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1457 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1458 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1459 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1460 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1461 } 1462 } 1463 1464 /* 1465 * Handle reads on dbufs that are holes, if necessary. This function 1466 * requires that the dbuf's mutex is held. Returns success (0) if action 1467 * was taken, ENOENT if no action was taken. 1468 */ 1469 static int 1470 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1471 { 1472 ASSERT(MUTEX_HELD(&db->db_mtx)); 1473 arc_buf_t *db_data; 1474 1475 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1476 /* 1477 * For level 0 blocks only, if the above check fails: 1478 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1479 * processes the delete record and clears the bp while we are waiting 1480 * for the dn_mtx (resulting in a "no" from block_freed). 1481 */ 1482 if (!is_hole && db->db_level == 0) 1483 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1484 1485 if (is_hole) { 1486 db_data = dbuf_alloc_arcbuf(db); 1487 memset(db_data->b_data, 0, db->db.db_size); 1488 1489 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1490 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1491 dbuf_handle_indirect_hole(db_data->b_data, dn, bp); 1492 } 1493 dbuf_set_data(db, db_data); 1494 db->db_state = DB_CACHED; 1495 DTRACE_SET_STATE(db, "hole read satisfied"); 1496 return (0); 1497 } 1498 return (ENOENT); 1499 } 1500 1501 /* 1502 * This function ensures that, when doing a decrypting read of a block, 1503 * we make sure we have decrypted the dnode associated with it. We must do 1504 * this so that we ensure we are fully authenticating the checksum-of-MACs 1505 * tree from the root of the objset down to this block. Indirect blocks are 1506 * always verified against their secure checksum-of-MACs assuming that the 1507 * dnode containing them is correct. Now that we are doing a decrypting read, 1508 * we can be sure that the key is loaded and verify that assumption. This is 1509 * especially important considering that we always read encrypted dnode 1510 * blocks as raw data (without verifying their MACs) to start, and 1511 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1512 */ 1513 static int 1514 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, 1515 dmu_flags_t flags) 1516 { 1517 objset_t *os = db->db_objset; 1518 dmu_buf_impl_t *dndb; 1519 arc_buf_t *dnbuf; 1520 zbookmark_phys_t zb; 1521 int err; 1522 1523 if ((flags & DMU_READ_NO_DECRYPT) != 0 || 1524 !os->os_encrypted || os->os_raw_receive || 1525 (dndb = dn->dn_dbuf) == NULL) 1526 return (0); 1527 1528 dnbuf = dndb->db_buf; 1529 if (!arc_is_encrypted(dnbuf)) 1530 return (0); 1531 1532 mutex_enter(&dndb->db_mtx); 1533 1534 /* 1535 * Since dnode buffer is modified by sync process, there can be only 1536 * one copy of it. It means we can not modify (decrypt) it while it 1537 * is being written. I don't see how this may happen now, since 1538 * encrypted dnode writes by receive should be completed before any 1539 * plain-text reads due to txg wait, but better be safe than sorry. 1540 */ 1541 while (1) { 1542 if (!arc_is_encrypted(dnbuf)) { 1543 mutex_exit(&dndb->db_mtx); 1544 return (0); 1545 } 1546 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1547 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1548 break; 1549 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1550 }; 1551 1552 SET_BOOKMARK(&zb, dmu_objset_id(os), 1553 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1554 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1555 1556 /* 1557 * An error code of EACCES tells us that the key is still not 1558 * available. This is ok if we are only reading authenticated 1559 * (and therefore non-encrypted) blocks. 1560 */ 1561 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1562 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1563 (db->db_blkid == DMU_BONUS_BLKID && 1564 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1565 err = 0; 1566 1567 mutex_exit(&dndb->db_mtx); 1568 1569 return (err); 1570 } 1571 1572 /* 1573 * Drops db_mtx and the parent lock specified by dblt and tag before 1574 * returning. 1575 */ 1576 static int 1577 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags, 1578 db_lock_type_t dblt, blkptr_t *bp, const void *tag) 1579 { 1580 zbookmark_phys_t zb; 1581 uint32_t aflags = ARC_FLAG_NOWAIT; 1582 int err, zio_flags; 1583 1584 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1585 ASSERT(MUTEX_HELD(&db->db_mtx)); 1586 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1587 ASSERT(db->db_buf == NULL); 1588 ASSERT(db->db_parent == NULL || 1589 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1590 1591 if (db->db_blkid == DMU_BONUS_BLKID) { 1592 err = dbuf_read_bonus(db, dn); 1593 goto early_unlock; 1594 } 1595 1596 err = dbuf_read_hole(db, dn, bp); 1597 if (err == 0) 1598 goto early_unlock; 1599 1600 ASSERT(bp != NULL); 1601 1602 /* 1603 * Any attempt to read a redacted block should result in an error. This 1604 * will never happen under normal conditions, but can be useful for 1605 * debugging purposes. 1606 */ 1607 if (BP_IS_REDACTED(bp)) { 1608 ASSERT(dsl_dataset_feature_is_active( 1609 db->db_objset->os_dsl_dataset, 1610 SPA_FEATURE_REDACTED_DATASETS)); 1611 err = SET_ERROR(EIO); 1612 goto early_unlock; 1613 } 1614 1615 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1616 db->db.db_object, db->db_level, db->db_blkid); 1617 1618 /* 1619 * All bps of an encrypted os should have the encryption bit set. 1620 * If this is not true it indicates tampering and we report an error. 1621 */ 1622 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) { 1623 spa_log_error(db->db_objset->os_spa, &zb, 1624 BP_GET_PHYSICAL_BIRTH(bp)); 1625 err = SET_ERROR(EIO); 1626 goto early_unlock; 1627 } 1628 1629 db->db_state = DB_READ; 1630 DTRACE_SET_STATE(db, "read issued"); 1631 mutex_exit(&db->db_mtx); 1632 1633 if (!DBUF_IS_CACHEABLE(db)) 1634 aflags |= ARC_FLAG_UNCACHED; 1635 else if (dbuf_is_l2cacheable(db, bp)) 1636 aflags |= ARC_FLAG_L2CACHE; 1637 1638 dbuf_add_ref(db, NULL); 1639 1640 zio_flags = (flags & DB_RF_CANFAIL) ? 1641 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1642 1643 if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp)) 1644 zio_flags |= ZIO_FLAG_RAW; 1645 1646 /* 1647 * The zio layer will copy the provided blkptr later, but we need to 1648 * do this now so that we can release the parent's rwlock. We have to 1649 * do that now so that if dbuf_read_done is called synchronously (on 1650 * an l1 cache hit) we don't acquire the db_mtx while holding the 1651 * parent's rwlock, which would be a lock ordering violation. 1652 */ 1653 blkptr_t copy = *bp; 1654 dmu_buf_unlock_parent(db, dblt, tag); 1655 return (arc_read(zio, db->db_objset->os_spa, ©, 1656 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1657 &aflags, &zb)); 1658 1659 early_unlock: 1660 mutex_exit(&db->db_mtx); 1661 dmu_buf_unlock_parent(db, dblt, tag); 1662 return (err); 1663 } 1664 1665 /* 1666 * This is our just-in-time copy function. It makes a copy of buffers that 1667 * have been modified in a previous transaction group before we access them in 1668 * the current active group. 1669 * 1670 * This function is used in three places: when we are dirtying a buffer for the 1671 * first time in a txg, when we are freeing a range in a dnode that includes 1672 * this buffer, and when we are accessing a buffer which was received compressed 1673 * and later referenced in a WRITE_BYREF record. 1674 * 1675 * Note that when we are called from dbuf_free_range() we do not put a hold on 1676 * the buffer, we just traverse the active dbuf list for the dnode. 1677 */ 1678 static void 1679 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1680 { 1681 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1682 1683 ASSERT(MUTEX_HELD(&db->db_mtx)); 1684 ASSERT(db->db.db_data != NULL); 1685 ASSERT(db->db_level == 0); 1686 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1687 1688 if (dr == NULL || 1689 (dr->dt.dl.dr_data != 1690 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1691 return; 1692 1693 /* 1694 * If the last dirty record for this dbuf has not yet synced 1695 * and its referencing the dbuf data, either: 1696 * reset the reference to point to a new copy, 1697 * or (if there a no active holders) 1698 * just null out the current db_data pointer. 1699 */ 1700 ASSERT3U(dr->dr_txg, >=, txg - 2); 1701 if (db->db_blkid == DMU_BONUS_BLKID) { 1702 dnode_t *dn = DB_DNODE(db); 1703 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1704 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1705 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1706 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1707 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1708 dnode_t *dn = DB_DNODE(db); 1709 int size = arc_buf_size(db->db_buf); 1710 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1711 spa_t *spa = db->db_objset->os_spa; 1712 enum zio_compress compress_type = 1713 arc_get_compression(db->db_buf); 1714 uint8_t complevel = arc_get_complevel(db->db_buf); 1715 1716 if (arc_is_encrypted(db->db_buf)) { 1717 boolean_t byteorder; 1718 uint8_t salt[ZIO_DATA_SALT_LEN]; 1719 uint8_t iv[ZIO_DATA_IV_LEN]; 1720 uint8_t mac[ZIO_DATA_MAC_LEN]; 1721 1722 arc_get_raw_params(db->db_buf, &byteorder, salt, 1723 iv, mac); 1724 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1725 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1726 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1727 compress_type, complevel); 1728 } else if (compress_type != ZIO_COMPRESS_OFF) { 1729 ASSERT3U(type, ==, ARC_BUFC_DATA); 1730 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1731 size, arc_buf_lsize(db->db_buf), compress_type, 1732 complevel); 1733 } else { 1734 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1735 } 1736 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1737 } else { 1738 db->db_buf = NULL; 1739 dbuf_clear_data(db); 1740 } 1741 } 1742 1743 int 1744 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags) 1745 { 1746 dnode_t *dn; 1747 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1748 int err; 1749 1750 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1751 1752 DB_DNODE_ENTER(db); 1753 dn = DB_DNODE(db); 1754 1755 /* 1756 * Ensure that this block's dnode has been decrypted if the caller 1757 * has requested decrypted data. 1758 */ 1759 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1760 if (err != 0) 1761 goto done; 1762 1763 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1764 (flags & DMU_READ_NO_PREFETCH) == 0; 1765 1766 mutex_enter(&db->db_mtx); 1767 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 1768 db->db_pending_evict = B_FALSE; 1769 if (flags & DMU_PARTIAL_FIRST) 1770 db->db_partial_read = B_TRUE; 1771 else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING))) 1772 db->db_partial_read = B_FALSE; 1773 miss = (db->db_state != DB_CACHED); 1774 1775 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1776 /* 1777 * Another reader came in while the dbuf was in flight between 1778 * UNCACHED and CACHED. Either a writer will finish filling 1779 * the buffer, sending the dbuf to CACHED, or the first reader's 1780 * request will reach the read_done callback and send the dbuf 1781 * to CACHED. Otherwise, a failure occurred and the dbuf will 1782 * be sent to UNCACHED. 1783 */ 1784 if (flags & DB_RF_NEVERWAIT) { 1785 mutex_exit(&db->db_mtx); 1786 DB_DNODE_EXIT(db); 1787 goto done; 1788 } 1789 do { 1790 ASSERT(db->db_state == DB_READ || 1791 (flags & DB_RF_HAVESTRUCT) == 0); 1792 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1793 zio_t *, pio); 1794 cv_wait(&db->db_changed, &db->db_mtx); 1795 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1796 if (db->db_state == DB_UNCACHED) { 1797 err = SET_ERROR(EIO); 1798 mutex_exit(&db->db_mtx); 1799 DB_DNODE_EXIT(db); 1800 goto done; 1801 } 1802 } 1803 1804 if (db->db_state == DB_CACHED) { 1805 /* 1806 * If the arc buf is compressed or encrypted and the caller 1807 * requested uncompressed data, we need to untransform it 1808 * before returning. We also call arc_untransform() on any 1809 * unauthenticated blocks, which will verify their MAC if 1810 * the key is now available. 1811 */ 1812 if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL && 1813 (arc_is_encrypted(db->db_buf) || 1814 arc_is_unauthenticated(db->db_buf) || 1815 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1816 spa_t *spa = dn->dn_objset->os_spa; 1817 zbookmark_phys_t zb; 1818 1819 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1820 db->db.db_object, db->db_level, db->db_blkid); 1821 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1822 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1823 dbuf_set_data(db, db->db_buf); 1824 } 1825 mutex_exit(&db->db_mtx); 1826 } else { 1827 ASSERT(db->db_state == DB_UNCACHED || 1828 db->db_state == DB_NOFILL); 1829 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1830 blkptr_t *bp; 1831 1832 /* 1833 * If a block clone or Direct I/O write has occurred we will 1834 * get the dirty records overridden BP so we get the most 1835 * recent data. 1836 */ 1837 err = dmu_buf_get_bp_from_dbuf(db, &bp); 1838 1839 if (!err) { 1840 if (pio == NULL && (db->db_state == DB_NOFILL || 1841 (bp != NULL && !BP_IS_HOLE(bp)))) { 1842 spa_t *spa = dn->dn_objset->os_spa; 1843 pio = 1844 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1845 need_wait = B_TRUE; 1846 } 1847 1848 err = 1849 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG); 1850 } else { 1851 mutex_exit(&db->db_mtx); 1852 dmu_buf_unlock_parent(db, dblt, FTAG); 1853 } 1854 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1855 miss = (db->db_state != DB_CACHED); 1856 } 1857 1858 if (err == 0 && prefetch) { 1859 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1860 flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) || 1861 db->db_pending_evict); 1862 } 1863 DB_DNODE_EXIT(db); 1864 1865 /* 1866 * If we created a zio we must execute it to avoid leaking it, even if 1867 * it isn't attached to any work due to an error in dbuf_read_impl(). 1868 */ 1869 if (need_wait) { 1870 if (err == 0) 1871 err = zio_wait(pio); 1872 else 1873 (void) zio_wait(pio); 1874 pio = NULL; 1875 } 1876 1877 done: 1878 if (miss) 1879 DBUF_STAT_BUMP(hash_misses); 1880 else 1881 DBUF_STAT_BUMP(hash_hits); 1882 if (pio && err != 0) { 1883 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1884 ZIO_FLAG_CANFAIL); 1885 zio->io_error = err; 1886 zio_nowait(zio); 1887 } 1888 1889 return (err); 1890 } 1891 1892 static void 1893 dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags) 1894 { 1895 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1897 mutex_enter(&db->db_mtx); 1898 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 1899 db->db_pending_evict = B_FALSE; 1900 db->db_partial_read = B_FALSE; 1901 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1902 cv_wait(&db->db_changed, &db->db_mtx); 1903 if (db->db_state == DB_UNCACHED) { 1904 ASSERT(db->db_buf == NULL); 1905 ASSERT(db->db.db_data == NULL); 1906 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1907 db->db_state = DB_FILL; 1908 DTRACE_SET_STATE(db, "assigning filled buffer"); 1909 } else if (db->db_state == DB_NOFILL) { 1910 dbuf_clear_data(db); 1911 } else { 1912 ASSERT3U(db->db_state, ==, DB_CACHED); 1913 } 1914 mutex_exit(&db->db_mtx); 1915 } 1916 1917 void 1918 dbuf_unoverride(dbuf_dirty_record_t *dr) 1919 { 1920 dmu_buf_impl_t *db = dr->dr_dbuf; 1921 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1922 uint64_t txg = dr->dr_txg; 1923 1924 ASSERT(MUTEX_HELD(&db->db_mtx)); 1925 1926 /* 1927 * This assert is valid because dmu_sync() expects to be called by 1928 * a zilog's get_data while holding a range lock. This call only 1929 * comes from dbuf_dirty() callers who must also hold a range lock. 1930 */ 1931 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1932 ASSERT(db->db_level == 0); 1933 1934 if (db->db_blkid == DMU_BONUS_BLKID || 1935 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1936 return; 1937 1938 ASSERT(db->db_data_pending != dr); 1939 1940 /* free this block */ 1941 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1942 zio_free(db->db_objset->os_spa, txg, bp); 1943 1944 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) { 1945 ASSERT0P(dr->dt.dl.dr_data); 1946 dr->dt.dl.dr_data = db->db_buf; 1947 } 1948 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1949 dr->dt.dl.dr_nopwrite = B_FALSE; 1950 dr->dt.dl.dr_brtwrite = B_FALSE; 1951 dr->dt.dl.dr_diowrite = B_FALSE; 1952 dr->dt.dl.dr_has_raw_params = B_FALSE; 1953 1954 /* 1955 * In the event that Direct I/O was used, we do not 1956 * need to release the buffer from the ARC. 1957 * 1958 * Release the already-written buffer, so we leave it in 1959 * a consistent dirty state. Note that all callers are 1960 * modifying the buffer, so they will immediately do 1961 * another (redundant) arc_release(). Therefore, leave 1962 * the buf thawed to save the effort of freezing & 1963 * immediately re-thawing it. 1964 */ 1965 if (dr->dt.dl.dr_data) 1966 arc_release(dr->dt.dl.dr_data, db); 1967 } 1968 1969 /* 1970 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1971 * data blocks in the free range, so that any future readers will find 1972 * empty blocks. 1973 */ 1974 void 1975 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1976 dmu_tx_t *tx) 1977 { 1978 dmu_buf_impl_t *db_search; 1979 dmu_buf_impl_t *db, *db_next; 1980 uint64_t txg = tx->tx_txg; 1981 avl_index_t where; 1982 dbuf_dirty_record_t *dr; 1983 1984 if (end_blkid > dn->dn_maxblkid && 1985 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1986 end_blkid = dn->dn_maxblkid; 1987 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1988 (u_longlong_t)end_blkid); 1989 1990 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1991 db_search->db_level = 0; 1992 db_search->db_blkid = start_blkid; 1993 db_search->db_state = DB_SEARCH; 1994 1995 mutex_enter(&dn->dn_dbufs_mtx); 1996 db = avl_find(&dn->dn_dbufs, db_search, &where); 1997 ASSERT3P(db, ==, NULL); 1998 1999 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2000 2001 for (; db != NULL; db = db_next) { 2002 db_next = AVL_NEXT(&dn->dn_dbufs, db); 2003 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2004 2005 if (db->db_level != 0 || db->db_blkid > end_blkid) { 2006 break; 2007 } 2008 ASSERT3U(db->db_blkid, >=, start_blkid); 2009 2010 /* found a level 0 buffer in the range */ 2011 mutex_enter(&db->db_mtx); 2012 if (dbuf_undirty(db, tx)) { 2013 /* mutex has been dropped and dbuf destroyed */ 2014 continue; 2015 } 2016 2017 if (db->db_state == DB_UNCACHED || 2018 db->db_state == DB_NOFILL || 2019 db->db_state == DB_EVICTING) { 2020 ASSERT(db->db.db_data == NULL); 2021 mutex_exit(&db->db_mtx); 2022 continue; 2023 } 2024 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2025 /* will be handled in dbuf_read_done or dbuf_rele */ 2026 db->db_freed_in_flight = TRUE; 2027 mutex_exit(&db->db_mtx); 2028 continue; 2029 } 2030 if (zfs_refcount_count(&db->db_holds) == 0) { 2031 ASSERT(db->db_buf); 2032 dbuf_destroy(db); 2033 continue; 2034 } 2035 /* The dbuf is referenced */ 2036 2037 dr = list_head(&db->db_dirty_records); 2038 if (dr != NULL) { 2039 if (dr->dr_txg == txg) { 2040 /* 2041 * This buffer is "in-use", re-adjust the file 2042 * size to reflect that this buffer may 2043 * contain new data when we sync. 2044 */ 2045 if (db->db_blkid != DMU_SPILL_BLKID && 2046 db->db_blkid > dn->dn_maxblkid) 2047 dn->dn_maxblkid = db->db_blkid; 2048 dbuf_unoverride(dr); 2049 } else { 2050 /* 2051 * This dbuf is not dirty in the open context. 2052 * Either uncache it (if its not referenced in 2053 * the open context) or reset its contents to 2054 * empty. 2055 */ 2056 dbuf_fix_old_data(db, txg); 2057 } 2058 } 2059 /* clear the contents if its cached */ 2060 if (db->db_state == DB_CACHED) { 2061 ASSERT(db->db.db_data != NULL); 2062 arc_release(db->db_buf, db); 2063 rw_enter(&db->db_rwlock, RW_WRITER); 2064 memset(db->db.db_data, 0, db->db.db_size); 2065 rw_exit(&db->db_rwlock); 2066 arc_buf_freeze(db->db_buf); 2067 } 2068 2069 mutex_exit(&db->db_mtx); 2070 } 2071 2072 mutex_exit(&dn->dn_dbufs_mtx); 2073 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2074 } 2075 2076 void 2077 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2078 { 2079 arc_buf_t *buf, *old_buf; 2080 dbuf_dirty_record_t *dr; 2081 int osize = db->db.db_size; 2082 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2083 dnode_t *dn; 2084 2085 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2086 2087 DB_DNODE_ENTER(db); 2088 dn = DB_DNODE(db); 2089 2090 /* 2091 * XXX we should be doing a dbuf_read, checking the return 2092 * value and returning that up to our callers 2093 */ 2094 dmu_buf_will_dirty(&db->db, tx); 2095 2096 VERIFY3P(db->db_buf, !=, NULL); 2097 2098 /* create the data buffer for the new block */ 2099 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2100 2101 /* copy old block data to the new block */ 2102 old_buf = db->db_buf; 2103 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2104 /* zero the remainder */ 2105 if (size > osize) 2106 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2107 2108 mutex_enter(&db->db_mtx); 2109 dbuf_set_data(db, buf); 2110 arc_buf_destroy(old_buf, db); 2111 db->db.db_size = size; 2112 2113 dr = list_head(&db->db_dirty_records); 2114 /* dirty record added by dmu_buf_will_dirty() */ 2115 VERIFY(dr != NULL); 2116 if (db->db_level == 0) 2117 dr->dt.dl.dr_data = buf; 2118 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2119 ASSERT3U(dr->dr_accounted, ==, osize); 2120 dr->dr_accounted = size; 2121 mutex_exit(&db->db_mtx); 2122 2123 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2124 DB_DNODE_EXIT(db); 2125 } 2126 2127 void 2128 dbuf_release_bp(dmu_buf_impl_t *db) 2129 { 2130 objset_t *os __maybe_unused = db->db_objset; 2131 2132 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2133 ASSERT(arc_released(os->os_phys_buf) || 2134 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2135 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2136 2137 (void) arc_release(db->db_buf, db); 2138 } 2139 2140 /* 2141 * We already have a dirty record for this TXG, and we are being 2142 * dirtied again. 2143 */ 2144 static void 2145 dbuf_redirty(dbuf_dirty_record_t *dr) 2146 { 2147 dmu_buf_impl_t *db = dr->dr_dbuf; 2148 2149 ASSERT(MUTEX_HELD(&db->db_mtx)); 2150 2151 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2152 /* 2153 * If this buffer has already been written out, 2154 * we now need to reset its state. 2155 */ 2156 dbuf_unoverride(dr); 2157 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2158 db->db_state != DB_NOFILL) { 2159 /* Already released on initial dirty, so just thaw. */ 2160 ASSERT(arc_released(db->db_buf)); 2161 arc_buf_thaw(db->db_buf); 2162 } 2163 2164 /* 2165 * Clear the rewrite flag since this is now a logical 2166 * modification. 2167 */ 2168 dr->dt.dl.dr_rewrite = B_FALSE; 2169 } 2170 } 2171 2172 dbuf_dirty_record_t * 2173 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2174 { 2175 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2176 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2177 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2178 ASSERT(dn->dn_maxblkid >= blkid); 2179 2180 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2181 list_link_init(&dr->dr_dirty_node); 2182 list_link_init(&dr->dr_dbuf_node); 2183 dr->dr_dnode = dn; 2184 dr->dr_txg = tx->tx_txg; 2185 dr->dt.dll.dr_blkid = blkid; 2186 dr->dr_accounted = dn->dn_datablksz; 2187 2188 /* 2189 * There should not be any dbuf for the block that we're dirtying. 2190 * Otherwise the buffer contents could be inconsistent between the 2191 * dbuf and the lightweight dirty record. 2192 */ 2193 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2194 NULL)); 2195 2196 mutex_enter(&dn->dn_mtx); 2197 int txgoff = tx->tx_txg & TXG_MASK; 2198 if (dn->dn_free_ranges[txgoff] != NULL) { 2199 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2200 } 2201 2202 if (dn->dn_nlevels == 1) { 2203 ASSERT3U(blkid, <, dn->dn_nblkptr); 2204 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2205 mutex_exit(&dn->dn_mtx); 2206 rw_exit(&dn->dn_struct_rwlock); 2207 dnode_setdirty(dn, tx); 2208 } else { 2209 mutex_exit(&dn->dn_mtx); 2210 2211 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2212 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2213 1, blkid >> epbs, FTAG); 2214 rw_exit(&dn->dn_struct_rwlock); 2215 if (parent_db == NULL) { 2216 kmem_free(dr, sizeof (*dr)); 2217 return (NULL); 2218 } 2219 int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL | 2220 DMU_READ_NO_PREFETCH); 2221 if (err != 0) { 2222 dbuf_rele(parent_db, FTAG); 2223 kmem_free(dr, sizeof (*dr)); 2224 return (NULL); 2225 } 2226 2227 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2228 dbuf_rele(parent_db, FTAG); 2229 mutex_enter(&parent_dr->dt.di.dr_mtx); 2230 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2231 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2232 mutex_exit(&parent_dr->dt.di.dr_mtx); 2233 dr->dr_parent = parent_dr; 2234 } 2235 2236 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2237 2238 return (dr); 2239 } 2240 2241 dbuf_dirty_record_t * 2242 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2243 { 2244 dnode_t *dn; 2245 objset_t *os; 2246 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2247 int txgoff = tx->tx_txg & TXG_MASK; 2248 boolean_t drop_struct_rwlock = B_FALSE; 2249 2250 ASSERT(tx->tx_txg != 0); 2251 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2252 DMU_TX_DIRTY_BUF(tx, db); 2253 2254 DB_DNODE_ENTER(db); 2255 dn = DB_DNODE(db); 2256 /* 2257 * Shouldn't dirty a regular buffer in syncing context. Private 2258 * objects may be dirtied in syncing context, but only if they 2259 * were already pre-dirtied in open context. 2260 */ 2261 #ifdef ZFS_DEBUG 2262 if (dn->dn_objset->os_dsl_dataset != NULL) { 2263 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2264 RW_READER, FTAG); 2265 } 2266 ASSERT(!dmu_tx_is_syncing(tx) || 2267 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2268 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2269 dn->dn_objset->os_dsl_dataset == NULL); 2270 if (dn->dn_objset->os_dsl_dataset != NULL) 2271 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2272 #endif 2273 /* 2274 * We make this assert for private objects as well, but after we 2275 * check if we're already dirty. They are allowed to re-dirty 2276 * in syncing context. 2277 */ 2278 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2279 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2280 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2281 2282 mutex_enter(&db->db_mtx); 2283 /* 2284 * XXX make this true for indirects too? The problem is that 2285 * transactions created with dmu_tx_create_assigned() from 2286 * syncing context don't bother holding ahead. 2287 */ 2288 ASSERT(db->db_level != 0 || 2289 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2290 db->db_state == DB_NOFILL); 2291 2292 mutex_enter(&dn->dn_mtx); 2293 dnode_set_dirtyctx(dn, tx, db); 2294 if (tx->tx_txg > dn->dn_dirty_txg) 2295 dn->dn_dirty_txg = tx->tx_txg; 2296 mutex_exit(&dn->dn_mtx); 2297 2298 if (db->db_blkid == DMU_SPILL_BLKID) 2299 dn->dn_have_spill = B_TRUE; 2300 2301 /* 2302 * If this buffer is already dirty, we're done. 2303 */ 2304 dr_head = list_head(&db->db_dirty_records); 2305 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2306 db->db.db_object == DMU_META_DNODE_OBJECT); 2307 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2308 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2309 DB_DNODE_EXIT(db); 2310 2311 dbuf_redirty(dr_next); 2312 mutex_exit(&db->db_mtx); 2313 return (dr_next); 2314 } 2315 2316 /* 2317 * Only valid if not already dirty. 2318 */ 2319 ASSERT(dn->dn_object == 0 || 2320 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2321 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2322 2323 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2324 2325 /* 2326 * We should only be dirtying in syncing context if it's the 2327 * mos or we're initializing the os or it's a special object. 2328 * However, we are allowed to dirty in syncing context provided 2329 * we already dirtied it in open context. Hence we must make 2330 * this assertion only if we're not already dirty. 2331 */ 2332 os = dn->dn_objset; 2333 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2334 #ifdef ZFS_DEBUG 2335 if (dn->dn_objset->os_dsl_dataset != NULL) 2336 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2337 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2338 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2339 if (dn->dn_objset->os_dsl_dataset != NULL) 2340 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2341 #endif 2342 ASSERT(db->db.db_size != 0); 2343 2344 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2345 2346 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2347 dmu_objset_willuse_space(os, db->db.db_size, tx); 2348 } 2349 2350 /* 2351 * If this buffer is dirty in an old transaction group we need 2352 * to make a copy of it so that the changes we make in this 2353 * transaction group won't leak out when we sync the older txg. 2354 */ 2355 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP); 2356 memset(dr, 0, sizeof (*dr)); 2357 list_link_init(&dr->dr_dirty_node); 2358 list_link_init(&dr->dr_dbuf_node); 2359 dr->dr_dnode = dn; 2360 if (db->db_level == 0) { 2361 void *data_old = db->db_buf; 2362 2363 if (db->db_state != DB_NOFILL) { 2364 if (db->db_blkid == DMU_BONUS_BLKID) { 2365 dbuf_fix_old_data(db, tx->tx_txg); 2366 data_old = db->db.db_data; 2367 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2368 /* 2369 * Release the data buffer from the cache so 2370 * that we can modify it without impacting 2371 * possible other users of this cached data 2372 * block. Note that indirect blocks and 2373 * private objects are not released until the 2374 * syncing state (since they are only modified 2375 * then). 2376 */ 2377 arc_release(db->db_buf, db); 2378 dbuf_fix_old_data(db, tx->tx_txg); 2379 data_old = db->db_buf; 2380 } 2381 ASSERT(data_old != NULL); 2382 } 2383 dr->dt.dl.dr_data = data_old; 2384 } else { 2385 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2386 list_create(&dr->dt.di.dr_children, 2387 sizeof (dbuf_dirty_record_t), 2388 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2389 } 2390 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2391 dr->dr_accounted = db->db.db_size; 2392 } 2393 dr->dr_dbuf = db; 2394 dr->dr_txg = tx->tx_txg; 2395 list_insert_before(&db->db_dirty_records, dr_next, dr); 2396 2397 /* 2398 * We could have been freed_in_flight between the dbuf_noread 2399 * and dbuf_dirty. We win, as though the dbuf_noread() had 2400 * happened after the free. 2401 */ 2402 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2403 db->db_blkid != DMU_SPILL_BLKID) { 2404 mutex_enter(&dn->dn_mtx); 2405 if (dn->dn_free_ranges[txgoff] != NULL) { 2406 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], 2407 db->db_blkid, 1); 2408 } 2409 mutex_exit(&dn->dn_mtx); 2410 db->db_freed_in_flight = FALSE; 2411 } 2412 2413 /* 2414 * This buffer is now part of this txg 2415 */ 2416 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2417 db->db_dirtycnt += 1; 2418 ASSERT3U(db->db_dirtycnt, <=, 3); 2419 2420 mutex_exit(&db->db_mtx); 2421 2422 if (db->db_blkid == DMU_BONUS_BLKID || 2423 db->db_blkid == DMU_SPILL_BLKID) { 2424 mutex_enter(&dn->dn_mtx); 2425 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2426 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2427 mutex_exit(&dn->dn_mtx); 2428 dnode_setdirty(dn, tx); 2429 DB_DNODE_EXIT(db); 2430 return (dr); 2431 } 2432 2433 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2434 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2435 drop_struct_rwlock = B_TRUE; 2436 } 2437 2438 /* 2439 * If we are overwriting a dedup BP, then unless it is snapshotted, 2440 * when we get to syncing context we will need to decrement its 2441 * refcount in the DDT. Prefetch the relevant DDT block so that 2442 * syncing context won't have to wait for the i/o. 2443 */ 2444 if (db->db_blkptr != NULL) { 2445 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2446 ddt_prefetch(os->os_spa, db->db_blkptr); 2447 dmu_buf_unlock_parent(db, dblt, FTAG); 2448 } 2449 2450 /* 2451 * We need to hold the dn_struct_rwlock to make this assertion, 2452 * because it protects dn_phys / dn_next_nlevels from changing. 2453 */ 2454 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2455 dn->dn_phys->dn_nlevels > db->db_level || 2456 dn->dn_next_nlevels[txgoff] > db->db_level || 2457 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2458 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2459 2460 2461 if (db->db_level == 0) { 2462 ASSERT(!db->db_objset->os_raw_receive || 2463 dn->dn_maxblkid >= db->db_blkid); 2464 dnode_new_blkid(dn, db->db_blkid, tx, 2465 drop_struct_rwlock, B_FALSE); 2466 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2467 } 2468 2469 if (db->db_level+1 < dn->dn_nlevels) { 2470 dmu_buf_impl_t *parent = db->db_parent; 2471 dbuf_dirty_record_t *di; 2472 int parent_held = FALSE; 2473 2474 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2475 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2476 parent = dbuf_hold_level(dn, db->db_level + 1, 2477 db->db_blkid >> epbs, FTAG); 2478 ASSERT(parent != NULL); 2479 parent_held = TRUE; 2480 } 2481 if (drop_struct_rwlock) 2482 rw_exit(&dn->dn_struct_rwlock); 2483 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2484 di = dbuf_dirty(parent, tx); 2485 if (parent_held) 2486 dbuf_rele(parent, FTAG); 2487 2488 mutex_enter(&db->db_mtx); 2489 /* 2490 * Since we've dropped the mutex, it's possible that 2491 * dbuf_undirty() might have changed this out from under us. 2492 */ 2493 if (list_head(&db->db_dirty_records) == dr || 2494 dn->dn_object == DMU_META_DNODE_OBJECT) { 2495 mutex_enter(&di->dt.di.dr_mtx); 2496 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2497 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2498 list_insert_tail(&di->dt.di.dr_children, dr); 2499 mutex_exit(&di->dt.di.dr_mtx); 2500 dr->dr_parent = di; 2501 } 2502 mutex_exit(&db->db_mtx); 2503 } else { 2504 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2505 ASSERT(db->db_blkid < dn->dn_nblkptr); 2506 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2507 mutex_enter(&dn->dn_mtx); 2508 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2509 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2510 mutex_exit(&dn->dn_mtx); 2511 if (drop_struct_rwlock) 2512 rw_exit(&dn->dn_struct_rwlock); 2513 } 2514 2515 dnode_setdirty(dn, tx); 2516 DB_DNODE_EXIT(db); 2517 return (dr); 2518 } 2519 2520 static void 2521 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2522 { 2523 dmu_buf_impl_t *db = dr->dr_dbuf; 2524 2525 ASSERT(MUTEX_HELD(&db->db_mtx)); 2526 if (dr->dt.dl.dr_data != db->db.db_data) { 2527 struct dnode *dn = dr->dr_dnode; 2528 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2529 2530 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2531 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2532 } 2533 db->db_data_pending = NULL; 2534 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2535 list_remove(&db->db_dirty_records, dr); 2536 if (dr->dr_dbuf->db_level != 0) { 2537 mutex_destroy(&dr->dt.di.dr_mtx); 2538 list_destroy(&dr->dt.di.dr_children); 2539 } 2540 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2541 ASSERT3U(db->db_dirtycnt, >, 0); 2542 db->db_dirtycnt -= 1; 2543 } 2544 2545 /* 2546 * Undirty a buffer in the transaction group referenced by the given 2547 * transaction. Return whether this evicted the dbuf. 2548 */ 2549 boolean_t 2550 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2551 { 2552 uint64_t txg = tx->tx_txg; 2553 boolean_t brtwrite; 2554 boolean_t diowrite; 2555 2556 ASSERT(txg != 0); 2557 2558 /* 2559 * Due to our use of dn_nlevels below, this can only be called 2560 * in open context, unless we are operating on the MOS. 2561 * From syncing context, dn_nlevels may be different from the 2562 * dn_nlevels used when dbuf was dirtied. 2563 */ 2564 ASSERT(db->db_objset == 2565 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2566 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2567 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2568 ASSERT0(db->db_level); 2569 ASSERT(MUTEX_HELD(&db->db_mtx)); 2570 2571 /* 2572 * If this buffer is not dirty, we're done. 2573 */ 2574 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2575 if (dr == NULL) 2576 return (B_FALSE); 2577 ASSERT(dr->dr_dbuf == db); 2578 2579 brtwrite = dr->dt.dl.dr_brtwrite; 2580 diowrite = dr->dt.dl.dr_diowrite; 2581 if (brtwrite) { 2582 ASSERT3B(diowrite, ==, B_FALSE); 2583 /* 2584 * We are freeing a block that we cloned in the same 2585 * transaction group. 2586 */ 2587 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 2588 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 2589 brt_pending_remove(dmu_objset_spa(db->db_objset), 2590 bp, tx); 2591 } 2592 } 2593 2594 dnode_t *dn = dr->dr_dnode; 2595 2596 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2597 2598 ASSERT(db->db.db_size != 0); 2599 2600 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2601 dr->dr_accounted, txg); 2602 2603 list_remove(&db->db_dirty_records, dr); 2604 2605 /* 2606 * Note that there are three places in dbuf_dirty() 2607 * where this dirty record may be put on a list. 2608 * Make sure to do a list_remove corresponding to 2609 * every one of those list_insert calls. 2610 */ 2611 if (dr->dr_parent) { 2612 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2613 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2614 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2615 } else if (db->db_blkid == DMU_SPILL_BLKID || 2616 db->db_level + 1 == dn->dn_nlevels) { 2617 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2618 mutex_enter(&dn->dn_mtx); 2619 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2620 mutex_exit(&dn->dn_mtx); 2621 } 2622 2623 if (db->db_state != DB_NOFILL && !brtwrite) { 2624 dbuf_unoverride(dr); 2625 2626 if (dr->dt.dl.dr_data != db->db_buf) { 2627 ASSERT(db->db_buf != NULL); 2628 ASSERT(dr->dt.dl.dr_data != NULL); 2629 arc_buf_destroy(dr->dt.dl.dr_data, db); 2630 } 2631 } 2632 2633 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2634 2635 ASSERT(db->db_dirtycnt > 0); 2636 db->db_dirtycnt -= 1; 2637 2638 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2639 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite || 2640 arc_released(db->db_buf)); 2641 dbuf_destroy(db); 2642 return (B_TRUE); 2643 } 2644 2645 return (B_FALSE); 2646 } 2647 2648 void 2649 dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags) 2650 { 2651 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2652 boolean_t undirty = B_FALSE; 2653 2654 ASSERT(tx->tx_txg != 0); 2655 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2656 2657 /* 2658 * Quick check for dirtiness to improve performance for some workloads 2659 * (e.g. file deletion with indirect blocks cached). 2660 */ 2661 mutex_enter(&db->db_mtx); 2662 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2663 /* 2664 * It's possible that the dbuf is already dirty but not cached, 2665 * because there are some calls to dbuf_dirty() that don't 2666 * go through dmu_buf_will_dirty(). 2667 */ 2668 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2669 if (dr != NULL) { 2670 if (db->db_level == 0 && 2671 dr->dt.dl.dr_brtwrite) { 2672 /* 2673 * Block cloning: If we are dirtying a cloned 2674 * level 0 block, we cannot simply redirty it, 2675 * because this dr has no associated data. 2676 * We will go through a full undirtying below, 2677 * before dirtying it again. 2678 */ 2679 undirty = B_TRUE; 2680 } else { 2681 /* This dbuf is already dirty and cached. */ 2682 dbuf_redirty(dr); 2683 mutex_exit(&db->db_mtx); 2684 return; 2685 } 2686 } 2687 } 2688 mutex_exit(&db->db_mtx); 2689 2690 DB_DNODE_ENTER(db); 2691 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2692 flags |= DB_RF_HAVESTRUCT; 2693 DB_DNODE_EXIT(db); 2694 2695 /* 2696 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2697 * want to make sure dbuf_read() will read the pending cloned block and 2698 * not the uderlying block that is being replaced. dbuf_undirty() will 2699 * do brt_pending_remove() before removing the dirty record. 2700 */ 2701 (void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED); 2702 if (undirty) { 2703 mutex_enter(&db->db_mtx); 2704 VERIFY(!dbuf_undirty(db, tx)); 2705 mutex_exit(&db->db_mtx); 2706 } 2707 (void) dbuf_dirty(db, tx); 2708 } 2709 2710 void 2711 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2712 { 2713 dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH); 2714 } 2715 2716 void 2717 dmu_buf_will_rewrite(dmu_buf_t *db_fake, dmu_tx_t *tx) 2718 { 2719 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2720 2721 ASSERT(tx->tx_txg != 0); 2722 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2723 2724 /* 2725 * If the dbuf is already dirty in this txg, it will be written 2726 * anyway, so there's nothing to do. 2727 */ 2728 mutex_enter(&db->db_mtx); 2729 if (dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) { 2730 mutex_exit(&db->db_mtx); 2731 return; 2732 } 2733 mutex_exit(&db->db_mtx); 2734 2735 /* 2736 * The dbuf is not dirty, so we need to make it dirty and 2737 * mark it for rewrite (preserve logical birth time). 2738 */ 2739 dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH); 2740 2741 mutex_enter(&db->db_mtx); 2742 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2743 if (dr != NULL && db->db_level == 0) 2744 dr->dt.dl.dr_rewrite = B_TRUE; 2745 mutex_exit(&db->db_mtx); 2746 } 2747 2748 boolean_t 2749 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2750 { 2751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2752 dbuf_dirty_record_t *dr; 2753 2754 mutex_enter(&db->db_mtx); 2755 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2756 mutex_exit(&db->db_mtx); 2757 return (dr != NULL); 2758 } 2759 2760 /* 2761 * Normally the db_blkptr points to the most recent on-disk content for the 2762 * dbuf (and anything newer will be cached in the dbuf). However, a pending 2763 * block clone or not yet synced Direct I/O write will have a dirty record BP 2764 * pointing to the most recent data. 2765 */ 2766 int 2767 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp) 2768 { 2769 ASSERT(MUTEX_HELD(&db->db_mtx)); 2770 int error = 0; 2771 2772 if (db->db_level != 0) { 2773 *bp = db->db_blkptr; 2774 return (0); 2775 } 2776 2777 *bp = db->db_blkptr; 2778 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2779 if (dr && db->db_state == DB_NOFILL) { 2780 /* Block clone */ 2781 if (!dr->dt.dl.dr_brtwrite) 2782 error = EIO; 2783 else 2784 *bp = &dr->dt.dl.dr_overridden_by; 2785 } else if (dr && db->db_state == DB_UNCACHED) { 2786 /* Direct I/O write */ 2787 if (dr->dt.dl.dr_diowrite) 2788 *bp = &dr->dt.dl.dr_overridden_by; 2789 } 2790 2791 return (error); 2792 } 2793 2794 /* 2795 * Direct I/O reads can read directly from the ARC, but the data has 2796 * to be untransformed in order to copy it over into user pages. 2797 */ 2798 int 2799 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa) 2800 { 2801 int err = 0; 2802 DB_DNODE_ENTER(db); 2803 dnode_t *dn = DB_DNODE(db); 2804 2805 ASSERT3S(db->db_state, ==, DB_CACHED); 2806 ASSERT(MUTEX_HELD(&db->db_mtx)); 2807 2808 /* 2809 * Ensure that this block's dnode has been decrypted if 2810 * the caller has requested decrypted data. 2811 */ 2812 err = dbuf_read_verify_dnode_crypt(db, dn, 0); 2813 2814 /* 2815 * If the arc buf is compressed or encrypted and the caller 2816 * requested uncompressed data, we need to untransform it 2817 * before returning. We also call arc_untransform() on any 2818 * unauthenticated blocks, which will verify their MAC if 2819 * the key is now available. 2820 */ 2821 if (err == 0 && db->db_buf != NULL && 2822 (arc_is_encrypted(db->db_buf) || 2823 arc_is_unauthenticated(db->db_buf) || 2824 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 2825 zbookmark_phys_t zb; 2826 2827 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 2828 db->db.db_object, db->db_level, db->db_blkid); 2829 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 2830 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 2831 dbuf_set_data(db, db->db_buf); 2832 } 2833 DB_DNODE_EXIT(db); 2834 DBUF_STAT_BUMP(hash_hits); 2835 2836 return (err); 2837 } 2838 2839 void 2840 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx) 2841 { 2842 /* 2843 * Block clones and Direct I/O writes always happen in open-context. 2844 */ 2845 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2846 ASSERT0(db->db_level); 2847 ASSERT(!dmu_tx_is_syncing(tx)); 2848 ASSERT0(db->db_level); 2849 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2850 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2851 2852 mutex_enter(&db->db_mtx); 2853 DBUF_VERIFY(db); 2854 2855 /* 2856 * We are going to clone or issue a Direct I/O write on this block, so 2857 * undirty modifications done to this block so far in this txg. This 2858 * includes writes and clones into this block. 2859 * 2860 * If there dirty record associated with this txg from a previous Direct 2861 * I/O write then space accounting cleanup takes place. It is important 2862 * to go ahead free up the space accounting through dbuf_undirty() -> 2863 * dbuf_unoverride() -> zio_free(). Space accountiung for determining 2864 * if a write can occur in zfs_write() happens through dmu_tx_assign(). 2865 * This can cause an issue with Direct I/O writes in the case of 2866 * overwriting the same block, because all DVA allocations are being 2867 * done in open-context. Constantly allowing Direct I/O overwrites to 2868 * the same block can exhaust the pools available space leading to 2869 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which 2870 * will eventually suspend the pool. By cleaning up sapce acccounting 2871 * now, the ENOSPC error can be avoided. 2872 * 2873 * Since we are undirtying the record in open-context, we must have a 2874 * hold on the db, so it should never be evicted after calling 2875 * dbuf_undirty(). 2876 */ 2877 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE); 2878 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2879 2880 if (db->db_buf != NULL) { 2881 /* 2882 * If there is an associated ARC buffer with this dbuf we can 2883 * only destroy it if the previous dirty record does not 2884 * reference it. 2885 */ 2886 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2887 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2888 arc_buf_destroy(db->db_buf, db); 2889 2890 /* 2891 * Setting the dbuf's data pointers to NULL will force all 2892 * future reads down to the devices to get the most up to date 2893 * version of the data after a Direct I/O write has completed. 2894 */ 2895 db->db_buf = NULL; 2896 dbuf_clear_data(db); 2897 } 2898 2899 ASSERT3P(db->db_buf, ==, NULL); 2900 ASSERT3P(db->db.db_data, ==, NULL); 2901 2902 db->db_state = DB_NOFILL; 2903 DTRACE_SET_STATE(db, 2904 "allocating NOFILL buffer for clone or direct I/O write"); 2905 2906 DBUF_VERIFY(db); 2907 mutex_exit(&db->db_mtx); 2908 2909 dbuf_noread(db, DMU_KEEP_CACHING); 2910 (void) dbuf_dirty(db, tx); 2911 } 2912 2913 void 2914 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2915 { 2916 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2917 2918 mutex_enter(&db->db_mtx); 2919 db->db_state = DB_NOFILL; 2920 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2921 mutex_exit(&db->db_mtx); 2922 2923 dbuf_noread(db, DMU_KEEP_CACHING); 2924 (void) dbuf_dirty(db, tx); 2925 } 2926 2927 void 2928 dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail, 2929 dmu_flags_t flags) 2930 { 2931 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2932 2933 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2934 ASSERT(tx->tx_txg != 0); 2935 ASSERT(db->db_level == 0); 2936 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2937 2938 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2939 dmu_tx_private_ok(tx)); 2940 2941 mutex_enter(&db->db_mtx); 2942 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2943 if (db->db_state == DB_NOFILL || 2944 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) { 2945 /* 2946 * If the fill can fail we should have a way to return back to 2947 * the cloned or Direct I/O write data. 2948 */ 2949 if (canfail && dr) { 2950 mutex_exit(&db->db_mtx); 2951 dmu_buf_will_dirty_flags(db_fake, tx, flags); 2952 return; 2953 } 2954 /* 2955 * Block cloning: We will be completely overwriting a block 2956 * cloned in this transaction group, so let's undirty the 2957 * pending clone and mark the block as uncached. This will be 2958 * as if the clone was never done. 2959 */ 2960 if (db->db_state == DB_NOFILL) { 2961 VERIFY(!dbuf_undirty(db, tx)); 2962 db->db_state = DB_UNCACHED; 2963 } 2964 } 2965 mutex_exit(&db->db_mtx); 2966 2967 dbuf_noread(db, flags); 2968 (void) dbuf_dirty(db, tx); 2969 } 2970 2971 void 2972 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2973 { 2974 dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH); 2975 } 2976 2977 /* 2978 * This function is effectively the same as dmu_buf_will_dirty(), but 2979 * indicates the caller expects raw encrypted data in the db, and provides 2980 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2981 * blkptr_t when this dbuf is written. This is only used for blocks of 2982 * dnodes, during raw receive. 2983 */ 2984 void 2985 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2986 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2987 { 2988 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2989 dbuf_dirty_record_t *dr; 2990 2991 /* 2992 * dr_has_raw_params is only processed for blocks of dnodes 2993 * (see dbuf_sync_dnode_leaf_crypt()). 2994 */ 2995 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2996 ASSERT0(db->db_level); 2997 ASSERT(db->db_objset->os_raw_receive); 2998 2999 dmu_buf_will_dirty_flags(db_fake, tx, 3000 DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT); 3001 3002 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 3003 3004 ASSERT3P(dr, !=, NULL); 3005 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN); 3006 3007 dr->dt.dl.dr_has_raw_params = B_TRUE; 3008 dr->dt.dl.dr_byteorder = byteorder; 3009 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 3010 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 3011 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 3012 } 3013 3014 static void 3015 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 3016 { 3017 struct dirty_leaf *dl; 3018 dbuf_dirty_record_t *dr; 3019 3020 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT); 3021 ASSERT0(db->db_level); 3022 3023 dr = list_head(&db->db_dirty_records); 3024 ASSERT3P(dr, !=, NULL); 3025 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3026 dl = &dr->dt.dl; 3027 ASSERT0(dl->dr_has_raw_params); 3028 dl->dr_overridden_by = *bp; 3029 dl->dr_override_state = DR_OVERRIDDEN; 3030 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3031 } 3032 3033 boolean_t 3034 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 3035 { 3036 (void) tx; 3037 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3038 mutex_enter(&db->db_mtx); 3039 DBUF_VERIFY(db); 3040 3041 if (db->db_state == DB_FILL) { 3042 if (db->db_level == 0 && db->db_freed_in_flight) { 3043 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3044 /* we were freed while filling */ 3045 /* XXX dbuf_undirty? */ 3046 memset(db->db.db_data, 0, db->db.db_size); 3047 db->db_freed_in_flight = FALSE; 3048 db->db_state = DB_CACHED; 3049 DTRACE_SET_STATE(db, 3050 "fill done handling freed in flight"); 3051 failed = B_FALSE; 3052 } else if (failed) { 3053 VERIFY(!dbuf_undirty(db, tx)); 3054 arc_buf_destroy(db->db_buf, db); 3055 db->db_buf = NULL; 3056 dbuf_clear_data(db); 3057 DTRACE_SET_STATE(db, "fill failed"); 3058 } else { 3059 db->db_state = DB_CACHED; 3060 DTRACE_SET_STATE(db, "fill done"); 3061 } 3062 cv_broadcast(&db->db_changed); 3063 } else { 3064 db->db_state = DB_CACHED; 3065 failed = B_FALSE; 3066 } 3067 mutex_exit(&db->db_mtx); 3068 return (failed); 3069 } 3070 3071 void 3072 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 3073 bp_embedded_type_t etype, enum zio_compress comp, 3074 int uncompressed_size, int compressed_size, int byteorder, 3075 dmu_tx_t *tx) 3076 { 3077 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3078 struct dirty_leaf *dl; 3079 dmu_object_type_t type; 3080 dbuf_dirty_record_t *dr; 3081 3082 if (etype == BP_EMBEDDED_TYPE_DATA) { 3083 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 3084 SPA_FEATURE_EMBEDDED_DATA)); 3085 } 3086 3087 DB_DNODE_ENTER(db); 3088 type = DB_DNODE(db)->dn_type; 3089 DB_DNODE_EXIT(db); 3090 3091 ASSERT0(db->db_level); 3092 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3093 3094 dmu_buf_will_not_fill(dbuf, tx); 3095 3096 dr = list_head(&db->db_dirty_records); 3097 ASSERT3P(dr, !=, NULL); 3098 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3099 dl = &dr->dt.dl; 3100 ASSERT0(dl->dr_has_raw_params); 3101 encode_embedded_bp_compressed(&dl->dr_overridden_by, 3102 data, comp, uncompressed_size, compressed_size); 3103 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 3104 BP_SET_TYPE(&dl->dr_overridden_by, type); 3105 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 3106 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 3107 3108 dl->dr_override_state = DR_OVERRIDDEN; 3109 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3110 } 3111 3112 void 3113 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 3114 { 3115 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3116 dmu_object_type_t type; 3117 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 3118 SPA_FEATURE_REDACTED_DATASETS)); 3119 3120 DB_DNODE_ENTER(db); 3121 type = DB_DNODE(db)->dn_type; 3122 DB_DNODE_EXIT(db); 3123 3124 ASSERT0(db->db_level); 3125 dmu_buf_will_not_fill(dbuf, tx); 3126 3127 blkptr_t bp = { { { {0} } } }; 3128 BP_SET_TYPE(&bp, type); 3129 BP_SET_LEVEL(&bp, 0); 3130 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 3131 BP_SET_REDACTED(&bp); 3132 BPE_SET_LSIZE(&bp, dbuf->db_size); 3133 3134 dbuf_override_impl(db, &bp, tx); 3135 } 3136 3137 /* 3138 * Directly assign a provided arc buf to a given dbuf if it's not referenced 3139 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 3140 */ 3141 void 3142 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx, 3143 dmu_flags_t flags) 3144 { 3145 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 3146 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3147 ASSERT(db->db_level == 0); 3148 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 3149 ASSERT(buf != NULL); 3150 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 3151 ASSERT(tx->tx_txg != 0); 3152 3153 arc_return_buf(buf, db); 3154 ASSERT(arc_released(buf)); 3155 3156 mutex_enter(&db->db_mtx); 3157 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 3158 db->db_pending_evict = B_FALSE; 3159 db->db_partial_read = B_FALSE; 3160 3161 while (db->db_state == DB_READ || db->db_state == DB_FILL) 3162 cv_wait(&db->db_changed, &db->db_mtx); 3163 3164 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 3165 db->db_state == DB_NOFILL); 3166 3167 if (db->db_state == DB_CACHED && 3168 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 3169 /* 3170 * In practice, we will never have a case where we have an 3171 * encrypted arc buffer while additional holds exist on the 3172 * dbuf. We don't handle this here so we simply assert that 3173 * fact instead. 3174 */ 3175 ASSERT(!arc_is_encrypted(buf)); 3176 mutex_exit(&db->db_mtx); 3177 (void) dbuf_dirty(db, tx); 3178 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 3179 arc_buf_destroy(buf, db); 3180 return; 3181 } 3182 3183 if (db->db_state == DB_CACHED) { 3184 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 3185 3186 ASSERT(db->db_buf != NULL); 3187 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 3188 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3189 3190 if (!arc_released(db->db_buf)) { 3191 ASSERT(dr->dt.dl.dr_override_state == 3192 DR_OVERRIDDEN); 3193 arc_release(db->db_buf, db); 3194 } 3195 dr->dt.dl.dr_data = buf; 3196 arc_buf_destroy(db->db_buf, db); 3197 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3198 arc_release(db->db_buf, db); 3199 arc_buf_destroy(db->db_buf, db); 3200 } 3201 db->db_buf = NULL; 3202 } else if (db->db_state == DB_NOFILL) { 3203 /* 3204 * We will be completely replacing the cloned block. In case 3205 * it was cloned in this transaction group, let's undirty the 3206 * pending clone and mark the block as uncached. This will be 3207 * as if the clone was never done. 3208 */ 3209 VERIFY(!dbuf_undirty(db, tx)); 3210 db->db_state = DB_UNCACHED; 3211 } 3212 ASSERT(db->db_buf == NULL); 3213 dbuf_set_data(db, buf); 3214 db->db_state = DB_FILL; 3215 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3216 mutex_exit(&db->db_mtx); 3217 (void) dbuf_dirty(db, tx); 3218 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3219 } 3220 3221 void 3222 dbuf_destroy(dmu_buf_impl_t *db) 3223 { 3224 dnode_t *dn; 3225 dmu_buf_impl_t *parent = db->db_parent; 3226 dmu_buf_impl_t *dndb; 3227 3228 ASSERT(MUTEX_HELD(&db->db_mtx)); 3229 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3230 3231 if (db->db_buf != NULL) { 3232 arc_buf_destroy(db->db_buf, db); 3233 db->db_buf = NULL; 3234 } 3235 3236 if (db->db_blkid == DMU_BONUS_BLKID) { 3237 int slots = DB_DNODE(db)->dn_num_slots; 3238 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3239 if (db->db.db_data != NULL) { 3240 kmem_free(db->db.db_data, bonuslen); 3241 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3242 db->db_state = DB_UNCACHED; 3243 DTRACE_SET_STATE(db, "buffer cleared"); 3244 } 3245 } 3246 3247 dbuf_clear_data(db); 3248 3249 if (multilist_link_active(&db->db_cache_link)) { 3250 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3251 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3252 3253 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3254 3255 ASSERT0(dmu_buf_user_size(&db->db)); 3256 (void) zfs_refcount_remove_many( 3257 &dbuf_caches[db->db_caching_status].size, 3258 db->db.db_size, db); 3259 3260 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3261 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3262 } else { 3263 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3264 DBUF_STAT_BUMPDOWN(cache_count); 3265 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3266 db->db.db_size); 3267 } 3268 db->db_caching_status = DB_NO_CACHE; 3269 } 3270 3271 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3272 ASSERT(db->db_data_pending == NULL); 3273 ASSERT(list_is_empty(&db->db_dirty_records)); 3274 3275 db->db_state = DB_EVICTING; 3276 DTRACE_SET_STATE(db, "buffer eviction started"); 3277 db->db_blkptr = NULL; 3278 3279 /* 3280 * Now that db_state is DB_EVICTING, nobody else can find this via 3281 * the hash table. We can now drop db_mtx, which allows us to 3282 * acquire the dn_dbufs_mtx. 3283 */ 3284 mutex_exit(&db->db_mtx); 3285 3286 DB_DNODE_ENTER(db); 3287 dn = DB_DNODE(db); 3288 dndb = dn->dn_dbuf; 3289 if (db->db_blkid != DMU_BONUS_BLKID) { 3290 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3291 if (needlock) 3292 mutex_enter_nested(&dn->dn_dbufs_mtx, 3293 NESTED_SINGLE); 3294 avl_remove(&dn->dn_dbufs, db); 3295 membar_producer(); 3296 DB_DNODE_EXIT(db); 3297 if (needlock) 3298 mutex_exit(&dn->dn_dbufs_mtx); 3299 /* 3300 * Decrementing the dbuf count means that the hold corresponding 3301 * to the removed dbuf is no longer discounted in dnode_move(), 3302 * so the dnode cannot be moved until after we release the hold. 3303 * The membar_producer() ensures visibility of the decremented 3304 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3305 * release any lock. 3306 */ 3307 mutex_enter(&dn->dn_mtx); 3308 dnode_rele_and_unlock(dn, db, B_TRUE); 3309 #ifdef USE_DNODE_HANDLE 3310 db->db_dnode_handle = NULL; 3311 #else 3312 db->db_dnode = NULL; 3313 #endif 3314 3315 dbuf_hash_remove(db); 3316 } else { 3317 DB_DNODE_EXIT(db); 3318 } 3319 3320 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3321 3322 db->db_parent = NULL; 3323 3324 ASSERT(db->db_buf == NULL); 3325 ASSERT(db->db.db_data == NULL); 3326 ASSERT(db->db_hash_next == NULL); 3327 ASSERT(db->db_blkptr == NULL); 3328 ASSERT(db->db_data_pending == NULL); 3329 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3330 ASSERT(!multilist_link_active(&db->db_cache_link)); 3331 3332 /* 3333 * If this dbuf is referenced from an indirect dbuf, 3334 * decrement the ref count on the indirect dbuf. 3335 */ 3336 if (parent && parent != dndb) { 3337 mutex_enter(&parent->db_mtx); 3338 dbuf_rele_and_unlock(parent, db, B_TRUE); 3339 } 3340 3341 kmem_cache_free(dbuf_kmem_cache, db); 3342 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3343 } 3344 3345 /* 3346 * Note: While bpp will always be updated if the function returns success, 3347 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3348 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3349 * object. 3350 */ 3351 __attribute__((always_inline)) 3352 static inline int 3353 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3354 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3355 { 3356 *parentp = NULL; 3357 *bpp = NULL; 3358 3359 ASSERT(blkid != DMU_BONUS_BLKID); 3360 3361 if (blkid == DMU_SPILL_BLKID) { 3362 mutex_enter(&dn->dn_mtx); 3363 if (dn->dn_have_spill && 3364 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3365 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3366 else 3367 *bpp = NULL; 3368 dbuf_add_ref(dn->dn_dbuf, NULL); 3369 *parentp = dn->dn_dbuf; 3370 mutex_exit(&dn->dn_mtx); 3371 return (0); 3372 } 3373 3374 int nlevels = 3375 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3376 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3377 3378 ASSERT3U(level * epbs, <, 64); 3379 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3380 /* 3381 * This assertion shouldn't trip as long as the max indirect block size 3382 * is less than 1M. The reason for this is that up to that point, 3383 * the number of levels required to address an entire object with blocks 3384 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3385 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3386 * (i.e. we can address the entire object), objects will all use at most 3387 * N-1 levels and the assertion won't overflow. However, once epbs is 3388 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3389 * enough to address an entire object, so objects will have 5 levels, 3390 * but then this assertion will overflow. 3391 * 3392 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3393 * need to redo this logic to handle overflows. 3394 */ 3395 ASSERT(level >= nlevels || 3396 ((nlevels - level - 1) * epbs) + 3397 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3398 if (level >= nlevels || 3399 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3400 ((nlevels - level - 1) * epbs)) || 3401 (fail_sparse && 3402 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3403 /* the buffer has no parent yet */ 3404 return (SET_ERROR(ENOENT)); 3405 } else if (level < nlevels-1) { 3406 /* this block is referenced from an indirect block */ 3407 int err; 3408 3409 err = dbuf_hold_impl(dn, level + 1, 3410 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3411 3412 if (err) 3413 return (err); 3414 err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL | 3415 DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH); 3416 if (err) { 3417 dbuf_rele(*parentp, NULL); 3418 *parentp = NULL; 3419 return (err); 3420 } 3421 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3422 (blkid & ((1ULL << epbs) - 1)); 3423 return (0); 3424 } else { 3425 /* the block is referenced from the dnode */ 3426 ASSERT3U(level, ==, nlevels-1); 3427 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3428 blkid < dn->dn_phys->dn_nblkptr); 3429 if (dn->dn_dbuf) { 3430 dbuf_add_ref(dn->dn_dbuf, NULL); 3431 *parentp = dn->dn_dbuf; 3432 } 3433 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3434 return (0); 3435 } 3436 } 3437 3438 static dmu_buf_impl_t * 3439 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3440 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3441 { 3442 objset_t *os = dn->dn_objset; 3443 dmu_buf_impl_t *db, *odb; 3444 3445 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3446 ASSERT(dn->dn_type != DMU_OT_NONE); 3447 3448 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3449 3450 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3451 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3452 3453 db->db_objset = os; 3454 db->db.db_object = dn->dn_object; 3455 db->db_level = level; 3456 db->db_blkid = blkid; 3457 db->db_dirtycnt = 0; 3458 #ifdef USE_DNODE_HANDLE 3459 db->db_dnode_handle = dn->dn_handle; 3460 #else 3461 db->db_dnode = dn; 3462 #endif 3463 db->db_parent = parent; 3464 db->db_blkptr = blkptr; 3465 db->db_hash = hash; 3466 3467 db->db_user = NULL; 3468 db->db_user_immediate_evict = FALSE; 3469 db->db_freed_in_flight = FALSE; 3470 db->db_pending_evict = TRUE; 3471 db->db_partial_read = FALSE; 3472 3473 if (blkid == DMU_BONUS_BLKID) { 3474 ASSERT3P(parent, ==, dn->dn_dbuf); 3475 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3476 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3477 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3478 db->db.db_offset = DMU_BONUS_BLKID; 3479 db->db_state = DB_UNCACHED; 3480 DTRACE_SET_STATE(db, "bonus buffer created"); 3481 db->db_caching_status = DB_NO_CACHE; 3482 /* the bonus dbuf is not placed in the hash table */ 3483 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3484 return (db); 3485 } else if (blkid == DMU_SPILL_BLKID) { 3486 db->db.db_size = (blkptr != NULL) ? 3487 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3488 db->db.db_offset = 0; 3489 } else { 3490 int blocksize = 3491 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3492 db->db.db_size = blocksize; 3493 db->db.db_offset = db->db_blkid * blocksize; 3494 } 3495 3496 /* 3497 * Hold the dn_dbufs_mtx while we get the new dbuf 3498 * in the hash table *and* added to the dbufs list. 3499 * This prevents a possible deadlock with someone 3500 * trying to look up this dbuf before it's added to the 3501 * dn_dbufs list. 3502 */ 3503 mutex_enter(&dn->dn_dbufs_mtx); 3504 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3505 if ((odb = dbuf_hash_insert(db)) != NULL) { 3506 /* someone else inserted it first */ 3507 mutex_exit(&dn->dn_dbufs_mtx); 3508 kmem_cache_free(dbuf_kmem_cache, db); 3509 DBUF_STAT_BUMP(hash_insert_race); 3510 return (odb); 3511 } 3512 avl_add(&dn->dn_dbufs, db); 3513 3514 db->db_state = DB_UNCACHED; 3515 DTRACE_SET_STATE(db, "regular buffer created"); 3516 db->db_caching_status = DB_NO_CACHE; 3517 mutex_exit(&dn->dn_dbufs_mtx); 3518 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3519 3520 if (parent && parent != dn->dn_dbuf) 3521 dbuf_add_ref(parent, db); 3522 3523 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3524 zfs_refcount_count(&dn->dn_holds) > 0); 3525 (void) zfs_refcount_add(&dn->dn_holds, db); 3526 3527 dprintf_dbuf(db, "db=%p\n", db); 3528 3529 return (db); 3530 } 3531 3532 /* 3533 * This function returns a block pointer and information about the object, 3534 * given a dnode and a block. This is a publicly accessible version of 3535 * dbuf_findbp that only returns some information, rather than the 3536 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3537 * should be locked as (at least) a reader. 3538 */ 3539 int 3540 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3541 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3542 { 3543 dmu_buf_impl_t *dbp = NULL; 3544 blkptr_t *bp2; 3545 int err = 0; 3546 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3547 3548 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3549 if (err == 0) { 3550 ASSERT3P(bp2, !=, NULL); 3551 *bp = *bp2; 3552 if (dbp != NULL) 3553 dbuf_rele(dbp, NULL); 3554 if (datablkszsec != NULL) 3555 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3556 if (indblkshift != NULL) 3557 *indblkshift = dn->dn_phys->dn_indblkshift; 3558 } 3559 3560 return (err); 3561 } 3562 3563 typedef struct dbuf_prefetch_arg { 3564 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3565 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3566 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3567 int dpa_curlevel; /* The current level that we're reading */ 3568 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3569 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3570 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3571 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3572 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3573 void *dpa_arg; /* prefetch completion arg */ 3574 } dbuf_prefetch_arg_t; 3575 3576 static void 3577 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3578 { 3579 if (dpa->dpa_cb != NULL) { 3580 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3581 dpa->dpa_zb.zb_blkid, io_done); 3582 } 3583 kmem_free(dpa, sizeof (*dpa)); 3584 } 3585 3586 static void 3587 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3588 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3589 { 3590 (void) zio, (void) zb, (void) iobp; 3591 dbuf_prefetch_arg_t *dpa = private; 3592 3593 if (abuf != NULL) 3594 arc_buf_destroy(abuf, private); 3595 3596 dbuf_prefetch_fini(dpa, B_TRUE); 3597 } 3598 3599 /* 3600 * Actually issue the prefetch read for the block given. 3601 */ 3602 static void 3603 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3604 { 3605 ASSERT(!BP_IS_HOLE(bp)); 3606 ASSERT(!BP_IS_REDACTED(bp)); 3607 if (BP_IS_EMBEDDED(bp)) 3608 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3609 3610 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3611 arc_flags_t aflags = 3612 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3613 ARC_FLAG_NO_BUF; 3614 3615 /* dnodes are always read as raw and then converted later */ 3616 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3617 dpa->dpa_curlevel == 0) 3618 zio_flags |= ZIO_FLAG_RAW; 3619 3620 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3621 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3622 ASSERT(dpa->dpa_zio != NULL); 3623 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3624 dbuf_issue_final_prefetch_done, dpa, 3625 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3626 } 3627 3628 /* 3629 * Called when an indirect block above our prefetch target is read in. This 3630 * will either read in the next indirect block down the tree or issue the actual 3631 * prefetch if the next block down is our target. 3632 */ 3633 static void 3634 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3635 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3636 { 3637 (void) zb, (void) iobp; 3638 dbuf_prefetch_arg_t *dpa = private; 3639 3640 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3641 ASSERT3S(dpa->dpa_curlevel, >, 0); 3642 3643 if (abuf == NULL) { 3644 ASSERT(zio == NULL || zio->io_error != 0); 3645 dbuf_prefetch_fini(dpa, B_TRUE); 3646 return; 3647 } 3648 ASSERT(zio == NULL || zio->io_error == 0); 3649 3650 /* 3651 * The dpa_dnode is only valid if we are called with a NULL 3652 * zio. This indicates that the arc_read() returned without 3653 * first calling zio_read() to issue a physical read. Once 3654 * a physical read is made the dpa_dnode must be invalidated 3655 * as the locks guarding it may have been dropped. If the 3656 * dpa_dnode is still valid, then we want to add it to the dbuf 3657 * cache. To do so, we must hold the dbuf associated with the block 3658 * we just prefetched, read its contents so that we associate it 3659 * with an arc_buf_t, and then release it. 3660 */ 3661 if (zio != NULL) { 3662 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3663 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3664 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3665 } else { 3666 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3667 } 3668 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3669 3670 dpa->dpa_dnode = NULL; 3671 } else if (dpa->dpa_dnode != NULL) { 3672 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3673 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3674 dpa->dpa_zb.zb_level)); 3675 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3676 dpa->dpa_curlevel, curblkid, FTAG); 3677 if (db == NULL) { 3678 arc_buf_destroy(abuf, private); 3679 dbuf_prefetch_fini(dpa, B_TRUE); 3680 return; 3681 } 3682 (void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 3683 DMU_READ_NO_PREFETCH); 3684 dbuf_rele(db, FTAG); 3685 } 3686 3687 dpa->dpa_curlevel--; 3688 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3689 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3690 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3691 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3692 3693 ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL || 3694 dsl_dataset_feature_is_active( 3695 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3696 SPA_FEATURE_REDACTED_DATASETS)); 3697 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3698 arc_buf_destroy(abuf, private); 3699 dbuf_prefetch_fini(dpa, B_TRUE); 3700 return; 3701 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3702 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3703 dbuf_issue_final_prefetch(dpa, bp); 3704 } else { 3705 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3706 zbookmark_phys_t zb; 3707 3708 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3709 if (dpa->dpa_dnode) { 3710 if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode, 3711 dpa->dpa_curlevel)) 3712 iter_aflags |= ARC_FLAG_L2CACHE; 3713 } else { 3714 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3715 iter_aflags |= ARC_FLAG_L2CACHE; 3716 } 3717 3718 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3719 3720 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3721 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3722 3723 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3724 bp, dbuf_prefetch_indirect_done, dpa, 3725 ZIO_PRIORITY_SYNC_READ, 3726 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3727 &iter_aflags, &zb); 3728 } 3729 3730 arc_buf_destroy(abuf, private); 3731 } 3732 3733 /* 3734 * Issue prefetch reads for the given block on the given level. If the indirect 3735 * blocks above that block are not in memory, we will read them in 3736 * asynchronously. As a result, this call never blocks waiting for a read to 3737 * complete. Note that the prefetch might fail if the dataset is encrypted and 3738 * the encryption key is unmapped before the IO completes. 3739 */ 3740 int 3741 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3742 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3743 void *arg) 3744 { 3745 blkptr_t bp; 3746 int epbs, nlevels, curlevel; 3747 uint64_t curblkid; 3748 3749 ASSERT(blkid != DMU_BONUS_BLKID); 3750 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3751 3752 if (blkid > dn->dn_maxblkid) 3753 goto no_issue; 3754 3755 if (level == 0 && dnode_block_freed(dn, blkid)) 3756 goto no_issue; 3757 3758 /* 3759 * This dnode hasn't been written to disk yet, so there's nothing to 3760 * prefetch. 3761 */ 3762 nlevels = dn->dn_phys->dn_nlevels; 3763 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3764 goto no_issue; 3765 3766 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3767 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3768 goto no_issue; 3769 3770 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3771 level, blkid, NULL); 3772 if (db != NULL) { 3773 mutex_exit(&db->db_mtx); 3774 /* 3775 * This dbuf already exists. It is either CACHED, or 3776 * (we assume) about to be read or filled. 3777 */ 3778 goto no_issue; 3779 } 3780 3781 /* 3782 * Find the closest ancestor (indirect block) of the target block 3783 * that is present in the cache. In this indirect block, we will 3784 * find the bp that is at curlevel, curblkid. 3785 */ 3786 curlevel = level; 3787 curblkid = blkid; 3788 while (curlevel < nlevels - 1) { 3789 int parent_level = curlevel + 1; 3790 uint64_t parent_blkid = curblkid >> epbs; 3791 dmu_buf_impl_t *db; 3792 3793 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3794 FALSE, TRUE, FTAG, &db) == 0) { 3795 blkptr_t *bpp = db->db_buf->b_data; 3796 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3797 dbuf_rele(db, FTAG); 3798 break; 3799 } 3800 3801 curlevel = parent_level; 3802 curblkid = parent_blkid; 3803 } 3804 3805 if (curlevel == nlevels - 1) { 3806 /* No cached indirect blocks found. */ 3807 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3808 bp = dn->dn_phys->dn_blkptr[curblkid]; 3809 } 3810 ASSERT(!BP_IS_REDACTED(&bp) || 3811 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3812 SPA_FEATURE_REDACTED_DATASETS)); 3813 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3814 goto no_issue; 3815 3816 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3817 3818 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3819 ZIO_FLAG_CANFAIL); 3820 3821 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3822 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3823 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3824 dn->dn_object, level, blkid); 3825 dpa->dpa_curlevel = curlevel; 3826 dpa->dpa_prio = prio; 3827 dpa->dpa_aflags = aflags; 3828 dpa->dpa_spa = dn->dn_objset->os_spa; 3829 dpa->dpa_dnode = dn; 3830 dpa->dpa_epbs = epbs; 3831 dpa->dpa_zio = pio; 3832 dpa->dpa_cb = cb; 3833 dpa->dpa_arg = arg; 3834 3835 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3836 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3837 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3838 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3839 3840 /* 3841 * If we have the indirect just above us, no need to do the asynchronous 3842 * prefetch chain; we'll just run the last step ourselves. If we're at 3843 * a higher level, though, we want to issue the prefetches for all the 3844 * indirect blocks asynchronously, so we can go on with whatever we were 3845 * doing. 3846 */ 3847 if (curlevel == level) { 3848 ASSERT3U(curblkid, ==, blkid); 3849 dbuf_issue_final_prefetch(dpa, &bp); 3850 } else { 3851 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3852 zbookmark_phys_t zb; 3853 3854 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3855 if (dnode_level_is_l2cacheable(&bp, dn, curlevel)) 3856 iter_aflags |= ARC_FLAG_L2CACHE; 3857 3858 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3859 dn->dn_object, curlevel, curblkid); 3860 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3861 &bp, dbuf_prefetch_indirect_done, dpa, 3862 ZIO_PRIORITY_SYNC_READ, 3863 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3864 &iter_aflags, &zb); 3865 } 3866 /* 3867 * We use pio here instead of dpa_zio since it's possible that 3868 * dpa may have already been freed. 3869 */ 3870 zio_nowait(pio); 3871 return (1); 3872 no_issue: 3873 if (cb != NULL) 3874 cb(arg, level, blkid, B_FALSE); 3875 return (0); 3876 } 3877 3878 int 3879 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3880 arc_flags_t aflags) 3881 { 3882 3883 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3884 } 3885 3886 /* 3887 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3888 * the case of encrypted, compressed and uncompressed buffers by 3889 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3890 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3891 * 3892 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3893 */ 3894 noinline static void 3895 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3896 { 3897 dbuf_dirty_record_t *dr = db->db_data_pending; 3898 arc_buf_t *data = dr->dt.dl.dr_data; 3899 arc_buf_t *db_data; 3900 enum zio_compress compress_type = arc_get_compression(data); 3901 uint8_t complevel = arc_get_complevel(data); 3902 3903 if (arc_is_encrypted(data)) { 3904 boolean_t byteorder; 3905 uint8_t salt[ZIO_DATA_SALT_LEN]; 3906 uint8_t iv[ZIO_DATA_IV_LEN]; 3907 uint8_t mac[ZIO_DATA_MAC_LEN]; 3908 3909 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3910 db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3911 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3912 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3913 compress_type, complevel); 3914 } else if (compress_type != ZIO_COMPRESS_OFF) { 3915 db_data = arc_alloc_compressed_buf( 3916 dn->dn_objset->os_spa, db, arc_buf_size(data), 3917 arc_buf_lsize(data), compress_type, complevel); 3918 } else { 3919 db_data = arc_alloc_buf(dn->dn_objset->os_spa, db, 3920 DBUF_GET_BUFC_TYPE(db), db->db.db_size); 3921 } 3922 memcpy(db_data->b_data, data->b_data, arc_buf_size(data)); 3923 3924 dbuf_set_data(db, db_data); 3925 } 3926 3927 /* 3928 * Returns with db_holds incremented, and db_mtx not held. 3929 * Note: dn_struct_rwlock must be held. 3930 */ 3931 int 3932 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3933 boolean_t fail_sparse, boolean_t fail_uncached, 3934 const void *tag, dmu_buf_impl_t **dbp) 3935 { 3936 dmu_buf_impl_t *db, *parent = NULL; 3937 uint64_t hv; 3938 3939 /* If the pool has been created, verify the tx_sync_lock is not held */ 3940 spa_t *spa = dn->dn_objset->os_spa; 3941 dsl_pool_t *dp = spa->spa_dsl_pool; 3942 if (dp != NULL) { 3943 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3944 } 3945 3946 ASSERT(blkid != DMU_BONUS_BLKID); 3947 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3948 if (!fail_sparse) 3949 ASSERT3U(dn->dn_nlevels, >, level); 3950 3951 *dbp = NULL; 3952 3953 /* dbuf_find() returns with db_mtx held */ 3954 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3955 3956 if (db == NULL) { 3957 blkptr_t *bp = NULL; 3958 int err; 3959 3960 if (fail_uncached) 3961 return (SET_ERROR(ENOENT)); 3962 3963 ASSERT3P(parent, ==, NULL); 3964 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3965 if (fail_sparse) { 3966 if (err == 0 && bp && BP_IS_HOLE(bp)) 3967 err = SET_ERROR(ENOENT); 3968 if (err) { 3969 if (parent) 3970 dbuf_rele(parent, NULL); 3971 return (err); 3972 } 3973 } 3974 if (err && err != ENOENT) 3975 return (err); 3976 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3977 } 3978 3979 if (fail_uncached && db->db_state != DB_CACHED) { 3980 mutex_exit(&db->db_mtx); 3981 return (SET_ERROR(ENOENT)); 3982 } 3983 3984 if (db->db_buf != NULL) { 3985 arc_buf_access(db->db_buf); 3986 ASSERT(MUTEX_HELD(&db->db_mtx)); 3987 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3988 } 3989 3990 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3991 3992 /* 3993 * If this buffer is currently syncing out, and we are 3994 * still referencing it from db_data, we need to make a copy 3995 * of it in case we decide we want to dirty it again in this txg. 3996 */ 3997 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3998 dn->dn_object != DMU_META_DNODE_OBJECT && 3999 db->db_state == DB_CACHED && db->db_data_pending) { 4000 dbuf_dirty_record_t *dr = db->db_data_pending; 4001 if (dr->dt.dl.dr_data == db->db_buf) { 4002 ASSERT3P(db->db_buf, !=, NULL); 4003 dbuf_hold_copy(dn, db); 4004 } 4005 } 4006 4007 if (multilist_link_active(&db->db_cache_link)) { 4008 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 4009 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 4010 db->db_caching_status == DB_DBUF_METADATA_CACHE); 4011 4012 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 4013 4014 uint64_t size = db->db.db_size; 4015 uint64_t usize = dmu_buf_user_size(&db->db); 4016 (void) zfs_refcount_remove_many( 4017 &dbuf_caches[db->db_caching_status].size, size, db); 4018 (void) zfs_refcount_remove_many( 4019 &dbuf_caches[db->db_caching_status].size, usize, 4020 db->db_user); 4021 4022 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 4023 DBUF_STAT_BUMPDOWN(metadata_cache_count); 4024 } else { 4025 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 4026 DBUF_STAT_BUMPDOWN(cache_count); 4027 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 4028 size + usize); 4029 } 4030 db->db_caching_status = DB_NO_CACHE; 4031 } 4032 (void) zfs_refcount_add(&db->db_holds, tag); 4033 DBUF_VERIFY(db); 4034 mutex_exit(&db->db_mtx); 4035 4036 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 4037 if (parent) 4038 dbuf_rele(parent, NULL); 4039 4040 ASSERT3P(DB_DNODE(db), ==, dn); 4041 ASSERT3U(db->db_blkid, ==, blkid); 4042 ASSERT3U(db->db_level, ==, level); 4043 *dbp = db; 4044 4045 return (0); 4046 } 4047 4048 dmu_buf_impl_t * 4049 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 4050 { 4051 return (dbuf_hold_level(dn, 0, blkid, tag)); 4052 } 4053 4054 dmu_buf_impl_t * 4055 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 4056 { 4057 dmu_buf_impl_t *db; 4058 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 4059 return (err ? NULL : db); 4060 } 4061 4062 void 4063 dbuf_create_bonus(dnode_t *dn) 4064 { 4065 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 4066 4067 ASSERT(dn->dn_bonus == NULL); 4068 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 4069 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 4070 dn->dn_bonus->db_pending_evict = FALSE; 4071 } 4072 4073 int 4074 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 4075 { 4076 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4077 4078 if (db->db_blkid != DMU_SPILL_BLKID) 4079 return (SET_ERROR(ENOTSUP)); 4080 if (blksz == 0) 4081 blksz = SPA_MINBLOCKSIZE; 4082 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 4083 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 4084 4085 dbuf_new_size(db, blksz, tx); 4086 4087 return (0); 4088 } 4089 4090 void 4091 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 4092 { 4093 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 4094 } 4095 4096 #pragma weak dmu_buf_add_ref = dbuf_add_ref 4097 void 4098 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 4099 { 4100 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 4101 VERIFY3S(holds, >, 1); 4102 } 4103 4104 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 4105 boolean_t 4106 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 4107 const void *tag) 4108 { 4109 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4110 dmu_buf_impl_t *found_db; 4111 boolean_t result = B_FALSE; 4112 4113 if (blkid == DMU_BONUS_BLKID) 4114 found_db = dbuf_find_bonus(os, obj); 4115 else 4116 found_db = dbuf_find(os, obj, 0, blkid, NULL); 4117 4118 if (found_db != NULL) { 4119 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 4120 (void) zfs_refcount_add(&db->db_holds, tag); 4121 result = B_TRUE; 4122 } 4123 mutex_exit(&found_db->db_mtx); 4124 } 4125 return (result); 4126 } 4127 4128 /* 4129 * If you call dbuf_rele() you had better not be referencing the dnode handle 4130 * unless you have some other direct or indirect hold on the dnode. (An indirect 4131 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 4132 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 4133 * dnode's parent dbuf evicting its dnode handles. 4134 */ 4135 void 4136 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 4137 { 4138 mutex_enter(&db->db_mtx); 4139 dbuf_rele_and_unlock(db, tag, B_FALSE); 4140 } 4141 4142 void 4143 dmu_buf_rele(dmu_buf_t *db, const void *tag) 4144 { 4145 dbuf_rele((dmu_buf_impl_t *)db, tag); 4146 } 4147 4148 /* 4149 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 4150 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 4151 * argument should be set if we are already in the dbuf-evicting code 4152 * path, in which case we don't want to recursively evict. This allows us to 4153 * avoid deeply nested stacks that would have a call flow similar to this: 4154 * 4155 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 4156 * ^ | 4157 * | | 4158 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 4159 * 4160 */ 4161 void 4162 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 4163 { 4164 int64_t holds; 4165 uint64_t size; 4166 4167 ASSERT(MUTEX_HELD(&db->db_mtx)); 4168 DBUF_VERIFY(db); 4169 4170 /* 4171 * Remove the reference to the dbuf before removing its hold on the 4172 * dnode so we can guarantee in dnode_move() that a referenced bonus 4173 * buffer has a corresponding dnode hold. 4174 */ 4175 holds = zfs_refcount_remove(&db->db_holds, tag); 4176 ASSERT(holds >= 0); 4177 4178 /* 4179 * We can't freeze indirects if there is a possibility that they 4180 * may be modified in the current syncing context. 4181 */ 4182 if (db->db_buf != NULL && 4183 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 4184 arc_buf_freeze(db->db_buf); 4185 } 4186 4187 if (holds == db->db_dirtycnt && 4188 db->db_level == 0 && db->db_user_immediate_evict) 4189 dbuf_evict_user(db); 4190 4191 if (holds == 0) { 4192 if (db->db_blkid == DMU_BONUS_BLKID) { 4193 dnode_t *dn; 4194 boolean_t evict_dbuf = db->db_pending_evict; 4195 4196 /* 4197 * If the dnode moves here, we cannot cross this 4198 * barrier until the move completes. 4199 */ 4200 DB_DNODE_ENTER(db); 4201 4202 dn = DB_DNODE(db); 4203 atomic_dec_32(&dn->dn_dbufs_count); 4204 4205 /* 4206 * Decrementing the dbuf count means that the bonus 4207 * buffer's dnode hold is no longer discounted in 4208 * dnode_move(). The dnode cannot move until after 4209 * the dnode_rele() below. 4210 */ 4211 DB_DNODE_EXIT(db); 4212 4213 /* 4214 * Do not reference db after its lock is dropped. 4215 * Another thread may evict it. 4216 */ 4217 mutex_exit(&db->db_mtx); 4218 4219 if (evict_dbuf) 4220 dnode_evict_bonus(dn); 4221 4222 dnode_rele(dn, db); 4223 } else if (db->db_buf == NULL) { 4224 /* 4225 * This is a special case: we never associated this 4226 * dbuf with any data allocated from the ARC. 4227 */ 4228 ASSERT(db->db_state == DB_UNCACHED || 4229 db->db_state == DB_NOFILL); 4230 dbuf_destroy(db); 4231 } else if (arc_released(db->db_buf)) { 4232 /* 4233 * This dbuf has anonymous data associated with it. 4234 */ 4235 dbuf_destroy(db); 4236 } else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) { 4237 /* 4238 * We don't expect more accesses to the dbuf, and it 4239 * is either not cacheable or was marked for eviction. 4240 */ 4241 dbuf_destroy(db); 4242 } else if (!multilist_link_active(&db->db_cache_link)) { 4243 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4244 4245 dbuf_cached_state_t dcs = 4246 dbuf_include_in_metadata_cache(db) ? 4247 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4248 db->db_caching_status = dcs; 4249 4250 multilist_insert(&dbuf_caches[dcs].cache, db); 4251 uint64_t db_size = db->db.db_size; 4252 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4253 (void) zfs_refcount_add_many( 4254 &dbuf_caches[dcs].size, db_size, db); 4255 size = zfs_refcount_add_many( 4256 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4257 uint8_t db_level = db->db_level; 4258 mutex_exit(&db->db_mtx); 4259 4260 if (dcs == DB_DBUF_METADATA_CACHE) { 4261 DBUF_STAT_BUMP(metadata_cache_count); 4262 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4263 size); 4264 } else { 4265 DBUF_STAT_BUMP(cache_count); 4266 DBUF_STAT_MAX(cache_size_bytes_max, size); 4267 DBUF_STAT_BUMP(cache_levels[db_level]); 4268 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4269 db_size + dbu_size); 4270 } 4271 4272 if (dcs == DB_DBUF_CACHE && !evicting) 4273 dbuf_evict_notify(size); 4274 } 4275 } else { 4276 mutex_exit(&db->db_mtx); 4277 } 4278 } 4279 4280 #pragma weak dmu_buf_refcount = dbuf_refcount 4281 uint64_t 4282 dbuf_refcount(dmu_buf_impl_t *db) 4283 { 4284 return (zfs_refcount_count(&db->db_holds)); 4285 } 4286 4287 uint64_t 4288 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4289 { 4290 uint64_t holds; 4291 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4292 4293 mutex_enter(&db->db_mtx); 4294 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4295 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4296 mutex_exit(&db->db_mtx); 4297 4298 return (holds); 4299 } 4300 4301 void * 4302 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4303 dmu_buf_user_t *new_user) 4304 { 4305 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4306 4307 mutex_enter(&db->db_mtx); 4308 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4309 if (db->db_user == old_user) 4310 db->db_user = new_user; 4311 else 4312 old_user = db->db_user; 4313 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4314 mutex_exit(&db->db_mtx); 4315 4316 return (old_user); 4317 } 4318 4319 void * 4320 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4321 { 4322 return (dmu_buf_replace_user(db_fake, NULL, user)); 4323 } 4324 4325 void * 4326 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4327 { 4328 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4329 4330 db->db_user_immediate_evict = TRUE; 4331 return (dmu_buf_set_user(db_fake, user)); 4332 } 4333 4334 void * 4335 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4336 { 4337 return (dmu_buf_replace_user(db_fake, user, NULL)); 4338 } 4339 4340 void * 4341 dmu_buf_get_user(dmu_buf_t *db_fake) 4342 { 4343 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4344 4345 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4346 return (db->db_user); 4347 } 4348 4349 uint64_t 4350 dmu_buf_user_size(dmu_buf_t *db_fake) 4351 { 4352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4353 if (db->db_user == NULL) 4354 return (0); 4355 return (atomic_load_64(&db->db_user->dbu_size)); 4356 } 4357 4358 void 4359 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4360 { 4361 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4362 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4363 ASSERT3P(db->db_user, !=, NULL); 4364 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4365 atomic_add_64(&db->db_user->dbu_size, nadd); 4366 } 4367 4368 void 4369 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4370 { 4371 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4372 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4373 ASSERT3P(db->db_user, !=, NULL); 4374 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4375 atomic_sub_64(&db->db_user->dbu_size, nsub); 4376 } 4377 4378 void 4379 dmu_buf_user_evict_wait(void) 4380 { 4381 taskq_wait(dbu_evict_taskq); 4382 } 4383 4384 blkptr_t * 4385 dmu_buf_get_blkptr(dmu_buf_t *db) 4386 { 4387 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4388 return (dbi->db_blkptr); 4389 } 4390 4391 objset_t * 4392 dmu_buf_get_objset(dmu_buf_t *db) 4393 { 4394 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4395 return (dbi->db_objset); 4396 } 4397 4398 static void 4399 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4400 { 4401 /* ASSERT(dmu_tx_is_syncing(tx) */ 4402 ASSERT(MUTEX_HELD(&db->db_mtx)); 4403 4404 if (db->db_blkptr != NULL) 4405 return; 4406 4407 if (db->db_blkid == DMU_SPILL_BLKID) { 4408 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4409 BP_ZERO(db->db_blkptr); 4410 return; 4411 } 4412 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4413 /* 4414 * This buffer was allocated at a time when there was 4415 * no available blkptrs from the dnode, or it was 4416 * inappropriate to hook it in (i.e., nlevels mismatch). 4417 */ 4418 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4419 ASSERT(db->db_parent == NULL); 4420 db->db_parent = dn->dn_dbuf; 4421 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4422 DBUF_VERIFY(db); 4423 } else { 4424 dmu_buf_impl_t *parent = db->db_parent; 4425 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4426 4427 ASSERT(dn->dn_phys->dn_nlevels > 1); 4428 if (parent == NULL) { 4429 mutex_exit(&db->db_mtx); 4430 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4431 parent = dbuf_hold_level(dn, db->db_level + 1, 4432 db->db_blkid >> epbs, db); 4433 rw_exit(&dn->dn_struct_rwlock); 4434 mutex_enter(&db->db_mtx); 4435 db->db_parent = parent; 4436 } 4437 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4438 (db->db_blkid & ((1ULL << epbs) - 1)); 4439 DBUF_VERIFY(db); 4440 } 4441 } 4442 4443 static void 4444 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4445 { 4446 dmu_buf_impl_t *db = dr->dr_dbuf; 4447 void *data = dr->dt.dl.dr_data; 4448 4449 ASSERT0(db->db_level); 4450 ASSERT(MUTEX_HELD(&db->db_mtx)); 4451 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4452 ASSERT(data != NULL); 4453 4454 dnode_t *dn = dr->dr_dnode; 4455 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4456 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4457 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4458 4459 dbuf_sync_leaf_verify_bonus_dnode(dr); 4460 4461 dbuf_undirty_bonus(dr); 4462 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4463 } 4464 4465 /* 4466 * When syncing out a blocks of dnodes, adjust the block to deal with 4467 * encryption. Normally, we make sure the block is decrypted before writing 4468 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4469 * from a raw receive. In this case, set the ARC buf's crypt params so 4470 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4471 */ 4472 static void 4473 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4474 { 4475 int err; 4476 dmu_buf_impl_t *db = dr->dr_dbuf; 4477 4478 ASSERT(MUTEX_HELD(&db->db_mtx)); 4479 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4480 ASSERT3U(db->db_level, ==, 0); 4481 4482 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4483 zbookmark_phys_t zb; 4484 4485 /* 4486 * Unfortunately, there is currently no mechanism for 4487 * syncing context to handle decryption errors. An error 4488 * here is only possible if an attacker maliciously 4489 * changed a dnode block and updated the associated 4490 * checksums going up the block tree. 4491 */ 4492 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4493 db->db.db_object, db->db_level, db->db_blkid); 4494 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4495 &zb, B_TRUE); 4496 if (err) 4497 panic("Invalid dnode block MAC"); 4498 } else if (dr->dt.dl.dr_has_raw_params) { 4499 (void) arc_release(dr->dt.dl.dr_data, db); 4500 arc_convert_to_raw(dr->dt.dl.dr_data, 4501 dmu_objset_id(db->db_objset), 4502 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4503 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4504 } 4505 } 4506 4507 /* 4508 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4509 * is critical the we not allow the compiler to inline this function in to 4510 * dbuf_sync_list() thereby drastically bloating the stack usage. 4511 */ 4512 noinline static void 4513 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4514 { 4515 dmu_buf_impl_t *db = dr->dr_dbuf; 4516 dnode_t *dn = dr->dr_dnode; 4517 4518 ASSERT(dmu_tx_is_syncing(tx)); 4519 4520 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4521 4522 mutex_enter(&db->db_mtx); 4523 4524 ASSERT(db->db_level > 0); 4525 DBUF_VERIFY(db); 4526 4527 /* Read the block if it hasn't been read yet. */ 4528 if (db->db_buf == NULL) { 4529 mutex_exit(&db->db_mtx); 4530 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4531 mutex_enter(&db->db_mtx); 4532 } 4533 ASSERT3U(db->db_state, ==, DB_CACHED); 4534 ASSERT(db->db_buf != NULL); 4535 4536 /* Indirect block size must match what the dnode thinks it is. */ 4537 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4538 dbuf_check_blkptr(dn, db); 4539 4540 /* Provide the pending dirty record to child dbufs */ 4541 db->db_data_pending = dr; 4542 4543 mutex_exit(&db->db_mtx); 4544 4545 dbuf_write(dr, db->db_buf, tx); 4546 4547 zio_t *zio = dr->dr_zio; 4548 mutex_enter(&dr->dt.di.dr_mtx); 4549 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4550 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4551 mutex_exit(&dr->dt.di.dr_mtx); 4552 zio_nowait(zio); 4553 } 4554 4555 /* 4556 * Verify that the size of the data in our bonus buffer does not exceed 4557 * its recorded size. 4558 * 4559 * The purpose of this verification is to catch any cases in development 4560 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4561 * due to incorrect feature management, older pools expect to read more 4562 * data even though they didn't actually write it to begin with. 4563 * 4564 * For a example, this would catch an error in the feature logic where we 4565 * open an older pool and we expect to write the space map histogram of 4566 * a space map with size SPACE_MAP_SIZE_V0. 4567 */ 4568 static void 4569 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4570 { 4571 #ifdef ZFS_DEBUG 4572 dnode_t *dn = dr->dr_dnode; 4573 4574 /* 4575 * Encrypted bonus buffers can have data past their bonuslen. 4576 * Skip the verification of these blocks. 4577 */ 4578 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4579 return; 4580 4581 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4582 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4583 ASSERT3U(bonuslen, <=, maxbonuslen); 4584 4585 arc_buf_t *datap = dr->dt.dl.dr_data; 4586 char *datap_end = ((char *)datap) + bonuslen; 4587 char *datap_max = ((char *)datap) + maxbonuslen; 4588 4589 /* ensure that everything is zero after our data */ 4590 for (; datap_end < datap_max; datap_end++) 4591 ASSERT(*datap_end == 0); 4592 #endif 4593 } 4594 4595 static blkptr_t * 4596 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4597 { 4598 /* This must be a lightweight dirty record. */ 4599 ASSERT3P(dr->dr_dbuf, ==, NULL); 4600 dnode_t *dn = dr->dr_dnode; 4601 4602 if (dn->dn_phys->dn_nlevels == 1) { 4603 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4604 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4605 } else { 4606 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4607 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4608 VERIFY3U(parent_db->db_level, ==, 1); 4609 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4610 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4611 blkptr_t *bp = parent_db->db.db_data; 4612 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4613 } 4614 } 4615 4616 static void 4617 dbuf_lightweight_ready(zio_t *zio) 4618 { 4619 dbuf_dirty_record_t *dr = zio->io_private; 4620 blkptr_t *bp = zio->io_bp; 4621 4622 if (zio->io_error != 0) 4623 return; 4624 4625 dnode_t *dn = dr->dr_dnode; 4626 4627 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4628 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4629 int64_t delta = bp_get_dsize_sync(spa, bp) - 4630 bp_get_dsize_sync(spa, bp_orig); 4631 dnode_diduse_space(dn, delta); 4632 4633 uint64_t blkid = dr->dt.dll.dr_blkid; 4634 mutex_enter(&dn->dn_mtx); 4635 if (blkid > dn->dn_phys->dn_maxblkid) { 4636 ASSERT0(dn->dn_objset->os_raw_receive); 4637 dn->dn_phys->dn_maxblkid = blkid; 4638 } 4639 mutex_exit(&dn->dn_mtx); 4640 4641 if (!BP_IS_EMBEDDED(bp)) { 4642 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4643 BP_SET_FILL(bp, fill); 4644 } 4645 4646 dmu_buf_impl_t *parent_db; 4647 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4648 if (dr->dr_parent == NULL) { 4649 parent_db = dn->dn_dbuf; 4650 } else { 4651 parent_db = dr->dr_parent->dr_dbuf; 4652 } 4653 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4654 *bp_orig = *bp; 4655 rw_exit(&parent_db->db_rwlock); 4656 } 4657 4658 static void 4659 dbuf_lightweight_done(zio_t *zio) 4660 { 4661 dbuf_dirty_record_t *dr = zio->io_private; 4662 4663 VERIFY0(zio->io_error); 4664 4665 objset_t *os = dr->dr_dnode->dn_objset; 4666 dmu_tx_t *tx = os->os_synctx; 4667 4668 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4669 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4670 } else { 4671 dsl_dataset_t *ds = os->os_dsl_dataset; 4672 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4673 dsl_dataset_block_born(ds, zio->io_bp, tx); 4674 } 4675 4676 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4677 zio->io_txg); 4678 4679 abd_free(dr->dt.dll.dr_abd); 4680 kmem_free(dr, sizeof (*dr)); 4681 } 4682 4683 noinline static void 4684 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4685 { 4686 dnode_t *dn = dr->dr_dnode; 4687 zio_t *pio; 4688 if (dn->dn_phys->dn_nlevels == 1) { 4689 pio = dn->dn_zio; 4690 } else { 4691 pio = dr->dr_parent->dr_zio; 4692 } 4693 4694 zbookmark_phys_t zb = { 4695 .zb_objset = dmu_objset_id(dn->dn_objset), 4696 .zb_object = dn->dn_object, 4697 .zb_level = 0, 4698 .zb_blkid = dr->dt.dll.dr_blkid, 4699 }; 4700 4701 /* 4702 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4703 * will have the old BP in dbuf_lightweight_done(). 4704 */ 4705 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4706 4707 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4708 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4709 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4710 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4711 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4712 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4713 4714 zio_nowait(dr->dr_zio); 4715 } 4716 4717 /* 4718 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4719 * critical the we not allow the compiler to inline this function in to 4720 * dbuf_sync_list() thereby drastically bloating the stack usage. 4721 */ 4722 noinline static void 4723 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4724 { 4725 arc_buf_t **datap = &dr->dt.dl.dr_data; 4726 dmu_buf_impl_t *db = dr->dr_dbuf; 4727 dnode_t *dn = dr->dr_dnode; 4728 objset_t *os; 4729 uint64_t txg = tx->tx_txg; 4730 4731 ASSERT(dmu_tx_is_syncing(tx)); 4732 4733 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4734 4735 mutex_enter(&db->db_mtx); 4736 /* 4737 * To be synced, we must be dirtied. But we might have been freed 4738 * after the dirty. 4739 */ 4740 if (db->db_state == DB_UNCACHED) { 4741 /* This buffer has been freed since it was dirtied */ 4742 ASSERT3P(db->db.db_data, ==, NULL); 4743 } else if (db->db_state == DB_FILL) { 4744 /* This buffer was freed and is now being re-filled */ 4745 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4746 } else if (db->db_state == DB_READ) { 4747 /* 4748 * This buffer was either cloned or had a Direct I/O write 4749 * occur and has an in-flgiht read on the BP. It is safe to 4750 * issue the write here, because the read has already been 4751 * issued and the contents won't change. 4752 * 4753 * We can verify the case of both the clone and Direct I/O 4754 * write by making sure the first dirty record for the dbuf 4755 * has no ARC buffer associated with it. 4756 */ 4757 dbuf_dirty_record_t *dr_head = 4758 list_head(&db->db_dirty_records); 4759 ASSERT3P(db->db_buf, ==, NULL); 4760 ASSERT3P(db->db.db_data, ==, NULL); 4761 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL); 4762 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN); 4763 } else { 4764 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4765 } 4766 DBUF_VERIFY(db); 4767 4768 if (db->db_blkid == DMU_SPILL_BLKID) { 4769 mutex_enter(&dn->dn_mtx); 4770 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4771 /* 4772 * In the previous transaction group, the bonus buffer 4773 * was entirely used to store the attributes for the 4774 * dnode which overrode the dn_spill field. However, 4775 * when adding more attributes to the file a spill 4776 * block was required to hold the extra attributes. 4777 * 4778 * Make sure to clear the garbage left in the dn_spill 4779 * field from the previous attributes in the bonus 4780 * buffer. Otherwise, after writing out the spill 4781 * block to the new allocated dva, it will free 4782 * the old block pointed to by the invalid dn_spill. 4783 */ 4784 db->db_blkptr = NULL; 4785 } 4786 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4787 mutex_exit(&dn->dn_mtx); 4788 } 4789 4790 /* 4791 * If this is a bonus buffer, simply copy the bonus data into the 4792 * dnode. It will be written out when the dnode is synced (and it 4793 * will be synced, since it must have been dirty for dbuf_sync to 4794 * be called). 4795 */ 4796 if (db->db_blkid == DMU_BONUS_BLKID) { 4797 ASSERT(dr->dr_dbuf == db); 4798 dbuf_sync_bonus(dr, tx); 4799 return; 4800 } 4801 4802 os = dn->dn_objset; 4803 4804 /* 4805 * This function may have dropped the db_mtx lock allowing a dmu_sync 4806 * operation to sneak in. As a result, we need to ensure that we 4807 * don't check the dr_override_state until we have returned from 4808 * dbuf_check_blkptr. 4809 */ 4810 dbuf_check_blkptr(dn, db); 4811 4812 /* 4813 * If this buffer is in the middle of an immediate write, wait for the 4814 * synchronous IO to complete. 4815 * 4816 * This is also valid even with Direct I/O writes setting a dirty 4817 * records override state into DR_IN_DMU_SYNC, because all 4818 * Direct I/O writes happen in open-context. 4819 */ 4820 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4821 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4822 cv_wait(&db->db_changed, &db->db_mtx); 4823 } 4824 4825 /* 4826 * If this is a dnode block, ensure it is appropriately encrypted 4827 * or decrypted, depending on what we are writing to it this txg. 4828 */ 4829 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4830 dbuf_prepare_encrypted_dnode_leaf(dr); 4831 4832 if (*datap != NULL && *datap == db->db_buf && 4833 dn->dn_object != DMU_META_DNODE_OBJECT && 4834 zfs_refcount_count(&db->db_holds) > 1) { 4835 /* 4836 * If this buffer is currently "in use" (i.e., there 4837 * are active holds and db_data still references it), 4838 * then make a copy before we start the write so that 4839 * any modifications from the open txg will not leak 4840 * into this write. 4841 * 4842 * NOTE: this copy does not need to be made for 4843 * objects only modified in the syncing context (e.g. 4844 * DNONE_DNODE blocks). 4845 */ 4846 int psize = arc_buf_size(*datap); 4847 int lsize = arc_buf_lsize(*datap); 4848 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4849 enum zio_compress compress_type = arc_get_compression(*datap); 4850 uint8_t complevel = arc_get_complevel(*datap); 4851 4852 if (arc_is_encrypted(*datap)) { 4853 boolean_t byteorder; 4854 uint8_t salt[ZIO_DATA_SALT_LEN]; 4855 uint8_t iv[ZIO_DATA_IV_LEN]; 4856 uint8_t mac[ZIO_DATA_MAC_LEN]; 4857 4858 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4859 *datap = arc_alloc_raw_buf(os->os_spa, db, 4860 dmu_objset_id(os), byteorder, salt, iv, mac, 4861 dn->dn_type, psize, lsize, compress_type, 4862 complevel); 4863 } else if (compress_type != ZIO_COMPRESS_OFF) { 4864 ASSERT3U(type, ==, ARC_BUFC_DATA); 4865 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4866 psize, lsize, compress_type, complevel); 4867 } else { 4868 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4869 } 4870 memcpy((*datap)->b_data, db->db.db_data, psize); 4871 } 4872 db->db_data_pending = dr; 4873 4874 mutex_exit(&db->db_mtx); 4875 4876 dbuf_write(dr, *datap, tx); 4877 4878 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4879 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4880 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4881 } else { 4882 zio_nowait(dr->dr_zio); 4883 } 4884 } 4885 4886 /* 4887 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4888 * called recursively from dbuf_sync_indirect(). 4889 */ 4890 void 4891 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4892 { 4893 dbuf_dirty_record_t *dr; 4894 4895 while ((dr = list_head(list))) { 4896 if (dr->dr_zio != NULL) { 4897 /* 4898 * If we find an already initialized zio then we 4899 * are processing the meta-dnode, and we have finished. 4900 * The dbufs for all dnodes are put back on the list 4901 * during processing, so that we can zio_wait() 4902 * these IOs after initiating all child IOs. 4903 */ 4904 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4905 DMU_META_DNODE_OBJECT); 4906 break; 4907 } 4908 list_remove(list, dr); 4909 if (dr->dr_dbuf == NULL) { 4910 dbuf_sync_lightweight(dr, tx); 4911 } else { 4912 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4913 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4914 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4915 } 4916 if (dr->dr_dbuf->db_level > 0) 4917 dbuf_sync_indirect(dr, tx); 4918 else 4919 dbuf_sync_leaf(dr, tx); 4920 } 4921 } 4922 } 4923 4924 static void 4925 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4926 { 4927 (void) buf; 4928 dmu_buf_impl_t *db = vdb; 4929 dnode_t *dn; 4930 blkptr_t *bp = zio->io_bp; 4931 blkptr_t *bp_orig = &zio->io_bp_orig; 4932 spa_t *spa = zio->io_spa; 4933 int64_t delta; 4934 uint64_t fill = 0; 4935 int i; 4936 4937 ASSERT3P(db->db_blkptr, !=, NULL); 4938 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4939 4940 DB_DNODE_ENTER(db); 4941 dn = DB_DNODE(db); 4942 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4943 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4944 zio->io_prev_space_delta = delta; 4945 4946 if (BP_GET_BIRTH(bp) != 0) { 4947 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4948 BP_GET_TYPE(bp) == dn->dn_type) || 4949 (db->db_blkid == DMU_SPILL_BLKID && 4950 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4951 BP_IS_EMBEDDED(bp)); 4952 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4953 } 4954 4955 mutex_enter(&db->db_mtx); 4956 4957 #ifdef ZFS_DEBUG 4958 if (db->db_blkid == DMU_SPILL_BLKID) { 4959 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4960 ASSERT(!(BP_IS_HOLE(bp)) && 4961 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4962 } 4963 #endif 4964 4965 if (db->db_level == 0) { 4966 mutex_enter(&dn->dn_mtx); 4967 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4968 db->db_blkid != DMU_SPILL_BLKID) { 4969 ASSERT0(db->db_objset->os_raw_receive); 4970 dn->dn_phys->dn_maxblkid = db->db_blkid; 4971 } 4972 mutex_exit(&dn->dn_mtx); 4973 4974 if (dn->dn_type == DMU_OT_DNODE) { 4975 i = 0; 4976 while (i < db->db.db_size) { 4977 dnode_phys_t *dnp = 4978 (void *)(((char *)db->db.db_data) + i); 4979 4980 i += DNODE_MIN_SIZE; 4981 if (dnp->dn_type != DMU_OT_NONE) { 4982 fill++; 4983 for (int j = 0; j < dnp->dn_nblkptr; 4984 j++) { 4985 (void) zfs_blkptr_verify(spa, 4986 &dnp->dn_blkptr[j], 4987 BLK_CONFIG_SKIP, 4988 BLK_VERIFY_HALT); 4989 } 4990 if (dnp->dn_flags & 4991 DNODE_FLAG_SPILL_BLKPTR) { 4992 (void) zfs_blkptr_verify(spa, 4993 DN_SPILL_BLKPTR(dnp), 4994 BLK_CONFIG_SKIP, 4995 BLK_VERIFY_HALT); 4996 } 4997 i += dnp->dn_extra_slots * 4998 DNODE_MIN_SIZE; 4999 } 5000 } 5001 } else { 5002 if (BP_IS_HOLE(bp)) { 5003 fill = 0; 5004 } else { 5005 fill = 1; 5006 } 5007 } 5008 } else { 5009 blkptr_t *ibp = db->db.db_data; 5010 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 5011 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 5012 if (BP_IS_HOLE(ibp)) 5013 continue; 5014 (void) zfs_blkptr_verify(spa, ibp, 5015 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 5016 fill += BP_GET_FILL(ibp); 5017 } 5018 } 5019 DB_DNODE_EXIT(db); 5020 5021 if (!BP_IS_EMBEDDED(bp)) 5022 BP_SET_FILL(bp, fill); 5023 5024 mutex_exit(&db->db_mtx); 5025 5026 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 5027 *db->db_blkptr = *bp; 5028 dmu_buf_unlock_parent(db, dblt, FTAG); 5029 } 5030 5031 /* 5032 * This function gets called just prior to running through the compression 5033 * stage of the zio pipeline. If we're an indirect block comprised of only 5034 * holes, then we want this indirect to be compressed away to a hole. In 5035 * order to do that we must zero out any information about the holes that 5036 * this indirect points to prior to before we try to compress it. 5037 */ 5038 static void 5039 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 5040 { 5041 (void) zio, (void) buf; 5042 dmu_buf_impl_t *db = vdb; 5043 blkptr_t *bp; 5044 unsigned int epbs, i; 5045 5046 ASSERT3U(db->db_level, >, 0); 5047 DB_DNODE_ENTER(db); 5048 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 5049 DB_DNODE_EXIT(db); 5050 ASSERT3U(epbs, <, 31); 5051 5052 /* Determine if all our children are holes */ 5053 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 5054 if (!BP_IS_HOLE(bp)) 5055 break; 5056 } 5057 5058 /* 5059 * If all the children are holes, then zero them all out so that 5060 * we may get compressed away. 5061 */ 5062 if (i == 1ULL << epbs) { 5063 /* 5064 * We only found holes. Grab the rwlock to prevent 5065 * anybody from reading the blocks we're about to 5066 * zero out. 5067 */ 5068 rw_enter(&db->db_rwlock, RW_WRITER); 5069 memset(db->db.db_data, 0, db->db.db_size); 5070 rw_exit(&db->db_rwlock); 5071 } 5072 } 5073 5074 static void 5075 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 5076 { 5077 (void) buf; 5078 dmu_buf_impl_t *db = vdb; 5079 blkptr_t *bp_orig = &zio->io_bp_orig; 5080 blkptr_t *bp = db->db_blkptr; 5081 objset_t *os = db->db_objset; 5082 dmu_tx_t *tx = os->os_synctx; 5083 5084 ASSERT0(zio->io_error); 5085 ASSERT(db->db_blkptr == bp); 5086 5087 /* 5088 * For nopwrites and rewrites we ensure that the bp matches our 5089 * original and bypass all the accounting. 5090 */ 5091 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 5092 ASSERT(BP_EQUAL(bp, bp_orig)); 5093 } else { 5094 dsl_dataset_t *ds = os->os_dsl_dataset; 5095 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 5096 dsl_dataset_block_born(ds, bp, tx); 5097 } 5098 5099 mutex_enter(&db->db_mtx); 5100 5101 DBUF_VERIFY(db); 5102 5103 dbuf_dirty_record_t *dr = db->db_data_pending; 5104 dnode_t *dn = dr->dr_dnode; 5105 ASSERT(!list_link_active(&dr->dr_dirty_node)); 5106 ASSERT(dr->dr_dbuf == db); 5107 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 5108 list_remove(&db->db_dirty_records, dr); 5109 5110 #ifdef ZFS_DEBUG 5111 if (db->db_blkid == DMU_SPILL_BLKID) { 5112 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 5113 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 5114 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 5115 } 5116 #endif 5117 5118 if (db->db_level == 0) { 5119 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 5120 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 5121 5122 /* no dr_data if this is a NO_FILL or Direct I/O */ 5123 if (dr->dt.dl.dr_data != NULL && 5124 dr->dt.dl.dr_data != db->db_buf) { 5125 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE); 5126 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE); 5127 arc_buf_destroy(dr->dt.dl.dr_data, db); 5128 } 5129 } else { 5130 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 5131 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 5132 if (!BP_IS_HOLE(db->db_blkptr)) { 5133 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 5134 SPA_BLKPTRSHIFT; 5135 ASSERT3U(db->db_blkid, <=, 5136 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 5137 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 5138 db->db.db_size); 5139 } 5140 mutex_destroy(&dr->dt.di.dr_mtx); 5141 list_destroy(&dr->dt.di.dr_children); 5142 } 5143 5144 cv_broadcast(&db->db_changed); 5145 ASSERT(db->db_dirtycnt > 0); 5146 db->db_dirtycnt -= 1; 5147 db->db_data_pending = NULL; 5148 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 5149 5150 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 5151 zio->io_txg); 5152 5153 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 5154 } 5155 5156 static void 5157 dbuf_write_nofill_ready(zio_t *zio) 5158 { 5159 dbuf_write_ready(zio, NULL, zio->io_private); 5160 } 5161 5162 static void 5163 dbuf_write_nofill_done(zio_t *zio) 5164 { 5165 dbuf_write_done(zio, NULL, zio->io_private); 5166 } 5167 5168 static void 5169 dbuf_write_override_ready(zio_t *zio) 5170 { 5171 dbuf_dirty_record_t *dr = zio->io_private; 5172 dmu_buf_impl_t *db = dr->dr_dbuf; 5173 5174 dbuf_write_ready(zio, NULL, db); 5175 } 5176 5177 static void 5178 dbuf_write_override_done(zio_t *zio) 5179 { 5180 dbuf_dirty_record_t *dr = zio->io_private; 5181 dmu_buf_impl_t *db = dr->dr_dbuf; 5182 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 5183 5184 mutex_enter(&db->db_mtx); 5185 if (!BP_EQUAL(zio->io_bp, obp)) { 5186 if (!BP_IS_HOLE(obp)) 5187 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 5188 arc_release(dr->dt.dl.dr_data, db); 5189 } 5190 mutex_exit(&db->db_mtx); 5191 5192 dbuf_write_done(zio, NULL, db); 5193 5194 if (zio->io_abd != NULL) 5195 abd_free(zio->io_abd); 5196 } 5197 5198 typedef struct dbuf_remap_impl_callback_arg { 5199 objset_t *drica_os; 5200 uint64_t drica_blk_birth; 5201 dmu_tx_t *drica_tx; 5202 } dbuf_remap_impl_callback_arg_t; 5203 5204 static void 5205 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 5206 void *arg) 5207 { 5208 dbuf_remap_impl_callback_arg_t *drica = arg; 5209 objset_t *os = drica->drica_os; 5210 spa_t *spa = dmu_objset_spa(os); 5211 dmu_tx_t *tx = drica->drica_tx; 5212 5213 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5214 5215 if (os == spa_meta_objset(spa)) { 5216 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5217 } else { 5218 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5219 size, drica->drica_blk_birth, tx); 5220 } 5221 } 5222 5223 static void 5224 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5225 { 5226 blkptr_t bp_copy = *bp; 5227 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5228 dbuf_remap_impl_callback_arg_t drica; 5229 5230 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5231 5232 drica.drica_os = dn->dn_objset; 5233 drica.drica_blk_birth = BP_GET_BIRTH(bp); 5234 drica.drica_tx = tx; 5235 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5236 &drica)) { 5237 /* 5238 * If the blkptr being remapped is tracked by a livelist, 5239 * then we need to make sure the livelist reflects the update. 5240 * First, cancel out the old blkptr by appending a 'FREE' 5241 * entry. Next, add an 'ALLOC' to track the new version. This 5242 * way we avoid trying to free an inaccurate blkptr at delete. 5243 * Note that embedded blkptrs are not tracked in livelists. 5244 */ 5245 if (dn->dn_objset != spa_meta_objset(spa)) { 5246 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5247 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5248 BP_GET_BIRTH(bp) > ds->ds_dir->dd_origin_txg) { 5249 ASSERT(!BP_IS_EMBEDDED(bp)); 5250 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5251 ASSERT(spa_feature_is_enabled(spa, 5252 SPA_FEATURE_LIVELIST)); 5253 bplist_append(&ds->ds_dir->dd_pending_frees, 5254 bp); 5255 bplist_append(&ds->ds_dir->dd_pending_allocs, 5256 &bp_copy); 5257 } 5258 } 5259 5260 /* 5261 * The db_rwlock prevents dbuf_read_impl() from 5262 * dereferencing the BP while we are changing it. To 5263 * avoid lock contention, only grab it when we are actually 5264 * changing the BP. 5265 */ 5266 if (rw != NULL) 5267 rw_enter(rw, RW_WRITER); 5268 *bp = bp_copy; 5269 if (rw != NULL) 5270 rw_exit(rw); 5271 } 5272 } 5273 5274 /* 5275 * Remap any existing BP's to concrete vdevs, if possible. 5276 */ 5277 static void 5278 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5279 { 5280 spa_t *spa = dmu_objset_spa(db->db_objset); 5281 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5282 5283 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5284 return; 5285 5286 if (db->db_level > 0) { 5287 blkptr_t *bp = db->db.db_data; 5288 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5289 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5290 } 5291 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5292 dnode_phys_t *dnp = db->db.db_data; 5293 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5294 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5295 i += dnp[i].dn_extra_slots + 1) { 5296 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5297 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5298 &dn->dn_dbuf->db_rwlock); 5299 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5300 tx); 5301 } 5302 } 5303 } 5304 } 5305 5306 5307 /* 5308 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5309 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5310 */ 5311 static void 5312 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5313 { 5314 dmu_buf_impl_t *db = dr->dr_dbuf; 5315 dnode_t *dn = dr->dr_dnode; 5316 objset_t *os; 5317 dmu_buf_impl_t *parent = db->db_parent; 5318 uint64_t txg = tx->tx_txg; 5319 zbookmark_phys_t zb; 5320 zio_prop_t zp; 5321 zio_t *pio; /* parent I/O */ 5322 int wp_flag = 0; 5323 5324 ASSERT(dmu_tx_is_syncing(tx)); 5325 5326 os = dn->dn_objset; 5327 5328 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5329 /* 5330 * Private object buffers are released here rather than in 5331 * dbuf_dirty() since they are only modified in the syncing 5332 * context and we don't want the overhead of making multiple 5333 * copies of the data. 5334 */ 5335 if (BP_IS_HOLE(db->db_blkptr)) 5336 arc_buf_thaw(data); 5337 else 5338 dbuf_release_bp(db); 5339 dbuf_remap(dn, db, tx); 5340 } 5341 5342 if (parent != dn->dn_dbuf) { 5343 /* Our parent is an indirect block. */ 5344 /* We have a dirty parent that has been scheduled for write. */ 5345 ASSERT(parent && parent->db_data_pending); 5346 /* Our parent's buffer is one level closer to the dnode. */ 5347 ASSERT(db->db_level == parent->db_level-1); 5348 /* 5349 * We're about to modify our parent's db_data by modifying 5350 * our block pointer, so the parent must be released. 5351 */ 5352 ASSERT(arc_released(parent->db_buf)); 5353 pio = parent->db_data_pending->dr_zio; 5354 } else { 5355 /* Our parent is the dnode itself. */ 5356 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5357 db->db_blkid != DMU_SPILL_BLKID) || 5358 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5359 if (db->db_blkid != DMU_SPILL_BLKID) 5360 ASSERT3P(db->db_blkptr, ==, 5361 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5362 pio = dn->dn_zio; 5363 } 5364 5365 ASSERT(db->db_level == 0 || data == db->db_buf); 5366 ASSERT3U(BP_GET_BIRTH(db->db_blkptr), <=, txg); 5367 ASSERT(pio); 5368 5369 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5370 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5371 db->db.db_object, db->db_level, db->db_blkid); 5372 5373 if (db->db_blkid == DMU_SPILL_BLKID) 5374 wp_flag = WP_SPILL; 5375 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5376 5377 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5378 5379 /* 5380 * Set rewrite properties for zfs_rewrite() operations. 5381 */ 5382 if (db->db_level == 0 && dr->dt.dl.dr_rewrite) { 5383 zp.zp_rewrite = B_TRUE; 5384 5385 /* 5386 * Mark physical rewrite feature for activation. 5387 * This will be activated automatically during dataset sync. 5388 */ 5389 dsl_dataset_t *ds = os->os_dsl_dataset; 5390 if (!dsl_dataset_feature_is_active(ds, 5391 SPA_FEATURE_PHYSICAL_REWRITE)) { 5392 ds->ds_feature_activation[ 5393 SPA_FEATURE_PHYSICAL_REWRITE] = (void *)B_TRUE; 5394 } 5395 } 5396 5397 /* 5398 * We copy the blkptr now (rather than when we instantiate the dirty 5399 * record), because its value can change between open context and 5400 * syncing context. We do not need to hold dn_struct_rwlock to read 5401 * db_blkptr because we are in syncing context. 5402 */ 5403 dr->dr_bp_copy = *db->db_blkptr; 5404 5405 if (db->db_level == 0 && 5406 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5407 /* 5408 * The BP for this block has been provided by open context 5409 * (by dmu_sync(), dmu_write_direct(), 5410 * or dmu_buf_write_embedded()). 5411 */ 5412 abd_t *contents = (data != NULL) ? 5413 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5414 5415 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5416 contents, db->db.db_size, db->db.db_size, &zp, 5417 dbuf_write_override_ready, NULL, 5418 dbuf_write_override_done, 5419 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5420 mutex_enter(&db->db_mtx); 5421 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5422 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5423 dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies, 5424 dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite); 5425 mutex_exit(&db->db_mtx); 5426 } else if (data == NULL) { 5427 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5428 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5429 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5430 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5431 dbuf_write_nofill_ready, NULL, 5432 dbuf_write_nofill_done, db, 5433 ZIO_PRIORITY_ASYNC_WRITE, 5434 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5435 } else { 5436 ASSERT(arc_released(data)); 5437 5438 /* 5439 * For indirect blocks, we want to setup the children 5440 * ready callback so that we can properly handle an indirect 5441 * block that only contains holes. 5442 */ 5443 arc_write_done_func_t *children_ready_cb = NULL; 5444 if (db->db_level != 0) 5445 children_ready_cb = dbuf_write_children_ready; 5446 5447 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5448 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5449 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready, 5450 children_ready_cb, dbuf_write_done, db, 5451 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5452 } 5453 } 5454 5455 EXPORT_SYMBOL(dbuf_find); 5456 EXPORT_SYMBOL(dbuf_is_metadata); 5457 EXPORT_SYMBOL(dbuf_destroy); 5458 EXPORT_SYMBOL(dbuf_whichblock); 5459 EXPORT_SYMBOL(dbuf_read); 5460 EXPORT_SYMBOL(dbuf_unoverride); 5461 EXPORT_SYMBOL(dbuf_free_range); 5462 EXPORT_SYMBOL(dbuf_new_size); 5463 EXPORT_SYMBOL(dbuf_release_bp); 5464 EXPORT_SYMBOL(dbuf_dirty); 5465 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5466 EXPORT_SYMBOL(dmu_buf_will_dirty); 5467 EXPORT_SYMBOL(dmu_buf_will_rewrite); 5468 EXPORT_SYMBOL(dmu_buf_is_dirty); 5469 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio); 5470 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5471 EXPORT_SYMBOL(dmu_buf_will_fill); 5472 EXPORT_SYMBOL(dmu_buf_fill_done); 5473 EXPORT_SYMBOL(dmu_buf_rele); 5474 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5475 EXPORT_SYMBOL(dbuf_prefetch); 5476 EXPORT_SYMBOL(dbuf_hold_impl); 5477 EXPORT_SYMBOL(dbuf_hold); 5478 EXPORT_SYMBOL(dbuf_hold_level); 5479 EXPORT_SYMBOL(dbuf_create_bonus); 5480 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5481 EXPORT_SYMBOL(dbuf_rm_spill); 5482 EXPORT_SYMBOL(dbuf_add_ref); 5483 EXPORT_SYMBOL(dbuf_rele); 5484 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5485 EXPORT_SYMBOL(dbuf_refcount); 5486 EXPORT_SYMBOL(dbuf_sync_list); 5487 EXPORT_SYMBOL(dmu_buf_set_user); 5488 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5489 EXPORT_SYMBOL(dmu_buf_get_user); 5490 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5491 5492 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5493 "Maximum size in bytes of the dbuf cache."); 5494 5495 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5496 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5497 5498 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5499 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5500 5501 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5502 "Maximum size in bytes of dbuf metadata cache."); 5503 5504 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5505 "Set size of dbuf cache to log2 fraction of arc size."); 5506 5507 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5508 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5509 5510 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5511 "Set size of dbuf cache mutex array as log2 shift."); 5512