1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 56 kstat_t *dbuf_ksp; 57 58 typedef struct dbuf_stats { 59 /* 60 * Various statistics about the size of the dbuf cache. 61 */ 62 kstat_named_t cache_count; 63 kstat_named_t cache_size_bytes; 64 kstat_named_t cache_size_bytes_max; 65 /* 66 * Statistics regarding the bounds on the dbuf cache size. 67 */ 68 kstat_named_t cache_target_bytes; 69 kstat_named_t cache_lowater_bytes; 70 kstat_named_t cache_hiwater_bytes; 71 /* 72 * Total number of dbuf cache evictions that have occurred. 73 */ 74 kstat_named_t cache_total_evicts; 75 /* 76 * The distribution of dbuf levels in the dbuf cache and 77 * the total size of all dbufs at each level. 78 */ 79 kstat_named_t cache_levels[DN_MAX_LEVELS]; 80 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 81 /* 82 * Statistics about the dbuf hash table. 83 */ 84 kstat_named_t hash_hits; 85 kstat_named_t hash_misses; 86 kstat_named_t hash_collisions; 87 kstat_named_t hash_elements; 88 kstat_named_t hash_elements_max; 89 /* 90 * Number of sublists containing more than one dbuf in the dbuf 91 * hash table. Keep track of the longest hash chain. 92 */ 93 kstat_named_t hash_chains; 94 kstat_named_t hash_chain_max; 95 /* 96 * Number of times a dbuf_create() discovers that a dbuf was 97 * already created and in the dbuf hash table. 98 */ 99 kstat_named_t hash_insert_race; 100 /* 101 * Statistics about the size of the metadata dbuf cache. 102 */ 103 kstat_named_t metadata_cache_count; 104 kstat_named_t metadata_cache_size_bytes; 105 kstat_named_t metadata_cache_size_bytes_max; 106 /* 107 * For diagnostic purposes, this is incremented whenever we can't add 108 * something to the metadata cache because it's full, and instead put 109 * the data in the regular dbuf cache. 110 */ 111 kstat_named_t metadata_cache_overflow; 112 } dbuf_stats_t; 113 114 dbuf_stats_t dbuf_stats = { 115 { "cache_count", KSTAT_DATA_UINT64 }, 116 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 117 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 118 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 119 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 120 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 121 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 122 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 123 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 124 { "hash_hits", KSTAT_DATA_UINT64 }, 125 { "hash_misses", KSTAT_DATA_UINT64 }, 126 { "hash_collisions", KSTAT_DATA_UINT64 }, 127 { "hash_elements", KSTAT_DATA_UINT64 }, 128 { "hash_elements_max", KSTAT_DATA_UINT64 }, 129 { "hash_chains", KSTAT_DATA_UINT64 }, 130 { "hash_chain_max", KSTAT_DATA_UINT64 }, 131 { "hash_insert_race", KSTAT_DATA_UINT64 }, 132 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 133 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 134 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 135 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 136 }; 137 138 #define DBUF_STAT_INCR(stat, val) \ 139 atomic_add_64(&dbuf_stats.stat.value.ui64, (val)); 140 #define DBUF_STAT_DECR(stat, val) \ 141 DBUF_STAT_INCR(stat, -(val)); 142 #define DBUF_STAT_BUMP(stat) \ 143 DBUF_STAT_INCR(stat, 1); 144 #define DBUF_STAT_BUMPDOWN(stat) \ 145 DBUF_STAT_INCR(stat, -1); 146 #define DBUF_STAT_MAX(stat, v) { \ 147 uint64_t _m; \ 148 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 149 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 150 continue; \ 151 } 152 153 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 154 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 155 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 156 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 157 158 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 159 dmu_buf_evict_func_t *evict_func_sync, 160 dmu_buf_evict_func_t *evict_func_async, 161 dmu_buf_t **clear_on_evict_dbufp); 162 163 /* 164 * Global data structures and functions for the dbuf cache. 165 */ 166 static kmem_cache_t *dbuf_kmem_cache; 167 static taskq_t *dbu_evict_taskq; 168 169 static kthread_t *dbuf_cache_evict_thread; 170 static kmutex_t dbuf_evict_lock; 171 static kcondvar_t dbuf_evict_cv; 172 static boolean_t dbuf_evict_thread_exit; 173 174 /* 175 * There are two dbuf caches; each dbuf can only be in one of them at a time. 176 * 177 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 178 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 179 * that represent the metadata that describes filesystems/snapshots/ 180 * bookmarks/properties/etc. We only evict from this cache when we export a 181 * pool, to short-circuit as much I/O as possible for all administrative 182 * commands that need the metadata. There is no eviction policy for this 183 * cache, because we try to only include types in it which would occupy a 184 * very small amount of space per object but create a large impact on the 185 * performance of these commands. Instead, after it reaches a maximum size 186 * (which should only happen on very small memory systems with a very large 187 * number of filesystem objects), we stop taking new dbufs into the 188 * metadata cache, instead putting them in the normal dbuf cache. 189 * 190 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 191 * are not currently held but have been recently released. These dbufs 192 * are not eligible for arc eviction until they are aged out of the cache. 193 * Dbufs that are aged out of the cache will be immediately destroyed and 194 * become eligible for arc eviction. 195 * 196 * Dbufs are added to these caches once the last hold is released. If a dbuf is 197 * later accessed and still exists in the dbuf cache, then it will be removed 198 * from the cache and later re-added to the head of the cache. 199 * 200 * If a given dbuf meets the requirements for the metadata cache, it will go 201 * there, otherwise it will be considered for the generic LRU dbuf cache. The 202 * caches and the refcounts tracking their sizes are stored in an array indexed 203 * by those caches' matching enum values (from dbuf_cached_state_t). 204 */ 205 typedef struct dbuf_cache { 206 multilist_t *cache; 207 zfs_refcount_t size; 208 } dbuf_cache_t; 209 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 210 211 /* Size limits for the caches */ 212 unsigned long dbuf_cache_max_bytes = ULONG_MAX; 213 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX; 214 215 /* Set the default sizes of the caches to log2 fraction of arc size */ 216 int dbuf_cache_shift = 5; 217 int dbuf_metadata_cache_shift = 6; 218 219 static unsigned long dbuf_cache_target_bytes(void); 220 static unsigned long dbuf_metadata_cache_target_bytes(void); 221 222 /* 223 * The LRU dbuf cache uses a three-stage eviction policy: 224 * - A low water marker designates when the dbuf eviction thread 225 * should stop evicting from the dbuf cache. 226 * - When we reach the maximum size (aka mid water mark), we 227 * signal the eviction thread to run. 228 * - The high water mark indicates when the eviction thread 229 * is unable to keep up with the incoming load and eviction must 230 * happen in the context of the calling thread. 231 * 232 * The dbuf cache: 233 * (max size) 234 * low water mid water hi water 235 * +----------------------------------------+----------+----------+ 236 * | | | | 237 * | | | | 238 * | | | | 239 * | | | | 240 * +----------------------------------------+----------+----------+ 241 * stop signal evict 242 * evicting eviction directly 243 * thread 244 * 245 * The high and low water marks indicate the operating range for the eviction 246 * thread. The low water mark is, by default, 90% of the total size of the 247 * cache and the high water mark is at 110% (both of these percentages can be 248 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 249 * respectively). The eviction thread will try to ensure that the cache remains 250 * within this range by waking up every second and checking if the cache is 251 * above the low water mark. The thread can also be woken up by callers adding 252 * elements into the cache if the cache is larger than the mid water (i.e max 253 * cache size). Once the eviction thread is woken up and eviction is required, 254 * it will continue evicting buffers until it's able to reduce the cache size 255 * to the low water mark. If the cache size continues to grow and hits the high 256 * water mark, then callers adding elements to the cache will begin to evict 257 * directly from the cache until the cache is no longer above the high water 258 * mark. 259 */ 260 261 /* 262 * The percentage above and below the maximum cache size. 263 */ 264 uint_t dbuf_cache_hiwater_pct = 10; 265 uint_t dbuf_cache_lowater_pct = 10; 266 267 /* ARGSUSED */ 268 static int 269 dbuf_cons(void *vdb, void *unused, int kmflag) 270 { 271 dmu_buf_impl_t *db = vdb; 272 bzero(db, sizeof (dmu_buf_impl_t)); 273 274 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 275 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 276 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 277 multilist_link_init(&db->db_cache_link); 278 zfs_refcount_create(&db->db_holds); 279 280 return (0); 281 } 282 283 /* ARGSUSED */ 284 static void 285 dbuf_dest(void *vdb, void *unused) 286 { 287 dmu_buf_impl_t *db = vdb; 288 mutex_destroy(&db->db_mtx); 289 rw_destroy(&db->db_rwlock); 290 cv_destroy(&db->db_changed); 291 ASSERT(!multilist_link_active(&db->db_cache_link)); 292 zfs_refcount_destroy(&db->db_holds); 293 } 294 295 /* 296 * dbuf hash table routines 297 */ 298 static dbuf_hash_table_t dbuf_hash_table; 299 300 static uint64_t dbuf_hash_count; 301 302 /* 303 * We use Cityhash for this. It's fast, and has good hash properties without 304 * requiring any large static buffers. 305 */ 306 static uint64_t 307 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 308 { 309 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 310 } 311 312 #define DTRACE_SET_STATE(db, why) \ 313 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 314 const char *, why) 315 316 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 317 ((dbuf)->db.db_object == (obj) && \ 318 (dbuf)->db_objset == (os) && \ 319 (dbuf)->db_level == (level) && \ 320 (dbuf)->db_blkid == (blkid)) 321 322 dmu_buf_impl_t * 323 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 324 { 325 dbuf_hash_table_t *h = &dbuf_hash_table; 326 uint64_t hv; 327 uint64_t idx; 328 dmu_buf_impl_t *db; 329 330 hv = dbuf_hash(os, obj, level, blkid); 331 idx = hv & h->hash_table_mask; 332 333 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 334 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 335 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 336 mutex_enter(&db->db_mtx); 337 if (db->db_state != DB_EVICTING) { 338 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 339 return (db); 340 } 341 mutex_exit(&db->db_mtx); 342 } 343 } 344 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 345 return (NULL); 346 } 347 348 static dmu_buf_impl_t * 349 dbuf_find_bonus(objset_t *os, uint64_t object) 350 { 351 dnode_t *dn; 352 dmu_buf_impl_t *db = NULL; 353 354 if (dnode_hold(os, object, FTAG, &dn) == 0) { 355 rw_enter(&dn->dn_struct_rwlock, RW_READER); 356 if (dn->dn_bonus != NULL) { 357 db = dn->dn_bonus; 358 mutex_enter(&db->db_mtx); 359 } 360 rw_exit(&dn->dn_struct_rwlock); 361 dnode_rele(dn, FTAG); 362 } 363 return (db); 364 } 365 366 /* 367 * Insert an entry into the hash table. If there is already an element 368 * equal to elem in the hash table, then the already existing element 369 * will be returned and the new element will not be inserted. 370 * Otherwise returns NULL. 371 */ 372 static dmu_buf_impl_t * 373 dbuf_hash_insert(dmu_buf_impl_t *db) 374 { 375 dbuf_hash_table_t *h = &dbuf_hash_table; 376 objset_t *os = db->db_objset; 377 uint64_t obj = db->db.db_object; 378 int level = db->db_level; 379 uint64_t blkid, hv, idx; 380 dmu_buf_impl_t *dbf; 381 uint32_t i; 382 383 blkid = db->db_blkid; 384 hv = dbuf_hash(os, obj, level, blkid); 385 idx = hv & h->hash_table_mask; 386 387 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 388 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 389 dbf = dbf->db_hash_next, i++) { 390 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 391 mutex_enter(&dbf->db_mtx); 392 if (dbf->db_state != DB_EVICTING) { 393 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 394 return (dbf); 395 } 396 mutex_exit(&dbf->db_mtx); 397 } 398 } 399 400 if (i > 0) { 401 DBUF_STAT_BUMP(hash_collisions); 402 if (i == 1) 403 DBUF_STAT_BUMP(hash_chains); 404 405 DBUF_STAT_MAX(hash_chain_max, i); 406 } 407 408 mutex_enter(&db->db_mtx); 409 db->db_hash_next = h->hash_table[idx]; 410 h->hash_table[idx] = db; 411 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 412 atomic_inc_64(&dbuf_hash_count); 413 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count); 414 415 return (NULL); 416 } 417 418 /* 419 * This returns whether this dbuf should be stored in the metadata cache, which 420 * is based on whether it's from one of the dnode types that store data related 421 * to traversing dataset hierarchies. 422 */ 423 static boolean_t 424 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 425 { 426 DB_DNODE_ENTER(db); 427 dmu_object_type_t type = DB_DNODE(db)->dn_type; 428 DB_DNODE_EXIT(db); 429 430 /* Check if this dbuf is one of the types we care about */ 431 if (DMU_OT_IS_METADATA_CACHED(type)) { 432 /* If we hit this, then we set something up wrong in dmu_ot */ 433 ASSERT(DMU_OT_IS_METADATA(type)); 434 435 /* 436 * Sanity check for small-memory systems: don't allocate too 437 * much memory for this purpose. 438 */ 439 if (zfs_refcount_count( 440 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 441 dbuf_metadata_cache_target_bytes()) { 442 DBUF_STAT_BUMP(metadata_cache_overflow); 443 return (B_FALSE); 444 } 445 446 return (B_TRUE); 447 } 448 449 return (B_FALSE); 450 } 451 452 /* 453 * Remove an entry from the hash table. It must be in the EVICTING state. 454 */ 455 static void 456 dbuf_hash_remove(dmu_buf_impl_t *db) 457 { 458 dbuf_hash_table_t *h = &dbuf_hash_table; 459 uint64_t hv, idx; 460 dmu_buf_impl_t *dbf, **dbp; 461 462 hv = dbuf_hash(db->db_objset, db->db.db_object, 463 db->db_level, db->db_blkid); 464 idx = hv & h->hash_table_mask; 465 466 /* 467 * We mustn't hold db_mtx to maintain lock ordering: 468 * DBUF_HASH_MUTEX > db_mtx. 469 */ 470 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 471 ASSERT(db->db_state == DB_EVICTING); 472 ASSERT(!MUTEX_HELD(&db->db_mtx)); 473 474 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 475 dbp = &h->hash_table[idx]; 476 while ((dbf = *dbp) != db) { 477 dbp = &dbf->db_hash_next; 478 ASSERT(dbf != NULL); 479 } 480 *dbp = db->db_hash_next; 481 db->db_hash_next = NULL; 482 if (h->hash_table[idx] && 483 h->hash_table[idx]->db_hash_next == NULL) 484 DBUF_STAT_BUMPDOWN(hash_chains); 485 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 486 atomic_dec_64(&dbuf_hash_count); 487 } 488 489 typedef enum { 490 DBVU_EVICTING, 491 DBVU_NOT_EVICTING 492 } dbvu_verify_type_t; 493 494 static void 495 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 496 { 497 #ifdef ZFS_DEBUG 498 int64_t holds; 499 500 if (db->db_user == NULL) 501 return; 502 503 /* Only data blocks support the attachment of user data. */ 504 ASSERT(db->db_level == 0); 505 506 /* Clients must resolve a dbuf before attaching user data. */ 507 ASSERT(db->db.db_data != NULL); 508 ASSERT3U(db->db_state, ==, DB_CACHED); 509 510 holds = zfs_refcount_count(&db->db_holds); 511 if (verify_type == DBVU_EVICTING) { 512 /* 513 * Immediate eviction occurs when holds == dirtycnt. 514 * For normal eviction buffers, holds is zero on 515 * eviction, except when dbuf_fix_old_data() calls 516 * dbuf_clear_data(). However, the hold count can grow 517 * during eviction even though db_mtx is held (see 518 * dmu_bonus_hold() for an example), so we can only 519 * test the generic invariant that holds >= dirtycnt. 520 */ 521 ASSERT3U(holds, >=, db->db_dirtycnt); 522 } else { 523 if (db->db_user_immediate_evict == TRUE) 524 ASSERT3U(holds, >=, db->db_dirtycnt); 525 else 526 ASSERT3U(holds, >, 0); 527 } 528 #endif 529 } 530 531 static void 532 dbuf_evict_user(dmu_buf_impl_t *db) 533 { 534 dmu_buf_user_t *dbu = db->db_user; 535 536 ASSERT(MUTEX_HELD(&db->db_mtx)); 537 538 if (dbu == NULL) 539 return; 540 541 dbuf_verify_user(db, DBVU_EVICTING); 542 db->db_user = NULL; 543 544 #ifdef ZFS_DEBUG 545 if (dbu->dbu_clear_on_evict_dbufp != NULL) 546 *dbu->dbu_clear_on_evict_dbufp = NULL; 547 #endif 548 549 /* 550 * There are two eviction callbacks - one that we call synchronously 551 * and one that we invoke via a taskq. The async one is useful for 552 * avoiding lock order reversals and limiting stack depth. 553 * 554 * Note that if we have a sync callback but no async callback, 555 * it's likely that the sync callback will free the structure 556 * containing the dbu. In that case we need to take care to not 557 * dereference dbu after calling the sync evict func. 558 */ 559 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 560 561 if (dbu->dbu_evict_func_sync != NULL) 562 dbu->dbu_evict_func_sync(dbu); 563 564 if (has_async) { 565 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 566 dbu, 0, &dbu->dbu_tqent); 567 } 568 } 569 570 boolean_t 571 dbuf_is_metadata(dmu_buf_impl_t *db) 572 { 573 /* 574 * Consider indirect blocks and spill blocks to be meta data. 575 */ 576 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 577 return (B_TRUE); 578 } else { 579 boolean_t is_metadata; 580 581 DB_DNODE_ENTER(db); 582 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 583 DB_DNODE_EXIT(db); 584 585 return (is_metadata); 586 } 587 } 588 589 590 /* 591 * This function *must* return indices evenly distributed between all 592 * sublists of the multilist. This is needed due to how the dbuf eviction 593 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 594 * distributed between all sublists and uses this assumption when 595 * deciding which sublist to evict from and how much to evict from it. 596 */ 597 static unsigned int 598 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 599 { 600 dmu_buf_impl_t *db = obj; 601 602 /* 603 * The assumption here, is the hash value for a given 604 * dmu_buf_impl_t will remain constant throughout it's lifetime 605 * (i.e. it's objset, object, level and blkid fields don't change). 606 * Thus, we don't need to store the dbuf's sublist index 607 * on insertion, as this index can be recalculated on removal. 608 * 609 * Also, the low order bits of the hash value are thought to be 610 * distributed evenly. Otherwise, in the case that the multilist 611 * has a power of two number of sublists, each sublists' usage 612 * would not be evenly distributed. 613 */ 614 return (dbuf_hash(db->db_objset, db->db.db_object, 615 db->db_level, db->db_blkid) % 616 multilist_get_num_sublists(ml)); 617 } 618 619 /* 620 * The target size of the dbuf cache can grow with the ARC target, 621 * unless limited by the tunable dbuf_cache_max_bytes. 622 */ 623 static inline unsigned long 624 dbuf_cache_target_bytes(void) 625 { 626 return (MIN(dbuf_cache_max_bytes, 627 arc_target_bytes() >> dbuf_cache_shift)); 628 } 629 630 /* 631 * The target size of the dbuf metadata cache can grow with the ARC target, 632 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 633 */ 634 static inline unsigned long 635 dbuf_metadata_cache_target_bytes(void) 636 { 637 return (MIN(dbuf_metadata_cache_max_bytes, 638 arc_target_bytes() >> dbuf_metadata_cache_shift)); 639 } 640 641 static inline uint64_t 642 dbuf_cache_hiwater_bytes(void) 643 { 644 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 645 return (dbuf_cache_target + 646 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 647 } 648 649 static inline uint64_t 650 dbuf_cache_lowater_bytes(void) 651 { 652 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 653 return (dbuf_cache_target - 654 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 655 } 656 657 static inline boolean_t 658 dbuf_cache_above_lowater(void) 659 { 660 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 661 dbuf_cache_lowater_bytes()); 662 } 663 664 /* 665 * Evict the oldest eligible dbuf from the dbuf cache. 666 */ 667 static void 668 dbuf_evict_one(void) 669 { 670 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache); 671 multilist_sublist_t *mls = multilist_sublist_lock( 672 dbuf_caches[DB_DBUF_CACHE].cache, idx); 673 674 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 675 676 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 677 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 678 db = multilist_sublist_prev(mls, db); 679 } 680 681 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 682 multilist_sublist_t *, mls); 683 684 if (db != NULL) { 685 multilist_sublist_remove(mls, db); 686 multilist_sublist_unlock(mls); 687 (void) zfs_refcount_remove_many( 688 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 689 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 690 DBUF_STAT_BUMPDOWN(cache_count); 691 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 692 db->db.db_size); 693 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 694 db->db_caching_status = DB_NO_CACHE; 695 dbuf_destroy(db); 696 DBUF_STAT_BUMP(cache_total_evicts); 697 } else { 698 multilist_sublist_unlock(mls); 699 } 700 } 701 702 /* 703 * The dbuf evict thread is responsible for aging out dbufs from the 704 * cache. Once the cache has reached it's maximum size, dbufs are removed 705 * and destroyed. The eviction thread will continue running until the size 706 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 707 * out of the cache it is destroyed and becomes eligible for arc eviction. 708 */ 709 /* ARGSUSED */ 710 static void 711 dbuf_evict_thread(void *unused) 712 { 713 callb_cpr_t cpr; 714 715 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 716 717 mutex_enter(&dbuf_evict_lock); 718 while (!dbuf_evict_thread_exit) { 719 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 720 CALLB_CPR_SAFE_BEGIN(&cpr); 721 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 722 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 723 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 724 } 725 mutex_exit(&dbuf_evict_lock); 726 727 /* 728 * Keep evicting as long as we're above the low water mark 729 * for the cache. We do this without holding the locks to 730 * minimize lock contention. 731 */ 732 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 733 dbuf_evict_one(); 734 } 735 736 mutex_enter(&dbuf_evict_lock); 737 } 738 739 dbuf_evict_thread_exit = B_FALSE; 740 cv_broadcast(&dbuf_evict_cv); 741 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 742 thread_exit(); 743 } 744 745 /* 746 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 747 * If the dbuf cache is at its high water mark, then evict a dbuf from the 748 * dbuf cache using the callers context. 749 */ 750 static void 751 dbuf_evict_notify(uint64_t size) 752 { 753 /* 754 * We check if we should evict without holding the dbuf_evict_lock, 755 * because it's OK to occasionally make the wrong decision here, 756 * and grabbing the lock results in massive lock contention. 757 */ 758 if (size > dbuf_cache_target_bytes()) { 759 if (size > dbuf_cache_hiwater_bytes()) 760 dbuf_evict_one(); 761 cv_signal(&dbuf_evict_cv); 762 } 763 } 764 765 static int 766 dbuf_kstat_update(kstat_t *ksp, int rw) 767 { 768 dbuf_stats_t *ds = ksp->ks_data; 769 770 if (rw == KSTAT_WRITE) { 771 return (SET_ERROR(EACCES)); 772 } else { 773 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 774 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 775 ds->cache_size_bytes.value.ui64 = 776 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 777 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 778 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 779 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 780 ds->hash_elements.value.ui64 = dbuf_hash_count; 781 } 782 783 return (0); 784 } 785 786 void 787 dbuf_init(void) 788 { 789 uint64_t hsize = 1ULL << 16; 790 dbuf_hash_table_t *h = &dbuf_hash_table; 791 int i; 792 793 /* 794 * The hash table is big enough to fill all of physical memory 795 * with an average block size of zfs_arc_average_blocksize (default 8K). 796 * By default, the table will take up 797 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 798 */ 799 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 800 hsize <<= 1; 801 802 retry: 803 h->hash_table_mask = hsize - 1; 804 #if defined(_KERNEL) 805 /* 806 * Large allocations which do not require contiguous pages 807 * should be using vmem_alloc() in the linux kernel 808 */ 809 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 810 #else 811 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 812 #endif 813 if (h->hash_table == NULL) { 814 /* XXX - we should really return an error instead of assert */ 815 ASSERT(hsize > (1ULL << 10)); 816 hsize >>= 1; 817 goto retry; 818 } 819 820 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 821 sizeof (dmu_buf_impl_t), 822 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 823 824 for (i = 0; i < DBUF_MUTEXES; i++) 825 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 826 827 dbuf_stats_init(h); 828 829 /* 830 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 831 * configuration is not required. 832 */ 833 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 834 835 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 836 dbuf_caches[dcs].cache = 837 multilist_create(sizeof (dmu_buf_impl_t), 838 offsetof(dmu_buf_impl_t, db_cache_link), 839 dbuf_cache_multilist_index_func); 840 zfs_refcount_create(&dbuf_caches[dcs].size); 841 } 842 843 dbuf_evict_thread_exit = B_FALSE; 844 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 845 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 846 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 847 NULL, 0, &p0, TS_RUN, minclsyspri); 848 849 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 850 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 851 KSTAT_FLAG_VIRTUAL); 852 if (dbuf_ksp != NULL) { 853 for (i = 0; i < DN_MAX_LEVELS; i++) { 854 snprintf(dbuf_stats.cache_levels[i].name, 855 KSTAT_STRLEN, "cache_level_%d", i); 856 dbuf_stats.cache_levels[i].data_type = 857 KSTAT_DATA_UINT64; 858 snprintf(dbuf_stats.cache_levels_bytes[i].name, 859 KSTAT_STRLEN, "cache_level_%d_bytes", i); 860 dbuf_stats.cache_levels_bytes[i].data_type = 861 KSTAT_DATA_UINT64; 862 } 863 dbuf_ksp->ks_data = &dbuf_stats; 864 dbuf_ksp->ks_update = dbuf_kstat_update; 865 kstat_install(dbuf_ksp); 866 } 867 } 868 869 void 870 dbuf_fini(void) 871 { 872 dbuf_hash_table_t *h = &dbuf_hash_table; 873 int i; 874 875 dbuf_stats_destroy(); 876 877 for (i = 0; i < DBUF_MUTEXES; i++) 878 mutex_destroy(&h->hash_mutexes[i]); 879 #if defined(_KERNEL) 880 /* 881 * Large allocations which do not require contiguous pages 882 * should be using vmem_free() in the linux kernel 883 */ 884 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 885 #else 886 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 887 #endif 888 kmem_cache_destroy(dbuf_kmem_cache); 889 taskq_destroy(dbu_evict_taskq); 890 891 mutex_enter(&dbuf_evict_lock); 892 dbuf_evict_thread_exit = B_TRUE; 893 while (dbuf_evict_thread_exit) { 894 cv_signal(&dbuf_evict_cv); 895 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 896 } 897 mutex_exit(&dbuf_evict_lock); 898 899 mutex_destroy(&dbuf_evict_lock); 900 cv_destroy(&dbuf_evict_cv); 901 902 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 903 zfs_refcount_destroy(&dbuf_caches[dcs].size); 904 multilist_destroy(dbuf_caches[dcs].cache); 905 } 906 907 if (dbuf_ksp != NULL) { 908 kstat_delete(dbuf_ksp); 909 dbuf_ksp = NULL; 910 } 911 } 912 913 /* 914 * Other stuff. 915 */ 916 917 #ifdef ZFS_DEBUG 918 static void 919 dbuf_verify(dmu_buf_impl_t *db) 920 { 921 dnode_t *dn; 922 dbuf_dirty_record_t *dr; 923 uint32_t txg_prev; 924 925 ASSERT(MUTEX_HELD(&db->db_mtx)); 926 927 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 928 return; 929 930 ASSERT(db->db_objset != NULL); 931 DB_DNODE_ENTER(db); 932 dn = DB_DNODE(db); 933 if (dn == NULL) { 934 ASSERT(db->db_parent == NULL); 935 ASSERT(db->db_blkptr == NULL); 936 } else { 937 ASSERT3U(db->db.db_object, ==, dn->dn_object); 938 ASSERT3P(db->db_objset, ==, dn->dn_objset); 939 ASSERT3U(db->db_level, <, dn->dn_nlevels); 940 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 941 db->db_blkid == DMU_SPILL_BLKID || 942 !avl_is_empty(&dn->dn_dbufs)); 943 } 944 if (db->db_blkid == DMU_BONUS_BLKID) { 945 ASSERT(dn != NULL); 946 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 947 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 948 } else if (db->db_blkid == DMU_SPILL_BLKID) { 949 ASSERT(dn != NULL); 950 ASSERT0(db->db.db_offset); 951 } else { 952 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 953 } 954 955 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 956 ASSERT(dr->dr_dbuf == db); 957 txg_prev = dr->dr_txg; 958 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 959 dr = list_next(&db->db_dirty_records, dr)) { 960 ASSERT(dr->dr_dbuf == db); 961 ASSERT(txg_prev > dr->dr_txg); 962 txg_prev = dr->dr_txg; 963 } 964 } 965 966 /* 967 * We can't assert that db_size matches dn_datablksz because it 968 * can be momentarily different when another thread is doing 969 * dnode_set_blksz(). 970 */ 971 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 972 dr = db->db_data_pending; 973 /* 974 * It should only be modified in syncing context, so 975 * make sure we only have one copy of the data. 976 */ 977 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 978 } 979 980 /* verify db->db_blkptr */ 981 if (db->db_blkptr) { 982 if (db->db_parent == dn->dn_dbuf) { 983 /* db is pointed to by the dnode */ 984 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 985 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 986 ASSERT(db->db_parent == NULL); 987 else 988 ASSERT(db->db_parent != NULL); 989 if (db->db_blkid != DMU_SPILL_BLKID) 990 ASSERT3P(db->db_blkptr, ==, 991 &dn->dn_phys->dn_blkptr[db->db_blkid]); 992 } else { 993 /* db is pointed to by an indirect block */ 994 int epb __maybe_unused = db->db_parent->db.db_size >> 995 SPA_BLKPTRSHIFT; 996 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 997 ASSERT3U(db->db_parent->db.db_object, ==, 998 db->db.db_object); 999 /* 1000 * dnode_grow_indblksz() can make this fail if we don't 1001 * have the parent's rwlock. XXX indblksz no longer 1002 * grows. safe to do this now? 1003 */ 1004 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1005 ASSERT3P(db->db_blkptr, ==, 1006 ((blkptr_t *)db->db_parent->db.db_data + 1007 db->db_blkid % epb)); 1008 } 1009 } 1010 } 1011 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1012 (db->db_buf == NULL || db->db_buf->b_data) && 1013 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1014 db->db_state != DB_FILL && !dn->dn_free_txg) { 1015 /* 1016 * If the blkptr isn't set but they have nonzero data, 1017 * it had better be dirty, otherwise we'll lose that 1018 * data when we evict this buffer. 1019 * 1020 * There is an exception to this rule for indirect blocks; in 1021 * this case, if the indirect block is a hole, we fill in a few 1022 * fields on each of the child blocks (importantly, birth time) 1023 * to prevent hole birth times from being lost when you 1024 * partially fill in a hole. 1025 */ 1026 if (db->db_dirtycnt == 0) { 1027 if (db->db_level == 0) { 1028 uint64_t *buf = db->db.db_data; 1029 int i; 1030 1031 for (i = 0; i < db->db.db_size >> 3; i++) { 1032 ASSERT(buf[i] == 0); 1033 } 1034 } else { 1035 blkptr_t *bps = db->db.db_data; 1036 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1037 db->db.db_size); 1038 /* 1039 * We want to verify that all the blkptrs in the 1040 * indirect block are holes, but we may have 1041 * automatically set up a few fields for them. 1042 * We iterate through each blkptr and verify 1043 * they only have those fields set. 1044 */ 1045 for (int i = 0; 1046 i < db->db.db_size / sizeof (blkptr_t); 1047 i++) { 1048 blkptr_t *bp = &bps[i]; 1049 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1050 &bp->blk_cksum)); 1051 ASSERT( 1052 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1053 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1054 DVA_IS_EMPTY(&bp->blk_dva[2])); 1055 ASSERT0(bp->blk_fill); 1056 ASSERT0(bp->blk_pad[0]); 1057 ASSERT0(bp->blk_pad[1]); 1058 ASSERT(!BP_IS_EMBEDDED(bp)); 1059 ASSERT(BP_IS_HOLE(bp)); 1060 ASSERT0(bp->blk_phys_birth); 1061 } 1062 } 1063 } 1064 } 1065 DB_DNODE_EXIT(db); 1066 } 1067 #endif 1068 1069 static void 1070 dbuf_clear_data(dmu_buf_impl_t *db) 1071 { 1072 ASSERT(MUTEX_HELD(&db->db_mtx)); 1073 dbuf_evict_user(db); 1074 ASSERT3P(db->db_buf, ==, NULL); 1075 db->db.db_data = NULL; 1076 if (db->db_state != DB_NOFILL) { 1077 db->db_state = DB_UNCACHED; 1078 DTRACE_SET_STATE(db, "clear data"); 1079 } 1080 } 1081 1082 static void 1083 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1084 { 1085 ASSERT(MUTEX_HELD(&db->db_mtx)); 1086 ASSERT(buf != NULL); 1087 1088 db->db_buf = buf; 1089 ASSERT(buf->b_data != NULL); 1090 db->db.db_data = buf->b_data; 1091 } 1092 1093 static arc_buf_t * 1094 dbuf_alloc_arcbuf_from_arcbuf(dmu_buf_impl_t *db, arc_buf_t *data) 1095 { 1096 objset_t *os = db->db_objset; 1097 spa_t *spa = os->os_spa; 1098 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1099 enum zio_compress compress_type; 1100 uint8_t complevel; 1101 int psize, lsize; 1102 1103 psize = arc_buf_size(data); 1104 lsize = arc_buf_lsize(data); 1105 compress_type = arc_get_compression(data); 1106 complevel = arc_get_complevel(data); 1107 1108 if (arc_is_encrypted(data)) { 1109 boolean_t byteorder; 1110 uint8_t salt[ZIO_DATA_SALT_LEN]; 1111 uint8_t iv[ZIO_DATA_IV_LEN]; 1112 uint8_t mac[ZIO_DATA_MAC_LEN]; 1113 dnode_t *dn = DB_DNODE(db); 1114 1115 arc_get_raw_params(data, &byteorder, salt, iv, mac); 1116 data = arc_alloc_raw_buf(spa, db, dmu_objset_id(os), 1117 byteorder, salt, iv, mac, dn->dn_type, psize, lsize, 1118 compress_type, complevel); 1119 } else if (compress_type != ZIO_COMPRESS_OFF) { 1120 ASSERT3U(type, ==, ARC_BUFC_DATA); 1121 data = arc_alloc_compressed_buf(spa, db, 1122 psize, lsize, compress_type, complevel); 1123 } else { 1124 data = arc_alloc_buf(spa, db, type, psize); 1125 } 1126 return (data); 1127 } 1128 1129 static arc_buf_t * 1130 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1131 { 1132 spa_t *spa = db->db_objset->os_spa; 1133 1134 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1135 } 1136 1137 /* 1138 * Loan out an arc_buf for read. Return the loaned arc_buf. 1139 */ 1140 arc_buf_t * 1141 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1142 { 1143 arc_buf_t *abuf; 1144 1145 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1146 mutex_enter(&db->db_mtx); 1147 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1148 int blksz = db->db.db_size; 1149 spa_t *spa = db->db_objset->os_spa; 1150 1151 mutex_exit(&db->db_mtx); 1152 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1153 bcopy(db->db.db_data, abuf->b_data, blksz); 1154 } else { 1155 abuf = db->db_buf; 1156 arc_loan_inuse_buf(abuf, db); 1157 db->db_buf = NULL; 1158 dbuf_clear_data(db); 1159 mutex_exit(&db->db_mtx); 1160 } 1161 return (abuf); 1162 } 1163 1164 /* 1165 * Calculate which level n block references the data at the level 0 offset 1166 * provided. 1167 */ 1168 uint64_t 1169 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1170 { 1171 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1172 /* 1173 * The level n blkid is equal to the level 0 blkid divided by 1174 * the number of level 0s in a level n block. 1175 * 1176 * The level 0 blkid is offset >> datablkshift = 1177 * offset / 2^datablkshift. 1178 * 1179 * The number of level 0s in a level n is the number of block 1180 * pointers in an indirect block, raised to the power of level. 1181 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1182 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1183 * 1184 * Thus, the level n blkid is: offset / 1185 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1186 * = offset / 2^(datablkshift + level * 1187 * (indblkshift - SPA_BLKPTRSHIFT)) 1188 * = offset >> (datablkshift + level * 1189 * (indblkshift - SPA_BLKPTRSHIFT)) 1190 */ 1191 1192 const unsigned exp = dn->dn_datablkshift + 1193 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1194 1195 if (exp >= 8 * sizeof (offset)) { 1196 /* This only happens on the highest indirection level */ 1197 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1198 return (0); 1199 } 1200 1201 ASSERT3U(exp, <, 8 * sizeof (offset)); 1202 1203 return (offset >> exp); 1204 } else { 1205 ASSERT3U(offset, <, dn->dn_datablksz); 1206 return (0); 1207 } 1208 } 1209 1210 /* 1211 * This function is used to lock the parent of the provided dbuf. This should be 1212 * used when modifying or reading db_blkptr. 1213 */ 1214 db_lock_type_t 1215 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 1216 { 1217 enum db_lock_type ret = DLT_NONE; 1218 if (db->db_parent != NULL) { 1219 rw_enter(&db->db_parent->db_rwlock, rw); 1220 ret = DLT_PARENT; 1221 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1222 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1223 tag); 1224 ret = DLT_OBJSET; 1225 } 1226 /* 1227 * We only return a DLT_NONE lock when it's the top-most indirect block 1228 * of the meta-dnode of the MOS. 1229 */ 1230 return (ret); 1231 } 1232 1233 /* 1234 * We need to pass the lock type in because it's possible that the block will 1235 * move from being the topmost indirect block in a dnode (and thus, have no 1236 * parent) to not the top-most via an indirection increase. This would cause a 1237 * panic if we didn't pass the lock type in. 1238 */ 1239 void 1240 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 1241 { 1242 if (type == DLT_PARENT) 1243 rw_exit(&db->db_parent->db_rwlock); 1244 else if (type == DLT_OBJSET) 1245 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1246 } 1247 1248 static void 1249 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1250 arc_buf_t *buf, void *vdb) 1251 { 1252 dmu_buf_impl_t *db = vdb; 1253 1254 mutex_enter(&db->db_mtx); 1255 ASSERT3U(db->db_state, ==, DB_READ); 1256 /* 1257 * All reads are synchronous, so we must have a hold on the dbuf 1258 */ 1259 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1260 ASSERT(db->db_buf == NULL); 1261 ASSERT(db->db.db_data == NULL); 1262 if (buf == NULL) { 1263 /* i/o error */ 1264 ASSERT(zio == NULL || zio->io_error != 0); 1265 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1266 ASSERT3P(db->db_buf, ==, NULL); 1267 db->db_state = DB_UNCACHED; 1268 DTRACE_SET_STATE(db, "i/o error"); 1269 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1270 /* freed in flight */ 1271 ASSERT(zio == NULL || zio->io_error == 0); 1272 arc_release(buf, db); 1273 bzero(buf->b_data, db->db.db_size); 1274 arc_buf_freeze(buf); 1275 db->db_freed_in_flight = FALSE; 1276 dbuf_set_data(db, buf); 1277 db->db_state = DB_CACHED; 1278 DTRACE_SET_STATE(db, "freed in flight"); 1279 } else { 1280 /* success */ 1281 ASSERT(zio == NULL || zio->io_error == 0); 1282 dbuf_set_data(db, buf); 1283 db->db_state = DB_CACHED; 1284 DTRACE_SET_STATE(db, "successful read"); 1285 } 1286 cv_broadcast(&db->db_changed); 1287 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1288 } 1289 1290 /* 1291 * Shortcut for performing reads on bonus dbufs. Returns 1292 * an error if we fail to verify the dnode associated with 1293 * a decrypted block. Otherwise success. 1294 */ 1295 static int 1296 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1297 { 1298 int bonuslen, max_bonuslen, err; 1299 1300 err = dbuf_read_verify_dnode_crypt(db, flags); 1301 if (err) 1302 return (err); 1303 1304 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1305 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1306 ASSERT(MUTEX_HELD(&db->db_mtx)); 1307 ASSERT(DB_DNODE_HELD(db)); 1308 ASSERT3U(bonuslen, <=, db->db.db_size); 1309 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1310 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1311 if (bonuslen < max_bonuslen) 1312 bzero(db->db.db_data, max_bonuslen); 1313 if (bonuslen) 1314 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1315 db->db_state = DB_CACHED; 1316 DTRACE_SET_STATE(db, "bonus buffer filled"); 1317 return (0); 1318 } 1319 1320 static void 1321 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1322 { 1323 blkptr_t *bps = db->db.db_data; 1324 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1325 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1326 1327 for (int i = 0; i < n_bps; i++) { 1328 blkptr_t *bp = &bps[i]; 1329 1330 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1331 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1332 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1333 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1334 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1335 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1336 } 1337 } 1338 1339 /* 1340 * Handle reads on dbufs that are holes, if necessary. This function 1341 * requires that the dbuf's mutex is held. Returns success (0) if action 1342 * was taken, ENOENT if no action was taken. 1343 */ 1344 static int 1345 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1346 { 1347 ASSERT(MUTEX_HELD(&db->db_mtx)); 1348 1349 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1350 /* 1351 * For level 0 blocks only, if the above check fails: 1352 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1353 * processes the delete record and clears the bp while we are waiting 1354 * for the dn_mtx (resulting in a "no" from block_freed). 1355 */ 1356 if (!is_hole && db->db_level == 0) { 1357 is_hole = dnode_block_freed(dn, db->db_blkid) || 1358 BP_IS_HOLE(db->db_blkptr); 1359 } 1360 1361 if (is_hole) { 1362 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1363 bzero(db->db.db_data, db->db.db_size); 1364 1365 if (db->db_blkptr != NULL && db->db_level > 0 && 1366 BP_IS_HOLE(db->db_blkptr) && 1367 db->db_blkptr->blk_birth != 0) { 1368 dbuf_handle_indirect_hole(db, dn); 1369 } 1370 db->db_state = DB_CACHED; 1371 DTRACE_SET_STATE(db, "hole read satisfied"); 1372 return (0); 1373 } 1374 return (ENOENT); 1375 } 1376 1377 /* 1378 * This function ensures that, when doing a decrypting read of a block, 1379 * we make sure we have decrypted the dnode associated with it. We must do 1380 * this so that we ensure we are fully authenticating the checksum-of-MACs 1381 * tree from the root of the objset down to this block. Indirect blocks are 1382 * always verified against their secure checksum-of-MACs assuming that the 1383 * dnode containing them is correct. Now that we are doing a decrypting read, 1384 * we can be sure that the key is loaded and verify that assumption. This is 1385 * especially important considering that we always read encrypted dnode 1386 * blocks as raw data (without verifying their MACs) to start, and 1387 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1388 */ 1389 static int 1390 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1391 { 1392 int err = 0; 1393 objset_t *os = db->db_objset; 1394 arc_buf_t *dnode_abuf; 1395 dnode_t *dn; 1396 zbookmark_phys_t zb; 1397 1398 ASSERT(MUTEX_HELD(&db->db_mtx)); 1399 1400 if (!os->os_encrypted || os->os_raw_receive || 1401 (flags & DB_RF_NO_DECRYPT) != 0) 1402 return (0); 1403 1404 DB_DNODE_ENTER(db); 1405 dn = DB_DNODE(db); 1406 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1407 1408 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1409 DB_DNODE_EXIT(db); 1410 return (0); 1411 } 1412 1413 SET_BOOKMARK(&zb, dmu_objset_id(os), 1414 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1415 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1416 1417 /* 1418 * An error code of EACCES tells us that the key is still not 1419 * available. This is ok if we are only reading authenticated 1420 * (and therefore non-encrypted) blocks. 1421 */ 1422 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1423 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1424 (db->db_blkid == DMU_BONUS_BLKID && 1425 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1426 err = 0; 1427 1428 DB_DNODE_EXIT(db); 1429 1430 return (err); 1431 } 1432 1433 /* 1434 * Drops db_mtx and the parent lock specified by dblt and tag before 1435 * returning. 1436 */ 1437 static int 1438 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1439 db_lock_type_t dblt, void *tag) 1440 { 1441 dnode_t *dn; 1442 zbookmark_phys_t zb; 1443 uint32_t aflags = ARC_FLAG_NOWAIT; 1444 int err, zio_flags; 1445 boolean_t bonus_read; 1446 1447 err = zio_flags = 0; 1448 bonus_read = B_FALSE; 1449 DB_DNODE_ENTER(db); 1450 dn = DB_DNODE(db); 1451 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1452 ASSERT(MUTEX_HELD(&db->db_mtx)); 1453 ASSERT(db->db_state == DB_UNCACHED); 1454 ASSERT(db->db_buf == NULL); 1455 ASSERT(db->db_parent == NULL || 1456 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1457 1458 if (db->db_blkid == DMU_BONUS_BLKID) { 1459 err = dbuf_read_bonus(db, dn, flags); 1460 goto early_unlock; 1461 } 1462 1463 err = dbuf_read_hole(db, dn, flags); 1464 if (err == 0) 1465 goto early_unlock; 1466 1467 /* 1468 * Any attempt to read a redacted block should result in an error. This 1469 * will never happen under normal conditions, but can be useful for 1470 * debugging purposes. 1471 */ 1472 if (BP_IS_REDACTED(db->db_blkptr)) { 1473 ASSERT(dsl_dataset_feature_is_active( 1474 db->db_objset->os_dsl_dataset, 1475 SPA_FEATURE_REDACTED_DATASETS)); 1476 err = SET_ERROR(EIO); 1477 goto early_unlock; 1478 } 1479 1480 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1481 db->db.db_object, db->db_level, db->db_blkid); 1482 1483 /* 1484 * All bps of an encrypted os should have the encryption bit set. 1485 * If this is not true it indicates tampering and we report an error. 1486 */ 1487 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1488 spa_log_error(db->db_objset->os_spa, &zb); 1489 zfs_panic_recover("unencrypted block in encrypted " 1490 "object set %llu", dmu_objset_id(db->db_objset)); 1491 err = SET_ERROR(EIO); 1492 goto early_unlock; 1493 } 1494 1495 err = dbuf_read_verify_dnode_crypt(db, flags); 1496 if (err != 0) 1497 goto early_unlock; 1498 1499 DB_DNODE_EXIT(db); 1500 1501 db->db_state = DB_READ; 1502 DTRACE_SET_STATE(db, "read issued"); 1503 mutex_exit(&db->db_mtx); 1504 1505 if (DBUF_IS_L2CACHEABLE(db)) 1506 aflags |= ARC_FLAG_L2CACHE; 1507 1508 dbuf_add_ref(db, NULL); 1509 1510 zio_flags = (flags & DB_RF_CANFAIL) ? 1511 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1512 1513 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1514 zio_flags |= ZIO_FLAG_RAW; 1515 /* 1516 * The zio layer will copy the provided blkptr later, but we need to 1517 * do this now so that we can release the parent's rwlock. We have to 1518 * do that now so that if dbuf_read_done is called synchronously (on 1519 * an l1 cache hit) we don't acquire the db_mtx while holding the 1520 * parent's rwlock, which would be a lock ordering violation. 1521 */ 1522 blkptr_t bp = *db->db_blkptr; 1523 dmu_buf_unlock_parent(db, dblt, tag); 1524 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1525 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1526 &aflags, &zb); 1527 return (err); 1528 early_unlock: 1529 DB_DNODE_EXIT(db); 1530 mutex_exit(&db->db_mtx); 1531 dmu_buf_unlock_parent(db, dblt, tag); 1532 return (err); 1533 } 1534 1535 /* 1536 * This is our just-in-time copy function. It makes a copy of buffers that 1537 * have been modified in a previous transaction group before we access them in 1538 * the current active group. 1539 * 1540 * This function is used in three places: when we are dirtying a buffer for the 1541 * first time in a txg, when we are freeing a range in a dnode that includes 1542 * this buffer, and when we are accessing a buffer which was received compressed 1543 * and later referenced in a WRITE_BYREF record. 1544 * 1545 * Note that when we are called from dbuf_free_range() we do not put a hold on 1546 * the buffer, we just traverse the active dbuf list for the dnode. 1547 */ 1548 static void 1549 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1550 { 1551 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1552 1553 ASSERT(MUTEX_HELD(&db->db_mtx)); 1554 ASSERT(db->db.db_data != NULL); 1555 ASSERT(db->db_level == 0); 1556 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1557 1558 if (dr == NULL || 1559 (dr->dt.dl.dr_data != 1560 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1561 return; 1562 1563 /* 1564 * If the last dirty record for this dbuf has not yet synced 1565 * and its referencing the dbuf data, either: 1566 * reset the reference to point to a new copy, 1567 * or (if there a no active holders) 1568 * just null out the current db_data pointer. 1569 */ 1570 ASSERT3U(dr->dr_txg, >=, txg - 2); 1571 if (db->db_blkid == DMU_BONUS_BLKID) { 1572 dnode_t *dn = DB_DNODE(db); 1573 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1574 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1575 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1576 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1577 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1578 arc_buf_t *buf = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf); 1579 dr->dt.dl.dr_data = buf; 1580 bcopy(db->db.db_data, buf->b_data, arc_buf_size(buf)); 1581 } else { 1582 db->db_buf = NULL; 1583 dbuf_clear_data(db); 1584 } 1585 } 1586 1587 int 1588 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1589 { 1590 int err = 0; 1591 boolean_t prefetch; 1592 dnode_t *dn; 1593 1594 /* 1595 * We don't have to hold the mutex to check db_state because it 1596 * can't be freed while we have a hold on the buffer. 1597 */ 1598 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1599 1600 if (db->db_state == DB_NOFILL) 1601 return (SET_ERROR(EIO)); 1602 1603 DB_DNODE_ENTER(db); 1604 dn = DB_DNODE(db); 1605 1606 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1607 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1608 DBUF_IS_CACHEABLE(db); 1609 1610 mutex_enter(&db->db_mtx); 1611 if (db->db_state == DB_CACHED) { 1612 spa_t *spa = dn->dn_objset->os_spa; 1613 1614 /* 1615 * Ensure that this block's dnode has been decrypted if 1616 * the caller has requested decrypted data. 1617 */ 1618 err = dbuf_read_verify_dnode_crypt(db, flags); 1619 1620 /* 1621 * If the arc buf is compressed or encrypted and the caller 1622 * requested uncompressed data, we need to untransform it 1623 * before returning. We also call arc_untransform() on any 1624 * unauthenticated blocks, which will verify their MAC if 1625 * the key is now available. 1626 */ 1627 if (err == 0 && db->db_buf != NULL && 1628 (flags & DB_RF_NO_DECRYPT) == 0 && 1629 (arc_is_encrypted(db->db_buf) || 1630 arc_is_unauthenticated(db->db_buf) || 1631 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1632 zbookmark_phys_t zb; 1633 1634 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1635 db->db.db_object, db->db_level, db->db_blkid); 1636 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1637 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1638 dbuf_set_data(db, db->db_buf); 1639 } 1640 mutex_exit(&db->db_mtx); 1641 if (err == 0 && prefetch) { 1642 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1643 B_FALSE, flags & DB_RF_HAVESTRUCT); 1644 } 1645 DB_DNODE_EXIT(db); 1646 DBUF_STAT_BUMP(hash_hits); 1647 } else if (db->db_state == DB_UNCACHED) { 1648 spa_t *spa = dn->dn_objset->os_spa; 1649 boolean_t need_wait = B_FALSE; 1650 1651 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1652 1653 if (zio == NULL && 1654 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1655 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1656 need_wait = B_TRUE; 1657 } 1658 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1659 /* 1660 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1661 * for us 1662 */ 1663 if (!err && prefetch) { 1664 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1665 db->db_state != DB_CACHED, 1666 flags & DB_RF_HAVESTRUCT); 1667 } 1668 1669 DB_DNODE_EXIT(db); 1670 DBUF_STAT_BUMP(hash_misses); 1671 1672 /* 1673 * If we created a zio_root we must execute it to avoid 1674 * leaking it, even if it isn't attached to any work due 1675 * to an error in dbuf_read_impl(). 1676 */ 1677 if (need_wait) { 1678 if (err == 0) 1679 err = zio_wait(zio); 1680 else 1681 VERIFY0(zio_wait(zio)); 1682 } 1683 } else { 1684 /* 1685 * Another reader came in while the dbuf was in flight 1686 * between UNCACHED and CACHED. Either a writer will finish 1687 * writing the buffer (sending the dbuf to CACHED) or the 1688 * first reader's request will reach the read_done callback 1689 * and send the dbuf to CACHED. Otherwise, a failure 1690 * occurred and the dbuf went to UNCACHED. 1691 */ 1692 mutex_exit(&db->db_mtx); 1693 if (prefetch) { 1694 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1695 B_TRUE, flags & DB_RF_HAVESTRUCT); 1696 } 1697 DB_DNODE_EXIT(db); 1698 DBUF_STAT_BUMP(hash_misses); 1699 1700 /* Skip the wait per the caller's request. */ 1701 if ((flags & DB_RF_NEVERWAIT) == 0) { 1702 mutex_enter(&db->db_mtx); 1703 while (db->db_state == DB_READ || 1704 db->db_state == DB_FILL) { 1705 ASSERT(db->db_state == DB_READ || 1706 (flags & DB_RF_HAVESTRUCT) == 0); 1707 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1708 db, zio_t *, zio); 1709 cv_wait(&db->db_changed, &db->db_mtx); 1710 } 1711 if (db->db_state == DB_UNCACHED) 1712 err = SET_ERROR(EIO); 1713 mutex_exit(&db->db_mtx); 1714 } 1715 } 1716 1717 return (err); 1718 } 1719 1720 static void 1721 dbuf_noread(dmu_buf_impl_t *db) 1722 { 1723 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1724 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1725 mutex_enter(&db->db_mtx); 1726 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1727 cv_wait(&db->db_changed, &db->db_mtx); 1728 if (db->db_state == DB_UNCACHED) { 1729 ASSERT(db->db_buf == NULL); 1730 ASSERT(db->db.db_data == NULL); 1731 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1732 db->db_state = DB_FILL; 1733 DTRACE_SET_STATE(db, "assigning filled buffer"); 1734 } else if (db->db_state == DB_NOFILL) { 1735 dbuf_clear_data(db); 1736 } else { 1737 ASSERT3U(db->db_state, ==, DB_CACHED); 1738 } 1739 mutex_exit(&db->db_mtx); 1740 } 1741 1742 void 1743 dbuf_unoverride(dbuf_dirty_record_t *dr) 1744 { 1745 dmu_buf_impl_t *db = dr->dr_dbuf; 1746 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1747 uint64_t txg = dr->dr_txg; 1748 1749 ASSERT(MUTEX_HELD(&db->db_mtx)); 1750 /* 1751 * This assert is valid because dmu_sync() expects to be called by 1752 * a zilog's get_data while holding a range lock. This call only 1753 * comes from dbuf_dirty() callers who must also hold a range lock. 1754 */ 1755 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1756 ASSERT(db->db_level == 0); 1757 1758 if (db->db_blkid == DMU_BONUS_BLKID || 1759 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1760 return; 1761 1762 ASSERT(db->db_data_pending != dr); 1763 1764 /* free this block */ 1765 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1766 zio_free(db->db_objset->os_spa, txg, bp); 1767 1768 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1769 dr->dt.dl.dr_nopwrite = B_FALSE; 1770 dr->dt.dl.dr_has_raw_params = B_FALSE; 1771 1772 /* 1773 * Release the already-written buffer, so we leave it in 1774 * a consistent dirty state. Note that all callers are 1775 * modifying the buffer, so they will immediately do 1776 * another (redundant) arc_release(). Therefore, leave 1777 * the buf thawed to save the effort of freezing & 1778 * immediately re-thawing it. 1779 */ 1780 arc_release(dr->dt.dl.dr_data, db); 1781 } 1782 1783 /* 1784 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1785 * data blocks in the free range, so that any future readers will find 1786 * empty blocks. 1787 */ 1788 void 1789 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1790 dmu_tx_t *tx) 1791 { 1792 dmu_buf_impl_t *db_search; 1793 dmu_buf_impl_t *db, *db_next; 1794 uint64_t txg = tx->tx_txg; 1795 avl_index_t where; 1796 dbuf_dirty_record_t *dr; 1797 1798 if (end_blkid > dn->dn_maxblkid && 1799 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1800 end_blkid = dn->dn_maxblkid; 1801 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1802 1803 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1804 db_search->db_level = 0; 1805 db_search->db_blkid = start_blkid; 1806 db_search->db_state = DB_SEARCH; 1807 1808 mutex_enter(&dn->dn_dbufs_mtx); 1809 db = avl_find(&dn->dn_dbufs, db_search, &where); 1810 ASSERT3P(db, ==, NULL); 1811 1812 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1813 1814 for (; db != NULL; db = db_next) { 1815 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1816 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1817 1818 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1819 break; 1820 } 1821 ASSERT3U(db->db_blkid, >=, start_blkid); 1822 1823 /* found a level 0 buffer in the range */ 1824 mutex_enter(&db->db_mtx); 1825 if (dbuf_undirty(db, tx)) { 1826 /* mutex has been dropped and dbuf destroyed */ 1827 continue; 1828 } 1829 1830 if (db->db_state == DB_UNCACHED || 1831 db->db_state == DB_NOFILL || 1832 db->db_state == DB_EVICTING) { 1833 ASSERT(db->db.db_data == NULL); 1834 mutex_exit(&db->db_mtx); 1835 continue; 1836 } 1837 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1838 /* will be handled in dbuf_read_done or dbuf_rele */ 1839 db->db_freed_in_flight = TRUE; 1840 mutex_exit(&db->db_mtx); 1841 continue; 1842 } 1843 if (zfs_refcount_count(&db->db_holds) == 0) { 1844 ASSERT(db->db_buf); 1845 dbuf_destroy(db); 1846 continue; 1847 } 1848 /* The dbuf is referenced */ 1849 1850 dr = list_head(&db->db_dirty_records); 1851 if (dr != NULL) { 1852 if (dr->dr_txg == txg) { 1853 /* 1854 * This buffer is "in-use", re-adjust the file 1855 * size to reflect that this buffer may 1856 * contain new data when we sync. 1857 */ 1858 if (db->db_blkid != DMU_SPILL_BLKID && 1859 db->db_blkid > dn->dn_maxblkid) 1860 dn->dn_maxblkid = db->db_blkid; 1861 dbuf_unoverride(dr); 1862 } else { 1863 /* 1864 * This dbuf is not dirty in the open context. 1865 * Either uncache it (if its not referenced in 1866 * the open context) or reset its contents to 1867 * empty. 1868 */ 1869 dbuf_fix_old_data(db, txg); 1870 } 1871 } 1872 /* clear the contents if its cached */ 1873 if (db->db_state == DB_CACHED) { 1874 ASSERT(db->db.db_data != NULL); 1875 arc_release(db->db_buf, db); 1876 rw_enter(&db->db_rwlock, RW_WRITER); 1877 bzero(db->db.db_data, db->db.db_size); 1878 rw_exit(&db->db_rwlock); 1879 arc_buf_freeze(db->db_buf); 1880 } 1881 1882 mutex_exit(&db->db_mtx); 1883 } 1884 1885 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 1886 mutex_exit(&dn->dn_dbufs_mtx); 1887 } 1888 1889 void 1890 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1891 { 1892 arc_buf_t *buf, *old_buf; 1893 dbuf_dirty_record_t *dr; 1894 int osize = db->db.db_size; 1895 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1896 dnode_t *dn; 1897 1898 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1899 1900 DB_DNODE_ENTER(db); 1901 dn = DB_DNODE(db); 1902 1903 /* 1904 * XXX we should be doing a dbuf_read, checking the return 1905 * value and returning that up to our callers 1906 */ 1907 dmu_buf_will_dirty(&db->db, tx); 1908 1909 /* create the data buffer for the new block */ 1910 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1911 1912 /* copy old block data to the new block */ 1913 old_buf = db->db_buf; 1914 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size)); 1915 /* zero the remainder */ 1916 if (size > osize) 1917 bzero((uint8_t *)buf->b_data + osize, size - osize); 1918 1919 mutex_enter(&db->db_mtx); 1920 dbuf_set_data(db, buf); 1921 arc_buf_destroy(old_buf, db); 1922 db->db.db_size = size; 1923 1924 dr = list_head(&db->db_dirty_records); 1925 /* dirty record added by dmu_buf_will_dirty() */ 1926 VERIFY(dr != NULL); 1927 if (db->db_level == 0) 1928 dr->dt.dl.dr_data = buf; 1929 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 1930 ASSERT3U(dr->dr_accounted, ==, osize); 1931 dr->dr_accounted = size; 1932 mutex_exit(&db->db_mtx); 1933 1934 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1935 DB_DNODE_EXIT(db); 1936 } 1937 1938 void 1939 dbuf_release_bp(dmu_buf_impl_t *db) 1940 { 1941 objset_t *os __maybe_unused = db->db_objset; 1942 1943 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1944 ASSERT(arc_released(os->os_phys_buf) || 1945 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1946 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1947 1948 (void) arc_release(db->db_buf, db); 1949 } 1950 1951 /* 1952 * We already have a dirty record for this TXG, and we are being 1953 * dirtied again. 1954 */ 1955 static void 1956 dbuf_redirty(dbuf_dirty_record_t *dr) 1957 { 1958 dmu_buf_impl_t *db = dr->dr_dbuf; 1959 1960 ASSERT(MUTEX_HELD(&db->db_mtx)); 1961 1962 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1963 /* 1964 * If this buffer has already been written out, 1965 * we now need to reset its state. 1966 */ 1967 dbuf_unoverride(dr); 1968 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1969 db->db_state != DB_NOFILL) { 1970 /* Already released on initial dirty, so just thaw. */ 1971 ASSERT(arc_released(db->db_buf)); 1972 arc_buf_thaw(db->db_buf); 1973 } 1974 } 1975 } 1976 1977 dbuf_dirty_record_t * 1978 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 1979 { 1980 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1981 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 1982 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 1983 ASSERT(dn->dn_maxblkid >= blkid); 1984 1985 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 1986 list_link_init(&dr->dr_dirty_node); 1987 list_link_init(&dr->dr_dbuf_node); 1988 dr->dr_dnode = dn; 1989 dr->dr_txg = tx->tx_txg; 1990 dr->dt.dll.dr_blkid = blkid; 1991 dr->dr_accounted = dn->dn_datablksz; 1992 1993 /* 1994 * There should not be any dbuf for the block that we're dirtying. 1995 * Otherwise the buffer contents could be inconsistent between the 1996 * dbuf and the lightweight dirty record. 1997 */ 1998 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)); 1999 2000 mutex_enter(&dn->dn_mtx); 2001 int txgoff = tx->tx_txg & TXG_MASK; 2002 if (dn->dn_free_ranges[txgoff] != NULL) { 2003 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2004 } 2005 2006 if (dn->dn_nlevels == 1) { 2007 ASSERT3U(blkid, <, dn->dn_nblkptr); 2008 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2009 mutex_exit(&dn->dn_mtx); 2010 rw_exit(&dn->dn_struct_rwlock); 2011 dnode_setdirty(dn, tx); 2012 } else { 2013 mutex_exit(&dn->dn_mtx); 2014 2015 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2016 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2017 1, blkid >> epbs, FTAG); 2018 rw_exit(&dn->dn_struct_rwlock); 2019 if (parent_db == NULL) { 2020 kmem_free(dr, sizeof (*dr)); 2021 return (NULL); 2022 } 2023 int err = dbuf_read(parent_db, NULL, 2024 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2025 if (err != 0) { 2026 dbuf_rele(parent_db, FTAG); 2027 kmem_free(dr, sizeof (*dr)); 2028 return (NULL); 2029 } 2030 2031 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2032 dbuf_rele(parent_db, FTAG); 2033 mutex_enter(&parent_dr->dt.di.dr_mtx); 2034 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2035 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2036 mutex_exit(&parent_dr->dt.di.dr_mtx); 2037 dr->dr_parent = parent_dr; 2038 } 2039 2040 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2041 2042 return (dr); 2043 } 2044 2045 dbuf_dirty_record_t * 2046 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2047 { 2048 dnode_t *dn; 2049 objset_t *os; 2050 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2051 int txgoff = tx->tx_txg & TXG_MASK; 2052 boolean_t drop_struct_rwlock = B_FALSE; 2053 2054 ASSERT(tx->tx_txg != 0); 2055 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2056 DMU_TX_DIRTY_BUF(tx, db); 2057 2058 DB_DNODE_ENTER(db); 2059 dn = DB_DNODE(db); 2060 /* 2061 * Shouldn't dirty a regular buffer in syncing context. Private 2062 * objects may be dirtied in syncing context, but only if they 2063 * were already pre-dirtied in open context. 2064 */ 2065 #ifdef ZFS_DEBUG 2066 if (dn->dn_objset->os_dsl_dataset != NULL) { 2067 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2068 RW_READER, FTAG); 2069 } 2070 ASSERT(!dmu_tx_is_syncing(tx) || 2071 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2072 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2073 dn->dn_objset->os_dsl_dataset == NULL); 2074 if (dn->dn_objset->os_dsl_dataset != NULL) 2075 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2076 #endif 2077 /* 2078 * We make this assert for private objects as well, but after we 2079 * check if we're already dirty. They are allowed to re-dirty 2080 * in syncing context. 2081 */ 2082 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2083 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2084 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2085 2086 mutex_enter(&db->db_mtx); 2087 /* 2088 * XXX make this true for indirects too? The problem is that 2089 * transactions created with dmu_tx_create_assigned() from 2090 * syncing context don't bother holding ahead. 2091 */ 2092 ASSERT(db->db_level != 0 || 2093 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2094 db->db_state == DB_NOFILL); 2095 2096 mutex_enter(&dn->dn_mtx); 2097 dnode_set_dirtyctx(dn, tx, db); 2098 if (tx->tx_txg > dn->dn_dirty_txg) 2099 dn->dn_dirty_txg = tx->tx_txg; 2100 mutex_exit(&dn->dn_mtx); 2101 2102 if (db->db_blkid == DMU_SPILL_BLKID) 2103 dn->dn_have_spill = B_TRUE; 2104 2105 /* 2106 * If this buffer is already dirty, we're done. 2107 */ 2108 dr_head = list_head(&db->db_dirty_records); 2109 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2110 db->db.db_object == DMU_META_DNODE_OBJECT); 2111 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2112 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2113 DB_DNODE_EXIT(db); 2114 2115 dbuf_redirty(dr_next); 2116 mutex_exit(&db->db_mtx); 2117 return (dr_next); 2118 } 2119 2120 /* 2121 * Only valid if not already dirty. 2122 */ 2123 ASSERT(dn->dn_object == 0 || 2124 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2125 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2126 2127 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2128 2129 /* 2130 * We should only be dirtying in syncing context if it's the 2131 * mos or we're initializing the os or it's a special object. 2132 * However, we are allowed to dirty in syncing context provided 2133 * we already dirtied it in open context. Hence we must make 2134 * this assertion only if we're not already dirty. 2135 */ 2136 os = dn->dn_objset; 2137 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2138 #ifdef ZFS_DEBUG 2139 if (dn->dn_objset->os_dsl_dataset != NULL) 2140 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2141 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2142 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2143 if (dn->dn_objset->os_dsl_dataset != NULL) 2144 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2145 #endif 2146 ASSERT(db->db.db_size != 0); 2147 2148 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2149 2150 if (db->db_blkid != DMU_BONUS_BLKID) { 2151 dmu_objset_willuse_space(os, db->db.db_size, tx); 2152 } 2153 2154 /* 2155 * If this buffer is dirty in an old transaction group we need 2156 * to make a copy of it so that the changes we make in this 2157 * transaction group won't leak out when we sync the older txg. 2158 */ 2159 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2160 list_link_init(&dr->dr_dirty_node); 2161 list_link_init(&dr->dr_dbuf_node); 2162 dr->dr_dnode = dn; 2163 if (db->db_level == 0) { 2164 void *data_old = db->db_buf; 2165 2166 if (db->db_state != DB_NOFILL) { 2167 if (db->db_blkid == DMU_BONUS_BLKID) { 2168 dbuf_fix_old_data(db, tx->tx_txg); 2169 data_old = db->db.db_data; 2170 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2171 /* 2172 * Release the data buffer from the cache so 2173 * that we can modify it without impacting 2174 * possible other users of this cached data 2175 * block. Note that indirect blocks and 2176 * private objects are not released until the 2177 * syncing state (since they are only modified 2178 * then). 2179 */ 2180 arc_release(db->db_buf, db); 2181 dbuf_fix_old_data(db, tx->tx_txg); 2182 data_old = db->db_buf; 2183 } 2184 ASSERT(data_old != NULL); 2185 } 2186 dr->dt.dl.dr_data = data_old; 2187 } else { 2188 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2189 list_create(&dr->dt.di.dr_children, 2190 sizeof (dbuf_dirty_record_t), 2191 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2192 } 2193 if (db->db_blkid != DMU_BONUS_BLKID) 2194 dr->dr_accounted = db->db.db_size; 2195 dr->dr_dbuf = db; 2196 dr->dr_txg = tx->tx_txg; 2197 list_insert_before(&db->db_dirty_records, dr_next, dr); 2198 2199 /* 2200 * We could have been freed_in_flight between the dbuf_noread 2201 * and dbuf_dirty. We win, as though the dbuf_noread() had 2202 * happened after the free. 2203 */ 2204 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2205 db->db_blkid != DMU_SPILL_BLKID) { 2206 mutex_enter(&dn->dn_mtx); 2207 if (dn->dn_free_ranges[txgoff] != NULL) { 2208 range_tree_clear(dn->dn_free_ranges[txgoff], 2209 db->db_blkid, 1); 2210 } 2211 mutex_exit(&dn->dn_mtx); 2212 db->db_freed_in_flight = FALSE; 2213 } 2214 2215 /* 2216 * This buffer is now part of this txg 2217 */ 2218 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2219 db->db_dirtycnt += 1; 2220 ASSERT3U(db->db_dirtycnt, <=, 3); 2221 2222 mutex_exit(&db->db_mtx); 2223 2224 if (db->db_blkid == DMU_BONUS_BLKID || 2225 db->db_blkid == DMU_SPILL_BLKID) { 2226 mutex_enter(&dn->dn_mtx); 2227 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2228 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2229 mutex_exit(&dn->dn_mtx); 2230 dnode_setdirty(dn, tx); 2231 DB_DNODE_EXIT(db); 2232 return (dr); 2233 } 2234 2235 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2236 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2237 drop_struct_rwlock = B_TRUE; 2238 } 2239 2240 /* 2241 * If we are overwriting a dedup BP, then unless it is snapshotted, 2242 * when we get to syncing context we will need to decrement its 2243 * refcount in the DDT. Prefetch the relevant DDT block so that 2244 * syncing context won't have to wait for the i/o. 2245 */ 2246 if (db->db_blkptr != NULL) { 2247 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2248 ddt_prefetch(os->os_spa, db->db_blkptr); 2249 dmu_buf_unlock_parent(db, dblt, FTAG); 2250 } 2251 2252 /* 2253 * We need to hold the dn_struct_rwlock to make this assertion, 2254 * because it protects dn_phys / dn_next_nlevels from changing. 2255 */ 2256 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2257 dn->dn_phys->dn_nlevels > db->db_level || 2258 dn->dn_next_nlevels[txgoff] > db->db_level || 2259 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2260 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2261 2262 2263 if (db->db_level == 0) { 2264 ASSERT(!db->db_objset->os_raw_receive || 2265 dn->dn_maxblkid >= db->db_blkid); 2266 dnode_new_blkid(dn, db->db_blkid, tx, 2267 drop_struct_rwlock, B_FALSE); 2268 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2269 } 2270 2271 if (db->db_level+1 < dn->dn_nlevels) { 2272 dmu_buf_impl_t *parent = db->db_parent; 2273 dbuf_dirty_record_t *di; 2274 int parent_held = FALSE; 2275 2276 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2277 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2278 parent = dbuf_hold_level(dn, db->db_level + 1, 2279 db->db_blkid >> epbs, FTAG); 2280 ASSERT(parent != NULL); 2281 parent_held = TRUE; 2282 } 2283 if (drop_struct_rwlock) 2284 rw_exit(&dn->dn_struct_rwlock); 2285 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2286 di = dbuf_dirty(parent, tx); 2287 if (parent_held) 2288 dbuf_rele(parent, FTAG); 2289 2290 mutex_enter(&db->db_mtx); 2291 /* 2292 * Since we've dropped the mutex, it's possible that 2293 * dbuf_undirty() might have changed this out from under us. 2294 */ 2295 if (list_head(&db->db_dirty_records) == dr || 2296 dn->dn_object == DMU_META_DNODE_OBJECT) { 2297 mutex_enter(&di->dt.di.dr_mtx); 2298 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2299 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2300 list_insert_tail(&di->dt.di.dr_children, dr); 2301 mutex_exit(&di->dt.di.dr_mtx); 2302 dr->dr_parent = di; 2303 } 2304 mutex_exit(&db->db_mtx); 2305 } else { 2306 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2307 ASSERT(db->db_blkid < dn->dn_nblkptr); 2308 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2309 mutex_enter(&dn->dn_mtx); 2310 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2311 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2312 mutex_exit(&dn->dn_mtx); 2313 if (drop_struct_rwlock) 2314 rw_exit(&dn->dn_struct_rwlock); 2315 } 2316 2317 dnode_setdirty(dn, tx); 2318 DB_DNODE_EXIT(db); 2319 return (dr); 2320 } 2321 2322 static void 2323 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2324 { 2325 dmu_buf_impl_t *db = dr->dr_dbuf; 2326 2327 if (dr->dt.dl.dr_data != db->db.db_data) { 2328 struct dnode *dn = dr->dr_dnode; 2329 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2330 2331 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2332 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2333 } 2334 db->db_data_pending = NULL; 2335 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2336 list_remove(&db->db_dirty_records, dr); 2337 if (dr->dr_dbuf->db_level != 0) { 2338 mutex_destroy(&dr->dt.di.dr_mtx); 2339 list_destroy(&dr->dt.di.dr_children); 2340 } 2341 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2342 ASSERT3U(db->db_dirtycnt, >, 0); 2343 db->db_dirtycnt -= 1; 2344 } 2345 2346 /* 2347 * Undirty a buffer in the transaction group referenced by the given 2348 * transaction. Return whether this evicted the dbuf. 2349 */ 2350 static boolean_t 2351 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2352 { 2353 uint64_t txg = tx->tx_txg; 2354 2355 ASSERT(txg != 0); 2356 2357 /* 2358 * Due to our use of dn_nlevels below, this can only be called 2359 * in open context, unless we are operating on the MOS. 2360 * From syncing context, dn_nlevels may be different from the 2361 * dn_nlevels used when dbuf was dirtied. 2362 */ 2363 ASSERT(db->db_objset == 2364 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2365 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2366 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2367 ASSERT0(db->db_level); 2368 ASSERT(MUTEX_HELD(&db->db_mtx)); 2369 2370 /* 2371 * If this buffer is not dirty, we're done. 2372 */ 2373 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2374 if (dr == NULL) 2375 return (B_FALSE); 2376 ASSERT(dr->dr_dbuf == db); 2377 2378 dnode_t *dn = dr->dr_dnode; 2379 2380 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2381 2382 ASSERT(db->db.db_size != 0); 2383 2384 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2385 dr->dr_accounted, txg); 2386 2387 list_remove(&db->db_dirty_records, dr); 2388 2389 /* 2390 * Note that there are three places in dbuf_dirty() 2391 * where this dirty record may be put on a list. 2392 * Make sure to do a list_remove corresponding to 2393 * every one of those list_insert calls. 2394 */ 2395 if (dr->dr_parent) { 2396 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2397 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2398 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2399 } else if (db->db_blkid == DMU_SPILL_BLKID || 2400 db->db_level + 1 == dn->dn_nlevels) { 2401 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2402 mutex_enter(&dn->dn_mtx); 2403 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2404 mutex_exit(&dn->dn_mtx); 2405 } 2406 2407 if (db->db_state != DB_NOFILL) { 2408 dbuf_unoverride(dr); 2409 2410 ASSERT(db->db_buf != NULL); 2411 ASSERT(dr->dt.dl.dr_data != NULL); 2412 if (dr->dt.dl.dr_data != db->db_buf) 2413 arc_buf_destroy(dr->dt.dl.dr_data, db); 2414 } 2415 2416 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2417 2418 ASSERT(db->db_dirtycnt > 0); 2419 db->db_dirtycnt -= 1; 2420 2421 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2422 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2423 dbuf_destroy(db); 2424 return (B_TRUE); 2425 } 2426 2427 return (B_FALSE); 2428 } 2429 2430 static void 2431 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2432 { 2433 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2434 2435 ASSERT(tx->tx_txg != 0); 2436 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2437 2438 /* 2439 * Quick check for dirtiness. For already dirty blocks, this 2440 * reduces runtime of this function by >90%, and overall performance 2441 * by 50% for some workloads (e.g. file deletion with indirect blocks 2442 * cached). 2443 */ 2444 mutex_enter(&db->db_mtx); 2445 2446 if (db->db_state == DB_CACHED) { 2447 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2448 /* 2449 * It's possible that it is already dirty but not cached, 2450 * because there are some calls to dbuf_dirty() that don't 2451 * go through dmu_buf_will_dirty(). 2452 */ 2453 if (dr != NULL) { 2454 /* This dbuf is already dirty and cached. */ 2455 dbuf_redirty(dr); 2456 mutex_exit(&db->db_mtx); 2457 return; 2458 } 2459 } 2460 mutex_exit(&db->db_mtx); 2461 2462 DB_DNODE_ENTER(db); 2463 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2464 flags |= DB_RF_HAVESTRUCT; 2465 DB_DNODE_EXIT(db); 2466 (void) dbuf_read(db, NULL, flags); 2467 (void) dbuf_dirty(db, tx); 2468 } 2469 2470 void 2471 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2472 { 2473 dmu_buf_will_dirty_impl(db_fake, 2474 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2475 } 2476 2477 boolean_t 2478 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2479 { 2480 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2481 dbuf_dirty_record_t *dr; 2482 2483 mutex_enter(&db->db_mtx); 2484 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2485 mutex_exit(&db->db_mtx); 2486 return (dr != NULL); 2487 } 2488 2489 void 2490 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2491 { 2492 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2493 2494 db->db_state = DB_NOFILL; 2495 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2496 dmu_buf_will_fill(db_fake, tx); 2497 } 2498 2499 void 2500 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2501 { 2502 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2503 2504 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2505 ASSERT(tx->tx_txg != 0); 2506 ASSERT(db->db_level == 0); 2507 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2508 2509 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2510 dmu_tx_private_ok(tx)); 2511 2512 dbuf_noread(db); 2513 (void) dbuf_dirty(db, tx); 2514 } 2515 2516 /* 2517 * This function is effectively the same as dmu_buf_will_dirty(), but 2518 * indicates the caller expects raw encrypted data in the db, and provides 2519 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2520 * blkptr_t when this dbuf is written. This is only used for blocks of 2521 * dnodes, during raw receive. 2522 */ 2523 void 2524 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2525 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2526 { 2527 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2528 dbuf_dirty_record_t *dr; 2529 2530 /* 2531 * dr_has_raw_params is only processed for blocks of dnodes 2532 * (see dbuf_sync_dnode_leaf_crypt()). 2533 */ 2534 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2535 ASSERT3U(db->db_level, ==, 0); 2536 ASSERT(db->db_objset->os_raw_receive); 2537 2538 dmu_buf_will_dirty_impl(db_fake, 2539 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2540 2541 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2542 2543 ASSERT3P(dr, !=, NULL); 2544 2545 dr->dt.dl.dr_has_raw_params = B_TRUE; 2546 dr->dt.dl.dr_byteorder = byteorder; 2547 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2548 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2549 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2550 } 2551 2552 static void 2553 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2554 { 2555 struct dirty_leaf *dl; 2556 dbuf_dirty_record_t *dr; 2557 2558 dr = list_head(&db->db_dirty_records); 2559 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2560 dl = &dr->dt.dl; 2561 dl->dr_overridden_by = *bp; 2562 dl->dr_override_state = DR_OVERRIDDEN; 2563 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2564 } 2565 2566 /* ARGSUSED */ 2567 void 2568 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2569 { 2570 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2571 dbuf_states_t old_state; 2572 mutex_enter(&db->db_mtx); 2573 DBUF_VERIFY(db); 2574 2575 old_state = db->db_state; 2576 db->db_state = DB_CACHED; 2577 if (old_state == DB_FILL) { 2578 if (db->db_level == 0 && db->db_freed_in_flight) { 2579 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2580 /* we were freed while filling */ 2581 /* XXX dbuf_undirty? */ 2582 bzero(db->db.db_data, db->db.db_size); 2583 db->db_freed_in_flight = FALSE; 2584 DTRACE_SET_STATE(db, 2585 "fill done handling freed in flight"); 2586 } else { 2587 DTRACE_SET_STATE(db, "fill done"); 2588 } 2589 cv_broadcast(&db->db_changed); 2590 } 2591 mutex_exit(&db->db_mtx); 2592 } 2593 2594 void 2595 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2596 bp_embedded_type_t etype, enum zio_compress comp, 2597 int uncompressed_size, int compressed_size, int byteorder, 2598 dmu_tx_t *tx) 2599 { 2600 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2601 struct dirty_leaf *dl; 2602 dmu_object_type_t type; 2603 dbuf_dirty_record_t *dr; 2604 2605 if (etype == BP_EMBEDDED_TYPE_DATA) { 2606 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2607 SPA_FEATURE_EMBEDDED_DATA)); 2608 } 2609 2610 DB_DNODE_ENTER(db); 2611 type = DB_DNODE(db)->dn_type; 2612 DB_DNODE_EXIT(db); 2613 2614 ASSERT0(db->db_level); 2615 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2616 2617 dmu_buf_will_not_fill(dbuf, tx); 2618 2619 dr = list_head(&db->db_dirty_records); 2620 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2621 dl = &dr->dt.dl; 2622 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2623 data, comp, uncompressed_size, compressed_size); 2624 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2625 BP_SET_TYPE(&dl->dr_overridden_by, type); 2626 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2627 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2628 2629 dl->dr_override_state = DR_OVERRIDDEN; 2630 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2631 } 2632 2633 void 2634 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2635 { 2636 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2637 dmu_object_type_t type; 2638 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2639 SPA_FEATURE_REDACTED_DATASETS)); 2640 2641 DB_DNODE_ENTER(db); 2642 type = DB_DNODE(db)->dn_type; 2643 DB_DNODE_EXIT(db); 2644 2645 ASSERT0(db->db_level); 2646 dmu_buf_will_not_fill(dbuf, tx); 2647 2648 blkptr_t bp = { { { {0} } } }; 2649 BP_SET_TYPE(&bp, type); 2650 BP_SET_LEVEL(&bp, 0); 2651 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2652 BP_SET_REDACTED(&bp); 2653 BPE_SET_LSIZE(&bp, dbuf->db_size); 2654 2655 dbuf_override_impl(db, &bp, tx); 2656 } 2657 2658 /* 2659 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2660 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2661 */ 2662 void 2663 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2664 { 2665 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2666 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2667 ASSERT(db->db_level == 0); 2668 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2669 ASSERT(buf != NULL); 2670 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2671 ASSERT(tx->tx_txg != 0); 2672 2673 arc_return_buf(buf, db); 2674 ASSERT(arc_released(buf)); 2675 2676 mutex_enter(&db->db_mtx); 2677 2678 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2679 cv_wait(&db->db_changed, &db->db_mtx); 2680 2681 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2682 2683 if (db->db_state == DB_CACHED && 2684 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2685 /* 2686 * In practice, we will never have a case where we have an 2687 * encrypted arc buffer while additional holds exist on the 2688 * dbuf. We don't handle this here so we simply assert that 2689 * fact instead. 2690 */ 2691 ASSERT(!arc_is_encrypted(buf)); 2692 mutex_exit(&db->db_mtx); 2693 (void) dbuf_dirty(db, tx); 2694 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2695 arc_buf_destroy(buf, db); 2696 return; 2697 } 2698 2699 if (db->db_state == DB_CACHED) { 2700 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2701 2702 ASSERT(db->db_buf != NULL); 2703 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2704 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2705 2706 if (!arc_released(db->db_buf)) { 2707 ASSERT(dr->dt.dl.dr_override_state == 2708 DR_OVERRIDDEN); 2709 arc_release(db->db_buf, db); 2710 } 2711 dr->dt.dl.dr_data = buf; 2712 arc_buf_destroy(db->db_buf, db); 2713 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2714 arc_release(db->db_buf, db); 2715 arc_buf_destroy(db->db_buf, db); 2716 } 2717 db->db_buf = NULL; 2718 } 2719 ASSERT(db->db_buf == NULL); 2720 dbuf_set_data(db, buf); 2721 db->db_state = DB_FILL; 2722 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2723 mutex_exit(&db->db_mtx); 2724 (void) dbuf_dirty(db, tx); 2725 dmu_buf_fill_done(&db->db, tx); 2726 } 2727 2728 void 2729 dbuf_destroy(dmu_buf_impl_t *db) 2730 { 2731 dnode_t *dn; 2732 dmu_buf_impl_t *parent = db->db_parent; 2733 dmu_buf_impl_t *dndb; 2734 2735 ASSERT(MUTEX_HELD(&db->db_mtx)); 2736 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2737 2738 if (db->db_buf != NULL) { 2739 arc_buf_destroy(db->db_buf, db); 2740 db->db_buf = NULL; 2741 } 2742 2743 if (db->db_blkid == DMU_BONUS_BLKID) { 2744 int slots = DB_DNODE(db)->dn_num_slots; 2745 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2746 if (db->db.db_data != NULL) { 2747 kmem_free(db->db.db_data, bonuslen); 2748 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2749 db->db_state = DB_UNCACHED; 2750 DTRACE_SET_STATE(db, "buffer cleared"); 2751 } 2752 } 2753 2754 dbuf_clear_data(db); 2755 2756 if (multilist_link_active(&db->db_cache_link)) { 2757 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2758 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2759 2760 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 2761 (void) zfs_refcount_remove_many( 2762 &dbuf_caches[db->db_caching_status].size, 2763 db->db.db_size, db); 2764 2765 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2766 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2767 } else { 2768 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2769 DBUF_STAT_BUMPDOWN(cache_count); 2770 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2771 db->db.db_size); 2772 } 2773 db->db_caching_status = DB_NO_CACHE; 2774 } 2775 2776 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2777 ASSERT(db->db_data_pending == NULL); 2778 ASSERT(list_is_empty(&db->db_dirty_records)); 2779 2780 db->db_state = DB_EVICTING; 2781 DTRACE_SET_STATE(db, "buffer eviction started"); 2782 db->db_blkptr = NULL; 2783 2784 /* 2785 * Now that db_state is DB_EVICTING, nobody else can find this via 2786 * the hash table. We can now drop db_mtx, which allows us to 2787 * acquire the dn_dbufs_mtx. 2788 */ 2789 mutex_exit(&db->db_mtx); 2790 2791 DB_DNODE_ENTER(db); 2792 dn = DB_DNODE(db); 2793 dndb = dn->dn_dbuf; 2794 if (db->db_blkid != DMU_BONUS_BLKID) { 2795 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2796 if (needlock) 2797 mutex_enter_nested(&dn->dn_dbufs_mtx, 2798 NESTED_SINGLE); 2799 avl_remove(&dn->dn_dbufs, db); 2800 membar_producer(); 2801 DB_DNODE_EXIT(db); 2802 if (needlock) 2803 mutex_exit(&dn->dn_dbufs_mtx); 2804 /* 2805 * Decrementing the dbuf count means that the hold corresponding 2806 * to the removed dbuf is no longer discounted in dnode_move(), 2807 * so the dnode cannot be moved until after we release the hold. 2808 * The membar_producer() ensures visibility of the decremented 2809 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2810 * release any lock. 2811 */ 2812 mutex_enter(&dn->dn_mtx); 2813 dnode_rele_and_unlock(dn, db, B_TRUE); 2814 db->db_dnode_handle = NULL; 2815 2816 dbuf_hash_remove(db); 2817 } else { 2818 DB_DNODE_EXIT(db); 2819 } 2820 2821 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2822 2823 db->db_parent = NULL; 2824 2825 ASSERT(db->db_buf == NULL); 2826 ASSERT(db->db.db_data == NULL); 2827 ASSERT(db->db_hash_next == NULL); 2828 ASSERT(db->db_blkptr == NULL); 2829 ASSERT(db->db_data_pending == NULL); 2830 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2831 ASSERT(!multilist_link_active(&db->db_cache_link)); 2832 2833 kmem_cache_free(dbuf_kmem_cache, db); 2834 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2835 2836 /* 2837 * If this dbuf is referenced from an indirect dbuf, 2838 * decrement the ref count on the indirect dbuf. 2839 */ 2840 if (parent && parent != dndb) { 2841 mutex_enter(&parent->db_mtx); 2842 dbuf_rele_and_unlock(parent, db, B_TRUE); 2843 } 2844 } 2845 2846 /* 2847 * Note: While bpp will always be updated if the function returns success, 2848 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2849 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2850 * object. 2851 */ 2852 __attribute__((always_inline)) 2853 static inline int 2854 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2855 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2856 { 2857 *parentp = NULL; 2858 *bpp = NULL; 2859 2860 ASSERT(blkid != DMU_BONUS_BLKID); 2861 2862 if (blkid == DMU_SPILL_BLKID) { 2863 mutex_enter(&dn->dn_mtx); 2864 if (dn->dn_have_spill && 2865 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2866 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2867 else 2868 *bpp = NULL; 2869 dbuf_add_ref(dn->dn_dbuf, NULL); 2870 *parentp = dn->dn_dbuf; 2871 mutex_exit(&dn->dn_mtx); 2872 return (0); 2873 } 2874 2875 int nlevels = 2876 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2877 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2878 2879 ASSERT3U(level * epbs, <, 64); 2880 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2881 /* 2882 * This assertion shouldn't trip as long as the max indirect block size 2883 * is less than 1M. The reason for this is that up to that point, 2884 * the number of levels required to address an entire object with blocks 2885 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2886 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2887 * (i.e. we can address the entire object), objects will all use at most 2888 * N-1 levels and the assertion won't overflow. However, once epbs is 2889 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2890 * enough to address an entire object, so objects will have 5 levels, 2891 * but then this assertion will overflow. 2892 * 2893 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2894 * need to redo this logic to handle overflows. 2895 */ 2896 ASSERT(level >= nlevels || 2897 ((nlevels - level - 1) * epbs) + 2898 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2899 if (level >= nlevels || 2900 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2901 ((nlevels - level - 1) * epbs)) || 2902 (fail_sparse && 2903 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2904 /* the buffer has no parent yet */ 2905 return (SET_ERROR(ENOENT)); 2906 } else if (level < nlevels-1) { 2907 /* this block is referenced from an indirect block */ 2908 int err; 2909 2910 err = dbuf_hold_impl(dn, level + 1, 2911 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2912 2913 if (err) 2914 return (err); 2915 err = dbuf_read(*parentp, NULL, 2916 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2917 if (err) { 2918 dbuf_rele(*parentp, NULL); 2919 *parentp = NULL; 2920 return (err); 2921 } 2922 rw_enter(&(*parentp)->db_rwlock, RW_READER); 2923 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2924 (blkid & ((1ULL << epbs) - 1)); 2925 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2926 ASSERT(BP_IS_HOLE(*bpp)); 2927 rw_exit(&(*parentp)->db_rwlock); 2928 return (0); 2929 } else { 2930 /* the block is referenced from the dnode */ 2931 ASSERT3U(level, ==, nlevels-1); 2932 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2933 blkid < dn->dn_phys->dn_nblkptr); 2934 if (dn->dn_dbuf) { 2935 dbuf_add_ref(dn->dn_dbuf, NULL); 2936 *parentp = dn->dn_dbuf; 2937 } 2938 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2939 return (0); 2940 } 2941 } 2942 2943 static dmu_buf_impl_t * 2944 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2945 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2946 { 2947 objset_t *os = dn->dn_objset; 2948 dmu_buf_impl_t *db, *odb; 2949 2950 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2951 ASSERT(dn->dn_type != DMU_OT_NONE); 2952 2953 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2954 2955 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 2956 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 2957 2958 db->db_objset = os; 2959 db->db.db_object = dn->dn_object; 2960 db->db_level = level; 2961 db->db_blkid = blkid; 2962 db->db_dirtycnt = 0; 2963 db->db_dnode_handle = dn->dn_handle; 2964 db->db_parent = parent; 2965 db->db_blkptr = blkptr; 2966 2967 db->db_user = NULL; 2968 db->db_user_immediate_evict = FALSE; 2969 db->db_freed_in_flight = FALSE; 2970 db->db_pending_evict = FALSE; 2971 2972 if (blkid == DMU_BONUS_BLKID) { 2973 ASSERT3P(parent, ==, dn->dn_dbuf); 2974 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 2975 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2976 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2977 db->db.db_offset = DMU_BONUS_BLKID; 2978 db->db_state = DB_UNCACHED; 2979 DTRACE_SET_STATE(db, "bonus buffer created"); 2980 db->db_caching_status = DB_NO_CACHE; 2981 /* the bonus dbuf is not placed in the hash table */ 2982 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2983 return (db); 2984 } else if (blkid == DMU_SPILL_BLKID) { 2985 db->db.db_size = (blkptr != NULL) ? 2986 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2987 db->db.db_offset = 0; 2988 } else { 2989 int blocksize = 2990 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2991 db->db.db_size = blocksize; 2992 db->db.db_offset = db->db_blkid * blocksize; 2993 } 2994 2995 /* 2996 * Hold the dn_dbufs_mtx while we get the new dbuf 2997 * in the hash table *and* added to the dbufs list. 2998 * This prevents a possible deadlock with someone 2999 * trying to look up this dbuf before it's added to the 3000 * dn_dbufs list. 3001 */ 3002 mutex_enter(&dn->dn_dbufs_mtx); 3003 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3004 if ((odb = dbuf_hash_insert(db)) != NULL) { 3005 /* someone else inserted it first */ 3006 kmem_cache_free(dbuf_kmem_cache, db); 3007 mutex_exit(&dn->dn_dbufs_mtx); 3008 DBUF_STAT_BUMP(hash_insert_race); 3009 return (odb); 3010 } 3011 avl_add(&dn->dn_dbufs, db); 3012 3013 db->db_state = DB_UNCACHED; 3014 DTRACE_SET_STATE(db, "regular buffer created"); 3015 db->db_caching_status = DB_NO_CACHE; 3016 mutex_exit(&dn->dn_dbufs_mtx); 3017 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3018 3019 if (parent && parent != dn->dn_dbuf) 3020 dbuf_add_ref(parent, db); 3021 3022 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3023 zfs_refcount_count(&dn->dn_holds) > 0); 3024 (void) zfs_refcount_add(&dn->dn_holds, db); 3025 3026 dprintf_dbuf(db, "db=%p\n", db); 3027 3028 return (db); 3029 } 3030 3031 /* 3032 * This function returns a block pointer and information about the object, 3033 * given a dnode and a block. This is a publicly accessible version of 3034 * dbuf_findbp that only returns some information, rather than the 3035 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3036 * should be locked as (at least) a reader. 3037 */ 3038 int 3039 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3040 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3041 { 3042 dmu_buf_impl_t *dbp = NULL; 3043 blkptr_t *bp2; 3044 int err = 0; 3045 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3046 3047 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3048 if (err == 0) { 3049 *bp = *bp2; 3050 if (dbp != NULL) 3051 dbuf_rele(dbp, NULL); 3052 if (datablkszsec != NULL) 3053 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3054 if (indblkshift != NULL) 3055 *indblkshift = dn->dn_phys->dn_indblkshift; 3056 } 3057 3058 return (err); 3059 } 3060 3061 typedef struct dbuf_prefetch_arg { 3062 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3063 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3064 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3065 int dpa_curlevel; /* The current level that we're reading */ 3066 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3067 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3068 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3069 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3070 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3071 void *dpa_arg; /* prefetch completion arg */ 3072 } dbuf_prefetch_arg_t; 3073 3074 static void 3075 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3076 { 3077 if (dpa->dpa_cb != NULL) 3078 dpa->dpa_cb(dpa->dpa_arg, io_done); 3079 kmem_free(dpa, sizeof (*dpa)); 3080 } 3081 3082 static void 3083 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3084 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3085 { 3086 dbuf_prefetch_arg_t *dpa = private; 3087 3088 dbuf_prefetch_fini(dpa, B_TRUE); 3089 if (abuf != NULL) 3090 arc_buf_destroy(abuf, private); 3091 } 3092 3093 /* 3094 * Actually issue the prefetch read for the block given. 3095 */ 3096 static void 3097 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3098 { 3099 ASSERT(!BP_IS_REDACTED(bp) || 3100 dsl_dataset_feature_is_active( 3101 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3102 SPA_FEATURE_REDACTED_DATASETS)); 3103 3104 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3105 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3106 3107 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3108 arc_flags_t aflags = 3109 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3110 ARC_FLAG_NO_BUF; 3111 3112 /* dnodes are always read as raw and then converted later */ 3113 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3114 dpa->dpa_curlevel == 0) 3115 zio_flags |= ZIO_FLAG_RAW; 3116 3117 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3118 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3119 ASSERT(dpa->dpa_zio != NULL); 3120 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3121 dbuf_issue_final_prefetch_done, dpa, 3122 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3123 } 3124 3125 /* 3126 * Called when an indirect block above our prefetch target is read in. This 3127 * will either read in the next indirect block down the tree or issue the actual 3128 * prefetch if the next block down is our target. 3129 */ 3130 static void 3131 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3132 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3133 { 3134 dbuf_prefetch_arg_t *dpa = private; 3135 3136 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3137 ASSERT3S(dpa->dpa_curlevel, >, 0); 3138 3139 if (abuf == NULL) { 3140 ASSERT(zio == NULL || zio->io_error != 0); 3141 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3142 } 3143 ASSERT(zio == NULL || zio->io_error == 0); 3144 3145 /* 3146 * The dpa_dnode is only valid if we are called with a NULL 3147 * zio. This indicates that the arc_read() returned without 3148 * first calling zio_read() to issue a physical read. Once 3149 * a physical read is made the dpa_dnode must be invalidated 3150 * as the locks guarding it may have been dropped. If the 3151 * dpa_dnode is still valid, then we want to add it to the dbuf 3152 * cache. To do so, we must hold the dbuf associated with the block 3153 * we just prefetched, read its contents so that we associate it 3154 * with an arc_buf_t, and then release it. 3155 */ 3156 if (zio != NULL) { 3157 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3158 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3159 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3160 } else { 3161 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3162 } 3163 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3164 3165 dpa->dpa_dnode = NULL; 3166 } else if (dpa->dpa_dnode != NULL) { 3167 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3168 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3169 dpa->dpa_zb.zb_level)); 3170 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3171 dpa->dpa_curlevel, curblkid, FTAG); 3172 if (db == NULL) { 3173 arc_buf_destroy(abuf, private); 3174 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3175 } 3176 (void) dbuf_read(db, NULL, 3177 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3178 dbuf_rele(db, FTAG); 3179 } 3180 3181 dpa->dpa_curlevel--; 3182 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3183 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3184 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3185 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3186 3187 ASSERT(!BP_IS_REDACTED(bp) || 3188 dsl_dataset_feature_is_active( 3189 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3190 SPA_FEATURE_REDACTED_DATASETS)); 3191 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3192 dbuf_prefetch_fini(dpa, B_TRUE); 3193 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3194 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3195 dbuf_issue_final_prefetch(dpa, bp); 3196 } else { 3197 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3198 zbookmark_phys_t zb; 3199 3200 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3201 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3202 iter_aflags |= ARC_FLAG_L2CACHE; 3203 3204 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3205 3206 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3207 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3208 3209 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3210 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 3211 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3212 &iter_aflags, &zb); 3213 } 3214 3215 arc_buf_destroy(abuf, private); 3216 } 3217 3218 /* 3219 * Issue prefetch reads for the given block on the given level. If the indirect 3220 * blocks above that block are not in memory, we will read them in 3221 * asynchronously. As a result, this call never blocks waiting for a read to 3222 * complete. Note that the prefetch might fail if the dataset is encrypted and 3223 * the encryption key is unmapped before the IO completes. 3224 */ 3225 int 3226 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3227 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3228 void *arg) 3229 { 3230 blkptr_t bp; 3231 int epbs, nlevels, curlevel; 3232 uint64_t curblkid; 3233 3234 ASSERT(blkid != DMU_BONUS_BLKID); 3235 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3236 3237 if (blkid > dn->dn_maxblkid) 3238 goto no_issue; 3239 3240 if (level == 0 && dnode_block_freed(dn, blkid)) 3241 goto no_issue; 3242 3243 /* 3244 * This dnode hasn't been written to disk yet, so there's nothing to 3245 * prefetch. 3246 */ 3247 nlevels = dn->dn_phys->dn_nlevels; 3248 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3249 goto no_issue; 3250 3251 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3252 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3253 goto no_issue; 3254 3255 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3256 level, blkid); 3257 if (db != NULL) { 3258 mutex_exit(&db->db_mtx); 3259 /* 3260 * This dbuf already exists. It is either CACHED, or 3261 * (we assume) about to be read or filled. 3262 */ 3263 goto no_issue; 3264 } 3265 3266 /* 3267 * Find the closest ancestor (indirect block) of the target block 3268 * that is present in the cache. In this indirect block, we will 3269 * find the bp that is at curlevel, curblkid. 3270 */ 3271 curlevel = level; 3272 curblkid = blkid; 3273 while (curlevel < nlevels - 1) { 3274 int parent_level = curlevel + 1; 3275 uint64_t parent_blkid = curblkid >> epbs; 3276 dmu_buf_impl_t *db; 3277 3278 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3279 FALSE, TRUE, FTAG, &db) == 0) { 3280 blkptr_t *bpp = db->db_buf->b_data; 3281 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3282 dbuf_rele(db, FTAG); 3283 break; 3284 } 3285 3286 curlevel = parent_level; 3287 curblkid = parent_blkid; 3288 } 3289 3290 if (curlevel == nlevels - 1) { 3291 /* No cached indirect blocks found. */ 3292 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3293 bp = dn->dn_phys->dn_blkptr[curblkid]; 3294 } 3295 ASSERT(!BP_IS_REDACTED(&bp) || 3296 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3297 SPA_FEATURE_REDACTED_DATASETS)); 3298 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3299 goto no_issue; 3300 3301 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3302 3303 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3304 ZIO_FLAG_CANFAIL); 3305 3306 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3307 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3308 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3309 dn->dn_object, level, blkid); 3310 dpa->dpa_curlevel = curlevel; 3311 dpa->dpa_prio = prio; 3312 dpa->dpa_aflags = aflags; 3313 dpa->dpa_spa = dn->dn_objset->os_spa; 3314 dpa->dpa_dnode = dn; 3315 dpa->dpa_epbs = epbs; 3316 dpa->dpa_zio = pio; 3317 dpa->dpa_cb = cb; 3318 dpa->dpa_arg = arg; 3319 3320 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3321 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3322 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3323 3324 /* 3325 * If we have the indirect just above us, no need to do the asynchronous 3326 * prefetch chain; we'll just run the last step ourselves. If we're at 3327 * a higher level, though, we want to issue the prefetches for all the 3328 * indirect blocks asynchronously, so we can go on with whatever we were 3329 * doing. 3330 */ 3331 if (curlevel == level) { 3332 ASSERT3U(curblkid, ==, blkid); 3333 dbuf_issue_final_prefetch(dpa, &bp); 3334 } else { 3335 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3336 zbookmark_phys_t zb; 3337 3338 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3339 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3340 iter_aflags |= ARC_FLAG_L2CACHE; 3341 3342 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3343 dn->dn_object, curlevel, curblkid); 3344 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3345 &bp, dbuf_prefetch_indirect_done, dpa, prio, 3346 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3347 &iter_aflags, &zb); 3348 } 3349 /* 3350 * We use pio here instead of dpa_zio since it's possible that 3351 * dpa may have already been freed. 3352 */ 3353 zio_nowait(pio); 3354 return (1); 3355 no_issue: 3356 if (cb != NULL) 3357 cb(arg, B_FALSE); 3358 return (0); 3359 } 3360 3361 int 3362 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3363 arc_flags_t aflags) 3364 { 3365 3366 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3367 } 3368 3369 /* 3370 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3371 * the case of encrypted, compressed and uncompressed buffers by 3372 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3373 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3374 * 3375 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3376 */ 3377 noinline static void 3378 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3379 { 3380 dbuf_dirty_record_t *dr = db->db_data_pending; 3381 arc_buf_t *newdata, *data = dr->dt.dl.dr_data; 3382 3383 newdata = dbuf_alloc_arcbuf_from_arcbuf(db, data); 3384 dbuf_set_data(db, newdata); 3385 rw_enter(&db->db_rwlock, RW_WRITER); 3386 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 3387 rw_exit(&db->db_rwlock); 3388 } 3389 3390 /* 3391 * Returns with db_holds incremented, and db_mtx not held. 3392 * Note: dn_struct_rwlock must be held. 3393 */ 3394 int 3395 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3396 boolean_t fail_sparse, boolean_t fail_uncached, 3397 void *tag, dmu_buf_impl_t **dbp) 3398 { 3399 dmu_buf_impl_t *db, *parent = NULL; 3400 3401 /* If the pool has been created, verify the tx_sync_lock is not held */ 3402 spa_t *spa = dn->dn_objset->os_spa; 3403 dsl_pool_t *dp = spa->spa_dsl_pool; 3404 if (dp != NULL) { 3405 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3406 } 3407 3408 ASSERT(blkid != DMU_BONUS_BLKID); 3409 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3410 ASSERT3U(dn->dn_nlevels, >, level); 3411 3412 *dbp = NULL; 3413 3414 /* dbuf_find() returns with db_mtx held */ 3415 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3416 3417 if (db == NULL) { 3418 blkptr_t *bp = NULL; 3419 int err; 3420 3421 if (fail_uncached) 3422 return (SET_ERROR(ENOENT)); 3423 3424 ASSERT3P(parent, ==, NULL); 3425 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3426 if (fail_sparse) { 3427 if (err == 0 && bp && BP_IS_HOLE(bp)) 3428 err = SET_ERROR(ENOENT); 3429 if (err) { 3430 if (parent) 3431 dbuf_rele(parent, NULL); 3432 return (err); 3433 } 3434 } 3435 if (err && err != ENOENT) 3436 return (err); 3437 db = dbuf_create(dn, level, blkid, parent, bp); 3438 } 3439 3440 if (fail_uncached && db->db_state != DB_CACHED) { 3441 mutex_exit(&db->db_mtx); 3442 return (SET_ERROR(ENOENT)); 3443 } 3444 3445 if (db->db_buf != NULL) { 3446 arc_buf_access(db->db_buf); 3447 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3448 } 3449 3450 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3451 3452 /* 3453 * If this buffer is currently syncing out, and we are 3454 * still referencing it from db_data, we need to make a copy 3455 * of it in case we decide we want to dirty it again in this txg. 3456 */ 3457 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3458 dn->dn_object != DMU_META_DNODE_OBJECT && 3459 db->db_state == DB_CACHED && db->db_data_pending) { 3460 dbuf_dirty_record_t *dr = db->db_data_pending; 3461 if (dr->dt.dl.dr_data == db->db_buf) 3462 dbuf_hold_copy(dn, db); 3463 } 3464 3465 if (multilist_link_active(&db->db_cache_link)) { 3466 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3467 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3468 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3469 3470 multilist_remove(dbuf_caches[db->db_caching_status].cache, db); 3471 (void) zfs_refcount_remove_many( 3472 &dbuf_caches[db->db_caching_status].size, 3473 db->db.db_size, db); 3474 3475 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3476 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3477 } else { 3478 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3479 DBUF_STAT_BUMPDOWN(cache_count); 3480 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3481 db->db.db_size); 3482 } 3483 db->db_caching_status = DB_NO_CACHE; 3484 } 3485 (void) zfs_refcount_add(&db->db_holds, tag); 3486 DBUF_VERIFY(db); 3487 mutex_exit(&db->db_mtx); 3488 3489 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3490 if (parent) 3491 dbuf_rele(parent, NULL); 3492 3493 ASSERT3P(DB_DNODE(db), ==, dn); 3494 ASSERT3U(db->db_blkid, ==, blkid); 3495 ASSERT3U(db->db_level, ==, level); 3496 *dbp = db; 3497 3498 return (0); 3499 } 3500 3501 dmu_buf_impl_t * 3502 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 3503 { 3504 return (dbuf_hold_level(dn, 0, blkid, tag)); 3505 } 3506 3507 dmu_buf_impl_t * 3508 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 3509 { 3510 dmu_buf_impl_t *db; 3511 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3512 return (err ? NULL : db); 3513 } 3514 3515 void 3516 dbuf_create_bonus(dnode_t *dn) 3517 { 3518 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3519 3520 ASSERT(dn->dn_bonus == NULL); 3521 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3522 } 3523 3524 int 3525 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3526 { 3527 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3528 3529 if (db->db_blkid != DMU_SPILL_BLKID) 3530 return (SET_ERROR(ENOTSUP)); 3531 if (blksz == 0) 3532 blksz = SPA_MINBLOCKSIZE; 3533 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3534 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3535 3536 dbuf_new_size(db, blksz, tx); 3537 3538 return (0); 3539 } 3540 3541 void 3542 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3543 { 3544 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3545 } 3546 3547 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3548 void 3549 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3550 { 3551 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3552 VERIFY3S(holds, >, 1); 3553 } 3554 3555 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3556 boolean_t 3557 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3558 void *tag) 3559 { 3560 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3561 dmu_buf_impl_t *found_db; 3562 boolean_t result = B_FALSE; 3563 3564 if (blkid == DMU_BONUS_BLKID) 3565 found_db = dbuf_find_bonus(os, obj); 3566 else 3567 found_db = dbuf_find(os, obj, 0, blkid); 3568 3569 if (found_db != NULL) { 3570 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3571 (void) zfs_refcount_add(&db->db_holds, tag); 3572 result = B_TRUE; 3573 } 3574 mutex_exit(&found_db->db_mtx); 3575 } 3576 return (result); 3577 } 3578 3579 /* 3580 * If you call dbuf_rele() you had better not be referencing the dnode handle 3581 * unless you have some other direct or indirect hold on the dnode. (An indirect 3582 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3583 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3584 * dnode's parent dbuf evicting its dnode handles. 3585 */ 3586 void 3587 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3588 { 3589 mutex_enter(&db->db_mtx); 3590 dbuf_rele_and_unlock(db, tag, B_FALSE); 3591 } 3592 3593 void 3594 dmu_buf_rele(dmu_buf_t *db, void *tag) 3595 { 3596 dbuf_rele((dmu_buf_impl_t *)db, tag); 3597 } 3598 3599 /* 3600 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3601 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3602 * argument should be set if we are already in the dbuf-evicting code 3603 * path, in which case we don't want to recursively evict. This allows us to 3604 * avoid deeply nested stacks that would have a call flow similar to this: 3605 * 3606 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3607 * ^ | 3608 * | | 3609 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3610 * 3611 */ 3612 void 3613 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3614 { 3615 int64_t holds; 3616 uint64_t size; 3617 3618 ASSERT(MUTEX_HELD(&db->db_mtx)); 3619 DBUF_VERIFY(db); 3620 3621 /* 3622 * Remove the reference to the dbuf before removing its hold on the 3623 * dnode so we can guarantee in dnode_move() that a referenced bonus 3624 * buffer has a corresponding dnode hold. 3625 */ 3626 holds = zfs_refcount_remove(&db->db_holds, tag); 3627 ASSERT(holds >= 0); 3628 3629 /* 3630 * We can't freeze indirects if there is a possibility that they 3631 * may be modified in the current syncing context. 3632 */ 3633 if (db->db_buf != NULL && 3634 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3635 arc_buf_freeze(db->db_buf); 3636 } 3637 3638 if (holds == db->db_dirtycnt && 3639 db->db_level == 0 && db->db_user_immediate_evict) 3640 dbuf_evict_user(db); 3641 3642 if (holds == 0) { 3643 if (db->db_blkid == DMU_BONUS_BLKID) { 3644 dnode_t *dn; 3645 boolean_t evict_dbuf = db->db_pending_evict; 3646 3647 /* 3648 * If the dnode moves here, we cannot cross this 3649 * barrier until the move completes. 3650 */ 3651 DB_DNODE_ENTER(db); 3652 3653 dn = DB_DNODE(db); 3654 atomic_dec_32(&dn->dn_dbufs_count); 3655 3656 /* 3657 * Decrementing the dbuf count means that the bonus 3658 * buffer's dnode hold is no longer discounted in 3659 * dnode_move(). The dnode cannot move until after 3660 * the dnode_rele() below. 3661 */ 3662 DB_DNODE_EXIT(db); 3663 3664 /* 3665 * Do not reference db after its lock is dropped. 3666 * Another thread may evict it. 3667 */ 3668 mutex_exit(&db->db_mtx); 3669 3670 if (evict_dbuf) 3671 dnode_evict_bonus(dn); 3672 3673 dnode_rele(dn, db); 3674 } else if (db->db_buf == NULL) { 3675 /* 3676 * This is a special case: we never associated this 3677 * dbuf with any data allocated from the ARC. 3678 */ 3679 ASSERT(db->db_state == DB_UNCACHED || 3680 db->db_state == DB_NOFILL); 3681 dbuf_destroy(db); 3682 } else if (arc_released(db->db_buf)) { 3683 /* 3684 * This dbuf has anonymous data associated with it. 3685 */ 3686 dbuf_destroy(db); 3687 } else { 3688 boolean_t do_arc_evict = B_FALSE; 3689 blkptr_t bp; 3690 spa_t *spa = dmu_objset_spa(db->db_objset); 3691 3692 if (!DBUF_IS_CACHEABLE(db) && 3693 db->db_blkptr != NULL && 3694 !BP_IS_HOLE(db->db_blkptr) && 3695 !BP_IS_EMBEDDED(db->db_blkptr)) { 3696 do_arc_evict = B_TRUE; 3697 bp = *db->db_blkptr; 3698 } 3699 3700 if (!DBUF_IS_CACHEABLE(db) || 3701 db->db_pending_evict) { 3702 dbuf_destroy(db); 3703 } else if (!multilist_link_active(&db->db_cache_link)) { 3704 ASSERT3U(db->db_caching_status, ==, 3705 DB_NO_CACHE); 3706 3707 dbuf_cached_state_t dcs = 3708 dbuf_include_in_metadata_cache(db) ? 3709 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3710 db->db_caching_status = dcs; 3711 3712 multilist_insert(dbuf_caches[dcs].cache, db); 3713 size = zfs_refcount_add_many( 3714 &dbuf_caches[dcs].size, 3715 db->db.db_size, db); 3716 3717 if (dcs == DB_DBUF_METADATA_CACHE) { 3718 DBUF_STAT_BUMP(metadata_cache_count); 3719 DBUF_STAT_MAX( 3720 metadata_cache_size_bytes_max, 3721 size); 3722 } else { 3723 DBUF_STAT_BUMP( 3724 cache_levels[db->db_level]); 3725 DBUF_STAT_BUMP(cache_count); 3726 DBUF_STAT_INCR( 3727 cache_levels_bytes[db->db_level], 3728 db->db.db_size); 3729 DBUF_STAT_MAX(cache_size_bytes_max, 3730 size); 3731 } 3732 mutex_exit(&db->db_mtx); 3733 3734 if (dcs == DB_DBUF_CACHE && !evicting) 3735 dbuf_evict_notify(size); 3736 } 3737 3738 if (do_arc_evict) 3739 arc_freed(spa, &bp); 3740 } 3741 } else { 3742 mutex_exit(&db->db_mtx); 3743 } 3744 3745 } 3746 3747 #pragma weak dmu_buf_refcount = dbuf_refcount 3748 uint64_t 3749 dbuf_refcount(dmu_buf_impl_t *db) 3750 { 3751 return (zfs_refcount_count(&db->db_holds)); 3752 } 3753 3754 uint64_t 3755 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3756 { 3757 uint64_t holds; 3758 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3759 3760 mutex_enter(&db->db_mtx); 3761 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3762 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3763 mutex_exit(&db->db_mtx); 3764 3765 return (holds); 3766 } 3767 3768 void * 3769 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3770 dmu_buf_user_t *new_user) 3771 { 3772 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3773 3774 mutex_enter(&db->db_mtx); 3775 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3776 if (db->db_user == old_user) 3777 db->db_user = new_user; 3778 else 3779 old_user = db->db_user; 3780 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3781 mutex_exit(&db->db_mtx); 3782 3783 return (old_user); 3784 } 3785 3786 void * 3787 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3788 { 3789 return (dmu_buf_replace_user(db_fake, NULL, user)); 3790 } 3791 3792 void * 3793 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3794 { 3795 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3796 3797 db->db_user_immediate_evict = TRUE; 3798 return (dmu_buf_set_user(db_fake, user)); 3799 } 3800 3801 void * 3802 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3803 { 3804 return (dmu_buf_replace_user(db_fake, user, NULL)); 3805 } 3806 3807 void * 3808 dmu_buf_get_user(dmu_buf_t *db_fake) 3809 { 3810 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3811 3812 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3813 return (db->db_user); 3814 } 3815 3816 void 3817 dmu_buf_user_evict_wait() 3818 { 3819 taskq_wait(dbu_evict_taskq); 3820 } 3821 3822 blkptr_t * 3823 dmu_buf_get_blkptr(dmu_buf_t *db) 3824 { 3825 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3826 return (dbi->db_blkptr); 3827 } 3828 3829 objset_t * 3830 dmu_buf_get_objset(dmu_buf_t *db) 3831 { 3832 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3833 return (dbi->db_objset); 3834 } 3835 3836 dnode_t * 3837 dmu_buf_dnode_enter(dmu_buf_t *db) 3838 { 3839 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3840 DB_DNODE_ENTER(dbi); 3841 return (DB_DNODE(dbi)); 3842 } 3843 3844 void 3845 dmu_buf_dnode_exit(dmu_buf_t *db) 3846 { 3847 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3848 DB_DNODE_EXIT(dbi); 3849 } 3850 3851 static void 3852 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3853 { 3854 /* ASSERT(dmu_tx_is_syncing(tx) */ 3855 ASSERT(MUTEX_HELD(&db->db_mtx)); 3856 3857 if (db->db_blkptr != NULL) 3858 return; 3859 3860 if (db->db_blkid == DMU_SPILL_BLKID) { 3861 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3862 BP_ZERO(db->db_blkptr); 3863 return; 3864 } 3865 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3866 /* 3867 * This buffer was allocated at a time when there was 3868 * no available blkptrs from the dnode, or it was 3869 * inappropriate to hook it in (i.e., nlevels mismatch). 3870 */ 3871 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3872 ASSERT(db->db_parent == NULL); 3873 db->db_parent = dn->dn_dbuf; 3874 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3875 DBUF_VERIFY(db); 3876 } else { 3877 dmu_buf_impl_t *parent = db->db_parent; 3878 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3879 3880 ASSERT(dn->dn_phys->dn_nlevels > 1); 3881 if (parent == NULL) { 3882 mutex_exit(&db->db_mtx); 3883 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3884 parent = dbuf_hold_level(dn, db->db_level + 1, 3885 db->db_blkid >> epbs, db); 3886 rw_exit(&dn->dn_struct_rwlock); 3887 mutex_enter(&db->db_mtx); 3888 db->db_parent = parent; 3889 } 3890 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3891 (db->db_blkid & ((1ULL << epbs) - 1)); 3892 DBUF_VERIFY(db); 3893 } 3894 } 3895 3896 static void 3897 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3898 { 3899 dmu_buf_impl_t *db = dr->dr_dbuf; 3900 void *data = dr->dt.dl.dr_data; 3901 3902 ASSERT0(db->db_level); 3903 ASSERT(MUTEX_HELD(&db->db_mtx)); 3904 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 3905 ASSERT(data != NULL); 3906 3907 dnode_t *dn = dr->dr_dnode; 3908 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 3909 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 3910 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys)); 3911 3912 dbuf_sync_leaf_verify_bonus_dnode(dr); 3913 3914 dbuf_undirty_bonus(dr); 3915 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 3916 } 3917 3918 /* 3919 * When syncing out a blocks of dnodes, adjust the block to deal with 3920 * encryption. Normally, we make sure the block is decrypted before writing 3921 * it. If we have crypt params, then we are writing a raw (encrypted) block, 3922 * from a raw receive. In this case, set the ARC buf's crypt params so 3923 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 3924 */ 3925 static void 3926 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 3927 { 3928 int err; 3929 dmu_buf_impl_t *db = dr->dr_dbuf; 3930 3931 ASSERT(MUTEX_HELD(&db->db_mtx)); 3932 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 3933 ASSERT3U(db->db_level, ==, 0); 3934 3935 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 3936 zbookmark_phys_t zb; 3937 3938 /* 3939 * Unfortunately, there is currently no mechanism for 3940 * syncing context to handle decryption errors. An error 3941 * here is only possible if an attacker maliciously 3942 * changed a dnode block and updated the associated 3943 * checksums going up the block tree. 3944 */ 3945 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 3946 db->db.db_object, db->db_level, db->db_blkid); 3947 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 3948 &zb, B_TRUE); 3949 if (err) 3950 panic("Invalid dnode block MAC"); 3951 } else if (dr->dt.dl.dr_has_raw_params) { 3952 (void) arc_release(dr->dt.dl.dr_data, db); 3953 arc_convert_to_raw(dr->dt.dl.dr_data, 3954 dmu_objset_id(db->db_objset), 3955 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 3956 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 3957 } 3958 } 3959 3960 /* 3961 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 3962 * is critical the we not allow the compiler to inline this function in to 3963 * dbuf_sync_list() thereby drastically bloating the stack usage. 3964 */ 3965 noinline static void 3966 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3967 { 3968 dmu_buf_impl_t *db = dr->dr_dbuf; 3969 dnode_t *dn = dr->dr_dnode; 3970 3971 ASSERT(dmu_tx_is_syncing(tx)); 3972 3973 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3974 3975 mutex_enter(&db->db_mtx); 3976 3977 ASSERT(db->db_level > 0); 3978 DBUF_VERIFY(db); 3979 3980 /* Read the block if it hasn't been read yet. */ 3981 if (db->db_buf == NULL) { 3982 mutex_exit(&db->db_mtx); 3983 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3984 mutex_enter(&db->db_mtx); 3985 } 3986 ASSERT3U(db->db_state, ==, DB_CACHED); 3987 ASSERT(db->db_buf != NULL); 3988 3989 /* Indirect block size must match what the dnode thinks it is. */ 3990 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3991 dbuf_check_blkptr(dn, db); 3992 3993 /* Provide the pending dirty record to child dbufs */ 3994 db->db_data_pending = dr; 3995 3996 mutex_exit(&db->db_mtx); 3997 3998 dbuf_write(dr, db->db_buf, tx); 3999 4000 zio_t *zio = dr->dr_zio; 4001 mutex_enter(&dr->dt.di.dr_mtx); 4002 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4003 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4004 mutex_exit(&dr->dt.di.dr_mtx); 4005 zio_nowait(zio); 4006 } 4007 4008 /* 4009 * Verify that the size of the data in our bonus buffer does not exceed 4010 * its recorded size. 4011 * 4012 * The purpose of this verification is to catch any cases in development 4013 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4014 * due to incorrect feature management, older pools expect to read more 4015 * data even though they didn't actually write it to begin with. 4016 * 4017 * For a example, this would catch an error in the feature logic where we 4018 * open an older pool and we expect to write the space map histogram of 4019 * a space map with size SPACE_MAP_SIZE_V0. 4020 */ 4021 static void 4022 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4023 { 4024 #ifdef ZFS_DEBUG 4025 dnode_t *dn = dr->dr_dnode; 4026 4027 /* 4028 * Encrypted bonus buffers can have data past their bonuslen. 4029 * Skip the verification of these blocks. 4030 */ 4031 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4032 return; 4033 4034 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4035 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4036 ASSERT3U(bonuslen, <=, maxbonuslen); 4037 4038 arc_buf_t *datap = dr->dt.dl.dr_data; 4039 char *datap_end = ((char *)datap) + bonuslen; 4040 char *datap_max = ((char *)datap) + maxbonuslen; 4041 4042 /* ensure that everything is zero after our data */ 4043 for (; datap_end < datap_max; datap_end++) 4044 ASSERT(*datap_end == 0); 4045 #endif 4046 } 4047 4048 static blkptr_t * 4049 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4050 { 4051 /* This must be a lightweight dirty record. */ 4052 ASSERT3P(dr->dr_dbuf, ==, NULL); 4053 dnode_t *dn = dr->dr_dnode; 4054 4055 if (dn->dn_phys->dn_nlevels == 1) { 4056 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4057 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4058 } else { 4059 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4060 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4061 VERIFY3U(parent_db->db_level, ==, 1); 4062 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4063 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4064 blkptr_t *bp = parent_db->db.db_data; 4065 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4066 } 4067 } 4068 4069 static void 4070 dbuf_lightweight_ready(zio_t *zio) 4071 { 4072 dbuf_dirty_record_t *dr = zio->io_private; 4073 blkptr_t *bp = zio->io_bp; 4074 4075 if (zio->io_error != 0) 4076 return; 4077 4078 dnode_t *dn = dr->dr_dnode; 4079 4080 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4081 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4082 int64_t delta = bp_get_dsize_sync(spa, bp) - 4083 bp_get_dsize_sync(spa, bp_orig); 4084 dnode_diduse_space(dn, delta); 4085 4086 uint64_t blkid = dr->dt.dll.dr_blkid; 4087 mutex_enter(&dn->dn_mtx); 4088 if (blkid > dn->dn_phys->dn_maxblkid) { 4089 ASSERT0(dn->dn_objset->os_raw_receive); 4090 dn->dn_phys->dn_maxblkid = blkid; 4091 } 4092 mutex_exit(&dn->dn_mtx); 4093 4094 if (!BP_IS_EMBEDDED(bp)) { 4095 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4096 BP_SET_FILL(bp, fill); 4097 } 4098 4099 dmu_buf_impl_t *parent_db; 4100 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4101 if (dr->dr_parent == NULL) { 4102 parent_db = dn->dn_dbuf; 4103 } else { 4104 parent_db = dr->dr_parent->dr_dbuf; 4105 } 4106 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4107 *bp_orig = *bp; 4108 rw_exit(&parent_db->db_rwlock); 4109 } 4110 4111 static void 4112 dbuf_lightweight_physdone(zio_t *zio) 4113 { 4114 dbuf_dirty_record_t *dr = zio->io_private; 4115 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4116 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4117 4118 /* 4119 * The callback will be called io_phys_children times. Retire one 4120 * portion of our dirty space each time we are called. Any rounding 4121 * error will be cleaned up by dbuf_lightweight_done(). 4122 */ 4123 int delta = dr->dr_accounted / zio->io_phys_children; 4124 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4125 } 4126 4127 static void 4128 dbuf_lightweight_done(zio_t *zio) 4129 { 4130 dbuf_dirty_record_t *dr = zio->io_private; 4131 4132 VERIFY0(zio->io_error); 4133 4134 objset_t *os = dr->dr_dnode->dn_objset; 4135 dmu_tx_t *tx = os->os_synctx; 4136 4137 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4138 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4139 } else { 4140 dsl_dataset_t *ds = os->os_dsl_dataset; 4141 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4142 dsl_dataset_block_born(ds, zio->io_bp, tx); 4143 } 4144 4145 /* 4146 * See comment in dbuf_write_done(). 4147 */ 4148 if (zio->io_phys_children == 0) { 4149 dsl_pool_undirty_space(dmu_objset_pool(os), 4150 dr->dr_accounted, zio->io_txg); 4151 } else { 4152 dsl_pool_undirty_space(dmu_objset_pool(os), 4153 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4154 } 4155 4156 abd_free(dr->dt.dll.dr_abd); 4157 kmem_free(dr, sizeof (*dr)); 4158 } 4159 4160 noinline static void 4161 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4162 { 4163 dnode_t *dn = dr->dr_dnode; 4164 zio_t *pio; 4165 if (dn->dn_phys->dn_nlevels == 1) { 4166 pio = dn->dn_zio; 4167 } else { 4168 pio = dr->dr_parent->dr_zio; 4169 } 4170 4171 zbookmark_phys_t zb = { 4172 .zb_objset = dmu_objset_id(dn->dn_objset), 4173 .zb_object = dn->dn_object, 4174 .zb_level = 0, 4175 .zb_blkid = dr->dt.dll.dr_blkid, 4176 }; 4177 4178 /* 4179 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4180 * will have the old BP in dbuf_lightweight_done(). 4181 */ 4182 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4183 4184 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4185 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4186 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4187 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4188 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4189 ZIO_PRIORITY_ASYNC_WRITE, 4190 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4191 4192 zio_nowait(dr->dr_zio); 4193 } 4194 4195 /* 4196 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4197 * critical the we not allow the compiler to inline this function in to 4198 * dbuf_sync_list() thereby drastically bloating the stack usage. 4199 */ 4200 noinline static void 4201 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4202 { 4203 arc_buf_t **datap = &dr->dt.dl.dr_data; 4204 dmu_buf_impl_t *db = dr->dr_dbuf; 4205 dnode_t *dn = dr->dr_dnode; 4206 objset_t *os; 4207 uint64_t txg = tx->tx_txg; 4208 4209 ASSERT(dmu_tx_is_syncing(tx)); 4210 4211 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4212 4213 mutex_enter(&db->db_mtx); 4214 /* 4215 * To be synced, we must be dirtied. But we 4216 * might have been freed after the dirty. 4217 */ 4218 if (db->db_state == DB_UNCACHED) { 4219 /* This buffer has been freed since it was dirtied */ 4220 ASSERT(db->db.db_data == NULL); 4221 } else if (db->db_state == DB_FILL) { 4222 /* This buffer was freed and is now being re-filled */ 4223 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4224 } else { 4225 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4226 } 4227 DBUF_VERIFY(db); 4228 4229 if (db->db_blkid == DMU_SPILL_BLKID) { 4230 mutex_enter(&dn->dn_mtx); 4231 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4232 /* 4233 * In the previous transaction group, the bonus buffer 4234 * was entirely used to store the attributes for the 4235 * dnode which overrode the dn_spill field. However, 4236 * when adding more attributes to the file a spill 4237 * block was required to hold the extra attributes. 4238 * 4239 * Make sure to clear the garbage left in the dn_spill 4240 * field from the previous attributes in the bonus 4241 * buffer. Otherwise, after writing out the spill 4242 * block to the new allocated dva, it will free 4243 * the old block pointed to by the invalid dn_spill. 4244 */ 4245 db->db_blkptr = NULL; 4246 } 4247 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4248 mutex_exit(&dn->dn_mtx); 4249 } 4250 4251 /* 4252 * If this is a bonus buffer, simply copy the bonus data into the 4253 * dnode. It will be written out when the dnode is synced (and it 4254 * will be synced, since it must have been dirty for dbuf_sync to 4255 * be called). 4256 */ 4257 if (db->db_blkid == DMU_BONUS_BLKID) { 4258 ASSERT(dr->dr_dbuf == db); 4259 dbuf_sync_bonus(dr, tx); 4260 return; 4261 } 4262 4263 os = dn->dn_objset; 4264 4265 /* 4266 * This function may have dropped the db_mtx lock allowing a dmu_sync 4267 * operation to sneak in. As a result, we need to ensure that we 4268 * don't check the dr_override_state until we have returned from 4269 * dbuf_check_blkptr. 4270 */ 4271 dbuf_check_blkptr(dn, db); 4272 4273 /* 4274 * If this buffer is in the middle of an immediate write, 4275 * wait for the synchronous IO to complete. 4276 */ 4277 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4278 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4279 cv_wait(&db->db_changed, &db->db_mtx); 4280 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4281 } 4282 4283 /* 4284 * If this is a dnode block, ensure it is appropriately encrypted 4285 * or decrypted, depending on what we are writing to it this txg. 4286 */ 4287 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4288 dbuf_prepare_encrypted_dnode_leaf(dr); 4289 4290 if (db->db_state != DB_NOFILL && 4291 dn->dn_object != DMU_META_DNODE_OBJECT && 4292 zfs_refcount_count(&db->db_holds) > 1 && 4293 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4294 *datap == db->db_buf) { 4295 /* 4296 * If this buffer is currently "in use" (i.e., there 4297 * are active holds and db_data still references it), 4298 * then make a copy before we start the write so that 4299 * any modifications from the open txg will not leak 4300 * into this write. 4301 * 4302 * NOTE: this copy does not need to be made for 4303 * objects only modified in the syncing context (e.g. 4304 * DNONE_DNODE blocks). 4305 */ 4306 *datap = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf); 4307 bcopy(db->db.db_data, (*datap)->b_data, arc_buf_size(*datap)); 4308 } 4309 db->db_data_pending = dr; 4310 4311 mutex_exit(&db->db_mtx); 4312 4313 dbuf_write(dr, *datap, tx); 4314 4315 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4316 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4317 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4318 } else { 4319 zio_nowait(dr->dr_zio); 4320 } 4321 } 4322 4323 void 4324 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4325 { 4326 dbuf_dirty_record_t *dr; 4327 4328 while ((dr = list_head(list))) { 4329 if (dr->dr_zio != NULL) { 4330 /* 4331 * If we find an already initialized zio then we 4332 * are processing the meta-dnode, and we have finished. 4333 * The dbufs for all dnodes are put back on the list 4334 * during processing, so that we can zio_wait() 4335 * these IOs after initiating all child IOs. 4336 */ 4337 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4338 DMU_META_DNODE_OBJECT); 4339 break; 4340 } 4341 list_remove(list, dr); 4342 if (dr->dr_dbuf == NULL) { 4343 dbuf_sync_lightweight(dr, tx); 4344 } else { 4345 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4346 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4347 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4348 } 4349 if (dr->dr_dbuf->db_level > 0) 4350 dbuf_sync_indirect(dr, tx); 4351 else 4352 dbuf_sync_leaf(dr, tx); 4353 } 4354 } 4355 } 4356 4357 /* ARGSUSED */ 4358 static void 4359 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4360 { 4361 dmu_buf_impl_t *db = vdb; 4362 dnode_t *dn; 4363 blkptr_t *bp = zio->io_bp; 4364 blkptr_t *bp_orig = &zio->io_bp_orig; 4365 spa_t *spa = zio->io_spa; 4366 int64_t delta; 4367 uint64_t fill = 0; 4368 int i; 4369 4370 ASSERT3P(db->db_blkptr, !=, NULL); 4371 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4372 4373 DB_DNODE_ENTER(db); 4374 dn = DB_DNODE(db); 4375 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4376 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4377 zio->io_prev_space_delta = delta; 4378 4379 if (bp->blk_birth != 0) { 4380 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4381 BP_GET_TYPE(bp) == dn->dn_type) || 4382 (db->db_blkid == DMU_SPILL_BLKID && 4383 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4384 BP_IS_EMBEDDED(bp)); 4385 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4386 } 4387 4388 mutex_enter(&db->db_mtx); 4389 4390 #ifdef ZFS_DEBUG 4391 if (db->db_blkid == DMU_SPILL_BLKID) { 4392 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4393 ASSERT(!(BP_IS_HOLE(bp)) && 4394 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4395 } 4396 #endif 4397 4398 if (db->db_level == 0) { 4399 mutex_enter(&dn->dn_mtx); 4400 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4401 db->db_blkid != DMU_SPILL_BLKID) { 4402 ASSERT0(db->db_objset->os_raw_receive); 4403 dn->dn_phys->dn_maxblkid = db->db_blkid; 4404 } 4405 mutex_exit(&dn->dn_mtx); 4406 4407 if (dn->dn_type == DMU_OT_DNODE) { 4408 i = 0; 4409 while (i < db->db.db_size) { 4410 dnode_phys_t *dnp = 4411 (void *)(((char *)db->db.db_data) + i); 4412 4413 i += DNODE_MIN_SIZE; 4414 if (dnp->dn_type != DMU_OT_NONE) { 4415 fill++; 4416 i += dnp->dn_extra_slots * 4417 DNODE_MIN_SIZE; 4418 } 4419 } 4420 } else { 4421 if (BP_IS_HOLE(bp)) { 4422 fill = 0; 4423 } else { 4424 fill = 1; 4425 } 4426 } 4427 } else { 4428 blkptr_t *ibp = db->db.db_data; 4429 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4430 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4431 if (BP_IS_HOLE(ibp)) 4432 continue; 4433 fill += BP_GET_FILL(ibp); 4434 } 4435 } 4436 DB_DNODE_EXIT(db); 4437 4438 if (!BP_IS_EMBEDDED(bp)) 4439 BP_SET_FILL(bp, fill); 4440 4441 mutex_exit(&db->db_mtx); 4442 4443 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4444 *db->db_blkptr = *bp; 4445 dmu_buf_unlock_parent(db, dblt, FTAG); 4446 } 4447 4448 /* ARGSUSED */ 4449 /* 4450 * This function gets called just prior to running through the compression 4451 * stage of the zio pipeline. If we're an indirect block comprised of only 4452 * holes, then we want this indirect to be compressed away to a hole. In 4453 * order to do that we must zero out any information about the holes that 4454 * this indirect points to prior to before we try to compress it. 4455 */ 4456 static void 4457 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4458 { 4459 dmu_buf_impl_t *db = vdb; 4460 dnode_t *dn; 4461 blkptr_t *bp; 4462 unsigned int epbs, i; 4463 4464 ASSERT3U(db->db_level, >, 0); 4465 DB_DNODE_ENTER(db); 4466 dn = DB_DNODE(db); 4467 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4468 ASSERT3U(epbs, <, 31); 4469 4470 /* Determine if all our children are holes */ 4471 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4472 if (!BP_IS_HOLE(bp)) 4473 break; 4474 } 4475 4476 /* 4477 * If all the children are holes, then zero them all out so that 4478 * we may get compressed away. 4479 */ 4480 if (i == 1ULL << epbs) { 4481 /* 4482 * We only found holes. Grab the rwlock to prevent 4483 * anybody from reading the blocks we're about to 4484 * zero out. 4485 */ 4486 rw_enter(&db->db_rwlock, RW_WRITER); 4487 bzero(db->db.db_data, db->db.db_size); 4488 rw_exit(&db->db_rwlock); 4489 } 4490 DB_DNODE_EXIT(db); 4491 } 4492 4493 /* 4494 * The SPA will call this callback several times for each zio - once 4495 * for every physical child i/o (zio->io_phys_children times). This 4496 * allows the DMU to monitor the progress of each logical i/o. For example, 4497 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4498 * block. There may be a long delay before all copies/fragments are completed, 4499 * so this callback allows us to retire dirty space gradually, as the physical 4500 * i/os complete. 4501 */ 4502 /* ARGSUSED */ 4503 static void 4504 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4505 { 4506 dmu_buf_impl_t *db = arg; 4507 objset_t *os = db->db_objset; 4508 dsl_pool_t *dp = dmu_objset_pool(os); 4509 dbuf_dirty_record_t *dr; 4510 int delta = 0; 4511 4512 dr = db->db_data_pending; 4513 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4514 4515 /* 4516 * The callback will be called io_phys_children times. Retire one 4517 * portion of our dirty space each time we are called. Any rounding 4518 * error will be cleaned up by dbuf_write_done(). 4519 */ 4520 delta = dr->dr_accounted / zio->io_phys_children; 4521 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4522 } 4523 4524 /* ARGSUSED */ 4525 static void 4526 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4527 { 4528 dmu_buf_impl_t *db = vdb; 4529 blkptr_t *bp_orig = &zio->io_bp_orig; 4530 blkptr_t *bp = db->db_blkptr; 4531 objset_t *os = db->db_objset; 4532 dmu_tx_t *tx = os->os_synctx; 4533 4534 ASSERT0(zio->io_error); 4535 ASSERT(db->db_blkptr == bp); 4536 4537 /* 4538 * For nopwrites and rewrites we ensure that the bp matches our 4539 * original and bypass all the accounting. 4540 */ 4541 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4542 ASSERT(BP_EQUAL(bp, bp_orig)); 4543 } else { 4544 dsl_dataset_t *ds = os->os_dsl_dataset; 4545 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4546 dsl_dataset_block_born(ds, bp, tx); 4547 } 4548 4549 mutex_enter(&db->db_mtx); 4550 4551 DBUF_VERIFY(db); 4552 4553 dbuf_dirty_record_t *dr = db->db_data_pending; 4554 dnode_t *dn = dr->dr_dnode; 4555 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4556 ASSERT(dr->dr_dbuf == db); 4557 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4558 list_remove(&db->db_dirty_records, dr); 4559 4560 #ifdef ZFS_DEBUG 4561 if (db->db_blkid == DMU_SPILL_BLKID) { 4562 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4563 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4564 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4565 } 4566 #endif 4567 4568 if (db->db_level == 0) { 4569 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4570 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4571 if (db->db_state != DB_NOFILL) { 4572 if (dr->dt.dl.dr_data != db->db_buf) 4573 arc_buf_destroy(dr->dt.dl.dr_data, db); 4574 } 4575 } else { 4576 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4577 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4578 if (!BP_IS_HOLE(db->db_blkptr)) { 4579 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4580 SPA_BLKPTRSHIFT; 4581 ASSERT3U(db->db_blkid, <=, 4582 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4583 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4584 db->db.db_size); 4585 } 4586 mutex_destroy(&dr->dt.di.dr_mtx); 4587 list_destroy(&dr->dt.di.dr_children); 4588 } 4589 4590 cv_broadcast(&db->db_changed); 4591 ASSERT(db->db_dirtycnt > 0); 4592 db->db_dirtycnt -= 1; 4593 db->db_data_pending = NULL; 4594 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4595 4596 /* 4597 * If we didn't do a physical write in this ZIO and we 4598 * still ended up here, it means that the space of the 4599 * dbuf that we just released (and undirtied) above hasn't 4600 * been marked as undirtied in the pool's accounting. 4601 * 4602 * Thus, we undirty that space in the pool's view of the 4603 * world here. For physical writes this type of update 4604 * happens in dbuf_write_physdone(). 4605 * 4606 * If we did a physical write, cleanup any rounding errors 4607 * that came up due to writing multiple copies of a block 4608 * on disk [see dbuf_write_physdone()]. 4609 */ 4610 if (zio->io_phys_children == 0) { 4611 dsl_pool_undirty_space(dmu_objset_pool(os), 4612 dr->dr_accounted, zio->io_txg); 4613 } else { 4614 dsl_pool_undirty_space(dmu_objset_pool(os), 4615 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4616 } 4617 4618 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4619 } 4620 4621 static void 4622 dbuf_write_nofill_ready(zio_t *zio) 4623 { 4624 dbuf_write_ready(zio, NULL, zio->io_private); 4625 } 4626 4627 static void 4628 dbuf_write_nofill_done(zio_t *zio) 4629 { 4630 dbuf_write_done(zio, NULL, zio->io_private); 4631 } 4632 4633 static void 4634 dbuf_write_override_ready(zio_t *zio) 4635 { 4636 dbuf_dirty_record_t *dr = zio->io_private; 4637 dmu_buf_impl_t *db = dr->dr_dbuf; 4638 4639 dbuf_write_ready(zio, NULL, db); 4640 } 4641 4642 static void 4643 dbuf_write_override_done(zio_t *zio) 4644 { 4645 dbuf_dirty_record_t *dr = zio->io_private; 4646 dmu_buf_impl_t *db = dr->dr_dbuf; 4647 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4648 4649 mutex_enter(&db->db_mtx); 4650 if (!BP_EQUAL(zio->io_bp, obp)) { 4651 if (!BP_IS_HOLE(obp)) 4652 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4653 arc_release(dr->dt.dl.dr_data, db); 4654 } 4655 mutex_exit(&db->db_mtx); 4656 4657 dbuf_write_done(zio, NULL, db); 4658 4659 if (zio->io_abd != NULL) 4660 abd_free(zio->io_abd); 4661 } 4662 4663 typedef struct dbuf_remap_impl_callback_arg { 4664 objset_t *drica_os; 4665 uint64_t drica_blk_birth; 4666 dmu_tx_t *drica_tx; 4667 } dbuf_remap_impl_callback_arg_t; 4668 4669 static void 4670 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4671 void *arg) 4672 { 4673 dbuf_remap_impl_callback_arg_t *drica = arg; 4674 objset_t *os = drica->drica_os; 4675 spa_t *spa = dmu_objset_spa(os); 4676 dmu_tx_t *tx = drica->drica_tx; 4677 4678 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4679 4680 if (os == spa_meta_objset(spa)) { 4681 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4682 } else { 4683 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4684 size, drica->drica_blk_birth, tx); 4685 } 4686 } 4687 4688 static void 4689 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4690 { 4691 blkptr_t bp_copy = *bp; 4692 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4693 dbuf_remap_impl_callback_arg_t drica; 4694 4695 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4696 4697 drica.drica_os = dn->dn_objset; 4698 drica.drica_blk_birth = bp->blk_birth; 4699 drica.drica_tx = tx; 4700 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4701 &drica)) { 4702 /* 4703 * If the blkptr being remapped is tracked by a livelist, 4704 * then we need to make sure the livelist reflects the update. 4705 * First, cancel out the old blkptr by appending a 'FREE' 4706 * entry. Next, add an 'ALLOC' to track the new version. This 4707 * way we avoid trying to free an inaccurate blkptr at delete. 4708 * Note that embedded blkptrs are not tracked in livelists. 4709 */ 4710 if (dn->dn_objset != spa_meta_objset(spa)) { 4711 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4712 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4713 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4714 ASSERT(!BP_IS_EMBEDDED(bp)); 4715 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4716 ASSERT(spa_feature_is_enabled(spa, 4717 SPA_FEATURE_LIVELIST)); 4718 bplist_append(&ds->ds_dir->dd_pending_frees, 4719 bp); 4720 bplist_append(&ds->ds_dir->dd_pending_allocs, 4721 &bp_copy); 4722 } 4723 } 4724 4725 /* 4726 * The db_rwlock prevents dbuf_read_impl() from 4727 * dereferencing the BP while we are changing it. To 4728 * avoid lock contention, only grab it when we are actually 4729 * changing the BP. 4730 */ 4731 if (rw != NULL) 4732 rw_enter(rw, RW_WRITER); 4733 *bp = bp_copy; 4734 if (rw != NULL) 4735 rw_exit(rw); 4736 } 4737 } 4738 4739 /* 4740 * Remap any existing BP's to concrete vdevs, if possible. 4741 */ 4742 static void 4743 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4744 { 4745 spa_t *spa = dmu_objset_spa(db->db_objset); 4746 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4747 4748 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4749 return; 4750 4751 if (db->db_level > 0) { 4752 blkptr_t *bp = db->db.db_data; 4753 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4754 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4755 } 4756 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4757 dnode_phys_t *dnp = db->db.db_data; 4758 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4759 DMU_OT_DNODE); 4760 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4761 i += dnp[i].dn_extra_slots + 1) { 4762 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4763 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4764 &dn->dn_dbuf->db_rwlock); 4765 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4766 tx); 4767 } 4768 } 4769 } 4770 } 4771 4772 4773 /* Issue I/O to commit a dirty buffer to disk. */ 4774 static void 4775 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4776 { 4777 dmu_buf_impl_t *db = dr->dr_dbuf; 4778 dnode_t *dn = dr->dr_dnode; 4779 objset_t *os; 4780 dmu_buf_impl_t *parent = db->db_parent; 4781 uint64_t txg = tx->tx_txg; 4782 zbookmark_phys_t zb; 4783 zio_prop_t zp; 4784 zio_t *pio; /* parent I/O */ 4785 int wp_flag = 0; 4786 4787 ASSERT(dmu_tx_is_syncing(tx)); 4788 4789 os = dn->dn_objset; 4790 4791 if (db->db_state != DB_NOFILL) { 4792 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4793 /* 4794 * Private object buffers are released here rather 4795 * than in dbuf_dirty() since they are only modified 4796 * in the syncing context and we don't want the 4797 * overhead of making multiple copies of the data. 4798 */ 4799 if (BP_IS_HOLE(db->db_blkptr)) { 4800 arc_buf_thaw(data); 4801 } else { 4802 dbuf_release_bp(db); 4803 } 4804 dbuf_remap(dn, db, tx); 4805 } 4806 } 4807 4808 if (parent != dn->dn_dbuf) { 4809 /* Our parent is an indirect block. */ 4810 /* We have a dirty parent that has been scheduled for write. */ 4811 ASSERT(parent && parent->db_data_pending); 4812 /* Our parent's buffer is one level closer to the dnode. */ 4813 ASSERT(db->db_level == parent->db_level-1); 4814 /* 4815 * We're about to modify our parent's db_data by modifying 4816 * our block pointer, so the parent must be released. 4817 */ 4818 ASSERT(arc_released(parent->db_buf)); 4819 pio = parent->db_data_pending->dr_zio; 4820 } else { 4821 /* Our parent is the dnode itself. */ 4822 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4823 db->db_blkid != DMU_SPILL_BLKID) || 4824 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4825 if (db->db_blkid != DMU_SPILL_BLKID) 4826 ASSERT3P(db->db_blkptr, ==, 4827 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4828 pio = dn->dn_zio; 4829 } 4830 4831 ASSERT(db->db_level == 0 || data == db->db_buf); 4832 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4833 ASSERT(pio); 4834 4835 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4836 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4837 db->db.db_object, db->db_level, db->db_blkid); 4838 4839 if (db->db_blkid == DMU_SPILL_BLKID) 4840 wp_flag = WP_SPILL; 4841 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 4842 4843 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 4844 4845 /* 4846 * We copy the blkptr now (rather than when we instantiate the dirty 4847 * record), because its value can change between open context and 4848 * syncing context. We do not need to hold dn_struct_rwlock to read 4849 * db_blkptr because we are in syncing context. 4850 */ 4851 dr->dr_bp_copy = *db->db_blkptr; 4852 4853 if (db->db_level == 0 && 4854 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 4855 /* 4856 * The BP for this block has been provided by open context 4857 * (by dmu_sync() or dmu_buf_write_embedded()). 4858 */ 4859 abd_t *contents = (data != NULL) ? 4860 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 4861 4862 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 4863 contents, db->db.db_size, db->db.db_size, &zp, 4864 dbuf_write_override_ready, NULL, NULL, 4865 dbuf_write_override_done, 4866 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4867 mutex_enter(&db->db_mtx); 4868 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 4869 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 4870 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 4871 mutex_exit(&db->db_mtx); 4872 } else if (db->db_state == DB_NOFILL) { 4873 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 4874 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 4875 dr->dr_zio = zio_write(pio, os->os_spa, txg, 4876 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 4877 dbuf_write_nofill_ready, NULL, NULL, 4878 dbuf_write_nofill_done, db, 4879 ZIO_PRIORITY_ASYNC_WRITE, 4880 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 4881 } else { 4882 ASSERT(arc_released(data)); 4883 4884 /* 4885 * For indirect blocks, we want to setup the children 4886 * ready callback so that we can properly handle an indirect 4887 * block that only contains holes. 4888 */ 4889 arc_write_done_func_t *children_ready_cb = NULL; 4890 if (db->db_level != 0) 4891 children_ready_cb = dbuf_write_children_ready; 4892 4893 dr->dr_zio = arc_write(pio, os->os_spa, txg, 4894 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 4895 &zp, dbuf_write_ready, 4896 children_ready_cb, dbuf_write_physdone, 4897 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 4898 ZIO_FLAG_MUSTSUCCEED, &zb); 4899 } 4900 } 4901 4902 EXPORT_SYMBOL(dbuf_find); 4903 EXPORT_SYMBOL(dbuf_is_metadata); 4904 EXPORT_SYMBOL(dbuf_destroy); 4905 EXPORT_SYMBOL(dbuf_loan_arcbuf); 4906 EXPORT_SYMBOL(dbuf_whichblock); 4907 EXPORT_SYMBOL(dbuf_read); 4908 EXPORT_SYMBOL(dbuf_unoverride); 4909 EXPORT_SYMBOL(dbuf_free_range); 4910 EXPORT_SYMBOL(dbuf_new_size); 4911 EXPORT_SYMBOL(dbuf_release_bp); 4912 EXPORT_SYMBOL(dbuf_dirty); 4913 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 4914 EXPORT_SYMBOL(dmu_buf_will_dirty); 4915 EXPORT_SYMBOL(dmu_buf_is_dirty); 4916 EXPORT_SYMBOL(dmu_buf_will_not_fill); 4917 EXPORT_SYMBOL(dmu_buf_will_fill); 4918 EXPORT_SYMBOL(dmu_buf_fill_done); 4919 EXPORT_SYMBOL(dmu_buf_rele); 4920 EXPORT_SYMBOL(dbuf_assign_arcbuf); 4921 EXPORT_SYMBOL(dbuf_prefetch); 4922 EXPORT_SYMBOL(dbuf_hold_impl); 4923 EXPORT_SYMBOL(dbuf_hold); 4924 EXPORT_SYMBOL(dbuf_hold_level); 4925 EXPORT_SYMBOL(dbuf_create_bonus); 4926 EXPORT_SYMBOL(dbuf_spill_set_blksz); 4927 EXPORT_SYMBOL(dbuf_rm_spill); 4928 EXPORT_SYMBOL(dbuf_add_ref); 4929 EXPORT_SYMBOL(dbuf_rele); 4930 EXPORT_SYMBOL(dbuf_rele_and_unlock); 4931 EXPORT_SYMBOL(dbuf_refcount); 4932 EXPORT_SYMBOL(dbuf_sync_list); 4933 EXPORT_SYMBOL(dmu_buf_set_user); 4934 EXPORT_SYMBOL(dmu_buf_set_user_ie); 4935 EXPORT_SYMBOL(dmu_buf_get_user); 4936 EXPORT_SYMBOL(dmu_buf_get_blkptr); 4937 4938 /* BEGIN CSTYLED */ 4939 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW, 4940 "Maximum size in bytes of the dbuf cache."); 4941 4942 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 4943 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted " 4944 "directly."); 4945 4946 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 4947 "Percentage below dbuf_cache_max_bytes when the evict thread stops " 4948 "evicting dbufs."); 4949 4950 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW, 4951 "Maximum size in bytes of the dbuf metadata cache."); 4952 4953 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW, 4954 "Set the size of the dbuf cache to a log2 fraction of arc size."); 4955 4956 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW, 4957 "Set the size of the dbuf metadata cache to a log2 fraction of arc " 4958 "size."); 4959 /* END CSTYLED */ 4960