1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val); 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)); 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1); 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1); 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 181 182 /* 183 * Global data structures and functions for the dbuf cache. 184 */ 185 static kmem_cache_t *dbuf_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 436 DBUF_STAT_MAX(hash_elements_max, he); 437 438 return (NULL); 439 } 440 441 /* 442 * This returns whether this dbuf should be stored in the metadata cache, which 443 * is based on whether it's from one of the dnode types that store data related 444 * to traversing dataset hierarchies. 445 */ 446 static boolean_t 447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 448 { 449 DB_DNODE_ENTER(db); 450 dmu_object_type_t type = DB_DNODE(db)->dn_type; 451 DB_DNODE_EXIT(db); 452 453 /* Check if this dbuf is one of the types we care about */ 454 if (DMU_OT_IS_METADATA_CACHED(type)) { 455 /* If we hit this, then we set something up wrong in dmu_ot */ 456 ASSERT(DMU_OT_IS_METADATA(type)); 457 458 /* 459 * Sanity check for small-memory systems: don't allocate too 460 * much memory for this purpose. 461 */ 462 if (zfs_refcount_count( 463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 464 dbuf_metadata_cache_target_bytes()) { 465 DBUF_STAT_BUMP(metadata_cache_overflow); 466 return (B_FALSE); 467 } 468 469 return (B_TRUE); 470 } 471 472 return (B_FALSE); 473 } 474 475 /* 476 * Remove an entry from the hash table. It must be in the EVICTING state. 477 */ 478 static void 479 dbuf_hash_remove(dmu_buf_impl_t *db) 480 { 481 dbuf_hash_table_t *h = &dbuf_hash_table; 482 uint64_t idx; 483 dmu_buf_impl_t *dbf, **dbp; 484 485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 486 db->db_blkid), ==, db->db_hash); 487 idx = db->db_hash & h->hash_table_mask; 488 489 /* 490 * We mustn't hold db_mtx to maintain lock ordering: 491 * DBUF_HASH_MUTEX > db_mtx. 492 */ 493 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 494 ASSERT(db->db_state == DB_EVICTING); 495 ASSERT(!MUTEX_HELD(&db->db_mtx)); 496 497 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 498 dbp = &h->hash_table[idx]; 499 while ((dbf = *dbp) != db) { 500 dbp = &dbf->db_hash_next; 501 ASSERT(dbf != NULL); 502 } 503 *dbp = db->db_hash_next; 504 db->db_hash_next = NULL; 505 if (h->hash_table[idx] && 506 h->hash_table[idx]->db_hash_next == NULL) 507 DBUF_STAT_BUMPDOWN(hash_chains); 508 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 510 } 511 512 typedef enum { 513 DBVU_EVICTING, 514 DBVU_NOT_EVICTING 515 } dbvu_verify_type_t; 516 517 static void 518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 519 { 520 #ifdef ZFS_DEBUG 521 int64_t holds; 522 523 if (db->db_user == NULL) 524 return; 525 526 /* Only data blocks support the attachment of user data. */ 527 ASSERT(db->db_level == 0); 528 529 /* Clients must resolve a dbuf before attaching user data. */ 530 ASSERT(db->db.db_data != NULL); 531 ASSERT3U(db->db_state, ==, DB_CACHED); 532 533 holds = zfs_refcount_count(&db->db_holds); 534 if (verify_type == DBVU_EVICTING) { 535 /* 536 * Immediate eviction occurs when holds == dirtycnt. 537 * For normal eviction buffers, holds is zero on 538 * eviction, except when dbuf_fix_old_data() calls 539 * dbuf_clear_data(). However, the hold count can grow 540 * during eviction even though db_mtx is held (see 541 * dmu_bonus_hold() for an example), so we can only 542 * test the generic invariant that holds >= dirtycnt. 543 */ 544 ASSERT3U(holds, >=, db->db_dirtycnt); 545 } else { 546 if (db->db_user_immediate_evict == TRUE) 547 ASSERT3U(holds, >=, db->db_dirtycnt); 548 else 549 ASSERT3U(holds, >, 0); 550 } 551 #endif 552 } 553 554 static void 555 dbuf_evict_user(dmu_buf_impl_t *db) 556 { 557 dmu_buf_user_t *dbu = db->db_user; 558 559 ASSERT(MUTEX_HELD(&db->db_mtx)); 560 561 if (dbu == NULL) 562 return; 563 564 dbuf_verify_user(db, DBVU_EVICTING); 565 db->db_user = NULL; 566 567 #ifdef ZFS_DEBUG 568 if (dbu->dbu_clear_on_evict_dbufp != NULL) 569 *dbu->dbu_clear_on_evict_dbufp = NULL; 570 #endif 571 572 /* 573 * There are two eviction callbacks - one that we call synchronously 574 * and one that we invoke via a taskq. The async one is useful for 575 * avoiding lock order reversals and limiting stack depth. 576 * 577 * Note that if we have a sync callback but no async callback, 578 * it's likely that the sync callback will free the structure 579 * containing the dbu. In that case we need to take care to not 580 * dereference dbu after calling the sync evict func. 581 */ 582 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 583 584 if (dbu->dbu_evict_func_sync != NULL) 585 dbu->dbu_evict_func_sync(dbu); 586 587 if (has_async) { 588 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 589 dbu, 0, &dbu->dbu_tqent); 590 } 591 } 592 593 boolean_t 594 dbuf_is_metadata(dmu_buf_impl_t *db) 595 { 596 /* 597 * Consider indirect blocks and spill blocks to be meta data. 598 */ 599 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 600 return (B_TRUE); 601 } else { 602 boolean_t is_metadata; 603 604 DB_DNODE_ENTER(db); 605 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 606 DB_DNODE_EXIT(db); 607 608 return (is_metadata); 609 } 610 } 611 612 /* 613 * We want to exclude buffers that are on a special allocation class from 614 * L2ARC. 615 */ 616 boolean_t 617 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 618 { 619 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 620 (db->db_objset->os_secondary_cache == 621 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 622 if (l2arc_exclude_special == 0) 623 return (B_TRUE); 624 625 blkptr_t *bp = db->db_blkptr; 626 if (bp == NULL || BP_IS_HOLE(bp)) 627 return (B_FALSE); 628 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 629 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 630 vdev_t *vd = NULL; 631 632 if (vdev < rvd->vdev_children) 633 vd = rvd->vdev_child[vdev]; 634 635 if (vd == NULL) 636 return (B_TRUE); 637 638 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 639 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 640 return (B_TRUE); 641 } 642 return (B_FALSE); 643 } 644 645 static inline boolean_t 646 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 647 { 648 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 649 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 650 (level > 0 || 651 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 652 if (l2arc_exclude_special == 0) 653 return (B_TRUE); 654 655 if (bp == NULL || BP_IS_HOLE(bp)) 656 return (B_FALSE); 657 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 658 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 659 vdev_t *vd = NULL; 660 661 if (vdev < rvd->vdev_children) 662 vd = rvd->vdev_child[vdev]; 663 664 if (vd == NULL) 665 return (B_TRUE); 666 667 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 668 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 669 return (B_TRUE); 670 } 671 return (B_FALSE); 672 } 673 674 675 /* 676 * This function *must* return indices evenly distributed between all 677 * sublists of the multilist. This is needed due to how the dbuf eviction 678 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 679 * distributed between all sublists and uses this assumption when 680 * deciding which sublist to evict from and how much to evict from it. 681 */ 682 static unsigned int 683 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 684 { 685 dmu_buf_impl_t *db = obj; 686 687 /* 688 * The assumption here, is the hash value for a given 689 * dmu_buf_impl_t will remain constant throughout it's lifetime 690 * (i.e. it's objset, object, level and blkid fields don't change). 691 * Thus, we don't need to store the dbuf's sublist index 692 * on insertion, as this index can be recalculated on removal. 693 * 694 * Also, the low order bits of the hash value are thought to be 695 * distributed evenly. Otherwise, in the case that the multilist 696 * has a power of two number of sublists, each sublists' usage 697 * would not be evenly distributed. In this context full 64bit 698 * division would be a waste of time, so limit it to 32 bits. 699 */ 700 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 701 db->db_level, db->db_blkid) % 702 multilist_get_num_sublists(ml)); 703 } 704 705 /* 706 * The target size of the dbuf cache can grow with the ARC target, 707 * unless limited by the tunable dbuf_cache_max_bytes. 708 */ 709 static inline unsigned long 710 dbuf_cache_target_bytes(void) 711 { 712 return (MIN(dbuf_cache_max_bytes, 713 arc_target_bytes() >> dbuf_cache_shift)); 714 } 715 716 /* 717 * The target size of the dbuf metadata cache can grow with the ARC target, 718 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 719 */ 720 static inline unsigned long 721 dbuf_metadata_cache_target_bytes(void) 722 { 723 return (MIN(dbuf_metadata_cache_max_bytes, 724 arc_target_bytes() >> dbuf_metadata_cache_shift)); 725 } 726 727 static inline uint64_t 728 dbuf_cache_hiwater_bytes(void) 729 { 730 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 731 return (dbuf_cache_target + 732 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 733 } 734 735 static inline uint64_t 736 dbuf_cache_lowater_bytes(void) 737 { 738 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 739 return (dbuf_cache_target - 740 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 741 } 742 743 static inline boolean_t 744 dbuf_cache_above_lowater(void) 745 { 746 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 747 dbuf_cache_lowater_bytes()); 748 } 749 750 /* 751 * Evict the oldest eligible dbuf from the dbuf cache. 752 */ 753 static void 754 dbuf_evict_one(void) 755 { 756 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 757 multilist_sublist_t *mls = multilist_sublist_lock( 758 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 759 760 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 761 762 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 763 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 764 db = multilist_sublist_prev(mls, db); 765 } 766 767 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 768 multilist_sublist_t *, mls); 769 770 if (db != NULL) { 771 multilist_sublist_remove(mls, db); 772 multilist_sublist_unlock(mls); 773 (void) zfs_refcount_remove_many( 774 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 775 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 776 DBUF_STAT_BUMPDOWN(cache_count); 777 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 778 db->db.db_size); 779 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 780 db->db_caching_status = DB_NO_CACHE; 781 dbuf_destroy(db); 782 DBUF_STAT_BUMP(cache_total_evicts); 783 } else { 784 multilist_sublist_unlock(mls); 785 } 786 } 787 788 /* 789 * The dbuf evict thread is responsible for aging out dbufs from the 790 * cache. Once the cache has reached it's maximum size, dbufs are removed 791 * and destroyed. The eviction thread will continue running until the size 792 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 793 * out of the cache it is destroyed and becomes eligible for arc eviction. 794 */ 795 static __attribute__((noreturn)) void 796 dbuf_evict_thread(void *unused) 797 { 798 (void) unused; 799 callb_cpr_t cpr; 800 801 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 802 803 mutex_enter(&dbuf_evict_lock); 804 while (!dbuf_evict_thread_exit) { 805 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 806 CALLB_CPR_SAFE_BEGIN(&cpr); 807 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 808 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 809 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 810 } 811 mutex_exit(&dbuf_evict_lock); 812 813 /* 814 * Keep evicting as long as we're above the low water mark 815 * for the cache. We do this without holding the locks to 816 * minimize lock contention. 817 */ 818 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 819 dbuf_evict_one(); 820 } 821 822 mutex_enter(&dbuf_evict_lock); 823 } 824 825 dbuf_evict_thread_exit = B_FALSE; 826 cv_broadcast(&dbuf_evict_cv); 827 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 828 thread_exit(); 829 } 830 831 /* 832 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 833 * If the dbuf cache is at its high water mark, then evict a dbuf from the 834 * dbuf cache using the caller's context. 835 */ 836 static void 837 dbuf_evict_notify(uint64_t size) 838 { 839 /* 840 * We check if we should evict without holding the dbuf_evict_lock, 841 * because it's OK to occasionally make the wrong decision here, 842 * and grabbing the lock results in massive lock contention. 843 */ 844 if (size > dbuf_cache_target_bytes()) { 845 if (size > dbuf_cache_hiwater_bytes()) 846 dbuf_evict_one(); 847 cv_signal(&dbuf_evict_cv); 848 } 849 } 850 851 static int 852 dbuf_kstat_update(kstat_t *ksp, int rw) 853 { 854 dbuf_stats_t *ds = ksp->ks_data; 855 dbuf_hash_table_t *h = &dbuf_hash_table; 856 857 if (rw == KSTAT_WRITE) 858 return (SET_ERROR(EACCES)); 859 860 ds->cache_count.value.ui64 = 861 wmsum_value(&dbuf_sums.cache_count); 862 ds->cache_size_bytes.value.ui64 = 863 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 864 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 865 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 866 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 867 ds->cache_total_evicts.value.ui64 = 868 wmsum_value(&dbuf_sums.cache_total_evicts); 869 for (int i = 0; i < DN_MAX_LEVELS; i++) { 870 ds->cache_levels[i].value.ui64 = 871 wmsum_value(&dbuf_sums.cache_levels[i]); 872 ds->cache_levels_bytes[i].value.ui64 = 873 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 874 } 875 ds->hash_hits.value.ui64 = 876 wmsum_value(&dbuf_sums.hash_hits); 877 ds->hash_misses.value.ui64 = 878 wmsum_value(&dbuf_sums.hash_misses); 879 ds->hash_collisions.value.ui64 = 880 wmsum_value(&dbuf_sums.hash_collisions); 881 ds->hash_chains.value.ui64 = 882 wmsum_value(&dbuf_sums.hash_chains); 883 ds->hash_insert_race.value.ui64 = 884 wmsum_value(&dbuf_sums.hash_insert_race); 885 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 886 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 887 ds->metadata_cache_count.value.ui64 = 888 wmsum_value(&dbuf_sums.metadata_cache_count); 889 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 890 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 891 ds->metadata_cache_overflow.value.ui64 = 892 wmsum_value(&dbuf_sums.metadata_cache_overflow); 893 return (0); 894 } 895 896 void 897 dbuf_init(void) 898 { 899 uint64_t hmsize, hsize = 1ULL << 16; 900 dbuf_hash_table_t *h = &dbuf_hash_table; 901 902 /* 903 * The hash table is big enough to fill one eighth of physical memory 904 * with an average block size of zfs_arc_average_blocksize (default 8K). 905 * By default, the table will take up 906 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 907 */ 908 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 909 hsize <<= 1; 910 911 h->hash_table = NULL; 912 while (h->hash_table == NULL) { 913 h->hash_table_mask = hsize - 1; 914 915 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 916 if (h->hash_table == NULL) 917 hsize >>= 1; 918 919 ASSERT3U(hsize, >=, 1ULL << 10); 920 } 921 922 /* 923 * The hash table buckets are protected by an array of mutexes where 924 * each mutex is reponsible for protecting 128 buckets. A minimum 925 * array size of 8192 is targeted to avoid contention. 926 */ 927 if (dbuf_mutex_cache_shift == 0) 928 hmsize = MAX(hsize >> 7, 1ULL << 13); 929 else 930 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 931 932 h->hash_mutexes = NULL; 933 while (h->hash_mutexes == NULL) { 934 h->hash_mutex_mask = hmsize - 1; 935 936 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 937 KM_SLEEP); 938 if (h->hash_mutexes == NULL) 939 hmsize >>= 1; 940 } 941 942 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 943 sizeof (dmu_buf_impl_t), 944 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 945 946 for (int i = 0; i < hmsize; i++) 947 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 948 949 dbuf_stats_init(h); 950 951 /* 952 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 953 * configuration is not required. 954 */ 955 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 956 957 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 958 multilist_create(&dbuf_caches[dcs].cache, 959 sizeof (dmu_buf_impl_t), 960 offsetof(dmu_buf_impl_t, db_cache_link), 961 dbuf_cache_multilist_index_func); 962 zfs_refcount_create(&dbuf_caches[dcs].size); 963 } 964 965 dbuf_evict_thread_exit = B_FALSE; 966 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 967 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 968 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 969 NULL, 0, &p0, TS_RUN, minclsyspri); 970 971 wmsum_init(&dbuf_sums.cache_count, 0); 972 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 973 for (int i = 0; i < DN_MAX_LEVELS; i++) { 974 wmsum_init(&dbuf_sums.cache_levels[i], 0); 975 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 976 } 977 wmsum_init(&dbuf_sums.hash_hits, 0); 978 wmsum_init(&dbuf_sums.hash_misses, 0); 979 wmsum_init(&dbuf_sums.hash_collisions, 0); 980 wmsum_init(&dbuf_sums.hash_chains, 0); 981 wmsum_init(&dbuf_sums.hash_insert_race, 0); 982 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 983 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 984 985 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 986 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 987 KSTAT_FLAG_VIRTUAL); 988 if (dbuf_ksp != NULL) { 989 for (int i = 0; i < DN_MAX_LEVELS; i++) { 990 snprintf(dbuf_stats.cache_levels[i].name, 991 KSTAT_STRLEN, "cache_level_%d", i); 992 dbuf_stats.cache_levels[i].data_type = 993 KSTAT_DATA_UINT64; 994 snprintf(dbuf_stats.cache_levels_bytes[i].name, 995 KSTAT_STRLEN, "cache_level_%d_bytes", i); 996 dbuf_stats.cache_levels_bytes[i].data_type = 997 KSTAT_DATA_UINT64; 998 } 999 dbuf_ksp->ks_data = &dbuf_stats; 1000 dbuf_ksp->ks_update = dbuf_kstat_update; 1001 kstat_install(dbuf_ksp); 1002 } 1003 } 1004 1005 void 1006 dbuf_fini(void) 1007 { 1008 dbuf_hash_table_t *h = &dbuf_hash_table; 1009 1010 dbuf_stats_destroy(); 1011 1012 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1013 mutex_destroy(&h->hash_mutexes[i]); 1014 1015 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1016 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1017 sizeof (kmutex_t)); 1018 1019 kmem_cache_destroy(dbuf_kmem_cache); 1020 taskq_destroy(dbu_evict_taskq); 1021 1022 mutex_enter(&dbuf_evict_lock); 1023 dbuf_evict_thread_exit = B_TRUE; 1024 while (dbuf_evict_thread_exit) { 1025 cv_signal(&dbuf_evict_cv); 1026 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1027 } 1028 mutex_exit(&dbuf_evict_lock); 1029 1030 mutex_destroy(&dbuf_evict_lock); 1031 cv_destroy(&dbuf_evict_cv); 1032 1033 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1034 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1035 multilist_destroy(&dbuf_caches[dcs].cache); 1036 } 1037 1038 if (dbuf_ksp != NULL) { 1039 kstat_delete(dbuf_ksp); 1040 dbuf_ksp = NULL; 1041 } 1042 1043 wmsum_fini(&dbuf_sums.cache_count); 1044 wmsum_fini(&dbuf_sums.cache_total_evicts); 1045 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1046 wmsum_fini(&dbuf_sums.cache_levels[i]); 1047 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1048 } 1049 wmsum_fini(&dbuf_sums.hash_hits); 1050 wmsum_fini(&dbuf_sums.hash_misses); 1051 wmsum_fini(&dbuf_sums.hash_collisions); 1052 wmsum_fini(&dbuf_sums.hash_chains); 1053 wmsum_fini(&dbuf_sums.hash_insert_race); 1054 wmsum_fini(&dbuf_sums.metadata_cache_count); 1055 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1056 } 1057 1058 /* 1059 * Other stuff. 1060 */ 1061 1062 #ifdef ZFS_DEBUG 1063 static void 1064 dbuf_verify(dmu_buf_impl_t *db) 1065 { 1066 dnode_t *dn; 1067 dbuf_dirty_record_t *dr; 1068 uint32_t txg_prev; 1069 1070 ASSERT(MUTEX_HELD(&db->db_mtx)); 1071 1072 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1073 return; 1074 1075 ASSERT(db->db_objset != NULL); 1076 DB_DNODE_ENTER(db); 1077 dn = DB_DNODE(db); 1078 if (dn == NULL) { 1079 ASSERT(db->db_parent == NULL); 1080 ASSERT(db->db_blkptr == NULL); 1081 } else { 1082 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1083 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1084 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1085 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1086 db->db_blkid == DMU_SPILL_BLKID || 1087 !avl_is_empty(&dn->dn_dbufs)); 1088 } 1089 if (db->db_blkid == DMU_BONUS_BLKID) { 1090 ASSERT(dn != NULL); 1091 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1092 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1093 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1094 ASSERT(dn != NULL); 1095 ASSERT0(db->db.db_offset); 1096 } else { 1097 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1098 } 1099 1100 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1101 ASSERT(dr->dr_dbuf == db); 1102 txg_prev = dr->dr_txg; 1103 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1104 dr = list_next(&db->db_dirty_records, dr)) { 1105 ASSERT(dr->dr_dbuf == db); 1106 ASSERT(txg_prev > dr->dr_txg); 1107 txg_prev = dr->dr_txg; 1108 } 1109 } 1110 1111 /* 1112 * We can't assert that db_size matches dn_datablksz because it 1113 * can be momentarily different when another thread is doing 1114 * dnode_set_blksz(). 1115 */ 1116 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1117 dr = db->db_data_pending; 1118 /* 1119 * It should only be modified in syncing context, so 1120 * make sure we only have one copy of the data. 1121 */ 1122 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1123 } 1124 1125 /* verify db->db_blkptr */ 1126 if (db->db_blkptr) { 1127 if (db->db_parent == dn->dn_dbuf) { 1128 /* db is pointed to by the dnode */ 1129 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1130 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1131 ASSERT(db->db_parent == NULL); 1132 else 1133 ASSERT(db->db_parent != NULL); 1134 if (db->db_blkid != DMU_SPILL_BLKID) 1135 ASSERT3P(db->db_blkptr, ==, 1136 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1137 } else { 1138 /* db is pointed to by an indirect block */ 1139 int epb __maybe_unused = db->db_parent->db.db_size >> 1140 SPA_BLKPTRSHIFT; 1141 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1142 ASSERT3U(db->db_parent->db.db_object, ==, 1143 db->db.db_object); 1144 /* 1145 * dnode_grow_indblksz() can make this fail if we don't 1146 * have the parent's rwlock. XXX indblksz no longer 1147 * grows. safe to do this now? 1148 */ 1149 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1150 ASSERT3P(db->db_blkptr, ==, 1151 ((blkptr_t *)db->db_parent->db.db_data + 1152 db->db_blkid % epb)); 1153 } 1154 } 1155 } 1156 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1157 (db->db_buf == NULL || db->db_buf->b_data) && 1158 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1159 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1160 /* 1161 * If the blkptr isn't set but they have nonzero data, 1162 * it had better be dirty, otherwise we'll lose that 1163 * data when we evict this buffer. 1164 * 1165 * There is an exception to this rule for indirect blocks; in 1166 * this case, if the indirect block is a hole, we fill in a few 1167 * fields on each of the child blocks (importantly, birth time) 1168 * to prevent hole birth times from being lost when you 1169 * partially fill in a hole. 1170 */ 1171 if (db->db_dirtycnt == 0) { 1172 if (db->db_level == 0) { 1173 uint64_t *buf = db->db.db_data; 1174 int i; 1175 1176 for (i = 0; i < db->db.db_size >> 3; i++) { 1177 ASSERT(buf[i] == 0); 1178 } 1179 } else { 1180 blkptr_t *bps = db->db.db_data; 1181 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1182 db->db.db_size); 1183 /* 1184 * We want to verify that all the blkptrs in the 1185 * indirect block are holes, but we may have 1186 * automatically set up a few fields for them. 1187 * We iterate through each blkptr and verify 1188 * they only have those fields set. 1189 */ 1190 for (int i = 0; 1191 i < db->db.db_size / sizeof (blkptr_t); 1192 i++) { 1193 blkptr_t *bp = &bps[i]; 1194 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1195 &bp->blk_cksum)); 1196 ASSERT( 1197 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1198 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1199 DVA_IS_EMPTY(&bp->blk_dva[2])); 1200 ASSERT0(bp->blk_fill); 1201 ASSERT0(bp->blk_pad[0]); 1202 ASSERT0(bp->blk_pad[1]); 1203 ASSERT(!BP_IS_EMBEDDED(bp)); 1204 ASSERT(BP_IS_HOLE(bp)); 1205 ASSERT0(bp->blk_phys_birth); 1206 } 1207 } 1208 } 1209 } 1210 DB_DNODE_EXIT(db); 1211 } 1212 #endif 1213 1214 static void 1215 dbuf_clear_data(dmu_buf_impl_t *db) 1216 { 1217 ASSERT(MUTEX_HELD(&db->db_mtx)); 1218 dbuf_evict_user(db); 1219 ASSERT3P(db->db_buf, ==, NULL); 1220 db->db.db_data = NULL; 1221 if (db->db_state != DB_NOFILL) { 1222 db->db_state = DB_UNCACHED; 1223 DTRACE_SET_STATE(db, "clear data"); 1224 } 1225 } 1226 1227 static void 1228 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1229 { 1230 ASSERT(MUTEX_HELD(&db->db_mtx)); 1231 ASSERT(buf != NULL); 1232 1233 db->db_buf = buf; 1234 ASSERT(buf->b_data != NULL); 1235 db->db.db_data = buf->b_data; 1236 } 1237 1238 static arc_buf_t * 1239 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1240 { 1241 spa_t *spa = db->db_objset->os_spa; 1242 1243 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1244 } 1245 1246 /* 1247 * Loan out an arc_buf for read. Return the loaned arc_buf. 1248 */ 1249 arc_buf_t * 1250 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1251 { 1252 arc_buf_t *abuf; 1253 1254 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1255 mutex_enter(&db->db_mtx); 1256 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1257 int blksz = db->db.db_size; 1258 spa_t *spa = db->db_objset->os_spa; 1259 1260 mutex_exit(&db->db_mtx); 1261 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1262 memcpy(abuf->b_data, db->db.db_data, blksz); 1263 } else { 1264 abuf = db->db_buf; 1265 arc_loan_inuse_buf(abuf, db); 1266 db->db_buf = NULL; 1267 dbuf_clear_data(db); 1268 mutex_exit(&db->db_mtx); 1269 } 1270 return (abuf); 1271 } 1272 1273 /* 1274 * Calculate which level n block references the data at the level 0 offset 1275 * provided. 1276 */ 1277 uint64_t 1278 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1279 { 1280 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1281 /* 1282 * The level n blkid is equal to the level 0 blkid divided by 1283 * the number of level 0s in a level n block. 1284 * 1285 * The level 0 blkid is offset >> datablkshift = 1286 * offset / 2^datablkshift. 1287 * 1288 * The number of level 0s in a level n is the number of block 1289 * pointers in an indirect block, raised to the power of level. 1290 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1291 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1292 * 1293 * Thus, the level n blkid is: offset / 1294 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1295 * = offset / 2^(datablkshift + level * 1296 * (indblkshift - SPA_BLKPTRSHIFT)) 1297 * = offset >> (datablkshift + level * 1298 * (indblkshift - SPA_BLKPTRSHIFT)) 1299 */ 1300 1301 const unsigned exp = dn->dn_datablkshift + 1302 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1303 1304 if (exp >= 8 * sizeof (offset)) { 1305 /* This only happens on the highest indirection level */ 1306 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1307 return (0); 1308 } 1309 1310 ASSERT3U(exp, <, 8 * sizeof (offset)); 1311 1312 return (offset >> exp); 1313 } else { 1314 ASSERT3U(offset, <, dn->dn_datablksz); 1315 return (0); 1316 } 1317 } 1318 1319 /* 1320 * This function is used to lock the parent of the provided dbuf. This should be 1321 * used when modifying or reading db_blkptr. 1322 */ 1323 db_lock_type_t 1324 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1325 { 1326 enum db_lock_type ret = DLT_NONE; 1327 if (db->db_parent != NULL) { 1328 rw_enter(&db->db_parent->db_rwlock, rw); 1329 ret = DLT_PARENT; 1330 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1331 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1332 tag); 1333 ret = DLT_OBJSET; 1334 } 1335 /* 1336 * We only return a DLT_NONE lock when it's the top-most indirect block 1337 * of the meta-dnode of the MOS. 1338 */ 1339 return (ret); 1340 } 1341 1342 /* 1343 * We need to pass the lock type in because it's possible that the block will 1344 * move from being the topmost indirect block in a dnode (and thus, have no 1345 * parent) to not the top-most via an indirection increase. This would cause a 1346 * panic if we didn't pass the lock type in. 1347 */ 1348 void 1349 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1350 { 1351 if (type == DLT_PARENT) 1352 rw_exit(&db->db_parent->db_rwlock); 1353 else if (type == DLT_OBJSET) 1354 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1355 } 1356 1357 static void 1358 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1359 arc_buf_t *buf, void *vdb) 1360 { 1361 (void) zb, (void) bp; 1362 dmu_buf_impl_t *db = vdb; 1363 1364 mutex_enter(&db->db_mtx); 1365 ASSERT3U(db->db_state, ==, DB_READ); 1366 /* 1367 * All reads are synchronous, so we must have a hold on the dbuf 1368 */ 1369 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1370 ASSERT(db->db_buf == NULL); 1371 ASSERT(db->db.db_data == NULL); 1372 if (buf == NULL) { 1373 /* i/o error */ 1374 ASSERT(zio == NULL || zio->io_error != 0); 1375 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1376 ASSERT3P(db->db_buf, ==, NULL); 1377 db->db_state = DB_UNCACHED; 1378 DTRACE_SET_STATE(db, "i/o error"); 1379 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1380 /* freed in flight */ 1381 ASSERT(zio == NULL || zio->io_error == 0); 1382 arc_release(buf, db); 1383 memset(buf->b_data, 0, db->db.db_size); 1384 arc_buf_freeze(buf); 1385 db->db_freed_in_flight = FALSE; 1386 dbuf_set_data(db, buf); 1387 db->db_state = DB_CACHED; 1388 DTRACE_SET_STATE(db, "freed in flight"); 1389 } else { 1390 /* success */ 1391 ASSERT(zio == NULL || zio->io_error == 0); 1392 dbuf_set_data(db, buf); 1393 db->db_state = DB_CACHED; 1394 DTRACE_SET_STATE(db, "successful read"); 1395 } 1396 cv_broadcast(&db->db_changed); 1397 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1398 } 1399 1400 /* 1401 * Shortcut for performing reads on bonus dbufs. Returns 1402 * an error if we fail to verify the dnode associated with 1403 * a decrypted block. Otherwise success. 1404 */ 1405 static int 1406 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1407 { 1408 int bonuslen, max_bonuslen, err; 1409 1410 err = dbuf_read_verify_dnode_crypt(db, flags); 1411 if (err) 1412 return (err); 1413 1414 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1415 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1416 ASSERT(MUTEX_HELD(&db->db_mtx)); 1417 ASSERT(DB_DNODE_HELD(db)); 1418 ASSERT3U(bonuslen, <=, db->db.db_size); 1419 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1420 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1421 if (bonuslen < max_bonuslen) 1422 memset(db->db.db_data, 0, max_bonuslen); 1423 if (bonuslen) 1424 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1425 db->db_state = DB_CACHED; 1426 DTRACE_SET_STATE(db, "bonus buffer filled"); 1427 return (0); 1428 } 1429 1430 static void 1431 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1432 { 1433 blkptr_t *bps = db->db.db_data; 1434 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1435 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1436 1437 for (int i = 0; i < n_bps; i++) { 1438 blkptr_t *bp = &bps[i]; 1439 1440 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1441 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1442 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1443 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1444 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1445 BP_SET_BIRTH(bp, dbbp->blk_birth, 0); 1446 } 1447 } 1448 1449 /* 1450 * Handle reads on dbufs that are holes, if necessary. This function 1451 * requires that the dbuf's mutex is held. Returns success (0) if action 1452 * was taken, ENOENT if no action was taken. 1453 */ 1454 static int 1455 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1456 { 1457 ASSERT(MUTEX_HELD(&db->db_mtx)); 1458 1459 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1460 /* 1461 * For level 0 blocks only, if the above check fails: 1462 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1463 * processes the delete record and clears the bp while we are waiting 1464 * for the dn_mtx (resulting in a "no" from block_freed). 1465 */ 1466 if (!is_hole && db->db_level == 0) 1467 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1468 1469 if (is_hole) { 1470 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1471 memset(db->db.db_data, 0, db->db.db_size); 1472 1473 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1474 bp->blk_birth != 0) { 1475 dbuf_handle_indirect_hole(db, dn, bp); 1476 } 1477 db->db_state = DB_CACHED; 1478 DTRACE_SET_STATE(db, "hole read satisfied"); 1479 return (0); 1480 } 1481 return (ENOENT); 1482 } 1483 1484 /* 1485 * This function ensures that, when doing a decrypting read of a block, 1486 * we make sure we have decrypted the dnode associated with it. We must do 1487 * this so that we ensure we are fully authenticating the checksum-of-MACs 1488 * tree from the root of the objset down to this block. Indirect blocks are 1489 * always verified against their secure checksum-of-MACs assuming that the 1490 * dnode containing them is correct. Now that we are doing a decrypting read, 1491 * we can be sure that the key is loaded and verify that assumption. This is 1492 * especially important considering that we always read encrypted dnode 1493 * blocks as raw data (without verifying their MACs) to start, and 1494 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1495 */ 1496 static int 1497 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1498 { 1499 int err = 0; 1500 objset_t *os = db->db_objset; 1501 arc_buf_t *dnode_abuf; 1502 dnode_t *dn; 1503 zbookmark_phys_t zb; 1504 1505 ASSERT(MUTEX_HELD(&db->db_mtx)); 1506 1507 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1508 !os->os_encrypted || os->os_raw_receive) 1509 return (0); 1510 1511 DB_DNODE_ENTER(db); 1512 dn = DB_DNODE(db); 1513 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1514 1515 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1516 DB_DNODE_EXIT(db); 1517 return (0); 1518 } 1519 1520 SET_BOOKMARK(&zb, dmu_objset_id(os), 1521 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1522 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1523 1524 /* 1525 * An error code of EACCES tells us that the key is still not 1526 * available. This is ok if we are only reading authenticated 1527 * (and therefore non-encrypted) blocks. 1528 */ 1529 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1530 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1531 (db->db_blkid == DMU_BONUS_BLKID && 1532 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1533 err = 0; 1534 1535 DB_DNODE_EXIT(db); 1536 1537 return (err); 1538 } 1539 1540 /* 1541 * Drops db_mtx and the parent lock specified by dblt and tag before 1542 * returning. 1543 */ 1544 static int 1545 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1546 db_lock_type_t dblt, const void *tag) 1547 { 1548 dnode_t *dn; 1549 zbookmark_phys_t zb; 1550 uint32_t aflags = ARC_FLAG_NOWAIT; 1551 int err, zio_flags; 1552 blkptr_t bp, *bpp; 1553 1554 DB_DNODE_ENTER(db); 1555 dn = DB_DNODE(db); 1556 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1557 ASSERT(MUTEX_HELD(&db->db_mtx)); 1558 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1559 ASSERT(db->db_buf == NULL); 1560 ASSERT(db->db_parent == NULL || 1561 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1562 1563 if (db->db_blkid == DMU_BONUS_BLKID) { 1564 err = dbuf_read_bonus(db, dn, flags); 1565 goto early_unlock; 1566 } 1567 1568 if (db->db_state == DB_UNCACHED) { 1569 if (db->db_blkptr == NULL) { 1570 bpp = NULL; 1571 } else { 1572 bp = *db->db_blkptr; 1573 bpp = &bp; 1574 } 1575 } else { 1576 struct dirty_leaf *dl; 1577 dbuf_dirty_record_t *dr; 1578 1579 ASSERT3S(db->db_state, ==, DB_NOFILL); 1580 1581 dr = list_head(&db->db_dirty_records); 1582 if (dr == NULL) { 1583 err = EIO; 1584 goto early_unlock; 1585 } else { 1586 dl = &dr->dt.dl; 1587 if (!dl->dr_brtwrite) { 1588 err = EIO; 1589 goto early_unlock; 1590 } 1591 bp = dl->dr_overridden_by; 1592 bpp = &bp; 1593 } 1594 } 1595 1596 err = dbuf_read_hole(db, dn, bpp); 1597 if (err == 0) 1598 goto early_unlock; 1599 1600 ASSERT(bpp != NULL); 1601 1602 /* 1603 * Any attempt to read a redacted block should result in an error. This 1604 * will never happen under normal conditions, but can be useful for 1605 * debugging purposes. 1606 */ 1607 if (BP_IS_REDACTED(bpp)) { 1608 ASSERT(dsl_dataset_feature_is_active( 1609 db->db_objset->os_dsl_dataset, 1610 SPA_FEATURE_REDACTED_DATASETS)); 1611 err = SET_ERROR(EIO); 1612 goto early_unlock; 1613 } 1614 1615 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1616 db->db.db_object, db->db_level, db->db_blkid); 1617 1618 /* 1619 * All bps of an encrypted os should have the encryption bit set. 1620 * If this is not true it indicates tampering and we report an error. 1621 */ 1622 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { 1623 spa_log_error(db->db_objset->os_spa, &zb, 1624 &db->db_blkptr->blk_birth); 1625 zfs_panic_recover("unencrypted block in encrypted " 1626 "object set %llu", dmu_objset_id(db->db_objset)); 1627 err = SET_ERROR(EIO); 1628 goto early_unlock; 1629 } 1630 1631 err = dbuf_read_verify_dnode_crypt(db, flags); 1632 if (err != 0) 1633 goto early_unlock; 1634 1635 DB_DNODE_EXIT(db); 1636 1637 db->db_state = DB_READ; 1638 DTRACE_SET_STATE(db, "read issued"); 1639 mutex_exit(&db->db_mtx); 1640 1641 if (!DBUF_IS_CACHEABLE(db)) 1642 aflags |= ARC_FLAG_UNCACHED; 1643 else if (dbuf_is_l2cacheable(db)) 1644 aflags |= ARC_FLAG_L2CACHE; 1645 1646 dbuf_add_ref(db, NULL); 1647 1648 zio_flags = (flags & DB_RF_CANFAIL) ? 1649 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1650 1651 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1652 zio_flags |= ZIO_FLAG_RAW; 1653 /* 1654 * The zio layer will copy the provided blkptr later, but we have our 1655 * own copy so that we can release the parent's rwlock. We have to 1656 * do that so that if dbuf_read_done is called synchronously (on 1657 * an l1 cache hit) we don't acquire the db_mtx while holding the 1658 * parent's rwlock, which would be a lock ordering violation. 1659 */ 1660 dmu_buf_unlock_parent(db, dblt, tag); 1661 (void) arc_read(zio, db->db_objset->os_spa, bpp, 1662 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1663 &aflags, &zb); 1664 return (err); 1665 early_unlock: 1666 DB_DNODE_EXIT(db); 1667 mutex_exit(&db->db_mtx); 1668 dmu_buf_unlock_parent(db, dblt, tag); 1669 return (err); 1670 } 1671 1672 /* 1673 * This is our just-in-time copy function. It makes a copy of buffers that 1674 * have been modified in a previous transaction group before we access them in 1675 * the current active group. 1676 * 1677 * This function is used in three places: when we are dirtying a buffer for the 1678 * first time in a txg, when we are freeing a range in a dnode that includes 1679 * this buffer, and when we are accessing a buffer which was received compressed 1680 * and later referenced in a WRITE_BYREF record. 1681 * 1682 * Note that when we are called from dbuf_free_range() we do not put a hold on 1683 * the buffer, we just traverse the active dbuf list for the dnode. 1684 */ 1685 static void 1686 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1687 { 1688 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1689 1690 ASSERT(MUTEX_HELD(&db->db_mtx)); 1691 ASSERT(db->db.db_data != NULL); 1692 ASSERT(db->db_level == 0); 1693 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1694 1695 if (dr == NULL || 1696 (dr->dt.dl.dr_data != 1697 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1698 return; 1699 1700 /* 1701 * If the last dirty record for this dbuf has not yet synced 1702 * and its referencing the dbuf data, either: 1703 * reset the reference to point to a new copy, 1704 * or (if there a no active holders) 1705 * just null out the current db_data pointer. 1706 */ 1707 ASSERT3U(dr->dr_txg, >=, txg - 2); 1708 if (db->db_blkid == DMU_BONUS_BLKID) { 1709 dnode_t *dn = DB_DNODE(db); 1710 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1711 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1712 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1713 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1714 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1715 dnode_t *dn = DB_DNODE(db); 1716 int size = arc_buf_size(db->db_buf); 1717 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1718 spa_t *spa = db->db_objset->os_spa; 1719 enum zio_compress compress_type = 1720 arc_get_compression(db->db_buf); 1721 uint8_t complevel = arc_get_complevel(db->db_buf); 1722 1723 if (arc_is_encrypted(db->db_buf)) { 1724 boolean_t byteorder; 1725 uint8_t salt[ZIO_DATA_SALT_LEN]; 1726 uint8_t iv[ZIO_DATA_IV_LEN]; 1727 uint8_t mac[ZIO_DATA_MAC_LEN]; 1728 1729 arc_get_raw_params(db->db_buf, &byteorder, salt, 1730 iv, mac); 1731 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1732 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1733 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1734 compress_type, complevel); 1735 } else if (compress_type != ZIO_COMPRESS_OFF) { 1736 ASSERT3U(type, ==, ARC_BUFC_DATA); 1737 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1738 size, arc_buf_lsize(db->db_buf), compress_type, 1739 complevel); 1740 } else { 1741 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1742 } 1743 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1744 } else { 1745 db->db_buf = NULL; 1746 dbuf_clear_data(db); 1747 } 1748 } 1749 1750 int 1751 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1752 { 1753 int err = 0; 1754 boolean_t prefetch; 1755 dnode_t *dn; 1756 1757 /* 1758 * We don't have to hold the mutex to check db_state because it 1759 * can't be freed while we have a hold on the buffer. 1760 */ 1761 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1762 1763 DB_DNODE_ENTER(db); 1764 dn = DB_DNODE(db); 1765 1766 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1767 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL; 1768 1769 mutex_enter(&db->db_mtx); 1770 if (flags & DB_RF_PARTIAL_FIRST) 1771 db->db_partial_read = B_TRUE; 1772 else if (!(flags & DB_RF_PARTIAL_MORE)) 1773 db->db_partial_read = B_FALSE; 1774 if (db->db_state == DB_CACHED) { 1775 /* 1776 * Ensure that this block's dnode has been decrypted if 1777 * the caller has requested decrypted data. 1778 */ 1779 err = dbuf_read_verify_dnode_crypt(db, flags); 1780 1781 /* 1782 * If the arc buf is compressed or encrypted and the caller 1783 * requested uncompressed data, we need to untransform it 1784 * before returning. We also call arc_untransform() on any 1785 * unauthenticated blocks, which will verify their MAC if 1786 * the key is now available. 1787 */ 1788 if (err == 0 && db->db_buf != NULL && 1789 (flags & DB_RF_NO_DECRYPT) == 0 && 1790 (arc_is_encrypted(db->db_buf) || 1791 arc_is_unauthenticated(db->db_buf) || 1792 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1793 spa_t *spa = dn->dn_objset->os_spa; 1794 zbookmark_phys_t zb; 1795 1796 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1797 db->db.db_object, db->db_level, db->db_blkid); 1798 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1799 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1800 dbuf_set_data(db, db->db_buf); 1801 } 1802 mutex_exit(&db->db_mtx); 1803 if (err == 0 && prefetch) { 1804 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1805 B_FALSE, flags & DB_RF_HAVESTRUCT); 1806 } 1807 DB_DNODE_EXIT(db); 1808 DBUF_STAT_BUMP(hash_hits); 1809 } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) { 1810 boolean_t need_wait = B_FALSE; 1811 1812 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1813 1814 if (zio == NULL && (db->db_state == DB_NOFILL || 1815 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { 1816 spa_t *spa = dn->dn_objset->os_spa; 1817 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1818 need_wait = B_TRUE; 1819 } 1820 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1821 /* 1822 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1823 * for us 1824 */ 1825 if (!err && prefetch) { 1826 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1827 db->db_state != DB_CACHED, 1828 flags & DB_RF_HAVESTRUCT); 1829 } 1830 1831 DB_DNODE_EXIT(db); 1832 DBUF_STAT_BUMP(hash_misses); 1833 1834 /* 1835 * If we created a zio_root we must execute it to avoid 1836 * leaking it, even if it isn't attached to any work due 1837 * to an error in dbuf_read_impl(). 1838 */ 1839 if (need_wait) { 1840 if (err == 0) 1841 err = zio_wait(zio); 1842 else 1843 VERIFY0(zio_wait(zio)); 1844 } 1845 } else { 1846 /* 1847 * Another reader came in while the dbuf was in flight 1848 * between UNCACHED and CACHED. Either a writer will finish 1849 * writing the buffer (sending the dbuf to CACHED) or the 1850 * first reader's request will reach the read_done callback 1851 * and send the dbuf to CACHED. Otherwise, a failure 1852 * occurred and the dbuf went to UNCACHED. 1853 */ 1854 mutex_exit(&db->db_mtx); 1855 if (prefetch) { 1856 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1857 B_TRUE, flags & DB_RF_HAVESTRUCT); 1858 } 1859 DB_DNODE_EXIT(db); 1860 DBUF_STAT_BUMP(hash_misses); 1861 1862 /* Skip the wait per the caller's request. */ 1863 if ((flags & DB_RF_NEVERWAIT) == 0) { 1864 mutex_enter(&db->db_mtx); 1865 while (db->db_state == DB_READ || 1866 db->db_state == DB_FILL) { 1867 ASSERT(db->db_state == DB_READ || 1868 (flags & DB_RF_HAVESTRUCT) == 0); 1869 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1870 db, zio_t *, zio); 1871 cv_wait(&db->db_changed, &db->db_mtx); 1872 } 1873 if (db->db_state == DB_UNCACHED) 1874 err = SET_ERROR(EIO); 1875 mutex_exit(&db->db_mtx); 1876 } 1877 } 1878 1879 return (err); 1880 } 1881 1882 static void 1883 dbuf_noread(dmu_buf_impl_t *db) 1884 { 1885 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1886 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1887 mutex_enter(&db->db_mtx); 1888 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1889 cv_wait(&db->db_changed, &db->db_mtx); 1890 if (db->db_state == DB_UNCACHED) { 1891 ASSERT(db->db_buf == NULL); 1892 ASSERT(db->db.db_data == NULL); 1893 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1894 db->db_state = DB_FILL; 1895 DTRACE_SET_STATE(db, "assigning filled buffer"); 1896 } else if (db->db_state == DB_NOFILL) { 1897 dbuf_clear_data(db); 1898 } else { 1899 ASSERT3U(db->db_state, ==, DB_CACHED); 1900 } 1901 mutex_exit(&db->db_mtx); 1902 } 1903 1904 void 1905 dbuf_unoverride(dbuf_dirty_record_t *dr) 1906 { 1907 dmu_buf_impl_t *db = dr->dr_dbuf; 1908 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1909 uint64_t txg = dr->dr_txg; 1910 1911 ASSERT(MUTEX_HELD(&db->db_mtx)); 1912 /* 1913 * This assert is valid because dmu_sync() expects to be called by 1914 * a zilog's get_data while holding a range lock. This call only 1915 * comes from dbuf_dirty() callers who must also hold a range lock. 1916 */ 1917 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1918 ASSERT(db->db_level == 0); 1919 1920 if (db->db_blkid == DMU_BONUS_BLKID || 1921 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1922 return; 1923 1924 ASSERT(db->db_data_pending != dr); 1925 1926 /* free this block */ 1927 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1928 zio_free(db->db_objset->os_spa, txg, bp); 1929 1930 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1931 dr->dt.dl.dr_nopwrite = B_FALSE; 1932 dr->dt.dl.dr_has_raw_params = B_FALSE; 1933 1934 /* 1935 * Release the already-written buffer, so we leave it in 1936 * a consistent dirty state. Note that all callers are 1937 * modifying the buffer, so they will immediately do 1938 * another (redundant) arc_release(). Therefore, leave 1939 * the buf thawed to save the effort of freezing & 1940 * immediately re-thawing it. 1941 */ 1942 if (!dr->dt.dl.dr_brtwrite) 1943 arc_release(dr->dt.dl.dr_data, db); 1944 } 1945 1946 /* 1947 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1948 * data blocks in the free range, so that any future readers will find 1949 * empty blocks. 1950 */ 1951 void 1952 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1953 dmu_tx_t *tx) 1954 { 1955 dmu_buf_impl_t *db_search; 1956 dmu_buf_impl_t *db, *db_next; 1957 uint64_t txg = tx->tx_txg; 1958 avl_index_t where; 1959 dbuf_dirty_record_t *dr; 1960 1961 if (end_blkid > dn->dn_maxblkid && 1962 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1963 end_blkid = dn->dn_maxblkid; 1964 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1965 (u_longlong_t)end_blkid); 1966 1967 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1968 db_search->db_level = 0; 1969 db_search->db_blkid = start_blkid; 1970 db_search->db_state = DB_SEARCH; 1971 1972 mutex_enter(&dn->dn_dbufs_mtx); 1973 db = avl_find(&dn->dn_dbufs, db_search, &where); 1974 ASSERT3P(db, ==, NULL); 1975 1976 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1977 1978 for (; db != NULL; db = db_next) { 1979 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1980 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1981 1982 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1983 break; 1984 } 1985 ASSERT3U(db->db_blkid, >=, start_blkid); 1986 1987 /* found a level 0 buffer in the range */ 1988 mutex_enter(&db->db_mtx); 1989 if (dbuf_undirty(db, tx)) { 1990 /* mutex has been dropped and dbuf destroyed */ 1991 continue; 1992 } 1993 1994 if (db->db_state == DB_UNCACHED || 1995 db->db_state == DB_NOFILL || 1996 db->db_state == DB_EVICTING) { 1997 ASSERT(db->db.db_data == NULL); 1998 mutex_exit(&db->db_mtx); 1999 continue; 2000 } 2001 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2002 /* will be handled in dbuf_read_done or dbuf_rele */ 2003 db->db_freed_in_flight = TRUE; 2004 mutex_exit(&db->db_mtx); 2005 continue; 2006 } 2007 if (zfs_refcount_count(&db->db_holds) == 0) { 2008 ASSERT(db->db_buf); 2009 dbuf_destroy(db); 2010 continue; 2011 } 2012 /* The dbuf is referenced */ 2013 2014 dr = list_head(&db->db_dirty_records); 2015 if (dr != NULL) { 2016 if (dr->dr_txg == txg) { 2017 /* 2018 * This buffer is "in-use", re-adjust the file 2019 * size to reflect that this buffer may 2020 * contain new data when we sync. 2021 */ 2022 if (db->db_blkid != DMU_SPILL_BLKID && 2023 db->db_blkid > dn->dn_maxblkid) 2024 dn->dn_maxblkid = db->db_blkid; 2025 dbuf_unoverride(dr); 2026 if (dr->dt.dl.dr_brtwrite) { 2027 ASSERT(db->db.db_data == NULL); 2028 mutex_exit(&db->db_mtx); 2029 continue; 2030 } 2031 } else { 2032 /* 2033 * This dbuf is not dirty in the open context. 2034 * Either uncache it (if its not referenced in 2035 * the open context) or reset its contents to 2036 * empty. 2037 */ 2038 dbuf_fix_old_data(db, txg); 2039 } 2040 } 2041 /* clear the contents if its cached */ 2042 if (db->db_state == DB_CACHED) { 2043 ASSERT(db->db.db_data != NULL); 2044 arc_release(db->db_buf, db); 2045 rw_enter(&db->db_rwlock, RW_WRITER); 2046 memset(db->db.db_data, 0, db->db.db_size); 2047 rw_exit(&db->db_rwlock); 2048 arc_buf_freeze(db->db_buf); 2049 } 2050 2051 mutex_exit(&db->db_mtx); 2052 } 2053 2054 mutex_exit(&dn->dn_dbufs_mtx); 2055 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2056 } 2057 2058 void 2059 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2060 { 2061 arc_buf_t *buf, *old_buf; 2062 dbuf_dirty_record_t *dr; 2063 int osize = db->db.db_size; 2064 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2065 dnode_t *dn; 2066 2067 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2068 2069 DB_DNODE_ENTER(db); 2070 dn = DB_DNODE(db); 2071 2072 /* 2073 * XXX we should be doing a dbuf_read, checking the return 2074 * value and returning that up to our callers 2075 */ 2076 dmu_buf_will_dirty(&db->db, tx); 2077 2078 /* create the data buffer for the new block */ 2079 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2080 2081 /* copy old block data to the new block */ 2082 old_buf = db->db_buf; 2083 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2084 /* zero the remainder */ 2085 if (size > osize) 2086 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2087 2088 mutex_enter(&db->db_mtx); 2089 dbuf_set_data(db, buf); 2090 arc_buf_destroy(old_buf, db); 2091 db->db.db_size = size; 2092 2093 dr = list_head(&db->db_dirty_records); 2094 /* dirty record added by dmu_buf_will_dirty() */ 2095 VERIFY(dr != NULL); 2096 if (db->db_level == 0) 2097 dr->dt.dl.dr_data = buf; 2098 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2099 ASSERT3U(dr->dr_accounted, ==, osize); 2100 dr->dr_accounted = size; 2101 mutex_exit(&db->db_mtx); 2102 2103 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2104 DB_DNODE_EXIT(db); 2105 } 2106 2107 void 2108 dbuf_release_bp(dmu_buf_impl_t *db) 2109 { 2110 objset_t *os __maybe_unused = db->db_objset; 2111 2112 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2113 ASSERT(arc_released(os->os_phys_buf) || 2114 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2115 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2116 2117 (void) arc_release(db->db_buf, db); 2118 } 2119 2120 /* 2121 * We already have a dirty record for this TXG, and we are being 2122 * dirtied again. 2123 */ 2124 static void 2125 dbuf_redirty(dbuf_dirty_record_t *dr) 2126 { 2127 dmu_buf_impl_t *db = dr->dr_dbuf; 2128 2129 ASSERT(MUTEX_HELD(&db->db_mtx)); 2130 2131 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2132 /* 2133 * If this buffer has already been written out, 2134 * we now need to reset its state. 2135 */ 2136 dbuf_unoverride(dr); 2137 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2138 db->db_state != DB_NOFILL) { 2139 /* Already released on initial dirty, so just thaw. */ 2140 ASSERT(arc_released(db->db_buf)); 2141 arc_buf_thaw(db->db_buf); 2142 } 2143 } 2144 } 2145 2146 dbuf_dirty_record_t * 2147 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2148 { 2149 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2150 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2151 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2152 ASSERT(dn->dn_maxblkid >= blkid); 2153 2154 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2155 list_link_init(&dr->dr_dirty_node); 2156 list_link_init(&dr->dr_dbuf_node); 2157 dr->dr_dnode = dn; 2158 dr->dr_txg = tx->tx_txg; 2159 dr->dt.dll.dr_blkid = blkid; 2160 dr->dr_accounted = dn->dn_datablksz; 2161 2162 /* 2163 * There should not be any dbuf for the block that we're dirtying. 2164 * Otherwise the buffer contents could be inconsistent between the 2165 * dbuf and the lightweight dirty record. 2166 */ 2167 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2168 NULL)); 2169 2170 mutex_enter(&dn->dn_mtx); 2171 int txgoff = tx->tx_txg & TXG_MASK; 2172 if (dn->dn_free_ranges[txgoff] != NULL) { 2173 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2174 } 2175 2176 if (dn->dn_nlevels == 1) { 2177 ASSERT3U(blkid, <, dn->dn_nblkptr); 2178 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2179 mutex_exit(&dn->dn_mtx); 2180 rw_exit(&dn->dn_struct_rwlock); 2181 dnode_setdirty(dn, tx); 2182 } else { 2183 mutex_exit(&dn->dn_mtx); 2184 2185 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2186 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2187 1, blkid >> epbs, FTAG); 2188 rw_exit(&dn->dn_struct_rwlock); 2189 if (parent_db == NULL) { 2190 kmem_free(dr, sizeof (*dr)); 2191 return (NULL); 2192 } 2193 int err = dbuf_read(parent_db, NULL, 2194 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2195 if (err != 0) { 2196 dbuf_rele(parent_db, FTAG); 2197 kmem_free(dr, sizeof (*dr)); 2198 return (NULL); 2199 } 2200 2201 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2202 dbuf_rele(parent_db, FTAG); 2203 mutex_enter(&parent_dr->dt.di.dr_mtx); 2204 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2205 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2206 mutex_exit(&parent_dr->dt.di.dr_mtx); 2207 dr->dr_parent = parent_dr; 2208 } 2209 2210 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2211 2212 return (dr); 2213 } 2214 2215 dbuf_dirty_record_t * 2216 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2217 { 2218 dnode_t *dn; 2219 objset_t *os; 2220 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2221 int txgoff = tx->tx_txg & TXG_MASK; 2222 boolean_t drop_struct_rwlock = B_FALSE; 2223 2224 ASSERT(tx->tx_txg != 0); 2225 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2226 DMU_TX_DIRTY_BUF(tx, db); 2227 2228 DB_DNODE_ENTER(db); 2229 dn = DB_DNODE(db); 2230 /* 2231 * Shouldn't dirty a regular buffer in syncing context. Private 2232 * objects may be dirtied in syncing context, but only if they 2233 * were already pre-dirtied in open context. 2234 */ 2235 #ifdef ZFS_DEBUG 2236 if (dn->dn_objset->os_dsl_dataset != NULL) { 2237 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2238 RW_READER, FTAG); 2239 } 2240 ASSERT(!dmu_tx_is_syncing(tx) || 2241 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2242 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2243 dn->dn_objset->os_dsl_dataset == NULL); 2244 if (dn->dn_objset->os_dsl_dataset != NULL) 2245 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2246 #endif 2247 /* 2248 * We make this assert for private objects as well, but after we 2249 * check if we're already dirty. They are allowed to re-dirty 2250 * in syncing context. 2251 */ 2252 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2253 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2254 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2255 2256 mutex_enter(&db->db_mtx); 2257 /* 2258 * XXX make this true for indirects too? The problem is that 2259 * transactions created with dmu_tx_create_assigned() from 2260 * syncing context don't bother holding ahead. 2261 */ 2262 ASSERT(db->db_level != 0 || 2263 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2264 db->db_state == DB_NOFILL); 2265 2266 mutex_enter(&dn->dn_mtx); 2267 dnode_set_dirtyctx(dn, tx, db); 2268 if (tx->tx_txg > dn->dn_dirty_txg) 2269 dn->dn_dirty_txg = tx->tx_txg; 2270 mutex_exit(&dn->dn_mtx); 2271 2272 if (db->db_blkid == DMU_SPILL_BLKID) 2273 dn->dn_have_spill = B_TRUE; 2274 2275 /* 2276 * If this buffer is already dirty, we're done. 2277 */ 2278 dr_head = list_head(&db->db_dirty_records); 2279 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2280 db->db.db_object == DMU_META_DNODE_OBJECT); 2281 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2282 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2283 DB_DNODE_EXIT(db); 2284 2285 dbuf_redirty(dr_next); 2286 mutex_exit(&db->db_mtx); 2287 return (dr_next); 2288 } 2289 2290 /* 2291 * Only valid if not already dirty. 2292 */ 2293 ASSERT(dn->dn_object == 0 || 2294 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2295 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2296 2297 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2298 2299 /* 2300 * We should only be dirtying in syncing context if it's the 2301 * mos or we're initializing the os or it's a special object. 2302 * However, we are allowed to dirty in syncing context provided 2303 * we already dirtied it in open context. Hence we must make 2304 * this assertion only if we're not already dirty. 2305 */ 2306 os = dn->dn_objset; 2307 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2308 #ifdef ZFS_DEBUG 2309 if (dn->dn_objset->os_dsl_dataset != NULL) 2310 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2311 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2312 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2313 if (dn->dn_objset->os_dsl_dataset != NULL) 2314 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2315 #endif 2316 ASSERT(db->db.db_size != 0); 2317 2318 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2319 2320 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2321 dmu_objset_willuse_space(os, db->db.db_size, tx); 2322 } 2323 2324 /* 2325 * If this buffer is dirty in an old transaction group we need 2326 * to make a copy of it so that the changes we make in this 2327 * transaction group won't leak out when we sync the older txg. 2328 */ 2329 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2330 list_link_init(&dr->dr_dirty_node); 2331 list_link_init(&dr->dr_dbuf_node); 2332 dr->dr_dnode = dn; 2333 if (db->db_level == 0) { 2334 void *data_old = db->db_buf; 2335 2336 if (db->db_state != DB_NOFILL) { 2337 if (db->db_blkid == DMU_BONUS_BLKID) { 2338 dbuf_fix_old_data(db, tx->tx_txg); 2339 data_old = db->db.db_data; 2340 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2341 /* 2342 * Release the data buffer from the cache so 2343 * that we can modify it without impacting 2344 * possible other users of this cached data 2345 * block. Note that indirect blocks and 2346 * private objects are not released until the 2347 * syncing state (since they are only modified 2348 * then). 2349 */ 2350 arc_release(db->db_buf, db); 2351 dbuf_fix_old_data(db, tx->tx_txg); 2352 data_old = db->db_buf; 2353 } 2354 ASSERT(data_old != NULL); 2355 } 2356 dr->dt.dl.dr_data = data_old; 2357 } else { 2358 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2359 list_create(&dr->dt.di.dr_children, 2360 sizeof (dbuf_dirty_record_t), 2361 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2362 } 2363 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2364 dr->dr_accounted = db->db.db_size; 2365 } 2366 dr->dr_dbuf = db; 2367 dr->dr_txg = tx->tx_txg; 2368 list_insert_before(&db->db_dirty_records, dr_next, dr); 2369 2370 /* 2371 * We could have been freed_in_flight between the dbuf_noread 2372 * and dbuf_dirty. We win, as though the dbuf_noread() had 2373 * happened after the free. 2374 */ 2375 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2376 db->db_blkid != DMU_SPILL_BLKID) { 2377 mutex_enter(&dn->dn_mtx); 2378 if (dn->dn_free_ranges[txgoff] != NULL) { 2379 range_tree_clear(dn->dn_free_ranges[txgoff], 2380 db->db_blkid, 1); 2381 } 2382 mutex_exit(&dn->dn_mtx); 2383 db->db_freed_in_flight = FALSE; 2384 } 2385 2386 /* 2387 * This buffer is now part of this txg 2388 */ 2389 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2390 db->db_dirtycnt += 1; 2391 ASSERT3U(db->db_dirtycnt, <=, 3); 2392 2393 mutex_exit(&db->db_mtx); 2394 2395 if (db->db_blkid == DMU_BONUS_BLKID || 2396 db->db_blkid == DMU_SPILL_BLKID) { 2397 mutex_enter(&dn->dn_mtx); 2398 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2399 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2400 mutex_exit(&dn->dn_mtx); 2401 dnode_setdirty(dn, tx); 2402 DB_DNODE_EXIT(db); 2403 return (dr); 2404 } 2405 2406 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2407 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2408 drop_struct_rwlock = B_TRUE; 2409 } 2410 2411 /* 2412 * If we are overwriting a dedup BP, then unless it is snapshotted, 2413 * when we get to syncing context we will need to decrement its 2414 * refcount in the DDT. Prefetch the relevant DDT block so that 2415 * syncing context won't have to wait for the i/o. 2416 */ 2417 if (db->db_blkptr != NULL) { 2418 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2419 ddt_prefetch(os->os_spa, db->db_blkptr); 2420 dmu_buf_unlock_parent(db, dblt, FTAG); 2421 } 2422 2423 /* 2424 * We need to hold the dn_struct_rwlock to make this assertion, 2425 * because it protects dn_phys / dn_next_nlevels from changing. 2426 */ 2427 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2428 dn->dn_phys->dn_nlevels > db->db_level || 2429 dn->dn_next_nlevels[txgoff] > db->db_level || 2430 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2431 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2432 2433 2434 if (db->db_level == 0) { 2435 ASSERT(!db->db_objset->os_raw_receive || 2436 dn->dn_maxblkid >= db->db_blkid); 2437 dnode_new_blkid(dn, db->db_blkid, tx, 2438 drop_struct_rwlock, B_FALSE); 2439 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2440 } 2441 2442 if (db->db_level+1 < dn->dn_nlevels) { 2443 dmu_buf_impl_t *parent = db->db_parent; 2444 dbuf_dirty_record_t *di; 2445 int parent_held = FALSE; 2446 2447 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2448 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2449 parent = dbuf_hold_level(dn, db->db_level + 1, 2450 db->db_blkid >> epbs, FTAG); 2451 ASSERT(parent != NULL); 2452 parent_held = TRUE; 2453 } 2454 if (drop_struct_rwlock) 2455 rw_exit(&dn->dn_struct_rwlock); 2456 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2457 di = dbuf_dirty(parent, tx); 2458 if (parent_held) 2459 dbuf_rele(parent, FTAG); 2460 2461 mutex_enter(&db->db_mtx); 2462 /* 2463 * Since we've dropped the mutex, it's possible that 2464 * dbuf_undirty() might have changed this out from under us. 2465 */ 2466 if (list_head(&db->db_dirty_records) == dr || 2467 dn->dn_object == DMU_META_DNODE_OBJECT) { 2468 mutex_enter(&di->dt.di.dr_mtx); 2469 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2470 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2471 list_insert_tail(&di->dt.di.dr_children, dr); 2472 mutex_exit(&di->dt.di.dr_mtx); 2473 dr->dr_parent = di; 2474 } 2475 mutex_exit(&db->db_mtx); 2476 } else { 2477 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2478 ASSERT(db->db_blkid < dn->dn_nblkptr); 2479 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2480 mutex_enter(&dn->dn_mtx); 2481 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2482 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2483 mutex_exit(&dn->dn_mtx); 2484 if (drop_struct_rwlock) 2485 rw_exit(&dn->dn_struct_rwlock); 2486 } 2487 2488 dnode_setdirty(dn, tx); 2489 DB_DNODE_EXIT(db); 2490 return (dr); 2491 } 2492 2493 static void 2494 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2495 { 2496 dmu_buf_impl_t *db = dr->dr_dbuf; 2497 2498 if (dr->dt.dl.dr_data != db->db.db_data) { 2499 struct dnode *dn = dr->dr_dnode; 2500 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2501 2502 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2503 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2504 } 2505 db->db_data_pending = NULL; 2506 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2507 list_remove(&db->db_dirty_records, dr); 2508 if (dr->dr_dbuf->db_level != 0) { 2509 mutex_destroy(&dr->dt.di.dr_mtx); 2510 list_destroy(&dr->dt.di.dr_children); 2511 } 2512 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2513 ASSERT3U(db->db_dirtycnt, >, 0); 2514 db->db_dirtycnt -= 1; 2515 } 2516 2517 /* 2518 * Undirty a buffer in the transaction group referenced by the given 2519 * transaction. Return whether this evicted the dbuf. 2520 */ 2521 boolean_t 2522 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2523 { 2524 uint64_t txg = tx->tx_txg; 2525 boolean_t brtwrite; 2526 2527 ASSERT(txg != 0); 2528 2529 /* 2530 * Due to our use of dn_nlevels below, this can only be called 2531 * in open context, unless we are operating on the MOS. 2532 * From syncing context, dn_nlevels may be different from the 2533 * dn_nlevels used when dbuf was dirtied. 2534 */ 2535 ASSERT(db->db_objset == 2536 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2537 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2538 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2539 ASSERT0(db->db_level); 2540 ASSERT(MUTEX_HELD(&db->db_mtx)); 2541 2542 /* 2543 * If this buffer is not dirty, we're done. 2544 */ 2545 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2546 if (dr == NULL) 2547 return (B_FALSE); 2548 ASSERT(dr->dr_dbuf == db); 2549 2550 brtwrite = dr->dt.dl.dr_brtwrite; 2551 if (brtwrite) { 2552 /* 2553 * We are freeing a block that we cloned in the same 2554 * transaction group. 2555 */ 2556 brt_pending_remove(dmu_objset_spa(db->db_objset), 2557 &dr->dt.dl.dr_overridden_by, tx); 2558 } 2559 2560 dnode_t *dn = dr->dr_dnode; 2561 2562 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2563 2564 ASSERT(db->db.db_size != 0); 2565 2566 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2567 dr->dr_accounted, txg); 2568 2569 list_remove(&db->db_dirty_records, dr); 2570 2571 /* 2572 * Note that there are three places in dbuf_dirty() 2573 * where this dirty record may be put on a list. 2574 * Make sure to do a list_remove corresponding to 2575 * every one of those list_insert calls. 2576 */ 2577 if (dr->dr_parent) { 2578 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2579 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2580 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2581 } else if (db->db_blkid == DMU_SPILL_BLKID || 2582 db->db_level + 1 == dn->dn_nlevels) { 2583 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2584 mutex_enter(&dn->dn_mtx); 2585 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2586 mutex_exit(&dn->dn_mtx); 2587 } 2588 2589 if (db->db_state != DB_NOFILL && !brtwrite) { 2590 dbuf_unoverride(dr); 2591 2592 ASSERT(db->db_buf != NULL); 2593 ASSERT(dr->dt.dl.dr_data != NULL); 2594 if (dr->dt.dl.dr_data != db->db_buf) 2595 arc_buf_destroy(dr->dt.dl.dr_data, db); 2596 } 2597 2598 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2599 2600 ASSERT(db->db_dirtycnt > 0); 2601 db->db_dirtycnt -= 1; 2602 2603 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2604 ASSERT(db->db_state == DB_NOFILL || brtwrite || 2605 arc_released(db->db_buf)); 2606 dbuf_destroy(db); 2607 return (B_TRUE); 2608 } 2609 2610 return (B_FALSE); 2611 } 2612 2613 static void 2614 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2615 { 2616 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2617 2618 ASSERT(tx->tx_txg != 0); 2619 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2620 2621 /* 2622 * Quick check for dirtiness. For already dirty blocks, this 2623 * reduces runtime of this function by >90%, and overall performance 2624 * by 50% for some workloads (e.g. file deletion with indirect blocks 2625 * cached). 2626 */ 2627 mutex_enter(&db->db_mtx); 2628 2629 if (db->db_state == DB_CACHED) { 2630 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2631 /* 2632 * It's possible that it is already dirty but not cached, 2633 * because there are some calls to dbuf_dirty() that don't 2634 * go through dmu_buf_will_dirty(). 2635 */ 2636 if (dr != NULL) { 2637 /* This dbuf is already dirty and cached. */ 2638 dbuf_redirty(dr); 2639 mutex_exit(&db->db_mtx); 2640 return; 2641 } 2642 } 2643 mutex_exit(&db->db_mtx); 2644 2645 DB_DNODE_ENTER(db); 2646 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2647 flags |= DB_RF_HAVESTRUCT; 2648 DB_DNODE_EXIT(db); 2649 (void) dbuf_read(db, NULL, flags); 2650 (void) dbuf_dirty(db, tx); 2651 } 2652 2653 void 2654 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2655 { 2656 dmu_buf_will_dirty_impl(db_fake, 2657 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2658 } 2659 2660 boolean_t 2661 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2662 { 2663 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2664 dbuf_dirty_record_t *dr; 2665 2666 mutex_enter(&db->db_mtx); 2667 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2668 mutex_exit(&db->db_mtx); 2669 return (dr != NULL); 2670 } 2671 2672 void 2673 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2674 { 2675 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2676 2677 db->db_state = DB_NOFILL; 2678 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2679 dmu_buf_will_fill(db_fake, tx); 2680 } 2681 2682 void 2683 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2684 { 2685 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2686 2687 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2688 ASSERT(tx->tx_txg != 0); 2689 ASSERT(db->db_level == 0); 2690 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2691 2692 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2693 dmu_tx_private_ok(tx)); 2694 2695 dbuf_noread(db); 2696 (void) dbuf_dirty(db, tx); 2697 } 2698 2699 /* 2700 * This function is effectively the same as dmu_buf_will_dirty(), but 2701 * indicates the caller expects raw encrypted data in the db, and provides 2702 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2703 * blkptr_t when this dbuf is written. This is only used for blocks of 2704 * dnodes, during raw receive. 2705 */ 2706 void 2707 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2708 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2709 { 2710 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2711 dbuf_dirty_record_t *dr; 2712 2713 /* 2714 * dr_has_raw_params is only processed for blocks of dnodes 2715 * (see dbuf_sync_dnode_leaf_crypt()). 2716 */ 2717 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2718 ASSERT3U(db->db_level, ==, 0); 2719 ASSERT(db->db_objset->os_raw_receive); 2720 2721 dmu_buf_will_dirty_impl(db_fake, 2722 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2723 2724 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2725 2726 ASSERT3P(dr, !=, NULL); 2727 2728 dr->dt.dl.dr_has_raw_params = B_TRUE; 2729 dr->dt.dl.dr_byteorder = byteorder; 2730 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2731 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2732 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2733 } 2734 2735 static void 2736 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2737 { 2738 struct dirty_leaf *dl; 2739 dbuf_dirty_record_t *dr; 2740 2741 dr = list_head(&db->db_dirty_records); 2742 ASSERT3P(dr, !=, NULL); 2743 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2744 dl = &dr->dt.dl; 2745 dl->dr_overridden_by = *bp; 2746 dl->dr_override_state = DR_OVERRIDDEN; 2747 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2748 } 2749 2750 void 2751 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2752 { 2753 (void) tx; 2754 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2755 dbuf_states_t old_state; 2756 mutex_enter(&db->db_mtx); 2757 DBUF_VERIFY(db); 2758 2759 old_state = db->db_state; 2760 db->db_state = DB_CACHED; 2761 if (old_state == DB_FILL) { 2762 if (db->db_level == 0 && db->db_freed_in_flight) { 2763 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2764 /* we were freed while filling */ 2765 /* XXX dbuf_undirty? */ 2766 memset(db->db.db_data, 0, db->db.db_size); 2767 db->db_freed_in_flight = FALSE; 2768 DTRACE_SET_STATE(db, 2769 "fill done handling freed in flight"); 2770 } else { 2771 DTRACE_SET_STATE(db, "fill done"); 2772 } 2773 cv_broadcast(&db->db_changed); 2774 } 2775 mutex_exit(&db->db_mtx); 2776 } 2777 2778 void 2779 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2780 bp_embedded_type_t etype, enum zio_compress comp, 2781 int uncompressed_size, int compressed_size, int byteorder, 2782 dmu_tx_t *tx) 2783 { 2784 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2785 struct dirty_leaf *dl; 2786 dmu_object_type_t type; 2787 dbuf_dirty_record_t *dr; 2788 2789 if (etype == BP_EMBEDDED_TYPE_DATA) { 2790 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2791 SPA_FEATURE_EMBEDDED_DATA)); 2792 } 2793 2794 DB_DNODE_ENTER(db); 2795 type = DB_DNODE(db)->dn_type; 2796 DB_DNODE_EXIT(db); 2797 2798 ASSERT0(db->db_level); 2799 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2800 2801 dmu_buf_will_not_fill(dbuf, tx); 2802 2803 dr = list_head(&db->db_dirty_records); 2804 ASSERT3P(dr, !=, NULL); 2805 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2806 dl = &dr->dt.dl; 2807 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2808 data, comp, uncompressed_size, compressed_size); 2809 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2810 BP_SET_TYPE(&dl->dr_overridden_by, type); 2811 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2812 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2813 2814 dl->dr_override_state = DR_OVERRIDDEN; 2815 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2816 } 2817 2818 void 2819 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2820 { 2821 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2822 dmu_object_type_t type; 2823 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2824 SPA_FEATURE_REDACTED_DATASETS)); 2825 2826 DB_DNODE_ENTER(db); 2827 type = DB_DNODE(db)->dn_type; 2828 DB_DNODE_EXIT(db); 2829 2830 ASSERT0(db->db_level); 2831 dmu_buf_will_not_fill(dbuf, tx); 2832 2833 blkptr_t bp = { { { {0} } } }; 2834 BP_SET_TYPE(&bp, type); 2835 BP_SET_LEVEL(&bp, 0); 2836 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2837 BP_SET_REDACTED(&bp); 2838 BPE_SET_LSIZE(&bp, dbuf->db_size); 2839 2840 dbuf_override_impl(db, &bp, tx); 2841 } 2842 2843 /* 2844 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2845 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2846 */ 2847 void 2848 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2849 { 2850 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2851 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2852 ASSERT(db->db_level == 0); 2853 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2854 ASSERT(buf != NULL); 2855 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2856 ASSERT(tx->tx_txg != 0); 2857 2858 arc_return_buf(buf, db); 2859 ASSERT(arc_released(buf)); 2860 2861 mutex_enter(&db->db_mtx); 2862 2863 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2864 cv_wait(&db->db_changed, &db->db_mtx); 2865 2866 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2867 2868 if (db->db_state == DB_CACHED && 2869 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2870 /* 2871 * In practice, we will never have a case where we have an 2872 * encrypted arc buffer while additional holds exist on the 2873 * dbuf. We don't handle this here so we simply assert that 2874 * fact instead. 2875 */ 2876 ASSERT(!arc_is_encrypted(buf)); 2877 mutex_exit(&db->db_mtx); 2878 (void) dbuf_dirty(db, tx); 2879 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2880 arc_buf_destroy(buf, db); 2881 return; 2882 } 2883 2884 if (db->db_state == DB_CACHED) { 2885 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2886 2887 ASSERT(db->db_buf != NULL); 2888 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2889 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2890 2891 if (!arc_released(db->db_buf)) { 2892 ASSERT(dr->dt.dl.dr_override_state == 2893 DR_OVERRIDDEN); 2894 arc_release(db->db_buf, db); 2895 } 2896 dr->dt.dl.dr_data = buf; 2897 arc_buf_destroy(db->db_buf, db); 2898 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2899 arc_release(db->db_buf, db); 2900 arc_buf_destroy(db->db_buf, db); 2901 } 2902 db->db_buf = NULL; 2903 } 2904 ASSERT(db->db_buf == NULL); 2905 dbuf_set_data(db, buf); 2906 db->db_state = DB_FILL; 2907 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2908 mutex_exit(&db->db_mtx); 2909 (void) dbuf_dirty(db, tx); 2910 dmu_buf_fill_done(&db->db, tx); 2911 } 2912 2913 void 2914 dbuf_destroy(dmu_buf_impl_t *db) 2915 { 2916 dnode_t *dn; 2917 dmu_buf_impl_t *parent = db->db_parent; 2918 dmu_buf_impl_t *dndb; 2919 2920 ASSERT(MUTEX_HELD(&db->db_mtx)); 2921 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2922 2923 if (db->db_buf != NULL) { 2924 arc_buf_destroy(db->db_buf, db); 2925 db->db_buf = NULL; 2926 } 2927 2928 if (db->db_blkid == DMU_BONUS_BLKID) { 2929 int slots = DB_DNODE(db)->dn_num_slots; 2930 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2931 if (db->db.db_data != NULL) { 2932 kmem_free(db->db.db_data, bonuslen); 2933 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2934 db->db_state = DB_UNCACHED; 2935 DTRACE_SET_STATE(db, "buffer cleared"); 2936 } 2937 } 2938 2939 dbuf_clear_data(db); 2940 2941 if (multilist_link_active(&db->db_cache_link)) { 2942 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2943 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2944 2945 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2946 (void) zfs_refcount_remove_many( 2947 &dbuf_caches[db->db_caching_status].size, 2948 db->db.db_size, db); 2949 2950 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2951 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2952 } else { 2953 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2954 DBUF_STAT_BUMPDOWN(cache_count); 2955 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2956 db->db.db_size); 2957 } 2958 db->db_caching_status = DB_NO_CACHE; 2959 } 2960 2961 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2962 ASSERT(db->db_data_pending == NULL); 2963 ASSERT(list_is_empty(&db->db_dirty_records)); 2964 2965 db->db_state = DB_EVICTING; 2966 DTRACE_SET_STATE(db, "buffer eviction started"); 2967 db->db_blkptr = NULL; 2968 2969 /* 2970 * Now that db_state is DB_EVICTING, nobody else can find this via 2971 * the hash table. We can now drop db_mtx, which allows us to 2972 * acquire the dn_dbufs_mtx. 2973 */ 2974 mutex_exit(&db->db_mtx); 2975 2976 DB_DNODE_ENTER(db); 2977 dn = DB_DNODE(db); 2978 dndb = dn->dn_dbuf; 2979 if (db->db_blkid != DMU_BONUS_BLKID) { 2980 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2981 if (needlock) 2982 mutex_enter_nested(&dn->dn_dbufs_mtx, 2983 NESTED_SINGLE); 2984 avl_remove(&dn->dn_dbufs, db); 2985 membar_producer(); 2986 DB_DNODE_EXIT(db); 2987 if (needlock) 2988 mutex_exit(&dn->dn_dbufs_mtx); 2989 /* 2990 * Decrementing the dbuf count means that the hold corresponding 2991 * to the removed dbuf is no longer discounted in dnode_move(), 2992 * so the dnode cannot be moved until after we release the hold. 2993 * The membar_producer() ensures visibility of the decremented 2994 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2995 * release any lock. 2996 */ 2997 mutex_enter(&dn->dn_mtx); 2998 dnode_rele_and_unlock(dn, db, B_TRUE); 2999 db->db_dnode_handle = NULL; 3000 3001 dbuf_hash_remove(db); 3002 } else { 3003 DB_DNODE_EXIT(db); 3004 } 3005 3006 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3007 3008 db->db_parent = NULL; 3009 3010 ASSERT(db->db_buf == NULL); 3011 ASSERT(db->db.db_data == NULL); 3012 ASSERT(db->db_hash_next == NULL); 3013 ASSERT(db->db_blkptr == NULL); 3014 ASSERT(db->db_data_pending == NULL); 3015 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3016 ASSERT(!multilist_link_active(&db->db_cache_link)); 3017 3018 /* 3019 * If this dbuf is referenced from an indirect dbuf, 3020 * decrement the ref count on the indirect dbuf. 3021 */ 3022 if (parent && parent != dndb) { 3023 mutex_enter(&parent->db_mtx); 3024 dbuf_rele_and_unlock(parent, db, B_TRUE); 3025 } 3026 3027 kmem_cache_free(dbuf_kmem_cache, db); 3028 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3029 } 3030 3031 /* 3032 * Note: While bpp will always be updated if the function returns success, 3033 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3034 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3035 * object. 3036 */ 3037 __attribute__((always_inline)) 3038 static inline int 3039 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3040 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3041 { 3042 *parentp = NULL; 3043 *bpp = NULL; 3044 3045 ASSERT(blkid != DMU_BONUS_BLKID); 3046 3047 if (blkid == DMU_SPILL_BLKID) { 3048 mutex_enter(&dn->dn_mtx); 3049 if (dn->dn_have_spill && 3050 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3051 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3052 else 3053 *bpp = NULL; 3054 dbuf_add_ref(dn->dn_dbuf, NULL); 3055 *parentp = dn->dn_dbuf; 3056 mutex_exit(&dn->dn_mtx); 3057 return (0); 3058 } 3059 3060 int nlevels = 3061 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3062 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3063 3064 ASSERT3U(level * epbs, <, 64); 3065 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3066 /* 3067 * This assertion shouldn't trip as long as the max indirect block size 3068 * is less than 1M. The reason for this is that up to that point, 3069 * the number of levels required to address an entire object with blocks 3070 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3071 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3072 * (i.e. we can address the entire object), objects will all use at most 3073 * N-1 levels and the assertion won't overflow. However, once epbs is 3074 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3075 * enough to address an entire object, so objects will have 5 levels, 3076 * but then this assertion will overflow. 3077 * 3078 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3079 * need to redo this logic to handle overflows. 3080 */ 3081 ASSERT(level >= nlevels || 3082 ((nlevels - level - 1) * epbs) + 3083 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3084 if (level >= nlevels || 3085 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3086 ((nlevels - level - 1) * epbs)) || 3087 (fail_sparse && 3088 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3089 /* the buffer has no parent yet */ 3090 return (SET_ERROR(ENOENT)); 3091 } else if (level < nlevels-1) { 3092 /* this block is referenced from an indirect block */ 3093 int err; 3094 3095 err = dbuf_hold_impl(dn, level + 1, 3096 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3097 3098 if (err) 3099 return (err); 3100 err = dbuf_read(*parentp, NULL, 3101 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3102 if (err) { 3103 dbuf_rele(*parentp, NULL); 3104 *parentp = NULL; 3105 return (err); 3106 } 3107 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3108 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3109 (blkid & ((1ULL << epbs) - 1)); 3110 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3111 ASSERT(BP_IS_HOLE(*bpp)); 3112 rw_exit(&(*parentp)->db_rwlock); 3113 return (0); 3114 } else { 3115 /* the block is referenced from the dnode */ 3116 ASSERT3U(level, ==, nlevels-1); 3117 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3118 blkid < dn->dn_phys->dn_nblkptr); 3119 if (dn->dn_dbuf) { 3120 dbuf_add_ref(dn->dn_dbuf, NULL); 3121 *parentp = dn->dn_dbuf; 3122 } 3123 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3124 return (0); 3125 } 3126 } 3127 3128 static dmu_buf_impl_t * 3129 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3130 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3131 { 3132 objset_t *os = dn->dn_objset; 3133 dmu_buf_impl_t *db, *odb; 3134 3135 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3136 ASSERT(dn->dn_type != DMU_OT_NONE); 3137 3138 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3139 3140 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3141 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3142 3143 db->db_objset = os; 3144 db->db.db_object = dn->dn_object; 3145 db->db_level = level; 3146 db->db_blkid = blkid; 3147 db->db_dirtycnt = 0; 3148 db->db_dnode_handle = dn->dn_handle; 3149 db->db_parent = parent; 3150 db->db_blkptr = blkptr; 3151 db->db_hash = hash; 3152 3153 db->db_user = NULL; 3154 db->db_user_immediate_evict = FALSE; 3155 db->db_freed_in_flight = FALSE; 3156 db->db_pending_evict = FALSE; 3157 3158 if (blkid == DMU_BONUS_BLKID) { 3159 ASSERT3P(parent, ==, dn->dn_dbuf); 3160 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3161 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3162 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3163 db->db.db_offset = DMU_BONUS_BLKID; 3164 db->db_state = DB_UNCACHED; 3165 DTRACE_SET_STATE(db, "bonus buffer created"); 3166 db->db_caching_status = DB_NO_CACHE; 3167 /* the bonus dbuf is not placed in the hash table */ 3168 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3169 return (db); 3170 } else if (blkid == DMU_SPILL_BLKID) { 3171 db->db.db_size = (blkptr != NULL) ? 3172 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3173 db->db.db_offset = 0; 3174 } else { 3175 int blocksize = 3176 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3177 db->db.db_size = blocksize; 3178 db->db.db_offset = db->db_blkid * blocksize; 3179 } 3180 3181 /* 3182 * Hold the dn_dbufs_mtx while we get the new dbuf 3183 * in the hash table *and* added to the dbufs list. 3184 * This prevents a possible deadlock with someone 3185 * trying to look up this dbuf before it's added to the 3186 * dn_dbufs list. 3187 */ 3188 mutex_enter(&dn->dn_dbufs_mtx); 3189 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3190 if ((odb = dbuf_hash_insert(db)) != NULL) { 3191 /* someone else inserted it first */ 3192 mutex_exit(&dn->dn_dbufs_mtx); 3193 kmem_cache_free(dbuf_kmem_cache, db); 3194 DBUF_STAT_BUMP(hash_insert_race); 3195 return (odb); 3196 } 3197 avl_add(&dn->dn_dbufs, db); 3198 3199 db->db_state = DB_UNCACHED; 3200 DTRACE_SET_STATE(db, "regular buffer created"); 3201 db->db_caching_status = DB_NO_CACHE; 3202 mutex_exit(&dn->dn_dbufs_mtx); 3203 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3204 3205 if (parent && parent != dn->dn_dbuf) 3206 dbuf_add_ref(parent, db); 3207 3208 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3209 zfs_refcount_count(&dn->dn_holds) > 0); 3210 (void) zfs_refcount_add(&dn->dn_holds, db); 3211 3212 dprintf_dbuf(db, "db=%p\n", db); 3213 3214 return (db); 3215 } 3216 3217 /* 3218 * This function returns a block pointer and information about the object, 3219 * given a dnode and a block. This is a publicly accessible version of 3220 * dbuf_findbp that only returns some information, rather than the 3221 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3222 * should be locked as (at least) a reader. 3223 */ 3224 int 3225 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3226 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3227 { 3228 dmu_buf_impl_t *dbp = NULL; 3229 blkptr_t *bp2; 3230 int err = 0; 3231 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3232 3233 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3234 if (err == 0) { 3235 ASSERT3P(bp2, !=, NULL); 3236 *bp = *bp2; 3237 if (dbp != NULL) 3238 dbuf_rele(dbp, NULL); 3239 if (datablkszsec != NULL) 3240 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3241 if (indblkshift != NULL) 3242 *indblkshift = dn->dn_phys->dn_indblkshift; 3243 } 3244 3245 return (err); 3246 } 3247 3248 typedef struct dbuf_prefetch_arg { 3249 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3250 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3251 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3252 int dpa_curlevel; /* The current level that we're reading */ 3253 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3254 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3255 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3256 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3257 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3258 void *dpa_arg; /* prefetch completion arg */ 3259 } dbuf_prefetch_arg_t; 3260 3261 static void 3262 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3263 { 3264 if (dpa->dpa_cb != NULL) { 3265 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3266 dpa->dpa_zb.zb_blkid, io_done); 3267 } 3268 kmem_free(dpa, sizeof (*dpa)); 3269 } 3270 3271 static void 3272 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3273 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3274 { 3275 (void) zio, (void) zb, (void) iobp; 3276 dbuf_prefetch_arg_t *dpa = private; 3277 3278 if (abuf != NULL) 3279 arc_buf_destroy(abuf, private); 3280 3281 dbuf_prefetch_fini(dpa, B_TRUE); 3282 } 3283 3284 /* 3285 * Actually issue the prefetch read for the block given. 3286 */ 3287 static void 3288 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3289 { 3290 ASSERT(!BP_IS_REDACTED(bp) || 3291 dsl_dataset_feature_is_active( 3292 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3293 SPA_FEATURE_REDACTED_DATASETS)); 3294 3295 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3296 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3297 3298 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3299 arc_flags_t aflags = 3300 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3301 ARC_FLAG_NO_BUF; 3302 3303 /* dnodes are always read as raw and then converted later */ 3304 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3305 dpa->dpa_curlevel == 0) 3306 zio_flags |= ZIO_FLAG_RAW; 3307 3308 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3309 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3310 ASSERT(dpa->dpa_zio != NULL); 3311 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3312 dbuf_issue_final_prefetch_done, dpa, 3313 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3314 } 3315 3316 /* 3317 * Called when an indirect block above our prefetch target is read in. This 3318 * will either read in the next indirect block down the tree or issue the actual 3319 * prefetch if the next block down is our target. 3320 */ 3321 static void 3322 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3323 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3324 { 3325 (void) zb, (void) iobp; 3326 dbuf_prefetch_arg_t *dpa = private; 3327 3328 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3329 ASSERT3S(dpa->dpa_curlevel, >, 0); 3330 3331 if (abuf == NULL) { 3332 ASSERT(zio == NULL || zio->io_error != 0); 3333 dbuf_prefetch_fini(dpa, B_TRUE); 3334 return; 3335 } 3336 ASSERT(zio == NULL || zio->io_error == 0); 3337 3338 /* 3339 * The dpa_dnode is only valid if we are called with a NULL 3340 * zio. This indicates that the arc_read() returned without 3341 * first calling zio_read() to issue a physical read. Once 3342 * a physical read is made the dpa_dnode must be invalidated 3343 * as the locks guarding it may have been dropped. If the 3344 * dpa_dnode is still valid, then we want to add it to the dbuf 3345 * cache. To do so, we must hold the dbuf associated with the block 3346 * we just prefetched, read its contents so that we associate it 3347 * with an arc_buf_t, and then release it. 3348 */ 3349 if (zio != NULL) { 3350 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3351 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3352 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3353 } else { 3354 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3355 } 3356 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3357 3358 dpa->dpa_dnode = NULL; 3359 } else if (dpa->dpa_dnode != NULL) { 3360 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3361 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3362 dpa->dpa_zb.zb_level)); 3363 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3364 dpa->dpa_curlevel, curblkid, FTAG); 3365 if (db == NULL) { 3366 arc_buf_destroy(abuf, private); 3367 dbuf_prefetch_fini(dpa, B_TRUE); 3368 return; 3369 } 3370 (void) dbuf_read(db, NULL, 3371 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3372 dbuf_rele(db, FTAG); 3373 } 3374 3375 dpa->dpa_curlevel--; 3376 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3377 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3378 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3379 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3380 3381 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3382 dsl_dataset_feature_is_active( 3383 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3384 SPA_FEATURE_REDACTED_DATASETS))); 3385 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3386 arc_buf_destroy(abuf, private); 3387 dbuf_prefetch_fini(dpa, B_TRUE); 3388 return; 3389 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3390 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3391 dbuf_issue_final_prefetch(dpa, bp); 3392 } else { 3393 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3394 zbookmark_phys_t zb; 3395 3396 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3397 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3398 iter_aflags |= ARC_FLAG_L2CACHE; 3399 3400 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3401 3402 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3403 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3404 3405 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3406 bp, dbuf_prefetch_indirect_done, dpa, 3407 ZIO_PRIORITY_SYNC_READ, 3408 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3409 &iter_aflags, &zb); 3410 } 3411 3412 arc_buf_destroy(abuf, private); 3413 } 3414 3415 /* 3416 * Issue prefetch reads for the given block on the given level. If the indirect 3417 * blocks above that block are not in memory, we will read them in 3418 * asynchronously. As a result, this call never blocks waiting for a read to 3419 * complete. Note that the prefetch might fail if the dataset is encrypted and 3420 * the encryption key is unmapped before the IO completes. 3421 */ 3422 int 3423 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3424 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3425 void *arg) 3426 { 3427 blkptr_t bp; 3428 int epbs, nlevels, curlevel; 3429 uint64_t curblkid; 3430 3431 ASSERT(blkid != DMU_BONUS_BLKID); 3432 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3433 3434 if (blkid > dn->dn_maxblkid) 3435 goto no_issue; 3436 3437 if (level == 0 && dnode_block_freed(dn, blkid)) 3438 goto no_issue; 3439 3440 /* 3441 * This dnode hasn't been written to disk yet, so there's nothing to 3442 * prefetch. 3443 */ 3444 nlevels = dn->dn_phys->dn_nlevels; 3445 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3446 goto no_issue; 3447 3448 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3449 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3450 goto no_issue; 3451 3452 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3453 level, blkid, NULL); 3454 if (db != NULL) { 3455 mutex_exit(&db->db_mtx); 3456 /* 3457 * This dbuf already exists. It is either CACHED, or 3458 * (we assume) about to be read or filled. 3459 */ 3460 goto no_issue; 3461 } 3462 3463 /* 3464 * Find the closest ancestor (indirect block) of the target block 3465 * that is present in the cache. In this indirect block, we will 3466 * find the bp that is at curlevel, curblkid. 3467 */ 3468 curlevel = level; 3469 curblkid = blkid; 3470 while (curlevel < nlevels - 1) { 3471 int parent_level = curlevel + 1; 3472 uint64_t parent_blkid = curblkid >> epbs; 3473 dmu_buf_impl_t *db; 3474 3475 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3476 FALSE, TRUE, FTAG, &db) == 0) { 3477 blkptr_t *bpp = db->db_buf->b_data; 3478 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3479 dbuf_rele(db, FTAG); 3480 break; 3481 } 3482 3483 curlevel = parent_level; 3484 curblkid = parent_blkid; 3485 } 3486 3487 if (curlevel == nlevels - 1) { 3488 /* No cached indirect blocks found. */ 3489 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3490 bp = dn->dn_phys->dn_blkptr[curblkid]; 3491 } 3492 ASSERT(!BP_IS_REDACTED(&bp) || 3493 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3494 SPA_FEATURE_REDACTED_DATASETS)); 3495 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3496 goto no_issue; 3497 3498 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3499 3500 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3501 ZIO_FLAG_CANFAIL); 3502 3503 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3504 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3505 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3506 dn->dn_object, level, blkid); 3507 dpa->dpa_curlevel = curlevel; 3508 dpa->dpa_prio = prio; 3509 dpa->dpa_aflags = aflags; 3510 dpa->dpa_spa = dn->dn_objset->os_spa; 3511 dpa->dpa_dnode = dn; 3512 dpa->dpa_epbs = epbs; 3513 dpa->dpa_zio = pio; 3514 dpa->dpa_cb = cb; 3515 dpa->dpa_arg = arg; 3516 3517 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3518 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3519 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3520 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3521 3522 /* 3523 * If we have the indirect just above us, no need to do the asynchronous 3524 * prefetch chain; we'll just run the last step ourselves. If we're at 3525 * a higher level, though, we want to issue the prefetches for all the 3526 * indirect blocks asynchronously, so we can go on with whatever we were 3527 * doing. 3528 */ 3529 if (curlevel == level) { 3530 ASSERT3U(curblkid, ==, blkid); 3531 dbuf_issue_final_prefetch(dpa, &bp); 3532 } else { 3533 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3534 zbookmark_phys_t zb; 3535 3536 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3537 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3538 iter_aflags |= ARC_FLAG_L2CACHE; 3539 3540 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3541 dn->dn_object, curlevel, curblkid); 3542 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3543 &bp, dbuf_prefetch_indirect_done, dpa, 3544 ZIO_PRIORITY_SYNC_READ, 3545 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3546 &iter_aflags, &zb); 3547 } 3548 /* 3549 * We use pio here instead of dpa_zio since it's possible that 3550 * dpa may have already been freed. 3551 */ 3552 zio_nowait(pio); 3553 return (1); 3554 no_issue: 3555 if (cb != NULL) 3556 cb(arg, level, blkid, B_FALSE); 3557 return (0); 3558 } 3559 3560 int 3561 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3562 arc_flags_t aflags) 3563 { 3564 3565 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3566 } 3567 3568 /* 3569 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3570 * the case of encrypted, compressed and uncompressed buffers by 3571 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3572 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3573 * 3574 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3575 */ 3576 noinline static void 3577 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3578 { 3579 dbuf_dirty_record_t *dr = db->db_data_pending; 3580 arc_buf_t *data = dr->dt.dl.dr_data; 3581 enum zio_compress compress_type = arc_get_compression(data); 3582 uint8_t complevel = arc_get_complevel(data); 3583 3584 if (arc_is_encrypted(data)) { 3585 boolean_t byteorder; 3586 uint8_t salt[ZIO_DATA_SALT_LEN]; 3587 uint8_t iv[ZIO_DATA_IV_LEN]; 3588 uint8_t mac[ZIO_DATA_MAC_LEN]; 3589 3590 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3591 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3592 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3593 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3594 compress_type, complevel)); 3595 } else if (compress_type != ZIO_COMPRESS_OFF) { 3596 dbuf_set_data(db, arc_alloc_compressed_buf( 3597 dn->dn_objset->os_spa, db, arc_buf_size(data), 3598 arc_buf_lsize(data), compress_type, complevel)); 3599 } else { 3600 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3601 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3602 } 3603 3604 rw_enter(&db->db_rwlock, RW_WRITER); 3605 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3606 rw_exit(&db->db_rwlock); 3607 } 3608 3609 /* 3610 * Returns with db_holds incremented, and db_mtx not held. 3611 * Note: dn_struct_rwlock must be held. 3612 */ 3613 int 3614 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3615 boolean_t fail_sparse, boolean_t fail_uncached, 3616 const void *tag, dmu_buf_impl_t **dbp) 3617 { 3618 dmu_buf_impl_t *db, *parent = NULL; 3619 uint64_t hv; 3620 3621 /* If the pool has been created, verify the tx_sync_lock is not held */ 3622 spa_t *spa = dn->dn_objset->os_spa; 3623 dsl_pool_t *dp = spa->spa_dsl_pool; 3624 if (dp != NULL) { 3625 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3626 } 3627 3628 ASSERT(blkid != DMU_BONUS_BLKID); 3629 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3630 ASSERT3U(dn->dn_nlevels, >, level); 3631 3632 *dbp = NULL; 3633 3634 /* dbuf_find() returns with db_mtx held */ 3635 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3636 3637 if (db == NULL) { 3638 blkptr_t *bp = NULL; 3639 int err; 3640 3641 if (fail_uncached) 3642 return (SET_ERROR(ENOENT)); 3643 3644 ASSERT3P(parent, ==, NULL); 3645 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3646 if (fail_sparse) { 3647 if (err == 0 && bp && BP_IS_HOLE(bp)) 3648 err = SET_ERROR(ENOENT); 3649 if (err) { 3650 if (parent) 3651 dbuf_rele(parent, NULL); 3652 return (err); 3653 } 3654 } 3655 if (err && err != ENOENT) 3656 return (err); 3657 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3658 } 3659 3660 if (fail_uncached && db->db_state != DB_CACHED) { 3661 mutex_exit(&db->db_mtx); 3662 return (SET_ERROR(ENOENT)); 3663 } 3664 3665 if (db->db_buf != NULL) { 3666 arc_buf_access(db->db_buf); 3667 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3668 } 3669 3670 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3671 3672 /* 3673 * If this buffer is currently syncing out, and we are 3674 * still referencing it from db_data, we need to make a copy 3675 * of it in case we decide we want to dirty it again in this txg. 3676 */ 3677 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3678 dn->dn_object != DMU_META_DNODE_OBJECT && 3679 db->db_state == DB_CACHED && db->db_data_pending) { 3680 dbuf_dirty_record_t *dr = db->db_data_pending; 3681 if (dr->dt.dl.dr_data == db->db_buf) { 3682 ASSERT3P(db->db_buf, !=, NULL); 3683 dbuf_hold_copy(dn, db); 3684 } 3685 } 3686 3687 if (multilist_link_active(&db->db_cache_link)) { 3688 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3689 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3690 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3691 3692 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3693 (void) zfs_refcount_remove_many( 3694 &dbuf_caches[db->db_caching_status].size, 3695 db->db.db_size, db); 3696 3697 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3698 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3699 } else { 3700 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3701 DBUF_STAT_BUMPDOWN(cache_count); 3702 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3703 db->db.db_size); 3704 } 3705 db->db_caching_status = DB_NO_CACHE; 3706 } 3707 (void) zfs_refcount_add(&db->db_holds, tag); 3708 DBUF_VERIFY(db); 3709 mutex_exit(&db->db_mtx); 3710 3711 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3712 if (parent) 3713 dbuf_rele(parent, NULL); 3714 3715 ASSERT3P(DB_DNODE(db), ==, dn); 3716 ASSERT3U(db->db_blkid, ==, blkid); 3717 ASSERT3U(db->db_level, ==, level); 3718 *dbp = db; 3719 3720 return (0); 3721 } 3722 3723 dmu_buf_impl_t * 3724 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3725 { 3726 return (dbuf_hold_level(dn, 0, blkid, tag)); 3727 } 3728 3729 dmu_buf_impl_t * 3730 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3731 { 3732 dmu_buf_impl_t *db; 3733 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3734 return (err ? NULL : db); 3735 } 3736 3737 void 3738 dbuf_create_bonus(dnode_t *dn) 3739 { 3740 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3741 3742 ASSERT(dn->dn_bonus == NULL); 3743 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 3744 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 3745 } 3746 3747 int 3748 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3749 { 3750 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3751 3752 if (db->db_blkid != DMU_SPILL_BLKID) 3753 return (SET_ERROR(ENOTSUP)); 3754 if (blksz == 0) 3755 blksz = SPA_MINBLOCKSIZE; 3756 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3757 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3758 3759 dbuf_new_size(db, blksz, tx); 3760 3761 return (0); 3762 } 3763 3764 void 3765 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3766 { 3767 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3768 } 3769 3770 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3771 void 3772 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3773 { 3774 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3775 VERIFY3S(holds, >, 1); 3776 } 3777 3778 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3779 boolean_t 3780 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3781 const void *tag) 3782 { 3783 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3784 dmu_buf_impl_t *found_db; 3785 boolean_t result = B_FALSE; 3786 3787 if (blkid == DMU_BONUS_BLKID) 3788 found_db = dbuf_find_bonus(os, obj); 3789 else 3790 found_db = dbuf_find(os, obj, 0, blkid, NULL); 3791 3792 if (found_db != NULL) { 3793 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3794 (void) zfs_refcount_add(&db->db_holds, tag); 3795 result = B_TRUE; 3796 } 3797 mutex_exit(&found_db->db_mtx); 3798 } 3799 return (result); 3800 } 3801 3802 /* 3803 * If you call dbuf_rele() you had better not be referencing the dnode handle 3804 * unless you have some other direct or indirect hold on the dnode. (An indirect 3805 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3806 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3807 * dnode's parent dbuf evicting its dnode handles. 3808 */ 3809 void 3810 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3811 { 3812 mutex_enter(&db->db_mtx); 3813 dbuf_rele_and_unlock(db, tag, B_FALSE); 3814 } 3815 3816 void 3817 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3818 { 3819 dbuf_rele((dmu_buf_impl_t *)db, tag); 3820 } 3821 3822 /* 3823 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3824 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3825 * argument should be set if we are already in the dbuf-evicting code 3826 * path, in which case we don't want to recursively evict. This allows us to 3827 * avoid deeply nested stacks that would have a call flow similar to this: 3828 * 3829 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3830 * ^ | 3831 * | | 3832 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3833 * 3834 */ 3835 void 3836 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3837 { 3838 int64_t holds; 3839 uint64_t size; 3840 3841 ASSERT(MUTEX_HELD(&db->db_mtx)); 3842 DBUF_VERIFY(db); 3843 3844 /* 3845 * Remove the reference to the dbuf before removing its hold on the 3846 * dnode so we can guarantee in dnode_move() that a referenced bonus 3847 * buffer has a corresponding dnode hold. 3848 */ 3849 holds = zfs_refcount_remove(&db->db_holds, tag); 3850 ASSERT(holds >= 0); 3851 3852 /* 3853 * We can't freeze indirects if there is a possibility that they 3854 * may be modified in the current syncing context. 3855 */ 3856 if (db->db_buf != NULL && 3857 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3858 arc_buf_freeze(db->db_buf); 3859 } 3860 3861 if (holds == db->db_dirtycnt && 3862 db->db_level == 0 && db->db_user_immediate_evict) 3863 dbuf_evict_user(db); 3864 3865 if (holds == 0) { 3866 if (db->db_blkid == DMU_BONUS_BLKID) { 3867 dnode_t *dn; 3868 boolean_t evict_dbuf = db->db_pending_evict; 3869 3870 /* 3871 * If the dnode moves here, we cannot cross this 3872 * barrier until the move completes. 3873 */ 3874 DB_DNODE_ENTER(db); 3875 3876 dn = DB_DNODE(db); 3877 atomic_dec_32(&dn->dn_dbufs_count); 3878 3879 /* 3880 * Decrementing the dbuf count means that the bonus 3881 * buffer's dnode hold is no longer discounted in 3882 * dnode_move(). The dnode cannot move until after 3883 * the dnode_rele() below. 3884 */ 3885 DB_DNODE_EXIT(db); 3886 3887 /* 3888 * Do not reference db after its lock is dropped. 3889 * Another thread may evict it. 3890 */ 3891 mutex_exit(&db->db_mtx); 3892 3893 if (evict_dbuf) 3894 dnode_evict_bonus(dn); 3895 3896 dnode_rele(dn, db); 3897 } else if (db->db_buf == NULL) { 3898 /* 3899 * This is a special case: we never associated this 3900 * dbuf with any data allocated from the ARC. 3901 */ 3902 ASSERT(db->db_state == DB_UNCACHED || 3903 db->db_state == DB_NOFILL); 3904 dbuf_destroy(db); 3905 } else if (arc_released(db->db_buf)) { 3906 /* 3907 * This dbuf has anonymous data associated with it. 3908 */ 3909 dbuf_destroy(db); 3910 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 3911 db->db_pending_evict) { 3912 dbuf_destroy(db); 3913 } else if (!multilist_link_active(&db->db_cache_link)) { 3914 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3915 3916 dbuf_cached_state_t dcs = 3917 dbuf_include_in_metadata_cache(db) ? 3918 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3919 db->db_caching_status = dcs; 3920 3921 multilist_insert(&dbuf_caches[dcs].cache, db); 3922 uint64_t db_size = db->db.db_size; 3923 size = zfs_refcount_add_many( 3924 &dbuf_caches[dcs].size, db_size, db); 3925 uint8_t db_level = db->db_level; 3926 mutex_exit(&db->db_mtx); 3927 3928 if (dcs == DB_DBUF_METADATA_CACHE) { 3929 DBUF_STAT_BUMP(metadata_cache_count); 3930 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 3931 size); 3932 } else { 3933 DBUF_STAT_BUMP(cache_count); 3934 DBUF_STAT_MAX(cache_size_bytes_max, size); 3935 DBUF_STAT_BUMP(cache_levels[db_level]); 3936 DBUF_STAT_INCR(cache_levels_bytes[db_level], 3937 db_size); 3938 } 3939 3940 if (dcs == DB_DBUF_CACHE && !evicting) 3941 dbuf_evict_notify(size); 3942 } 3943 } else { 3944 mutex_exit(&db->db_mtx); 3945 } 3946 3947 } 3948 3949 #pragma weak dmu_buf_refcount = dbuf_refcount 3950 uint64_t 3951 dbuf_refcount(dmu_buf_impl_t *db) 3952 { 3953 return (zfs_refcount_count(&db->db_holds)); 3954 } 3955 3956 uint64_t 3957 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3958 { 3959 uint64_t holds; 3960 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3961 3962 mutex_enter(&db->db_mtx); 3963 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3964 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3965 mutex_exit(&db->db_mtx); 3966 3967 return (holds); 3968 } 3969 3970 void * 3971 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3972 dmu_buf_user_t *new_user) 3973 { 3974 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3975 3976 mutex_enter(&db->db_mtx); 3977 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3978 if (db->db_user == old_user) 3979 db->db_user = new_user; 3980 else 3981 old_user = db->db_user; 3982 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3983 mutex_exit(&db->db_mtx); 3984 3985 return (old_user); 3986 } 3987 3988 void * 3989 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3990 { 3991 return (dmu_buf_replace_user(db_fake, NULL, user)); 3992 } 3993 3994 void * 3995 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3996 { 3997 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3998 3999 db->db_user_immediate_evict = TRUE; 4000 return (dmu_buf_set_user(db_fake, user)); 4001 } 4002 4003 void * 4004 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4005 { 4006 return (dmu_buf_replace_user(db_fake, user, NULL)); 4007 } 4008 4009 void * 4010 dmu_buf_get_user(dmu_buf_t *db_fake) 4011 { 4012 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4013 4014 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4015 return (db->db_user); 4016 } 4017 4018 void 4019 dmu_buf_user_evict_wait(void) 4020 { 4021 taskq_wait(dbu_evict_taskq); 4022 } 4023 4024 blkptr_t * 4025 dmu_buf_get_blkptr(dmu_buf_t *db) 4026 { 4027 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4028 return (dbi->db_blkptr); 4029 } 4030 4031 objset_t * 4032 dmu_buf_get_objset(dmu_buf_t *db) 4033 { 4034 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4035 return (dbi->db_objset); 4036 } 4037 4038 dnode_t * 4039 dmu_buf_dnode_enter(dmu_buf_t *db) 4040 { 4041 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4042 DB_DNODE_ENTER(dbi); 4043 return (DB_DNODE(dbi)); 4044 } 4045 4046 void 4047 dmu_buf_dnode_exit(dmu_buf_t *db) 4048 { 4049 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4050 DB_DNODE_EXIT(dbi); 4051 } 4052 4053 static void 4054 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4055 { 4056 /* ASSERT(dmu_tx_is_syncing(tx) */ 4057 ASSERT(MUTEX_HELD(&db->db_mtx)); 4058 4059 if (db->db_blkptr != NULL) 4060 return; 4061 4062 if (db->db_blkid == DMU_SPILL_BLKID) { 4063 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4064 BP_ZERO(db->db_blkptr); 4065 return; 4066 } 4067 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4068 /* 4069 * This buffer was allocated at a time when there was 4070 * no available blkptrs from the dnode, or it was 4071 * inappropriate to hook it in (i.e., nlevels mismatch). 4072 */ 4073 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4074 ASSERT(db->db_parent == NULL); 4075 db->db_parent = dn->dn_dbuf; 4076 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4077 DBUF_VERIFY(db); 4078 } else { 4079 dmu_buf_impl_t *parent = db->db_parent; 4080 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4081 4082 ASSERT(dn->dn_phys->dn_nlevels > 1); 4083 if (parent == NULL) { 4084 mutex_exit(&db->db_mtx); 4085 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4086 parent = dbuf_hold_level(dn, db->db_level + 1, 4087 db->db_blkid >> epbs, db); 4088 rw_exit(&dn->dn_struct_rwlock); 4089 mutex_enter(&db->db_mtx); 4090 db->db_parent = parent; 4091 } 4092 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4093 (db->db_blkid & ((1ULL << epbs) - 1)); 4094 DBUF_VERIFY(db); 4095 } 4096 } 4097 4098 static void 4099 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4100 { 4101 dmu_buf_impl_t *db = dr->dr_dbuf; 4102 void *data = dr->dt.dl.dr_data; 4103 4104 ASSERT0(db->db_level); 4105 ASSERT(MUTEX_HELD(&db->db_mtx)); 4106 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4107 ASSERT(data != NULL); 4108 4109 dnode_t *dn = dr->dr_dnode; 4110 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4111 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4112 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4113 4114 dbuf_sync_leaf_verify_bonus_dnode(dr); 4115 4116 dbuf_undirty_bonus(dr); 4117 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4118 } 4119 4120 /* 4121 * When syncing out a blocks of dnodes, adjust the block to deal with 4122 * encryption. Normally, we make sure the block is decrypted before writing 4123 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4124 * from a raw receive. In this case, set the ARC buf's crypt params so 4125 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4126 */ 4127 static void 4128 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4129 { 4130 int err; 4131 dmu_buf_impl_t *db = dr->dr_dbuf; 4132 4133 ASSERT(MUTEX_HELD(&db->db_mtx)); 4134 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4135 ASSERT3U(db->db_level, ==, 0); 4136 4137 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4138 zbookmark_phys_t zb; 4139 4140 /* 4141 * Unfortunately, there is currently no mechanism for 4142 * syncing context to handle decryption errors. An error 4143 * here is only possible if an attacker maliciously 4144 * changed a dnode block and updated the associated 4145 * checksums going up the block tree. 4146 */ 4147 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4148 db->db.db_object, db->db_level, db->db_blkid); 4149 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4150 &zb, B_TRUE); 4151 if (err) 4152 panic("Invalid dnode block MAC"); 4153 } else if (dr->dt.dl.dr_has_raw_params) { 4154 (void) arc_release(dr->dt.dl.dr_data, db); 4155 arc_convert_to_raw(dr->dt.dl.dr_data, 4156 dmu_objset_id(db->db_objset), 4157 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4158 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4159 } 4160 } 4161 4162 /* 4163 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4164 * is critical the we not allow the compiler to inline this function in to 4165 * dbuf_sync_list() thereby drastically bloating the stack usage. 4166 */ 4167 noinline static void 4168 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4169 { 4170 dmu_buf_impl_t *db = dr->dr_dbuf; 4171 dnode_t *dn = dr->dr_dnode; 4172 4173 ASSERT(dmu_tx_is_syncing(tx)); 4174 4175 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4176 4177 mutex_enter(&db->db_mtx); 4178 4179 ASSERT(db->db_level > 0); 4180 DBUF_VERIFY(db); 4181 4182 /* Read the block if it hasn't been read yet. */ 4183 if (db->db_buf == NULL) { 4184 mutex_exit(&db->db_mtx); 4185 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4186 mutex_enter(&db->db_mtx); 4187 } 4188 ASSERT3U(db->db_state, ==, DB_CACHED); 4189 ASSERT(db->db_buf != NULL); 4190 4191 /* Indirect block size must match what the dnode thinks it is. */ 4192 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4193 dbuf_check_blkptr(dn, db); 4194 4195 /* Provide the pending dirty record to child dbufs */ 4196 db->db_data_pending = dr; 4197 4198 mutex_exit(&db->db_mtx); 4199 4200 dbuf_write(dr, db->db_buf, tx); 4201 4202 zio_t *zio = dr->dr_zio; 4203 mutex_enter(&dr->dt.di.dr_mtx); 4204 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4205 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4206 mutex_exit(&dr->dt.di.dr_mtx); 4207 zio_nowait(zio); 4208 } 4209 4210 /* 4211 * Verify that the size of the data in our bonus buffer does not exceed 4212 * its recorded size. 4213 * 4214 * The purpose of this verification is to catch any cases in development 4215 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4216 * due to incorrect feature management, older pools expect to read more 4217 * data even though they didn't actually write it to begin with. 4218 * 4219 * For a example, this would catch an error in the feature logic where we 4220 * open an older pool and we expect to write the space map histogram of 4221 * a space map with size SPACE_MAP_SIZE_V0. 4222 */ 4223 static void 4224 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4225 { 4226 #ifdef ZFS_DEBUG 4227 dnode_t *dn = dr->dr_dnode; 4228 4229 /* 4230 * Encrypted bonus buffers can have data past their bonuslen. 4231 * Skip the verification of these blocks. 4232 */ 4233 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4234 return; 4235 4236 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4237 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4238 ASSERT3U(bonuslen, <=, maxbonuslen); 4239 4240 arc_buf_t *datap = dr->dt.dl.dr_data; 4241 char *datap_end = ((char *)datap) + bonuslen; 4242 char *datap_max = ((char *)datap) + maxbonuslen; 4243 4244 /* ensure that everything is zero after our data */ 4245 for (; datap_end < datap_max; datap_end++) 4246 ASSERT(*datap_end == 0); 4247 #endif 4248 } 4249 4250 static blkptr_t * 4251 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4252 { 4253 /* This must be a lightweight dirty record. */ 4254 ASSERT3P(dr->dr_dbuf, ==, NULL); 4255 dnode_t *dn = dr->dr_dnode; 4256 4257 if (dn->dn_phys->dn_nlevels == 1) { 4258 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4259 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4260 } else { 4261 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4262 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4263 VERIFY3U(parent_db->db_level, ==, 1); 4264 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4265 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4266 blkptr_t *bp = parent_db->db.db_data; 4267 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4268 } 4269 } 4270 4271 static void 4272 dbuf_lightweight_ready(zio_t *zio) 4273 { 4274 dbuf_dirty_record_t *dr = zio->io_private; 4275 blkptr_t *bp = zio->io_bp; 4276 4277 if (zio->io_error != 0) 4278 return; 4279 4280 dnode_t *dn = dr->dr_dnode; 4281 4282 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4283 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4284 int64_t delta = bp_get_dsize_sync(spa, bp) - 4285 bp_get_dsize_sync(spa, bp_orig); 4286 dnode_diduse_space(dn, delta); 4287 4288 uint64_t blkid = dr->dt.dll.dr_blkid; 4289 mutex_enter(&dn->dn_mtx); 4290 if (blkid > dn->dn_phys->dn_maxblkid) { 4291 ASSERT0(dn->dn_objset->os_raw_receive); 4292 dn->dn_phys->dn_maxblkid = blkid; 4293 } 4294 mutex_exit(&dn->dn_mtx); 4295 4296 if (!BP_IS_EMBEDDED(bp)) { 4297 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4298 BP_SET_FILL(bp, fill); 4299 } 4300 4301 dmu_buf_impl_t *parent_db; 4302 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4303 if (dr->dr_parent == NULL) { 4304 parent_db = dn->dn_dbuf; 4305 } else { 4306 parent_db = dr->dr_parent->dr_dbuf; 4307 } 4308 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4309 *bp_orig = *bp; 4310 rw_exit(&parent_db->db_rwlock); 4311 } 4312 4313 static void 4314 dbuf_lightweight_physdone(zio_t *zio) 4315 { 4316 dbuf_dirty_record_t *dr = zio->io_private; 4317 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4318 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4319 4320 /* 4321 * The callback will be called io_phys_children times. Retire one 4322 * portion of our dirty space each time we are called. Any rounding 4323 * error will be cleaned up by dbuf_lightweight_done(). 4324 */ 4325 int delta = dr->dr_accounted / zio->io_phys_children; 4326 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4327 } 4328 4329 static void 4330 dbuf_lightweight_done(zio_t *zio) 4331 { 4332 dbuf_dirty_record_t *dr = zio->io_private; 4333 4334 VERIFY0(zio->io_error); 4335 4336 objset_t *os = dr->dr_dnode->dn_objset; 4337 dmu_tx_t *tx = os->os_synctx; 4338 4339 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4340 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4341 } else { 4342 dsl_dataset_t *ds = os->os_dsl_dataset; 4343 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4344 dsl_dataset_block_born(ds, zio->io_bp, tx); 4345 } 4346 4347 /* 4348 * See comment in dbuf_write_done(). 4349 */ 4350 if (zio->io_phys_children == 0) { 4351 dsl_pool_undirty_space(dmu_objset_pool(os), 4352 dr->dr_accounted, zio->io_txg); 4353 } else { 4354 dsl_pool_undirty_space(dmu_objset_pool(os), 4355 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4356 } 4357 4358 abd_free(dr->dt.dll.dr_abd); 4359 kmem_free(dr, sizeof (*dr)); 4360 } 4361 4362 noinline static void 4363 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4364 { 4365 dnode_t *dn = dr->dr_dnode; 4366 zio_t *pio; 4367 if (dn->dn_phys->dn_nlevels == 1) { 4368 pio = dn->dn_zio; 4369 } else { 4370 pio = dr->dr_parent->dr_zio; 4371 } 4372 4373 zbookmark_phys_t zb = { 4374 .zb_objset = dmu_objset_id(dn->dn_objset), 4375 .zb_object = dn->dn_object, 4376 .zb_level = 0, 4377 .zb_blkid = dr->dt.dll.dr_blkid, 4378 }; 4379 4380 /* 4381 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4382 * will have the old BP in dbuf_lightweight_done(). 4383 */ 4384 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4385 4386 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4387 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4388 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4389 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4390 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4391 ZIO_PRIORITY_ASYNC_WRITE, 4392 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4393 4394 zio_nowait(dr->dr_zio); 4395 } 4396 4397 /* 4398 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4399 * critical the we not allow the compiler to inline this function in to 4400 * dbuf_sync_list() thereby drastically bloating the stack usage. 4401 */ 4402 noinline static void 4403 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4404 { 4405 arc_buf_t **datap = &dr->dt.dl.dr_data; 4406 dmu_buf_impl_t *db = dr->dr_dbuf; 4407 dnode_t *dn = dr->dr_dnode; 4408 objset_t *os; 4409 uint64_t txg = tx->tx_txg; 4410 4411 ASSERT(dmu_tx_is_syncing(tx)); 4412 4413 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4414 4415 mutex_enter(&db->db_mtx); 4416 /* 4417 * To be synced, we must be dirtied. But we 4418 * might have been freed after the dirty. 4419 */ 4420 if (db->db_state == DB_UNCACHED) { 4421 /* This buffer has been freed since it was dirtied */ 4422 ASSERT(db->db.db_data == NULL); 4423 } else if (db->db_state == DB_FILL) { 4424 /* This buffer was freed and is now being re-filled */ 4425 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4426 } else { 4427 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4428 } 4429 DBUF_VERIFY(db); 4430 4431 if (db->db_blkid == DMU_SPILL_BLKID) { 4432 mutex_enter(&dn->dn_mtx); 4433 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4434 /* 4435 * In the previous transaction group, the bonus buffer 4436 * was entirely used to store the attributes for the 4437 * dnode which overrode the dn_spill field. However, 4438 * when adding more attributes to the file a spill 4439 * block was required to hold the extra attributes. 4440 * 4441 * Make sure to clear the garbage left in the dn_spill 4442 * field from the previous attributes in the bonus 4443 * buffer. Otherwise, after writing out the spill 4444 * block to the new allocated dva, it will free 4445 * the old block pointed to by the invalid dn_spill. 4446 */ 4447 db->db_blkptr = NULL; 4448 } 4449 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4450 mutex_exit(&dn->dn_mtx); 4451 } 4452 4453 /* 4454 * If this is a bonus buffer, simply copy the bonus data into the 4455 * dnode. It will be written out when the dnode is synced (and it 4456 * will be synced, since it must have been dirty for dbuf_sync to 4457 * be called). 4458 */ 4459 if (db->db_blkid == DMU_BONUS_BLKID) { 4460 ASSERT(dr->dr_dbuf == db); 4461 dbuf_sync_bonus(dr, tx); 4462 return; 4463 } 4464 4465 os = dn->dn_objset; 4466 4467 /* 4468 * This function may have dropped the db_mtx lock allowing a dmu_sync 4469 * operation to sneak in. As a result, we need to ensure that we 4470 * don't check the dr_override_state until we have returned from 4471 * dbuf_check_blkptr. 4472 */ 4473 dbuf_check_blkptr(dn, db); 4474 4475 /* 4476 * If this buffer is in the middle of an immediate write, 4477 * wait for the synchronous IO to complete. 4478 */ 4479 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4480 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4481 cv_wait(&db->db_changed, &db->db_mtx); 4482 } 4483 4484 /* 4485 * If this is a dnode block, ensure it is appropriately encrypted 4486 * or decrypted, depending on what we are writing to it this txg. 4487 */ 4488 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4489 dbuf_prepare_encrypted_dnode_leaf(dr); 4490 4491 if (db->db_state != DB_NOFILL && 4492 dn->dn_object != DMU_META_DNODE_OBJECT && 4493 zfs_refcount_count(&db->db_holds) > 1 && 4494 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4495 *datap == db->db_buf) { 4496 /* 4497 * If this buffer is currently "in use" (i.e., there 4498 * are active holds and db_data still references it), 4499 * then make a copy before we start the write so that 4500 * any modifications from the open txg will not leak 4501 * into this write. 4502 * 4503 * NOTE: this copy does not need to be made for 4504 * objects only modified in the syncing context (e.g. 4505 * DNONE_DNODE blocks). 4506 */ 4507 int psize = arc_buf_size(*datap); 4508 int lsize = arc_buf_lsize(*datap); 4509 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4510 enum zio_compress compress_type = arc_get_compression(*datap); 4511 uint8_t complevel = arc_get_complevel(*datap); 4512 4513 if (arc_is_encrypted(*datap)) { 4514 boolean_t byteorder; 4515 uint8_t salt[ZIO_DATA_SALT_LEN]; 4516 uint8_t iv[ZIO_DATA_IV_LEN]; 4517 uint8_t mac[ZIO_DATA_MAC_LEN]; 4518 4519 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4520 *datap = arc_alloc_raw_buf(os->os_spa, db, 4521 dmu_objset_id(os), byteorder, salt, iv, mac, 4522 dn->dn_type, psize, lsize, compress_type, 4523 complevel); 4524 } else if (compress_type != ZIO_COMPRESS_OFF) { 4525 ASSERT3U(type, ==, ARC_BUFC_DATA); 4526 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4527 psize, lsize, compress_type, complevel); 4528 } else { 4529 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4530 } 4531 memcpy((*datap)->b_data, db->db.db_data, psize); 4532 } 4533 db->db_data_pending = dr; 4534 4535 mutex_exit(&db->db_mtx); 4536 4537 dbuf_write(dr, *datap, tx); 4538 4539 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4540 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4541 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4542 } else { 4543 zio_nowait(dr->dr_zio); 4544 } 4545 } 4546 4547 void 4548 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4549 { 4550 dbuf_dirty_record_t *dr; 4551 4552 while ((dr = list_head(list))) { 4553 if (dr->dr_zio != NULL) { 4554 /* 4555 * If we find an already initialized zio then we 4556 * are processing the meta-dnode, and we have finished. 4557 * The dbufs for all dnodes are put back on the list 4558 * during processing, so that we can zio_wait() 4559 * these IOs after initiating all child IOs. 4560 */ 4561 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4562 DMU_META_DNODE_OBJECT); 4563 break; 4564 } 4565 list_remove(list, dr); 4566 if (dr->dr_dbuf == NULL) { 4567 dbuf_sync_lightweight(dr, tx); 4568 } else { 4569 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4570 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4571 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4572 } 4573 if (dr->dr_dbuf->db_level > 0) 4574 dbuf_sync_indirect(dr, tx); 4575 else 4576 dbuf_sync_leaf(dr, tx); 4577 } 4578 } 4579 } 4580 4581 static void 4582 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4583 { 4584 (void) buf; 4585 dmu_buf_impl_t *db = vdb; 4586 dnode_t *dn; 4587 blkptr_t *bp = zio->io_bp; 4588 blkptr_t *bp_orig = &zio->io_bp_orig; 4589 spa_t *spa = zio->io_spa; 4590 int64_t delta; 4591 uint64_t fill = 0; 4592 int i; 4593 4594 ASSERT3P(db->db_blkptr, !=, NULL); 4595 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4596 4597 DB_DNODE_ENTER(db); 4598 dn = DB_DNODE(db); 4599 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4600 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4601 zio->io_prev_space_delta = delta; 4602 4603 if (bp->blk_birth != 0) { 4604 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4605 BP_GET_TYPE(bp) == dn->dn_type) || 4606 (db->db_blkid == DMU_SPILL_BLKID && 4607 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4608 BP_IS_EMBEDDED(bp)); 4609 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4610 } 4611 4612 mutex_enter(&db->db_mtx); 4613 4614 #ifdef ZFS_DEBUG 4615 if (db->db_blkid == DMU_SPILL_BLKID) { 4616 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4617 ASSERT(!(BP_IS_HOLE(bp)) && 4618 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4619 } 4620 #endif 4621 4622 if (db->db_level == 0) { 4623 mutex_enter(&dn->dn_mtx); 4624 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4625 db->db_blkid != DMU_SPILL_BLKID) { 4626 ASSERT0(db->db_objset->os_raw_receive); 4627 dn->dn_phys->dn_maxblkid = db->db_blkid; 4628 } 4629 mutex_exit(&dn->dn_mtx); 4630 4631 if (dn->dn_type == DMU_OT_DNODE) { 4632 i = 0; 4633 while (i < db->db.db_size) { 4634 dnode_phys_t *dnp = 4635 (void *)(((char *)db->db.db_data) + i); 4636 4637 i += DNODE_MIN_SIZE; 4638 if (dnp->dn_type != DMU_OT_NONE) { 4639 fill++; 4640 i += dnp->dn_extra_slots * 4641 DNODE_MIN_SIZE; 4642 } 4643 } 4644 } else { 4645 if (BP_IS_HOLE(bp)) { 4646 fill = 0; 4647 } else { 4648 fill = 1; 4649 } 4650 } 4651 } else { 4652 blkptr_t *ibp = db->db.db_data; 4653 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4654 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4655 if (BP_IS_HOLE(ibp)) 4656 continue; 4657 fill += BP_GET_FILL(ibp); 4658 } 4659 } 4660 DB_DNODE_EXIT(db); 4661 4662 if (!BP_IS_EMBEDDED(bp)) 4663 BP_SET_FILL(bp, fill); 4664 4665 mutex_exit(&db->db_mtx); 4666 4667 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4668 *db->db_blkptr = *bp; 4669 dmu_buf_unlock_parent(db, dblt, FTAG); 4670 } 4671 4672 /* 4673 * This function gets called just prior to running through the compression 4674 * stage of the zio pipeline. If we're an indirect block comprised of only 4675 * holes, then we want this indirect to be compressed away to a hole. In 4676 * order to do that we must zero out any information about the holes that 4677 * this indirect points to prior to before we try to compress it. 4678 */ 4679 static void 4680 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4681 { 4682 (void) zio, (void) buf; 4683 dmu_buf_impl_t *db = vdb; 4684 dnode_t *dn; 4685 blkptr_t *bp; 4686 unsigned int epbs, i; 4687 4688 ASSERT3U(db->db_level, >, 0); 4689 DB_DNODE_ENTER(db); 4690 dn = DB_DNODE(db); 4691 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4692 ASSERT3U(epbs, <, 31); 4693 4694 /* Determine if all our children are holes */ 4695 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4696 if (!BP_IS_HOLE(bp)) 4697 break; 4698 } 4699 4700 /* 4701 * If all the children are holes, then zero them all out so that 4702 * we may get compressed away. 4703 */ 4704 if (i == 1ULL << epbs) { 4705 /* 4706 * We only found holes. Grab the rwlock to prevent 4707 * anybody from reading the blocks we're about to 4708 * zero out. 4709 */ 4710 rw_enter(&db->db_rwlock, RW_WRITER); 4711 memset(db->db.db_data, 0, db->db.db_size); 4712 rw_exit(&db->db_rwlock); 4713 } 4714 DB_DNODE_EXIT(db); 4715 } 4716 4717 /* 4718 * The SPA will call this callback several times for each zio - once 4719 * for every physical child i/o (zio->io_phys_children times). This 4720 * allows the DMU to monitor the progress of each logical i/o. For example, 4721 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4722 * block. There may be a long delay before all copies/fragments are completed, 4723 * so this callback allows us to retire dirty space gradually, as the physical 4724 * i/os complete. 4725 */ 4726 static void 4727 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4728 { 4729 (void) buf; 4730 dmu_buf_impl_t *db = arg; 4731 objset_t *os = db->db_objset; 4732 dsl_pool_t *dp = dmu_objset_pool(os); 4733 dbuf_dirty_record_t *dr; 4734 int delta = 0; 4735 4736 dr = db->db_data_pending; 4737 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4738 4739 /* 4740 * The callback will be called io_phys_children times. Retire one 4741 * portion of our dirty space each time we are called. Any rounding 4742 * error will be cleaned up by dbuf_write_done(). 4743 */ 4744 delta = dr->dr_accounted / zio->io_phys_children; 4745 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4746 } 4747 4748 static void 4749 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4750 { 4751 (void) buf; 4752 dmu_buf_impl_t *db = vdb; 4753 blkptr_t *bp_orig = &zio->io_bp_orig; 4754 blkptr_t *bp = db->db_blkptr; 4755 objset_t *os = db->db_objset; 4756 dmu_tx_t *tx = os->os_synctx; 4757 4758 ASSERT0(zio->io_error); 4759 ASSERT(db->db_blkptr == bp); 4760 4761 /* 4762 * For nopwrites and rewrites we ensure that the bp matches our 4763 * original and bypass all the accounting. 4764 */ 4765 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4766 ASSERT(BP_EQUAL(bp, bp_orig)); 4767 } else { 4768 dsl_dataset_t *ds = os->os_dsl_dataset; 4769 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4770 dsl_dataset_block_born(ds, bp, tx); 4771 } 4772 4773 mutex_enter(&db->db_mtx); 4774 4775 DBUF_VERIFY(db); 4776 4777 dbuf_dirty_record_t *dr = db->db_data_pending; 4778 dnode_t *dn = dr->dr_dnode; 4779 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4780 ASSERT(dr->dr_dbuf == db); 4781 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4782 list_remove(&db->db_dirty_records, dr); 4783 4784 #ifdef ZFS_DEBUG 4785 if (db->db_blkid == DMU_SPILL_BLKID) { 4786 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4787 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4788 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4789 } 4790 #endif 4791 4792 if (db->db_level == 0) { 4793 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4794 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4795 if (db->db_state != DB_NOFILL) { 4796 if (dr->dt.dl.dr_data != NULL && 4797 dr->dt.dl.dr_data != db->db_buf) { 4798 arc_buf_destroy(dr->dt.dl.dr_data, db); 4799 } 4800 } 4801 } else { 4802 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4803 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4804 if (!BP_IS_HOLE(db->db_blkptr)) { 4805 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4806 SPA_BLKPTRSHIFT; 4807 ASSERT3U(db->db_blkid, <=, 4808 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4809 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4810 db->db.db_size); 4811 } 4812 mutex_destroy(&dr->dt.di.dr_mtx); 4813 list_destroy(&dr->dt.di.dr_children); 4814 } 4815 4816 cv_broadcast(&db->db_changed); 4817 ASSERT(db->db_dirtycnt > 0); 4818 db->db_dirtycnt -= 1; 4819 db->db_data_pending = NULL; 4820 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4821 4822 /* 4823 * If we didn't do a physical write in this ZIO and we 4824 * still ended up here, it means that the space of the 4825 * dbuf that we just released (and undirtied) above hasn't 4826 * been marked as undirtied in the pool's accounting. 4827 * 4828 * Thus, we undirty that space in the pool's view of the 4829 * world here. For physical writes this type of update 4830 * happens in dbuf_write_physdone(). 4831 * 4832 * If we did a physical write, cleanup any rounding errors 4833 * that came up due to writing multiple copies of a block 4834 * on disk [see dbuf_write_physdone()]. 4835 */ 4836 if (zio->io_phys_children == 0) { 4837 dsl_pool_undirty_space(dmu_objset_pool(os), 4838 dr->dr_accounted, zio->io_txg); 4839 } else { 4840 dsl_pool_undirty_space(dmu_objset_pool(os), 4841 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4842 } 4843 4844 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4845 } 4846 4847 static void 4848 dbuf_write_nofill_ready(zio_t *zio) 4849 { 4850 dbuf_write_ready(zio, NULL, zio->io_private); 4851 } 4852 4853 static void 4854 dbuf_write_nofill_done(zio_t *zio) 4855 { 4856 dbuf_write_done(zio, NULL, zio->io_private); 4857 } 4858 4859 static void 4860 dbuf_write_override_ready(zio_t *zio) 4861 { 4862 dbuf_dirty_record_t *dr = zio->io_private; 4863 dmu_buf_impl_t *db = dr->dr_dbuf; 4864 4865 dbuf_write_ready(zio, NULL, db); 4866 } 4867 4868 static void 4869 dbuf_write_override_done(zio_t *zio) 4870 { 4871 dbuf_dirty_record_t *dr = zio->io_private; 4872 dmu_buf_impl_t *db = dr->dr_dbuf; 4873 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4874 4875 mutex_enter(&db->db_mtx); 4876 if (!BP_EQUAL(zio->io_bp, obp)) { 4877 if (!BP_IS_HOLE(obp)) 4878 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4879 arc_release(dr->dt.dl.dr_data, db); 4880 } 4881 mutex_exit(&db->db_mtx); 4882 4883 dbuf_write_done(zio, NULL, db); 4884 4885 if (zio->io_abd != NULL) 4886 abd_free(zio->io_abd); 4887 } 4888 4889 typedef struct dbuf_remap_impl_callback_arg { 4890 objset_t *drica_os; 4891 uint64_t drica_blk_birth; 4892 dmu_tx_t *drica_tx; 4893 } dbuf_remap_impl_callback_arg_t; 4894 4895 static void 4896 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4897 void *arg) 4898 { 4899 dbuf_remap_impl_callback_arg_t *drica = arg; 4900 objset_t *os = drica->drica_os; 4901 spa_t *spa = dmu_objset_spa(os); 4902 dmu_tx_t *tx = drica->drica_tx; 4903 4904 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4905 4906 if (os == spa_meta_objset(spa)) { 4907 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4908 } else { 4909 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4910 size, drica->drica_blk_birth, tx); 4911 } 4912 } 4913 4914 static void 4915 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4916 { 4917 blkptr_t bp_copy = *bp; 4918 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4919 dbuf_remap_impl_callback_arg_t drica; 4920 4921 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4922 4923 drica.drica_os = dn->dn_objset; 4924 drica.drica_blk_birth = bp->blk_birth; 4925 drica.drica_tx = tx; 4926 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4927 &drica)) { 4928 /* 4929 * If the blkptr being remapped is tracked by a livelist, 4930 * then we need to make sure the livelist reflects the update. 4931 * First, cancel out the old blkptr by appending a 'FREE' 4932 * entry. Next, add an 'ALLOC' to track the new version. This 4933 * way we avoid trying to free an inaccurate blkptr at delete. 4934 * Note that embedded blkptrs are not tracked in livelists. 4935 */ 4936 if (dn->dn_objset != spa_meta_objset(spa)) { 4937 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4938 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4939 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4940 ASSERT(!BP_IS_EMBEDDED(bp)); 4941 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4942 ASSERT(spa_feature_is_enabled(spa, 4943 SPA_FEATURE_LIVELIST)); 4944 bplist_append(&ds->ds_dir->dd_pending_frees, 4945 bp); 4946 bplist_append(&ds->ds_dir->dd_pending_allocs, 4947 &bp_copy); 4948 } 4949 } 4950 4951 /* 4952 * The db_rwlock prevents dbuf_read_impl() from 4953 * dereferencing the BP while we are changing it. To 4954 * avoid lock contention, only grab it when we are actually 4955 * changing the BP. 4956 */ 4957 if (rw != NULL) 4958 rw_enter(rw, RW_WRITER); 4959 *bp = bp_copy; 4960 if (rw != NULL) 4961 rw_exit(rw); 4962 } 4963 } 4964 4965 /* 4966 * Remap any existing BP's to concrete vdevs, if possible. 4967 */ 4968 static void 4969 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4970 { 4971 spa_t *spa = dmu_objset_spa(db->db_objset); 4972 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4973 4974 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4975 return; 4976 4977 if (db->db_level > 0) { 4978 blkptr_t *bp = db->db.db_data; 4979 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4980 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4981 } 4982 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4983 dnode_phys_t *dnp = db->db.db_data; 4984 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4985 DMU_OT_DNODE); 4986 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4987 i += dnp[i].dn_extra_slots + 1) { 4988 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4989 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4990 &dn->dn_dbuf->db_rwlock); 4991 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4992 tx); 4993 } 4994 } 4995 } 4996 } 4997 4998 4999 /* Issue I/O to commit a dirty buffer to disk. */ 5000 static void 5001 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5002 { 5003 dmu_buf_impl_t *db = dr->dr_dbuf; 5004 dnode_t *dn = dr->dr_dnode; 5005 objset_t *os; 5006 dmu_buf_impl_t *parent = db->db_parent; 5007 uint64_t txg = tx->tx_txg; 5008 zbookmark_phys_t zb; 5009 zio_prop_t zp; 5010 zio_t *pio; /* parent I/O */ 5011 int wp_flag = 0; 5012 5013 ASSERT(dmu_tx_is_syncing(tx)); 5014 5015 os = dn->dn_objset; 5016 5017 if (db->db_state != DB_NOFILL) { 5018 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5019 /* 5020 * Private object buffers are released here rather 5021 * than in dbuf_dirty() since they are only modified 5022 * in the syncing context and we don't want the 5023 * overhead of making multiple copies of the data. 5024 */ 5025 if (BP_IS_HOLE(db->db_blkptr)) { 5026 arc_buf_thaw(data); 5027 } else { 5028 dbuf_release_bp(db); 5029 } 5030 dbuf_remap(dn, db, tx); 5031 } 5032 } 5033 5034 if (parent != dn->dn_dbuf) { 5035 /* Our parent is an indirect block. */ 5036 /* We have a dirty parent that has been scheduled for write. */ 5037 ASSERT(parent && parent->db_data_pending); 5038 /* Our parent's buffer is one level closer to the dnode. */ 5039 ASSERT(db->db_level == parent->db_level-1); 5040 /* 5041 * We're about to modify our parent's db_data by modifying 5042 * our block pointer, so the parent must be released. 5043 */ 5044 ASSERT(arc_released(parent->db_buf)); 5045 pio = parent->db_data_pending->dr_zio; 5046 } else { 5047 /* Our parent is the dnode itself. */ 5048 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5049 db->db_blkid != DMU_SPILL_BLKID) || 5050 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5051 if (db->db_blkid != DMU_SPILL_BLKID) 5052 ASSERT3P(db->db_blkptr, ==, 5053 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5054 pio = dn->dn_zio; 5055 } 5056 5057 ASSERT(db->db_level == 0 || data == db->db_buf); 5058 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 5059 ASSERT(pio); 5060 5061 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5062 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5063 db->db.db_object, db->db_level, db->db_blkid); 5064 5065 if (db->db_blkid == DMU_SPILL_BLKID) 5066 wp_flag = WP_SPILL; 5067 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 5068 5069 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5070 5071 /* 5072 * We copy the blkptr now (rather than when we instantiate the dirty 5073 * record), because its value can change between open context and 5074 * syncing context. We do not need to hold dn_struct_rwlock to read 5075 * db_blkptr because we are in syncing context. 5076 */ 5077 dr->dr_bp_copy = *db->db_blkptr; 5078 5079 if (db->db_level == 0 && 5080 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5081 /* 5082 * The BP for this block has been provided by open context 5083 * (by dmu_sync() or dmu_buf_write_embedded()). 5084 */ 5085 abd_t *contents = (data != NULL) ? 5086 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5087 5088 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5089 contents, db->db.db_size, db->db.db_size, &zp, 5090 dbuf_write_override_ready, NULL, NULL, 5091 dbuf_write_override_done, 5092 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5093 mutex_enter(&db->db_mtx); 5094 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5095 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5096 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5097 dr->dt.dl.dr_brtwrite); 5098 mutex_exit(&db->db_mtx); 5099 } else if (db->db_state == DB_NOFILL) { 5100 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5101 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5102 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5103 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5104 dbuf_write_nofill_ready, NULL, NULL, 5105 dbuf_write_nofill_done, db, 5106 ZIO_PRIORITY_ASYNC_WRITE, 5107 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5108 } else { 5109 ASSERT(arc_released(data)); 5110 5111 /* 5112 * For indirect blocks, we want to setup the children 5113 * ready callback so that we can properly handle an indirect 5114 * block that only contains holes. 5115 */ 5116 arc_write_done_func_t *children_ready_cb = NULL; 5117 if (db->db_level != 0) 5118 children_ready_cb = dbuf_write_children_ready; 5119 5120 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5121 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5122 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, 5123 children_ready_cb, dbuf_write_physdone, 5124 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 5125 ZIO_FLAG_MUSTSUCCEED, &zb); 5126 } 5127 } 5128 5129 EXPORT_SYMBOL(dbuf_find); 5130 EXPORT_SYMBOL(dbuf_is_metadata); 5131 EXPORT_SYMBOL(dbuf_destroy); 5132 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5133 EXPORT_SYMBOL(dbuf_whichblock); 5134 EXPORT_SYMBOL(dbuf_read); 5135 EXPORT_SYMBOL(dbuf_unoverride); 5136 EXPORT_SYMBOL(dbuf_free_range); 5137 EXPORT_SYMBOL(dbuf_new_size); 5138 EXPORT_SYMBOL(dbuf_release_bp); 5139 EXPORT_SYMBOL(dbuf_dirty); 5140 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5141 EXPORT_SYMBOL(dmu_buf_will_dirty); 5142 EXPORT_SYMBOL(dmu_buf_is_dirty); 5143 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5144 EXPORT_SYMBOL(dmu_buf_will_fill); 5145 EXPORT_SYMBOL(dmu_buf_fill_done); 5146 EXPORT_SYMBOL(dmu_buf_rele); 5147 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5148 EXPORT_SYMBOL(dbuf_prefetch); 5149 EXPORT_SYMBOL(dbuf_hold_impl); 5150 EXPORT_SYMBOL(dbuf_hold); 5151 EXPORT_SYMBOL(dbuf_hold_level); 5152 EXPORT_SYMBOL(dbuf_create_bonus); 5153 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5154 EXPORT_SYMBOL(dbuf_rm_spill); 5155 EXPORT_SYMBOL(dbuf_add_ref); 5156 EXPORT_SYMBOL(dbuf_rele); 5157 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5158 EXPORT_SYMBOL(dbuf_refcount); 5159 EXPORT_SYMBOL(dbuf_sync_list); 5160 EXPORT_SYMBOL(dmu_buf_set_user); 5161 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5162 EXPORT_SYMBOL(dmu_buf_get_user); 5163 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5164 5165 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5166 "Maximum size in bytes of the dbuf cache."); 5167 5168 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5169 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5170 5171 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5172 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5173 5174 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5175 "Maximum size in bytes of dbuf metadata cache."); 5176 5177 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5178 "Set size of dbuf cache to log2 fraction of arc size."); 5179 5180 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5181 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5182 5183 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5184 "Set size of dbuf cache mutex array as log2 shift."); 5185