xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision c0a4a7bb942fd3302f0093e4353820916d3661d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2019, Klara Inc.
28  * Copyright (c) 2019, Allan Jude
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/arc.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dbuf.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/spa.h>
42 #include <sys/zio.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/sa.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
51 #include <sys/abd.h>
52 #include <sys/vdev.h>
53 #include <cityhash.h>
54 #include <sys/spa_impl.h>
55 #include <sys/wmsum.h>
56 #include <sys/vdev_impl.h>
57 
58 static kstat_t *dbuf_ksp;
59 
60 typedef struct dbuf_stats {
61 	/*
62 	 * Various statistics about the size of the dbuf cache.
63 	 */
64 	kstat_named_t cache_count;
65 	kstat_named_t cache_size_bytes;
66 	kstat_named_t cache_size_bytes_max;
67 	/*
68 	 * Statistics regarding the bounds on the dbuf cache size.
69 	 */
70 	kstat_named_t cache_target_bytes;
71 	kstat_named_t cache_lowater_bytes;
72 	kstat_named_t cache_hiwater_bytes;
73 	/*
74 	 * Total number of dbuf cache evictions that have occurred.
75 	 */
76 	kstat_named_t cache_total_evicts;
77 	/*
78 	 * The distribution of dbuf levels in the dbuf cache and
79 	 * the total size of all dbufs at each level.
80 	 */
81 	kstat_named_t cache_levels[DN_MAX_LEVELS];
82 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
83 	/*
84 	 * Statistics about the dbuf hash table.
85 	 */
86 	kstat_named_t hash_hits;
87 	kstat_named_t hash_misses;
88 	kstat_named_t hash_collisions;
89 	kstat_named_t hash_elements;
90 	kstat_named_t hash_elements_max;
91 	/*
92 	 * Number of sublists containing more than one dbuf in the dbuf
93 	 * hash table. Keep track of the longest hash chain.
94 	 */
95 	kstat_named_t hash_chains;
96 	kstat_named_t hash_chain_max;
97 	/*
98 	 * Number of times a dbuf_create() discovers that a dbuf was
99 	 * already created and in the dbuf hash table.
100 	 */
101 	kstat_named_t hash_insert_race;
102 	/*
103 	 * Number of entries in the hash table dbuf and mutex arrays.
104 	 */
105 	kstat_named_t hash_table_count;
106 	kstat_named_t hash_mutex_count;
107 	/*
108 	 * Statistics about the size of the metadata dbuf cache.
109 	 */
110 	kstat_named_t metadata_cache_count;
111 	kstat_named_t metadata_cache_size_bytes;
112 	kstat_named_t metadata_cache_size_bytes_max;
113 	/*
114 	 * For diagnostic purposes, this is incremented whenever we can't add
115 	 * something to the metadata cache because it's full, and instead put
116 	 * the data in the regular dbuf cache.
117 	 */
118 	kstat_named_t metadata_cache_overflow;
119 } dbuf_stats_t;
120 
121 dbuf_stats_t dbuf_stats = {
122 	{ "cache_count",			KSTAT_DATA_UINT64 },
123 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
124 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
125 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
126 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
127 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
128 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
129 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
130 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
131 	{ "hash_hits",				KSTAT_DATA_UINT64 },
132 	{ "hash_misses",			KSTAT_DATA_UINT64 },
133 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
134 	{ "hash_elements",			KSTAT_DATA_UINT64 },
135 	{ "hash_elements_max",			KSTAT_DATA_UINT64 },
136 	{ "hash_chains",			KSTAT_DATA_UINT64 },
137 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
138 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
139 	{ "hash_table_count",			KSTAT_DATA_UINT64 },
140 	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
141 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
142 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
143 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
144 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
145 };
146 
147 struct {
148 	wmsum_t cache_count;
149 	wmsum_t cache_total_evicts;
150 	wmsum_t cache_levels[DN_MAX_LEVELS];
151 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
152 	wmsum_t hash_hits;
153 	wmsum_t hash_misses;
154 	wmsum_t hash_collisions;
155 	wmsum_t hash_chains;
156 	wmsum_t hash_insert_race;
157 	wmsum_t metadata_cache_count;
158 	wmsum_t metadata_cache_overflow;
159 } dbuf_sums;
160 
161 #define	DBUF_STAT_INCR(stat, val)	\
162 	wmsum_add(&dbuf_sums.stat, val);
163 #define	DBUF_STAT_DECR(stat, val)	\
164 	DBUF_STAT_INCR(stat, -(val));
165 #define	DBUF_STAT_BUMP(stat)		\
166 	DBUF_STAT_INCR(stat, 1);
167 #define	DBUF_STAT_BUMPDOWN(stat)	\
168 	DBUF_STAT_INCR(stat, -1);
169 #define	DBUF_STAT_MAX(stat, v) {					\
170 	uint64_t _m;							\
171 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
172 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
173 		continue;						\
174 }
175 
176 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
177 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
178 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
179 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
180 
181 /*
182  * Global data structures and functions for the dbuf cache.
183  */
184 static kmem_cache_t *dbuf_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
186 
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
191 
192 /*
193  * There are two dbuf caches; each dbuf can only be in one of them at a time.
194  *
195  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197  *    that represent the metadata that describes filesystems/snapshots/
198  *    bookmarks/properties/etc. We only evict from this cache when we export a
199  *    pool, to short-circuit as much I/O as possible for all administrative
200  *    commands that need the metadata. There is no eviction policy for this
201  *    cache, because we try to only include types in it which would occupy a
202  *    very small amount of space per object but create a large impact on the
203  *    performance of these commands. Instead, after it reaches a maximum size
204  *    (which should only happen on very small memory systems with a very large
205  *    number of filesystem objects), we stop taking new dbufs into the
206  *    metadata cache, instead putting them in the normal dbuf cache.
207  *
208  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209  *    are not currently held but have been recently released. These dbufs
210  *    are not eligible for arc eviction until they are aged out of the cache.
211  *    Dbufs that are aged out of the cache will be immediately destroyed and
212  *    become eligible for arc eviction.
213  *
214  * Dbufs are added to these caches once the last hold is released. If a dbuf is
215  * later accessed and still exists in the dbuf cache, then it will be removed
216  * from the cache and later re-added to the head of the cache.
217  *
218  * If a given dbuf meets the requirements for the metadata cache, it will go
219  * there, otherwise it will be considered for the generic LRU dbuf cache. The
220  * caches and the refcounts tracking their sizes are stored in an array indexed
221  * by those caches' matching enum values (from dbuf_cached_state_t).
222  */
223 typedef struct dbuf_cache {
224 	multilist_t cache;
225 	zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
228 
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
232 
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
236 
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
239 
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
242 
243 /*
244  * The LRU dbuf cache uses a three-stage eviction policy:
245  *	- A low water marker designates when the dbuf eviction thread
246  *	should stop evicting from the dbuf cache.
247  *	- When we reach the maximum size (aka mid water mark), we
248  *	signal the eviction thread to run.
249  *	- The high water mark indicates when the eviction thread
250  *	is unable to keep up with the incoming load and eviction must
251  *	happen in the context of the calling thread.
252  *
253  * The dbuf cache:
254  *                                                 (max size)
255  *                                      low water   mid water   hi water
256  * +----------------------------------------+----------+----------+
257  * |                                        |          |          |
258  * |                                        |          |          |
259  * |                                        |          |          |
260  * |                                        |          |          |
261  * +----------------------------------------+----------+----------+
262  *                                        stop        signal     evict
263  *                                      evicting     eviction   directly
264  *                                                    thread
265  *
266  * The high and low water marks indicate the operating range for the eviction
267  * thread. The low water mark is, by default, 90% of the total size of the
268  * cache and the high water mark is at 110% (both of these percentages can be
269  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270  * respectively). The eviction thread will try to ensure that the cache remains
271  * within this range by waking up every second and checking if the cache is
272  * above the low water mark. The thread can also be woken up by callers adding
273  * elements into the cache if the cache is larger than the mid water (i.e max
274  * cache size). Once the eviction thread is woken up and eviction is required,
275  * it will continue evicting buffers until it's able to reduce the cache size
276  * to the low water mark. If the cache size continues to grow and hits the high
277  * water mark, then callers adding elements to the cache will begin to evict
278  * directly from the cache until the cache is no longer above the high water
279  * mark.
280  */
281 
282 /*
283  * The percentage above and below the maximum cache size.
284  */
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
287 
288 static int
289 dbuf_cons(void *vdb, void *unused, int kmflag)
290 {
291 	(void) unused, (void) kmflag;
292 	dmu_buf_impl_t *db = vdb;
293 	memset(db, 0, sizeof (dmu_buf_impl_t));
294 
295 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
296 	rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
297 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 	multilist_link_init(&db->db_cache_link);
299 	zfs_refcount_create(&db->db_holds);
300 
301 	return (0);
302 }
303 
304 static void
305 dbuf_dest(void *vdb, void *unused)
306 {
307 	(void) unused;
308 	dmu_buf_impl_t *db = vdb;
309 	mutex_destroy(&db->db_mtx);
310 	rw_destroy(&db->db_rwlock);
311 	cv_destroy(&db->db_changed);
312 	ASSERT(!multilist_link_active(&db->db_cache_link));
313 	zfs_refcount_destroy(&db->db_holds);
314 }
315 
316 /*
317  * dbuf hash table routines
318  */
319 static dbuf_hash_table_t dbuf_hash_table;
320 
321 /*
322  * We use Cityhash for this. It's fast, and has good hash properties without
323  * requiring any large static buffers.
324  */
325 static uint64_t
326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
327 {
328 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
329 }
330 
331 #define	DTRACE_SET_STATE(db, why) \
332 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
333 	    const char *, why)
334 
335 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
336 	((dbuf)->db.db_object == (obj) &&		\
337 	(dbuf)->db_objset == (os) &&			\
338 	(dbuf)->db_level == (level) &&			\
339 	(dbuf)->db_blkid == (blkid))
340 
341 dmu_buf_impl_t *
342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
343     uint64_t *hash_out)
344 {
345 	dbuf_hash_table_t *h = &dbuf_hash_table;
346 	uint64_t hv;
347 	uint64_t idx;
348 	dmu_buf_impl_t *db;
349 
350 	hv = dbuf_hash(os, obj, level, blkid);
351 	idx = hv & h->hash_table_mask;
352 
353 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
355 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
356 			mutex_enter(&db->db_mtx);
357 			if (db->db_state != DB_EVICTING) {
358 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 				return (db);
360 			}
361 			mutex_exit(&db->db_mtx);
362 		}
363 	}
364 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
365 	if (hash_out != NULL)
366 		*hash_out = hv;
367 	return (NULL);
368 }
369 
370 static dmu_buf_impl_t *
371 dbuf_find_bonus(objset_t *os, uint64_t object)
372 {
373 	dnode_t *dn;
374 	dmu_buf_impl_t *db = NULL;
375 
376 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
377 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 		if (dn->dn_bonus != NULL) {
379 			db = dn->dn_bonus;
380 			mutex_enter(&db->db_mtx);
381 		}
382 		rw_exit(&dn->dn_struct_rwlock);
383 		dnode_rele(dn, FTAG);
384 	}
385 	return (db);
386 }
387 
388 /*
389  * Insert an entry into the hash table.  If there is already an element
390  * equal to elem in the hash table, then the already existing element
391  * will be returned and the new element will not be inserted.
392  * Otherwise returns NULL.
393  */
394 static dmu_buf_impl_t *
395 dbuf_hash_insert(dmu_buf_impl_t *db)
396 {
397 	dbuf_hash_table_t *h = &dbuf_hash_table;
398 	objset_t *os = db->db_objset;
399 	uint64_t obj = db->db.db_object;
400 	int level = db->db_level;
401 	uint64_t blkid, idx;
402 	dmu_buf_impl_t *dbf;
403 	uint32_t i;
404 
405 	blkid = db->db_blkid;
406 	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
407 	idx = db->db_hash & h->hash_table_mask;
408 
409 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
410 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
411 	    dbf = dbf->db_hash_next, i++) {
412 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
413 			mutex_enter(&dbf->db_mtx);
414 			if (dbf->db_state != DB_EVICTING) {
415 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
416 				return (dbf);
417 			}
418 			mutex_exit(&dbf->db_mtx);
419 		}
420 	}
421 
422 	if (i > 0) {
423 		DBUF_STAT_BUMP(hash_collisions);
424 		if (i == 1)
425 			DBUF_STAT_BUMP(hash_chains);
426 
427 		DBUF_STAT_MAX(hash_chain_max, i);
428 	}
429 
430 	mutex_enter(&db->db_mtx);
431 	db->db_hash_next = h->hash_table[idx];
432 	h->hash_table[idx] = db;
433 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
434 	uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
435 	DBUF_STAT_MAX(hash_elements_max, he);
436 
437 	return (NULL);
438 }
439 
440 /*
441  * This returns whether this dbuf should be stored in the metadata cache, which
442  * is based on whether it's from one of the dnode types that store data related
443  * to traversing dataset hierarchies.
444  */
445 static boolean_t
446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 	DB_DNODE_ENTER(db);
449 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 	DB_DNODE_EXIT(db);
451 
452 	/* Check if this dbuf is one of the types we care about */
453 	if (DMU_OT_IS_METADATA_CACHED(type)) {
454 		/* If we hit this, then we set something up wrong in dmu_ot */
455 		ASSERT(DMU_OT_IS_METADATA(type));
456 
457 		/*
458 		 * Sanity check for small-memory systems: don't allocate too
459 		 * much memory for this purpose.
460 		 */
461 		if (zfs_refcount_count(
462 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 		    dbuf_metadata_cache_target_bytes()) {
464 			DBUF_STAT_BUMP(metadata_cache_overflow);
465 			return (B_FALSE);
466 		}
467 
468 		return (B_TRUE);
469 	}
470 
471 	return (B_FALSE);
472 }
473 
474 /*
475  * Remove an entry from the hash table.  It must be in the EVICTING state.
476  */
477 static void
478 dbuf_hash_remove(dmu_buf_impl_t *db)
479 {
480 	dbuf_hash_table_t *h = &dbuf_hash_table;
481 	uint64_t idx;
482 	dmu_buf_impl_t *dbf, **dbp;
483 
484 	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 	    db->db_blkid), ==, db->db_hash);
486 	idx = db->db_hash & h->hash_table_mask;
487 
488 	/*
489 	 * We mustn't hold db_mtx to maintain lock ordering:
490 	 * DBUF_HASH_MUTEX > db_mtx.
491 	 */
492 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 	ASSERT(db->db_state == DB_EVICTING);
494 	ASSERT(!MUTEX_HELD(&db->db_mtx));
495 
496 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 	dbp = &h->hash_table[idx];
498 	while ((dbf = *dbp) != db) {
499 		dbp = &dbf->db_hash_next;
500 		ASSERT(dbf != NULL);
501 	}
502 	*dbp = db->db_hash_next;
503 	db->db_hash_next = NULL;
504 	if (h->hash_table[idx] &&
505 	    h->hash_table[idx]->db_hash_next == NULL)
506 		DBUF_STAT_BUMPDOWN(hash_chains);
507 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 	atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
509 }
510 
511 typedef enum {
512 	DBVU_EVICTING,
513 	DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
515 
516 static void
517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518 {
519 #ifdef ZFS_DEBUG
520 	int64_t holds;
521 
522 	if (db->db_user == NULL)
523 		return;
524 
525 	/* Only data blocks support the attachment of user data. */
526 	ASSERT(db->db_level == 0);
527 
528 	/* Clients must resolve a dbuf before attaching user data. */
529 	ASSERT(db->db.db_data != NULL);
530 	ASSERT3U(db->db_state, ==, DB_CACHED);
531 
532 	holds = zfs_refcount_count(&db->db_holds);
533 	if (verify_type == DBVU_EVICTING) {
534 		/*
535 		 * Immediate eviction occurs when holds == dirtycnt.
536 		 * For normal eviction buffers, holds is zero on
537 		 * eviction, except when dbuf_fix_old_data() calls
538 		 * dbuf_clear_data().  However, the hold count can grow
539 		 * during eviction even though db_mtx is held (see
540 		 * dmu_bonus_hold() for an example), so we can only
541 		 * test the generic invariant that holds >= dirtycnt.
542 		 */
543 		ASSERT3U(holds, >=, db->db_dirtycnt);
544 	} else {
545 		if (db->db_user_immediate_evict == TRUE)
546 			ASSERT3U(holds, >=, db->db_dirtycnt);
547 		else
548 			ASSERT3U(holds, >, 0);
549 	}
550 #endif
551 }
552 
553 static void
554 dbuf_evict_user(dmu_buf_impl_t *db)
555 {
556 	dmu_buf_user_t *dbu = db->db_user;
557 
558 	ASSERT(MUTEX_HELD(&db->db_mtx));
559 
560 	if (dbu == NULL)
561 		return;
562 
563 	dbuf_verify_user(db, DBVU_EVICTING);
564 	db->db_user = NULL;
565 
566 #ifdef ZFS_DEBUG
567 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 		*dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
570 
571 	/*
572 	 * There are two eviction callbacks - one that we call synchronously
573 	 * and one that we invoke via a taskq.  The async one is useful for
574 	 * avoiding lock order reversals and limiting stack depth.
575 	 *
576 	 * Note that if we have a sync callback but no async callback,
577 	 * it's likely that the sync callback will free the structure
578 	 * containing the dbu.  In that case we need to take care to not
579 	 * dereference dbu after calling the sync evict func.
580 	 */
581 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
582 
583 	if (dbu->dbu_evict_func_sync != NULL)
584 		dbu->dbu_evict_func_sync(dbu);
585 
586 	if (has_async) {
587 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
588 		    dbu, 0, &dbu->dbu_tqent);
589 	}
590 }
591 
592 boolean_t
593 dbuf_is_metadata(dmu_buf_impl_t *db)
594 {
595 	/*
596 	 * Consider indirect blocks and spill blocks to be meta data.
597 	 */
598 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
599 		return (B_TRUE);
600 	} else {
601 		boolean_t is_metadata;
602 
603 		DB_DNODE_ENTER(db);
604 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
605 		DB_DNODE_EXIT(db);
606 
607 		return (is_metadata);
608 	}
609 }
610 
611 /*
612  * We want to exclude buffers that are on a special allocation class from
613  * L2ARC.
614  */
615 boolean_t
616 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
617 {
618 	vdev_t *vd = NULL;
619 	zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
620 	blkptr_t *bp = db->db_blkptr;
621 
622 	if (bp != NULL && !BP_IS_HOLE(bp)) {
623 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
624 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
625 
626 		if (vdev < rvd->vdev_children)
627 			vd = rvd->vdev_child[vdev];
628 
629 		if (cache == ZFS_CACHE_ALL ||
630 		    (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
631 			if (vd == NULL)
632 				return (B_TRUE);
633 
634 			if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
635 			    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
636 			    l2arc_exclude_special == 0)
637 				return (B_TRUE);
638 		}
639 	}
640 
641 	return (B_FALSE);
642 }
643 
644 static inline boolean_t
645 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
646 {
647 	vdev_t *vd = NULL;
648 	zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
649 
650 	if (bp != NULL && !BP_IS_HOLE(bp)) {
651 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
652 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
653 
654 		if (vdev < rvd->vdev_children)
655 			vd = rvd->vdev_child[vdev];
656 
657 		if (cache == ZFS_CACHE_ALL || ((level > 0 ||
658 		    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
659 		    cache == ZFS_CACHE_METADATA)) {
660 			if (vd == NULL)
661 				return (B_TRUE);
662 
663 			if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
664 			    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
665 			    l2arc_exclude_special == 0)
666 				return (B_TRUE);
667 		}
668 	}
669 
670 	return (B_FALSE);
671 }
672 
673 
674 /*
675  * This function *must* return indices evenly distributed between all
676  * sublists of the multilist. This is needed due to how the dbuf eviction
677  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
678  * distributed between all sublists and uses this assumption when
679  * deciding which sublist to evict from and how much to evict from it.
680  */
681 static unsigned int
682 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
683 {
684 	dmu_buf_impl_t *db = obj;
685 
686 	/*
687 	 * The assumption here, is the hash value for a given
688 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
689 	 * (i.e. it's objset, object, level and blkid fields don't change).
690 	 * Thus, we don't need to store the dbuf's sublist index
691 	 * on insertion, as this index can be recalculated on removal.
692 	 *
693 	 * Also, the low order bits of the hash value are thought to be
694 	 * distributed evenly. Otherwise, in the case that the multilist
695 	 * has a power of two number of sublists, each sublists' usage
696 	 * would not be evenly distributed. In this context full 64bit
697 	 * division would be a waste of time, so limit it to 32 bits.
698 	 */
699 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
700 	    db->db_level, db->db_blkid) %
701 	    multilist_get_num_sublists(ml));
702 }
703 
704 /*
705  * The target size of the dbuf cache can grow with the ARC target,
706  * unless limited by the tunable dbuf_cache_max_bytes.
707  */
708 static inline unsigned long
709 dbuf_cache_target_bytes(void)
710 {
711 	return (MIN(dbuf_cache_max_bytes,
712 	    arc_target_bytes() >> dbuf_cache_shift));
713 }
714 
715 /*
716  * The target size of the dbuf metadata cache can grow with the ARC target,
717  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
718  */
719 static inline unsigned long
720 dbuf_metadata_cache_target_bytes(void)
721 {
722 	return (MIN(dbuf_metadata_cache_max_bytes,
723 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
724 }
725 
726 static inline uint64_t
727 dbuf_cache_hiwater_bytes(void)
728 {
729 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
730 	return (dbuf_cache_target +
731 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
732 }
733 
734 static inline uint64_t
735 dbuf_cache_lowater_bytes(void)
736 {
737 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
738 	return (dbuf_cache_target -
739 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
740 }
741 
742 static inline boolean_t
743 dbuf_cache_above_lowater(void)
744 {
745 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
746 	    dbuf_cache_lowater_bytes());
747 }
748 
749 /*
750  * Evict the oldest eligible dbuf from the dbuf cache.
751  */
752 static void
753 dbuf_evict_one(void)
754 {
755 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
756 	multilist_sublist_t *mls = multilist_sublist_lock(
757 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
758 
759 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
760 
761 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
762 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
763 		db = multilist_sublist_prev(mls, db);
764 	}
765 
766 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
767 	    multilist_sublist_t *, mls);
768 
769 	if (db != NULL) {
770 		multilist_sublist_remove(mls, db);
771 		multilist_sublist_unlock(mls);
772 		(void) zfs_refcount_remove_many(
773 		    &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
774 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
775 		DBUF_STAT_BUMPDOWN(cache_count);
776 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
777 		    db->db.db_size);
778 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
779 		db->db_caching_status = DB_NO_CACHE;
780 		dbuf_destroy(db);
781 		DBUF_STAT_BUMP(cache_total_evicts);
782 	} else {
783 		multilist_sublist_unlock(mls);
784 	}
785 }
786 
787 /*
788  * The dbuf evict thread is responsible for aging out dbufs from the
789  * cache. Once the cache has reached it's maximum size, dbufs are removed
790  * and destroyed. The eviction thread will continue running until the size
791  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
792  * out of the cache it is destroyed and becomes eligible for arc eviction.
793  */
794 static __attribute__((noreturn)) void
795 dbuf_evict_thread(void *unused)
796 {
797 	(void) unused;
798 	callb_cpr_t cpr;
799 
800 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
801 
802 	mutex_enter(&dbuf_evict_lock);
803 	while (!dbuf_evict_thread_exit) {
804 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
805 			CALLB_CPR_SAFE_BEGIN(&cpr);
806 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
807 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
808 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
809 		}
810 		mutex_exit(&dbuf_evict_lock);
811 
812 		/*
813 		 * Keep evicting as long as we're above the low water mark
814 		 * for the cache. We do this without holding the locks to
815 		 * minimize lock contention.
816 		 */
817 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
818 			dbuf_evict_one();
819 		}
820 
821 		mutex_enter(&dbuf_evict_lock);
822 	}
823 
824 	dbuf_evict_thread_exit = B_FALSE;
825 	cv_broadcast(&dbuf_evict_cv);
826 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
827 	thread_exit();
828 }
829 
830 /*
831  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
832  * If the dbuf cache is at its high water mark, then evict a dbuf from the
833  * dbuf cache using the caller's context.
834  */
835 static void
836 dbuf_evict_notify(uint64_t size)
837 {
838 	/*
839 	 * We check if we should evict without holding the dbuf_evict_lock,
840 	 * because it's OK to occasionally make the wrong decision here,
841 	 * and grabbing the lock results in massive lock contention.
842 	 */
843 	if (size > dbuf_cache_target_bytes()) {
844 		if (size > dbuf_cache_hiwater_bytes())
845 			dbuf_evict_one();
846 		cv_signal(&dbuf_evict_cv);
847 	}
848 }
849 
850 static int
851 dbuf_kstat_update(kstat_t *ksp, int rw)
852 {
853 	dbuf_stats_t *ds = ksp->ks_data;
854 	dbuf_hash_table_t *h = &dbuf_hash_table;
855 
856 	if (rw == KSTAT_WRITE)
857 		return (SET_ERROR(EACCES));
858 
859 	ds->cache_count.value.ui64 =
860 	    wmsum_value(&dbuf_sums.cache_count);
861 	ds->cache_size_bytes.value.ui64 =
862 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
863 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
864 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
865 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
866 	ds->cache_total_evicts.value.ui64 =
867 	    wmsum_value(&dbuf_sums.cache_total_evicts);
868 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
869 		ds->cache_levels[i].value.ui64 =
870 		    wmsum_value(&dbuf_sums.cache_levels[i]);
871 		ds->cache_levels_bytes[i].value.ui64 =
872 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
873 	}
874 	ds->hash_hits.value.ui64 =
875 	    wmsum_value(&dbuf_sums.hash_hits);
876 	ds->hash_misses.value.ui64 =
877 	    wmsum_value(&dbuf_sums.hash_misses);
878 	ds->hash_collisions.value.ui64 =
879 	    wmsum_value(&dbuf_sums.hash_collisions);
880 	ds->hash_chains.value.ui64 =
881 	    wmsum_value(&dbuf_sums.hash_chains);
882 	ds->hash_insert_race.value.ui64 =
883 	    wmsum_value(&dbuf_sums.hash_insert_race);
884 	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
885 	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
886 	ds->metadata_cache_count.value.ui64 =
887 	    wmsum_value(&dbuf_sums.metadata_cache_count);
888 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
889 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
890 	ds->metadata_cache_overflow.value.ui64 =
891 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
892 	return (0);
893 }
894 
895 void
896 dbuf_init(void)
897 {
898 	uint64_t hmsize, hsize = 1ULL << 16;
899 	dbuf_hash_table_t *h = &dbuf_hash_table;
900 
901 	/*
902 	 * The hash table is big enough to fill one eighth of physical memory
903 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
904 	 * By default, the table will take up
905 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
906 	 */
907 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
908 		hsize <<= 1;
909 
910 	h->hash_table = NULL;
911 	while (h->hash_table == NULL) {
912 		h->hash_table_mask = hsize - 1;
913 
914 		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
915 		if (h->hash_table == NULL)
916 			hsize >>= 1;
917 
918 		ASSERT3U(hsize, >=, 1ULL << 10);
919 	}
920 
921 	/*
922 	 * The hash table buckets are protected by an array of mutexes where
923 	 * each mutex is reponsible for protecting 128 buckets.  A minimum
924 	 * array size of 8192 is targeted to avoid contention.
925 	 */
926 	if (dbuf_mutex_cache_shift == 0)
927 		hmsize = MAX(hsize >> 7, 1ULL << 13);
928 	else
929 		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
930 
931 	h->hash_mutexes = NULL;
932 	while (h->hash_mutexes == NULL) {
933 		h->hash_mutex_mask = hmsize - 1;
934 
935 		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
936 		    KM_SLEEP);
937 		if (h->hash_mutexes == NULL)
938 			hmsize >>= 1;
939 	}
940 
941 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
942 	    sizeof (dmu_buf_impl_t),
943 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
944 
945 	for (int i = 0; i < hmsize; i++)
946 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
947 
948 	dbuf_stats_init(h);
949 
950 	/*
951 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
952 	 * configuration is not required.
953 	 */
954 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
955 
956 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
957 		multilist_create(&dbuf_caches[dcs].cache,
958 		    sizeof (dmu_buf_impl_t),
959 		    offsetof(dmu_buf_impl_t, db_cache_link),
960 		    dbuf_cache_multilist_index_func);
961 		zfs_refcount_create(&dbuf_caches[dcs].size);
962 	}
963 
964 	dbuf_evict_thread_exit = B_FALSE;
965 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
966 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
967 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
968 	    NULL, 0, &p0, TS_RUN, minclsyspri);
969 
970 	wmsum_init(&dbuf_sums.cache_count, 0);
971 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
972 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
973 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
974 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
975 	}
976 	wmsum_init(&dbuf_sums.hash_hits, 0);
977 	wmsum_init(&dbuf_sums.hash_misses, 0);
978 	wmsum_init(&dbuf_sums.hash_collisions, 0);
979 	wmsum_init(&dbuf_sums.hash_chains, 0);
980 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
981 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
982 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
983 
984 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
985 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
986 	    KSTAT_FLAG_VIRTUAL);
987 	if (dbuf_ksp != NULL) {
988 		for (int i = 0; i < DN_MAX_LEVELS; i++) {
989 			snprintf(dbuf_stats.cache_levels[i].name,
990 			    KSTAT_STRLEN, "cache_level_%d", i);
991 			dbuf_stats.cache_levels[i].data_type =
992 			    KSTAT_DATA_UINT64;
993 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
994 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
995 			dbuf_stats.cache_levels_bytes[i].data_type =
996 			    KSTAT_DATA_UINT64;
997 		}
998 		dbuf_ksp->ks_data = &dbuf_stats;
999 		dbuf_ksp->ks_update = dbuf_kstat_update;
1000 		kstat_install(dbuf_ksp);
1001 	}
1002 }
1003 
1004 void
1005 dbuf_fini(void)
1006 {
1007 	dbuf_hash_table_t *h = &dbuf_hash_table;
1008 
1009 	dbuf_stats_destroy();
1010 
1011 	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1012 		mutex_destroy(&h->hash_mutexes[i]);
1013 
1014 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1015 	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1016 	    sizeof (kmutex_t));
1017 
1018 	kmem_cache_destroy(dbuf_kmem_cache);
1019 	taskq_destroy(dbu_evict_taskq);
1020 
1021 	mutex_enter(&dbuf_evict_lock);
1022 	dbuf_evict_thread_exit = B_TRUE;
1023 	while (dbuf_evict_thread_exit) {
1024 		cv_signal(&dbuf_evict_cv);
1025 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1026 	}
1027 	mutex_exit(&dbuf_evict_lock);
1028 
1029 	mutex_destroy(&dbuf_evict_lock);
1030 	cv_destroy(&dbuf_evict_cv);
1031 
1032 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1033 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1034 		multilist_destroy(&dbuf_caches[dcs].cache);
1035 	}
1036 
1037 	if (dbuf_ksp != NULL) {
1038 		kstat_delete(dbuf_ksp);
1039 		dbuf_ksp = NULL;
1040 	}
1041 
1042 	wmsum_fini(&dbuf_sums.cache_count);
1043 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1044 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1045 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1046 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1047 	}
1048 	wmsum_fini(&dbuf_sums.hash_hits);
1049 	wmsum_fini(&dbuf_sums.hash_misses);
1050 	wmsum_fini(&dbuf_sums.hash_collisions);
1051 	wmsum_fini(&dbuf_sums.hash_chains);
1052 	wmsum_fini(&dbuf_sums.hash_insert_race);
1053 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1054 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1055 }
1056 
1057 /*
1058  * Other stuff.
1059  */
1060 
1061 #ifdef ZFS_DEBUG
1062 static void
1063 dbuf_verify(dmu_buf_impl_t *db)
1064 {
1065 	dnode_t *dn;
1066 	dbuf_dirty_record_t *dr;
1067 	uint32_t txg_prev;
1068 
1069 	ASSERT(MUTEX_HELD(&db->db_mtx));
1070 
1071 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1072 		return;
1073 
1074 	ASSERT(db->db_objset != NULL);
1075 	DB_DNODE_ENTER(db);
1076 	dn = DB_DNODE(db);
1077 	if (dn == NULL) {
1078 		ASSERT(db->db_parent == NULL);
1079 		ASSERT(db->db_blkptr == NULL);
1080 	} else {
1081 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1082 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1083 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1084 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1085 		    db->db_blkid == DMU_SPILL_BLKID ||
1086 		    !avl_is_empty(&dn->dn_dbufs));
1087 	}
1088 	if (db->db_blkid == DMU_BONUS_BLKID) {
1089 		ASSERT(dn != NULL);
1090 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1091 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1092 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1093 		ASSERT(dn != NULL);
1094 		ASSERT0(db->db.db_offset);
1095 	} else {
1096 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1097 	}
1098 
1099 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1100 		ASSERT(dr->dr_dbuf == db);
1101 		txg_prev = dr->dr_txg;
1102 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1103 		    dr = list_next(&db->db_dirty_records, dr)) {
1104 			ASSERT(dr->dr_dbuf == db);
1105 			ASSERT(txg_prev > dr->dr_txg);
1106 			txg_prev = dr->dr_txg;
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * We can't assert that db_size matches dn_datablksz because it
1112 	 * can be momentarily different when another thread is doing
1113 	 * dnode_set_blksz().
1114 	 */
1115 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1116 		dr = db->db_data_pending;
1117 		/*
1118 		 * It should only be modified in syncing context, so
1119 		 * make sure we only have one copy of the data.
1120 		 */
1121 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1122 	}
1123 
1124 	/* verify db->db_blkptr */
1125 	if (db->db_blkptr) {
1126 		if (db->db_parent == dn->dn_dbuf) {
1127 			/* db is pointed to by the dnode */
1128 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1129 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1130 				ASSERT(db->db_parent == NULL);
1131 			else
1132 				ASSERT(db->db_parent != NULL);
1133 			if (db->db_blkid != DMU_SPILL_BLKID)
1134 				ASSERT3P(db->db_blkptr, ==,
1135 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1136 		} else {
1137 			/* db is pointed to by an indirect block */
1138 			int epb __maybe_unused = db->db_parent->db.db_size >>
1139 			    SPA_BLKPTRSHIFT;
1140 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1141 			ASSERT3U(db->db_parent->db.db_object, ==,
1142 			    db->db.db_object);
1143 			/*
1144 			 * dnode_grow_indblksz() can make this fail if we don't
1145 			 * have the parent's rwlock.  XXX indblksz no longer
1146 			 * grows.  safe to do this now?
1147 			 */
1148 			if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1149 				ASSERT3P(db->db_blkptr, ==,
1150 				    ((blkptr_t *)db->db_parent->db.db_data +
1151 				    db->db_blkid % epb));
1152 			}
1153 		}
1154 	}
1155 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1156 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1157 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1158 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
1159 		/*
1160 		 * If the blkptr isn't set but they have nonzero data,
1161 		 * it had better be dirty, otherwise we'll lose that
1162 		 * data when we evict this buffer.
1163 		 *
1164 		 * There is an exception to this rule for indirect blocks; in
1165 		 * this case, if the indirect block is a hole, we fill in a few
1166 		 * fields on each of the child blocks (importantly, birth time)
1167 		 * to prevent hole birth times from being lost when you
1168 		 * partially fill in a hole.
1169 		 */
1170 		if (db->db_dirtycnt == 0) {
1171 			if (db->db_level == 0) {
1172 				uint64_t *buf = db->db.db_data;
1173 				int i;
1174 
1175 				for (i = 0; i < db->db.db_size >> 3; i++) {
1176 					ASSERT(buf[i] == 0);
1177 				}
1178 			} else {
1179 				blkptr_t *bps = db->db.db_data;
1180 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1181 				    db->db.db_size);
1182 				/*
1183 				 * We want to verify that all the blkptrs in the
1184 				 * indirect block are holes, but we may have
1185 				 * automatically set up a few fields for them.
1186 				 * We iterate through each blkptr and verify
1187 				 * they only have those fields set.
1188 				 */
1189 				for (int i = 0;
1190 				    i < db->db.db_size / sizeof (blkptr_t);
1191 				    i++) {
1192 					blkptr_t *bp = &bps[i];
1193 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1194 					    &bp->blk_cksum));
1195 					ASSERT(
1196 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1197 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1198 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1199 					ASSERT0(bp->blk_fill);
1200 					ASSERT0(bp->blk_pad[0]);
1201 					ASSERT0(bp->blk_pad[1]);
1202 					ASSERT(!BP_IS_EMBEDDED(bp));
1203 					ASSERT(BP_IS_HOLE(bp));
1204 					ASSERT0(bp->blk_phys_birth);
1205 				}
1206 			}
1207 		}
1208 	}
1209 	DB_DNODE_EXIT(db);
1210 }
1211 #endif
1212 
1213 static void
1214 dbuf_clear_data(dmu_buf_impl_t *db)
1215 {
1216 	ASSERT(MUTEX_HELD(&db->db_mtx));
1217 	dbuf_evict_user(db);
1218 	ASSERT3P(db->db_buf, ==, NULL);
1219 	db->db.db_data = NULL;
1220 	if (db->db_state != DB_NOFILL) {
1221 		db->db_state = DB_UNCACHED;
1222 		DTRACE_SET_STATE(db, "clear data");
1223 	}
1224 }
1225 
1226 static void
1227 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1228 {
1229 	ASSERT(MUTEX_HELD(&db->db_mtx));
1230 	ASSERT(buf != NULL);
1231 
1232 	db->db_buf = buf;
1233 	ASSERT(buf->b_data != NULL);
1234 	db->db.db_data = buf->b_data;
1235 }
1236 
1237 static arc_buf_t *
1238 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1239 {
1240 	spa_t *spa = db->db_objset->os_spa;
1241 
1242 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1243 }
1244 
1245 /*
1246  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1247  */
1248 arc_buf_t *
1249 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1250 {
1251 	arc_buf_t *abuf;
1252 
1253 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1254 	mutex_enter(&db->db_mtx);
1255 	if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1256 		int blksz = db->db.db_size;
1257 		spa_t *spa = db->db_objset->os_spa;
1258 
1259 		mutex_exit(&db->db_mtx);
1260 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
1261 		memcpy(abuf->b_data, db->db.db_data, blksz);
1262 	} else {
1263 		abuf = db->db_buf;
1264 		arc_loan_inuse_buf(abuf, db);
1265 		db->db_buf = NULL;
1266 		dbuf_clear_data(db);
1267 		mutex_exit(&db->db_mtx);
1268 	}
1269 	return (abuf);
1270 }
1271 
1272 /*
1273  * Calculate which level n block references the data at the level 0 offset
1274  * provided.
1275  */
1276 uint64_t
1277 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1278 {
1279 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1280 		/*
1281 		 * The level n blkid is equal to the level 0 blkid divided by
1282 		 * the number of level 0s in a level n block.
1283 		 *
1284 		 * The level 0 blkid is offset >> datablkshift =
1285 		 * offset / 2^datablkshift.
1286 		 *
1287 		 * The number of level 0s in a level n is the number of block
1288 		 * pointers in an indirect block, raised to the power of level.
1289 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1290 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1291 		 *
1292 		 * Thus, the level n blkid is: offset /
1293 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1294 		 * = offset / 2^(datablkshift + level *
1295 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1296 		 * = offset >> (datablkshift + level *
1297 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1298 		 */
1299 
1300 		const unsigned exp = dn->dn_datablkshift +
1301 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1302 
1303 		if (exp >= 8 * sizeof (offset)) {
1304 			/* This only happens on the highest indirection level */
1305 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1306 			return (0);
1307 		}
1308 
1309 		ASSERT3U(exp, <, 8 * sizeof (offset));
1310 
1311 		return (offset >> exp);
1312 	} else {
1313 		ASSERT3U(offset, <, dn->dn_datablksz);
1314 		return (0);
1315 	}
1316 }
1317 
1318 /*
1319  * This function is used to lock the parent of the provided dbuf. This should be
1320  * used when modifying or reading db_blkptr.
1321  */
1322 db_lock_type_t
1323 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1324 {
1325 	enum db_lock_type ret = DLT_NONE;
1326 	if (db->db_parent != NULL) {
1327 		rw_enter(&db->db_parent->db_rwlock, rw);
1328 		ret = DLT_PARENT;
1329 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1330 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1331 		    tag);
1332 		ret = DLT_OBJSET;
1333 	}
1334 	/*
1335 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1336 	 * of the meta-dnode of the MOS.
1337 	 */
1338 	return (ret);
1339 }
1340 
1341 /*
1342  * We need to pass the lock type in because it's possible that the block will
1343  * move from being the topmost indirect block in a dnode (and thus, have no
1344  * parent) to not the top-most via an indirection increase. This would cause a
1345  * panic if we didn't pass the lock type in.
1346  */
1347 void
1348 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1349 {
1350 	if (type == DLT_PARENT)
1351 		rw_exit(&db->db_parent->db_rwlock);
1352 	else if (type == DLT_OBJSET)
1353 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1354 }
1355 
1356 static void
1357 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1358     arc_buf_t *buf, void *vdb)
1359 {
1360 	(void) zb, (void) bp;
1361 	dmu_buf_impl_t *db = vdb;
1362 
1363 	mutex_enter(&db->db_mtx);
1364 	ASSERT3U(db->db_state, ==, DB_READ);
1365 	/*
1366 	 * All reads are synchronous, so we must have a hold on the dbuf
1367 	 */
1368 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1369 	ASSERT(db->db_buf == NULL);
1370 	ASSERT(db->db.db_data == NULL);
1371 	if (buf == NULL) {
1372 		/* i/o error */
1373 		ASSERT(zio == NULL || zio->io_error != 0);
1374 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1375 		ASSERT3P(db->db_buf, ==, NULL);
1376 		db->db_state = DB_UNCACHED;
1377 		DTRACE_SET_STATE(db, "i/o error");
1378 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1379 		/* freed in flight */
1380 		ASSERT(zio == NULL || zio->io_error == 0);
1381 		arc_release(buf, db);
1382 		memset(buf->b_data, 0, db->db.db_size);
1383 		arc_buf_freeze(buf);
1384 		db->db_freed_in_flight = FALSE;
1385 		dbuf_set_data(db, buf);
1386 		db->db_state = DB_CACHED;
1387 		DTRACE_SET_STATE(db, "freed in flight");
1388 	} else {
1389 		/* success */
1390 		ASSERT(zio == NULL || zio->io_error == 0);
1391 		dbuf_set_data(db, buf);
1392 		db->db_state = DB_CACHED;
1393 		DTRACE_SET_STATE(db, "successful read");
1394 	}
1395 	cv_broadcast(&db->db_changed);
1396 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1397 }
1398 
1399 /*
1400  * Shortcut for performing reads on bonus dbufs.  Returns
1401  * an error if we fail to verify the dnode associated with
1402  * a decrypted block. Otherwise success.
1403  */
1404 static int
1405 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1406 {
1407 	int bonuslen, max_bonuslen, err;
1408 
1409 	err = dbuf_read_verify_dnode_crypt(db, flags);
1410 	if (err)
1411 		return (err);
1412 
1413 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1414 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1415 	ASSERT(MUTEX_HELD(&db->db_mtx));
1416 	ASSERT(DB_DNODE_HELD(db));
1417 	ASSERT3U(bonuslen, <=, db->db.db_size);
1418 	db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1419 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1420 	if (bonuslen < max_bonuslen)
1421 		memset(db->db.db_data, 0, max_bonuslen);
1422 	if (bonuslen)
1423 		memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1424 	db->db_state = DB_CACHED;
1425 	DTRACE_SET_STATE(db, "bonus buffer filled");
1426 	return (0);
1427 }
1428 
1429 static void
1430 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1431 {
1432 	blkptr_t *bps = db->db.db_data;
1433 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1434 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1435 
1436 	for (int i = 0; i < n_bps; i++) {
1437 		blkptr_t *bp = &bps[i];
1438 
1439 		ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1440 		BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1441 		    dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1442 		BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1443 		BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1444 		BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1445 	}
1446 }
1447 
1448 /*
1449  * Handle reads on dbufs that are holes, if necessary.  This function
1450  * requires that the dbuf's mutex is held. Returns success (0) if action
1451  * was taken, ENOENT if no action was taken.
1452  */
1453 static int
1454 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
1455 {
1456 	ASSERT(MUTEX_HELD(&db->db_mtx));
1457 
1458 	int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1459 	/*
1460 	 * For level 0 blocks only, if the above check fails:
1461 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1462 	 * processes the delete record and clears the bp while we are waiting
1463 	 * for the dn_mtx (resulting in a "no" from block_freed).
1464 	 */
1465 	if (!is_hole && db->db_level == 0) {
1466 		is_hole = dnode_block_freed(dn, db->db_blkid) ||
1467 		    BP_IS_HOLE(db->db_blkptr);
1468 	}
1469 
1470 	if (is_hole) {
1471 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1472 		memset(db->db.db_data, 0, db->db.db_size);
1473 
1474 		if (db->db_blkptr != NULL && db->db_level > 0 &&
1475 		    BP_IS_HOLE(db->db_blkptr) &&
1476 		    db->db_blkptr->blk_birth != 0) {
1477 			dbuf_handle_indirect_hole(db, dn);
1478 		}
1479 		db->db_state = DB_CACHED;
1480 		DTRACE_SET_STATE(db, "hole read satisfied");
1481 		return (0);
1482 	}
1483 	return (ENOENT);
1484 }
1485 
1486 /*
1487  * This function ensures that, when doing a decrypting read of a block,
1488  * we make sure we have decrypted the dnode associated with it. We must do
1489  * this so that we ensure we are fully authenticating the checksum-of-MACs
1490  * tree from the root of the objset down to this block. Indirect blocks are
1491  * always verified against their secure checksum-of-MACs assuming that the
1492  * dnode containing them is correct. Now that we are doing a decrypting read,
1493  * we can be sure that the key is loaded and verify that assumption. This is
1494  * especially important considering that we always read encrypted dnode
1495  * blocks as raw data (without verifying their MACs) to start, and
1496  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1497  */
1498 static int
1499 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1500 {
1501 	int err = 0;
1502 	objset_t *os = db->db_objset;
1503 	arc_buf_t *dnode_abuf;
1504 	dnode_t *dn;
1505 	zbookmark_phys_t zb;
1506 
1507 	ASSERT(MUTEX_HELD(&db->db_mtx));
1508 
1509 	if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1510 	    !os->os_encrypted || os->os_raw_receive)
1511 		return (0);
1512 
1513 	DB_DNODE_ENTER(db);
1514 	dn = DB_DNODE(db);
1515 	dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1516 
1517 	if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1518 		DB_DNODE_EXIT(db);
1519 		return (0);
1520 	}
1521 
1522 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1523 	    DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1524 	err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1525 
1526 	/*
1527 	 * An error code of EACCES tells us that the key is still not
1528 	 * available. This is ok if we are only reading authenticated
1529 	 * (and therefore non-encrypted) blocks.
1530 	 */
1531 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1532 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1533 	    (db->db_blkid == DMU_BONUS_BLKID &&
1534 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1535 		err = 0;
1536 
1537 	DB_DNODE_EXIT(db);
1538 
1539 	return (err);
1540 }
1541 
1542 /*
1543  * Drops db_mtx and the parent lock specified by dblt and tag before
1544  * returning.
1545  */
1546 static int
1547 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1548     db_lock_type_t dblt, const void *tag)
1549 {
1550 	dnode_t *dn;
1551 	zbookmark_phys_t zb;
1552 	uint32_t aflags = ARC_FLAG_NOWAIT;
1553 	int err, zio_flags;
1554 
1555 	DB_DNODE_ENTER(db);
1556 	dn = DB_DNODE(db);
1557 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1558 	ASSERT(MUTEX_HELD(&db->db_mtx));
1559 	ASSERT(db->db_state == DB_UNCACHED);
1560 	ASSERT(db->db_buf == NULL);
1561 	ASSERT(db->db_parent == NULL ||
1562 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1563 
1564 	if (db->db_blkid == DMU_BONUS_BLKID) {
1565 		err = dbuf_read_bonus(db, dn, flags);
1566 		goto early_unlock;
1567 	}
1568 
1569 	err = dbuf_read_hole(db, dn);
1570 	if (err == 0)
1571 		goto early_unlock;
1572 
1573 	/*
1574 	 * Any attempt to read a redacted block should result in an error. This
1575 	 * will never happen under normal conditions, but can be useful for
1576 	 * debugging purposes.
1577 	 */
1578 	if (BP_IS_REDACTED(db->db_blkptr)) {
1579 		ASSERT(dsl_dataset_feature_is_active(
1580 		    db->db_objset->os_dsl_dataset,
1581 		    SPA_FEATURE_REDACTED_DATASETS));
1582 		err = SET_ERROR(EIO);
1583 		goto early_unlock;
1584 	}
1585 
1586 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1587 	    db->db.db_object, db->db_level, db->db_blkid);
1588 
1589 	/*
1590 	 * All bps of an encrypted os should have the encryption bit set.
1591 	 * If this is not true it indicates tampering and we report an error.
1592 	 */
1593 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1594 		spa_log_error(db->db_objset->os_spa, &zb);
1595 		zfs_panic_recover("unencrypted block in encrypted "
1596 		    "object set %llu", dmu_objset_id(db->db_objset));
1597 		err = SET_ERROR(EIO);
1598 		goto early_unlock;
1599 	}
1600 
1601 	err = dbuf_read_verify_dnode_crypt(db, flags);
1602 	if (err != 0)
1603 		goto early_unlock;
1604 
1605 	DB_DNODE_EXIT(db);
1606 
1607 	db->db_state = DB_READ;
1608 	DTRACE_SET_STATE(db, "read issued");
1609 	mutex_exit(&db->db_mtx);
1610 
1611 	if (!DBUF_IS_CACHEABLE(db))
1612 		aflags |= ARC_FLAG_UNCACHED;
1613 	else if (dbuf_is_l2cacheable(db))
1614 		aflags |= ARC_FLAG_L2CACHE;
1615 
1616 	dbuf_add_ref(db, NULL);
1617 
1618 	zio_flags = (flags & DB_RF_CANFAIL) ?
1619 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1620 
1621 	if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1622 		zio_flags |= ZIO_FLAG_RAW;
1623 	/*
1624 	 * The zio layer will copy the provided blkptr later, but we need to
1625 	 * do this now so that we can release the parent's rwlock. We have to
1626 	 * do that now so that if dbuf_read_done is called synchronously (on
1627 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1628 	 * parent's rwlock, which would be a lock ordering violation.
1629 	 */
1630 	blkptr_t bp = *db->db_blkptr;
1631 	dmu_buf_unlock_parent(db, dblt, tag);
1632 	(void) arc_read(zio, db->db_objset->os_spa, &bp,
1633 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1634 	    &aflags, &zb);
1635 	return (err);
1636 early_unlock:
1637 	DB_DNODE_EXIT(db);
1638 	mutex_exit(&db->db_mtx);
1639 	dmu_buf_unlock_parent(db, dblt, tag);
1640 	return (err);
1641 }
1642 
1643 /*
1644  * This is our just-in-time copy function.  It makes a copy of buffers that
1645  * have been modified in a previous transaction group before we access them in
1646  * the current active group.
1647  *
1648  * This function is used in three places: when we are dirtying a buffer for the
1649  * first time in a txg, when we are freeing a range in a dnode that includes
1650  * this buffer, and when we are accessing a buffer which was received compressed
1651  * and later referenced in a WRITE_BYREF record.
1652  *
1653  * Note that when we are called from dbuf_free_range() we do not put a hold on
1654  * the buffer, we just traverse the active dbuf list for the dnode.
1655  */
1656 static void
1657 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1658 {
1659 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1660 
1661 	ASSERT(MUTEX_HELD(&db->db_mtx));
1662 	ASSERT(db->db.db_data != NULL);
1663 	ASSERT(db->db_level == 0);
1664 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1665 
1666 	if (dr == NULL ||
1667 	    (dr->dt.dl.dr_data !=
1668 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1669 		return;
1670 
1671 	/*
1672 	 * If the last dirty record for this dbuf has not yet synced
1673 	 * and its referencing the dbuf data, either:
1674 	 *	reset the reference to point to a new copy,
1675 	 * or (if there a no active holders)
1676 	 *	just null out the current db_data pointer.
1677 	 */
1678 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1679 	if (db->db_blkid == DMU_BONUS_BLKID) {
1680 		dnode_t *dn = DB_DNODE(db);
1681 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1682 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1683 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1684 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1685 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1686 		dnode_t *dn = DB_DNODE(db);
1687 		int size = arc_buf_size(db->db_buf);
1688 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1689 		spa_t *spa = db->db_objset->os_spa;
1690 		enum zio_compress compress_type =
1691 		    arc_get_compression(db->db_buf);
1692 		uint8_t complevel = arc_get_complevel(db->db_buf);
1693 
1694 		if (arc_is_encrypted(db->db_buf)) {
1695 			boolean_t byteorder;
1696 			uint8_t salt[ZIO_DATA_SALT_LEN];
1697 			uint8_t iv[ZIO_DATA_IV_LEN];
1698 			uint8_t mac[ZIO_DATA_MAC_LEN];
1699 
1700 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1701 			    iv, mac);
1702 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1703 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1704 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1705 			    compress_type, complevel);
1706 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1707 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1708 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1709 			    size, arc_buf_lsize(db->db_buf), compress_type,
1710 			    complevel);
1711 		} else {
1712 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1713 		}
1714 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1715 	} else {
1716 		db->db_buf = NULL;
1717 		dbuf_clear_data(db);
1718 	}
1719 }
1720 
1721 int
1722 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1723 {
1724 	int err = 0;
1725 	boolean_t prefetch;
1726 	dnode_t *dn;
1727 
1728 	/*
1729 	 * We don't have to hold the mutex to check db_state because it
1730 	 * can't be freed while we have a hold on the buffer.
1731 	 */
1732 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1733 
1734 	if (db->db_state == DB_NOFILL)
1735 		return (SET_ERROR(EIO));
1736 
1737 	DB_DNODE_ENTER(db);
1738 	dn = DB_DNODE(db);
1739 
1740 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1741 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;
1742 
1743 	mutex_enter(&db->db_mtx);
1744 	if (flags & DB_RF_PARTIAL_FIRST)
1745 		db->db_partial_read = B_TRUE;
1746 	else if (!(flags & DB_RF_PARTIAL_MORE))
1747 		db->db_partial_read = B_FALSE;
1748 	if (db->db_state == DB_CACHED) {
1749 		/*
1750 		 * Ensure that this block's dnode has been decrypted if
1751 		 * the caller has requested decrypted data.
1752 		 */
1753 		err = dbuf_read_verify_dnode_crypt(db, flags);
1754 
1755 		/*
1756 		 * If the arc buf is compressed or encrypted and the caller
1757 		 * requested uncompressed data, we need to untransform it
1758 		 * before returning. We also call arc_untransform() on any
1759 		 * unauthenticated blocks, which will verify their MAC if
1760 		 * the key is now available.
1761 		 */
1762 		if (err == 0 && db->db_buf != NULL &&
1763 		    (flags & DB_RF_NO_DECRYPT) == 0 &&
1764 		    (arc_is_encrypted(db->db_buf) ||
1765 		    arc_is_unauthenticated(db->db_buf) ||
1766 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1767 			spa_t *spa = dn->dn_objset->os_spa;
1768 			zbookmark_phys_t zb;
1769 
1770 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1771 			    db->db.db_object, db->db_level, db->db_blkid);
1772 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1773 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1774 			dbuf_set_data(db, db->db_buf);
1775 		}
1776 		mutex_exit(&db->db_mtx);
1777 		if (err == 0 && prefetch) {
1778 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1779 			    B_FALSE, flags & DB_RF_HAVESTRUCT);
1780 		}
1781 		DB_DNODE_EXIT(db);
1782 		DBUF_STAT_BUMP(hash_hits);
1783 	} else if (db->db_state == DB_UNCACHED) {
1784 		boolean_t need_wait = B_FALSE;
1785 
1786 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1787 
1788 		if (zio == NULL &&
1789 		    db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1790 			spa_t *spa = dn->dn_objset->os_spa;
1791 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1792 			need_wait = B_TRUE;
1793 		}
1794 		err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1795 		/*
1796 		 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1797 		 * for us
1798 		 */
1799 		if (!err && prefetch) {
1800 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1801 			    db->db_state != DB_CACHED,
1802 			    flags & DB_RF_HAVESTRUCT);
1803 		}
1804 
1805 		DB_DNODE_EXIT(db);
1806 		DBUF_STAT_BUMP(hash_misses);
1807 
1808 		/*
1809 		 * If we created a zio_root we must execute it to avoid
1810 		 * leaking it, even if it isn't attached to any work due
1811 		 * to an error in dbuf_read_impl().
1812 		 */
1813 		if (need_wait) {
1814 			if (err == 0)
1815 				err = zio_wait(zio);
1816 			else
1817 				VERIFY0(zio_wait(zio));
1818 		}
1819 	} else {
1820 		/*
1821 		 * Another reader came in while the dbuf was in flight
1822 		 * between UNCACHED and CACHED.  Either a writer will finish
1823 		 * writing the buffer (sending the dbuf to CACHED) or the
1824 		 * first reader's request will reach the read_done callback
1825 		 * and send the dbuf to CACHED.  Otherwise, a failure
1826 		 * occurred and the dbuf went to UNCACHED.
1827 		 */
1828 		mutex_exit(&db->db_mtx);
1829 		if (prefetch) {
1830 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1831 			    B_TRUE, flags & DB_RF_HAVESTRUCT);
1832 		}
1833 		DB_DNODE_EXIT(db);
1834 		DBUF_STAT_BUMP(hash_misses);
1835 
1836 		/* Skip the wait per the caller's request. */
1837 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1838 			mutex_enter(&db->db_mtx);
1839 			while (db->db_state == DB_READ ||
1840 			    db->db_state == DB_FILL) {
1841 				ASSERT(db->db_state == DB_READ ||
1842 				    (flags & DB_RF_HAVESTRUCT) == 0);
1843 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1844 				    db, zio_t *, zio);
1845 				cv_wait(&db->db_changed, &db->db_mtx);
1846 			}
1847 			if (db->db_state == DB_UNCACHED)
1848 				err = SET_ERROR(EIO);
1849 			mutex_exit(&db->db_mtx);
1850 		}
1851 	}
1852 
1853 	return (err);
1854 }
1855 
1856 static void
1857 dbuf_noread(dmu_buf_impl_t *db)
1858 {
1859 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1860 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1861 	mutex_enter(&db->db_mtx);
1862 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1863 		cv_wait(&db->db_changed, &db->db_mtx);
1864 	if (db->db_state == DB_UNCACHED) {
1865 		ASSERT(db->db_buf == NULL);
1866 		ASSERT(db->db.db_data == NULL);
1867 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1868 		db->db_state = DB_FILL;
1869 		DTRACE_SET_STATE(db, "assigning filled buffer");
1870 	} else if (db->db_state == DB_NOFILL) {
1871 		dbuf_clear_data(db);
1872 	} else {
1873 		ASSERT3U(db->db_state, ==, DB_CACHED);
1874 	}
1875 	mutex_exit(&db->db_mtx);
1876 }
1877 
1878 void
1879 dbuf_unoverride(dbuf_dirty_record_t *dr)
1880 {
1881 	dmu_buf_impl_t *db = dr->dr_dbuf;
1882 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1883 	uint64_t txg = dr->dr_txg;
1884 
1885 	ASSERT(MUTEX_HELD(&db->db_mtx));
1886 	/*
1887 	 * This assert is valid because dmu_sync() expects to be called by
1888 	 * a zilog's get_data while holding a range lock.  This call only
1889 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1890 	 */
1891 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1892 	ASSERT(db->db_level == 0);
1893 
1894 	if (db->db_blkid == DMU_BONUS_BLKID ||
1895 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1896 		return;
1897 
1898 	ASSERT(db->db_data_pending != dr);
1899 
1900 	/* free this block */
1901 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1902 		zio_free(db->db_objset->os_spa, txg, bp);
1903 
1904 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1905 	dr->dt.dl.dr_nopwrite = B_FALSE;
1906 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1907 
1908 	/*
1909 	 * Release the already-written buffer, so we leave it in
1910 	 * a consistent dirty state.  Note that all callers are
1911 	 * modifying the buffer, so they will immediately do
1912 	 * another (redundant) arc_release().  Therefore, leave
1913 	 * the buf thawed to save the effort of freezing &
1914 	 * immediately re-thawing it.
1915 	 */
1916 	arc_release(dr->dt.dl.dr_data, db);
1917 }
1918 
1919 /*
1920  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1921  * data blocks in the free range, so that any future readers will find
1922  * empty blocks.
1923  */
1924 void
1925 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1926     dmu_tx_t *tx)
1927 {
1928 	dmu_buf_impl_t *db_search;
1929 	dmu_buf_impl_t *db, *db_next;
1930 	uint64_t txg = tx->tx_txg;
1931 	avl_index_t where;
1932 	dbuf_dirty_record_t *dr;
1933 
1934 	if (end_blkid > dn->dn_maxblkid &&
1935 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1936 		end_blkid = dn->dn_maxblkid;
1937 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1938 	    (u_longlong_t)end_blkid);
1939 
1940 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1941 	db_search->db_level = 0;
1942 	db_search->db_blkid = start_blkid;
1943 	db_search->db_state = DB_SEARCH;
1944 
1945 	mutex_enter(&dn->dn_dbufs_mtx);
1946 	db = avl_find(&dn->dn_dbufs, db_search, &where);
1947 	ASSERT3P(db, ==, NULL);
1948 
1949 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1950 
1951 	for (; db != NULL; db = db_next) {
1952 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1953 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1954 
1955 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1956 			break;
1957 		}
1958 		ASSERT3U(db->db_blkid, >=, start_blkid);
1959 
1960 		/* found a level 0 buffer in the range */
1961 		mutex_enter(&db->db_mtx);
1962 		if (dbuf_undirty(db, tx)) {
1963 			/* mutex has been dropped and dbuf destroyed */
1964 			continue;
1965 		}
1966 
1967 		if (db->db_state == DB_UNCACHED ||
1968 		    db->db_state == DB_NOFILL ||
1969 		    db->db_state == DB_EVICTING) {
1970 			ASSERT(db->db.db_data == NULL);
1971 			mutex_exit(&db->db_mtx);
1972 			continue;
1973 		}
1974 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1975 			/* will be handled in dbuf_read_done or dbuf_rele */
1976 			db->db_freed_in_flight = TRUE;
1977 			mutex_exit(&db->db_mtx);
1978 			continue;
1979 		}
1980 		if (zfs_refcount_count(&db->db_holds) == 0) {
1981 			ASSERT(db->db_buf);
1982 			dbuf_destroy(db);
1983 			continue;
1984 		}
1985 		/* The dbuf is referenced */
1986 
1987 		dr = list_head(&db->db_dirty_records);
1988 		if (dr != NULL) {
1989 			if (dr->dr_txg == txg) {
1990 				/*
1991 				 * This buffer is "in-use", re-adjust the file
1992 				 * size to reflect that this buffer may
1993 				 * contain new data when we sync.
1994 				 */
1995 				if (db->db_blkid != DMU_SPILL_BLKID &&
1996 				    db->db_blkid > dn->dn_maxblkid)
1997 					dn->dn_maxblkid = db->db_blkid;
1998 				dbuf_unoverride(dr);
1999 			} else {
2000 				/*
2001 				 * This dbuf is not dirty in the open context.
2002 				 * Either uncache it (if its not referenced in
2003 				 * the open context) or reset its contents to
2004 				 * empty.
2005 				 */
2006 				dbuf_fix_old_data(db, txg);
2007 			}
2008 		}
2009 		/* clear the contents if its cached */
2010 		if (db->db_state == DB_CACHED) {
2011 			ASSERT(db->db.db_data != NULL);
2012 			arc_release(db->db_buf, db);
2013 			rw_enter(&db->db_rwlock, RW_WRITER);
2014 			memset(db->db.db_data, 0, db->db.db_size);
2015 			rw_exit(&db->db_rwlock);
2016 			arc_buf_freeze(db->db_buf);
2017 		}
2018 
2019 		mutex_exit(&db->db_mtx);
2020 	}
2021 
2022 	mutex_exit(&dn->dn_dbufs_mtx);
2023 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2024 }
2025 
2026 void
2027 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2028 {
2029 	arc_buf_t *buf, *old_buf;
2030 	dbuf_dirty_record_t *dr;
2031 	int osize = db->db.db_size;
2032 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2033 	dnode_t *dn;
2034 
2035 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2036 
2037 	DB_DNODE_ENTER(db);
2038 	dn = DB_DNODE(db);
2039 
2040 	/*
2041 	 * XXX we should be doing a dbuf_read, checking the return
2042 	 * value and returning that up to our callers
2043 	 */
2044 	dmu_buf_will_dirty(&db->db, tx);
2045 
2046 	/* create the data buffer for the new block */
2047 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2048 
2049 	/* copy old block data to the new block */
2050 	old_buf = db->db_buf;
2051 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2052 	/* zero the remainder */
2053 	if (size > osize)
2054 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2055 
2056 	mutex_enter(&db->db_mtx);
2057 	dbuf_set_data(db, buf);
2058 	arc_buf_destroy(old_buf, db);
2059 	db->db.db_size = size;
2060 
2061 	dr = list_head(&db->db_dirty_records);
2062 	/* dirty record added by dmu_buf_will_dirty() */
2063 	VERIFY(dr != NULL);
2064 	if (db->db_level == 0)
2065 		dr->dt.dl.dr_data = buf;
2066 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2067 	ASSERT3U(dr->dr_accounted, ==, osize);
2068 	dr->dr_accounted = size;
2069 	mutex_exit(&db->db_mtx);
2070 
2071 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2072 	DB_DNODE_EXIT(db);
2073 }
2074 
2075 void
2076 dbuf_release_bp(dmu_buf_impl_t *db)
2077 {
2078 	objset_t *os __maybe_unused = db->db_objset;
2079 
2080 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2081 	ASSERT(arc_released(os->os_phys_buf) ||
2082 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2083 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2084 
2085 	(void) arc_release(db->db_buf, db);
2086 }
2087 
2088 /*
2089  * We already have a dirty record for this TXG, and we are being
2090  * dirtied again.
2091  */
2092 static void
2093 dbuf_redirty(dbuf_dirty_record_t *dr)
2094 {
2095 	dmu_buf_impl_t *db = dr->dr_dbuf;
2096 
2097 	ASSERT(MUTEX_HELD(&db->db_mtx));
2098 
2099 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2100 		/*
2101 		 * If this buffer has already been written out,
2102 		 * we now need to reset its state.
2103 		 */
2104 		dbuf_unoverride(dr);
2105 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2106 		    db->db_state != DB_NOFILL) {
2107 			/* Already released on initial dirty, so just thaw. */
2108 			ASSERT(arc_released(db->db_buf));
2109 			arc_buf_thaw(db->db_buf);
2110 		}
2111 	}
2112 }
2113 
2114 dbuf_dirty_record_t *
2115 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2116 {
2117 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2118 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2119 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2120 	ASSERT(dn->dn_maxblkid >= blkid);
2121 
2122 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2123 	list_link_init(&dr->dr_dirty_node);
2124 	list_link_init(&dr->dr_dbuf_node);
2125 	dr->dr_dnode = dn;
2126 	dr->dr_txg = tx->tx_txg;
2127 	dr->dt.dll.dr_blkid = blkid;
2128 	dr->dr_accounted = dn->dn_datablksz;
2129 
2130 	/*
2131 	 * There should not be any dbuf for the block that we're dirtying.
2132 	 * Otherwise the buffer contents could be inconsistent between the
2133 	 * dbuf and the lightweight dirty record.
2134 	 */
2135 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2136 	    NULL));
2137 
2138 	mutex_enter(&dn->dn_mtx);
2139 	int txgoff = tx->tx_txg & TXG_MASK;
2140 	if (dn->dn_free_ranges[txgoff] != NULL) {
2141 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2142 	}
2143 
2144 	if (dn->dn_nlevels == 1) {
2145 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2146 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2147 		mutex_exit(&dn->dn_mtx);
2148 		rw_exit(&dn->dn_struct_rwlock);
2149 		dnode_setdirty(dn, tx);
2150 	} else {
2151 		mutex_exit(&dn->dn_mtx);
2152 
2153 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2154 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2155 		    1, blkid >> epbs, FTAG);
2156 		rw_exit(&dn->dn_struct_rwlock);
2157 		if (parent_db == NULL) {
2158 			kmem_free(dr, sizeof (*dr));
2159 			return (NULL);
2160 		}
2161 		int err = dbuf_read(parent_db, NULL,
2162 		    (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2163 		if (err != 0) {
2164 			dbuf_rele(parent_db, FTAG);
2165 			kmem_free(dr, sizeof (*dr));
2166 			return (NULL);
2167 		}
2168 
2169 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2170 		dbuf_rele(parent_db, FTAG);
2171 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2172 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2173 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2174 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2175 		dr->dr_parent = parent_dr;
2176 	}
2177 
2178 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2179 
2180 	return (dr);
2181 }
2182 
2183 dbuf_dirty_record_t *
2184 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2185 {
2186 	dnode_t *dn;
2187 	objset_t *os;
2188 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2189 	int txgoff = tx->tx_txg & TXG_MASK;
2190 	boolean_t drop_struct_rwlock = B_FALSE;
2191 
2192 	ASSERT(tx->tx_txg != 0);
2193 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2194 	DMU_TX_DIRTY_BUF(tx, db);
2195 
2196 	DB_DNODE_ENTER(db);
2197 	dn = DB_DNODE(db);
2198 	/*
2199 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2200 	 * objects may be dirtied in syncing context, but only if they
2201 	 * were already pre-dirtied in open context.
2202 	 */
2203 #ifdef ZFS_DEBUG
2204 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2205 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2206 		    RW_READER, FTAG);
2207 	}
2208 	ASSERT(!dmu_tx_is_syncing(tx) ||
2209 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2210 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2211 	    dn->dn_objset->os_dsl_dataset == NULL);
2212 	if (dn->dn_objset->os_dsl_dataset != NULL)
2213 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2214 #endif
2215 	/*
2216 	 * We make this assert for private objects as well, but after we
2217 	 * check if we're already dirty.  They are allowed to re-dirty
2218 	 * in syncing context.
2219 	 */
2220 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2221 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2222 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2223 
2224 	mutex_enter(&db->db_mtx);
2225 	/*
2226 	 * XXX make this true for indirects too?  The problem is that
2227 	 * transactions created with dmu_tx_create_assigned() from
2228 	 * syncing context don't bother holding ahead.
2229 	 */
2230 	ASSERT(db->db_level != 0 ||
2231 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2232 	    db->db_state == DB_NOFILL);
2233 
2234 	mutex_enter(&dn->dn_mtx);
2235 	dnode_set_dirtyctx(dn, tx, db);
2236 	if (tx->tx_txg > dn->dn_dirty_txg)
2237 		dn->dn_dirty_txg = tx->tx_txg;
2238 	mutex_exit(&dn->dn_mtx);
2239 
2240 	if (db->db_blkid == DMU_SPILL_BLKID)
2241 		dn->dn_have_spill = B_TRUE;
2242 
2243 	/*
2244 	 * If this buffer is already dirty, we're done.
2245 	 */
2246 	dr_head = list_head(&db->db_dirty_records);
2247 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2248 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2249 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2250 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2251 		DB_DNODE_EXIT(db);
2252 
2253 		dbuf_redirty(dr_next);
2254 		mutex_exit(&db->db_mtx);
2255 		return (dr_next);
2256 	}
2257 
2258 	/*
2259 	 * Only valid if not already dirty.
2260 	 */
2261 	ASSERT(dn->dn_object == 0 ||
2262 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2263 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2264 
2265 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2266 
2267 	/*
2268 	 * We should only be dirtying in syncing context if it's the
2269 	 * mos or we're initializing the os or it's a special object.
2270 	 * However, we are allowed to dirty in syncing context provided
2271 	 * we already dirtied it in open context.  Hence we must make
2272 	 * this assertion only if we're not already dirty.
2273 	 */
2274 	os = dn->dn_objset;
2275 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2276 #ifdef ZFS_DEBUG
2277 	if (dn->dn_objset->os_dsl_dataset != NULL)
2278 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2279 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2280 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2281 	if (dn->dn_objset->os_dsl_dataset != NULL)
2282 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2283 #endif
2284 	ASSERT(db->db.db_size != 0);
2285 
2286 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2287 
2288 	if (db->db_blkid != DMU_BONUS_BLKID) {
2289 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2290 	}
2291 
2292 	/*
2293 	 * If this buffer is dirty in an old transaction group we need
2294 	 * to make a copy of it so that the changes we make in this
2295 	 * transaction group won't leak out when we sync the older txg.
2296 	 */
2297 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2298 	list_link_init(&dr->dr_dirty_node);
2299 	list_link_init(&dr->dr_dbuf_node);
2300 	dr->dr_dnode = dn;
2301 	if (db->db_level == 0) {
2302 		void *data_old = db->db_buf;
2303 
2304 		if (db->db_state != DB_NOFILL) {
2305 			if (db->db_blkid == DMU_BONUS_BLKID) {
2306 				dbuf_fix_old_data(db, tx->tx_txg);
2307 				data_old = db->db.db_data;
2308 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2309 				/*
2310 				 * Release the data buffer from the cache so
2311 				 * that we can modify it without impacting
2312 				 * possible other users of this cached data
2313 				 * block.  Note that indirect blocks and
2314 				 * private objects are not released until the
2315 				 * syncing state (since they are only modified
2316 				 * then).
2317 				 */
2318 				arc_release(db->db_buf, db);
2319 				dbuf_fix_old_data(db, tx->tx_txg);
2320 				data_old = db->db_buf;
2321 			}
2322 			ASSERT(data_old != NULL);
2323 		}
2324 		dr->dt.dl.dr_data = data_old;
2325 	} else {
2326 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2327 		list_create(&dr->dt.di.dr_children,
2328 		    sizeof (dbuf_dirty_record_t),
2329 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2330 	}
2331 	if (db->db_blkid != DMU_BONUS_BLKID)
2332 		dr->dr_accounted = db->db.db_size;
2333 	dr->dr_dbuf = db;
2334 	dr->dr_txg = tx->tx_txg;
2335 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2336 
2337 	/*
2338 	 * We could have been freed_in_flight between the dbuf_noread
2339 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2340 	 * happened after the free.
2341 	 */
2342 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2343 	    db->db_blkid != DMU_SPILL_BLKID) {
2344 		mutex_enter(&dn->dn_mtx);
2345 		if (dn->dn_free_ranges[txgoff] != NULL) {
2346 			range_tree_clear(dn->dn_free_ranges[txgoff],
2347 			    db->db_blkid, 1);
2348 		}
2349 		mutex_exit(&dn->dn_mtx);
2350 		db->db_freed_in_flight = FALSE;
2351 	}
2352 
2353 	/*
2354 	 * This buffer is now part of this txg
2355 	 */
2356 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2357 	db->db_dirtycnt += 1;
2358 	ASSERT3U(db->db_dirtycnt, <=, 3);
2359 
2360 	mutex_exit(&db->db_mtx);
2361 
2362 	if (db->db_blkid == DMU_BONUS_BLKID ||
2363 	    db->db_blkid == DMU_SPILL_BLKID) {
2364 		mutex_enter(&dn->dn_mtx);
2365 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2366 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2367 		mutex_exit(&dn->dn_mtx);
2368 		dnode_setdirty(dn, tx);
2369 		DB_DNODE_EXIT(db);
2370 		return (dr);
2371 	}
2372 
2373 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2374 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2375 		drop_struct_rwlock = B_TRUE;
2376 	}
2377 
2378 	/*
2379 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2380 	 * when we get to syncing context we will need to decrement its
2381 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2382 	 * syncing context won't have to wait for the i/o.
2383 	 */
2384 	if (db->db_blkptr != NULL) {
2385 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2386 		ddt_prefetch(os->os_spa, db->db_blkptr);
2387 		dmu_buf_unlock_parent(db, dblt, FTAG);
2388 	}
2389 
2390 	/*
2391 	 * We need to hold the dn_struct_rwlock to make this assertion,
2392 	 * because it protects dn_phys / dn_next_nlevels from changing.
2393 	 */
2394 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2395 	    dn->dn_phys->dn_nlevels > db->db_level ||
2396 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2397 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2398 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2399 
2400 
2401 	if (db->db_level == 0) {
2402 		ASSERT(!db->db_objset->os_raw_receive ||
2403 		    dn->dn_maxblkid >= db->db_blkid);
2404 		dnode_new_blkid(dn, db->db_blkid, tx,
2405 		    drop_struct_rwlock, B_FALSE);
2406 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2407 	}
2408 
2409 	if (db->db_level+1 < dn->dn_nlevels) {
2410 		dmu_buf_impl_t *parent = db->db_parent;
2411 		dbuf_dirty_record_t *di;
2412 		int parent_held = FALSE;
2413 
2414 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2415 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2416 			parent = dbuf_hold_level(dn, db->db_level + 1,
2417 			    db->db_blkid >> epbs, FTAG);
2418 			ASSERT(parent != NULL);
2419 			parent_held = TRUE;
2420 		}
2421 		if (drop_struct_rwlock)
2422 			rw_exit(&dn->dn_struct_rwlock);
2423 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2424 		di = dbuf_dirty(parent, tx);
2425 		if (parent_held)
2426 			dbuf_rele(parent, FTAG);
2427 
2428 		mutex_enter(&db->db_mtx);
2429 		/*
2430 		 * Since we've dropped the mutex, it's possible that
2431 		 * dbuf_undirty() might have changed this out from under us.
2432 		 */
2433 		if (list_head(&db->db_dirty_records) == dr ||
2434 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2435 			mutex_enter(&di->dt.di.dr_mtx);
2436 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2437 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2438 			list_insert_tail(&di->dt.di.dr_children, dr);
2439 			mutex_exit(&di->dt.di.dr_mtx);
2440 			dr->dr_parent = di;
2441 		}
2442 		mutex_exit(&db->db_mtx);
2443 	} else {
2444 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2445 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2446 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2447 		mutex_enter(&dn->dn_mtx);
2448 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2449 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2450 		mutex_exit(&dn->dn_mtx);
2451 		if (drop_struct_rwlock)
2452 			rw_exit(&dn->dn_struct_rwlock);
2453 	}
2454 
2455 	dnode_setdirty(dn, tx);
2456 	DB_DNODE_EXIT(db);
2457 	return (dr);
2458 }
2459 
2460 static void
2461 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2462 {
2463 	dmu_buf_impl_t *db = dr->dr_dbuf;
2464 
2465 	if (dr->dt.dl.dr_data != db->db.db_data) {
2466 		struct dnode *dn = dr->dr_dnode;
2467 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2468 
2469 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2470 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2471 	}
2472 	db->db_data_pending = NULL;
2473 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2474 	list_remove(&db->db_dirty_records, dr);
2475 	if (dr->dr_dbuf->db_level != 0) {
2476 		mutex_destroy(&dr->dt.di.dr_mtx);
2477 		list_destroy(&dr->dt.di.dr_children);
2478 	}
2479 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2480 	ASSERT3U(db->db_dirtycnt, >, 0);
2481 	db->db_dirtycnt -= 1;
2482 }
2483 
2484 /*
2485  * Undirty a buffer in the transaction group referenced by the given
2486  * transaction.  Return whether this evicted the dbuf.
2487  */
2488 static boolean_t
2489 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2490 {
2491 	uint64_t txg = tx->tx_txg;
2492 
2493 	ASSERT(txg != 0);
2494 
2495 	/*
2496 	 * Due to our use of dn_nlevels below, this can only be called
2497 	 * in open context, unless we are operating on the MOS.
2498 	 * From syncing context, dn_nlevels may be different from the
2499 	 * dn_nlevels used when dbuf was dirtied.
2500 	 */
2501 	ASSERT(db->db_objset ==
2502 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2503 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2504 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2505 	ASSERT0(db->db_level);
2506 	ASSERT(MUTEX_HELD(&db->db_mtx));
2507 
2508 	/*
2509 	 * If this buffer is not dirty, we're done.
2510 	 */
2511 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2512 	if (dr == NULL)
2513 		return (B_FALSE);
2514 	ASSERT(dr->dr_dbuf == db);
2515 
2516 	dnode_t *dn = dr->dr_dnode;
2517 
2518 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2519 
2520 	ASSERT(db->db.db_size != 0);
2521 
2522 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2523 	    dr->dr_accounted, txg);
2524 
2525 	list_remove(&db->db_dirty_records, dr);
2526 
2527 	/*
2528 	 * Note that there are three places in dbuf_dirty()
2529 	 * where this dirty record may be put on a list.
2530 	 * Make sure to do a list_remove corresponding to
2531 	 * every one of those list_insert calls.
2532 	 */
2533 	if (dr->dr_parent) {
2534 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2535 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2536 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2537 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2538 	    db->db_level + 1 == dn->dn_nlevels) {
2539 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2540 		mutex_enter(&dn->dn_mtx);
2541 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2542 		mutex_exit(&dn->dn_mtx);
2543 	}
2544 
2545 	if (db->db_state != DB_NOFILL) {
2546 		dbuf_unoverride(dr);
2547 
2548 		ASSERT(db->db_buf != NULL);
2549 		ASSERT(dr->dt.dl.dr_data != NULL);
2550 		if (dr->dt.dl.dr_data != db->db_buf)
2551 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2552 	}
2553 
2554 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2555 
2556 	ASSERT(db->db_dirtycnt > 0);
2557 	db->db_dirtycnt -= 1;
2558 
2559 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2560 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2561 		dbuf_destroy(db);
2562 		return (B_TRUE);
2563 	}
2564 
2565 	return (B_FALSE);
2566 }
2567 
2568 static void
2569 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2570 {
2571 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2572 
2573 	ASSERT(tx->tx_txg != 0);
2574 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2575 
2576 	/*
2577 	 * Quick check for dirtiness.  For already dirty blocks, this
2578 	 * reduces runtime of this function by >90%, and overall performance
2579 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
2580 	 * cached).
2581 	 */
2582 	mutex_enter(&db->db_mtx);
2583 
2584 	if (db->db_state == DB_CACHED) {
2585 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2586 		/*
2587 		 * It's possible that it is already dirty but not cached,
2588 		 * because there are some calls to dbuf_dirty() that don't
2589 		 * go through dmu_buf_will_dirty().
2590 		 */
2591 		if (dr != NULL) {
2592 			/* This dbuf is already dirty and cached. */
2593 			dbuf_redirty(dr);
2594 			mutex_exit(&db->db_mtx);
2595 			return;
2596 		}
2597 	}
2598 	mutex_exit(&db->db_mtx);
2599 
2600 	DB_DNODE_ENTER(db);
2601 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2602 		flags |= DB_RF_HAVESTRUCT;
2603 	DB_DNODE_EXIT(db);
2604 	(void) dbuf_read(db, NULL, flags);
2605 	(void) dbuf_dirty(db, tx);
2606 }
2607 
2608 void
2609 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2610 {
2611 	dmu_buf_will_dirty_impl(db_fake,
2612 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2613 }
2614 
2615 boolean_t
2616 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2617 {
2618 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2619 	dbuf_dirty_record_t *dr;
2620 
2621 	mutex_enter(&db->db_mtx);
2622 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2623 	mutex_exit(&db->db_mtx);
2624 	return (dr != NULL);
2625 }
2626 
2627 void
2628 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2629 {
2630 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2631 
2632 	db->db_state = DB_NOFILL;
2633 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2634 	dmu_buf_will_fill(db_fake, tx);
2635 }
2636 
2637 void
2638 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2639 {
2640 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2641 
2642 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2643 	ASSERT(tx->tx_txg != 0);
2644 	ASSERT(db->db_level == 0);
2645 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2646 
2647 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2648 	    dmu_tx_private_ok(tx));
2649 
2650 	dbuf_noread(db);
2651 	(void) dbuf_dirty(db, tx);
2652 }
2653 
2654 /*
2655  * This function is effectively the same as dmu_buf_will_dirty(), but
2656  * indicates the caller expects raw encrypted data in the db, and provides
2657  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2658  * blkptr_t when this dbuf is written.  This is only used for blocks of
2659  * dnodes, during raw receive.
2660  */
2661 void
2662 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2663     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2664 {
2665 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2666 	dbuf_dirty_record_t *dr;
2667 
2668 	/*
2669 	 * dr_has_raw_params is only processed for blocks of dnodes
2670 	 * (see dbuf_sync_dnode_leaf_crypt()).
2671 	 */
2672 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2673 	ASSERT3U(db->db_level, ==, 0);
2674 	ASSERT(db->db_objset->os_raw_receive);
2675 
2676 	dmu_buf_will_dirty_impl(db_fake,
2677 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2678 
2679 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2680 
2681 	ASSERT3P(dr, !=, NULL);
2682 
2683 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2684 	dr->dt.dl.dr_byteorder = byteorder;
2685 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2686 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2687 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2688 }
2689 
2690 static void
2691 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2692 {
2693 	struct dirty_leaf *dl;
2694 	dbuf_dirty_record_t *dr;
2695 
2696 	dr = list_head(&db->db_dirty_records);
2697 	ASSERT3P(dr, !=, NULL);
2698 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2699 	dl = &dr->dt.dl;
2700 	dl->dr_overridden_by = *bp;
2701 	dl->dr_override_state = DR_OVERRIDDEN;
2702 	dl->dr_overridden_by.blk_birth = dr->dr_txg;
2703 }
2704 
2705 void
2706 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2707 {
2708 	(void) tx;
2709 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2710 	dbuf_states_t old_state;
2711 	mutex_enter(&db->db_mtx);
2712 	DBUF_VERIFY(db);
2713 
2714 	old_state = db->db_state;
2715 	db->db_state = DB_CACHED;
2716 	if (old_state == DB_FILL) {
2717 		if (db->db_level == 0 && db->db_freed_in_flight) {
2718 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2719 			/* we were freed while filling */
2720 			/* XXX dbuf_undirty? */
2721 			memset(db->db.db_data, 0, db->db.db_size);
2722 			db->db_freed_in_flight = FALSE;
2723 			DTRACE_SET_STATE(db,
2724 			    "fill done handling freed in flight");
2725 		} else {
2726 			DTRACE_SET_STATE(db, "fill done");
2727 		}
2728 		cv_broadcast(&db->db_changed);
2729 	}
2730 	mutex_exit(&db->db_mtx);
2731 }
2732 
2733 void
2734 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2735     bp_embedded_type_t etype, enum zio_compress comp,
2736     int uncompressed_size, int compressed_size, int byteorder,
2737     dmu_tx_t *tx)
2738 {
2739 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2740 	struct dirty_leaf *dl;
2741 	dmu_object_type_t type;
2742 	dbuf_dirty_record_t *dr;
2743 
2744 	if (etype == BP_EMBEDDED_TYPE_DATA) {
2745 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2746 		    SPA_FEATURE_EMBEDDED_DATA));
2747 	}
2748 
2749 	DB_DNODE_ENTER(db);
2750 	type = DB_DNODE(db)->dn_type;
2751 	DB_DNODE_EXIT(db);
2752 
2753 	ASSERT0(db->db_level);
2754 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2755 
2756 	dmu_buf_will_not_fill(dbuf, tx);
2757 
2758 	dr = list_head(&db->db_dirty_records);
2759 	ASSERT3P(dr, !=, NULL);
2760 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2761 	dl = &dr->dt.dl;
2762 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
2763 	    data, comp, uncompressed_size, compressed_size);
2764 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2765 	BP_SET_TYPE(&dl->dr_overridden_by, type);
2766 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2767 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2768 
2769 	dl->dr_override_state = DR_OVERRIDDEN;
2770 	dl->dr_overridden_by.blk_birth = dr->dr_txg;
2771 }
2772 
2773 void
2774 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2775 {
2776 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2777 	dmu_object_type_t type;
2778 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2779 	    SPA_FEATURE_REDACTED_DATASETS));
2780 
2781 	DB_DNODE_ENTER(db);
2782 	type = DB_DNODE(db)->dn_type;
2783 	DB_DNODE_EXIT(db);
2784 
2785 	ASSERT0(db->db_level);
2786 	dmu_buf_will_not_fill(dbuf, tx);
2787 
2788 	blkptr_t bp = { { { {0} } } };
2789 	BP_SET_TYPE(&bp, type);
2790 	BP_SET_LEVEL(&bp, 0);
2791 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2792 	BP_SET_REDACTED(&bp);
2793 	BPE_SET_LSIZE(&bp, dbuf->db_size);
2794 
2795 	dbuf_override_impl(db, &bp, tx);
2796 }
2797 
2798 /*
2799  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2800  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2801  */
2802 void
2803 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2804 {
2805 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2806 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2807 	ASSERT(db->db_level == 0);
2808 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2809 	ASSERT(buf != NULL);
2810 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2811 	ASSERT(tx->tx_txg != 0);
2812 
2813 	arc_return_buf(buf, db);
2814 	ASSERT(arc_released(buf));
2815 
2816 	mutex_enter(&db->db_mtx);
2817 
2818 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2819 		cv_wait(&db->db_changed, &db->db_mtx);
2820 
2821 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2822 
2823 	if (db->db_state == DB_CACHED &&
2824 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2825 		/*
2826 		 * In practice, we will never have a case where we have an
2827 		 * encrypted arc buffer while additional holds exist on the
2828 		 * dbuf. We don't handle this here so we simply assert that
2829 		 * fact instead.
2830 		 */
2831 		ASSERT(!arc_is_encrypted(buf));
2832 		mutex_exit(&db->db_mtx);
2833 		(void) dbuf_dirty(db, tx);
2834 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2835 		arc_buf_destroy(buf, db);
2836 		return;
2837 	}
2838 
2839 	if (db->db_state == DB_CACHED) {
2840 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2841 
2842 		ASSERT(db->db_buf != NULL);
2843 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2844 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2845 
2846 			if (!arc_released(db->db_buf)) {
2847 				ASSERT(dr->dt.dl.dr_override_state ==
2848 				    DR_OVERRIDDEN);
2849 				arc_release(db->db_buf, db);
2850 			}
2851 			dr->dt.dl.dr_data = buf;
2852 			arc_buf_destroy(db->db_buf, db);
2853 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2854 			arc_release(db->db_buf, db);
2855 			arc_buf_destroy(db->db_buf, db);
2856 		}
2857 		db->db_buf = NULL;
2858 	}
2859 	ASSERT(db->db_buf == NULL);
2860 	dbuf_set_data(db, buf);
2861 	db->db_state = DB_FILL;
2862 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
2863 	mutex_exit(&db->db_mtx);
2864 	(void) dbuf_dirty(db, tx);
2865 	dmu_buf_fill_done(&db->db, tx);
2866 }
2867 
2868 void
2869 dbuf_destroy(dmu_buf_impl_t *db)
2870 {
2871 	dnode_t *dn;
2872 	dmu_buf_impl_t *parent = db->db_parent;
2873 	dmu_buf_impl_t *dndb;
2874 
2875 	ASSERT(MUTEX_HELD(&db->db_mtx));
2876 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
2877 
2878 	if (db->db_buf != NULL) {
2879 		arc_buf_destroy(db->db_buf, db);
2880 		db->db_buf = NULL;
2881 	}
2882 
2883 	if (db->db_blkid == DMU_BONUS_BLKID) {
2884 		int slots = DB_DNODE(db)->dn_num_slots;
2885 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2886 		if (db->db.db_data != NULL) {
2887 			kmem_free(db->db.db_data, bonuslen);
2888 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
2889 			db->db_state = DB_UNCACHED;
2890 			DTRACE_SET_STATE(db, "buffer cleared");
2891 		}
2892 	}
2893 
2894 	dbuf_clear_data(db);
2895 
2896 	if (multilist_link_active(&db->db_cache_link)) {
2897 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2898 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
2899 
2900 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
2901 		(void) zfs_refcount_remove_many(
2902 		    &dbuf_caches[db->db_caching_status].size,
2903 		    db->db.db_size, db);
2904 
2905 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2906 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
2907 		} else {
2908 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2909 			DBUF_STAT_BUMPDOWN(cache_count);
2910 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2911 			    db->db.db_size);
2912 		}
2913 		db->db_caching_status = DB_NO_CACHE;
2914 	}
2915 
2916 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2917 	ASSERT(db->db_data_pending == NULL);
2918 	ASSERT(list_is_empty(&db->db_dirty_records));
2919 
2920 	db->db_state = DB_EVICTING;
2921 	DTRACE_SET_STATE(db, "buffer eviction started");
2922 	db->db_blkptr = NULL;
2923 
2924 	/*
2925 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2926 	 * the hash table.  We can now drop db_mtx, which allows us to
2927 	 * acquire the dn_dbufs_mtx.
2928 	 */
2929 	mutex_exit(&db->db_mtx);
2930 
2931 	DB_DNODE_ENTER(db);
2932 	dn = DB_DNODE(db);
2933 	dndb = dn->dn_dbuf;
2934 	if (db->db_blkid != DMU_BONUS_BLKID) {
2935 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2936 		if (needlock)
2937 			mutex_enter_nested(&dn->dn_dbufs_mtx,
2938 			    NESTED_SINGLE);
2939 		avl_remove(&dn->dn_dbufs, db);
2940 		membar_producer();
2941 		DB_DNODE_EXIT(db);
2942 		if (needlock)
2943 			mutex_exit(&dn->dn_dbufs_mtx);
2944 		/*
2945 		 * Decrementing the dbuf count means that the hold corresponding
2946 		 * to the removed dbuf is no longer discounted in dnode_move(),
2947 		 * so the dnode cannot be moved until after we release the hold.
2948 		 * The membar_producer() ensures visibility of the decremented
2949 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2950 		 * release any lock.
2951 		 */
2952 		mutex_enter(&dn->dn_mtx);
2953 		dnode_rele_and_unlock(dn, db, B_TRUE);
2954 		db->db_dnode_handle = NULL;
2955 
2956 		dbuf_hash_remove(db);
2957 	} else {
2958 		DB_DNODE_EXIT(db);
2959 	}
2960 
2961 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
2962 
2963 	db->db_parent = NULL;
2964 
2965 	ASSERT(db->db_buf == NULL);
2966 	ASSERT(db->db.db_data == NULL);
2967 	ASSERT(db->db_hash_next == NULL);
2968 	ASSERT(db->db_blkptr == NULL);
2969 	ASSERT(db->db_data_pending == NULL);
2970 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2971 	ASSERT(!multilist_link_active(&db->db_cache_link));
2972 
2973 	/*
2974 	 * If this dbuf is referenced from an indirect dbuf,
2975 	 * decrement the ref count on the indirect dbuf.
2976 	 */
2977 	if (parent && parent != dndb) {
2978 		mutex_enter(&parent->db_mtx);
2979 		dbuf_rele_and_unlock(parent, db, B_TRUE);
2980 	}
2981 
2982 	kmem_cache_free(dbuf_kmem_cache, db);
2983 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2984 }
2985 
2986 /*
2987  * Note: While bpp will always be updated if the function returns success,
2988  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2989  * this happens when the dnode is the meta-dnode, or {user|group|project}used
2990  * object.
2991  */
2992 __attribute__((always_inline))
2993 static inline int
2994 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2995     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2996 {
2997 	*parentp = NULL;
2998 	*bpp = NULL;
2999 
3000 	ASSERT(blkid != DMU_BONUS_BLKID);
3001 
3002 	if (blkid == DMU_SPILL_BLKID) {
3003 		mutex_enter(&dn->dn_mtx);
3004 		if (dn->dn_have_spill &&
3005 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3006 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3007 		else
3008 			*bpp = NULL;
3009 		dbuf_add_ref(dn->dn_dbuf, NULL);
3010 		*parentp = dn->dn_dbuf;
3011 		mutex_exit(&dn->dn_mtx);
3012 		return (0);
3013 	}
3014 
3015 	int nlevels =
3016 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3017 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3018 
3019 	ASSERT3U(level * epbs, <, 64);
3020 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3021 	/*
3022 	 * This assertion shouldn't trip as long as the max indirect block size
3023 	 * is less than 1M.  The reason for this is that up to that point,
3024 	 * the number of levels required to address an entire object with blocks
3025 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
3026 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3027 	 * (i.e. we can address the entire object), objects will all use at most
3028 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3029 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3030 	 * enough to address an entire object, so objects will have 5 levels,
3031 	 * but then this assertion will overflow.
3032 	 *
3033 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3034 	 * need to redo this logic to handle overflows.
3035 	 */
3036 	ASSERT(level >= nlevels ||
3037 	    ((nlevels - level - 1) * epbs) +
3038 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3039 	if (level >= nlevels ||
3040 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3041 	    ((nlevels - level - 1) * epbs)) ||
3042 	    (fail_sparse &&
3043 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3044 		/* the buffer has no parent yet */
3045 		return (SET_ERROR(ENOENT));
3046 	} else if (level < nlevels-1) {
3047 		/* this block is referenced from an indirect block */
3048 		int err;
3049 
3050 		err = dbuf_hold_impl(dn, level + 1,
3051 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3052 
3053 		if (err)
3054 			return (err);
3055 		err = dbuf_read(*parentp, NULL,
3056 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3057 		if (err) {
3058 			dbuf_rele(*parentp, NULL);
3059 			*parentp = NULL;
3060 			return (err);
3061 		}
3062 		rw_enter(&(*parentp)->db_rwlock, RW_READER);
3063 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3064 		    (blkid & ((1ULL << epbs) - 1));
3065 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3066 			ASSERT(BP_IS_HOLE(*bpp));
3067 		rw_exit(&(*parentp)->db_rwlock);
3068 		return (0);
3069 	} else {
3070 		/* the block is referenced from the dnode */
3071 		ASSERT3U(level, ==, nlevels-1);
3072 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3073 		    blkid < dn->dn_phys->dn_nblkptr);
3074 		if (dn->dn_dbuf) {
3075 			dbuf_add_ref(dn->dn_dbuf, NULL);
3076 			*parentp = dn->dn_dbuf;
3077 		}
3078 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3079 		return (0);
3080 	}
3081 }
3082 
3083 static dmu_buf_impl_t *
3084 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3085     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3086 {
3087 	objset_t *os = dn->dn_objset;
3088 	dmu_buf_impl_t *db, *odb;
3089 
3090 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3091 	ASSERT(dn->dn_type != DMU_OT_NONE);
3092 
3093 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3094 
3095 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3096 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3097 
3098 	db->db_objset = os;
3099 	db->db.db_object = dn->dn_object;
3100 	db->db_level = level;
3101 	db->db_blkid = blkid;
3102 	db->db_dirtycnt = 0;
3103 	db->db_dnode_handle = dn->dn_handle;
3104 	db->db_parent = parent;
3105 	db->db_blkptr = blkptr;
3106 	db->db_hash = hash;
3107 
3108 	db->db_user = NULL;
3109 	db->db_user_immediate_evict = FALSE;
3110 	db->db_freed_in_flight = FALSE;
3111 	db->db_pending_evict = FALSE;
3112 
3113 	if (blkid == DMU_BONUS_BLKID) {
3114 		ASSERT3P(parent, ==, dn->dn_dbuf);
3115 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3116 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3117 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3118 		db->db.db_offset = DMU_BONUS_BLKID;
3119 		db->db_state = DB_UNCACHED;
3120 		DTRACE_SET_STATE(db, "bonus buffer created");
3121 		db->db_caching_status = DB_NO_CACHE;
3122 		/* the bonus dbuf is not placed in the hash table */
3123 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3124 		return (db);
3125 	} else if (blkid == DMU_SPILL_BLKID) {
3126 		db->db.db_size = (blkptr != NULL) ?
3127 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3128 		db->db.db_offset = 0;
3129 	} else {
3130 		int blocksize =
3131 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3132 		db->db.db_size = blocksize;
3133 		db->db.db_offset = db->db_blkid * blocksize;
3134 	}
3135 
3136 	/*
3137 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3138 	 * in the hash table *and* added to the dbufs list.
3139 	 * This prevents a possible deadlock with someone
3140 	 * trying to look up this dbuf before it's added to the
3141 	 * dn_dbufs list.
3142 	 */
3143 	mutex_enter(&dn->dn_dbufs_mtx);
3144 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3145 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3146 		/* someone else inserted it first */
3147 		mutex_exit(&dn->dn_dbufs_mtx);
3148 		kmem_cache_free(dbuf_kmem_cache, db);
3149 		DBUF_STAT_BUMP(hash_insert_race);
3150 		return (odb);
3151 	}
3152 	avl_add(&dn->dn_dbufs, db);
3153 
3154 	db->db_state = DB_UNCACHED;
3155 	DTRACE_SET_STATE(db, "regular buffer created");
3156 	db->db_caching_status = DB_NO_CACHE;
3157 	mutex_exit(&dn->dn_dbufs_mtx);
3158 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3159 
3160 	if (parent && parent != dn->dn_dbuf)
3161 		dbuf_add_ref(parent, db);
3162 
3163 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3164 	    zfs_refcount_count(&dn->dn_holds) > 0);
3165 	(void) zfs_refcount_add(&dn->dn_holds, db);
3166 
3167 	dprintf_dbuf(db, "db=%p\n", db);
3168 
3169 	return (db);
3170 }
3171 
3172 /*
3173  * This function returns a block pointer and information about the object,
3174  * given a dnode and a block.  This is a publicly accessible version of
3175  * dbuf_findbp that only returns some information, rather than the
3176  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3177  * should be locked as (at least) a reader.
3178  */
3179 int
3180 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3181     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3182 {
3183 	dmu_buf_impl_t *dbp = NULL;
3184 	blkptr_t *bp2;
3185 	int err = 0;
3186 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3187 
3188 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3189 	if (err == 0) {
3190 		*bp = *bp2;
3191 		if (dbp != NULL)
3192 			dbuf_rele(dbp, NULL);
3193 		if (datablkszsec != NULL)
3194 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3195 		if (indblkshift != NULL)
3196 			*indblkshift = dn->dn_phys->dn_indblkshift;
3197 	}
3198 
3199 	return (err);
3200 }
3201 
3202 typedef struct dbuf_prefetch_arg {
3203 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3204 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3205 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3206 	int dpa_curlevel; /* The current level that we're reading */
3207 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3208 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3209 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3210 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3211 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3212 	void *dpa_arg; /* prefetch completion arg */
3213 } dbuf_prefetch_arg_t;
3214 
3215 static void
3216 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3217 {
3218 	if (dpa->dpa_cb != NULL) {
3219 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3220 		    dpa->dpa_zb.zb_blkid, io_done);
3221 	}
3222 	kmem_free(dpa, sizeof (*dpa));
3223 }
3224 
3225 static void
3226 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3227     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3228 {
3229 	(void) zio, (void) zb, (void) iobp;
3230 	dbuf_prefetch_arg_t *dpa = private;
3231 
3232 	if (abuf != NULL)
3233 		arc_buf_destroy(abuf, private);
3234 
3235 	dbuf_prefetch_fini(dpa, B_TRUE);
3236 }
3237 
3238 /*
3239  * Actually issue the prefetch read for the block given.
3240  */
3241 static void
3242 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3243 {
3244 	ASSERT(!BP_IS_REDACTED(bp) ||
3245 	    dsl_dataset_feature_is_active(
3246 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3247 	    SPA_FEATURE_REDACTED_DATASETS));
3248 
3249 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3250 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3251 
3252 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3253 	arc_flags_t aflags =
3254 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3255 	    ARC_FLAG_NO_BUF;
3256 
3257 	/* dnodes are always read as raw and then converted later */
3258 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3259 	    dpa->dpa_curlevel == 0)
3260 		zio_flags |= ZIO_FLAG_RAW;
3261 
3262 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3263 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3264 	ASSERT(dpa->dpa_zio != NULL);
3265 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3266 	    dbuf_issue_final_prefetch_done, dpa,
3267 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3268 }
3269 
3270 /*
3271  * Called when an indirect block above our prefetch target is read in.  This
3272  * will either read in the next indirect block down the tree or issue the actual
3273  * prefetch if the next block down is our target.
3274  */
3275 static void
3276 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3277     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3278 {
3279 	(void) zb, (void) iobp;
3280 	dbuf_prefetch_arg_t *dpa = private;
3281 
3282 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3283 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3284 
3285 	if (abuf == NULL) {
3286 		ASSERT(zio == NULL || zio->io_error != 0);
3287 		dbuf_prefetch_fini(dpa, B_TRUE);
3288 		return;
3289 	}
3290 	ASSERT(zio == NULL || zio->io_error == 0);
3291 
3292 	/*
3293 	 * The dpa_dnode is only valid if we are called with a NULL
3294 	 * zio. This indicates that the arc_read() returned without
3295 	 * first calling zio_read() to issue a physical read. Once
3296 	 * a physical read is made the dpa_dnode must be invalidated
3297 	 * as the locks guarding it may have been dropped. If the
3298 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3299 	 * cache. To do so, we must hold the dbuf associated with the block
3300 	 * we just prefetched, read its contents so that we associate it
3301 	 * with an arc_buf_t, and then release it.
3302 	 */
3303 	if (zio != NULL) {
3304 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3305 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3306 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3307 		} else {
3308 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3309 		}
3310 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3311 
3312 		dpa->dpa_dnode = NULL;
3313 	} else if (dpa->dpa_dnode != NULL) {
3314 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3315 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3316 		    dpa->dpa_zb.zb_level));
3317 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3318 		    dpa->dpa_curlevel, curblkid, FTAG);
3319 		if (db == NULL) {
3320 			arc_buf_destroy(abuf, private);
3321 			dbuf_prefetch_fini(dpa, B_TRUE);
3322 			return;
3323 		}
3324 		(void) dbuf_read(db, NULL,
3325 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3326 		dbuf_rele(db, FTAG);
3327 	}
3328 
3329 	dpa->dpa_curlevel--;
3330 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3331 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3332 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3333 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3334 
3335 	ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3336 	    dsl_dataset_feature_is_active(
3337 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3338 	    SPA_FEATURE_REDACTED_DATASETS)));
3339 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3340 		arc_buf_destroy(abuf, private);
3341 		dbuf_prefetch_fini(dpa, B_TRUE);
3342 		return;
3343 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3344 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3345 		dbuf_issue_final_prefetch(dpa, bp);
3346 	} else {
3347 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3348 		zbookmark_phys_t zb;
3349 
3350 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3351 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3352 			iter_aflags |= ARC_FLAG_L2CACHE;
3353 
3354 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3355 
3356 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3357 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3358 
3359 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3360 		    bp, dbuf_prefetch_indirect_done, dpa,
3361 		    ZIO_PRIORITY_SYNC_READ,
3362 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3363 		    &iter_aflags, &zb);
3364 	}
3365 
3366 	arc_buf_destroy(abuf, private);
3367 }
3368 
3369 /*
3370  * Issue prefetch reads for the given block on the given level.  If the indirect
3371  * blocks above that block are not in memory, we will read them in
3372  * asynchronously.  As a result, this call never blocks waiting for a read to
3373  * complete. Note that the prefetch might fail if the dataset is encrypted and
3374  * the encryption key is unmapped before the IO completes.
3375  */
3376 int
3377 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3378     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3379     void *arg)
3380 {
3381 	blkptr_t bp;
3382 	int epbs, nlevels, curlevel;
3383 	uint64_t curblkid;
3384 
3385 	ASSERT(blkid != DMU_BONUS_BLKID);
3386 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3387 
3388 	if (blkid > dn->dn_maxblkid)
3389 		goto no_issue;
3390 
3391 	if (level == 0 && dnode_block_freed(dn, blkid))
3392 		goto no_issue;
3393 
3394 	/*
3395 	 * This dnode hasn't been written to disk yet, so there's nothing to
3396 	 * prefetch.
3397 	 */
3398 	nlevels = dn->dn_phys->dn_nlevels;
3399 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3400 		goto no_issue;
3401 
3402 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3403 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3404 		goto no_issue;
3405 
3406 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3407 	    level, blkid, NULL);
3408 	if (db != NULL) {
3409 		mutex_exit(&db->db_mtx);
3410 		/*
3411 		 * This dbuf already exists.  It is either CACHED, or
3412 		 * (we assume) about to be read or filled.
3413 		 */
3414 		goto no_issue;
3415 	}
3416 
3417 	/*
3418 	 * Find the closest ancestor (indirect block) of the target block
3419 	 * that is present in the cache.  In this indirect block, we will
3420 	 * find the bp that is at curlevel, curblkid.
3421 	 */
3422 	curlevel = level;
3423 	curblkid = blkid;
3424 	while (curlevel < nlevels - 1) {
3425 		int parent_level = curlevel + 1;
3426 		uint64_t parent_blkid = curblkid >> epbs;
3427 		dmu_buf_impl_t *db;
3428 
3429 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3430 		    FALSE, TRUE, FTAG, &db) == 0) {
3431 			blkptr_t *bpp = db->db_buf->b_data;
3432 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3433 			dbuf_rele(db, FTAG);
3434 			break;
3435 		}
3436 
3437 		curlevel = parent_level;
3438 		curblkid = parent_blkid;
3439 	}
3440 
3441 	if (curlevel == nlevels - 1) {
3442 		/* No cached indirect blocks found. */
3443 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3444 		bp = dn->dn_phys->dn_blkptr[curblkid];
3445 	}
3446 	ASSERT(!BP_IS_REDACTED(&bp) ||
3447 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3448 	    SPA_FEATURE_REDACTED_DATASETS));
3449 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3450 		goto no_issue;
3451 
3452 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3453 
3454 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3455 	    ZIO_FLAG_CANFAIL);
3456 
3457 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3458 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3459 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3460 	    dn->dn_object, level, blkid);
3461 	dpa->dpa_curlevel = curlevel;
3462 	dpa->dpa_prio = prio;
3463 	dpa->dpa_aflags = aflags;
3464 	dpa->dpa_spa = dn->dn_objset->os_spa;
3465 	dpa->dpa_dnode = dn;
3466 	dpa->dpa_epbs = epbs;
3467 	dpa->dpa_zio = pio;
3468 	dpa->dpa_cb = cb;
3469 	dpa->dpa_arg = arg;
3470 
3471 	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3472 		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3473 	else if (dnode_level_is_l2cacheable(&bp, dn, level))
3474 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3475 
3476 	/*
3477 	 * If we have the indirect just above us, no need to do the asynchronous
3478 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3479 	 * a higher level, though, we want to issue the prefetches for all the
3480 	 * indirect blocks asynchronously, so we can go on with whatever we were
3481 	 * doing.
3482 	 */
3483 	if (curlevel == level) {
3484 		ASSERT3U(curblkid, ==, blkid);
3485 		dbuf_issue_final_prefetch(dpa, &bp);
3486 	} else {
3487 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3488 		zbookmark_phys_t zb;
3489 
3490 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3491 		if (dnode_level_is_l2cacheable(&bp, dn, level))
3492 			iter_aflags |= ARC_FLAG_L2CACHE;
3493 
3494 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3495 		    dn->dn_object, curlevel, curblkid);
3496 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3497 		    &bp, dbuf_prefetch_indirect_done, dpa,
3498 		    ZIO_PRIORITY_SYNC_READ,
3499 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3500 		    &iter_aflags, &zb);
3501 	}
3502 	/*
3503 	 * We use pio here instead of dpa_zio since it's possible that
3504 	 * dpa may have already been freed.
3505 	 */
3506 	zio_nowait(pio);
3507 	return (1);
3508 no_issue:
3509 	if (cb != NULL)
3510 		cb(arg, level, blkid, B_FALSE);
3511 	return (0);
3512 }
3513 
3514 int
3515 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3516     arc_flags_t aflags)
3517 {
3518 
3519 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3520 }
3521 
3522 /*
3523  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3524  * the case of encrypted, compressed and uncompressed buffers by
3525  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3526  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3527  *
3528  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3529  */
3530 noinline static void
3531 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3532 {
3533 	dbuf_dirty_record_t *dr = db->db_data_pending;
3534 	arc_buf_t *data = dr->dt.dl.dr_data;
3535 	enum zio_compress compress_type = arc_get_compression(data);
3536 	uint8_t complevel = arc_get_complevel(data);
3537 
3538 	if (arc_is_encrypted(data)) {
3539 		boolean_t byteorder;
3540 		uint8_t salt[ZIO_DATA_SALT_LEN];
3541 		uint8_t iv[ZIO_DATA_IV_LEN];
3542 		uint8_t mac[ZIO_DATA_MAC_LEN];
3543 
3544 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3545 		dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3546 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3547 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3548 		    compress_type, complevel));
3549 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3550 		dbuf_set_data(db, arc_alloc_compressed_buf(
3551 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3552 		    arc_buf_lsize(data), compress_type, complevel));
3553 	} else {
3554 		dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3555 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3556 	}
3557 
3558 	rw_enter(&db->db_rwlock, RW_WRITER);
3559 	memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3560 	rw_exit(&db->db_rwlock);
3561 }
3562 
3563 /*
3564  * Returns with db_holds incremented, and db_mtx not held.
3565  * Note: dn_struct_rwlock must be held.
3566  */
3567 int
3568 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3569     boolean_t fail_sparse, boolean_t fail_uncached,
3570     const void *tag, dmu_buf_impl_t **dbp)
3571 {
3572 	dmu_buf_impl_t *db, *parent = NULL;
3573 	uint64_t hv;
3574 
3575 	/* If the pool has been created, verify the tx_sync_lock is not held */
3576 	spa_t *spa = dn->dn_objset->os_spa;
3577 	dsl_pool_t *dp = spa->spa_dsl_pool;
3578 	if (dp != NULL) {
3579 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3580 	}
3581 
3582 	ASSERT(blkid != DMU_BONUS_BLKID);
3583 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3584 	ASSERT3U(dn->dn_nlevels, >, level);
3585 
3586 	*dbp = NULL;
3587 
3588 	/* dbuf_find() returns with db_mtx held */
3589 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3590 
3591 	if (db == NULL) {
3592 		blkptr_t *bp = NULL;
3593 		int err;
3594 
3595 		if (fail_uncached)
3596 			return (SET_ERROR(ENOENT));
3597 
3598 		ASSERT3P(parent, ==, NULL);
3599 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3600 		if (fail_sparse) {
3601 			if (err == 0 && bp && BP_IS_HOLE(bp))
3602 				err = SET_ERROR(ENOENT);
3603 			if (err) {
3604 				if (parent)
3605 					dbuf_rele(parent, NULL);
3606 				return (err);
3607 			}
3608 		}
3609 		if (err && err != ENOENT)
3610 			return (err);
3611 		db = dbuf_create(dn, level, blkid, parent, bp, hv);
3612 	}
3613 
3614 	if (fail_uncached && db->db_state != DB_CACHED) {
3615 		mutex_exit(&db->db_mtx);
3616 		return (SET_ERROR(ENOENT));
3617 	}
3618 
3619 	if (db->db_buf != NULL) {
3620 		arc_buf_access(db->db_buf);
3621 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3622 	}
3623 
3624 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3625 
3626 	/*
3627 	 * If this buffer is currently syncing out, and we are
3628 	 * still referencing it from db_data, we need to make a copy
3629 	 * of it in case we decide we want to dirty it again in this txg.
3630 	 */
3631 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3632 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3633 	    db->db_state == DB_CACHED && db->db_data_pending) {
3634 		dbuf_dirty_record_t *dr = db->db_data_pending;
3635 		if (dr->dt.dl.dr_data == db->db_buf)
3636 			dbuf_hold_copy(dn, db);
3637 	}
3638 
3639 	if (multilist_link_active(&db->db_cache_link)) {
3640 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3641 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3642 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3643 
3644 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3645 		(void) zfs_refcount_remove_many(
3646 		    &dbuf_caches[db->db_caching_status].size,
3647 		    db->db.db_size, db);
3648 
3649 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3650 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3651 		} else {
3652 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3653 			DBUF_STAT_BUMPDOWN(cache_count);
3654 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3655 			    db->db.db_size);
3656 		}
3657 		db->db_caching_status = DB_NO_CACHE;
3658 	}
3659 	(void) zfs_refcount_add(&db->db_holds, tag);
3660 	DBUF_VERIFY(db);
3661 	mutex_exit(&db->db_mtx);
3662 
3663 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
3664 	if (parent)
3665 		dbuf_rele(parent, NULL);
3666 
3667 	ASSERT3P(DB_DNODE(db), ==, dn);
3668 	ASSERT3U(db->db_blkid, ==, blkid);
3669 	ASSERT3U(db->db_level, ==, level);
3670 	*dbp = db;
3671 
3672 	return (0);
3673 }
3674 
3675 dmu_buf_impl_t *
3676 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3677 {
3678 	return (dbuf_hold_level(dn, 0, blkid, tag));
3679 }
3680 
3681 dmu_buf_impl_t *
3682 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3683 {
3684 	dmu_buf_impl_t *db;
3685 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3686 	return (err ? NULL : db);
3687 }
3688 
3689 void
3690 dbuf_create_bonus(dnode_t *dn)
3691 {
3692 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3693 
3694 	ASSERT(dn->dn_bonus == NULL);
3695 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3696 	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3697 }
3698 
3699 int
3700 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3701 {
3702 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3703 
3704 	if (db->db_blkid != DMU_SPILL_BLKID)
3705 		return (SET_ERROR(ENOTSUP));
3706 	if (blksz == 0)
3707 		blksz = SPA_MINBLOCKSIZE;
3708 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3709 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3710 
3711 	dbuf_new_size(db, blksz, tx);
3712 
3713 	return (0);
3714 }
3715 
3716 void
3717 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3718 {
3719 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3720 }
3721 
3722 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3723 void
3724 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3725 {
3726 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3727 	VERIFY3S(holds, >, 1);
3728 }
3729 
3730 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3731 boolean_t
3732 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3733     const void *tag)
3734 {
3735 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3736 	dmu_buf_impl_t *found_db;
3737 	boolean_t result = B_FALSE;
3738 
3739 	if (blkid == DMU_BONUS_BLKID)
3740 		found_db = dbuf_find_bonus(os, obj);
3741 	else
3742 		found_db = dbuf_find(os, obj, 0, blkid, NULL);
3743 
3744 	if (found_db != NULL) {
3745 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3746 			(void) zfs_refcount_add(&db->db_holds, tag);
3747 			result = B_TRUE;
3748 		}
3749 		mutex_exit(&found_db->db_mtx);
3750 	}
3751 	return (result);
3752 }
3753 
3754 /*
3755  * If you call dbuf_rele() you had better not be referencing the dnode handle
3756  * unless you have some other direct or indirect hold on the dnode. (An indirect
3757  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3758  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3759  * dnode's parent dbuf evicting its dnode handles.
3760  */
3761 void
3762 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3763 {
3764 	mutex_enter(&db->db_mtx);
3765 	dbuf_rele_and_unlock(db, tag, B_FALSE);
3766 }
3767 
3768 void
3769 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3770 {
3771 	dbuf_rele((dmu_buf_impl_t *)db, tag);
3772 }
3773 
3774 /*
3775  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3776  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
3777  * argument should be set if we are already in the dbuf-evicting code
3778  * path, in which case we don't want to recursively evict.  This allows us to
3779  * avoid deeply nested stacks that would have a call flow similar to this:
3780  *
3781  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3782  *	^						|
3783  *	|						|
3784  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
3785  *
3786  */
3787 void
3788 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3789 {
3790 	int64_t holds;
3791 	uint64_t size;
3792 
3793 	ASSERT(MUTEX_HELD(&db->db_mtx));
3794 	DBUF_VERIFY(db);
3795 
3796 	/*
3797 	 * Remove the reference to the dbuf before removing its hold on the
3798 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
3799 	 * buffer has a corresponding dnode hold.
3800 	 */
3801 	holds = zfs_refcount_remove(&db->db_holds, tag);
3802 	ASSERT(holds >= 0);
3803 
3804 	/*
3805 	 * We can't freeze indirects if there is a possibility that they
3806 	 * may be modified in the current syncing context.
3807 	 */
3808 	if (db->db_buf != NULL &&
3809 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3810 		arc_buf_freeze(db->db_buf);
3811 	}
3812 
3813 	if (holds == db->db_dirtycnt &&
3814 	    db->db_level == 0 && db->db_user_immediate_evict)
3815 		dbuf_evict_user(db);
3816 
3817 	if (holds == 0) {
3818 		if (db->db_blkid == DMU_BONUS_BLKID) {
3819 			dnode_t *dn;
3820 			boolean_t evict_dbuf = db->db_pending_evict;
3821 
3822 			/*
3823 			 * If the dnode moves here, we cannot cross this
3824 			 * barrier until the move completes.
3825 			 */
3826 			DB_DNODE_ENTER(db);
3827 
3828 			dn = DB_DNODE(db);
3829 			atomic_dec_32(&dn->dn_dbufs_count);
3830 
3831 			/*
3832 			 * Decrementing the dbuf count means that the bonus
3833 			 * buffer's dnode hold is no longer discounted in
3834 			 * dnode_move(). The dnode cannot move until after
3835 			 * the dnode_rele() below.
3836 			 */
3837 			DB_DNODE_EXIT(db);
3838 
3839 			/*
3840 			 * Do not reference db after its lock is dropped.
3841 			 * Another thread may evict it.
3842 			 */
3843 			mutex_exit(&db->db_mtx);
3844 
3845 			if (evict_dbuf)
3846 				dnode_evict_bonus(dn);
3847 
3848 			dnode_rele(dn, db);
3849 		} else if (db->db_buf == NULL) {
3850 			/*
3851 			 * This is a special case: we never associated this
3852 			 * dbuf with any data allocated from the ARC.
3853 			 */
3854 			ASSERT(db->db_state == DB_UNCACHED ||
3855 			    db->db_state == DB_NOFILL);
3856 			dbuf_destroy(db);
3857 		} else if (arc_released(db->db_buf)) {
3858 			/*
3859 			 * This dbuf has anonymous data associated with it.
3860 			 */
3861 			dbuf_destroy(db);
3862 		} else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
3863 		    db->db_pending_evict) {
3864 			dbuf_destroy(db);
3865 		} else if (!multilist_link_active(&db->db_cache_link)) {
3866 			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3867 
3868 			dbuf_cached_state_t dcs =
3869 			    dbuf_include_in_metadata_cache(db) ?
3870 			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3871 			db->db_caching_status = dcs;
3872 
3873 			multilist_insert(&dbuf_caches[dcs].cache, db);
3874 			uint64_t db_size = db->db.db_size;
3875 			size = zfs_refcount_add_many(
3876 			    &dbuf_caches[dcs].size, db_size, db);
3877 			uint8_t db_level = db->db_level;
3878 			mutex_exit(&db->db_mtx);
3879 
3880 			if (dcs == DB_DBUF_METADATA_CACHE) {
3881 				DBUF_STAT_BUMP(metadata_cache_count);
3882 				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
3883 				    size);
3884 			} else {
3885 				DBUF_STAT_BUMP(cache_count);
3886 				DBUF_STAT_MAX(cache_size_bytes_max, size);
3887 				DBUF_STAT_BUMP(cache_levels[db_level]);
3888 				DBUF_STAT_INCR(cache_levels_bytes[db_level],
3889 				    db_size);
3890 			}
3891 
3892 			if (dcs == DB_DBUF_CACHE && !evicting)
3893 				dbuf_evict_notify(size);
3894 		}
3895 	} else {
3896 		mutex_exit(&db->db_mtx);
3897 	}
3898 
3899 }
3900 
3901 #pragma weak dmu_buf_refcount = dbuf_refcount
3902 uint64_t
3903 dbuf_refcount(dmu_buf_impl_t *db)
3904 {
3905 	return (zfs_refcount_count(&db->db_holds));
3906 }
3907 
3908 uint64_t
3909 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3910 {
3911 	uint64_t holds;
3912 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3913 
3914 	mutex_enter(&db->db_mtx);
3915 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3916 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3917 	mutex_exit(&db->db_mtx);
3918 
3919 	return (holds);
3920 }
3921 
3922 void *
3923 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3924     dmu_buf_user_t *new_user)
3925 {
3926 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3927 
3928 	mutex_enter(&db->db_mtx);
3929 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3930 	if (db->db_user == old_user)
3931 		db->db_user = new_user;
3932 	else
3933 		old_user = db->db_user;
3934 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3935 	mutex_exit(&db->db_mtx);
3936 
3937 	return (old_user);
3938 }
3939 
3940 void *
3941 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3942 {
3943 	return (dmu_buf_replace_user(db_fake, NULL, user));
3944 }
3945 
3946 void *
3947 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3948 {
3949 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3950 
3951 	db->db_user_immediate_evict = TRUE;
3952 	return (dmu_buf_set_user(db_fake, user));
3953 }
3954 
3955 void *
3956 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3957 {
3958 	return (dmu_buf_replace_user(db_fake, user, NULL));
3959 }
3960 
3961 void *
3962 dmu_buf_get_user(dmu_buf_t *db_fake)
3963 {
3964 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3965 
3966 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3967 	return (db->db_user);
3968 }
3969 
3970 void
3971 dmu_buf_user_evict_wait(void)
3972 {
3973 	taskq_wait(dbu_evict_taskq);
3974 }
3975 
3976 blkptr_t *
3977 dmu_buf_get_blkptr(dmu_buf_t *db)
3978 {
3979 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3980 	return (dbi->db_blkptr);
3981 }
3982 
3983 objset_t *
3984 dmu_buf_get_objset(dmu_buf_t *db)
3985 {
3986 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3987 	return (dbi->db_objset);
3988 }
3989 
3990 dnode_t *
3991 dmu_buf_dnode_enter(dmu_buf_t *db)
3992 {
3993 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3994 	DB_DNODE_ENTER(dbi);
3995 	return (DB_DNODE(dbi));
3996 }
3997 
3998 void
3999 dmu_buf_dnode_exit(dmu_buf_t *db)
4000 {
4001 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4002 	DB_DNODE_EXIT(dbi);
4003 }
4004 
4005 static void
4006 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4007 {
4008 	/* ASSERT(dmu_tx_is_syncing(tx) */
4009 	ASSERT(MUTEX_HELD(&db->db_mtx));
4010 
4011 	if (db->db_blkptr != NULL)
4012 		return;
4013 
4014 	if (db->db_blkid == DMU_SPILL_BLKID) {
4015 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4016 		BP_ZERO(db->db_blkptr);
4017 		return;
4018 	}
4019 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4020 		/*
4021 		 * This buffer was allocated at a time when there was
4022 		 * no available blkptrs from the dnode, or it was
4023 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4024 		 */
4025 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4026 		ASSERT(db->db_parent == NULL);
4027 		db->db_parent = dn->dn_dbuf;
4028 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4029 		DBUF_VERIFY(db);
4030 	} else {
4031 		dmu_buf_impl_t *parent = db->db_parent;
4032 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4033 
4034 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4035 		if (parent == NULL) {
4036 			mutex_exit(&db->db_mtx);
4037 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4038 			parent = dbuf_hold_level(dn, db->db_level + 1,
4039 			    db->db_blkid >> epbs, db);
4040 			rw_exit(&dn->dn_struct_rwlock);
4041 			mutex_enter(&db->db_mtx);
4042 			db->db_parent = parent;
4043 		}
4044 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4045 		    (db->db_blkid & ((1ULL << epbs) - 1));
4046 		DBUF_VERIFY(db);
4047 	}
4048 }
4049 
4050 static void
4051 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4052 {
4053 	dmu_buf_impl_t *db = dr->dr_dbuf;
4054 	void *data = dr->dt.dl.dr_data;
4055 
4056 	ASSERT0(db->db_level);
4057 	ASSERT(MUTEX_HELD(&db->db_mtx));
4058 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4059 	ASSERT(data != NULL);
4060 
4061 	dnode_t *dn = dr->dr_dnode;
4062 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4063 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4064 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4065 
4066 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4067 
4068 	dbuf_undirty_bonus(dr);
4069 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4070 }
4071 
4072 /*
4073  * When syncing out a blocks of dnodes, adjust the block to deal with
4074  * encryption.  Normally, we make sure the block is decrypted before writing
4075  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4076  * from a raw receive.  In this case, set the ARC buf's crypt params so
4077  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4078  */
4079 static void
4080 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4081 {
4082 	int err;
4083 	dmu_buf_impl_t *db = dr->dr_dbuf;
4084 
4085 	ASSERT(MUTEX_HELD(&db->db_mtx));
4086 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4087 	ASSERT3U(db->db_level, ==, 0);
4088 
4089 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4090 		zbookmark_phys_t zb;
4091 
4092 		/*
4093 		 * Unfortunately, there is currently no mechanism for
4094 		 * syncing context to handle decryption errors. An error
4095 		 * here is only possible if an attacker maliciously
4096 		 * changed a dnode block and updated the associated
4097 		 * checksums going up the block tree.
4098 		 */
4099 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4100 		    db->db.db_object, db->db_level, db->db_blkid);
4101 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4102 		    &zb, B_TRUE);
4103 		if (err)
4104 			panic("Invalid dnode block MAC");
4105 	} else if (dr->dt.dl.dr_has_raw_params) {
4106 		(void) arc_release(dr->dt.dl.dr_data, db);
4107 		arc_convert_to_raw(dr->dt.dl.dr_data,
4108 		    dmu_objset_id(db->db_objset),
4109 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4110 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4111 	}
4112 }
4113 
4114 /*
4115  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4116  * is critical the we not allow the compiler to inline this function in to
4117  * dbuf_sync_list() thereby drastically bloating the stack usage.
4118  */
4119 noinline static void
4120 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4121 {
4122 	dmu_buf_impl_t *db = dr->dr_dbuf;
4123 	dnode_t *dn = dr->dr_dnode;
4124 
4125 	ASSERT(dmu_tx_is_syncing(tx));
4126 
4127 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4128 
4129 	mutex_enter(&db->db_mtx);
4130 
4131 	ASSERT(db->db_level > 0);
4132 	DBUF_VERIFY(db);
4133 
4134 	/* Read the block if it hasn't been read yet. */
4135 	if (db->db_buf == NULL) {
4136 		mutex_exit(&db->db_mtx);
4137 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4138 		mutex_enter(&db->db_mtx);
4139 	}
4140 	ASSERT3U(db->db_state, ==, DB_CACHED);
4141 	ASSERT(db->db_buf != NULL);
4142 
4143 	/* Indirect block size must match what the dnode thinks it is. */
4144 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4145 	dbuf_check_blkptr(dn, db);
4146 
4147 	/* Provide the pending dirty record to child dbufs */
4148 	db->db_data_pending = dr;
4149 
4150 	mutex_exit(&db->db_mtx);
4151 
4152 	dbuf_write(dr, db->db_buf, tx);
4153 
4154 	zio_t *zio = dr->dr_zio;
4155 	mutex_enter(&dr->dt.di.dr_mtx);
4156 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4157 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4158 	mutex_exit(&dr->dt.di.dr_mtx);
4159 	zio_nowait(zio);
4160 }
4161 
4162 /*
4163  * Verify that the size of the data in our bonus buffer does not exceed
4164  * its recorded size.
4165  *
4166  * The purpose of this verification is to catch any cases in development
4167  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4168  * due to incorrect feature management, older pools expect to read more
4169  * data even though they didn't actually write it to begin with.
4170  *
4171  * For a example, this would catch an error in the feature logic where we
4172  * open an older pool and we expect to write the space map histogram of
4173  * a space map with size SPACE_MAP_SIZE_V0.
4174  */
4175 static void
4176 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4177 {
4178 #ifdef ZFS_DEBUG
4179 	dnode_t *dn = dr->dr_dnode;
4180 
4181 	/*
4182 	 * Encrypted bonus buffers can have data past their bonuslen.
4183 	 * Skip the verification of these blocks.
4184 	 */
4185 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4186 		return;
4187 
4188 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4189 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4190 	ASSERT3U(bonuslen, <=, maxbonuslen);
4191 
4192 	arc_buf_t *datap = dr->dt.dl.dr_data;
4193 	char *datap_end = ((char *)datap) + bonuslen;
4194 	char *datap_max = ((char *)datap) + maxbonuslen;
4195 
4196 	/* ensure that everything is zero after our data */
4197 	for (; datap_end < datap_max; datap_end++)
4198 		ASSERT(*datap_end == 0);
4199 #endif
4200 }
4201 
4202 static blkptr_t *
4203 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4204 {
4205 	/* This must be a lightweight dirty record. */
4206 	ASSERT3P(dr->dr_dbuf, ==, NULL);
4207 	dnode_t *dn = dr->dr_dnode;
4208 
4209 	if (dn->dn_phys->dn_nlevels == 1) {
4210 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4211 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4212 	} else {
4213 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4214 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4215 		VERIFY3U(parent_db->db_level, ==, 1);
4216 		VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4217 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4218 		blkptr_t *bp = parent_db->db.db_data;
4219 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4220 	}
4221 }
4222 
4223 static void
4224 dbuf_lightweight_ready(zio_t *zio)
4225 {
4226 	dbuf_dirty_record_t *dr = zio->io_private;
4227 	blkptr_t *bp = zio->io_bp;
4228 
4229 	if (zio->io_error != 0)
4230 		return;
4231 
4232 	dnode_t *dn = dr->dr_dnode;
4233 
4234 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4235 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4236 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4237 	    bp_get_dsize_sync(spa, bp_orig);
4238 	dnode_diduse_space(dn, delta);
4239 
4240 	uint64_t blkid = dr->dt.dll.dr_blkid;
4241 	mutex_enter(&dn->dn_mtx);
4242 	if (blkid > dn->dn_phys->dn_maxblkid) {
4243 		ASSERT0(dn->dn_objset->os_raw_receive);
4244 		dn->dn_phys->dn_maxblkid = blkid;
4245 	}
4246 	mutex_exit(&dn->dn_mtx);
4247 
4248 	if (!BP_IS_EMBEDDED(bp)) {
4249 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4250 		BP_SET_FILL(bp, fill);
4251 	}
4252 
4253 	dmu_buf_impl_t *parent_db;
4254 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4255 	if (dr->dr_parent == NULL) {
4256 		parent_db = dn->dn_dbuf;
4257 	} else {
4258 		parent_db = dr->dr_parent->dr_dbuf;
4259 	}
4260 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4261 	*bp_orig = *bp;
4262 	rw_exit(&parent_db->db_rwlock);
4263 }
4264 
4265 static void
4266 dbuf_lightweight_physdone(zio_t *zio)
4267 {
4268 	dbuf_dirty_record_t *dr = zio->io_private;
4269 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4270 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4271 
4272 	/*
4273 	 * The callback will be called io_phys_children times.  Retire one
4274 	 * portion of our dirty space each time we are called.  Any rounding
4275 	 * error will be cleaned up by dbuf_lightweight_done().
4276 	 */
4277 	int delta = dr->dr_accounted / zio->io_phys_children;
4278 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
4279 }
4280 
4281 static void
4282 dbuf_lightweight_done(zio_t *zio)
4283 {
4284 	dbuf_dirty_record_t *dr = zio->io_private;
4285 
4286 	VERIFY0(zio->io_error);
4287 
4288 	objset_t *os = dr->dr_dnode->dn_objset;
4289 	dmu_tx_t *tx = os->os_synctx;
4290 
4291 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4292 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4293 	} else {
4294 		dsl_dataset_t *ds = os->os_dsl_dataset;
4295 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4296 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4297 	}
4298 
4299 	/*
4300 	 * See comment in dbuf_write_done().
4301 	 */
4302 	if (zio->io_phys_children == 0) {
4303 		dsl_pool_undirty_space(dmu_objset_pool(os),
4304 		    dr->dr_accounted, zio->io_txg);
4305 	} else {
4306 		dsl_pool_undirty_space(dmu_objset_pool(os),
4307 		    dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4308 	}
4309 
4310 	abd_free(dr->dt.dll.dr_abd);
4311 	kmem_free(dr, sizeof (*dr));
4312 }
4313 
4314 noinline static void
4315 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4316 {
4317 	dnode_t *dn = dr->dr_dnode;
4318 	zio_t *pio;
4319 	if (dn->dn_phys->dn_nlevels == 1) {
4320 		pio = dn->dn_zio;
4321 	} else {
4322 		pio = dr->dr_parent->dr_zio;
4323 	}
4324 
4325 	zbookmark_phys_t zb = {
4326 		.zb_objset = dmu_objset_id(dn->dn_objset),
4327 		.zb_object = dn->dn_object,
4328 		.zb_level = 0,
4329 		.zb_blkid = dr->dt.dll.dr_blkid,
4330 	};
4331 
4332 	/*
4333 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4334 	 * will have the old BP in dbuf_lightweight_done().
4335 	 */
4336 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4337 
4338 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4339 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4340 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4341 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4342 	    dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4343 	    ZIO_PRIORITY_ASYNC_WRITE,
4344 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4345 
4346 	zio_nowait(dr->dr_zio);
4347 }
4348 
4349 /*
4350  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4351  * critical the we not allow the compiler to inline this function in to
4352  * dbuf_sync_list() thereby drastically bloating the stack usage.
4353  */
4354 noinline static void
4355 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4356 {
4357 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4358 	dmu_buf_impl_t *db = dr->dr_dbuf;
4359 	dnode_t *dn = dr->dr_dnode;
4360 	objset_t *os;
4361 	uint64_t txg = tx->tx_txg;
4362 
4363 	ASSERT(dmu_tx_is_syncing(tx));
4364 
4365 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4366 
4367 	mutex_enter(&db->db_mtx);
4368 	/*
4369 	 * To be synced, we must be dirtied.  But we
4370 	 * might have been freed after the dirty.
4371 	 */
4372 	if (db->db_state == DB_UNCACHED) {
4373 		/* This buffer has been freed since it was dirtied */
4374 		ASSERT(db->db.db_data == NULL);
4375 	} else if (db->db_state == DB_FILL) {
4376 		/* This buffer was freed and is now being re-filled */
4377 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4378 	} else {
4379 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4380 	}
4381 	DBUF_VERIFY(db);
4382 
4383 	if (db->db_blkid == DMU_SPILL_BLKID) {
4384 		mutex_enter(&dn->dn_mtx);
4385 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4386 			/*
4387 			 * In the previous transaction group, the bonus buffer
4388 			 * was entirely used to store the attributes for the
4389 			 * dnode which overrode the dn_spill field.  However,
4390 			 * when adding more attributes to the file a spill
4391 			 * block was required to hold the extra attributes.
4392 			 *
4393 			 * Make sure to clear the garbage left in the dn_spill
4394 			 * field from the previous attributes in the bonus
4395 			 * buffer.  Otherwise, after writing out the spill
4396 			 * block to the new allocated dva, it will free
4397 			 * the old block pointed to by the invalid dn_spill.
4398 			 */
4399 			db->db_blkptr = NULL;
4400 		}
4401 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4402 		mutex_exit(&dn->dn_mtx);
4403 	}
4404 
4405 	/*
4406 	 * If this is a bonus buffer, simply copy the bonus data into the
4407 	 * dnode.  It will be written out when the dnode is synced (and it
4408 	 * will be synced, since it must have been dirty for dbuf_sync to
4409 	 * be called).
4410 	 */
4411 	if (db->db_blkid == DMU_BONUS_BLKID) {
4412 		ASSERT(dr->dr_dbuf == db);
4413 		dbuf_sync_bonus(dr, tx);
4414 		return;
4415 	}
4416 
4417 	os = dn->dn_objset;
4418 
4419 	/*
4420 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4421 	 * operation to sneak in. As a result, we need to ensure that we
4422 	 * don't check the dr_override_state until we have returned from
4423 	 * dbuf_check_blkptr.
4424 	 */
4425 	dbuf_check_blkptr(dn, db);
4426 
4427 	/*
4428 	 * If this buffer is in the middle of an immediate write,
4429 	 * wait for the synchronous IO to complete.
4430 	 */
4431 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4432 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4433 		cv_wait(&db->db_changed, &db->db_mtx);
4434 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4435 	}
4436 
4437 	/*
4438 	 * If this is a dnode block, ensure it is appropriately encrypted
4439 	 * or decrypted, depending on what we are writing to it this txg.
4440 	 */
4441 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4442 		dbuf_prepare_encrypted_dnode_leaf(dr);
4443 
4444 	if (db->db_state != DB_NOFILL &&
4445 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4446 	    zfs_refcount_count(&db->db_holds) > 1 &&
4447 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4448 	    *datap == db->db_buf) {
4449 		/*
4450 		 * If this buffer is currently "in use" (i.e., there
4451 		 * are active holds and db_data still references it),
4452 		 * then make a copy before we start the write so that
4453 		 * any modifications from the open txg will not leak
4454 		 * into this write.
4455 		 *
4456 		 * NOTE: this copy does not need to be made for
4457 		 * objects only modified in the syncing context (e.g.
4458 		 * DNONE_DNODE blocks).
4459 		 */
4460 		int psize = arc_buf_size(*datap);
4461 		int lsize = arc_buf_lsize(*datap);
4462 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4463 		enum zio_compress compress_type = arc_get_compression(*datap);
4464 		uint8_t complevel = arc_get_complevel(*datap);
4465 
4466 		if (arc_is_encrypted(*datap)) {
4467 			boolean_t byteorder;
4468 			uint8_t salt[ZIO_DATA_SALT_LEN];
4469 			uint8_t iv[ZIO_DATA_IV_LEN];
4470 			uint8_t mac[ZIO_DATA_MAC_LEN];
4471 
4472 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4473 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4474 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4475 			    dn->dn_type, psize, lsize, compress_type,
4476 			    complevel);
4477 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4478 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4479 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4480 			    psize, lsize, compress_type, complevel);
4481 		} else {
4482 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4483 		}
4484 		memcpy((*datap)->b_data, db->db.db_data, psize);
4485 	}
4486 	db->db_data_pending = dr;
4487 
4488 	mutex_exit(&db->db_mtx);
4489 
4490 	dbuf_write(dr, *datap, tx);
4491 
4492 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4493 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4494 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4495 	} else {
4496 		zio_nowait(dr->dr_zio);
4497 	}
4498 }
4499 
4500 void
4501 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4502 {
4503 	dbuf_dirty_record_t *dr;
4504 
4505 	while ((dr = list_head(list))) {
4506 		if (dr->dr_zio != NULL) {
4507 			/*
4508 			 * If we find an already initialized zio then we
4509 			 * are processing the meta-dnode, and we have finished.
4510 			 * The dbufs for all dnodes are put back on the list
4511 			 * during processing, so that we can zio_wait()
4512 			 * these IOs after initiating all child IOs.
4513 			 */
4514 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4515 			    DMU_META_DNODE_OBJECT);
4516 			break;
4517 		}
4518 		list_remove(list, dr);
4519 		if (dr->dr_dbuf == NULL) {
4520 			dbuf_sync_lightweight(dr, tx);
4521 		} else {
4522 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4523 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4524 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4525 			}
4526 			if (dr->dr_dbuf->db_level > 0)
4527 				dbuf_sync_indirect(dr, tx);
4528 			else
4529 				dbuf_sync_leaf(dr, tx);
4530 		}
4531 	}
4532 }
4533 
4534 static void
4535 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4536 {
4537 	(void) buf;
4538 	dmu_buf_impl_t *db = vdb;
4539 	dnode_t *dn;
4540 	blkptr_t *bp = zio->io_bp;
4541 	blkptr_t *bp_orig = &zio->io_bp_orig;
4542 	spa_t *spa = zio->io_spa;
4543 	int64_t delta;
4544 	uint64_t fill = 0;
4545 	int i;
4546 
4547 	ASSERT3P(db->db_blkptr, !=, NULL);
4548 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4549 
4550 	DB_DNODE_ENTER(db);
4551 	dn = DB_DNODE(db);
4552 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4553 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4554 	zio->io_prev_space_delta = delta;
4555 
4556 	if (bp->blk_birth != 0) {
4557 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4558 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4559 		    (db->db_blkid == DMU_SPILL_BLKID &&
4560 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4561 		    BP_IS_EMBEDDED(bp));
4562 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4563 	}
4564 
4565 	mutex_enter(&db->db_mtx);
4566 
4567 #ifdef ZFS_DEBUG
4568 	if (db->db_blkid == DMU_SPILL_BLKID) {
4569 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4570 		ASSERT(!(BP_IS_HOLE(bp)) &&
4571 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4572 	}
4573 #endif
4574 
4575 	if (db->db_level == 0) {
4576 		mutex_enter(&dn->dn_mtx);
4577 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4578 		    db->db_blkid != DMU_SPILL_BLKID) {
4579 			ASSERT0(db->db_objset->os_raw_receive);
4580 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4581 		}
4582 		mutex_exit(&dn->dn_mtx);
4583 
4584 		if (dn->dn_type == DMU_OT_DNODE) {
4585 			i = 0;
4586 			while (i < db->db.db_size) {
4587 				dnode_phys_t *dnp =
4588 				    (void *)(((char *)db->db.db_data) + i);
4589 
4590 				i += DNODE_MIN_SIZE;
4591 				if (dnp->dn_type != DMU_OT_NONE) {
4592 					fill++;
4593 					i += dnp->dn_extra_slots *
4594 					    DNODE_MIN_SIZE;
4595 				}
4596 			}
4597 		} else {
4598 			if (BP_IS_HOLE(bp)) {
4599 				fill = 0;
4600 			} else {
4601 				fill = 1;
4602 			}
4603 		}
4604 	} else {
4605 		blkptr_t *ibp = db->db.db_data;
4606 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4607 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4608 			if (BP_IS_HOLE(ibp))
4609 				continue;
4610 			fill += BP_GET_FILL(ibp);
4611 		}
4612 	}
4613 	DB_DNODE_EXIT(db);
4614 
4615 	if (!BP_IS_EMBEDDED(bp))
4616 		BP_SET_FILL(bp, fill);
4617 
4618 	mutex_exit(&db->db_mtx);
4619 
4620 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4621 	*db->db_blkptr = *bp;
4622 	dmu_buf_unlock_parent(db, dblt, FTAG);
4623 }
4624 
4625 /*
4626  * This function gets called just prior to running through the compression
4627  * stage of the zio pipeline. If we're an indirect block comprised of only
4628  * holes, then we want this indirect to be compressed away to a hole. In
4629  * order to do that we must zero out any information about the holes that
4630  * this indirect points to prior to before we try to compress it.
4631  */
4632 static void
4633 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4634 {
4635 	(void) zio, (void) buf;
4636 	dmu_buf_impl_t *db = vdb;
4637 	dnode_t *dn;
4638 	blkptr_t *bp;
4639 	unsigned int epbs, i;
4640 
4641 	ASSERT3U(db->db_level, >, 0);
4642 	DB_DNODE_ENTER(db);
4643 	dn = DB_DNODE(db);
4644 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4645 	ASSERT3U(epbs, <, 31);
4646 
4647 	/* Determine if all our children are holes */
4648 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4649 		if (!BP_IS_HOLE(bp))
4650 			break;
4651 	}
4652 
4653 	/*
4654 	 * If all the children are holes, then zero them all out so that
4655 	 * we may get compressed away.
4656 	 */
4657 	if (i == 1ULL << epbs) {
4658 		/*
4659 		 * We only found holes. Grab the rwlock to prevent
4660 		 * anybody from reading the blocks we're about to
4661 		 * zero out.
4662 		 */
4663 		rw_enter(&db->db_rwlock, RW_WRITER);
4664 		memset(db->db.db_data, 0, db->db.db_size);
4665 		rw_exit(&db->db_rwlock);
4666 	}
4667 	DB_DNODE_EXIT(db);
4668 }
4669 
4670 /*
4671  * The SPA will call this callback several times for each zio - once
4672  * for every physical child i/o (zio->io_phys_children times).  This
4673  * allows the DMU to monitor the progress of each logical i/o.  For example,
4674  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4675  * block.  There may be a long delay before all copies/fragments are completed,
4676  * so this callback allows us to retire dirty space gradually, as the physical
4677  * i/os complete.
4678  */
4679 static void
4680 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4681 {
4682 	(void) buf;
4683 	dmu_buf_impl_t *db = arg;
4684 	objset_t *os = db->db_objset;
4685 	dsl_pool_t *dp = dmu_objset_pool(os);
4686 	dbuf_dirty_record_t *dr;
4687 	int delta = 0;
4688 
4689 	dr = db->db_data_pending;
4690 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4691 
4692 	/*
4693 	 * The callback will be called io_phys_children times.  Retire one
4694 	 * portion of our dirty space each time we are called.  Any rounding
4695 	 * error will be cleaned up by dbuf_write_done().
4696 	 */
4697 	delta = dr->dr_accounted / zio->io_phys_children;
4698 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
4699 }
4700 
4701 static void
4702 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4703 {
4704 	(void) buf;
4705 	dmu_buf_impl_t *db = vdb;
4706 	blkptr_t *bp_orig = &zio->io_bp_orig;
4707 	blkptr_t *bp = db->db_blkptr;
4708 	objset_t *os = db->db_objset;
4709 	dmu_tx_t *tx = os->os_synctx;
4710 
4711 	ASSERT0(zio->io_error);
4712 	ASSERT(db->db_blkptr == bp);
4713 
4714 	/*
4715 	 * For nopwrites and rewrites we ensure that the bp matches our
4716 	 * original and bypass all the accounting.
4717 	 */
4718 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4719 		ASSERT(BP_EQUAL(bp, bp_orig));
4720 	} else {
4721 		dsl_dataset_t *ds = os->os_dsl_dataset;
4722 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4723 		dsl_dataset_block_born(ds, bp, tx);
4724 	}
4725 
4726 	mutex_enter(&db->db_mtx);
4727 
4728 	DBUF_VERIFY(db);
4729 
4730 	dbuf_dirty_record_t *dr = db->db_data_pending;
4731 	dnode_t *dn = dr->dr_dnode;
4732 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4733 	ASSERT(dr->dr_dbuf == db);
4734 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4735 	list_remove(&db->db_dirty_records, dr);
4736 
4737 #ifdef ZFS_DEBUG
4738 	if (db->db_blkid == DMU_SPILL_BLKID) {
4739 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4740 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4741 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4742 	}
4743 #endif
4744 
4745 	if (db->db_level == 0) {
4746 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4747 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4748 		if (db->db_state != DB_NOFILL) {
4749 			if (dr->dt.dl.dr_data != db->db_buf)
4750 				arc_buf_destroy(dr->dt.dl.dr_data, db);
4751 		}
4752 	} else {
4753 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4754 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4755 		if (!BP_IS_HOLE(db->db_blkptr)) {
4756 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4757 			    SPA_BLKPTRSHIFT;
4758 			ASSERT3U(db->db_blkid, <=,
4759 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4760 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4761 			    db->db.db_size);
4762 		}
4763 		mutex_destroy(&dr->dt.di.dr_mtx);
4764 		list_destroy(&dr->dt.di.dr_children);
4765 	}
4766 
4767 	cv_broadcast(&db->db_changed);
4768 	ASSERT(db->db_dirtycnt > 0);
4769 	db->db_dirtycnt -= 1;
4770 	db->db_data_pending = NULL;
4771 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4772 
4773 	/*
4774 	 * If we didn't do a physical write in this ZIO and we
4775 	 * still ended up here, it means that the space of the
4776 	 * dbuf that we just released (and undirtied) above hasn't
4777 	 * been marked as undirtied in the pool's accounting.
4778 	 *
4779 	 * Thus, we undirty that space in the pool's view of the
4780 	 * world here. For physical writes this type of update
4781 	 * happens in dbuf_write_physdone().
4782 	 *
4783 	 * If we did a physical write, cleanup any rounding errors
4784 	 * that came up due to writing multiple copies of a block
4785 	 * on disk [see dbuf_write_physdone()].
4786 	 */
4787 	if (zio->io_phys_children == 0) {
4788 		dsl_pool_undirty_space(dmu_objset_pool(os),
4789 		    dr->dr_accounted, zio->io_txg);
4790 	} else {
4791 		dsl_pool_undirty_space(dmu_objset_pool(os),
4792 		    dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4793 	}
4794 
4795 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
4796 }
4797 
4798 static void
4799 dbuf_write_nofill_ready(zio_t *zio)
4800 {
4801 	dbuf_write_ready(zio, NULL, zio->io_private);
4802 }
4803 
4804 static void
4805 dbuf_write_nofill_done(zio_t *zio)
4806 {
4807 	dbuf_write_done(zio, NULL, zio->io_private);
4808 }
4809 
4810 static void
4811 dbuf_write_override_ready(zio_t *zio)
4812 {
4813 	dbuf_dirty_record_t *dr = zio->io_private;
4814 	dmu_buf_impl_t *db = dr->dr_dbuf;
4815 
4816 	dbuf_write_ready(zio, NULL, db);
4817 }
4818 
4819 static void
4820 dbuf_write_override_done(zio_t *zio)
4821 {
4822 	dbuf_dirty_record_t *dr = zio->io_private;
4823 	dmu_buf_impl_t *db = dr->dr_dbuf;
4824 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4825 
4826 	mutex_enter(&db->db_mtx);
4827 	if (!BP_EQUAL(zio->io_bp, obp)) {
4828 		if (!BP_IS_HOLE(obp))
4829 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4830 		arc_release(dr->dt.dl.dr_data, db);
4831 	}
4832 	mutex_exit(&db->db_mtx);
4833 
4834 	dbuf_write_done(zio, NULL, db);
4835 
4836 	if (zio->io_abd != NULL)
4837 		abd_free(zio->io_abd);
4838 }
4839 
4840 typedef struct dbuf_remap_impl_callback_arg {
4841 	objset_t	*drica_os;
4842 	uint64_t	drica_blk_birth;
4843 	dmu_tx_t	*drica_tx;
4844 } dbuf_remap_impl_callback_arg_t;
4845 
4846 static void
4847 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4848     void *arg)
4849 {
4850 	dbuf_remap_impl_callback_arg_t *drica = arg;
4851 	objset_t *os = drica->drica_os;
4852 	spa_t *spa = dmu_objset_spa(os);
4853 	dmu_tx_t *tx = drica->drica_tx;
4854 
4855 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4856 
4857 	if (os == spa_meta_objset(spa)) {
4858 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4859 	} else {
4860 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4861 		    size, drica->drica_blk_birth, tx);
4862 	}
4863 }
4864 
4865 static void
4866 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4867 {
4868 	blkptr_t bp_copy = *bp;
4869 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4870 	dbuf_remap_impl_callback_arg_t drica;
4871 
4872 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4873 
4874 	drica.drica_os = dn->dn_objset;
4875 	drica.drica_blk_birth = bp->blk_birth;
4876 	drica.drica_tx = tx;
4877 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4878 	    &drica)) {
4879 		/*
4880 		 * If the blkptr being remapped is tracked by a livelist,
4881 		 * then we need to make sure the livelist reflects the update.
4882 		 * First, cancel out the old blkptr by appending a 'FREE'
4883 		 * entry. Next, add an 'ALLOC' to track the new version. This
4884 		 * way we avoid trying to free an inaccurate blkptr at delete.
4885 		 * Note that embedded blkptrs are not tracked in livelists.
4886 		 */
4887 		if (dn->dn_objset != spa_meta_objset(spa)) {
4888 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4889 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4890 			    bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4891 				ASSERT(!BP_IS_EMBEDDED(bp));
4892 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
4893 				ASSERT(spa_feature_is_enabled(spa,
4894 				    SPA_FEATURE_LIVELIST));
4895 				bplist_append(&ds->ds_dir->dd_pending_frees,
4896 				    bp);
4897 				bplist_append(&ds->ds_dir->dd_pending_allocs,
4898 				    &bp_copy);
4899 			}
4900 		}
4901 
4902 		/*
4903 		 * The db_rwlock prevents dbuf_read_impl() from
4904 		 * dereferencing the BP while we are changing it.  To
4905 		 * avoid lock contention, only grab it when we are actually
4906 		 * changing the BP.
4907 		 */
4908 		if (rw != NULL)
4909 			rw_enter(rw, RW_WRITER);
4910 		*bp = bp_copy;
4911 		if (rw != NULL)
4912 			rw_exit(rw);
4913 	}
4914 }
4915 
4916 /*
4917  * Remap any existing BP's to concrete vdevs, if possible.
4918  */
4919 static void
4920 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4921 {
4922 	spa_t *spa = dmu_objset_spa(db->db_objset);
4923 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4924 
4925 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4926 		return;
4927 
4928 	if (db->db_level > 0) {
4929 		blkptr_t *bp = db->db.db_data;
4930 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4931 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4932 		}
4933 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4934 		dnode_phys_t *dnp = db->db.db_data;
4935 		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4936 		    DMU_OT_DNODE);
4937 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4938 		    i += dnp[i].dn_extra_slots + 1) {
4939 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4940 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4941 				    &dn->dn_dbuf->db_rwlock);
4942 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4943 				    tx);
4944 			}
4945 		}
4946 	}
4947 }
4948 
4949 
4950 /* Issue I/O to commit a dirty buffer to disk. */
4951 static void
4952 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4953 {
4954 	dmu_buf_impl_t *db = dr->dr_dbuf;
4955 	dnode_t *dn = dr->dr_dnode;
4956 	objset_t *os;
4957 	dmu_buf_impl_t *parent = db->db_parent;
4958 	uint64_t txg = tx->tx_txg;
4959 	zbookmark_phys_t zb;
4960 	zio_prop_t zp;
4961 	zio_t *pio; /* parent I/O */
4962 	int wp_flag = 0;
4963 
4964 	ASSERT(dmu_tx_is_syncing(tx));
4965 
4966 	os = dn->dn_objset;
4967 
4968 	if (db->db_state != DB_NOFILL) {
4969 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4970 			/*
4971 			 * Private object buffers are released here rather
4972 			 * than in dbuf_dirty() since they are only modified
4973 			 * in the syncing context and we don't want the
4974 			 * overhead of making multiple copies of the data.
4975 			 */
4976 			if (BP_IS_HOLE(db->db_blkptr)) {
4977 				arc_buf_thaw(data);
4978 			} else {
4979 				dbuf_release_bp(db);
4980 			}
4981 			dbuf_remap(dn, db, tx);
4982 		}
4983 	}
4984 
4985 	if (parent != dn->dn_dbuf) {
4986 		/* Our parent is an indirect block. */
4987 		/* We have a dirty parent that has been scheduled for write. */
4988 		ASSERT(parent && parent->db_data_pending);
4989 		/* Our parent's buffer is one level closer to the dnode. */
4990 		ASSERT(db->db_level == parent->db_level-1);
4991 		/*
4992 		 * We're about to modify our parent's db_data by modifying
4993 		 * our block pointer, so the parent must be released.
4994 		 */
4995 		ASSERT(arc_released(parent->db_buf));
4996 		pio = parent->db_data_pending->dr_zio;
4997 	} else {
4998 		/* Our parent is the dnode itself. */
4999 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5000 		    db->db_blkid != DMU_SPILL_BLKID) ||
5001 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5002 		if (db->db_blkid != DMU_SPILL_BLKID)
5003 			ASSERT3P(db->db_blkptr, ==,
5004 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
5005 		pio = dn->dn_zio;
5006 	}
5007 
5008 	ASSERT(db->db_level == 0 || data == db->db_buf);
5009 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
5010 	ASSERT(pio);
5011 
5012 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5013 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5014 	    db->db.db_object, db->db_level, db->db_blkid);
5015 
5016 	if (db->db_blkid == DMU_SPILL_BLKID)
5017 		wp_flag = WP_SPILL;
5018 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5019 
5020 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5021 
5022 	/*
5023 	 * We copy the blkptr now (rather than when we instantiate the dirty
5024 	 * record), because its value can change between open context and
5025 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5026 	 * db_blkptr because we are in syncing context.
5027 	 */
5028 	dr->dr_bp_copy = *db->db_blkptr;
5029 
5030 	if (db->db_level == 0 &&
5031 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5032 		/*
5033 		 * The BP for this block has been provided by open context
5034 		 * (by dmu_sync() or dmu_buf_write_embedded()).
5035 		 */
5036 		abd_t *contents = (data != NULL) ?
5037 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5038 
5039 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5040 		    contents, db->db.db_size, db->db.db_size, &zp,
5041 		    dbuf_write_override_ready, NULL, NULL,
5042 		    dbuf_write_override_done,
5043 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5044 		mutex_enter(&db->db_mtx);
5045 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5046 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5047 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
5048 		mutex_exit(&db->db_mtx);
5049 	} else if (db->db_state == DB_NOFILL) {
5050 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5051 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5052 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5053 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5054 		    dbuf_write_nofill_ready, NULL, NULL,
5055 		    dbuf_write_nofill_done, db,
5056 		    ZIO_PRIORITY_ASYNC_WRITE,
5057 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5058 	} else {
5059 		ASSERT(arc_released(data));
5060 
5061 		/*
5062 		 * For indirect blocks, we want to setup the children
5063 		 * ready callback so that we can properly handle an indirect
5064 		 * block that only contains holes.
5065 		 */
5066 		arc_write_done_func_t *children_ready_cb = NULL;
5067 		if (db->db_level != 0)
5068 			children_ready_cb = dbuf_write_children_ready;
5069 
5070 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5071 		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5072 		    dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5073 		    children_ready_cb, dbuf_write_physdone,
5074 		    dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5075 		    ZIO_FLAG_MUSTSUCCEED, &zb);
5076 	}
5077 }
5078 
5079 EXPORT_SYMBOL(dbuf_find);
5080 EXPORT_SYMBOL(dbuf_is_metadata);
5081 EXPORT_SYMBOL(dbuf_destroy);
5082 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5083 EXPORT_SYMBOL(dbuf_whichblock);
5084 EXPORT_SYMBOL(dbuf_read);
5085 EXPORT_SYMBOL(dbuf_unoverride);
5086 EXPORT_SYMBOL(dbuf_free_range);
5087 EXPORT_SYMBOL(dbuf_new_size);
5088 EXPORT_SYMBOL(dbuf_release_bp);
5089 EXPORT_SYMBOL(dbuf_dirty);
5090 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5091 EXPORT_SYMBOL(dmu_buf_will_dirty);
5092 EXPORT_SYMBOL(dmu_buf_is_dirty);
5093 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5094 EXPORT_SYMBOL(dmu_buf_will_fill);
5095 EXPORT_SYMBOL(dmu_buf_fill_done);
5096 EXPORT_SYMBOL(dmu_buf_rele);
5097 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5098 EXPORT_SYMBOL(dbuf_prefetch);
5099 EXPORT_SYMBOL(dbuf_hold_impl);
5100 EXPORT_SYMBOL(dbuf_hold);
5101 EXPORT_SYMBOL(dbuf_hold_level);
5102 EXPORT_SYMBOL(dbuf_create_bonus);
5103 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5104 EXPORT_SYMBOL(dbuf_rm_spill);
5105 EXPORT_SYMBOL(dbuf_add_ref);
5106 EXPORT_SYMBOL(dbuf_rele);
5107 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5108 EXPORT_SYMBOL(dbuf_refcount);
5109 EXPORT_SYMBOL(dbuf_sync_list);
5110 EXPORT_SYMBOL(dmu_buf_set_user);
5111 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5112 EXPORT_SYMBOL(dmu_buf_get_user);
5113 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5114 
5115 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5116 	"Maximum size in bytes of the dbuf cache.");
5117 
5118 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5119 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5120 
5121 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5122 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5123 
5124 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5125 	"Maximum size in bytes of dbuf metadata cache.");
5126 
5127 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5128 	"Set size of dbuf cache to log2 fraction of arc size.");
5129 
5130 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5131 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5132 
5133 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5134 	"Set size of dbuf cache mutex array as log2 shift.");
5135