xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2019, Klara Inc.
28  * Copyright (c) 2019, Allan Jude
29  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59 
60 static kstat_t *dbuf_ksp;
61 
62 typedef struct dbuf_stats {
63 	/*
64 	 * Various statistics about the size of the dbuf cache.
65 	 */
66 	kstat_named_t cache_count;
67 	kstat_named_t cache_size_bytes;
68 	kstat_named_t cache_size_bytes_max;
69 	/*
70 	 * Statistics regarding the bounds on the dbuf cache size.
71 	 */
72 	kstat_named_t cache_target_bytes;
73 	kstat_named_t cache_lowater_bytes;
74 	kstat_named_t cache_hiwater_bytes;
75 	/*
76 	 * Total number of dbuf cache evictions that have occurred.
77 	 */
78 	kstat_named_t cache_total_evicts;
79 	/*
80 	 * The distribution of dbuf levels in the dbuf cache and
81 	 * the total size of all dbufs at each level.
82 	 */
83 	kstat_named_t cache_levels[DN_MAX_LEVELS];
84 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 	/*
86 	 * Statistics about the dbuf hash table.
87 	 */
88 	kstat_named_t hash_hits;
89 	kstat_named_t hash_misses;
90 	kstat_named_t hash_collisions;
91 	kstat_named_t hash_elements;
92 	/*
93 	 * Number of sublists containing more than one dbuf in the dbuf
94 	 * hash table. Keep track of the longest hash chain.
95 	 */
96 	kstat_named_t hash_chains;
97 	kstat_named_t hash_chain_max;
98 	/*
99 	 * Number of times a dbuf_create() discovers that a dbuf was
100 	 * already created and in the dbuf hash table.
101 	 */
102 	kstat_named_t hash_insert_race;
103 	/*
104 	 * Number of entries in the hash table dbuf and mutex arrays.
105 	 */
106 	kstat_named_t hash_table_count;
107 	kstat_named_t hash_mutex_count;
108 	/*
109 	 * Statistics about the size of the metadata dbuf cache.
110 	 */
111 	kstat_named_t metadata_cache_count;
112 	kstat_named_t metadata_cache_size_bytes;
113 	kstat_named_t metadata_cache_size_bytes_max;
114 	/*
115 	 * For diagnostic purposes, this is incremented whenever we can't add
116 	 * something to the metadata cache because it's full, and instead put
117 	 * the data in the regular dbuf cache.
118 	 */
119 	kstat_named_t metadata_cache_overflow;
120 } dbuf_stats_t;
121 
122 dbuf_stats_t dbuf_stats = {
123 	{ "cache_count",			KSTAT_DATA_UINT64 },
124 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
125 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
126 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
127 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
128 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
129 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
130 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
131 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
132 	{ "hash_hits",				KSTAT_DATA_UINT64 },
133 	{ "hash_misses",			KSTAT_DATA_UINT64 },
134 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
135 	{ "hash_elements",			KSTAT_DATA_UINT64 },
136 	{ "hash_chains",			KSTAT_DATA_UINT64 },
137 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
138 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
139 	{ "hash_table_count",			KSTAT_DATA_UINT64 },
140 	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
141 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
142 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
143 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
144 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
145 };
146 
147 struct {
148 	wmsum_t cache_count;
149 	wmsum_t cache_total_evicts;
150 	wmsum_t cache_levels[DN_MAX_LEVELS];
151 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
152 	wmsum_t hash_hits;
153 	wmsum_t hash_misses;
154 	wmsum_t hash_collisions;
155 	wmsum_t hash_elements;
156 	wmsum_t hash_chains;
157 	wmsum_t hash_insert_race;
158 	wmsum_t metadata_cache_count;
159 	wmsum_t metadata_cache_overflow;
160 } dbuf_sums;
161 
162 #define	DBUF_STAT_INCR(stat, val)	\
163 	wmsum_add(&dbuf_sums.stat, val)
164 #define	DBUF_STAT_DECR(stat, val)	\
165 	DBUF_STAT_INCR(stat, -(val))
166 #define	DBUF_STAT_BUMP(stat)		\
167 	DBUF_STAT_INCR(stat, 1)
168 #define	DBUF_STAT_BUMPDOWN(stat)	\
169 	DBUF_STAT_INCR(stat, -1)
170 #define	DBUF_STAT_MAX(stat, v) {					\
171 	uint64_t _m;							\
172 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
173 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
174 		continue;						\
175 }
176 
177 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
178 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
179 
180 /*
181  * Global data structures and functions for the dbuf cache.
182  */
183 static kmem_cache_t *dbuf_kmem_cache;
184 kmem_cache_t *dbuf_dirty_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
186 
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
191 
192 /*
193  * There are two dbuf caches; each dbuf can only be in one of them at a time.
194  *
195  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197  *    that represent the metadata that describes filesystems/snapshots/
198  *    bookmarks/properties/etc. We only evict from this cache when we export a
199  *    pool, to short-circuit as much I/O as possible for all administrative
200  *    commands that need the metadata. There is no eviction policy for this
201  *    cache, because we try to only include types in it which would occupy a
202  *    very small amount of space per object but create a large impact on the
203  *    performance of these commands. Instead, after it reaches a maximum size
204  *    (which should only happen on very small memory systems with a very large
205  *    number of filesystem objects), we stop taking new dbufs into the
206  *    metadata cache, instead putting them in the normal dbuf cache.
207  *
208  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209  *    are not currently held but have been recently released. These dbufs
210  *    are not eligible for arc eviction until they are aged out of the cache.
211  *    Dbufs that are aged out of the cache will be immediately destroyed and
212  *    become eligible for arc eviction.
213  *
214  * Dbufs are added to these caches once the last hold is released. If a dbuf is
215  * later accessed and still exists in the dbuf cache, then it will be removed
216  * from the cache and later re-added to the head of the cache.
217  *
218  * If a given dbuf meets the requirements for the metadata cache, it will go
219  * there, otherwise it will be considered for the generic LRU dbuf cache. The
220  * caches and the refcounts tracking their sizes are stored in an array indexed
221  * by those caches' matching enum values (from dbuf_cached_state_t).
222  */
223 typedef struct dbuf_cache {
224 	multilist_t cache;
225 	zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
228 
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
232 
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
236 
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
239 
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
242 
243 /*
244  * The LRU dbuf cache uses a three-stage eviction policy:
245  *	- A low water marker designates when the dbuf eviction thread
246  *	should stop evicting from the dbuf cache.
247  *	- When we reach the maximum size (aka mid water mark), we
248  *	signal the eviction thread to run.
249  *	- The high water mark indicates when the eviction thread
250  *	is unable to keep up with the incoming load and eviction must
251  *	happen in the context of the calling thread.
252  *
253  * The dbuf cache:
254  *                                                 (max size)
255  *                                      low water   mid water   hi water
256  * +----------------------------------------+----------+----------+
257  * |                                        |          |          |
258  * |                                        |          |          |
259  * |                                        |          |          |
260  * |                                        |          |          |
261  * +----------------------------------------+----------+----------+
262  *                                        stop        signal     evict
263  *                                      evicting     eviction   directly
264  *                                                    thread
265  *
266  * The high and low water marks indicate the operating range for the eviction
267  * thread. The low water mark is, by default, 90% of the total size of the
268  * cache and the high water mark is at 110% (both of these percentages can be
269  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270  * respectively). The eviction thread will try to ensure that the cache remains
271  * within this range by waking up every second and checking if the cache is
272  * above the low water mark. The thread can also be woken up by callers adding
273  * elements into the cache if the cache is larger than the mid water (i.e max
274  * cache size). Once the eviction thread is woken up and eviction is required,
275  * it will continue evicting buffers until it's able to reduce the cache size
276  * to the low water mark. If the cache size continues to grow and hits the high
277  * water mark, then callers adding elements to the cache will begin to evict
278  * directly from the cache until the cache is no longer above the high water
279  * mark.
280  */
281 
282 /*
283  * The percentage above and below the maximum cache size.
284  */
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
287 
288 static int
289 dbuf_cons(void *vdb, void *unused, int kmflag)
290 {
291 	(void) unused, (void) kmflag;
292 	dmu_buf_impl_t *db = vdb;
293 	memset(db, 0, sizeof (dmu_buf_impl_t));
294 
295 	mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
296 	rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
297 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 	multilist_link_init(&db->db_cache_link);
299 	zfs_refcount_create(&db->db_holds);
300 
301 	return (0);
302 }
303 
304 static void
305 dbuf_dest(void *vdb, void *unused)
306 {
307 	(void) unused;
308 	dmu_buf_impl_t *db = vdb;
309 	mutex_destroy(&db->db_mtx);
310 	rw_destroy(&db->db_rwlock);
311 	cv_destroy(&db->db_changed);
312 	ASSERT(!multilist_link_active(&db->db_cache_link));
313 	zfs_refcount_destroy(&db->db_holds);
314 }
315 
316 /*
317  * dbuf hash table routines
318  */
319 static dbuf_hash_table_t dbuf_hash_table;
320 
321 /*
322  * We use Cityhash for this. It's fast, and has good hash properties without
323  * requiring any large static buffers.
324  */
325 static uint64_t
326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
327 {
328 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
329 }
330 
331 #define	DTRACE_SET_STATE(db, why) \
332 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
333 	    const char *, why)
334 
335 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
336 	((dbuf)->db.db_object == (obj) &&		\
337 	(dbuf)->db_objset == (os) &&			\
338 	(dbuf)->db_level == (level) &&			\
339 	(dbuf)->db_blkid == (blkid))
340 
341 dmu_buf_impl_t *
342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
343     uint64_t *hash_out)
344 {
345 	dbuf_hash_table_t *h = &dbuf_hash_table;
346 	uint64_t hv;
347 	uint64_t idx;
348 	dmu_buf_impl_t *db;
349 
350 	hv = dbuf_hash(os, obj, level, blkid);
351 	idx = hv & h->hash_table_mask;
352 
353 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
355 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
356 			mutex_enter(&db->db_mtx);
357 			if (db->db_state != DB_EVICTING) {
358 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 				return (db);
360 			}
361 			mutex_exit(&db->db_mtx);
362 		}
363 	}
364 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
365 	if (hash_out != NULL)
366 		*hash_out = hv;
367 	return (NULL);
368 }
369 
370 static dmu_buf_impl_t *
371 dbuf_find_bonus(objset_t *os, uint64_t object)
372 {
373 	dnode_t *dn;
374 	dmu_buf_impl_t *db = NULL;
375 
376 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
377 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 		if (dn->dn_bonus != NULL) {
379 			db = dn->dn_bonus;
380 			mutex_enter(&db->db_mtx);
381 		}
382 		rw_exit(&dn->dn_struct_rwlock);
383 		dnode_rele(dn, FTAG);
384 	}
385 	return (db);
386 }
387 
388 /*
389  * Insert an entry into the hash table.  If there is already an element
390  * equal to elem in the hash table, then the already existing element
391  * will be returned and the new element will not be inserted.
392  * Otherwise returns NULL.
393  */
394 static dmu_buf_impl_t *
395 dbuf_hash_insert(dmu_buf_impl_t *db)
396 {
397 	dbuf_hash_table_t *h = &dbuf_hash_table;
398 	objset_t *os = db->db_objset;
399 	uint64_t obj = db->db.db_object;
400 	int level = db->db_level;
401 	uint64_t blkid, idx;
402 	dmu_buf_impl_t *dbf;
403 	uint32_t i;
404 
405 	blkid = db->db_blkid;
406 	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
407 	idx = db->db_hash & h->hash_table_mask;
408 
409 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
410 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
411 	    dbf = dbf->db_hash_next, i++) {
412 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
413 			mutex_enter(&dbf->db_mtx);
414 			if (dbf->db_state != DB_EVICTING) {
415 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
416 				return (dbf);
417 			}
418 			mutex_exit(&dbf->db_mtx);
419 		}
420 	}
421 
422 	if (i > 0) {
423 		DBUF_STAT_BUMP(hash_collisions);
424 		if (i == 1)
425 			DBUF_STAT_BUMP(hash_chains);
426 
427 		DBUF_STAT_MAX(hash_chain_max, i);
428 	}
429 
430 	mutex_enter(&db->db_mtx);
431 	db->db_hash_next = h->hash_table[idx];
432 	h->hash_table[idx] = db;
433 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
434 	DBUF_STAT_BUMP(hash_elements);
435 
436 	return (NULL);
437 }
438 
439 /*
440  * This returns whether this dbuf should be stored in the metadata cache, which
441  * is based on whether it's from one of the dnode types that store data related
442  * to traversing dataset hierarchies.
443  */
444 static boolean_t
445 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
446 {
447 	DB_DNODE_ENTER(db);
448 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
449 	DB_DNODE_EXIT(db);
450 
451 	/* Check if this dbuf is one of the types we care about */
452 	if (DMU_OT_IS_METADATA_CACHED(type)) {
453 		/* If we hit this, then we set something up wrong in dmu_ot */
454 		ASSERT(DMU_OT_IS_METADATA(type));
455 
456 		/*
457 		 * Sanity check for small-memory systems: don't allocate too
458 		 * much memory for this purpose.
459 		 */
460 		if (zfs_refcount_count(
461 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
462 		    dbuf_metadata_cache_target_bytes()) {
463 			DBUF_STAT_BUMP(metadata_cache_overflow);
464 			return (B_FALSE);
465 		}
466 
467 		return (B_TRUE);
468 	}
469 
470 	return (B_FALSE);
471 }
472 
473 /*
474  * Remove an entry from the hash table.  It must be in the EVICTING state.
475  */
476 static void
477 dbuf_hash_remove(dmu_buf_impl_t *db)
478 {
479 	dbuf_hash_table_t *h = &dbuf_hash_table;
480 	uint64_t idx;
481 	dmu_buf_impl_t *dbf, **dbp;
482 
483 	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
484 	    db->db_blkid), ==, db->db_hash);
485 	idx = db->db_hash & h->hash_table_mask;
486 
487 	/*
488 	 * We mustn't hold db_mtx to maintain lock ordering:
489 	 * DBUF_HASH_MUTEX > db_mtx.
490 	 */
491 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
492 	ASSERT(db->db_state == DB_EVICTING);
493 	ASSERT(!MUTEX_HELD(&db->db_mtx));
494 
495 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
496 	dbp = &h->hash_table[idx];
497 	while ((dbf = *dbp) != db) {
498 		dbp = &dbf->db_hash_next;
499 		ASSERT(dbf != NULL);
500 	}
501 	*dbp = db->db_hash_next;
502 	db->db_hash_next = NULL;
503 	if (h->hash_table[idx] &&
504 	    h->hash_table[idx]->db_hash_next == NULL)
505 		DBUF_STAT_BUMPDOWN(hash_chains);
506 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
507 	DBUF_STAT_BUMPDOWN(hash_elements);
508 }
509 
510 typedef enum {
511 	DBVU_EVICTING,
512 	DBVU_NOT_EVICTING
513 } dbvu_verify_type_t;
514 
515 static void
516 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
517 {
518 #ifdef ZFS_DEBUG
519 	int64_t holds;
520 
521 	if (db->db_user == NULL)
522 		return;
523 
524 	/* Only data blocks support the attachment of user data. */
525 	ASSERT(db->db_level == 0);
526 
527 	/* Clients must resolve a dbuf before attaching user data. */
528 	ASSERT(db->db.db_data != NULL);
529 	ASSERT3U(db->db_state, ==, DB_CACHED);
530 
531 	holds = zfs_refcount_count(&db->db_holds);
532 	if (verify_type == DBVU_EVICTING) {
533 		/*
534 		 * Immediate eviction occurs when holds == dirtycnt.
535 		 * For normal eviction buffers, holds is zero on
536 		 * eviction, except when dbuf_fix_old_data() calls
537 		 * dbuf_clear_data().  However, the hold count can grow
538 		 * during eviction even though db_mtx is held (see
539 		 * dmu_bonus_hold() for an example), so we can only
540 		 * test the generic invariant that holds >= dirtycnt.
541 		 */
542 		ASSERT3U(holds, >=, db->db_dirtycnt);
543 	} else {
544 		if (db->db_user_immediate_evict == TRUE)
545 			ASSERT3U(holds, >=, db->db_dirtycnt);
546 		else
547 			ASSERT3U(holds, >, 0);
548 	}
549 #endif
550 }
551 
552 static void
553 dbuf_evict_user(dmu_buf_impl_t *db)
554 {
555 	dmu_buf_user_t *dbu = db->db_user;
556 
557 	ASSERT(MUTEX_HELD(&db->db_mtx));
558 
559 	if (dbu == NULL)
560 		return;
561 
562 	dbuf_verify_user(db, DBVU_EVICTING);
563 	db->db_user = NULL;
564 
565 #ifdef ZFS_DEBUG
566 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
567 		*dbu->dbu_clear_on_evict_dbufp = NULL;
568 #endif
569 
570 	if (db->db_caching_status != DB_NO_CACHE) {
571 		/*
572 		 * This is a cached dbuf, so the size of the user data is
573 		 * included in its cached amount. We adjust it here because the
574 		 * user data has already been detached from the dbuf, and the
575 		 * sync functions are not supposed to touch it (the dbuf might
576 		 * not exist anymore by the time the sync functions run.
577 		 */
578 		uint64_t size = dbu->dbu_size;
579 		(void) zfs_refcount_remove_many(
580 		    &dbuf_caches[db->db_caching_status].size, size, dbu);
581 		if (db->db_caching_status == DB_DBUF_CACHE)
582 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
583 	}
584 
585 	/*
586 	 * There are two eviction callbacks - one that we call synchronously
587 	 * and one that we invoke via a taskq.  The async one is useful for
588 	 * avoiding lock order reversals and limiting stack depth.
589 	 *
590 	 * Note that if we have a sync callback but no async callback,
591 	 * it's likely that the sync callback will free the structure
592 	 * containing the dbu.  In that case we need to take care to not
593 	 * dereference dbu after calling the sync evict func.
594 	 */
595 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
596 
597 	if (dbu->dbu_evict_func_sync != NULL)
598 		dbu->dbu_evict_func_sync(dbu);
599 
600 	if (has_async) {
601 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
602 		    dbu, 0, &dbu->dbu_tqent);
603 	}
604 }
605 
606 boolean_t
607 dbuf_is_metadata(dmu_buf_impl_t *db)
608 {
609 	/*
610 	 * Consider indirect blocks and spill blocks to be meta data.
611 	 */
612 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
613 		return (B_TRUE);
614 	} else {
615 		boolean_t is_metadata;
616 
617 		DB_DNODE_ENTER(db);
618 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
619 		DB_DNODE_EXIT(db);
620 
621 		return (is_metadata);
622 	}
623 }
624 
625 /*
626  * We want to exclude buffers that are on a special allocation class from
627  * L2ARC.
628  */
629 boolean_t
630 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
631 {
632 	if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
633 	    (db->db_objset->os_secondary_cache ==
634 	    ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
635 		if (l2arc_exclude_special == 0)
636 			return (B_TRUE);
637 
638 		/*
639 		 * bp must be checked in the event it was passed from
640 		 * dbuf_read_impl() as the result of a the BP being set from
641 		 * a Direct I/O write in dbuf_read(). See comments in
642 		 * dbuf_read().
643 		 */
644 		blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
645 
646 		if (db_bp == NULL || BP_IS_HOLE(db_bp))
647 			return (B_FALSE);
648 		uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
649 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
650 		vdev_t *vd = NULL;
651 
652 		if (vdev < rvd->vdev_children)
653 			vd = rvd->vdev_child[vdev];
654 
655 		if (vd == NULL)
656 			return (B_TRUE);
657 
658 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
659 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
660 			return (B_TRUE);
661 	}
662 	return (B_FALSE);
663 }
664 
665 static inline boolean_t
666 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
667 {
668 	if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
669 	    (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
670 	    (level > 0 ||
671 	    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
672 		if (l2arc_exclude_special == 0)
673 			return (B_TRUE);
674 
675 		if (bp == NULL || BP_IS_HOLE(bp))
676 			return (B_FALSE);
677 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
678 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
679 		vdev_t *vd = NULL;
680 
681 		if (vdev < rvd->vdev_children)
682 			vd = rvd->vdev_child[vdev];
683 
684 		if (vd == NULL)
685 			return (B_TRUE);
686 
687 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
688 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
689 			return (B_TRUE);
690 	}
691 	return (B_FALSE);
692 }
693 
694 
695 /*
696  * This function *must* return indices evenly distributed between all
697  * sublists of the multilist. This is needed due to how the dbuf eviction
698  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
699  * distributed between all sublists and uses this assumption when
700  * deciding which sublist to evict from and how much to evict from it.
701  */
702 static unsigned int
703 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
704 {
705 	dmu_buf_impl_t *db = obj;
706 
707 	/*
708 	 * The assumption here, is the hash value for a given
709 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
710 	 * (i.e. it's objset, object, level and blkid fields don't change).
711 	 * Thus, we don't need to store the dbuf's sublist index
712 	 * on insertion, as this index can be recalculated on removal.
713 	 *
714 	 * Also, the low order bits of the hash value are thought to be
715 	 * distributed evenly. Otherwise, in the case that the multilist
716 	 * has a power of two number of sublists, each sublists' usage
717 	 * would not be evenly distributed. In this context full 64bit
718 	 * division would be a waste of time, so limit it to 32 bits.
719 	 */
720 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
721 	    db->db_level, db->db_blkid) %
722 	    multilist_get_num_sublists(ml));
723 }
724 
725 /*
726  * The target size of the dbuf cache can grow with the ARC target,
727  * unless limited by the tunable dbuf_cache_max_bytes.
728  */
729 static inline unsigned long
730 dbuf_cache_target_bytes(void)
731 {
732 	return (MIN(dbuf_cache_max_bytes,
733 	    arc_target_bytes() >> dbuf_cache_shift));
734 }
735 
736 /*
737  * The target size of the dbuf metadata cache can grow with the ARC target,
738  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
739  */
740 static inline unsigned long
741 dbuf_metadata_cache_target_bytes(void)
742 {
743 	return (MIN(dbuf_metadata_cache_max_bytes,
744 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
745 }
746 
747 static inline uint64_t
748 dbuf_cache_hiwater_bytes(void)
749 {
750 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
751 	return (dbuf_cache_target +
752 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
753 }
754 
755 static inline uint64_t
756 dbuf_cache_lowater_bytes(void)
757 {
758 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
759 	return (dbuf_cache_target -
760 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
761 }
762 
763 static inline boolean_t
764 dbuf_cache_above_lowater(void)
765 {
766 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
767 	    dbuf_cache_lowater_bytes());
768 }
769 
770 /*
771  * Evict the oldest eligible dbuf from the dbuf cache.
772  */
773 static void
774 dbuf_evict_one(void)
775 {
776 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
777 	multilist_sublist_t *mls = multilist_sublist_lock_idx(
778 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
779 
780 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
781 
782 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
783 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
784 		db = multilist_sublist_prev(mls, db);
785 	}
786 
787 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
788 	    multilist_sublist_t *, mls);
789 
790 	if (db != NULL) {
791 		multilist_sublist_remove(mls, db);
792 		multilist_sublist_unlock(mls);
793 		uint64_t size = db->db.db_size;
794 		uint64_t usize = dmu_buf_user_size(&db->db);
795 		(void) zfs_refcount_remove_many(
796 		    &dbuf_caches[DB_DBUF_CACHE].size, size, db);
797 		(void) zfs_refcount_remove_many(
798 		    &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
799 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
800 		DBUF_STAT_BUMPDOWN(cache_count);
801 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
802 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
803 		db->db_caching_status = DB_NO_CACHE;
804 		dbuf_destroy(db);
805 		DBUF_STAT_BUMP(cache_total_evicts);
806 	} else {
807 		multilist_sublist_unlock(mls);
808 	}
809 }
810 
811 /*
812  * The dbuf evict thread is responsible for aging out dbufs from the
813  * cache. Once the cache has reached it's maximum size, dbufs are removed
814  * and destroyed. The eviction thread will continue running until the size
815  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
816  * out of the cache it is destroyed and becomes eligible for arc eviction.
817  */
818 static __attribute__((noreturn)) void
819 dbuf_evict_thread(void *unused)
820 {
821 	(void) unused;
822 	callb_cpr_t cpr;
823 
824 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
825 
826 	mutex_enter(&dbuf_evict_lock);
827 	while (!dbuf_evict_thread_exit) {
828 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
829 			CALLB_CPR_SAFE_BEGIN(&cpr);
830 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
831 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
832 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
833 		}
834 		mutex_exit(&dbuf_evict_lock);
835 
836 		/*
837 		 * Keep evicting as long as we're above the low water mark
838 		 * for the cache. We do this without holding the locks to
839 		 * minimize lock contention.
840 		 */
841 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
842 			dbuf_evict_one();
843 		}
844 
845 		mutex_enter(&dbuf_evict_lock);
846 	}
847 
848 	dbuf_evict_thread_exit = B_FALSE;
849 	cv_broadcast(&dbuf_evict_cv);
850 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
851 	thread_exit();
852 }
853 
854 /*
855  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
856  * If the dbuf cache is at its high water mark, then evict a dbuf from the
857  * dbuf cache using the caller's context.
858  */
859 static void
860 dbuf_evict_notify(uint64_t size)
861 {
862 	/*
863 	 * We check if we should evict without holding the dbuf_evict_lock,
864 	 * because it's OK to occasionally make the wrong decision here,
865 	 * and grabbing the lock results in massive lock contention.
866 	 */
867 	if (size > dbuf_cache_target_bytes()) {
868 		if (size > dbuf_cache_hiwater_bytes())
869 			dbuf_evict_one();
870 		cv_signal(&dbuf_evict_cv);
871 	}
872 }
873 
874 static int
875 dbuf_kstat_update(kstat_t *ksp, int rw)
876 {
877 	dbuf_stats_t *ds = ksp->ks_data;
878 	dbuf_hash_table_t *h = &dbuf_hash_table;
879 
880 	if (rw == KSTAT_WRITE)
881 		return (SET_ERROR(EACCES));
882 
883 	ds->cache_count.value.ui64 =
884 	    wmsum_value(&dbuf_sums.cache_count);
885 	ds->cache_size_bytes.value.ui64 =
886 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
887 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
888 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
889 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
890 	ds->cache_total_evicts.value.ui64 =
891 	    wmsum_value(&dbuf_sums.cache_total_evicts);
892 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
893 		ds->cache_levels[i].value.ui64 =
894 		    wmsum_value(&dbuf_sums.cache_levels[i]);
895 		ds->cache_levels_bytes[i].value.ui64 =
896 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
897 	}
898 	ds->hash_hits.value.ui64 =
899 	    wmsum_value(&dbuf_sums.hash_hits);
900 	ds->hash_misses.value.ui64 =
901 	    wmsum_value(&dbuf_sums.hash_misses);
902 	ds->hash_collisions.value.ui64 =
903 	    wmsum_value(&dbuf_sums.hash_collisions);
904 	ds->hash_elements.value.ui64 =
905 	    wmsum_value(&dbuf_sums.hash_elements);
906 	ds->hash_chains.value.ui64 =
907 	    wmsum_value(&dbuf_sums.hash_chains);
908 	ds->hash_insert_race.value.ui64 =
909 	    wmsum_value(&dbuf_sums.hash_insert_race);
910 	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
911 	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
912 	ds->metadata_cache_count.value.ui64 =
913 	    wmsum_value(&dbuf_sums.metadata_cache_count);
914 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
915 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
916 	ds->metadata_cache_overflow.value.ui64 =
917 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
918 	return (0);
919 }
920 
921 void
922 dbuf_init(void)
923 {
924 	uint64_t hmsize, hsize = 1ULL << 16;
925 	dbuf_hash_table_t *h = &dbuf_hash_table;
926 
927 	/*
928 	 * The hash table is big enough to fill one eighth of physical memory
929 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
930 	 * By default, the table will take up
931 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
932 	 */
933 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
934 		hsize <<= 1;
935 
936 	h->hash_table = NULL;
937 	while (h->hash_table == NULL) {
938 		h->hash_table_mask = hsize - 1;
939 
940 		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
941 		if (h->hash_table == NULL)
942 			hsize >>= 1;
943 
944 		ASSERT3U(hsize, >=, 1ULL << 10);
945 	}
946 
947 	/*
948 	 * The hash table buckets are protected by an array of mutexes where
949 	 * each mutex is reponsible for protecting 128 buckets.  A minimum
950 	 * array size of 8192 is targeted to avoid contention.
951 	 */
952 	if (dbuf_mutex_cache_shift == 0)
953 		hmsize = MAX(hsize >> 7, 1ULL << 13);
954 	else
955 		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
956 
957 	h->hash_mutexes = NULL;
958 	while (h->hash_mutexes == NULL) {
959 		h->hash_mutex_mask = hmsize - 1;
960 
961 		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
962 		    KM_SLEEP);
963 		if (h->hash_mutexes == NULL)
964 			hmsize >>= 1;
965 	}
966 
967 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
968 	    sizeof (dmu_buf_impl_t),
969 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
970 	dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t",
971 	    sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
972 
973 	for (int i = 0; i < hmsize; i++)
974 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
975 
976 	dbuf_stats_init(h);
977 
978 	/*
979 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
980 	 * configuration is not required.
981 	 */
982 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
983 
984 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
985 		multilist_create(&dbuf_caches[dcs].cache,
986 		    sizeof (dmu_buf_impl_t),
987 		    offsetof(dmu_buf_impl_t, db_cache_link),
988 		    dbuf_cache_multilist_index_func);
989 		zfs_refcount_create(&dbuf_caches[dcs].size);
990 	}
991 
992 	dbuf_evict_thread_exit = B_FALSE;
993 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
994 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
995 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
996 	    NULL, 0, &p0, TS_RUN, minclsyspri);
997 
998 	wmsum_init(&dbuf_sums.cache_count, 0);
999 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
1000 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1001 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
1002 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1003 	}
1004 	wmsum_init(&dbuf_sums.hash_hits, 0);
1005 	wmsum_init(&dbuf_sums.hash_misses, 0);
1006 	wmsum_init(&dbuf_sums.hash_collisions, 0);
1007 	wmsum_init(&dbuf_sums.hash_elements, 0);
1008 	wmsum_init(&dbuf_sums.hash_chains, 0);
1009 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
1010 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1011 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1012 
1013 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1014 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1015 	    KSTAT_FLAG_VIRTUAL);
1016 	if (dbuf_ksp != NULL) {
1017 		for (int i = 0; i < DN_MAX_LEVELS; i++) {
1018 			snprintf(dbuf_stats.cache_levels[i].name,
1019 			    KSTAT_STRLEN, "cache_level_%d", i);
1020 			dbuf_stats.cache_levels[i].data_type =
1021 			    KSTAT_DATA_UINT64;
1022 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
1023 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
1024 			dbuf_stats.cache_levels_bytes[i].data_type =
1025 			    KSTAT_DATA_UINT64;
1026 		}
1027 		dbuf_ksp->ks_data = &dbuf_stats;
1028 		dbuf_ksp->ks_update = dbuf_kstat_update;
1029 		kstat_install(dbuf_ksp);
1030 	}
1031 }
1032 
1033 void
1034 dbuf_fini(void)
1035 {
1036 	dbuf_hash_table_t *h = &dbuf_hash_table;
1037 
1038 	dbuf_stats_destroy();
1039 
1040 	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1041 		mutex_destroy(&h->hash_mutexes[i]);
1042 
1043 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1044 	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1045 	    sizeof (kmutex_t));
1046 
1047 	kmem_cache_destroy(dbuf_kmem_cache);
1048 	kmem_cache_destroy(dbuf_dirty_kmem_cache);
1049 	taskq_destroy(dbu_evict_taskq);
1050 
1051 	mutex_enter(&dbuf_evict_lock);
1052 	dbuf_evict_thread_exit = B_TRUE;
1053 	while (dbuf_evict_thread_exit) {
1054 		cv_signal(&dbuf_evict_cv);
1055 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1056 	}
1057 	mutex_exit(&dbuf_evict_lock);
1058 
1059 	mutex_destroy(&dbuf_evict_lock);
1060 	cv_destroy(&dbuf_evict_cv);
1061 
1062 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1063 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1064 		multilist_destroy(&dbuf_caches[dcs].cache);
1065 	}
1066 
1067 	if (dbuf_ksp != NULL) {
1068 		kstat_delete(dbuf_ksp);
1069 		dbuf_ksp = NULL;
1070 	}
1071 
1072 	wmsum_fini(&dbuf_sums.cache_count);
1073 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1074 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1075 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1076 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1077 	}
1078 	wmsum_fini(&dbuf_sums.hash_hits);
1079 	wmsum_fini(&dbuf_sums.hash_misses);
1080 	wmsum_fini(&dbuf_sums.hash_collisions);
1081 	wmsum_fini(&dbuf_sums.hash_elements);
1082 	wmsum_fini(&dbuf_sums.hash_chains);
1083 	wmsum_fini(&dbuf_sums.hash_insert_race);
1084 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1085 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1086 }
1087 
1088 /*
1089  * Other stuff.
1090  */
1091 
1092 #ifdef ZFS_DEBUG
1093 static void
1094 dbuf_verify(dmu_buf_impl_t *db)
1095 {
1096 	dnode_t *dn;
1097 	dbuf_dirty_record_t *dr;
1098 	uint32_t txg_prev;
1099 
1100 	ASSERT(MUTEX_HELD(&db->db_mtx));
1101 
1102 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1103 		return;
1104 
1105 	ASSERT(db->db_objset != NULL);
1106 	DB_DNODE_ENTER(db);
1107 	dn = DB_DNODE(db);
1108 	if (dn == NULL) {
1109 		ASSERT(db->db_parent == NULL);
1110 		ASSERT(db->db_blkptr == NULL);
1111 	} else {
1112 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1113 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1114 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1115 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1116 		    db->db_blkid == DMU_SPILL_BLKID ||
1117 		    !avl_is_empty(&dn->dn_dbufs));
1118 	}
1119 	if (db->db_blkid == DMU_BONUS_BLKID) {
1120 		ASSERT(dn != NULL);
1121 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1122 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1123 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1124 		ASSERT(dn != NULL);
1125 		ASSERT0(db->db.db_offset);
1126 	} else {
1127 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1128 	}
1129 
1130 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1131 		ASSERT(dr->dr_dbuf == db);
1132 		txg_prev = dr->dr_txg;
1133 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1134 		    dr = list_next(&db->db_dirty_records, dr)) {
1135 			ASSERT(dr->dr_dbuf == db);
1136 			ASSERT(txg_prev > dr->dr_txg);
1137 			txg_prev = dr->dr_txg;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * We can't assert that db_size matches dn_datablksz because it
1143 	 * can be momentarily different when another thread is doing
1144 	 * dnode_set_blksz().
1145 	 */
1146 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1147 		dr = db->db_data_pending;
1148 		/*
1149 		 * It should only be modified in syncing context, so
1150 		 * make sure we only have one copy of the data.
1151 		 */
1152 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1153 	}
1154 
1155 	/* verify db->db_blkptr */
1156 	if (db->db_blkptr) {
1157 		if (db->db_parent == dn->dn_dbuf) {
1158 			/* db is pointed to by the dnode */
1159 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1160 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1161 				ASSERT(db->db_parent == NULL);
1162 			else
1163 				ASSERT(db->db_parent != NULL);
1164 			if (db->db_blkid != DMU_SPILL_BLKID)
1165 				ASSERT3P(db->db_blkptr, ==,
1166 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1167 		} else {
1168 			/* db is pointed to by an indirect block */
1169 			int epb __maybe_unused = db->db_parent->db.db_size >>
1170 			    SPA_BLKPTRSHIFT;
1171 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1172 			ASSERT3U(db->db_parent->db.db_object, ==,
1173 			    db->db.db_object);
1174 			/*
1175 			 * dnode_grow_indblksz() can make this fail if we don't
1176 			 * have the parent's rwlock.  XXX indblksz no longer
1177 			 * grows.  safe to do this now?
1178 			 */
1179 			if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1180 				ASSERT3P(db->db_blkptr, ==,
1181 				    ((blkptr_t *)db->db_parent->db.db_data +
1182 				    db->db_blkid % epb));
1183 			}
1184 		}
1185 	}
1186 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1187 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1188 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1189 	    db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1190 		/*
1191 		 * If the blkptr isn't set but they have nonzero data,
1192 		 * it had better be dirty, otherwise we'll lose that
1193 		 * data when we evict this buffer.
1194 		 *
1195 		 * There is an exception to this rule for indirect blocks; in
1196 		 * this case, if the indirect block is a hole, we fill in a few
1197 		 * fields on each of the child blocks (importantly, birth time)
1198 		 * to prevent hole birth times from being lost when you
1199 		 * partially fill in a hole.
1200 		 */
1201 		if (db->db_dirtycnt == 0) {
1202 			if (db->db_level == 0) {
1203 				uint64_t *buf = db->db.db_data;
1204 				int i;
1205 
1206 				for (i = 0; i < db->db.db_size >> 3; i++) {
1207 					ASSERT(buf[i] == 0);
1208 				}
1209 			} else {
1210 				blkptr_t *bps = db->db.db_data;
1211 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1212 				    db->db.db_size);
1213 				/*
1214 				 * We want to verify that all the blkptrs in the
1215 				 * indirect block are holes, but we may have
1216 				 * automatically set up a few fields for them.
1217 				 * We iterate through each blkptr and verify
1218 				 * they only have those fields set.
1219 				 */
1220 				for (int i = 0;
1221 				    i < db->db.db_size / sizeof (blkptr_t);
1222 				    i++) {
1223 					blkptr_t *bp = &bps[i];
1224 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1225 					    &bp->blk_cksum));
1226 					ASSERT(
1227 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1228 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1229 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1230 					ASSERT0(bp->blk_fill);
1231 					ASSERT0(bp->blk_pad[0]);
1232 					ASSERT0(bp->blk_pad[1]);
1233 					ASSERT(!BP_IS_EMBEDDED(bp));
1234 					ASSERT(BP_IS_HOLE(bp));
1235 					ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
1236 				}
1237 			}
1238 		}
1239 	}
1240 	DB_DNODE_EXIT(db);
1241 }
1242 #endif
1243 
1244 static void
1245 dbuf_clear_data(dmu_buf_impl_t *db)
1246 {
1247 	ASSERT(MUTEX_HELD(&db->db_mtx));
1248 	dbuf_evict_user(db);
1249 	ASSERT3P(db->db_buf, ==, NULL);
1250 	db->db.db_data = NULL;
1251 	if (db->db_state != DB_NOFILL) {
1252 		db->db_state = DB_UNCACHED;
1253 		DTRACE_SET_STATE(db, "clear data");
1254 	}
1255 }
1256 
1257 static void
1258 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1259 {
1260 	ASSERT(MUTEX_HELD(&db->db_mtx));
1261 	ASSERT(buf != NULL);
1262 
1263 	db->db_buf = buf;
1264 	ASSERT(buf->b_data != NULL);
1265 	db->db.db_data = buf->b_data;
1266 }
1267 
1268 static arc_buf_t *
1269 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1270 {
1271 	spa_t *spa = db->db_objset->os_spa;
1272 
1273 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1274 }
1275 
1276 /*
1277  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1278  */
1279 arc_buf_t *
1280 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1281 {
1282 	arc_buf_t *abuf;
1283 
1284 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1285 	mutex_enter(&db->db_mtx);
1286 	if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1287 		int blksz = db->db.db_size;
1288 		spa_t *spa = db->db_objset->os_spa;
1289 
1290 		mutex_exit(&db->db_mtx);
1291 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
1292 		memcpy(abuf->b_data, db->db.db_data, blksz);
1293 	} else {
1294 		abuf = db->db_buf;
1295 		arc_loan_inuse_buf(abuf, db);
1296 		db->db_buf = NULL;
1297 		dbuf_clear_data(db);
1298 		mutex_exit(&db->db_mtx);
1299 	}
1300 	return (abuf);
1301 }
1302 
1303 /*
1304  * Calculate which level n block references the data at the level 0 offset
1305  * provided.
1306  */
1307 uint64_t
1308 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1309 {
1310 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1311 		/*
1312 		 * The level n blkid is equal to the level 0 blkid divided by
1313 		 * the number of level 0s in a level n block.
1314 		 *
1315 		 * The level 0 blkid is offset >> datablkshift =
1316 		 * offset / 2^datablkshift.
1317 		 *
1318 		 * The number of level 0s in a level n is the number of block
1319 		 * pointers in an indirect block, raised to the power of level.
1320 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1321 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1322 		 *
1323 		 * Thus, the level n blkid is: offset /
1324 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1325 		 * = offset / 2^(datablkshift + level *
1326 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1327 		 * = offset >> (datablkshift + level *
1328 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1329 		 */
1330 
1331 		const unsigned exp = dn->dn_datablkshift +
1332 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1333 
1334 		if (exp >= 8 * sizeof (offset)) {
1335 			/* This only happens on the highest indirection level */
1336 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1337 			return (0);
1338 		}
1339 
1340 		ASSERT3U(exp, <, 8 * sizeof (offset));
1341 
1342 		return (offset >> exp);
1343 	} else {
1344 		ASSERT3U(offset, <, dn->dn_datablksz);
1345 		return (0);
1346 	}
1347 }
1348 
1349 /*
1350  * This function is used to lock the parent of the provided dbuf. This should be
1351  * used when modifying or reading db_blkptr.
1352  */
1353 db_lock_type_t
1354 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1355 {
1356 	enum db_lock_type ret = DLT_NONE;
1357 	if (db->db_parent != NULL) {
1358 		rw_enter(&db->db_parent->db_rwlock, rw);
1359 		ret = DLT_PARENT;
1360 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1361 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1362 		    tag);
1363 		ret = DLT_OBJSET;
1364 	}
1365 	/*
1366 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1367 	 * of the meta-dnode of the MOS.
1368 	 */
1369 	return (ret);
1370 }
1371 
1372 /*
1373  * We need to pass the lock type in because it's possible that the block will
1374  * move from being the topmost indirect block in a dnode (and thus, have no
1375  * parent) to not the top-most via an indirection increase. This would cause a
1376  * panic if we didn't pass the lock type in.
1377  */
1378 void
1379 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1380 {
1381 	if (type == DLT_PARENT)
1382 		rw_exit(&db->db_parent->db_rwlock);
1383 	else if (type == DLT_OBJSET)
1384 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1385 }
1386 
1387 static void
1388 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1389     arc_buf_t *buf, void *vdb)
1390 {
1391 	(void) zb, (void) bp;
1392 	dmu_buf_impl_t *db = vdb;
1393 
1394 	mutex_enter(&db->db_mtx);
1395 	ASSERT3U(db->db_state, ==, DB_READ);
1396 
1397 	/*
1398 	 * All reads are synchronous, so we must have a hold on the dbuf
1399 	 */
1400 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1401 	ASSERT(db->db_buf == NULL);
1402 	ASSERT(db->db.db_data == NULL);
1403 	if (buf == NULL) {
1404 		/* i/o error */
1405 		ASSERT(zio == NULL || zio->io_error != 0);
1406 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1407 		ASSERT3P(db->db_buf, ==, NULL);
1408 		db->db_state = DB_UNCACHED;
1409 		DTRACE_SET_STATE(db, "i/o error");
1410 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1411 		/* freed in flight */
1412 		ASSERT(zio == NULL || zio->io_error == 0);
1413 		arc_release(buf, db);
1414 		memset(buf->b_data, 0, db->db.db_size);
1415 		arc_buf_freeze(buf);
1416 		db->db_freed_in_flight = FALSE;
1417 		dbuf_set_data(db, buf);
1418 		db->db_state = DB_CACHED;
1419 		DTRACE_SET_STATE(db, "freed in flight");
1420 	} else {
1421 		/* success */
1422 		ASSERT(zio == NULL || zio->io_error == 0);
1423 		dbuf_set_data(db, buf);
1424 		db->db_state = DB_CACHED;
1425 		DTRACE_SET_STATE(db, "successful read");
1426 	}
1427 	cv_broadcast(&db->db_changed);
1428 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1429 }
1430 
1431 /*
1432  * Shortcut for performing reads on bonus dbufs.  Returns
1433  * an error if we fail to verify the dnode associated with
1434  * a decrypted block. Otherwise success.
1435  */
1436 static int
1437 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1438 {
1439 	int bonuslen, max_bonuslen;
1440 
1441 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1442 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1443 	ASSERT(MUTEX_HELD(&db->db_mtx));
1444 	ASSERT(DB_DNODE_HELD(db));
1445 	ASSERT3U(bonuslen, <=, db->db.db_size);
1446 	db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1447 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1448 	if (bonuslen < max_bonuslen)
1449 		memset(db->db.db_data, 0, max_bonuslen);
1450 	if (bonuslen)
1451 		memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1452 	db->db_state = DB_CACHED;
1453 	DTRACE_SET_STATE(db, "bonus buffer filled");
1454 	return (0);
1455 }
1456 
1457 static void
1458 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1459 {
1460 	blkptr_t *bps = db->db.db_data;
1461 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1462 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1463 
1464 	for (int i = 0; i < n_bps; i++) {
1465 		blkptr_t *bp = &bps[i];
1466 
1467 		ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1468 		BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1469 		    dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1470 		BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1471 		BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1472 		BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1473 	}
1474 }
1475 
1476 /*
1477  * Handle reads on dbufs that are holes, if necessary.  This function
1478  * requires that the dbuf's mutex is held. Returns success (0) if action
1479  * was taken, ENOENT if no action was taken.
1480  */
1481 static int
1482 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1483 {
1484 	ASSERT(MUTEX_HELD(&db->db_mtx));
1485 
1486 	int is_hole = bp == NULL || BP_IS_HOLE(bp);
1487 	/*
1488 	 * For level 0 blocks only, if the above check fails:
1489 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1490 	 * processes the delete record and clears the bp while we are waiting
1491 	 * for the dn_mtx (resulting in a "no" from block_freed).
1492 	 */
1493 	if (!is_hole && db->db_level == 0)
1494 		is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1495 
1496 	if (is_hole) {
1497 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1498 		memset(db->db.db_data, 0, db->db.db_size);
1499 
1500 		if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1501 		    BP_GET_LOGICAL_BIRTH(bp) != 0) {
1502 			dbuf_handle_indirect_hole(db, dn, bp);
1503 		}
1504 		db->db_state = DB_CACHED;
1505 		DTRACE_SET_STATE(db, "hole read satisfied");
1506 		return (0);
1507 	}
1508 	return (ENOENT);
1509 }
1510 
1511 /*
1512  * This function ensures that, when doing a decrypting read of a block,
1513  * we make sure we have decrypted the dnode associated with it. We must do
1514  * this so that we ensure we are fully authenticating the checksum-of-MACs
1515  * tree from the root of the objset down to this block. Indirect blocks are
1516  * always verified against their secure checksum-of-MACs assuming that the
1517  * dnode containing them is correct. Now that we are doing a decrypting read,
1518  * we can be sure that the key is loaded and verify that assumption. This is
1519  * especially important considering that we always read encrypted dnode
1520  * blocks as raw data (without verifying their MACs) to start, and
1521  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1522  */
1523 static int
1524 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1525 {
1526 	objset_t *os = db->db_objset;
1527 	dmu_buf_impl_t *dndb;
1528 	arc_buf_t *dnbuf;
1529 	zbookmark_phys_t zb;
1530 	int err;
1531 
1532 	if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1533 	    !os->os_encrypted || os->os_raw_receive ||
1534 	    (dndb = dn->dn_dbuf) == NULL)
1535 		return (0);
1536 
1537 	dnbuf = dndb->db_buf;
1538 	if (!arc_is_encrypted(dnbuf))
1539 		return (0);
1540 
1541 	mutex_enter(&dndb->db_mtx);
1542 
1543 	/*
1544 	 * Since dnode buffer is modified by sync process, there can be only
1545 	 * one copy of it.  It means we can not modify (decrypt) it while it
1546 	 * is being written.  I don't see how this may happen now, since
1547 	 * encrypted dnode writes by receive should be completed before any
1548 	 * plain-text reads due to txg wait, but better be safe than sorry.
1549 	 */
1550 	while (1) {
1551 		if (!arc_is_encrypted(dnbuf)) {
1552 			mutex_exit(&dndb->db_mtx);
1553 			return (0);
1554 		}
1555 		dbuf_dirty_record_t *dr = dndb->db_data_pending;
1556 		if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1557 			break;
1558 		cv_wait(&dndb->db_changed, &dndb->db_mtx);
1559 	};
1560 
1561 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1562 	    DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1563 	err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1564 
1565 	/*
1566 	 * An error code of EACCES tells us that the key is still not
1567 	 * available. This is ok if we are only reading authenticated
1568 	 * (and therefore non-encrypted) blocks.
1569 	 */
1570 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1571 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1572 	    (db->db_blkid == DMU_BONUS_BLKID &&
1573 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1574 		err = 0;
1575 
1576 	mutex_exit(&dndb->db_mtx);
1577 
1578 	return (err);
1579 }
1580 
1581 /*
1582  * Drops db_mtx and the parent lock specified by dblt and tag before
1583  * returning.
1584  */
1585 static int
1586 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags,
1587     db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1588 {
1589 	zbookmark_phys_t zb;
1590 	uint32_t aflags = ARC_FLAG_NOWAIT;
1591 	int err, zio_flags;
1592 
1593 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1594 	ASSERT(MUTEX_HELD(&db->db_mtx));
1595 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1596 	ASSERT(db->db_buf == NULL);
1597 	ASSERT(db->db_parent == NULL ||
1598 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1599 
1600 	if (db->db_blkid == DMU_BONUS_BLKID) {
1601 		err = dbuf_read_bonus(db, dn);
1602 		goto early_unlock;
1603 	}
1604 
1605 	err = dbuf_read_hole(db, dn, bp);
1606 	if (err == 0)
1607 		goto early_unlock;
1608 
1609 	ASSERT(bp != NULL);
1610 
1611 	/*
1612 	 * Any attempt to read a redacted block should result in an error. This
1613 	 * will never happen under normal conditions, but can be useful for
1614 	 * debugging purposes.
1615 	 */
1616 	if (BP_IS_REDACTED(bp)) {
1617 		ASSERT(dsl_dataset_feature_is_active(
1618 		    db->db_objset->os_dsl_dataset,
1619 		    SPA_FEATURE_REDACTED_DATASETS));
1620 		err = SET_ERROR(EIO);
1621 		goto early_unlock;
1622 	}
1623 
1624 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1625 	    db->db.db_object, db->db_level, db->db_blkid);
1626 
1627 	/*
1628 	 * All bps of an encrypted os should have the encryption bit set.
1629 	 * If this is not true it indicates tampering and we report an error.
1630 	 */
1631 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1632 		spa_log_error(db->db_objset->os_spa, &zb,
1633 		    BP_GET_LOGICAL_BIRTH(bp));
1634 		err = SET_ERROR(EIO);
1635 		goto early_unlock;
1636 	}
1637 
1638 	db->db_state = DB_READ;
1639 	DTRACE_SET_STATE(db, "read issued");
1640 	mutex_exit(&db->db_mtx);
1641 
1642 	if (!DBUF_IS_CACHEABLE(db))
1643 		aflags |= ARC_FLAG_UNCACHED;
1644 	else if (dbuf_is_l2cacheable(db, bp))
1645 		aflags |= ARC_FLAG_L2CACHE;
1646 
1647 	dbuf_add_ref(db, NULL);
1648 
1649 	zio_flags = (flags & DB_RF_CANFAIL) ?
1650 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1651 
1652 	if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1653 		zio_flags |= ZIO_FLAG_RAW;
1654 
1655 	/*
1656 	 * The zio layer will copy the provided blkptr later, but we need to
1657 	 * do this now so that we can release the parent's rwlock. We have to
1658 	 * do that now so that if dbuf_read_done is called synchronously (on
1659 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1660 	 * parent's rwlock, which would be a lock ordering violation.
1661 	 */
1662 	blkptr_t copy = *bp;
1663 	dmu_buf_unlock_parent(db, dblt, tag);
1664 	return (arc_read(zio, db->db_objset->os_spa, &copy,
1665 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1666 	    &aflags, &zb));
1667 
1668 early_unlock:
1669 	mutex_exit(&db->db_mtx);
1670 	dmu_buf_unlock_parent(db, dblt, tag);
1671 	return (err);
1672 }
1673 
1674 /*
1675  * This is our just-in-time copy function.  It makes a copy of buffers that
1676  * have been modified in a previous transaction group before we access them in
1677  * the current active group.
1678  *
1679  * This function is used in three places: when we are dirtying a buffer for the
1680  * first time in a txg, when we are freeing a range in a dnode that includes
1681  * this buffer, and when we are accessing a buffer which was received compressed
1682  * and later referenced in a WRITE_BYREF record.
1683  *
1684  * Note that when we are called from dbuf_free_range() we do not put a hold on
1685  * the buffer, we just traverse the active dbuf list for the dnode.
1686  */
1687 static void
1688 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1689 {
1690 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1691 
1692 	ASSERT(MUTEX_HELD(&db->db_mtx));
1693 	ASSERT(db->db.db_data != NULL);
1694 	ASSERT(db->db_level == 0);
1695 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1696 
1697 	if (dr == NULL ||
1698 	    (dr->dt.dl.dr_data !=
1699 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1700 		return;
1701 
1702 	/*
1703 	 * If the last dirty record for this dbuf has not yet synced
1704 	 * and its referencing the dbuf data, either:
1705 	 *	reset the reference to point to a new copy,
1706 	 * or (if there a no active holders)
1707 	 *	just null out the current db_data pointer.
1708 	 */
1709 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1710 	if (db->db_blkid == DMU_BONUS_BLKID) {
1711 		dnode_t *dn = DB_DNODE(db);
1712 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1713 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1714 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1715 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1716 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1717 		dnode_t *dn = DB_DNODE(db);
1718 		int size = arc_buf_size(db->db_buf);
1719 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1720 		spa_t *spa = db->db_objset->os_spa;
1721 		enum zio_compress compress_type =
1722 		    arc_get_compression(db->db_buf);
1723 		uint8_t complevel = arc_get_complevel(db->db_buf);
1724 
1725 		if (arc_is_encrypted(db->db_buf)) {
1726 			boolean_t byteorder;
1727 			uint8_t salt[ZIO_DATA_SALT_LEN];
1728 			uint8_t iv[ZIO_DATA_IV_LEN];
1729 			uint8_t mac[ZIO_DATA_MAC_LEN];
1730 
1731 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1732 			    iv, mac);
1733 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1734 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1735 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1736 			    compress_type, complevel);
1737 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1738 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1739 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1740 			    size, arc_buf_lsize(db->db_buf), compress_type,
1741 			    complevel);
1742 		} else {
1743 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1744 		}
1745 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1746 	} else {
1747 		db->db_buf = NULL;
1748 		dbuf_clear_data(db);
1749 	}
1750 }
1751 
1752 int
1753 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags)
1754 {
1755 	dnode_t *dn;
1756 	boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1757 	int err;
1758 
1759 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1760 
1761 	DB_DNODE_ENTER(db);
1762 	dn = DB_DNODE(db);
1763 
1764 	/*
1765 	 * Ensure that this block's dnode has been decrypted if the caller
1766 	 * has requested decrypted data.
1767 	 */
1768 	err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1769 	if (err != 0)
1770 		goto done;
1771 
1772 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1773 	    (flags & DB_RF_NOPREFETCH) == 0;
1774 
1775 	mutex_enter(&db->db_mtx);
1776 	if (flags & DB_RF_PARTIAL_FIRST)
1777 		db->db_partial_read = B_TRUE;
1778 	else if (!(flags & DB_RF_PARTIAL_MORE))
1779 		db->db_partial_read = B_FALSE;
1780 	miss = (db->db_state != DB_CACHED);
1781 
1782 	if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1783 		/*
1784 		 * Another reader came in while the dbuf was in flight between
1785 		 * UNCACHED and CACHED.  Either a writer will finish filling
1786 		 * the buffer, sending the dbuf to CACHED, or the first reader's
1787 		 * request will reach the read_done callback and send the dbuf
1788 		 * to CACHED.  Otherwise, a failure occurred and the dbuf will
1789 		 * be sent to UNCACHED.
1790 		 */
1791 		if (flags & DB_RF_NEVERWAIT) {
1792 			mutex_exit(&db->db_mtx);
1793 			DB_DNODE_EXIT(db);
1794 			goto done;
1795 		}
1796 		do {
1797 			ASSERT(db->db_state == DB_READ ||
1798 			    (flags & DB_RF_HAVESTRUCT) == 0);
1799 			DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1800 			    zio_t *, pio);
1801 			cv_wait(&db->db_changed, &db->db_mtx);
1802 		} while (db->db_state == DB_READ || db->db_state == DB_FILL);
1803 		if (db->db_state == DB_UNCACHED) {
1804 			err = SET_ERROR(EIO);
1805 			mutex_exit(&db->db_mtx);
1806 			DB_DNODE_EXIT(db);
1807 			goto done;
1808 		}
1809 	}
1810 
1811 	if (db->db_state == DB_CACHED) {
1812 		/*
1813 		 * If the arc buf is compressed or encrypted and the caller
1814 		 * requested uncompressed data, we need to untransform it
1815 		 * before returning. We also call arc_untransform() on any
1816 		 * unauthenticated blocks, which will verify their MAC if
1817 		 * the key is now available.
1818 		 */
1819 		if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1820 		    (arc_is_encrypted(db->db_buf) ||
1821 		    arc_is_unauthenticated(db->db_buf) ||
1822 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1823 			spa_t *spa = dn->dn_objset->os_spa;
1824 			zbookmark_phys_t zb;
1825 
1826 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1827 			    db->db.db_object, db->db_level, db->db_blkid);
1828 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1829 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1830 			dbuf_set_data(db, db->db_buf);
1831 		}
1832 		mutex_exit(&db->db_mtx);
1833 	} else {
1834 		ASSERT(db->db_state == DB_UNCACHED ||
1835 		    db->db_state == DB_NOFILL);
1836 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1837 		blkptr_t *bp;
1838 
1839 		/*
1840 		 * If a block clone or Direct I/O write has occurred we will
1841 		 * get the dirty records overridden BP so we get the most
1842 		 * recent data.
1843 		 */
1844 		err = dmu_buf_get_bp_from_dbuf(db, &bp);
1845 
1846 		if (!err) {
1847 			if (pio == NULL && (db->db_state == DB_NOFILL ||
1848 			    (bp != NULL && !BP_IS_HOLE(bp)))) {
1849 				spa_t *spa = dn->dn_objset->os_spa;
1850 				pio =
1851 				    zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1852 				need_wait = B_TRUE;
1853 			}
1854 
1855 			err =
1856 			    dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1857 		} else {
1858 			mutex_exit(&db->db_mtx);
1859 			dmu_buf_unlock_parent(db, dblt, FTAG);
1860 		}
1861 		/* dbuf_read_impl drops db_mtx and parent's rwlock. */
1862 		miss = (db->db_state != DB_CACHED);
1863 	}
1864 
1865 	if (err == 0 && prefetch) {
1866 		dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1867 		    flags & DB_RF_HAVESTRUCT);
1868 	}
1869 	DB_DNODE_EXIT(db);
1870 
1871 	/*
1872 	 * If we created a zio we must execute it to avoid leaking it, even if
1873 	 * it isn't attached to any work due to an error in dbuf_read_impl().
1874 	 */
1875 	if (need_wait) {
1876 		if (err == 0)
1877 			err = zio_wait(pio);
1878 		else
1879 			(void) zio_wait(pio);
1880 		pio = NULL;
1881 	}
1882 
1883 done:
1884 	if (miss)
1885 		DBUF_STAT_BUMP(hash_misses);
1886 	else
1887 		DBUF_STAT_BUMP(hash_hits);
1888 	if (pio && err != 0) {
1889 		zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1890 		    ZIO_FLAG_CANFAIL);
1891 		zio->io_error = err;
1892 		zio_nowait(zio);
1893 	}
1894 
1895 	return (err);
1896 }
1897 
1898 static void
1899 dbuf_noread(dmu_buf_impl_t *db)
1900 {
1901 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1902 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1903 	mutex_enter(&db->db_mtx);
1904 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1905 		cv_wait(&db->db_changed, &db->db_mtx);
1906 	if (db->db_state == DB_UNCACHED) {
1907 		ASSERT(db->db_buf == NULL);
1908 		ASSERT(db->db.db_data == NULL);
1909 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1910 		db->db_state = DB_FILL;
1911 		DTRACE_SET_STATE(db, "assigning filled buffer");
1912 	} else if (db->db_state == DB_NOFILL) {
1913 		dbuf_clear_data(db);
1914 	} else {
1915 		ASSERT3U(db->db_state, ==, DB_CACHED);
1916 	}
1917 	mutex_exit(&db->db_mtx);
1918 }
1919 
1920 void
1921 dbuf_unoverride(dbuf_dirty_record_t *dr)
1922 {
1923 	dmu_buf_impl_t *db = dr->dr_dbuf;
1924 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1925 	uint64_t txg = dr->dr_txg;
1926 
1927 	ASSERT(MUTEX_HELD(&db->db_mtx));
1928 
1929 	/*
1930 	 * This assert is valid because dmu_sync() expects to be called by
1931 	 * a zilog's get_data while holding a range lock.  This call only
1932 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1933 	 */
1934 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1935 	ASSERT(db->db_level == 0);
1936 
1937 	if (db->db_blkid == DMU_BONUS_BLKID ||
1938 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1939 		return;
1940 
1941 	ASSERT(db->db_data_pending != dr);
1942 
1943 	/* free this block */
1944 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1945 		zio_free(db->db_objset->os_spa, txg, bp);
1946 
1947 	if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1948 		ASSERT0P(dr->dt.dl.dr_data);
1949 		dr->dt.dl.dr_data = db->db_buf;
1950 	}
1951 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1952 	dr->dt.dl.dr_nopwrite = B_FALSE;
1953 	dr->dt.dl.dr_brtwrite = B_FALSE;
1954 	dr->dt.dl.dr_diowrite = B_FALSE;
1955 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1956 
1957 	/*
1958 	 * In the event that Direct I/O was used, we do not
1959 	 * need to release the buffer from the ARC.
1960 	 *
1961 	 * Release the already-written buffer, so we leave it in
1962 	 * a consistent dirty state.  Note that all callers are
1963 	 * modifying the buffer, so they will immediately do
1964 	 * another (redundant) arc_release().  Therefore, leave
1965 	 * the buf thawed to save the effort of freezing &
1966 	 * immediately re-thawing it.
1967 	 */
1968 	if (dr->dt.dl.dr_data)
1969 		arc_release(dr->dt.dl.dr_data, db);
1970 }
1971 
1972 /*
1973  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1974  * data blocks in the free range, so that any future readers will find
1975  * empty blocks.
1976  */
1977 void
1978 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1979     dmu_tx_t *tx)
1980 {
1981 	dmu_buf_impl_t *db_search;
1982 	dmu_buf_impl_t *db, *db_next;
1983 	uint64_t txg = tx->tx_txg;
1984 	avl_index_t where;
1985 	dbuf_dirty_record_t *dr;
1986 
1987 	if (end_blkid > dn->dn_maxblkid &&
1988 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1989 		end_blkid = dn->dn_maxblkid;
1990 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1991 	    (u_longlong_t)end_blkid);
1992 
1993 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1994 	db_search->db_level = 0;
1995 	db_search->db_blkid = start_blkid;
1996 	db_search->db_state = DB_SEARCH;
1997 
1998 	mutex_enter(&dn->dn_dbufs_mtx);
1999 	db = avl_find(&dn->dn_dbufs, db_search, &where);
2000 	ASSERT3P(db, ==, NULL);
2001 
2002 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
2003 
2004 	for (; db != NULL; db = db_next) {
2005 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
2006 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2007 
2008 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
2009 			break;
2010 		}
2011 		ASSERT3U(db->db_blkid, >=, start_blkid);
2012 
2013 		/* found a level 0 buffer in the range */
2014 		mutex_enter(&db->db_mtx);
2015 		if (dbuf_undirty(db, tx)) {
2016 			/* mutex has been dropped and dbuf destroyed */
2017 			continue;
2018 		}
2019 
2020 		if (db->db_state == DB_UNCACHED ||
2021 		    db->db_state == DB_NOFILL ||
2022 		    db->db_state == DB_EVICTING) {
2023 			ASSERT(db->db.db_data == NULL);
2024 			mutex_exit(&db->db_mtx);
2025 			continue;
2026 		}
2027 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2028 			/* will be handled in dbuf_read_done or dbuf_rele */
2029 			db->db_freed_in_flight = TRUE;
2030 			mutex_exit(&db->db_mtx);
2031 			continue;
2032 		}
2033 		if (zfs_refcount_count(&db->db_holds) == 0) {
2034 			ASSERT(db->db_buf);
2035 			dbuf_destroy(db);
2036 			continue;
2037 		}
2038 		/* The dbuf is referenced */
2039 
2040 		dr = list_head(&db->db_dirty_records);
2041 		if (dr != NULL) {
2042 			if (dr->dr_txg == txg) {
2043 				/*
2044 				 * This buffer is "in-use", re-adjust the file
2045 				 * size to reflect that this buffer may
2046 				 * contain new data when we sync.
2047 				 */
2048 				if (db->db_blkid != DMU_SPILL_BLKID &&
2049 				    db->db_blkid > dn->dn_maxblkid)
2050 					dn->dn_maxblkid = db->db_blkid;
2051 				dbuf_unoverride(dr);
2052 			} else {
2053 				/*
2054 				 * This dbuf is not dirty in the open context.
2055 				 * Either uncache it (if its not referenced in
2056 				 * the open context) or reset its contents to
2057 				 * empty.
2058 				 */
2059 				dbuf_fix_old_data(db, txg);
2060 			}
2061 		}
2062 		/* clear the contents if its cached */
2063 		if (db->db_state == DB_CACHED) {
2064 			ASSERT(db->db.db_data != NULL);
2065 			arc_release(db->db_buf, db);
2066 			rw_enter(&db->db_rwlock, RW_WRITER);
2067 			memset(db->db.db_data, 0, db->db.db_size);
2068 			rw_exit(&db->db_rwlock);
2069 			arc_buf_freeze(db->db_buf);
2070 		}
2071 
2072 		mutex_exit(&db->db_mtx);
2073 	}
2074 
2075 	mutex_exit(&dn->dn_dbufs_mtx);
2076 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2077 }
2078 
2079 void
2080 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2081 {
2082 	arc_buf_t *buf, *old_buf;
2083 	dbuf_dirty_record_t *dr;
2084 	int osize = db->db.db_size;
2085 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2086 	dnode_t *dn;
2087 
2088 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2089 
2090 	DB_DNODE_ENTER(db);
2091 	dn = DB_DNODE(db);
2092 
2093 	/*
2094 	 * XXX we should be doing a dbuf_read, checking the return
2095 	 * value and returning that up to our callers
2096 	 */
2097 	dmu_buf_will_dirty(&db->db, tx);
2098 
2099 	VERIFY3P(db->db_buf, !=, NULL);
2100 
2101 	/* create the data buffer for the new block */
2102 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2103 
2104 	/* copy old block data to the new block */
2105 	old_buf = db->db_buf;
2106 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2107 	/* zero the remainder */
2108 	if (size > osize)
2109 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2110 
2111 	mutex_enter(&db->db_mtx);
2112 	dbuf_set_data(db, buf);
2113 	arc_buf_destroy(old_buf, db);
2114 	db->db.db_size = size;
2115 
2116 	dr = list_head(&db->db_dirty_records);
2117 	/* dirty record added by dmu_buf_will_dirty() */
2118 	VERIFY(dr != NULL);
2119 	if (db->db_level == 0)
2120 		dr->dt.dl.dr_data = buf;
2121 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2122 	ASSERT3U(dr->dr_accounted, ==, osize);
2123 	dr->dr_accounted = size;
2124 	mutex_exit(&db->db_mtx);
2125 
2126 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2127 	DB_DNODE_EXIT(db);
2128 }
2129 
2130 void
2131 dbuf_release_bp(dmu_buf_impl_t *db)
2132 {
2133 	objset_t *os __maybe_unused = db->db_objset;
2134 
2135 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2136 	ASSERT(arc_released(os->os_phys_buf) ||
2137 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2138 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2139 
2140 	(void) arc_release(db->db_buf, db);
2141 }
2142 
2143 /*
2144  * We already have a dirty record for this TXG, and we are being
2145  * dirtied again.
2146  */
2147 static void
2148 dbuf_redirty(dbuf_dirty_record_t *dr)
2149 {
2150 	dmu_buf_impl_t *db = dr->dr_dbuf;
2151 
2152 	ASSERT(MUTEX_HELD(&db->db_mtx));
2153 
2154 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2155 		/*
2156 		 * If this buffer has already been written out,
2157 		 * we now need to reset its state.
2158 		 */
2159 		dbuf_unoverride(dr);
2160 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2161 		    db->db_state != DB_NOFILL) {
2162 			/* Already released on initial dirty, so just thaw. */
2163 			ASSERT(arc_released(db->db_buf));
2164 			arc_buf_thaw(db->db_buf);
2165 		}
2166 	}
2167 }
2168 
2169 dbuf_dirty_record_t *
2170 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2171 {
2172 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2173 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2174 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2175 	ASSERT(dn->dn_maxblkid >= blkid);
2176 
2177 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2178 	list_link_init(&dr->dr_dirty_node);
2179 	list_link_init(&dr->dr_dbuf_node);
2180 	dr->dr_dnode = dn;
2181 	dr->dr_txg = tx->tx_txg;
2182 	dr->dt.dll.dr_blkid = blkid;
2183 	dr->dr_accounted = dn->dn_datablksz;
2184 
2185 	/*
2186 	 * There should not be any dbuf for the block that we're dirtying.
2187 	 * Otherwise the buffer contents could be inconsistent between the
2188 	 * dbuf and the lightweight dirty record.
2189 	 */
2190 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2191 	    NULL));
2192 
2193 	mutex_enter(&dn->dn_mtx);
2194 	int txgoff = tx->tx_txg & TXG_MASK;
2195 	if (dn->dn_free_ranges[txgoff] != NULL) {
2196 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2197 	}
2198 
2199 	if (dn->dn_nlevels == 1) {
2200 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2201 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2202 		mutex_exit(&dn->dn_mtx);
2203 		rw_exit(&dn->dn_struct_rwlock);
2204 		dnode_setdirty(dn, tx);
2205 	} else {
2206 		mutex_exit(&dn->dn_mtx);
2207 
2208 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2209 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2210 		    1, blkid >> epbs, FTAG);
2211 		rw_exit(&dn->dn_struct_rwlock);
2212 		if (parent_db == NULL) {
2213 			kmem_free(dr, sizeof (*dr));
2214 			return (NULL);
2215 		}
2216 		int err = dbuf_read(parent_db, NULL,
2217 		    (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2218 		if (err != 0) {
2219 			dbuf_rele(parent_db, FTAG);
2220 			kmem_free(dr, sizeof (*dr));
2221 			return (NULL);
2222 		}
2223 
2224 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2225 		dbuf_rele(parent_db, FTAG);
2226 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2227 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2228 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2229 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2230 		dr->dr_parent = parent_dr;
2231 	}
2232 
2233 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2234 
2235 	return (dr);
2236 }
2237 
2238 dbuf_dirty_record_t *
2239 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2240 {
2241 	dnode_t *dn;
2242 	objset_t *os;
2243 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2244 	int txgoff = tx->tx_txg & TXG_MASK;
2245 	boolean_t drop_struct_rwlock = B_FALSE;
2246 
2247 	ASSERT(tx->tx_txg != 0);
2248 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2249 	DMU_TX_DIRTY_BUF(tx, db);
2250 
2251 	DB_DNODE_ENTER(db);
2252 	dn = DB_DNODE(db);
2253 	/*
2254 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2255 	 * objects may be dirtied in syncing context, but only if they
2256 	 * were already pre-dirtied in open context.
2257 	 */
2258 #ifdef ZFS_DEBUG
2259 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2260 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2261 		    RW_READER, FTAG);
2262 	}
2263 	ASSERT(!dmu_tx_is_syncing(tx) ||
2264 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2265 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2266 	    dn->dn_objset->os_dsl_dataset == NULL);
2267 	if (dn->dn_objset->os_dsl_dataset != NULL)
2268 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2269 #endif
2270 	/*
2271 	 * We make this assert for private objects as well, but after we
2272 	 * check if we're already dirty.  They are allowed to re-dirty
2273 	 * in syncing context.
2274 	 */
2275 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2276 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2277 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2278 
2279 	mutex_enter(&db->db_mtx);
2280 	/*
2281 	 * XXX make this true for indirects too?  The problem is that
2282 	 * transactions created with dmu_tx_create_assigned() from
2283 	 * syncing context don't bother holding ahead.
2284 	 */
2285 	ASSERT(db->db_level != 0 ||
2286 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2287 	    db->db_state == DB_NOFILL);
2288 
2289 	mutex_enter(&dn->dn_mtx);
2290 	dnode_set_dirtyctx(dn, tx, db);
2291 	if (tx->tx_txg > dn->dn_dirty_txg)
2292 		dn->dn_dirty_txg = tx->tx_txg;
2293 	mutex_exit(&dn->dn_mtx);
2294 
2295 	if (db->db_blkid == DMU_SPILL_BLKID)
2296 		dn->dn_have_spill = B_TRUE;
2297 
2298 	/*
2299 	 * If this buffer is already dirty, we're done.
2300 	 */
2301 	dr_head = list_head(&db->db_dirty_records);
2302 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2303 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2304 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2305 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2306 		DB_DNODE_EXIT(db);
2307 
2308 		dbuf_redirty(dr_next);
2309 		mutex_exit(&db->db_mtx);
2310 		return (dr_next);
2311 	}
2312 
2313 	/*
2314 	 * Only valid if not already dirty.
2315 	 */
2316 	ASSERT(dn->dn_object == 0 ||
2317 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2318 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2319 
2320 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2321 
2322 	/*
2323 	 * We should only be dirtying in syncing context if it's the
2324 	 * mos or we're initializing the os or it's a special object.
2325 	 * However, we are allowed to dirty in syncing context provided
2326 	 * we already dirtied it in open context.  Hence we must make
2327 	 * this assertion only if we're not already dirty.
2328 	 */
2329 	os = dn->dn_objset;
2330 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2331 #ifdef ZFS_DEBUG
2332 	if (dn->dn_objset->os_dsl_dataset != NULL)
2333 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2334 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2335 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2336 	if (dn->dn_objset->os_dsl_dataset != NULL)
2337 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2338 #endif
2339 	ASSERT(db->db.db_size != 0);
2340 
2341 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2342 
2343 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2344 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2345 	}
2346 
2347 	/*
2348 	 * If this buffer is dirty in an old transaction group we need
2349 	 * to make a copy of it so that the changes we make in this
2350 	 * transaction group won't leak out when we sync the older txg.
2351 	 */
2352 	dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP);
2353 	memset(dr, 0, sizeof (*dr));
2354 	list_link_init(&dr->dr_dirty_node);
2355 	list_link_init(&dr->dr_dbuf_node);
2356 	dr->dr_dnode = dn;
2357 	if (db->db_level == 0) {
2358 		void *data_old = db->db_buf;
2359 
2360 		if (db->db_state != DB_NOFILL) {
2361 			if (db->db_blkid == DMU_BONUS_BLKID) {
2362 				dbuf_fix_old_data(db, tx->tx_txg);
2363 				data_old = db->db.db_data;
2364 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2365 				/*
2366 				 * Release the data buffer from the cache so
2367 				 * that we can modify it without impacting
2368 				 * possible other users of this cached data
2369 				 * block.  Note that indirect blocks and
2370 				 * private objects are not released until the
2371 				 * syncing state (since they are only modified
2372 				 * then).
2373 				 */
2374 				arc_release(db->db_buf, db);
2375 				dbuf_fix_old_data(db, tx->tx_txg);
2376 				data_old = db->db_buf;
2377 			}
2378 			ASSERT(data_old != NULL);
2379 		}
2380 		dr->dt.dl.dr_data = data_old;
2381 	} else {
2382 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2383 		list_create(&dr->dt.di.dr_children,
2384 		    sizeof (dbuf_dirty_record_t),
2385 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2386 	}
2387 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2388 		dr->dr_accounted = db->db.db_size;
2389 	}
2390 	dr->dr_dbuf = db;
2391 	dr->dr_txg = tx->tx_txg;
2392 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2393 
2394 	/*
2395 	 * We could have been freed_in_flight between the dbuf_noread
2396 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2397 	 * happened after the free.
2398 	 */
2399 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2400 	    db->db_blkid != DMU_SPILL_BLKID) {
2401 		mutex_enter(&dn->dn_mtx);
2402 		if (dn->dn_free_ranges[txgoff] != NULL) {
2403 			range_tree_clear(dn->dn_free_ranges[txgoff],
2404 			    db->db_blkid, 1);
2405 		}
2406 		mutex_exit(&dn->dn_mtx);
2407 		db->db_freed_in_flight = FALSE;
2408 	}
2409 
2410 	/*
2411 	 * This buffer is now part of this txg
2412 	 */
2413 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2414 	db->db_dirtycnt += 1;
2415 	ASSERT3U(db->db_dirtycnt, <=, 3);
2416 
2417 	mutex_exit(&db->db_mtx);
2418 
2419 	if (db->db_blkid == DMU_BONUS_BLKID ||
2420 	    db->db_blkid == DMU_SPILL_BLKID) {
2421 		mutex_enter(&dn->dn_mtx);
2422 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2423 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2424 		mutex_exit(&dn->dn_mtx);
2425 		dnode_setdirty(dn, tx);
2426 		DB_DNODE_EXIT(db);
2427 		return (dr);
2428 	}
2429 
2430 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2431 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2432 		drop_struct_rwlock = B_TRUE;
2433 	}
2434 
2435 	/*
2436 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2437 	 * when we get to syncing context we will need to decrement its
2438 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2439 	 * syncing context won't have to wait for the i/o.
2440 	 */
2441 	if (db->db_blkptr != NULL) {
2442 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2443 		ddt_prefetch(os->os_spa, db->db_blkptr);
2444 		dmu_buf_unlock_parent(db, dblt, FTAG);
2445 	}
2446 
2447 	/*
2448 	 * We need to hold the dn_struct_rwlock to make this assertion,
2449 	 * because it protects dn_phys / dn_next_nlevels from changing.
2450 	 */
2451 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2452 	    dn->dn_phys->dn_nlevels > db->db_level ||
2453 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2454 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2455 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2456 
2457 
2458 	if (db->db_level == 0) {
2459 		ASSERT(!db->db_objset->os_raw_receive ||
2460 		    dn->dn_maxblkid >= db->db_blkid);
2461 		dnode_new_blkid(dn, db->db_blkid, tx,
2462 		    drop_struct_rwlock, B_FALSE);
2463 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2464 	}
2465 
2466 	if (db->db_level+1 < dn->dn_nlevels) {
2467 		dmu_buf_impl_t *parent = db->db_parent;
2468 		dbuf_dirty_record_t *di;
2469 		int parent_held = FALSE;
2470 
2471 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2472 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2473 			parent = dbuf_hold_level(dn, db->db_level + 1,
2474 			    db->db_blkid >> epbs, FTAG);
2475 			ASSERT(parent != NULL);
2476 			parent_held = TRUE;
2477 		}
2478 		if (drop_struct_rwlock)
2479 			rw_exit(&dn->dn_struct_rwlock);
2480 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2481 		di = dbuf_dirty(parent, tx);
2482 		if (parent_held)
2483 			dbuf_rele(parent, FTAG);
2484 
2485 		mutex_enter(&db->db_mtx);
2486 		/*
2487 		 * Since we've dropped the mutex, it's possible that
2488 		 * dbuf_undirty() might have changed this out from under us.
2489 		 */
2490 		if (list_head(&db->db_dirty_records) == dr ||
2491 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2492 			mutex_enter(&di->dt.di.dr_mtx);
2493 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2494 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2495 			list_insert_tail(&di->dt.di.dr_children, dr);
2496 			mutex_exit(&di->dt.di.dr_mtx);
2497 			dr->dr_parent = di;
2498 		}
2499 		mutex_exit(&db->db_mtx);
2500 	} else {
2501 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2502 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2503 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2504 		mutex_enter(&dn->dn_mtx);
2505 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2506 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2507 		mutex_exit(&dn->dn_mtx);
2508 		if (drop_struct_rwlock)
2509 			rw_exit(&dn->dn_struct_rwlock);
2510 	}
2511 
2512 	dnode_setdirty(dn, tx);
2513 	DB_DNODE_EXIT(db);
2514 	return (dr);
2515 }
2516 
2517 static void
2518 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2519 {
2520 	dmu_buf_impl_t *db = dr->dr_dbuf;
2521 
2522 	if (dr->dt.dl.dr_data != db->db.db_data) {
2523 		struct dnode *dn = dr->dr_dnode;
2524 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2525 
2526 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2527 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2528 	}
2529 	db->db_data_pending = NULL;
2530 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2531 	list_remove(&db->db_dirty_records, dr);
2532 	if (dr->dr_dbuf->db_level != 0) {
2533 		mutex_destroy(&dr->dt.di.dr_mtx);
2534 		list_destroy(&dr->dt.di.dr_children);
2535 	}
2536 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2537 	ASSERT3U(db->db_dirtycnt, >, 0);
2538 	db->db_dirtycnt -= 1;
2539 }
2540 
2541 /*
2542  * Undirty a buffer in the transaction group referenced by the given
2543  * transaction.  Return whether this evicted the dbuf.
2544  */
2545 boolean_t
2546 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2547 {
2548 	uint64_t txg = tx->tx_txg;
2549 	boolean_t brtwrite;
2550 	boolean_t diowrite;
2551 
2552 	ASSERT(txg != 0);
2553 
2554 	/*
2555 	 * Due to our use of dn_nlevels below, this can only be called
2556 	 * in open context, unless we are operating on the MOS.
2557 	 * From syncing context, dn_nlevels may be different from the
2558 	 * dn_nlevels used when dbuf was dirtied.
2559 	 */
2560 	ASSERT(db->db_objset ==
2561 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2562 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2563 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2564 	ASSERT0(db->db_level);
2565 	ASSERT(MUTEX_HELD(&db->db_mtx));
2566 
2567 	/*
2568 	 * If this buffer is not dirty, we're done.
2569 	 */
2570 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2571 	if (dr == NULL)
2572 		return (B_FALSE);
2573 	ASSERT(dr->dr_dbuf == db);
2574 
2575 	brtwrite = dr->dt.dl.dr_brtwrite;
2576 	diowrite = dr->dt.dl.dr_diowrite;
2577 	if (brtwrite) {
2578 		ASSERT3B(diowrite, ==, B_FALSE);
2579 		/*
2580 		 * We are freeing a block that we cloned in the same
2581 		 * transaction group.
2582 		 */
2583 		blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
2584 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2585 			brt_pending_remove(dmu_objset_spa(db->db_objset),
2586 			    bp, tx);
2587 		}
2588 	}
2589 
2590 	dnode_t *dn = dr->dr_dnode;
2591 
2592 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2593 
2594 	ASSERT(db->db.db_size != 0);
2595 
2596 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2597 	    dr->dr_accounted, txg);
2598 
2599 	list_remove(&db->db_dirty_records, dr);
2600 
2601 	/*
2602 	 * Note that there are three places in dbuf_dirty()
2603 	 * where this dirty record may be put on a list.
2604 	 * Make sure to do a list_remove corresponding to
2605 	 * every one of those list_insert calls.
2606 	 */
2607 	if (dr->dr_parent) {
2608 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2609 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2610 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2611 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2612 	    db->db_level + 1 == dn->dn_nlevels) {
2613 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2614 		mutex_enter(&dn->dn_mtx);
2615 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2616 		mutex_exit(&dn->dn_mtx);
2617 	}
2618 
2619 	if (db->db_state != DB_NOFILL && !brtwrite) {
2620 		dbuf_unoverride(dr);
2621 
2622 		if (dr->dt.dl.dr_data != db->db_buf) {
2623 			ASSERT(db->db_buf != NULL);
2624 			ASSERT(dr->dt.dl.dr_data != NULL);
2625 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2626 		}
2627 	}
2628 
2629 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
2630 
2631 	ASSERT(db->db_dirtycnt > 0);
2632 	db->db_dirtycnt -= 1;
2633 
2634 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2635 		ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2636 		    arc_released(db->db_buf));
2637 		dbuf_destroy(db);
2638 		return (B_TRUE);
2639 	}
2640 
2641 	return (B_FALSE);
2642 }
2643 
2644 static void
2645 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2646 {
2647 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2648 	boolean_t undirty = B_FALSE;
2649 
2650 	ASSERT(tx->tx_txg != 0);
2651 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2652 
2653 	/*
2654 	 * Quick check for dirtiness to improve performance for some workloads
2655 	 * (e.g. file deletion with indirect blocks cached).
2656 	 */
2657 	mutex_enter(&db->db_mtx);
2658 	if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2659 		/*
2660 		 * It's possible that the dbuf is already dirty but not cached,
2661 		 * because there are some calls to dbuf_dirty() that don't
2662 		 * go through dmu_buf_will_dirty().
2663 		 */
2664 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2665 		if (dr != NULL) {
2666 			if (db->db_level == 0 &&
2667 			    dr->dt.dl.dr_brtwrite) {
2668 				/*
2669 				 * Block cloning: If we are dirtying a cloned
2670 				 * level 0 block, we cannot simply redirty it,
2671 				 * because this dr has no associated data.
2672 				 * We will go through a full undirtying below,
2673 				 * before dirtying it again.
2674 				 */
2675 				undirty = B_TRUE;
2676 			} else {
2677 				/* This dbuf is already dirty and cached. */
2678 				dbuf_redirty(dr);
2679 				mutex_exit(&db->db_mtx);
2680 				return;
2681 			}
2682 		}
2683 	}
2684 	mutex_exit(&db->db_mtx);
2685 
2686 	DB_DNODE_ENTER(db);
2687 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2688 		flags |= DB_RF_HAVESTRUCT;
2689 	DB_DNODE_EXIT(db);
2690 
2691 	/*
2692 	 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2693 	 * want to make sure dbuf_read() will read the pending cloned block and
2694 	 * not the uderlying block that is being replaced. dbuf_undirty() will
2695 	 * do brt_pending_remove() before removing the dirty record.
2696 	 */
2697 	(void) dbuf_read(db, NULL, flags);
2698 	if (undirty) {
2699 		mutex_enter(&db->db_mtx);
2700 		VERIFY(!dbuf_undirty(db, tx));
2701 		mutex_exit(&db->db_mtx);
2702 	}
2703 	(void) dbuf_dirty(db, tx);
2704 }
2705 
2706 void
2707 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2708 {
2709 	dmu_buf_will_dirty_impl(db_fake,
2710 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2711 }
2712 
2713 boolean_t
2714 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2715 {
2716 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2717 	dbuf_dirty_record_t *dr;
2718 
2719 	mutex_enter(&db->db_mtx);
2720 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2721 	mutex_exit(&db->db_mtx);
2722 	return (dr != NULL);
2723 }
2724 
2725 /*
2726  * Normally the db_blkptr points to the most recent on-disk content for the
2727  * dbuf (and anything newer will be cached in the dbuf). However, a pending
2728  * block clone or not yet synced Direct I/O write will have a dirty record BP
2729  * pointing to the most recent data.
2730  */
2731 int
2732 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2733 {
2734 	ASSERT(MUTEX_HELD(&db->db_mtx));
2735 	int error = 0;
2736 
2737 	if (db->db_level != 0) {
2738 		*bp = db->db_blkptr;
2739 		return (0);
2740 	}
2741 
2742 	*bp = db->db_blkptr;
2743 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2744 	if (dr && db->db_state == DB_NOFILL) {
2745 		/* Block clone */
2746 		if (!dr->dt.dl.dr_brtwrite)
2747 			error = EIO;
2748 		else
2749 			*bp = &dr->dt.dl.dr_overridden_by;
2750 	} else if (dr && db->db_state == DB_UNCACHED) {
2751 		/* Direct I/O write */
2752 		if (dr->dt.dl.dr_diowrite)
2753 			*bp = &dr->dt.dl.dr_overridden_by;
2754 	}
2755 
2756 	return (error);
2757 }
2758 
2759 /*
2760  * Direct I/O reads can read directly from the ARC, but the data has
2761  * to be untransformed in order to copy it over into user pages.
2762  */
2763 int
2764 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2765 {
2766 	int err = 0;
2767 	DB_DNODE_ENTER(db);
2768 	dnode_t *dn = DB_DNODE(db);
2769 
2770 	ASSERT3S(db->db_state, ==, DB_CACHED);
2771 	ASSERT(MUTEX_HELD(&db->db_mtx));
2772 
2773 	/*
2774 	 * Ensure that this block's dnode has been decrypted if
2775 	 * the caller has requested decrypted data.
2776 	 */
2777 	err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2778 
2779 	/*
2780 	 * If the arc buf is compressed or encrypted and the caller
2781 	 * requested uncompressed data, we need to untransform it
2782 	 * before returning. We also call arc_untransform() on any
2783 	 * unauthenticated blocks, which will verify their MAC if
2784 	 * the key is now available.
2785 	 */
2786 	if (err == 0 && db->db_buf != NULL &&
2787 	    (arc_is_encrypted(db->db_buf) ||
2788 	    arc_is_unauthenticated(db->db_buf) ||
2789 	    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2790 		zbookmark_phys_t zb;
2791 
2792 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2793 		    db->db.db_object, db->db_level, db->db_blkid);
2794 		dbuf_fix_old_data(db, spa_syncing_txg(spa));
2795 		err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2796 		dbuf_set_data(db, db->db_buf);
2797 	}
2798 	DB_DNODE_EXIT(db);
2799 	DBUF_STAT_BUMP(hash_hits);
2800 
2801 	return (err);
2802 }
2803 
2804 void
2805 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2806 {
2807 	/*
2808 	 * Block clones and Direct I/O writes always happen in open-context.
2809 	 */
2810 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2811 	ASSERT0(db->db_level);
2812 	ASSERT(!dmu_tx_is_syncing(tx));
2813 	ASSERT0(db->db_level);
2814 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2815 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2816 
2817 	mutex_enter(&db->db_mtx);
2818 	DBUF_VERIFY(db);
2819 
2820 	/*
2821 	 * We are going to clone or issue a Direct I/O write on this block, so
2822 	 * undirty modifications done to this block so far in this txg. This
2823 	 * includes writes and clones into this block.
2824 	 *
2825 	 * If there dirty record associated with this txg from a previous Direct
2826 	 * I/O write then space accounting cleanup takes place. It is important
2827 	 * to go ahead free up the space accounting through dbuf_undirty() ->
2828 	 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2829 	 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2830 	 * This can cause an issue with Direct I/O writes in the case of
2831 	 * overwriting the same block, because all DVA allocations are being
2832 	 * done in open-context. Constantly allowing Direct I/O overwrites to
2833 	 * the same block can exhaust the pools available space leading to
2834 	 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2835 	 * will eventually suspend the pool. By cleaning up sapce acccounting
2836 	 * now, the ENOSPC error can be avoided.
2837 	 *
2838 	 * Since we are undirtying the record in open-context, we must have a
2839 	 * hold on the db, so it should never be evicted after calling
2840 	 * dbuf_undirty().
2841 	 */
2842 	VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2843 	ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2844 
2845 	if (db->db_buf != NULL) {
2846 		/*
2847 		 * If there is an associated ARC buffer with this dbuf we can
2848 		 * only destroy it if the previous dirty record does not
2849 		 * reference it.
2850 		 */
2851 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2852 		if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2853 			arc_buf_destroy(db->db_buf, db);
2854 
2855 		/*
2856 		 * Setting the dbuf's data pointers to NULL will force all
2857 		 * future reads down to the devices to get the most up to date
2858 		 * version of the data after a Direct I/O write has completed.
2859 		 */
2860 		db->db_buf = NULL;
2861 		dbuf_clear_data(db);
2862 	}
2863 
2864 	ASSERT3P(db->db_buf, ==, NULL);
2865 	ASSERT3P(db->db.db_data, ==, NULL);
2866 
2867 	db->db_state = DB_NOFILL;
2868 	DTRACE_SET_STATE(db,
2869 	    "allocating NOFILL buffer for clone or direct I/O write");
2870 
2871 	DBUF_VERIFY(db);
2872 	mutex_exit(&db->db_mtx);
2873 
2874 	dbuf_noread(db);
2875 	(void) dbuf_dirty(db, tx);
2876 }
2877 
2878 void
2879 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2880 {
2881 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2882 
2883 	mutex_enter(&db->db_mtx);
2884 	db->db_state = DB_NOFILL;
2885 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2886 	mutex_exit(&db->db_mtx);
2887 
2888 	dbuf_noread(db);
2889 	(void) dbuf_dirty(db, tx);
2890 }
2891 
2892 void
2893 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2894 {
2895 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2896 
2897 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2898 	ASSERT(tx->tx_txg != 0);
2899 	ASSERT(db->db_level == 0);
2900 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2901 
2902 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2903 	    dmu_tx_private_ok(tx));
2904 
2905 	mutex_enter(&db->db_mtx);
2906 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2907 	if (db->db_state == DB_NOFILL ||
2908 	    (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2909 		/*
2910 		 * If the fill can fail we should have a way to return back to
2911 		 * the cloned or Direct I/O write data.
2912 		 */
2913 		if (canfail && dr) {
2914 			mutex_exit(&db->db_mtx);
2915 			dmu_buf_will_dirty(db_fake, tx);
2916 			return;
2917 		}
2918 		/*
2919 		 * Block cloning: We will be completely overwriting a block
2920 		 * cloned in this transaction group, so let's undirty the
2921 		 * pending clone and mark the block as uncached. This will be
2922 		 * as if the clone was never done.
2923 		 */
2924 		if (db->db_state == DB_NOFILL) {
2925 			VERIFY(!dbuf_undirty(db, tx));
2926 			db->db_state = DB_UNCACHED;
2927 		}
2928 	}
2929 	mutex_exit(&db->db_mtx);
2930 
2931 	dbuf_noread(db);
2932 	(void) dbuf_dirty(db, tx);
2933 }
2934 
2935 /*
2936  * This function is effectively the same as dmu_buf_will_dirty(), but
2937  * indicates the caller expects raw encrypted data in the db, and provides
2938  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2939  * blkptr_t when this dbuf is written.  This is only used for blocks of
2940  * dnodes, during raw receive.
2941  */
2942 void
2943 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2944     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2945 {
2946 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2947 	dbuf_dirty_record_t *dr;
2948 
2949 	/*
2950 	 * dr_has_raw_params is only processed for blocks of dnodes
2951 	 * (see dbuf_sync_dnode_leaf_crypt()).
2952 	 */
2953 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2954 	ASSERT0(db->db_level);
2955 	ASSERT(db->db_objset->os_raw_receive);
2956 
2957 	dmu_buf_will_dirty_impl(db_fake,
2958 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2959 
2960 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2961 
2962 	ASSERT3P(dr, !=, NULL);
2963 	ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN);
2964 
2965 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2966 	dr->dt.dl.dr_byteorder = byteorder;
2967 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2968 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2969 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2970 }
2971 
2972 static void
2973 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2974 {
2975 	struct dirty_leaf *dl;
2976 	dbuf_dirty_record_t *dr;
2977 
2978 	ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT);
2979 	ASSERT0(db->db_level);
2980 
2981 	dr = list_head(&db->db_dirty_records);
2982 	ASSERT3P(dr, !=, NULL);
2983 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2984 	dl = &dr->dt.dl;
2985 	ASSERT0(dl->dr_has_raw_params);
2986 	dl->dr_overridden_by = *bp;
2987 	dl->dr_override_state = DR_OVERRIDDEN;
2988 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2989 }
2990 
2991 boolean_t
2992 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2993 {
2994 	(void) tx;
2995 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2996 	mutex_enter(&db->db_mtx);
2997 	DBUF_VERIFY(db);
2998 
2999 	if (db->db_state == DB_FILL) {
3000 		if (db->db_level == 0 && db->db_freed_in_flight) {
3001 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3002 			/* we were freed while filling */
3003 			/* XXX dbuf_undirty? */
3004 			memset(db->db.db_data, 0, db->db.db_size);
3005 			db->db_freed_in_flight = FALSE;
3006 			db->db_state = DB_CACHED;
3007 			DTRACE_SET_STATE(db,
3008 			    "fill done handling freed in flight");
3009 			failed = B_FALSE;
3010 		} else if (failed) {
3011 			VERIFY(!dbuf_undirty(db, tx));
3012 			arc_buf_destroy(db->db_buf, db);
3013 			db->db_buf = NULL;
3014 			dbuf_clear_data(db);
3015 			DTRACE_SET_STATE(db, "fill failed");
3016 		} else {
3017 			db->db_state = DB_CACHED;
3018 			DTRACE_SET_STATE(db, "fill done");
3019 		}
3020 		cv_broadcast(&db->db_changed);
3021 	} else {
3022 		db->db_state = DB_CACHED;
3023 		failed = B_FALSE;
3024 	}
3025 	mutex_exit(&db->db_mtx);
3026 	return (failed);
3027 }
3028 
3029 void
3030 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3031     bp_embedded_type_t etype, enum zio_compress comp,
3032     int uncompressed_size, int compressed_size, int byteorder,
3033     dmu_tx_t *tx)
3034 {
3035 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3036 	struct dirty_leaf *dl;
3037 	dmu_object_type_t type;
3038 	dbuf_dirty_record_t *dr;
3039 
3040 	if (etype == BP_EMBEDDED_TYPE_DATA) {
3041 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3042 		    SPA_FEATURE_EMBEDDED_DATA));
3043 	}
3044 
3045 	DB_DNODE_ENTER(db);
3046 	type = DB_DNODE(db)->dn_type;
3047 	DB_DNODE_EXIT(db);
3048 
3049 	ASSERT0(db->db_level);
3050 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3051 
3052 	dmu_buf_will_not_fill(dbuf, tx);
3053 
3054 	dr = list_head(&db->db_dirty_records);
3055 	ASSERT3P(dr, !=, NULL);
3056 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3057 	dl = &dr->dt.dl;
3058 	ASSERT0(dl->dr_has_raw_params);
3059 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
3060 	    data, comp, uncompressed_size, compressed_size);
3061 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3062 	BP_SET_TYPE(&dl->dr_overridden_by, type);
3063 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3064 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3065 
3066 	dl->dr_override_state = DR_OVERRIDDEN;
3067 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3068 }
3069 
3070 void
3071 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3072 {
3073 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3074 	dmu_object_type_t type;
3075 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3076 	    SPA_FEATURE_REDACTED_DATASETS));
3077 
3078 	DB_DNODE_ENTER(db);
3079 	type = DB_DNODE(db)->dn_type;
3080 	DB_DNODE_EXIT(db);
3081 
3082 	ASSERT0(db->db_level);
3083 	dmu_buf_will_not_fill(dbuf, tx);
3084 
3085 	blkptr_t bp = { { { {0} } } };
3086 	BP_SET_TYPE(&bp, type);
3087 	BP_SET_LEVEL(&bp, 0);
3088 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3089 	BP_SET_REDACTED(&bp);
3090 	BPE_SET_LSIZE(&bp, dbuf->db_size);
3091 
3092 	dbuf_override_impl(db, &bp, tx);
3093 }
3094 
3095 /*
3096  * Directly assign a provided arc buf to a given dbuf if it's not referenced
3097  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3098  */
3099 void
3100 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
3101 {
3102 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3103 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3104 	ASSERT(db->db_level == 0);
3105 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3106 	ASSERT(buf != NULL);
3107 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3108 	ASSERT(tx->tx_txg != 0);
3109 
3110 	arc_return_buf(buf, db);
3111 	ASSERT(arc_released(buf));
3112 
3113 	mutex_enter(&db->db_mtx);
3114 
3115 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
3116 		cv_wait(&db->db_changed, &db->db_mtx);
3117 
3118 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3119 	    db->db_state == DB_NOFILL);
3120 
3121 	if (db->db_state == DB_CACHED &&
3122 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3123 		/*
3124 		 * In practice, we will never have a case where we have an
3125 		 * encrypted arc buffer while additional holds exist on the
3126 		 * dbuf. We don't handle this here so we simply assert that
3127 		 * fact instead.
3128 		 */
3129 		ASSERT(!arc_is_encrypted(buf));
3130 		mutex_exit(&db->db_mtx);
3131 		(void) dbuf_dirty(db, tx);
3132 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3133 		arc_buf_destroy(buf, db);
3134 		return;
3135 	}
3136 
3137 	if (db->db_state == DB_CACHED) {
3138 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3139 
3140 		ASSERT(db->db_buf != NULL);
3141 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3142 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
3143 
3144 			if (!arc_released(db->db_buf)) {
3145 				ASSERT(dr->dt.dl.dr_override_state ==
3146 				    DR_OVERRIDDEN);
3147 				arc_release(db->db_buf, db);
3148 			}
3149 			dr->dt.dl.dr_data = buf;
3150 			arc_buf_destroy(db->db_buf, db);
3151 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3152 			arc_release(db->db_buf, db);
3153 			arc_buf_destroy(db->db_buf, db);
3154 		}
3155 		db->db_buf = NULL;
3156 	} else if (db->db_state == DB_NOFILL) {
3157 		/*
3158 		 * We will be completely replacing the cloned block.  In case
3159 		 * it was cloned in this transaction group, let's undirty the
3160 		 * pending clone and mark the block as uncached. This will be
3161 		 * as if the clone was never done.
3162 		 */
3163 		VERIFY(!dbuf_undirty(db, tx));
3164 		db->db_state = DB_UNCACHED;
3165 	}
3166 	ASSERT(db->db_buf == NULL);
3167 	dbuf_set_data(db, buf);
3168 	db->db_state = DB_FILL;
3169 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
3170 	mutex_exit(&db->db_mtx);
3171 	(void) dbuf_dirty(db, tx);
3172 	dmu_buf_fill_done(&db->db, tx, B_FALSE);
3173 }
3174 
3175 void
3176 dbuf_destroy(dmu_buf_impl_t *db)
3177 {
3178 	dnode_t *dn;
3179 	dmu_buf_impl_t *parent = db->db_parent;
3180 	dmu_buf_impl_t *dndb;
3181 
3182 	ASSERT(MUTEX_HELD(&db->db_mtx));
3183 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3184 
3185 	if (db->db_buf != NULL) {
3186 		arc_buf_destroy(db->db_buf, db);
3187 		db->db_buf = NULL;
3188 	}
3189 
3190 	if (db->db_blkid == DMU_BONUS_BLKID) {
3191 		int slots = DB_DNODE(db)->dn_num_slots;
3192 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3193 		if (db->db.db_data != NULL) {
3194 			kmem_free(db->db.db_data, bonuslen);
3195 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
3196 			db->db_state = DB_UNCACHED;
3197 			DTRACE_SET_STATE(db, "buffer cleared");
3198 		}
3199 	}
3200 
3201 	dbuf_clear_data(db);
3202 
3203 	if (multilist_link_active(&db->db_cache_link)) {
3204 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3205 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3206 
3207 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3208 
3209 		ASSERT0(dmu_buf_user_size(&db->db));
3210 		(void) zfs_refcount_remove_many(
3211 		    &dbuf_caches[db->db_caching_status].size,
3212 		    db->db.db_size, db);
3213 
3214 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3215 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3216 		} else {
3217 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3218 			DBUF_STAT_BUMPDOWN(cache_count);
3219 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3220 			    db->db.db_size);
3221 		}
3222 		db->db_caching_status = DB_NO_CACHE;
3223 	}
3224 
3225 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3226 	ASSERT(db->db_data_pending == NULL);
3227 	ASSERT(list_is_empty(&db->db_dirty_records));
3228 
3229 	db->db_state = DB_EVICTING;
3230 	DTRACE_SET_STATE(db, "buffer eviction started");
3231 	db->db_blkptr = NULL;
3232 
3233 	/*
3234 	 * Now that db_state is DB_EVICTING, nobody else can find this via
3235 	 * the hash table.  We can now drop db_mtx, which allows us to
3236 	 * acquire the dn_dbufs_mtx.
3237 	 */
3238 	mutex_exit(&db->db_mtx);
3239 
3240 	DB_DNODE_ENTER(db);
3241 	dn = DB_DNODE(db);
3242 	dndb = dn->dn_dbuf;
3243 	if (db->db_blkid != DMU_BONUS_BLKID) {
3244 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3245 		if (needlock)
3246 			mutex_enter_nested(&dn->dn_dbufs_mtx,
3247 			    NESTED_SINGLE);
3248 		avl_remove(&dn->dn_dbufs, db);
3249 		membar_producer();
3250 		DB_DNODE_EXIT(db);
3251 		if (needlock)
3252 			mutex_exit(&dn->dn_dbufs_mtx);
3253 		/*
3254 		 * Decrementing the dbuf count means that the hold corresponding
3255 		 * to the removed dbuf is no longer discounted in dnode_move(),
3256 		 * so the dnode cannot be moved until after we release the hold.
3257 		 * The membar_producer() ensures visibility of the decremented
3258 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3259 		 * release any lock.
3260 		 */
3261 		mutex_enter(&dn->dn_mtx);
3262 		dnode_rele_and_unlock(dn, db, B_TRUE);
3263 #ifdef USE_DNODE_HANDLE
3264 		db->db_dnode_handle = NULL;
3265 #else
3266 		db->db_dnode = NULL;
3267 #endif
3268 
3269 		dbuf_hash_remove(db);
3270 	} else {
3271 		DB_DNODE_EXIT(db);
3272 	}
3273 
3274 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3275 
3276 	db->db_parent = NULL;
3277 
3278 	ASSERT(db->db_buf == NULL);
3279 	ASSERT(db->db.db_data == NULL);
3280 	ASSERT(db->db_hash_next == NULL);
3281 	ASSERT(db->db_blkptr == NULL);
3282 	ASSERT(db->db_data_pending == NULL);
3283 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3284 	ASSERT(!multilist_link_active(&db->db_cache_link));
3285 
3286 	/*
3287 	 * If this dbuf is referenced from an indirect dbuf,
3288 	 * decrement the ref count on the indirect dbuf.
3289 	 */
3290 	if (parent && parent != dndb) {
3291 		mutex_enter(&parent->db_mtx);
3292 		dbuf_rele_and_unlock(parent, db, B_TRUE);
3293 	}
3294 
3295 	kmem_cache_free(dbuf_kmem_cache, db);
3296 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3297 }
3298 
3299 /*
3300  * Note: While bpp will always be updated if the function returns success,
3301  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3302  * this happens when the dnode is the meta-dnode, or {user|group|project}used
3303  * object.
3304  */
3305 __attribute__((always_inline))
3306 static inline int
3307 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3308     dmu_buf_impl_t **parentp, blkptr_t **bpp)
3309 {
3310 	*parentp = NULL;
3311 	*bpp = NULL;
3312 
3313 	ASSERT(blkid != DMU_BONUS_BLKID);
3314 
3315 	if (blkid == DMU_SPILL_BLKID) {
3316 		mutex_enter(&dn->dn_mtx);
3317 		if (dn->dn_have_spill &&
3318 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3319 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3320 		else
3321 			*bpp = NULL;
3322 		dbuf_add_ref(dn->dn_dbuf, NULL);
3323 		*parentp = dn->dn_dbuf;
3324 		mutex_exit(&dn->dn_mtx);
3325 		return (0);
3326 	}
3327 
3328 	int nlevels =
3329 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3330 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3331 
3332 	ASSERT3U(level * epbs, <, 64);
3333 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3334 	/*
3335 	 * This assertion shouldn't trip as long as the max indirect block size
3336 	 * is less than 1M.  The reason for this is that up to that point,
3337 	 * the number of levels required to address an entire object with blocks
3338 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
3339 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3340 	 * (i.e. we can address the entire object), objects will all use at most
3341 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3342 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3343 	 * enough to address an entire object, so objects will have 5 levels,
3344 	 * but then this assertion will overflow.
3345 	 *
3346 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3347 	 * need to redo this logic to handle overflows.
3348 	 */
3349 	ASSERT(level >= nlevels ||
3350 	    ((nlevels - level - 1) * epbs) +
3351 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3352 	if (level >= nlevels ||
3353 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3354 	    ((nlevels - level - 1) * epbs)) ||
3355 	    (fail_sparse &&
3356 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3357 		/* the buffer has no parent yet */
3358 		return (SET_ERROR(ENOENT));
3359 	} else if (level < nlevels-1) {
3360 		/* this block is referenced from an indirect block */
3361 		int err;
3362 
3363 		err = dbuf_hold_impl(dn, level + 1,
3364 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3365 
3366 		if (err)
3367 			return (err);
3368 		err = dbuf_read(*parentp, NULL,
3369 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3370 		if (err) {
3371 			dbuf_rele(*parentp, NULL);
3372 			*parentp = NULL;
3373 			return (err);
3374 		}
3375 		rw_enter(&(*parentp)->db_rwlock, RW_READER);
3376 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3377 		    (blkid & ((1ULL << epbs) - 1));
3378 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3379 			ASSERT(BP_IS_HOLE(*bpp));
3380 		rw_exit(&(*parentp)->db_rwlock);
3381 		return (0);
3382 	} else {
3383 		/* the block is referenced from the dnode */
3384 		ASSERT3U(level, ==, nlevels-1);
3385 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3386 		    blkid < dn->dn_phys->dn_nblkptr);
3387 		if (dn->dn_dbuf) {
3388 			dbuf_add_ref(dn->dn_dbuf, NULL);
3389 			*parentp = dn->dn_dbuf;
3390 		}
3391 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3392 		return (0);
3393 	}
3394 }
3395 
3396 static dmu_buf_impl_t *
3397 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3398     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3399 {
3400 	objset_t *os = dn->dn_objset;
3401 	dmu_buf_impl_t *db, *odb;
3402 
3403 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3404 	ASSERT(dn->dn_type != DMU_OT_NONE);
3405 
3406 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3407 
3408 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3409 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3410 
3411 	db->db_objset = os;
3412 	db->db.db_object = dn->dn_object;
3413 	db->db_level = level;
3414 	db->db_blkid = blkid;
3415 	db->db_dirtycnt = 0;
3416 #ifdef USE_DNODE_HANDLE
3417 	db->db_dnode_handle = dn->dn_handle;
3418 #else
3419 	db->db_dnode = dn;
3420 #endif
3421 	db->db_parent = parent;
3422 	db->db_blkptr = blkptr;
3423 	db->db_hash = hash;
3424 
3425 	db->db_user = NULL;
3426 	db->db_user_immediate_evict = FALSE;
3427 	db->db_freed_in_flight = FALSE;
3428 	db->db_pending_evict = FALSE;
3429 
3430 	if (blkid == DMU_BONUS_BLKID) {
3431 		ASSERT3P(parent, ==, dn->dn_dbuf);
3432 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3433 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3434 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3435 		db->db.db_offset = DMU_BONUS_BLKID;
3436 		db->db_state = DB_UNCACHED;
3437 		DTRACE_SET_STATE(db, "bonus buffer created");
3438 		db->db_caching_status = DB_NO_CACHE;
3439 		/* the bonus dbuf is not placed in the hash table */
3440 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3441 		return (db);
3442 	} else if (blkid == DMU_SPILL_BLKID) {
3443 		db->db.db_size = (blkptr != NULL) ?
3444 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3445 		db->db.db_offset = 0;
3446 	} else {
3447 		int blocksize =
3448 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3449 		db->db.db_size = blocksize;
3450 		db->db.db_offset = db->db_blkid * blocksize;
3451 	}
3452 
3453 	/*
3454 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3455 	 * in the hash table *and* added to the dbufs list.
3456 	 * This prevents a possible deadlock with someone
3457 	 * trying to look up this dbuf before it's added to the
3458 	 * dn_dbufs list.
3459 	 */
3460 	mutex_enter(&dn->dn_dbufs_mtx);
3461 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3462 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3463 		/* someone else inserted it first */
3464 		mutex_exit(&dn->dn_dbufs_mtx);
3465 		kmem_cache_free(dbuf_kmem_cache, db);
3466 		DBUF_STAT_BUMP(hash_insert_race);
3467 		return (odb);
3468 	}
3469 	avl_add(&dn->dn_dbufs, db);
3470 
3471 	db->db_state = DB_UNCACHED;
3472 	DTRACE_SET_STATE(db, "regular buffer created");
3473 	db->db_caching_status = DB_NO_CACHE;
3474 	mutex_exit(&dn->dn_dbufs_mtx);
3475 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3476 
3477 	if (parent && parent != dn->dn_dbuf)
3478 		dbuf_add_ref(parent, db);
3479 
3480 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3481 	    zfs_refcount_count(&dn->dn_holds) > 0);
3482 	(void) zfs_refcount_add(&dn->dn_holds, db);
3483 
3484 	dprintf_dbuf(db, "db=%p\n", db);
3485 
3486 	return (db);
3487 }
3488 
3489 /*
3490  * This function returns a block pointer and information about the object,
3491  * given a dnode and a block.  This is a publicly accessible version of
3492  * dbuf_findbp that only returns some information, rather than the
3493  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3494  * should be locked as (at least) a reader.
3495  */
3496 int
3497 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3498     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3499 {
3500 	dmu_buf_impl_t *dbp = NULL;
3501 	blkptr_t *bp2;
3502 	int err = 0;
3503 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3504 
3505 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3506 	if (err == 0) {
3507 		ASSERT3P(bp2, !=, NULL);
3508 		*bp = *bp2;
3509 		if (dbp != NULL)
3510 			dbuf_rele(dbp, NULL);
3511 		if (datablkszsec != NULL)
3512 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3513 		if (indblkshift != NULL)
3514 			*indblkshift = dn->dn_phys->dn_indblkshift;
3515 	}
3516 
3517 	return (err);
3518 }
3519 
3520 typedef struct dbuf_prefetch_arg {
3521 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3522 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3523 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3524 	int dpa_curlevel; /* The current level that we're reading */
3525 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3526 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3527 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3528 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3529 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3530 	void *dpa_arg; /* prefetch completion arg */
3531 } dbuf_prefetch_arg_t;
3532 
3533 static void
3534 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3535 {
3536 	if (dpa->dpa_cb != NULL) {
3537 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3538 		    dpa->dpa_zb.zb_blkid, io_done);
3539 	}
3540 	kmem_free(dpa, sizeof (*dpa));
3541 }
3542 
3543 static void
3544 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3545     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3546 {
3547 	(void) zio, (void) zb, (void) iobp;
3548 	dbuf_prefetch_arg_t *dpa = private;
3549 
3550 	if (abuf != NULL)
3551 		arc_buf_destroy(abuf, private);
3552 
3553 	dbuf_prefetch_fini(dpa, B_TRUE);
3554 }
3555 
3556 /*
3557  * Actually issue the prefetch read for the block given.
3558  */
3559 static void
3560 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3561 {
3562 	ASSERT(!BP_IS_REDACTED(bp) ||
3563 	    dsl_dataset_feature_is_active(
3564 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3565 	    SPA_FEATURE_REDACTED_DATASETS));
3566 
3567 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3568 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3569 
3570 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3571 	arc_flags_t aflags =
3572 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3573 	    ARC_FLAG_NO_BUF;
3574 
3575 	/* dnodes are always read as raw and then converted later */
3576 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3577 	    dpa->dpa_curlevel == 0)
3578 		zio_flags |= ZIO_FLAG_RAW;
3579 
3580 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3581 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3582 	ASSERT(dpa->dpa_zio != NULL);
3583 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3584 	    dbuf_issue_final_prefetch_done, dpa,
3585 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3586 }
3587 
3588 /*
3589  * Called when an indirect block above our prefetch target is read in.  This
3590  * will either read in the next indirect block down the tree or issue the actual
3591  * prefetch if the next block down is our target.
3592  */
3593 static void
3594 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3595     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3596 {
3597 	(void) zb, (void) iobp;
3598 	dbuf_prefetch_arg_t *dpa = private;
3599 
3600 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3601 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3602 
3603 	if (abuf == NULL) {
3604 		ASSERT(zio == NULL || zio->io_error != 0);
3605 		dbuf_prefetch_fini(dpa, B_TRUE);
3606 		return;
3607 	}
3608 	ASSERT(zio == NULL || zio->io_error == 0);
3609 
3610 	/*
3611 	 * The dpa_dnode is only valid if we are called with a NULL
3612 	 * zio. This indicates that the arc_read() returned without
3613 	 * first calling zio_read() to issue a physical read. Once
3614 	 * a physical read is made the dpa_dnode must be invalidated
3615 	 * as the locks guarding it may have been dropped. If the
3616 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3617 	 * cache. To do so, we must hold the dbuf associated with the block
3618 	 * we just prefetched, read its contents so that we associate it
3619 	 * with an arc_buf_t, and then release it.
3620 	 */
3621 	if (zio != NULL) {
3622 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3623 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3624 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3625 		} else {
3626 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3627 		}
3628 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3629 
3630 		dpa->dpa_dnode = NULL;
3631 	} else if (dpa->dpa_dnode != NULL) {
3632 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3633 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3634 		    dpa->dpa_zb.zb_level));
3635 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3636 		    dpa->dpa_curlevel, curblkid, FTAG);
3637 		if (db == NULL) {
3638 			arc_buf_destroy(abuf, private);
3639 			dbuf_prefetch_fini(dpa, B_TRUE);
3640 			return;
3641 		}
3642 		(void) dbuf_read(db, NULL,
3643 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3644 		dbuf_rele(db, FTAG);
3645 	}
3646 
3647 	dpa->dpa_curlevel--;
3648 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3649 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3650 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3651 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3652 
3653 	ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3654 	    dsl_dataset_feature_is_active(
3655 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3656 	    SPA_FEATURE_REDACTED_DATASETS)));
3657 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3658 		arc_buf_destroy(abuf, private);
3659 		dbuf_prefetch_fini(dpa, B_TRUE);
3660 		return;
3661 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3662 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3663 		dbuf_issue_final_prefetch(dpa, bp);
3664 	} else {
3665 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3666 		zbookmark_phys_t zb;
3667 
3668 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3669 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3670 			iter_aflags |= ARC_FLAG_L2CACHE;
3671 
3672 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3673 
3674 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3675 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3676 
3677 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3678 		    bp, dbuf_prefetch_indirect_done, dpa,
3679 		    ZIO_PRIORITY_SYNC_READ,
3680 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3681 		    &iter_aflags, &zb);
3682 	}
3683 
3684 	arc_buf_destroy(abuf, private);
3685 }
3686 
3687 /*
3688  * Issue prefetch reads for the given block on the given level.  If the indirect
3689  * blocks above that block are not in memory, we will read them in
3690  * asynchronously.  As a result, this call never blocks waiting for a read to
3691  * complete. Note that the prefetch might fail if the dataset is encrypted and
3692  * the encryption key is unmapped before the IO completes.
3693  */
3694 int
3695 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3696     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3697     void *arg)
3698 {
3699 	blkptr_t bp;
3700 	int epbs, nlevels, curlevel;
3701 	uint64_t curblkid;
3702 
3703 	ASSERT(blkid != DMU_BONUS_BLKID);
3704 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3705 
3706 	if (blkid > dn->dn_maxblkid)
3707 		goto no_issue;
3708 
3709 	if (level == 0 && dnode_block_freed(dn, blkid))
3710 		goto no_issue;
3711 
3712 	/*
3713 	 * This dnode hasn't been written to disk yet, so there's nothing to
3714 	 * prefetch.
3715 	 */
3716 	nlevels = dn->dn_phys->dn_nlevels;
3717 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3718 		goto no_issue;
3719 
3720 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3721 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3722 		goto no_issue;
3723 
3724 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3725 	    level, blkid, NULL);
3726 	if (db != NULL) {
3727 		mutex_exit(&db->db_mtx);
3728 		/*
3729 		 * This dbuf already exists.  It is either CACHED, or
3730 		 * (we assume) about to be read or filled.
3731 		 */
3732 		goto no_issue;
3733 	}
3734 
3735 	/*
3736 	 * Find the closest ancestor (indirect block) of the target block
3737 	 * that is present in the cache.  In this indirect block, we will
3738 	 * find the bp that is at curlevel, curblkid.
3739 	 */
3740 	curlevel = level;
3741 	curblkid = blkid;
3742 	while (curlevel < nlevels - 1) {
3743 		int parent_level = curlevel + 1;
3744 		uint64_t parent_blkid = curblkid >> epbs;
3745 		dmu_buf_impl_t *db;
3746 
3747 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3748 		    FALSE, TRUE, FTAG, &db) == 0) {
3749 			blkptr_t *bpp = db->db_buf->b_data;
3750 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3751 			dbuf_rele(db, FTAG);
3752 			break;
3753 		}
3754 
3755 		curlevel = parent_level;
3756 		curblkid = parent_blkid;
3757 	}
3758 
3759 	if (curlevel == nlevels - 1) {
3760 		/* No cached indirect blocks found. */
3761 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3762 		bp = dn->dn_phys->dn_blkptr[curblkid];
3763 	}
3764 	ASSERT(!BP_IS_REDACTED(&bp) ||
3765 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3766 	    SPA_FEATURE_REDACTED_DATASETS));
3767 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3768 		goto no_issue;
3769 
3770 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3771 
3772 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3773 	    ZIO_FLAG_CANFAIL);
3774 
3775 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3776 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3777 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3778 	    dn->dn_object, level, blkid);
3779 	dpa->dpa_curlevel = curlevel;
3780 	dpa->dpa_prio = prio;
3781 	dpa->dpa_aflags = aflags;
3782 	dpa->dpa_spa = dn->dn_objset->os_spa;
3783 	dpa->dpa_dnode = dn;
3784 	dpa->dpa_epbs = epbs;
3785 	dpa->dpa_zio = pio;
3786 	dpa->dpa_cb = cb;
3787 	dpa->dpa_arg = arg;
3788 
3789 	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3790 		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3791 	else if (dnode_level_is_l2cacheable(&bp, dn, level))
3792 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3793 
3794 	/*
3795 	 * If we have the indirect just above us, no need to do the asynchronous
3796 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3797 	 * a higher level, though, we want to issue the prefetches for all the
3798 	 * indirect blocks asynchronously, so we can go on with whatever we were
3799 	 * doing.
3800 	 */
3801 	if (curlevel == level) {
3802 		ASSERT3U(curblkid, ==, blkid);
3803 		dbuf_issue_final_prefetch(dpa, &bp);
3804 	} else {
3805 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3806 		zbookmark_phys_t zb;
3807 
3808 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3809 		if (dnode_level_is_l2cacheable(&bp, dn, level))
3810 			iter_aflags |= ARC_FLAG_L2CACHE;
3811 
3812 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3813 		    dn->dn_object, curlevel, curblkid);
3814 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3815 		    &bp, dbuf_prefetch_indirect_done, dpa,
3816 		    ZIO_PRIORITY_SYNC_READ,
3817 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3818 		    &iter_aflags, &zb);
3819 	}
3820 	/*
3821 	 * We use pio here instead of dpa_zio since it's possible that
3822 	 * dpa may have already been freed.
3823 	 */
3824 	zio_nowait(pio);
3825 	return (1);
3826 no_issue:
3827 	if (cb != NULL)
3828 		cb(arg, level, blkid, B_FALSE);
3829 	return (0);
3830 }
3831 
3832 int
3833 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3834     arc_flags_t aflags)
3835 {
3836 
3837 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3838 }
3839 
3840 /*
3841  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3842  * the case of encrypted, compressed and uncompressed buffers by
3843  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3844  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3845  *
3846  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3847  */
3848 noinline static void
3849 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3850 {
3851 	dbuf_dirty_record_t *dr = db->db_data_pending;
3852 	arc_buf_t *data = dr->dt.dl.dr_data;
3853 	enum zio_compress compress_type = arc_get_compression(data);
3854 	uint8_t complevel = arc_get_complevel(data);
3855 
3856 	if (arc_is_encrypted(data)) {
3857 		boolean_t byteorder;
3858 		uint8_t salt[ZIO_DATA_SALT_LEN];
3859 		uint8_t iv[ZIO_DATA_IV_LEN];
3860 		uint8_t mac[ZIO_DATA_MAC_LEN];
3861 
3862 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3863 		dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3864 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3865 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3866 		    compress_type, complevel));
3867 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3868 		dbuf_set_data(db, arc_alloc_compressed_buf(
3869 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3870 		    arc_buf_lsize(data), compress_type, complevel));
3871 	} else {
3872 		dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3873 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3874 	}
3875 
3876 	rw_enter(&db->db_rwlock, RW_WRITER);
3877 	memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3878 	rw_exit(&db->db_rwlock);
3879 }
3880 
3881 /*
3882  * Returns with db_holds incremented, and db_mtx not held.
3883  * Note: dn_struct_rwlock must be held.
3884  */
3885 int
3886 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3887     boolean_t fail_sparse, boolean_t fail_uncached,
3888     const void *tag, dmu_buf_impl_t **dbp)
3889 {
3890 	dmu_buf_impl_t *db, *parent = NULL;
3891 	uint64_t hv;
3892 
3893 	/* If the pool has been created, verify the tx_sync_lock is not held */
3894 	spa_t *spa = dn->dn_objset->os_spa;
3895 	dsl_pool_t *dp = spa->spa_dsl_pool;
3896 	if (dp != NULL) {
3897 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3898 	}
3899 
3900 	ASSERT(blkid != DMU_BONUS_BLKID);
3901 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3902 	ASSERT3U(dn->dn_nlevels, >, level);
3903 
3904 	*dbp = NULL;
3905 
3906 	/* dbuf_find() returns with db_mtx held */
3907 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3908 
3909 	if (db == NULL) {
3910 		blkptr_t *bp = NULL;
3911 		int err;
3912 
3913 		if (fail_uncached)
3914 			return (SET_ERROR(ENOENT));
3915 
3916 		ASSERT3P(parent, ==, NULL);
3917 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3918 		if (fail_sparse) {
3919 			if (err == 0 && bp && BP_IS_HOLE(bp))
3920 				err = SET_ERROR(ENOENT);
3921 			if (err) {
3922 				if (parent)
3923 					dbuf_rele(parent, NULL);
3924 				return (err);
3925 			}
3926 		}
3927 		if (err && err != ENOENT)
3928 			return (err);
3929 		db = dbuf_create(dn, level, blkid, parent, bp, hv);
3930 	}
3931 
3932 	if (fail_uncached && db->db_state != DB_CACHED) {
3933 		mutex_exit(&db->db_mtx);
3934 		return (SET_ERROR(ENOENT));
3935 	}
3936 
3937 	if (db->db_buf != NULL) {
3938 		arc_buf_access(db->db_buf);
3939 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3940 	}
3941 
3942 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3943 
3944 	/*
3945 	 * If this buffer is currently syncing out, and we are
3946 	 * still referencing it from db_data, we need to make a copy
3947 	 * of it in case we decide we want to dirty it again in this txg.
3948 	 */
3949 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3950 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3951 	    db->db_state == DB_CACHED && db->db_data_pending) {
3952 		dbuf_dirty_record_t *dr = db->db_data_pending;
3953 		if (dr->dt.dl.dr_data == db->db_buf) {
3954 			ASSERT3P(db->db_buf, !=, NULL);
3955 			dbuf_hold_copy(dn, db);
3956 		}
3957 	}
3958 
3959 	if (multilist_link_active(&db->db_cache_link)) {
3960 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3961 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3962 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3963 
3964 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3965 
3966 		uint64_t size = db->db.db_size;
3967 		uint64_t usize = dmu_buf_user_size(&db->db);
3968 		(void) zfs_refcount_remove_many(
3969 		    &dbuf_caches[db->db_caching_status].size, size, db);
3970 		(void) zfs_refcount_remove_many(
3971 		    &dbuf_caches[db->db_caching_status].size, usize,
3972 		    db->db_user);
3973 
3974 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3975 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3976 		} else {
3977 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3978 			DBUF_STAT_BUMPDOWN(cache_count);
3979 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3980 			    size + usize);
3981 		}
3982 		db->db_caching_status = DB_NO_CACHE;
3983 	}
3984 	(void) zfs_refcount_add(&db->db_holds, tag);
3985 	DBUF_VERIFY(db);
3986 	mutex_exit(&db->db_mtx);
3987 
3988 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
3989 	if (parent)
3990 		dbuf_rele(parent, NULL);
3991 
3992 	ASSERT3P(DB_DNODE(db), ==, dn);
3993 	ASSERT3U(db->db_blkid, ==, blkid);
3994 	ASSERT3U(db->db_level, ==, level);
3995 	*dbp = db;
3996 
3997 	return (0);
3998 }
3999 
4000 dmu_buf_impl_t *
4001 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
4002 {
4003 	return (dbuf_hold_level(dn, 0, blkid, tag));
4004 }
4005 
4006 dmu_buf_impl_t *
4007 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
4008 {
4009 	dmu_buf_impl_t *db;
4010 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
4011 	return (err ? NULL : db);
4012 }
4013 
4014 void
4015 dbuf_create_bonus(dnode_t *dn)
4016 {
4017 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4018 
4019 	ASSERT(dn->dn_bonus == NULL);
4020 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4021 	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4022 }
4023 
4024 int
4025 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4026 {
4027 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4028 
4029 	if (db->db_blkid != DMU_SPILL_BLKID)
4030 		return (SET_ERROR(ENOTSUP));
4031 	if (blksz == 0)
4032 		blksz = SPA_MINBLOCKSIZE;
4033 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4034 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4035 
4036 	dbuf_new_size(db, blksz, tx);
4037 
4038 	return (0);
4039 }
4040 
4041 void
4042 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4043 {
4044 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4045 }
4046 
4047 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4048 void
4049 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4050 {
4051 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4052 	VERIFY3S(holds, >, 1);
4053 }
4054 
4055 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4056 boolean_t
4057 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4058     const void *tag)
4059 {
4060 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4061 	dmu_buf_impl_t *found_db;
4062 	boolean_t result = B_FALSE;
4063 
4064 	if (blkid == DMU_BONUS_BLKID)
4065 		found_db = dbuf_find_bonus(os, obj);
4066 	else
4067 		found_db = dbuf_find(os, obj, 0, blkid, NULL);
4068 
4069 	if (found_db != NULL) {
4070 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4071 			(void) zfs_refcount_add(&db->db_holds, tag);
4072 			result = B_TRUE;
4073 		}
4074 		mutex_exit(&found_db->db_mtx);
4075 	}
4076 	return (result);
4077 }
4078 
4079 /*
4080  * If you call dbuf_rele() you had better not be referencing the dnode handle
4081  * unless you have some other direct or indirect hold on the dnode. (An indirect
4082  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4083  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4084  * dnode's parent dbuf evicting its dnode handles.
4085  */
4086 void
4087 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4088 {
4089 	mutex_enter(&db->db_mtx);
4090 	dbuf_rele_and_unlock(db, tag, B_FALSE);
4091 }
4092 
4093 void
4094 dmu_buf_rele(dmu_buf_t *db, const void *tag)
4095 {
4096 	dbuf_rele((dmu_buf_impl_t *)db, tag);
4097 }
4098 
4099 /*
4100  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
4101  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
4102  * argument should be set if we are already in the dbuf-evicting code
4103  * path, in which case we don't want to recursively evict.  This allows us to
4104  * avoid deeply nested stacks that would have a call flow similar to this:
4105  *
4106  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4107  *	^						|
4108  *	|						|
4109  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
4110  *
4111  */
4112 void
4113 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4114 {
4115 	int64_t holds;
4116 	uint64_t size;
4117 
4118 	ASSERT(MUTEX_HELD(&db->db_mtx));
4119 	DBUF_VERIFY(db);
4120 
4121 	/*
4122 	 * Remove the reference to the dbuf before removing its hold on the
4123 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
4124 	 * buffer has a corresponding dnode hold.
4125 	 */
4126 	holds = zfs_refcount_remove(&db->db_holds, tag);
4127 	ASSERT(holds >= 0);
4128 
4129 	/*
4130 	 * We can't freeze indirects if there is a possibility that they
4131 	 * may be modified in the current syncing context.
4132 	 */
4133 	if (db->db_buf != NULL &&
4134 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4135 		arc_buf_freeze(db->db_buf);
4136 	}
4137 
4138 	if (holds == db->db_dirtycnt &&
4139 	    db->db_level == 0 && db->db_user_immediate_evict)
4140 		dbuf_evict_user(db);
4141 
4142 	if (holds == 0) {
4143 		if (db->db_blkid == DMU_BONUS_BLKID) {
4144 			dnode_t *dn;
4145 			boolean_t evict_dbuf = db->db_pending_evict;
4146 
4147 			/*
4148 			 * If the dnode moves here, we cannot cross this
4149 			 * barrier until the move completes.
4150 			 */
4151 			DB_DNODE_ENTER(db);
4152 
4153 			dn = DB_DNODE(db);
4154 			atomic_dec_32(&dn->dn_dbufs_count);
4155 
4156 			/*
4157 			 * Decrementing the dbuf count means that the bonus
4158 			 * buffer's dnode hold is no longer discounted in
4159 			 * dnode_move(). The dnode cannot move until after
4160 			 * the dnode_rele() below.
4161 			 */
4162 			DB_DNODE_EXIT(db);
4163 
4164 			/*
4165 			 * Do not reference db after its lock is dropped.
4166 			 * Another thread may evict it.
4167 			 */
4168 			mutex_exit(&db->db_mtx);
4169 
4170 			if (evict_dbuf)
4171 				dnode_evict_bonus(dn);
4172 
4173 			dnode_rele(dn, db);
4174 		} else if (db->db_buf == NULL) {
4175 			/*
4176 			 * This is a special case: we never associated this
4177 			 * dbuf with any data allocated from the ARC.
4178 			 */
4179 			ASSERT(db->db_state == DB_UNCACHED ||
4180 			    db->db_state == DB_NOFILL);
4181 			dbuf_destroy(db);
4182 		} else if (arc_released(db->db_buf)) {
4183 			/*
4184 			 * This dbuf has anonymous data associated with it.
4185 			 */
4186 			dbuf_destroy(db);
4187 		} else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4188 		    db->db_pending_evict) {
4189 			dbuf_destroy(db);
4190 		} else if (!multilist_link_active(&db->db_cache_link)) {
4191 			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4192 
4193 			dbuf_cached_state_t dcs =
4194 			    dbuf_include_in_metadata_cache(db) ?
4195 			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4196 			db->db_caching_status = dcs;
4197 
4198 			multilist_insert(&dbuf_caches[dcs].cache, db);
4199 			uint64_t db_size = db->db.db_size;
4200 			uint64_t dbu_size = dmu_buf_user_size(&db->db);
4201 			(void) zfs_refcount_add_many(
4202 			    &dbuf_caches[dcs].size, db_size, db);
4203 			size = zfs_refcount_add_many(
4204 			    &dbuf_caches[dcs].size, dbu_size, db->db_user);
4205 			uint8_t db_level = db->db_level;
4206 			mutex_exit(&db->db_mtx);
4207 
4208 			if (dcs == DB_DBUF_METADATA_CACHE) {
4209 				DBUF_STAT_BUMP(metadata_cache_count);
4210 				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4211 				    size);
4212 			} else {
4213 				DBUF_STAT_BUMP(cache_count);
4214 				DBUF_STAT_MAX(cache_size_bytes_max, size);
4215 				DBUF_STAT_BUMP(cache_levels[db_level]);
4216 				DBUF_STAT_INCR(cache_levels_bytes[db_level],
4217 				    db_size + dbu_size);
4218 			}
4219 
4220 			if (dcs == DB_DBUF_CACHE && !evicting)
4221 				dbuf_evict_notify(size);
4222 		}
4223 	} else {
4224 		mutex_exit(&db->db_mtx);
4225 	}
4226 }
4227 
4228 #pragma weak dmu_buf_refcount = dbuf_refcount
4229 uint64_t
4230 dbuf_refcount(dmu_buf_impl_t *db)
4231 {
4232 	return (zfs_refcount_count(&db->db_holds));
4233 }
4234 
4235 uint64_t
4236 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4237 {
4238 	uint64_t holds;
4239 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4240 
4241 	mutex_enter(&db->db_mtx);
4242 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4243 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4244 	mutex_exit(&db->db_mtx);
4245 
4246 	return (holds);
4247 }
4248 
4249 void *
4250 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4251     dmu_buf_user_t *new_user)
4252 {
4253 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4254 
4255 	mutex_enter(&db->db_mtx);
4256 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4257 	if (db->db_user == old_user)
4258 		db->db_user = new_user;
4259 	else
4260 		old_user = db->db_user;
4261 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4262 	mutex_exit(&db->db_mtx);
4263 
4264 	return (old_user);
4265 }
4266 
4267 void *
4268 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4269 {
4270 	return (dmu_buf_replace_user(db_fake, NULL, user));
4271 }
4272 
4273 void *
4274 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4275 {
4276 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4277 
4278 	db->db_user_immediate_evict = TRUE;
4279 	return (dmu_buf_set_user(db_fake, user));
4280 }
4281 
4282 void *
4283 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4284 {
4285 	return (dmu_buf_replace_user(db_fake, user, NULL));
4286 }
4287 
4288 void *
4289 dmu_buf_get_user(dmu_buf_t *db_fake)
4290 {
4291 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4292 
4293 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4294 	return (db->db_user);
4295 }
4296 
4297 uint64_t
4298 dmu_buf_user_size(dmu_buf_t *db_fake)
4299 {
4300 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4301 	if (db->db_user == NULL)
4302 		return (0);
4303 	return (atomic_load_64(&db->db_user->dbu_size));
4304 }
4305 
4306 void
4307 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4308 {
4309 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4310 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4311 	ASSERT3P(db->db_user, !=, NULL);
4312 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4313 	atomic_add_64(&db->db_user->dbu_size, nadd);
4314 }
4315 
4316 void
4317 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4318 {
4319 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4320 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4321 	ASSERT3P(db->db_user, !=, NULL);
4322 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4323 	atomic_sub_64(&db->db_user->dbu_size, nsub);
4324 }
4325 
4326 void
4327 dmu_buf_user_evict_wait(void)
4328 {
4329 	taskq_wait(dbu_evict_taskq);
4330 }
4331 
4332 blkptr_t *
4333 dmu_buf_get_blkptr(dmu_buf_t *db)
4334 {
4335 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4336 	return (dbi->db_blkptr);
4337 }
4338 
4339 objset_t *
4340 dmu_buf_get_objset(dmu_buf_t *db)
4341 {
4342 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4343 	return (dbi->db_objset);
4344 }
4345 
4346 static void
4347 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4348 {
4349 	/* ASSERT(dmu_tx_is_syncing(tx) */
4350 	ASSERT(MUTEX_HELD(&db->db_mtx));
4351 
4352 	if (db->db_blkptr != NULL)
4353 		return;
4354 
4355 	if (db->db_blkid == DMU_SPILL_BLKID) {
4356 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4357 		BP_ZERO(db->db_blkptr);
4358 		return;
4359 	}
4360 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4361 		/*
4362 		 * This buffer was allocated at a time when there was
4363 		 * no available blkptrs from the dnode, or it was
4364 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4365 		 */
4366 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4367 		ASSERT(db->db_parent == NULL);
4368 		db->db_parent = dn->dn_dbuf;
4369 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4370 		DBUF_VERIFY(db);
4371 	} else {
4372 		dmu_buf_impl_t *parent = db->db_parent;
4373 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4374 
4375 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4376 		if (parent == NULL) {
4377 			mutex_exit(&db->db_mtx);
4378 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4379 			parent = dbuf_hold_level(dn, db->db_level + 1,
4380 			    db->db_blkid >> epbs, db);
4381 			rw_exit(&dn->dn_struct_rwlock);
4382 			mutex_enter(&db->db_mtx);
4383 			db->db_parent = parent;
4384 		}
4385 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4386 		    (db->db_blkid & ((1ULL << epbs) - 1));
4387 		DBUF_VERIFY(db);
4388 	}
4389 }
4390 
4391 static void
4392 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4393 {
4394 	dmu_buf_impl_t *db = dr->dr_dbuf;
4395 	void *data = dr->dt.dl.dr_data;
4396 
4397 	ASSERT0(db->db_level);
4398 	ASSERT(MUTEX_HELD(&db->db_mtx));
4399 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4400 	ASSERT(data != NULL);
4401 
4402 	dnode_t *dn = dr->dr_dnode;
4403 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4404 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4405 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4406 
4407 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4408 
4409 	dbuf_undirty_bonus(dr);
4410 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4411 }
4412 
4413 /*
4414  * When syncing out a blocks of dnodes, adjust the block to deal with
4415  * encryption.  Normally, we make sure the block is decrypted before writing
4416  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4417  * from a raw receive.  In this case, set the ARC buf's crypt params so
4418  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4419  */
4420 static void
4421 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4422 {
4423 	int err;
4424 	dmu_buf_impl_t *db = dr->dr_dbuf;
4425 
4426 	ASSERT(MUTEX_HELD(&db->db_mtx));
4427 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4428 	ASSERT3U(db->db_level, ==, 0);
4429 
4430 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4431 		zbookmark_phys_t zb;
4432 
4433 		/*
4434 		 * Unfortunately, there is currently no mechanism for
4435 		 * syncing context to handle decryption errors. An error
4436 		 * here is only possible if an attacker maliciously
4437 		 * changed a dnode block and updated the associated
4438 		 * checksums going up the block tree.
4439 		 */
4440 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4441 		    db->db.db_object, db->db_level, db->db_blkid);
4442 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4443 		    &zb, B_TRUE);
4444 		if (err)
4445 			panic("Invalid dnode block MAC");
4446 	} else if (dr->dt.dl.dr_has_raw_params) {
4447 		(void) arc_release(dr->dt.dl.dr_data, db);
4448 		arc_convert_to_raw(dr->dt.dl.dr_data,
4449 		    dmu_objset_id(db->db_objset),
4450 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4451 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4452 	}
4453 }
4454 
4455 /*
4456  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4457  * is critical the we not allow the compiler to inline this function in to
4458  * dbuf_sync_list() thereby drastically bloating the stack usage.
4459  */
4460 noinline static void
4461 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4462 {
4463 	dmu_buf_impl_t *db = dr->dr_dbuf;
4464 	dnode_t *dn = dr->dr_dnode;
4465 
4466 	ASSERT(dmu_tx_is_syncing(tx));
4467 
4468 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4469 
4470 	mutex_enter(&db->db_mtx);
4471 
4472 	ASSERT(db->db_level > 0);
4473 	DBUF_VERIFY(db);
4474 
4475 	/* Read the block if it hasn't been read yet. */
4476 	if (db->db_buf == NULL) {
4477 		mutex_exit(&db->db_mtx);
4478 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4479 		mutex_enter(&db->db_mtx);
4480 	}
4481 	ASSERT3U(db->db_state, ==, DB_CACHED);
4482 	ASSERT(db->db_buf != NULL);
4483 
4484 	/* Indirect block size must match what the dnode thinks it is. */
4485 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4486 	dbuf_check_blkptr(dn, db);
4487 
4488 	/* Provide the pending dirty record to child dbufs */
4489 	db->db_data_pending = dr;
4490 
4491 	mutex_exit(&db->db_mtx);
4492 
4493 	dbuf_write(dr, db->db_buf, tx);
4494 
4495 	zio_t *zio = dr->dr_zio;
4496 	mutex_enter(&dr->dt.di.dr_mtx);
4497 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4498 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4499 	mutex_exit(&dr->dt.di.dr_mtx);
4500 	zio_nowait(zio);
4501 }
4502 
4503 /*
4504  * Verify that the size of the data in our bonus buffer does not exceed
4505  * its recorded size.
4506  *
4507  * The purpose of this verification is to catch any cases in development
4508  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4509  * due to incorrect feature management, older pools expect to read more
4510  * data even though they didn't actually write it to begin with.
4511  *
4512  * For a example, this would catch an error in the feature logic where we
4513  * open an older pool and we expect to write the space map histogram of
4514  * a space map with size SPACE_MAP_SIZE_V0.
4515  */
4516 static void
4517 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4518 {
4519 #ifdef ZFS_DEBUG
4520 	dnode_t *dn = dr->dr_dnode;
4521 
4522 	/*
4523 	 * Encrypted bonus buffers can have data past their bonuslen.
4524 	 * Skip the verification of these blocks.
4525 	 */
4526 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4527 		return;
4528 
4529 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4530 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4531 	ASSERT3U(bonuslen, <=, maxbonuslen);
4532 
4533 	arc_buf_t *datap = dr->dt.dl.dr_data;
4534 	char *datap_end = ((char *)datap) + bonuslen;
4535 	char *datap_max = ((char *)datap) + maxbonuslen;
4536 
4537 	/* ensure that everything is zero after our data */
4538 	for (; datap_end < datap_max; datap_end++)
4539 		ASSERT(*datap_end == 0);
4540 #endif
4541 }
4542 
4543 static blkptr_t *
4544 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4545 {
4546 	/* This must be a lightweight dirty record. */
4547 	ASSERT3P(dr->dr_dbuf, ==, NULL);
4548 	dnode_t *dn = dr->dr_dnode;
4549 
4550 	if (dn->dn_phys->dn_nlevels == 1) {
4551 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4552 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4553 	} else {
4554 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4555 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4556 		VERIFY3U(parent_db->db_level, ==, 1);
4557 		VERIFY3P(DB_DNODE(parent_db), ==, dn);
4558 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4559 		blkptr_t *bp = parent_db->db.db_data;
4560 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4561 	}
4562 }
4563 
4564 static void
4565 dbuf_lightweight_ready(zio_t *zio)
4566 {
4567 	dbuf_dirty_record_t *dr = zio->io_private;
4568 	blkptr_t *bp = zio->io_bp;
4569 
4570 	if (zio->io_error != 0)
4571 		return;
4572 
4573 	dnode_t *dn = dr->dr_dnode;
4574 
4575 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4576 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4577 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4578 	    bp_get_dsize_sync(spa, bp_orig);
4579 	dnode_diduse_space(dn, delta);
4580 
4581 	uint64_t blkid = dr->dt.dll.dr_blkid;
4582 	mutex_enter(&dn->dn_mtx);
4583 	if (blkid > dn->dn_phys->dn_maxblkid) {
4584 		ASSERT0(dn->dn_objset->os_raw_receive);
4585 		dn->dn_phys->dn_maxblkid = blkid;
4586 	}
4587 	mutex_exit(&dn->dn_mtx);
4588 
4589 	if (!BP_IS_EMBEDDED(bp)) {
4590 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4591 		BP_SET_FILL(bp, fill);
4592 	}
4593 
4594 	dmu_buf_impl_t *parent_db;
4595 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4596 	if (dr->dr_parent == NULL) {
4597 		parent_db = dn->dn_dbuf;
4598 	} else {
4599 		parent_db = dr->dr_parent->dr_dbuf;
4600 	}
4601 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4602 	*bp_orig = *bp;
4603 	rw_exit(&parent_db->db_rwlock);
4604 }
4605 
4606 static void
4607 dbuf_lightweight_done(zio_t *zio)
4608 {
4609 	dbuf_dirty_record_t *dr = zio->io_private;
4610 
4611 	VERIFY0(zio->io_error);
4612 
4613 	objset_t *os = dr->dr_dnode->dn_objset;
4614 	dmu_tx_t *tx = os->os_synctx;
4615 
4616 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4617 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4618 	} else {
4619 		dsl_dataset_t *ds = os->os_dsl_dataset;
4620 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4621 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4622 	}
4623 
4624 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4625 	    zio->io_txg);
4626 
4627 	abd_free(dr->dt.dll.dr_abd);
4628 	kmem_free(dr, sizeof (*dr));
4629 }
4630 
4631 noinline static void
4632 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4633 {
4634 	dnode_t *dn = dr->dr_dnode;
4635 	zio_t *pio;
4636 	if (dn->dn_phys->dn_nlevels == 1) {
4637 		pio = dn->dn_zio;
4638 	} else {
4639 		pio = dr->dr_parent->dr_zio;
4640 	}
4641 
4642 	zbookmark_phys_t zb = {
4643 		.zb_objset = dmu_objset_id(dn->dn_objset),
4644 		.zb_object = dn->dn_object,
4645 		.zb_level = 0,
4646 		.zb_blkid = dr->dt.dll.dr_blkid,
4647 	};
4648 
4649 	/*
4650 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4651 	 * will have the old BP in dbuf_lightweight_done().
4652 	 */
4653 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4654 
4655 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4656 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4657 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4658 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4659 	    dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4660 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4661 
4662 	zio_nowait(dr->dr_zio);
4663 }
4664 
4665 /*
4666  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4667  * critical the we not allow the compiler to inline this function in to
4668  * dbuf_sync_list() thereby drastically bloating the stack usage.
4669  */
4670 noinline static void
4671 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4672 {
4673 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4674 	dmu_buf_impl_t *db = dr->dr_dbuf;
4675 	dnode_t *dn = dr->dr_dnode;
4676 	objset_t *os;
4677 	uint64_t txg = tx->tx_txg;
4678 
4679 	ASSERT(dmu_tx_is_syncing(tx));
4680 
4681 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4682 
4683 	mutex_enter(&db->db_mtx);
4684 	/*
4685 	 * To be synced, we must be dirtied.  But we might have been freed
4686 	 * after the dirty.
4687 	 */
4688 	if (db->db_state == DB_UNCACHED) {
4689 		/* This buffer has been freed since it was dirtied */
4690 		ASSERT3P(db->db.db_data, ==, NULL);
4691 	} else if (db->db_state == DB_FILL) {
4692 		/* This buffer was freed and is now being re-filled */
4693 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4694 	} else if (db->db_state == DB_READ) {
4695 		/*
4696 		 * This buffer was either cloned or had a Direct I/O write
4697 		 * occur and has an in-flgiht read on the BP. It is safe to
4698 		 * issue the write here, because the read has already been
4699 		 * issued and the contents won't change.
4700 		 *
4701 		 * We can verify the case of both the clone and Direct I/O
4702 		 * write by making sure the first dirty record for the dbuf
4703 		 * has no ARC buffer associated with it.
4704 		 */
4705 		dbuf_dirty_record_t *dr_head =
4706 		    list_head(&db->db_dirty_records);
4707 		ASSERT3P(db->db_buf, ==, NULL);
4708 		ASSERT3P(db->db.db_data, ==, NULL);
4709 		ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL);
4710 		ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4711 	} else {
4712 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4713 	}
4714 	DBUF_VERIFY(db);
4715 
4716 	if (db->db_blkid == DMU_SPILL_BLKID) {
4717 		mutex_enter(&dn->dn_mtx);
4718 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4719 			/*
4720 			 * In the previous transaction group, the bonus buffer
4721 			 * was entirely used to store the attributes for the
4722 			 * dnode which overrode the dn_spill field.  However,
4723 			 * when adding more attributes to the file a spill
4724 			 * block was required to hold the extra attributes.
4725 			 *
4726 			 * Make sure to clear the garbage left in the dn_spill
4727 			 * field from the previous attributes in the bonus
4728 			 * buffer.  Otherwise, after writing out the spill
4729 			 * block to the new allocated dva, it will free
4730 			 * the old block pointed to by the invalid dn_spill.
4731 			 */
4732 			db->db_blkptr = NULL;
4733 		}
4734 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4735 		mutex_exit(&dn->dn_mtx);
4736 	}
4737 
4738 	/*
4739 	 * If this is a bonus buffer, simply copy the bonus data into the
4740 	 * dnode.  It will be written out when the dnode is synced (and it
4741 	 * will be synced, since it must have been dirty for dbuf_sync to
4742 	 * be called).
4743 	 */
4744 	if (db->db_blkid == DMU_BONUS_BLKID) {
4745 		ASSERT(dr->dr_dbuf == db);
4746 		dbuf_sync_bonus(dr, tx);
4747 		return;
4748 	}
4749 
4750 	os = dn->dn_objset;
4751 
4752 	/*
4753 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4754 	 * operation to sneak in. As a result, we need to ensure that we
4755 	 * don't check the dr_override_state until we have returned from
4756 	 * dbuf_check_blkptr.
4757 	 */
4758 	dbuf_check_blkptr(dn, db);
4759 
4760 	/*
4761 	 * If this buffer is in the middle of an immediate write, wait for the
4762 	 * synchronous IO to complete.
4763 	 *
4764 	 * This is also valid even with Direct I/O writes setting a dirty
4765 	 * records override state into DR_IN_DMU_SYNC, because all
4766 	 * Direct I/O writes happen in open-context.
4767 	 */
4768 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4769 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4770 		cv_wait(&db->db_changed, &db->db_mtx);
4771 	}
4772 
4773 	/*
4774 	 * If this is a dnode block, ensure it is appropriately encrypted
4775 	 * or decrypted, depending on what we are writing to it this txg.
4776 	 */
4777 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4778 		dbuf_prepare_encrypted_dnode_leaf(dr);
4779 
4780 	if (*datap != NULL && *datap == db->db_buf &&
4781 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4782 	    zfs_refcount_count(&db->db_holds) > 1 &&
4783 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN) {
4784 		/*
4785 		 * If this buffer is currently "in use" (i.e., there
4786 		 * are active holds and db_data still references it),
4787 		 * then make a copy before we start the write so that
4788 		 * any modifications from the open txg will not leak
4789 		 * into this write.
4790 		 *
4791 		 * NOTE: this copy does not need to be made for
4792 		 * objects only modified in the syncing context (e.g.
4793 		 * DNONE_DNODE blocks).
4794 		 */
4795 		int psize = arc_buf_size(*datap);
4796 		int lsize = arc_buf_lsize(*datap);
4797 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4798 		enum zio_compress compress_type = arc_get_compression(*datap);
4799 		uint8_t complevel = arc_get_complevel(*datap);
4800 
4801 		if (arc_is_encrypted(*datap)) {
4802 			boolean_t byteorder;
4803 			uint8_t salt[ZIO_DATA_SALT_LEN];
4804 			uint8_t iv[ZIO_DATA_IV_LEN];
4805 			uint8_t mac[ZIO_DATA_MAC_LEN];
4806 
4807 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4808 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4809 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4810 			    dn->dn_type, psize, lsize, compress_type,
4811 			    complevel);
4812 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4813 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4814 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4815 			    psize, lsize, compress_type, complevel);
4816 		} else {
4817 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4818 		}
4819 		memcpy((*datap)->b_data, db->db.db_data, psize);
4820 	}
4821 	db->db_data_pending = dr;
4822 
4823 	mutex_exit(&db->db_mtx);
4824 
4825 	dbuf_write(dr, *datap, tx);
4826 
4827 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4828 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4829 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4830 	} else {
4831 		zio_nowait(dr->dr_zio);
4832 	}
4833 }
4834 
4835 /*
4836  * Syncs out a range of dirty records for indirect or leaf dbufs.  May be
4837  * called recursively from dbuf_sync_indirect().
4838  */
4839 void
4840 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4841 {
4842 	dbuf_dirty_record_t *dr;
4843 
4844 	while ((dr = list_head(list))) {
4845 		if (dr->dr_zio != NULL) {
4846 			/*
4847 			 * If we find an already initialized zio then we
4848 			 * are processing the meta-dnode, and we have finished.
4849 			 * The dbufs for all dnodes are put back on the list
4850 			 * during processing, so that we can zio_wait()
4851 			 * these IOs after initiating all child IOs.
4852 			 */
4853 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4854 			    DMU_META_DNODE_OBJECT);
4855 			break;
4856 		}
4857 		list_remove(list, dr);
4858 		if (dr->dr_dbuf == NULL) {
4859 			dbuf_sync_lightweight(dr, tx);
4860 		} else {
4861 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4862 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4863 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4864 			}
4865 			if (dr->dr_dbuf->db_level > 0)
4866 				dbuf_sync_indirect(dr, tx);
4867 			else
4868 				dbuf_sync_leaf(dr, tx);
4869 		}
4870 	}
4871 }
4872 
4873 static void
4874 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4875 {
4876 	(void) buf;
4877 	dmu_buf_impl_t *db = vdb;
4878 	dnode_t *dn;
4879 	blkptr_t *bp = zio->io_bp;
4880 	blkptr_t *bp_orig = &zio->io_bp_orig;
4881 	spa_t *spa = zio->io_spa;
4882 	int64_t delta;
4883 	uint64_t fill = 0;
4884 	int i;
4885 
4886 	ASSERT3P(db->db_blkptr, !=, NULL);
4887 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4888 
4889 	DB_DNODE_ENTER(db);
4890 	dn = DB_DNODE(db);
4891 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4892 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4893 	zio->io_prev_space_delta = delta;
4894 
4895 	if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
4896 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4897 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4898 		    (db->db_blkid == DMU_SPILL_BLKID &&
4899 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4900 		    BP_IS_EMBEDDED(bp));
4901 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4902 	}
4903 
4904 	mutex_enter(&db->db_mtx);
4905 
4906 #ifdef ZFS_DEBUG
4907 	if (db->db_blkid == DMU_SPILL_BLKID) {
4908 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4909 		ASSERT(!(BP_IS_HOLE(bp)) &&
4910 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4911 	}
4912 #endif
4913 
4914 	if (db->db_level == 0) {
4915 		mutex_enter(&dn->dn_mtx);
4916 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4917 		    db->db_blkid != DMU_SPILL_BLKID) {
4918 			ASSERT0(db->db_objset->os_raw_receive);
4919 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4920 		}
4921 		mutex_exit(&dn->dn_mtx);
4922 
4923 		if (dn->dn_type == DMU_OT_DNODE) {
4924 			i = 0;
4925 			while (i < db->db.db_size) {
4926 				dnode_phys_t *dnp =
4927 				    (void *)(((char *)db->db.db_data) + i);
4928 
4929 				i += DNODE_MIN_SIZE;
4930 				if (dnp->dn_type != DMU_OT_NONE) {
4931 					fill++;
4932 					for (int j = 0; j < dnp->dn_nblkptr;
4933 					    j++) {
4934 						(void) zfs_blkptr_verify(spa,
4935 						    &dnp->dn_blkptr[j],
4936 						    BLK_CONFIG_SKIP,
4937 						    BLK_VERIFY_HALT);
4938 					}
4939 					if (dnp->dn_flags &
4940 					    DNODE_FLAG_SPILL_BLKPTR) {
4941 						(void) zfs_blkptr_verify(spa,
4942 						    DN_SPILL_BLKPTR(dnp),
4943 						    BLK_CONFIG_SKIP,
4944 						    BLK_VERIFY_HALT);
4945 					}
4946 					i += dnp->dn_extra_slots *
4947 					    DNODE_MIN_SIZE;
4948 				}
4949 			}
4950 		} else {
4951 			if (BP_IS_HOLE(bp)) {
4952 				fill = 0;
4953 			} else {
4954 				fill = 1;
4955 			}
4956 		}
4957 	} else {
4958 		blkptr_t *ibp = db->db.db_data;
4959 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4960 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4961 			if (BP_IS_HOLE(ibp))
4962 				continue;
4963 			(void) zfs_blkptr_verify(spa, ibp,
4964 			    BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4965 			fill += BP_GET_FILL(ibp);
4966 		}
4967 	}
4968 	DB_DNODE_EXIT(db);
4969 
4970 	if (!BP_IS_EMBEDDED(bp))
4971 		BP_SET_FILL(bp, fill);
4972 
4973 	mutex_exit(&db->db_mtx);
4974 
4975 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4976 	*db->db_blkptr = *bp;
4977 	dmu_buf_unlock_parent(db, dblt, FTAG);
4978 }
4979 
4980 /*
4981  * This function gets called just prior to running through the compression
4982  * stage of the zio pipeline. If we're an indirect block comprised of only
4983  * holes, then we want this indirect to be compressed away to a hole. In
4984  * order to do that we must zero out any information about the holes that
4985  * this indirect points to prior to before we try to compress it.
4986  */
4987 static void
4988 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4989 {
4990 	(void) zio, (void) buf;
4991 	dmu_buf_impl_t *db = vdb;
4992 	blkptr_t *bp;
4993 	unsigned int epbs, i;
4994 
4995 	ASSERT3U(db->db_level, >, 0);
4996 	DB_DNODE_ENTER(db);
4997 	epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4998 	DB_DNODE_EXIT(db);
4999 	ASSERT3U(epbs, <, 31);
5000 
5001 	/* Determine if all our children are holes */
5002 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
5003 		if (!BP_IS_HOLE(bp))
5004 			break;
5005 	}
5006 
5007 	/*
5008 	 * If all the children are holes, then zero them all out so that
5009 	 * we may get compressed away.
5010 	 */
5011 	if (i == 1ULL << epbs) {
5012 		/*
5013 		 * We only found holes. Grab the rwlock to prevent
5014 		 * anybody from reading the blocks we're about to
5015 		 * zero out.
5016 		 */
5017 		rw_enter(&db->db_rwlock, RW_WRITER);
5018 		memset(db->db.db_data, 0, db->db.db_size);
5019 		rw_exit(&db->db_rwlock);
5020 	}
5021 }
5022 
5023 static void
5024 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5025 {
5026 	(void) buf;
5027 	dmu_buf_impl_t *db = vdb;
5028 	blkptr_t *bp_orig = &zio->io_bp_orig;
5029 	blkptr_t *bp = db->db_blkptr;
5030 	objset_t *os = db->db_objset;
5031 	dmu_tx_t *tx = os->os_synctx;
5032 
5033 	ASSERT0(zio->io_error);
5034 	ASSERT(db->db_blkptr == bp);
5035 
5036 	/*
5037 	 * For nopwrites and rewrites we ensure that the bp matches our
5038 	 * original and bypass all the accounting.
5039 	 */
5040 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5041 		ASSERT(BP_EQUAL(bp, bp_orig));
5042 	} else {
5043 		dsl_dataset_t *ds = os->os_dsl_dataset;
5044 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5045 		dsl_dataset_block_born(ds, bp, tx);
5046 	}
5047 
5048 	mutex_enter(&db->db_mtx);
5049 
5050 	DBUF_VERIFY(db);
5051 
5052 	dbuf_dirty_record_t *dr = db->db_data_pending;
5053 	dnode_t *dn = dr->dr_dnode;
5054 	ASSERT(!list_link_active(&dr->dr_dirty_node));
5055 	ASSERT(dr->dr_dbuf == db);
5056 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5057 	list_remove(&db->db_dirty_records, dr);
5058 
5059 #ifdef ZFS_DEBUG
5060 	if (db->db_blkid == DMU_SPILL_BLKID) {
5061 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5062 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5063 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5064 	}
5065 #endif
5066 
5067 	if (db->db_level == 0) {
5068 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5069 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5070 
5071 		/* no dr_data if this is a NO_FILL or Direct I/O */
5072 		if (dr->dt.dl.dr_data != NULL &&
5073 		    dr->dt.dl.dr_data != db->db_buf) {
5074 			ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5075 			ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5076 			arc_buf_destroy(dr->dt.dl.dr_data, db);
5077 		}
5078 	} else {
5079 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5080 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5081 		if (!BP_IS_HOLE(db->db_blkptr)) {
5082 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5083 			    SPA_BLKPTRSHIFT;
5084 			ASSERT3U(db->db_blkid, <=,
5085 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5086 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5087 			    db->db.db_size);
5088 		}
5089 		mutex_destroy(&dr->dt.di.dr_mtx);
5090 		list_destroy(&dr->dt.di.dr_children);
5091 	}
5092 
5093 	cv_broadcast(&db->db_changed);
5094 	ASSERT(db->db_dirtycnt > 0);
5095 	db->db_dirtycnt -= 1;
5096 	db->db_data_pending = NULL;
5097 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5098 
5099 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5100 	    zio->io_txg);
5101 
5102 	kmem_cache_free(dbuf_dirty_kmem_cache, dr);
5103 }
5104 
5105 static void
5106 dbuf_write_nofill_ready(zio_t *zio)
5107 {
5108 	dbuf_write_ready(zio, NULL, zio->io_private);
5109 }
5110 
5111 static void
5112 dbuf_write_nofill_done(zio_t *zio)
5113 {
5114 	dbuf_write_done(zio, NULL, zio->io_private);
5115 }
5116 
5117 static void
5118 dbuf_write_override_ready(zio_t *zio)
5119 {
5120 	dbuf_dirty_record_t *dr = zio->io_private;
5121 	dmu_buf_impl_t *db = dr->dr_dbuf;
5122 
5123 	dbuf_write_ready(zio, NULL, db);
5124 }
5125 
5126 static void
5127 dbuf_write_override_done(zio_t *zio)
5128 {
5129 	dbuf_dirty_record_t *dr = zio->io_private;
5130 	dmu_buf_impl_t *db = dr->dr_dbuf;
5131 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5132 
5133 	mutex_enter(&db->db_mtx);
5134 	if (!BP_EQUAL(zio->io_bp, obp)) {
5135 		if (!BP_IS_HOLE(obp))
5136 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5137 		arc_release(dr->dt.dl.dr_data, db);
5138 	}
5139 	mutex_exit(&db->db_mtx);
5140 
5141 	dbuf_write_done(zio, NULL, db);
5142 
5143 	if (zio->io_abd != NULL)
5144 		abd_free(zio->io_abd);
5145 }
5146 
5147 typedef struct dbuf_remap_impl_callback_arg {
5148 	objset_t	*drica_os;
5149 	uint64_t	drica_blk_birth;
5150 	dmu_tx_t	*drica_tx;
5151 } dbuf_remap_impl_callback_arg_t;
5152 
5153 static void
5154 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5155     void *arg)
5156 {
5157 	dbuf_remap_impl_callback_arg_t *drica = arg;
5158 	objset_t *os = drica->drica_os;
5159 	spa_t *spa = dmu_objset_spa(os);
5160 	dmu_tx_t *tx = drica->drica_tx;
5161 
5162 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5163 
5164 	if (os == spa_meta_objset(spa)) {
5165 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5166 	} else {
5167 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5168 		    size, drica->drica_blk_birth, tx);
5169 	}
5170 }
5171 
5172 static void
5173 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5174 {
5175 	blkptr_t bp_copy = *bp;
5176 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
5177 	dbuf_remap_impl_callback_arg_t drica;
5178 
5179 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5180 
5181 	drica.drica_os = dn->dn_objset;
5182 	drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp);
5183 	drica.drica_tx = tx;
5184 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5185 	    &drica)) {
5186 		/*
5187 		 * If the blkptr being remapped is tracked by a livelist,
5188 		 * then we need to make sure the livelist reflects the update.
5189 		 * First, cancel out the old blkptr by appending a 'FREE'
5190 		 * entry. Next, add an 'ALLOC' to track the new version. This
5191 		 * way we avoid trying to free an inaccurate blkptr at delete.
5192 		 * Note that embedded blkptrs are not tracked in livelists.
5193 		 */
5194 		if (dn->dn_objset != spa_meta_objset(spa)) {
5195 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5196 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5197 			    BP_GET_LOGICAL_BIRTH(bp) >
5198 			    ds->ds_dir->dd_origin_txg) {
5199 				ASSERT(!BP_IS_EMBEDDED(bp));
5200 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
5201 				ASSERT(spa_feature_is_enabled(spa,
5202 				    SPA_FEATURE_LIVELIST));
5203 				bplist_append(&ds->ds_dir->dd_pending_frees,
5204 				    bp);
5205 				bplist_append(&ds->ds_dir->dd_pending_allocs,
5206 				    &bp_copy);
5207 			}
5208 		}
5209 
5210 		/*
5211 		 * The db_rwlock prevents dbuf_read_impl() from
5212 		 * dereferencing the BP while we are changing it.  To
5213 		 * avoid lock contention, only grab it when we are actually
5214 		 * changing the BP.
5215 		 */
5216 		if (rw != NULL)
5217 			rw_enter(rw, RW_WRITER);
5218 		*bp = bp_copy;
5219 		if (rw != NULL)
5220 			rw_exit(rw);
5221 	}
5222 }
5223 
5224 /*
5225  * Remap any existing BP's to concrete vdevs, if possible.
5226  */
5227 static void
5228 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5229 {
5230 	spa_t *spa = dmu_objset_spa(db->db_objset);
5231 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5232 
5233 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5234 		return;
5235 
5236 	if (db->db_level > 0) {
5237 		blkptr_t *bp = db->db.db_data;
5238 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5239 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5240 		}
5241 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5242 		dnode_phys_t *dnp = db->db.db_data;
5243 		ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5244 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5245 		    i += dnp[i].dn_extra_slots + 1) {
5246 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5247 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5248 				    &dn->dn_dbuf->db_rwlock);
5249 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5250 				    tx);
5251 			}
5252 		}
5253 	}
5254 }
5255 
5256 
5257 /*
5258  * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5259  * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5260  */
5261 static void
5262 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5263 {
5264 	dmu_buf_impl_t *db = dr->dr_dbuf;
5265 	dnode_t *dn = dr->dr_dnode;
5266 	objset_t *os;
5267 	dmu_buf_impl_t *parent = db->db_parent;
5268 	uint64_t txg = tx->tx_txg;
5269 	zbookmark_phys_t zb;
5270 	zio_prop_t zp;
5271 	zio_t *pio; /* parent I/O */
5272 	int wp_flag = 0;
5273 
5274 	ASSERT(dmu_tx_is_syncing(tx));
5275 
5276 	os = dn->dn_objset;
5277 
5278 	if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5279 		/*
5280 		 * Private object buffers are released here rather than in
5281 		 * dbuf_dirty() since they are only modified in the syncing
5282 		 * context and we don't want the overhead of making multiple
5283 		 * copies of the data.
5284 		 */
5285 		if (BP_IS_HOLE(db->db_blkptr))
5286 			arc_buf_thaw(data);
5287 		else
5288 			dbuf_release_bp(db);
5289 		dbuf_remap(dn, db, tx);
5290 	}
5291 
5292 	if (parent != dn->dn_dbuf) {
5293 		/* Our parent is an indirect block. */
5294 		/* We have a dirty parent that has been scheduled for write. */
5295 		ASSERT(parent && parent->db_data_pending);
5296 		/* Our parent's buffer is one level closer to the dnode. */
5297 		ASSERT(db->db_level == parent->db_level-1);
5298 		/*
5299 		 * We're about to modify our parent's db_data by modifying
5300 		 * our block pointer, so the parent must be released.
5301 		 */
5302 		ASSERT(arc_released(parent->db_buf));
5303 		pio = parent->db_data_pending->dr_zio;
5304 	} else {
5305 		/* Our parent is the dnode itself. */
5306 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5307 		    db->db_blkid != DMU_SPILL_BLKID) ||
5308 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5309 		if (db->db_blkid != DMU_SPILL_BLKID)
5310 			ASSERT3P(db->db_blkptr, ==,
5311 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
5312 		pio = dn->dn_zio;
5313 	}
5314 
5315 	ASSERT(db->db_level == 0 || data == db->db_buf);
5316 	ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg);
5317 	ASSERT(pio);
5318 
5319 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5320 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5321 	    db->db.db_object, db->db_level, db->db_blkid);
5322 
5323 	if (db->db_blkid == DMU_SPILL_BLKID)
5324 		wp_flag = WP_SPILL;
5325 	wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5326 
5327 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5328 
5329 	/*
5330 	 * We copy the blkptr now (rather than when we instantiate the dirty
5331 	 * record), because its value can change between open context and
5332 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5333 	 * db_blkptr because we are in syncing context.
5334 	 */
5335 	dr->dr_bp_copy = *db->db_blkptr;
5336 
5337 	if (db->db_level == 0 &&
5338 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5339 		/*
5340 		 * The BP for this block has been provided by open context
5341 		 * (by dmu_sync(), dmu_write_direct(),
5342 		 *  or dmu_buf_write_embedded()).
5343 		 */
5344 		abd_t *contents = (data != NULL) ?
5345 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5346 
5347 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5348 		    contents, db->db.db_size, db->db.db_size, &zp,
5349 		    dbuf_write_override_ready, NULL,
5350 		    dbuf_write_override_done,
5351 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5352 		mutex_enter(&db->db_mtx);
5353 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5354 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5355 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5356 		    dr->dt.dl.dr_brtwrite);
5357 		mutex_exit(&db->db_mtx);
5358 	} else if (data == NULL) {
5359 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5360 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5361 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5362 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5363 		    dbuf_write_nofill_ready, NULL,
5364 		    dbuf_write_nofill_done, db,
5365 		    ZIO_PRIORITY_ASYNC_WRITE,
5366 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5367 	} else {
5368 		ASSERT(arc_released(data));
5369 
5370 		/*
5371 		 * For indirect blocks, we want to setup the children
5372 		 * ready callback so that we can properly handle an indirect
5373 		 * block that only contains holes.
5374 		 */
5375 		arc_write_done_func_t *children_ready_cb = NULL;
5376 		if (db->db_level != 0)
5377 			children_ready_cb = dbuf_write_children_ready;
5378 
5379 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5380 		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5381 		    dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5382 		    children_ready_cb, dbuf_write_done, db,
5383 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5384 	}
5385 }
5386 
5387 EXPORT_SYMBOL(dbuf_find);
5388 EXPORT_SYMBOL(dbuf_is_metadata);
5389 EXPORT_SYMBOL(dbuf_destroy);
5390 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5391 EXPORT_SYMBOL(dbuf_whichblock);
5392 EXPORT_SYMBOL(dbuf_read);
5393 EXPORT_SYMBOL(dbuf_unoverride);
5394 EXPORT_SYMBOL(dbuf_free_range);
5395 EXPORT_SYMBOL(dbuf_new_size);
5396 EXPORT_SYMBOL(dbuf_release_bp);
5397 EXPORT_SYMBOL(dbuf_dirty);
5398 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5399 EXPORT_SYMBOL(dmu_buf_will_dirty);
5400 EXPORT_SYMBOL(dmu_buf_is_dirty);
5401 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5402 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5403 EXPORT_SYMBOL(dmu_buf_will_fill);
5404 EXPORT_SYMBOL(dmu_buf_fill_done);
5405 EXPORT_SYMBOL(dmu_buf_rele);
5406 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5407 EXPORT_SYMBOL(dbuf_prefetch);
5408 EXPORT_SYMBOL(dbuf_hold_impl);
5409 EXPORT_SYMBOL(dbuf_hold);
5410 EXPORT_SYMBOL(dbuf_hold_level);
5411 EXPORT_SYMBOL(dbuf_create_bonus);
5412 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5413 EXPORT_SYMBOL(dbuf_rm_spill);
5414 EXPORT_SYMBOL(dbuf_add_ref);
5415 EXPORT_SYMBOL(dbuf_rele);
5416 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5417 EXPORT_SYMBOL(dbuf_refcount);
5418 EXPORT_SYMBOL(dbuf_sync_list);
5419 EXPORT_SYMBOL(dmu_buf_set_user);
5420 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5421 EXPORT_SYMBOL(dmu_buf_get_user);
5422 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5423 
5424 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5425 	"Maximum size in bytes of the dbuf cache.");
5426 
5427 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5428 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5429 
5430 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5431 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5432 
5433 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5434 	"Maximum size in bytes of dbuf metadata cache.");
5435 
5436 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5437 	"Set size of dbuf cache to log2 fraction of arc size.");
5438 
5439 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5440 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5441 
5442 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5443 	"Set size of dbuf cache mutex array as log2 shift.");
5444