1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 /* 93 * Number of sublists containing more than one dbuf in the dbuf 94 * hash table. Keep track of the longest hash chain. 95 */ 96 kstat_named_t hash_chains; 97 kstat_named_t hash_chain_max; 98 /* 99 * Number of times a dbuf_create() discovers that a dbuf was 100 * already created and in the dbuf hash table. 101 */ 102 kstat_named_t hash_insert_race; 103 /* 104 * Number of entries in the hash table dbuf and mutex arrays. 105 */ 106 kstat_named_t hash_table_count; 107 kstat_named_t hash_mutex_count; 108 /* 109 * Statistics about the size of the metadata dbuf cache. 110 */ 111 kstat_named_t metadata_cache_count; 112 kstat_named_t metadata_cache_size_bytes; 113 kstat_named_t metadata_cache_size_bytes_max; 114 /* 115 * For diagnostic purposes, this is incremented whenever we can't add 116 * something to the metadata cache because it's full, and instead put 117 * the data in the regular dbuf cache. 118 */ 119 kstat_named_t metadata_cache_overflow; 120 } dbuf_stats_t; 121 122 dbuf_stats_t dbuf_stats = { 123 { "cache_count", KSTAT_DATA_UINT64 }, 124 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 126 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 127 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 130 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 131 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 132 { "hash_hits", KSTAT_DATA_UINT64 }, 133 { "hash_misses", KSTAT_DATA_UINT64 }, 134 { "hash_collisions", KSTAT_DATA_UINT64 }, 135 { "hash_elements", KSTAT_DATA_UINT64 }, 136 { "hash_chains", KSTAT_DATA_UINT64 }, 137 { "hash_chain_max", KSTAT_DATA_UINT64 }, 138 { "hash_insert_race", KSTAT_DATA_UINT64 }, 139 { "hash_table_count", KSTAT_DATA_UINT64 }, 140 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 141 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 142 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 145 }; 146 147 struct { 148 wmsum_t cache_count; 149 wmsum_t cache_total_evicts; 150 wmsum_t cache_levels[DN_MAX_LEVELS]; 151 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 152 wmsum_t hash_hits; 153 wmsum_t hash_misses; 154 wmsum_t hash_collisions; 155 wmsum_t hash_elements; 156 wmsum_t hash_chains; 157 wmsum_t hash_insert_race; 158 wmsum_t metadata_cache_count; 159 wmsum_t metadata_cache_overflow; 160 } dbuf_sums; 161 162 #define DBUF_STAT_INCR(stat, val) \ 163 wmsum_add(&dbuf_sums.stat, val) 164 #define DBUF_STAT_DECR(stat, val) \ 165 DBUF_STAT_INCR(stat, -(val)) 166 #define DBUF_STAT_BUMP(stat) \ 167 DBUF_STAT_INCR(stat, 1) 168 #define DBUF_STAT_BUMPDOWN(stat) \ 169 DBUF_STAT_INCR(stat, -1) 170 #define DBUF_STAT_MAX(stat, v) { \ 171 uint64_t _m; \ 172 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 173 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 174 continue; \ 175 } 176 177 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 178 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 179 180 /* 181 * Global data structures and functions for the dbuf cache. 182 */ 183 static kmem_cache_t *dbuf_kmem_cache; 184 kmem_cache_t *dbuf_dirty_kmem_cache; 185 static taskq_t *dbu_evict_taskq; 186 187 static kthread_t *dbuf_cache_evict_thread; 188 static kmutex_t dbuf_evict_lock; 189 static kcondvar_t dbuf_evict_cv; 190 static boolean_t dbuf_evict_thread_exit; 191 192 /* 193 * There are two dbuf caches; each dbuf can only be in one of them at a time. 194 * 195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 197 * that represent the metadata that describes filesystems/snapshots/ 198 * bookmarks/properties/etc. We only evict from this cache when we export a 199 * pool, to short-circuit as much I/O as possible for all administrative 200 * commands that need the metadata. There is no eviction policy for this 201 * cache, because we try to only include types in it which would occupy a 202 * very small amount of space per object but create a large impact on the 203 * performance of these commands. Instead, after it reaches a maximum size 204 * (which should only happen on very small memory systems with a very large 205 * number of filesystem objects), we stop taking new dbufs into the 206 * metadata cache, instead putting them in the normal dbuf cache. 207 * 208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 209 * are not currently held but have been recently released. These dbufs 210 * are not eligible for arc eviction until they are aged out of the cache. 211 * Dbufs that are aged out of the cache will be immediately destroyed and 212 * become eligible for arc eviction. 213 * 214 * Dbufs are added to these caches once the last hold is released. If a dbuf is 215 * later accessed and still exists in the dbuf cache, then it will be removed 216 * from the cache and later re-added to the head of the cache. 217 * 218 * If a given dbuf meets the requirements for the metadata cache, it will go 219 * there, otherwise it will be considered for the generic LRU dbuf cache. The 220 * caches and the refcounts tracking their sizes are stored in an array indexed 221 * by those caches' matching enum values (from dbuf_cached_state_t). 222 */ 223 typedef struct dbuf_cache { 224 multilist_t cache; 225 zfs_refcount_t size ____cacheline_aligned; 226 } dbuf_cache_t; 227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 228 229 /* Size limits for the caches */ 230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 232 233 /* Set the default sizes of the caches to log2 fraction of arc size */ 234 static uint_t dbuf_cache_shift = 5; 235 static uint_t dbuf_metadata_cache_shift = 6; 236 237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 238 static uint_t dbuf_mutex_cache_shift = 0; 239 240 static unsigned long dbuf_cache_target_bytes(void); 241 static unsigned long dbuf_metadata_cache_target_bytes(void); 242 243 /* 244 * The LRU dbuf cache uses a three-stage eviction policy: 245 * - A low water marker designates when the dbuf eviction thread 246 * should stop evicting from the dbuf cache. 247 * - When we reach the maximum size (aka mid water mark), we 248 * signal the eviction thread to run. 249 * - The high water mark indicates when the eviction thread 250 * is unable to keep up with the incoming load and eviction must 251 * happen in the context of the calling thread. 252 * 253 * The dbuf cache: 254 * (max size) 255 * low water mid water hi water 256 * +----------------------------------------+----------+----------+ 257 * | | | | 258 * | | | | 259 * | | | | 260 * | | | | 261 * +----------------------------------------+----------+----------+ 262 * stop signal evict 263 * evicting eviction directly 264 * thread 265 * 266 * The high and low water marks indicate the operating range for the eviction 267 * thread. The low water mark is, by default, 90% of the total size of the 268 * cache and the high water mark is at 110% (both of these percentages can be 269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 270 * respectively). The eviction thread will try to ensure that the cache remains 271 * within this range by waking up every second and checking if the cache is 272 * above the low water mark. The thread can also be woken up by callers adding 273 * elements into the cache if the cache is larger than the mid water (i.e max 274 * cache size). Once the eviction thread is woken up and eviction is required, 275 * it will continue evicting buffers until it's able to reduce the cache size 276 * to the low water mark. If the cache size continues to grow and hits the high 277 * water mark, then callers adding elements to the cache will begin to evict 278 * directly from the cache until the cache is no longer above the high water 279 * mark. 280 */ 281 282 /* 283 * The percentage above and below the maximum cache size. 284 */ 285 static uint_t dbuf_cache_hiwater_pct = 10; 286 static uint_t dbuf_cache_lowater_pct = 10; 287 288 static int 289 dbuf_cons(void *vdb, void *unused, int kmflag) 290 { 291 (void) unused, (void) kmflag; 292 dmu_buf_impl_t *db = vdb; 293 memset(db, 0, sizeof (dmu_buf_impl_t)); 294 295 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 296 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 298 multilist_link_init(&db->db_cache_link); 299 zfs_refcount_create(&db->db_holds); 300 301 return (0); 302 } 303 304 static void 305 dbuf_dest(void *vdb, void *unused) 306 { 307 (void) unused; 308 dmu_buf_impl_t *db = vdb; 309 mutex_destroy(&db->db_mtx); 310 rw_destroy(&db->db_rwlock); 311 cv_destroy(&db->db_changed); 312 ASSERT(!multilist_link_active(&db->db_cache_link)); 313 zfs_refcount_destroy(&db->db_holds); 314 } 315 316 /* 317 * dbuf hash table routines 318 */ 319 static dbuf_hash_table_t dbuf_hash_table; 320 321 /* 322 * We use Cityhash for this. It's fast, and has good hash properties without 323 * requiring any large static buffers. 324 */ 325 static uint64_t 326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 327 { 328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 329 } 330 331 #define DTRACE_SET_STATE(db, why) \ 332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 333 const char *, why) 334 335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 336 ((dbuf)->db.db_object == (obj) && \ 337 (dbuf)->db_objset == (os) && \ 338 (dbuf)->db_level == (level) && \ 339 (dbuf)->db_blkid == (blkid)) 340 341 dmu_buf_impl_t * 342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 343 uint64_t *hash_out) 344 { 345 dbuf_hash_table_t *h = &dbuf_hash_table; 346 uint64_t hv; 347 uint64_t idx; 348 dmu_buf_impl_t *db; 349 350 hv = dbuf_hash(os, obj, level, blkid); 351 idx = hv & h->hash_table_mask; 352 353 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 355 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 356 mutex_enter(&db->db_mtx); 357 if (db->db_state != DB_EVICTING) { 358 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 359 return (db); 360 } 361 mutex_exit(&db->db_mtx); 362 } 363 } 364 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 365 if (hash_out != NULL) 366 *hash_out = hv; 367 return (NULL); 368 } 369 370 static dmu_buf_impl_t * 371 dbuf_find_bonus(objset_t *os, uint64_t object) 372 { 373 dnode_t *dn; 374 dmu_buf_impl_t *db = NULL; 375 376 if (dnode_hold(os, object, FTAG, &dn) == 0) { 377 rw_enter(&dn->dn_struct_rwlock, RW_READER); 378 if (dn->dn_bonus != NULL) { 379 db = dn->dn_bonus; 380 mutex_enter(&db->db_mtx); 381 } 382 rw_exit(&dn->dn_struct_rwlock); 383 dnode_rele(dn, FTAG); 384 } 385 return (db); 386 } 387 388 /* 389 * Insert an entry into the hash table. If there is already an element 390 * equal to elem in the hash table, then the already existing element 391 * will be returned and the new element will not be inserted. 392 * Otherwise returns NULL. 393 */ 394 static dmu_buf_impl_t * 395 dbuf_hash_insert(dmu_buf_impl_t *db) 396 { 397 dbuf_hash_table_t *h = &dbuf_hash_table; 398 objset_t *os = db->db_objset; 399 uint64_t obj = db->db.db_object; 400 int level = db->db_level; 401 uint64_t blkid, idx; 402 dmu_buf_impl_t *dbf; 403 uint32_t i; 404 405 blkid = db->db_blkid; 406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 407 idx = db->db_hash & h->hash_table_mask; 408 409 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 411 dbf = dbf->db_hash_next, i++) { 412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 413 mutex_enter(&dbf->db_mtx); 414 if (dbf->db_state != DB_EVICTING) { 415 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 416 return (dbf); 417 } 418 mutex_exit(&dbf->db_mtx); 419 } 420 } 421 422 if (i > 0) { 423 DBUF_STAT_BUMP(hash_collisions); 424 if (i == 1) 425 DBUF_STAT_BUMP(hash_chains); 426 427 DBUF_STAT_MAX(hash_chain_max, i); 428 } 429 430 mutex_enter(&db->db_mtx); 431 db->db_hash_next = h->hash_table[idx]; 432 h->hash_table[idx] = db; 433 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 434 DBUF_STAT_BUMP(hash_elements); 435 436 return (NULL); 437 } 438 439 /* 440 * This returns whether this dbuf should be stored in the metadata cache, which 441 * is based on whether it's from one of the dnode types that store data related 442 * to traversing dataset hierarchies. 443 */ 444 static boolean_t 445 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 446 { 447 DB_DNODE_ENTER(db); 448 dmu_object_type_t type = DB_DNODE(db)->dn_type; 449 DB_DNODE_EXIT(db); 450 451 /* Check if this dbuf is one of the types we care about */ 452 if (DMU_OT_IS_METADATA_CACHED(type)) { 453 /* If we hit this, then we set something up wrong in dmu_ot */ 454 ASSERT(DMU_OT_IS_METADATA(type)); 455 456 /* 457 * Sanity check for small-memory systems: don't allocate too 458 * much memory for this purpose. 459 */ 460 if (zfs_refcount_count( 461 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 462 dbuf_metadata_cache_target_bytes()) { 463 DBUF_STAT_BUMP(metadata_cache_overflow); 464 return (B_FALSE); 465 } 466 467 return (B_TRUE); 468 } 469 470 return (B_FALSE); 471 } 472 473 /* 474 * Remove an entry from the hash table. It must be in the EVICTING state. 475 */ 476 static void 477 dbuf_hash_remove(dmu_buf_impl_t *db) 478 { 479 dbuf_hash_table_t *h = &dbuf_hash_table; 480 uint64_t idx; 481 dmu_buf_impl_t *dbf, **dbp; 482 483 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 484 db->db_blkid), ==, db->db_hash); 485 idx = db->db_hash & h->hash_table_mask; 486 487 /* 488 * We mustn't hold db_mtx to maintain lock ordering: 489 * DBUF_HASH_MUTEX > db_mtx. 490 */ 491 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 492 ASSERT(db->db_state == DB_EVICTING); 493 ASSERT(!MUTEX_HELD(&db->db_mtx)); 494 495 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 496 dbp = &h->hash_table[idx]; 497 while ((dbf = *dbp) != db) { 498 dbp = &dbf->db_hash_next; 499 ASSERT(dbf != NULL); 500 } 501 *dbp = db->db_hash_next; 502 db->db_hash_next = NULL; 503 if (h->hash_table[idx] && 504 h->hash_table[idx]->db_hash_next == NULL) 505 DBUF_STAT_BUMPDOWN(hash_chains); 506 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 507 DBUF_STAT_BUMPDOWN(hash_elements); 508 } 509 510 typedef enum { 511 DBVU_EVICTING, 512 DBVU_NOT_EVICTING 513 } dbvu_verify_type_t; 514 515 static void 516 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 517 { 518 #ifdef ZFS_DEBUG 519 int64_t holds; 520 521 if (db->db_user == NULL) 522 return; 523 524 /* Only data blocks support the attachment of user data. */ 525 ASSERT(db->db_level == 0); 526 527 /* Clients must resolve a dbuf before attaching user data. */ 528 ASSERT(db->db.db_data != NULL); 529 ASSERT3U(db->db_state, ==, DB_CACHED); 530 531 holds = zfs_refcount_count(&db->db_holds); 532 if (verify_type == DBVU_EVICTING) { 533 /* 534 * Immediate eviction occurs when holds == dirtycnt. 535 * For normal eviction buffers, holds is zero on 536 * eviction, except when dbuf_fix_old_data() calls 537 * dbuf_clear_data(). However, the hold count can grow 538 * during eviction even though db_mtx is held (see 539 * dmu_bonus_hold() for an example), so we can only 540 * test the generic invariant that holds >= dirtycnt. 541 */ 542 ASSERT3U(holds, >=, db->db_dirtycnt); 543 } else { 544 if (db->db_user_immediate_evict == TRUE) 545 ASSERT3U(holds, >=, db->db_dirtycnt); 546 else 547 ASSERT3U(holds, >, 0); 548 } 549 #endif 550 } 551 552 static void 553 dbuf_evict_user(dmu_buf_impl_t *db) 554 { 555 dmu_buf_user_t *dbu = db->db_user; 556 557 ASSERT(MUTEX_HELD(&db->db_mtx)); 558 559 if (dbu == NULL) 560 return; 561 562 dbuf_verify_user(db, DBVU_EVICTING); 563 db->db_user = NULL; 564 565 #ifdef ZFS_DEBUG 566 if (dbu->dbu_clear_on_evict_dbufp != NULL) 567 *dbu->dbu_clear_on_evict_dbufp = NULL; 568 #endif 569 570 if (db->db_caching_status != DB_NO_CACHE) { 571 /* 572 * This is a cached dbuf, so the size of the user data is 573 * included in its cached amount. We adjust it here because the 574 * user data has already been detached from the dbuf, and the 575 * sync functions are not supposed to touch it (the dbuf might 576 * not exist anymore by the time the sync functions run. 577 */ 578 uint64_t size = dbu->dbu_size; 579 (void) zfs_refcount_remove_many( 580 &dbuf_caches[db->db_caching_status].size, size, dbu); 581 if (db->db_caching_status == DB_DBUF_CACHE) 582 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 583 } 584 585 /* 586 * There are two eviction callbacks - one that we call synchronously 587 * and one that we invoke via a taskq. The async one is useful for 588 * avoiding lock order reversals and limiting stack depth. 589 * 590 * Note that if we have a sync callback but no async callback, 591 * it's likely that the sync callback will free the structure 592 * containing the dbu. In that case we need to take care to not 593 * dereference dbu after calling the sync evict func. 594 */ 595 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 596 597 if (dbu->dbu_evict_func_sync != NULL) 598 dbu->dbu_evict_func_sync(dbu); 599 600 if (has_async) { 601 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 602 dbu, 0, &dbu->dbu_tqent); 603 } 604 } 605 606 boolean_t 607 dbuf_is_metadata(dmu_buf_impl_t *db) 608 { 609 /* 610 * Consider indirect blocks and spill blocks to be meta data. 611 */ 612 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 613 return (B_TRUE); 614 } else { 615 boolean_t is_metadata; 616 617 DB_DNODE_ENTER(db); 618 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 619 DB_DNODE_EXIT(db); 620 621 return (is_metadata); 622 } 623 } 624 625 /* 626 * We want to exclude buffers that are on a special allocation class from 627 * L2ARC. 628 */ 629 boolean_t 630 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp) 631 { 632 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 633 (db->db_objset->os_secondary_cache == 634 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 635 if (l2arc_exclude_special == 0) 636 return (B_TRUE); 637 638 /* 639 * bp must be checked in the event it was passed from 640 * dbuf_read_impl() as the result of a the BP being set from 641 * a Direct I/O write in dbuf_read(). See comments in 642 * dbuf_read(). 643 */ 644 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp; 645 646 if (db_bp == NULL || BP_IS_HOLE(db_bp)) 647 return (B_FALSE); 648 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva); 649 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 650 vdev_t *vd = NULL; 651 652 if (vdev < rvd->vdev_children) 653 vd = rvd->vdev_child[vdev]; 654 655 if (vd == NULL) 656 return (B_TRUE); 657 658 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 659 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 660 return (B_TRUE); 661 } 662 return (B_FALSE); 663 } 664 665 static inline boolean_t 666 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 667 { 668 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 669 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 670 (level > 0 || 671 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 672 if (l2arc_exclude_special == 0) 673 return (B_TRUE); 674 675 if (bp == NULL || BP_IS_HOLE(bp)) 676 return (B_FALSE); 677 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 678 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 679 vdev_t *vd = NULL; 680 681 if (vdev < rvd->vdev_children) 682 vd = rvd->vdev_child[vdev]; 683 684 if (vd == NULL) 685 return (B_TRUE); 686 687 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 688 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 689 return (B_TRUE); 690 } 691 return (B_FALSE); 692 } 693 694 695 /* 696 * This function *must* return indices evenly distributed between all 697 * sublists of the multilist. This is needed due to how the dbuf eviction 698 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 699 * distributed between all sublists and uses this assumption when 700 * deciding which sublist to evict from and how much to evict from it. 701 */ 702 static unsigned int 703 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 704 { 705 dmu_buf_impl_t *db = obj; 706 707 /* 708 * The assumption here, is the hash value for a given 709 * dmu_buf_impl_t will remain constant throughout it's lifetime 710 * (i.e. it's objset, object, level and blkid fields don't change). 711 * Thus, we don't need to store the dbuf's sublist index 712 * on insertion, as this index can be recalculated on removal. 713 * 714 * Also, the low order bits of the hash value are thought to be 715 * distributed evenly. Otherwise, in the case that the multilist 716 * has a power of two number of sublists, each sublists' usage 717 * would not be evenly distributed. In this context full 64bit 718 * division would be a waste of time, so limit it to 32 bits. 719 */ 720 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 721 db->db_level, db->db_blkid) % 722 multilist_get_num_sublists(ml)); 723 } 724 725 /* 726 * The target size of the dbuf cache can grow with the ARC target, 727 * unless limited by the tunable dbuf_cache_max_bytes. 728 */ 729 static inline unsigned long 730 dbuf_cache_target_bytes(void) 731 { 732 return (MIN(dbuf_cache_max_bytes, 733 arc_target_bytes() >> dbuf_cache_shift)); 734 } 735 736 /* 737 * The target size of the dbuf metadata cache can grow with the ARC target, 738 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 739 */ 740 static inline unsigned long 741 dbuf_metadata_cache_target_bytes(void) 742 { 743 return (MIN(dbuf_metadata_cache_max_bytes, 744 arc_target_bytes() >> dbuf_metadata_cache_shift)); 745 } 746 747 static inline uint64_t 748 dbuf_cache_hiwater_bytes(void) 749 { 750 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 751 return (dbuf_cache_target + 752 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 753 } 754 755 static inline uint64_t 756 dbuf_cache_lowater_bytes(void) 757 { 758 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 759 return (dbuf_cache_target - 760 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 761 } 762 763 static inline boolean_t 764 dbuf_cache_above_lowater(void) 765 { 766 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 767 dbuf_cache_lowater_bytes()); 768 } 769 770 /* 771 * Evict the oldest eligible dbuf from the dbuf cache. 772 */ 773 static void 774 dbuf_evict_one(void) 775 { 776 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 777 multilist_sublist_t *mls = multilist_sublist_lock_idx( 778 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 779 780 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 781 782 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 783 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 784 db = multilist_sublist_prev(mls, db); 785 } 786 787 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 788 multilist_sublist_t *, mls); 789 790 if (db != NULL) { 791 multilist_sublist_remove(mls, db); 792 multilist_sublist_unlock(mls); 793 uint64_t size = db->db.db_size; 794 uint64_t usize = dmu_buf_user_size(&db->db); 795 (void) zfs_refcount_remove_many( 796 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 797 (void) zfs_refcount_remove_many( 798 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 799 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 800 DBUF_STAT_BUMPDOWN(cache_count); 801 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 802 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 803 db->db_caching_status = DB_NO_CACHE; 804 dbuf_destroy(db); 805 DBUF_STAT_BUMP(cache_total_evicts); 806 } else { 807 multilist_sublist_unlock(mls); 808 } 809 } 810 811 /* 812 * The dbuf evict thread is responsible for aging out dbufs from the 813 * cache. Once the cache has reached it's maximum size, dbufs are removed 814 * and destroyed. The eviction thread will continue running until the size 815 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 816 * out of the cache it is destroyed and becomes eligible for arc eviction. 817 */ 818 static __attribute__((noreturn)) void 819 dbuf_evict_thread(void *unused) 820 { 821 (void) unused; 822 callb_cpr_t cpr; 823 824 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 825 826 mutex_enter(&dbuf_evict_lock); 827 while (!dbuf_evict_thread_exit) { 828 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 829 CALLB_CPR_SAFE_BEGIN(&cpr); 830 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 831 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 832 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 833 } 834 mutex_exit(&dbuf_evict_lock); 835 836 /* 837 * Keep evicting as long as we're above the low water mark 838 * for the cache. We do this without holding the locks to 839 * minimize lock contention. 840 */ 841 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 842 dbuf_evict_one(); 843 } 844 845 mutex_enter(&dbuf_evict_lock); 846 } 847 848 dbuf_evict_thread_exit = B_FALSE; 849 cv_broadcast(&dbuf_evict_cv); 850 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 851 thread_exit(); 852 } 853 854 /* 855 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 856 * If the dbuf cache is at its high water mark, then evict a dbuf from the 857 * dbuf cache using the caller's context. 858 */ 859 static void 860 dbuf_evict_notify(uint64_t size) 861 { 862 /* 863 * We check if we should evict without holding the dbuf_evict_lock, 864 * because it's OK to occasionally make the wrong decision here, 865 * and grabbing the lock results in massive lock contention. 866 */ 867 if (size > dbuf_cache_target_bytes()) { 868 if (size > dbuf_cache_hiwater_bytes()) 869 dbuf_evict_one(); 870 cv_signal(&dbuf_evict_cv); 871 } 872 } 873 874 static int 875 dbuf_kstat_update(kstat_t *ksp, int rw) 876 { 877 dbuf_stats_t *ds = ksp->ks_data; 878 dbuf_hash_table_t *h = &dbuf_hash_table; 879 880 if (rw == KSTAT_WRITE) 881 return (SET_ERROR(EACCES)); 882 883 ds->cache_count.value.ui64 = 884 wmsum_value(&dbuf_sums.cache_count); 885 ds->cache_size_bytes.value.ui64 = 886 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 887 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 888 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 889 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 890 ds->cache_total_evicts.value.ui64 = 891 wmsum_value(&dbuf_sums.cache_total_evicts); 892 for (int i = 0; i < DN_MAX_LEVELS; i++) { 893 ds->cache_levels[i].value.ui64 = 894 wmsum_value(&dbuf_sums.cache_levels[i]); 895 ds->cache_levels_bytes[i].value.ui64 = 896 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 897 } 898 ds->hash_hits.value.ui64 = 899 wmsum_value(&dbuf_sums.hash_hits); 900 ds->hash_misses.value.ui64 = 901 wmsum_value(&dbuf_sums.hash_misses); 902 ds->hash_collisions.value.ui64 = 903 wmsum_value(&dbuf_sums.hash_collisions); 904 ds->hash_elements.value.ui64 = 905 wmsum_value(&dbuf_sums.hash_elements); 906 ds->hash_chains.value.ui64 = 907 wmsum_value(&dbuf_sums.hash_chains); 908 ds->hash_insert_race.value.ui64 = 909 wmsum_value(&dbuf_sums.hash_insert_race); 910 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 911 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 912 ds->metadata_cache_count.value.ui64 = 913 wmsum_value(&dbuf_sums.metadata_cache_count); 914 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 915 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 916 ds->metadata_cache_overflow.value.ui64 = 917 wmsum_value(&dbuf_sums.metadata_cache_overflow); 918 return (0); 919 } 920 921 void 922 dbuf_init(void) 923 { 924 uint64_t hmsize, hsize = 1ULL << 16; 925 dbuf_hash_table_t *h = &dbuf_hash_table; 926 927 /* 928 * The hash table is big enough to fill one eighth of physical memory 929 * with an average block size of zfs_arc_average_blocksize (default 8K). 930 * By default, the table will take up 931 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 932 */ 933 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 934 hsize <<= 1; 935 936 h->hash_table = NULL; 937 while (h->hash_table == NULL) { 938 h->hash_table_mask = hsize - 1; 939 940 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 941 if (h->hash_table == NULL) 942 hsize >>= 1; 943 944 ASSERT3U(hsize, >=, 1ULL << 10); 945 } 946 947 /* 948 * The hash table buckets are protected by an array of mutexes where 949 * each mutex is reponsible for protecting 128 buckets. A minimum 950 * array size of 8192 is targeted to avoid contention. 951 */ 952 if (dbuf_mutex_cache_shift == 0) 953 hmsize = MAX(hsize >> 7, 1ULL << 13); 954 else 955 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 956 957 h->hash_mutexes = NULL; 958 while (h->hash_mutexes == NULL) { 959 h->hash_mutex_mask = hmsize - 1; 960 961 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 962 KM_SLEEP); 963 if (h->hash_mutexes == NULL) 964 hmsize >>= 1; 965 } 966 967 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 968 sizeof (dmu_buf_impl_t), 969 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 970 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t", 971 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 972 973 for (int i = 0; i < hmsize; i++) 974 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 975 976 dbuf_stats_init(h); 977 978 /* 979 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 980 * configuration is not required. 981 */ 982 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 983 984 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 985 multilist_create(&dbuf_caches[dcs].cache, 986 sizeof (dmu_buf_impl_t), 987 offsetof(dmu_buf_impl_t, db_cache_link), 988 dbuf_cache_multilist_index_func); 989 zfs_refcount_create(&dbuf_caches[dcs].size); 990 } 991 992 dbuf_evict_thread_exit = B_FALSE; 993 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 994 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 995 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 996 NULL, 0, &p0, TS_RUN, minclsyspri); 997 998 wmsum_init(&dbuf_sums.cache_count, 0); 999 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 1000 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1001 wmsum_init(&dbuf_sums.cache_levels[i], 0); 1002 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 1003 } 1004 wmsum_init(&dbuf_sums.hash_hits, 0); 1005 wmsum_init(&dbuf_sums.hash_misses, 0); 1006 wmsum_init(&dbuf_sums.hash_collisions, 0); 1007 wmsum_init(&dbuf_sums.hash_elements, 0); 1008 wmsum_init(&dbuf_sums.hash_chains, 0); 1009 wmsum_init(&dbuf_sums.hash_insert_race, 0); 1010 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1011 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1012 1013 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1014 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1015 KSTAT_FLAG_VIRTUAL); 1016 if (dbuf_ksp != NULL) { 1017 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1018 snprintf(dbuf_stats.cache_levels[i].name, 1019 KSTAT_STRLEN, "cache_level_%d", i); 1020 dbuf_stats.cache_levels[i].data_type = 1021 KSTAT_DATA_UINT64; 1022 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1023 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1024 dbuf_stats.cache_levels_bytes[i].data_type = 1025 KSTAT_DATA_UINT64; 1026 } 1027 dbuf_ksp->ks_data = &dbuf_stats; 1028 dbuf_ksp->ks_update = dbuf_kstat_update; 1029 kstat_install(dbuf_ksp); 1030 } 1031 } 1032 1033 void 1034 dbuf_fini(void) 1035 { 1036 dbuf_hash_table_t *h = &dbuf_hash_table; 1037 1038 dbuf_stats_destroy(); 1039 1040 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1041 mutex_destroy(&h->hash_mutexes[i]); 1042 1043 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1044 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1045 sizeof (kmutex_t)); 1046 1047 kmem_cache_destroy(dbuf_kmem_cache); 1048 kmem_cache_destroy(dbuf_dirty_kmem_cache); 1049 taskq_destroy(dbu_evict_taskq); 1050 1051 mutex_enter(&dbuf_evict_lock); 1052 dbuf_evict_thread_exit = B_TRUE; 1053 while (dbuf_evict_thread_exit) { 1054 cv_signal(&dbuf_evict_cv); 1055 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1056 } 1057 mutex_exit(&dbuf_evict_lock); 1058 1059 mutex_destroy(&dbuf_evict_lock); 1060 cv_destroy(&dbuf_evict_cv); 1061 1062 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1063 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1064 multilist_destroy(&dbuf_caches[dcs].cache); 1065 } 1066 1067 if (dbuf_ksp != NULL) { 1068 kstat_delete(dbuf_ksp); 1069 dbuf_ksp = NULL; 1070 } 1071 1072 wmsum_fini(&dbuf_sums.cache_count); 1073 wmsum_fini(&dbuf_sums.cache_total_evicts); 1074 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1075 wmsum_fini(&dbuf_sums.cache_levels[i]); 1076 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1077 } 1078 wmsum_fini(&dbuf_sums.hash_hits); 1079 wmsum_fini(&dbuf_sums.hash_misses); 1080 wmsum_fini(&dbuf_sums.hash_collisions); 1081 wmsum_fini(&dbuf_sums.hash_elements); 1082 wmsum_fini(&dbuf_sums.hash_chains); 1083 wmsum_fini(&dbuf_sums.hash_insert_race); 1084 wmsum_fini(&dbuf_sums.metadata_cache_count); 1085 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1086 } 1087 1088 /* 1089 * Other stuff. 1090 */ 1091 1092 #ifdef ZFS_DEBUG 1093 static void 1094 dbuf_verify(dmu_buf_impl_t *db) 1095 { 1096 dnode_t *dn; 1097 dbuf_dirty_record_t *dr; 1098 uint32_t txg_prev; 1099 1100 ASSERT(MUTEX_HELD(&db->db_mtx)); 1101 1102 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1103 return; 1104 1105 ASSERT(db->db_objset != NULL); 1106 DB_DNODE_ENTER(db); 1107 dn = DB_DNODE(db); 1108 if (dn == NULL) { 1109 ASSERT(db->db_parent == NULL); 1110 ASSERT(db->db_blkptr == NULL); 1111 } else { 1112 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1113 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1114 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1115 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1116 db->db_blkid == DMU_SPILL_BLKID || 1117 !avl_is_empty(&dn->dn_dbufs)); 1118 } 1119 if (db->db_blkid == DMU_BONUS_BLKID) { 1120 ASSERT(dn != NULL); 1121 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1122 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1123 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1124 ASSERT(dn != NULL); 1125 ASSERT0(db->db.db_offset); 1126 } else { 1127 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1128 } 1129 1130 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1131 ASSERT(dr->dr_dbuf == db); 1132 txg_prev = dr->dr_txg; 1133 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1134 dr = list_next(&db->db_dirty_records, dr)) { 1135 ASSERT(dr->dr_dbuf == db); 1136 ASSERT(txg_prev > dr->dr_txg); 1137 txg_prev = dr->dr_txg; 1138 } 1139 } 1140 1141 /* 1142 * We can't assert that db_size matches dn_datablksz because it 1143 * can be momentarily different when another thread is doing 1144 * dnode_set_blksz(). 1145 */ 1146 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1147 dr = db->db_data_pending; 1148 /* 1149 * It should only be modified in syncing context, so 1150 * make sure we only have one copy of the data. 1151 */ 1152 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1153 } 1154 1155 /* verify db->db_blkptr */ 1156 if (db->db_blkptr) { 1157 if (db->db_parent == dn->dn_dbuf) { 1158 /* db is pointed to by the dnode */ 1159 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1160 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1161 ASSERT(db->db_parent == NULL); 1162 else 1163 ASSERT(db->db_parent != NULL); 1164 if (db->db_blkid != DMU_SPILL_BLKID) 1165 ASSERT3P(db->db_blkptr, ==, 1166 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1167 } else { 1168 /* db is pointed to by an indirect block */ 1169 int epb __maybe_unused = db->db_parent->db.db_size >> 1170 SPA_BLKPTRSHIFT; 1171 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1172 ASSERT3U(db->db_parent->db.db_object, ==, 1173 db->db.db_object); 1174 /* 1175 * dnode_grow_indblksz() can make this fail if we don't 1176 * have the parent's rwlock. XXX indblksz no longer 1177 * grows. safe to do this now? 1178 */ 1179 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1180 ASSERT3P(db->db_blkptr, ==, 1181 ((blkptr_t *)db->db_parent->db.db_data + 1182 db->db_blkid % epb)); 1183 } 1184 } 1185 } 1186 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1187 (db->db_buf == NULL || db->db_buf->b_data) && 1188 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1189 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1190 /* 1191 * If the blkptr isn't set but they have nonzero data, 1192 * it had better be dirty, otherwise we'll lose that 1193 * data when we evict this buffer. 1194 * 1195 * There is an exception to this rule for indirect blocks; in 1196 * this case, if the indirect block is a hole, we fill in a few 1197 * fields on each of the child blocks (importantly, birth time) 1198 * to prevent hole birth times from being lost when you 1199 * partially fill in a hole. 1200 */ 1201 if (db->db_dirtycnt == 0) { 1202 if (db->db_level == 0) { 1203 uint64_t *buf = db->db.db_data; 1204 int i; 1205 1206 for (i = 0; i < db->db.db_size >> 3; i++) { 1207 ASSERT(buf[i] == 0); 1208 } 1209 } else { 1210 blkptr_t *bps = db->db.db_data; 1211 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1212 db->db.db_size); 1213 /* 1214 * We want to verify that all the blkptrs in the 1215 * indirect block are holes, but we may have 1216 * automatically set up a few fields for them. 1217 * We iterate through each blkptr and verify 1218 * they only have those fields set. 1219 */ 1220 for (int i = 0; 1221 i < db->db.db_size / sizeof (blkptr_t); 1222 i++) { 1223 blkptr_t *bp = &bps[i]; 1224 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1225 &bp->blk_cksum)); 1226 ASSERT( 1227 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1228 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1229 DVA_IS_EMPTY(&bp->blk_dva[2])); 1230 ASSERT0(bp->blk_fill); 1231 ASSERT0(bp->blk_pad[0]); 1232 ASSERT0(bp->blk_pad[1]); 1233 ASSERT(!BP_IS_EMBEDDED(bp)); 1234 ASSERT(BP_IS_HOLE(bp)); 1235 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1236 } 1237 } 1238 } 1239 } 1240 DB_DNODE_EXIT(db); 1241 } 1242 #endif 1243 1244 static void 1245 dbuf_clear_data(dmu_buf_impl_t *db) 1246 { 1247 ASSERT(MUTEX_HELD(&db->db_mtx)); 1248 dbuf_evict_user(db); 1249 ASSERT3P(db->db_buf, ==, NULL); 1250 db->db.db_data = NULL; 1251 if (db->db_state != DB_NOFILL) { 1252 db->db_state = DB_UNCACHED; 1253 DTRACE_SET_STATE(db, "clear data"); 1254 } 1255 } 1256 1257 static void 1258 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1259 { 1260 ASSERT(MUTEX_HELD(&db->db_mtx)); 1261 ASSERT(buf != NULL); 1262 1263 db->db_buf = buf; 1264 ASSERT(buf->b_data != NULL); 1265 db->db.db_data = buf->b_data; 1266 } 1267 1268 static arc_buf_t * 1269 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1270 { 1271 spa_t *spa = db->db_objset->os_spa; 1272 1273 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1274 } 1275 1276 /* 1277 * Loan out an arc_buf for read. Return the loaned arc_buf. 1278 */ 1279 arc_buf_t * 1280 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1281 { 1282 arc_buf_t *abuf; 1283 1284 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1285 mutex_enter(&db->db_mtx); 1286 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1287 int blksz = db->db.db_size; 1288 spa_t *spa = db->db_objset->os_spa; 1289 1290 mutex_exit(&db->db_mtx); 1291 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1292 memcpy(abuf->b_data, db->db.db_data, blksz); 1293 } else { 1294 abuf = db->db_buf; 1295 arc_loan_inuse_buf(abuf, db); 1296 db->db_buf = NULL; 1297 dbuf_clear_data(db); 1298 mutex_exit(&db->db_mtx); 1299 } 1300 return (abuf); 1301 } 1302 1303 /* 1304 * Calculate which level n block references the data at the level 0 offset 1305 * provided. 1306 */ 1307 uint64_t 1308 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1309 { 1310 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1311 /* 1312 * The level n blkid is equal to the level 0 blkid divided by 1313 * the number of level 0s in a level n block. 1314 * 1315 * The level 0 blkid is offset >> datablkshift = 1316 * offset / 2^datablkshift. 1317 * 1318 * The number of level 0s in a level n is the number of block 1319 * pointers in an indirect block, raised to the power of level. 1320 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1321 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1322 * 1323 * Thus, the level n blkid is: offset / 1324 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1325 * = offset / 2^(datablkshift + level * 1326 * (indblkshift - SPA_BLKPTRSHIFT)) 1327 * = offset >> (datablkshift + level * 1328 * (indblkshift - SPA_BLKPTRSHIFT)) 1329 */ 1330 1331 const unsigned exp = dn->dn_datablkshift + 1332 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1333 1334 if (exp >= 8 * sizeof (offset)) { 1335 /* This only happens on the highest indirection level */ 1336 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1337 return (0); 1338 } 1339 1340 ASSERT3U(exp, <, 8 * sizeof (offset)); 1341 1342 return (offset >> exp); 1343 } else { 1344 ASSERT3U(offset, <, dn->dn_datablksz); 1345 return (0); 1346 } 1347 } 1348 1349 /* 1350 * This function is used to lock the parent of the provided dbuf. This should be 1351 * used when modifying or reading db_blkptr. 1352 */ 1353 db_lock_type_t 1354 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1355 { 1356 enum db_lock_type ret = DLT_NONE; 1357 if (db->db_parent != NULL) { 1358 rw_enter(&db->db_parent->db_rwlock, rw); 1359 ret = DLT_PARENT; 1360 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1361 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1362 tag); 1363 ret = DLT_OBJSET; 1364 } 1365 /* 1366 * We only return a DLT_NONE lock when it's the top-most indirect block 1367 * of the meta-dnode of the MOS. 1368 */ 1369 return (ret); 1370 } 1371 1372 /* 1373 * We need to pass the lock type in because it's possible that the block will 1374 * move from being the topmost indirect block in a dnode (and thus, have no 1375 * parent) to not the top-most via an indirection increase. This would cause a 1376 * panic if we didn't pass the lock type in. 1377 */ 1378 void 1379 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1380 { 1381 if (type == DLT_PARENT) 1382 rw_exit(&db->db_parent->db_rwlock); 1383 else if (type == DLT_OBJSET) 1384 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1385 } 1386 1387 static void 1388 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1389 arc_buf_t *buf, void *vdb) 1390 { 1391 (void) zb, (void) bp; 1392 dmu_buf_impl_t *db = vdb; 1393 1394 mutex_enter(&db->db_mtx); 1395 ASSERT3U(db->db_state, ==, DB_READ); 1396 1397 /* 1398 * All reads are synchronous, so we must have a hold on the dbuf 1399 */ 1400 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1401 ASSERT(db->db_buf == NULL); 1402 ASSERT(db->db.db_data == NULL); 1403 if (buf == NULL) { 1404 /* i/o error */ 1405 ASSERT(zio == NULL || zio->io_error != 0); 1406 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1407 ASSERT3P(db->db_buf, ==, NULL); 1408 db->db_state = DB_UNCACHED; 1409 DTRACE_SET_STATE(db, "i/o error"); 1410 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1411 /* freed in flight */ 1412 ASSERT(zio == NULL || zio->io_error == 0); 1413 arc_release(buf, db); 1414 memset(buf->b_data, 0, db->db.db_size); 1415 arc_buf_freeze(buf); 1416 db->db_freed_in_flight = FALSE; 1417 dbuf_set_data(db, buf); 1418 db->db_state = DB_CACHED; 1419 DTRACE_SET_STATE(db, "freed in flight"); 1420 } else { 1421 /* success */ 1422 ASSERT(zio == NULL || zio->io_error == 0); 1423 dbuf_set_data(db, buf); 1424 db->db_state = DB_CACHED; 1425 DTRACE_SET_STATE(db, "successful read"); 1426 } 1427 cv_broadcast(&db->db_changed); 1428 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1429 } 1430 1431 /* 1432 * Shortcut for performing reads on bonus dbufs. Returns 1433 * an error if we fail to verify the dnode associated with 1434 * a decrypted block. Otherwise success. 1435 */ 1436 static int 1437 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1438 { 1439 int bonuslen, max_bonuslen; 1440 1441 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1442 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1443 ASSERT(MUTEX_HELD(&db->db_mtx)); 1444 ASSERT(DB_DNODE_HELD(db)); 1445 ASSERT3U(bonuslen, <=, db->db.db_size); 1446 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1447 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1448 if (bonuslen < max_bonuslen) 1449 memset(db->db.db_data, 0, max_bonuslen); 1450 if (bonuslen) 1451 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1452 db->db_state = DB_CACHED; 1453 DTRACE_SET_STATE(db, "bonus buffer filled"); 1454 return (0); 1455 } 1456 1457 static void 1458 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1459 { 1460 blkptr_t *bps = db->db.db_data; 1461 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1462 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1463 1464 for (int i = 0; i < n_bps; i++) { 1465 blkptr_t *bp = &bps[i]; 1466 1467 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1468 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1469 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1470 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1471 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1472 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1473 } 1474 } 1475 1476 /* 1477 * Handle reads on dbufs that are holes, if necessary. This function 1478 * requires that the dbuf's mutex is held. Returns success (0) if action 1479 * was taken, ENOENT if no action was taken. 1480 */ 1481 static int 1482 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1483 { 1484 ASSERT(MUTEX_HELD(&db->db_mtx)); 1485 1486 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1487 /* 1488 * For level 0 blocks only, if the above check fails: 1489 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1490 * processes the delete record and clears the bp while we are waiting 1491 * for the dn_mtx (resulting in a "no" from block_freed). 1492 */ 1493 if (!is_hole && db->db_level == 0) 1494 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1495 1496 if (is_hole) { 1497 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1498 memset(db->db.db_data, 0, db->db.db_size); 1499 1500 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1501 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1502 dbuf_handle_indirect_hole(db, dn, bp); 1503 } 1504 db->db_state = DB_CACHED; 1505 DTRACE_SET_STATE(db, "hole read satisfied"); 1506 return (0); 1507 } 1508 return (ENOENT); 1509 } 1510 1511 /* 1512 * This function ensures that, when doing a decrypting read of a block, 1513 * we make sure we have decrypted the dnode associated with it. We must do 1514 * this so that we ensure we are fully authenticating the checksum-of-MACs 1515 * tree from the root of the objset down to this block. Indirect blocks are 1516 * always verified against their secure checksum-of-MACs assuming that the 1517 * dnode containing them is correct. Now that we are doing a decrypting read, 1518 * we can be sure that the key is loaded and verify that assumption. This is 1519 * especially important considering that we always read encrypted dnode 1520 * blocks as raw data (without verifying their MACs) to start, and 1521 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1522 */ 1523 static int 1524 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1525 { 1526 objset_t *os = db->db_objset; 1527 dmu_buf_impl_t *dndb; 1528 arc_buf_t *dnbuf; 1529 zbookmark_phys_t zb; 1530 int err; 1531 1532 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1533 !os->os_encrypted || os->os_raw_receive || 1534 (dndb = dn->dn_dbuf) == NULL) 1535 return (0); 1536 1537 dnbuf = dndb->db_buf; 1538 if (!arc_is_encrypted(dnbuf)) 1539 return (0); 1540 1541 mutex_enter(&dndb->db_mtx); 1542 1543 /* 1544 * Since dnode buffer is modified by sync process, there can be only 1545 * one copy of it. It means we can not modify (decrypt) it while it 1546 * is being written. I don't see how this may happen now, since 1547 * encrypted dnode writes by receive should be completed before any 1548 * plain-text reads due to txg wait, but better be safe than sorry. 1549 */ 1550 while (1) { 1551 if (!arc_is_encrypted(dnbuf)) { 1552 mutex_exit(&dndb->db_mtx); 1553 return (0); 1554 } 1555 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1556 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1557 break; 1558 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1559 }; 1560 1561 SET_BOOKMARK(&zb, dmu_objset_id(os), 1562 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1563 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1564 1565 /* 1566 * An error code of EACCES tells us that the key is still not 1567 * available. This is ok if we are only reading authenticated 1568 * (and therefore non-encrypted) blocks. 1569 */ 1570 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1571 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1572 (db->db_blkid == DMU_BONUS_BLKID && 1573 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1574 err = 0; 1575 1576 mutex_exit(&dndb->db_mtx); 1577 1578 return (err); 1579 } 1580 1581 /* 1582 * Drops db_mtx and the parent lock specified by dblt and tag before 1583 * returning. 1584 */ 1585 static int 1586 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, 1587 db_lock_type_t dblt, blkptr_t *bp, const void *tag) 1588 { 1589 zbookmark_phys_t zb; 1590 uint32_t aflags = ARC_FLAG_NOWAIT; 1591 int err, zio_flags; 1592 1593 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1594 ASSERT(MUTEX_HELD(&db->db_mtx)); 1595 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1596 ASSERT(db->db_buf == NULL); 1597 ASSERT(db->db_parent == NULL || 1598 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1599 1600 if (db->db_blkid == DMU_BONUS_BLKID) { 1601 err = dbuf_read_bonus(db, dn); 1602 goto early_unlock; 1603 } 1604 1605 err = dbuf_read_hole(db, dn, bp); 1606 if (err == 0) 1607 goto early_unlock; 1608 1609 ASSERT(bp != NULL); 1610 1611 /* 1612 * Any attempt to read a redacted block should result in an error. This 1613 * will never happen under normal conditions, but can be useful for 1614 * debugging purposes. 1615 */ 1616 if (BP_IS_REDACTED(bp)) { 1617 ASSERT(dsl_dataset_feature_is_active( 1618 db->db_objset->os_dsl_dataset, 1619 SPA_FEATURE_REDACTED_DATASETS)); 1620 err = SET_ERROR(EIO); 1621 goto early_unlock; 1622 } 1623 1624 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1625 db->db.db_object, db->db_level, db->db_blkid); 1626 1627 /* 1628 * All bps of an encrypted os should have the encryption bit set. 1629 * If this is not true it indicates tampering and we report an error. 1630 */ 1631 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) { 1632 spa_log_error(db->db_objset->os_spa, &zb, 1633 BP_GET_LOGICAL_BIRTH(bp)); 1634 err = SET_ERROR(EIO); 1635 goto early_unlock; 1636 } 1637 1638 db->db_state = DB_READ; 1639 DTRACE_SET_STATE(db, "read issued"); 1640 mutex_exit(&db->db_mtx); 1641 1642 if (!DBUF_IS_CACHEABLE(db)) 1643 aflags |= ARC_FLAG_UNCACHED; 1644 else if (dbuf_is_l2cacheable(db, bp)) 1645 aflags |= ARC_FLAG_L2CACHE; 1646 1647 dbuf_add_ref(db, NULL); 1648 1649 zio_flags = (flags & DB_RF_CANFAIL) ? 1650 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1651 1652 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(bp)) 1653 zio_flags |= ZIO_FLAG_RAW; 1654 1655 /* 1656 * The zio layer will copy the provided blkptr later, but we need to 1657 * do this now so that we can release the parent's rwlock. We have to 1658 * do that now so that if dbuf_read_done is called synchronously (on 1659 * an l1 cache hit) we don't acquire the db_mtx while holding the 1660 * parent's rwlock, which would be a lock ordering violation. 1661 */ 1662 blkptr_t copy = *bp; 1663 dmu_buf_unlock_parent(db, dblt, tag); 1664 return (arc_read(zio, db->db_objset->os_spa, ©, 1665 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1666 &aflags, &zb)); 1667 1668 early_unlock: 1669 mutex_exit(&db->db_mtx); 1670 dmu_buf_unlock_parent(db, dblt, tag); 1671 return (err); 1672 } 1673 1674 /* 1675 * This is our just-in-time copy function. It makes a copy of buffers that 1676 * have been modified in a previous transaction group before we access them in 1677 * the current active group. 1678 * 1679 * This function is used in three places: when we are dirtying a buffer for the 1680 * first time in a txg, when we are freeing a range in a dnode that includes 1681 * this buffer, and when we are accessing a buffer which was received compressed 1682 * and later referenced in a WRITE_BYREF record. 1683 * 1684 * Note that when we are called from dbuf_free_range() we do not put a hold on 1685 * the buffer, we just traverse the active dbuf list for the dnode. 1686 */ 1687 static void 1688 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1689 { 1690 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1691 1692 ASSERT(MUTEX_HELD(&db->db_mtx)); 1693 ASSERT(db->db.db_data != NULL); 1694 ASSERT(db->db_level == 0); 1695 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1696 1697 if (dr == NULL || 1698 (dr->dt.dl.dr_data != 1699 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1700 return; 1701 1702 /* 1703 * If the last dirty record for this dbuf has not yet synced 1704 * and its referencing the dbuf data, either: 1705 * reset the reference to point to a new copy, 1706 * or (if there a no active holders) 1707 * just null out the current db_data pointer. 1708 */ 1709 ASSERT3U(dr->dr_txg, >=, txg - 2); 1710 if (db->db_blkid == DMU_BONUS_BLKID) { 1711 dnode_t *dn = DB_DNODE(db); 1712 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1713 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1714 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1715 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1716 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1717 dnode_t *dn = DB_DNODE(db); 1718 int size = arc_buf_size(db->db_buf); 1719 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1720 spa_t *spa = db->db_objset->os_spa; 1721 enum zio_compress compress_type = 1722 arc_get_compression(db->db_buf); 1723 uint8_t complevel = arc_get_complevel(db->db_buf); 1724 1725 if (arc_is_encrypted(db->db_buf)) { 1726 boolean_t byteorder; 1727 uint8_t salt[ZIO_DATA_SALT_LEN]; 1728 uint8_t iv[ZIO_DATA_IV_LEN]; 1729 uint8_t mac[ZIO_DATA_MAC_LEN]; 1730 1731 arc_get_raw_params(db->db_buf, &byteorder, salt, 1732 iv, mac); 1733 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1734 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1735 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1736 compress_type, complevel); 1737 } else if (compress_type != ZIO_COMPRESS_OFF) { 1738 ASSERT3U(type, ==, ARC_BUFC_DATA); 1739 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1740 size, arc_buf_lsize(db->db_buf), compress_type, 1741 complevel); 1742 } else { 1743 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1744 } 1745 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1746 } else { 1747 db->db_buf = NULL; 1748 dbuf_clear_data(db); 1749 } 1750 } 1751 1752 int 1753 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) 1754 { 1755 dnode_t *dn; 1756 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1757 int err; 1758 1759 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1760 1761 DB_DNODE_ENTER(db); 1762 dn = DB_DNODE(db); 1763 1764 /* 1765 * Ensure that this block's dnode has been decrypted if the caller 1766 * has requested decrypted data. 1767 */ 1768 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1769 if (err != 0) 1770 goto done; 1771 1772 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1773 (flags & DB_RF_NOPREFETCH) == 0; 1774 1775 mutex_enter(&db->db_mtx); 1776 if (flags & DB_RF_PARTIAL_FIRST) 1777 db->db_partial_read = B_TRUE; 1778 else if (!(flags & DB_RF_PARTIAL_MORE)) 1779 db->db_partial_read = B_FALSE; 1780 miss = (db->db_state != DB_CACHED); 1781 1782 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1783 /* 1784 * Another reader came in while the dbuf was in flight between 1785 * UNCACHED and CACHED. Either a writer will finish filling 1786 * the buffer, sending the dbuf to CACHED, or the first reader's 1787 * request will reach the read_done callback and send the dbuf 1788 * to CACHED. Otherwise, a failure occurred and the dbuf will 1789 * be sent to UNCACHED. 1790 */ 1791 if (flags & DB_RF_NEVERWAIT) { 1792 mutex_exit(&db->db_mtx); 1793 DB_DNODE_EXIT(db); 1794 goto done; 1795 } 1796 do { 1797 ASSERT(db->db_state == DB_READ || 1798 (flags & DB_RF_HAVESTRUCT) == 0); 1799 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1800 zio_t *, pio); 1801 cv_wait(&db->db_changed, &db->db_mtx); 1802 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1803 if (db->db_state == DB_UNCACHED) { 1804 err = SET_ERROR(EIO); 1805 mutex_exit(&db->db_mtx); 1806 DB_DNODE_EXIT(db); 1807 goto done; 1808 } 1809 } 1810 1811 if (db->db_state == DB_CACHED) { 1812 /* 1813 * If the arc buf is compressed or encrypted and the caller 1814 * requested uncompressed data, we need to untransform it 1815 * before returning. We also call arc_untransform() on any 1816 * unauthenticated blocks, which will verify their MAC if 1817 * the key is now available. 1818 */ 1819 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL && 1820 (arc_is_encrypted(db->db_buf) || 1821 arc_is_unauthenticated(db->db_buf) || 1822 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1823 spa_t *spa = dn->dn_objset->os_spa; 1824 zbookmark_phys_t zb; 1825 1826 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1827 db->db.db_object, db->db_level, db->db_blkid); 1828 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1829 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1830 dbuf_set_data(db, db->db_buf); 1831 } 1832 mutex_exit(&db->db_mtx); 1833 } else { 1834 ASSERT(db->db_state == DB_UNCACHED || 1835 db->db_state == DB_NOFILL); 1836 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1837 blkptr_t *bp; 1838 1839 /* 1840 * If a block clone or Direct I/O write has occurred we will 1841 * get the dirty records overridden BP so we get the most 1842 * recent data. 1843 */ 1844 err = dmu_buf_get_bp_from_dbuf(db, &bp); 1845 1846 if (!err) { 1847 if (pio == NULL && (db->db_state == DB_NOFILL || 1848 (bp != NULL && !BP_IS_HOLE(bp)))) { 1849 spa_t *spa = dn->dn_objset->os_spa; 1850 pio = 1851 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1852 need_wait = B_TRUE; 1853 } 1854 1855 err = 1856 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG); 1857 } else { 1858 mutex_exit(&db->db_mtx); 1859 dmu_buf_unlock_parent(db, dblt, FTAG); 1860 } 1861 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1862 miss = (db->db_state != DB_CACHED); 1863 } 1864 1865 if (err == 0 && prefetch) { 1866 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1867 flags & DB_RF_HAVESTRUCT); 1868 } 1869 DB_DNODE_EXIT(db); 1870 1871 /* 1872 * If we created a zio we must execute it to avoid leaking it, even if 1873 * it isn't attached to any work due to an error in dbuf_read_impl(). 1874 */ 1875 if (need_wait) { 1876 if (err == 0) 1877 err = zio_wait(pio); 1878 else 1879 (void) zio_wait(pio); 1880 pio = NULL; 1881 } 1882 1883 done: 1884 if (miss) 1885 DBUF_STAT_BUMP(hash_misses); 1886 else 1887 DBUF_STAT_BUMP(hash_hits); 1888 if (pio && err != 0) { 1889 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1890 ZIO_FLAG_CANFAIL); 1891 zio->io_error = err; 1892 zio_nowait(zio); 1893 } 1894 1895 return (err); 1896 } 1897 1898 static void 1899 dbuf_noread(dmu_buf_impl_t *db) 1900 { 1901 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1902 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1903 mutex_enter(&db->db_mtx); 1904 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1905 cv_wait(&db->db_changed, &db->db_mtx); 1906 if (db->db_state == DB_UNCACHED) { 1907 ASSERT(db->db_buf == NULL); 1908 ASSERT(db->db.db_data == NULL); 1909 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1910 db->db_state = DB_FILL; 1911 DTRACE_SET_STATE(db, "assigning filled buffer"); 1912 } else if (db->db_state == DB_NOFILL) { 1913 dbuf_clear_data(db); 1914 } else { 1915 ASSERT3U(db->db_state, ==, DB_CACHED); 1916 } 1917 mutex_exit(&db->db_mtx); 1918 } 1919 1920 void 1921 dbuf_unoverride(dbuf_dirty_record_t *dr) 1922 { 1923 dmu_buf_impl_t *db = dr->dr_dbuf; 1924 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1925 uint64_t txg = dr->dr_txg; 1926 1927 ASSERT(MUTEX_HELD(&db->db_mtx)); 1928 1929 /* 1930 * This assert is valid because dmu_sync() expects to be called by 1931 * a zilog's get_data while holding a range lock. This call only 1932 * comes from dbuf_dirty() callers who must also hold a range lock. 1933 */ 1934 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1935 ASSERT(db->db_level == 0); 1936 1937 if (db->db_blkid == DMU_BONUS_BLKID || 1938 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1939 return; 1940 1941 ASSERT(db->db_data_pending != dr); 1942 1943 /* free this block */ 1944 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1945 zio_free(db->db_objset->os_spa, txg, bp); 1946 1947 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) { 1948 ASSERT0P(dr->dt.dl.dr_data); 1949 dr->dt.dl.dr_data = db->db_buf; 1950 } 1951 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1952 dr->dt.dl.dr_nopwrite = B_FALSE; 1953 dr->dt.dl.dr_brtwrite = B_FALSE; 1954 dr->dt.dl.dr_diowrite = B_FALSE; 1955 dr->dt.dl.dr_has_raw_params = B_FALSE; 1956 1957 /* 1958 * In the event that Direct I/O was used, we do not 1959 * need to release the buffer from the ARC. 1960 * 1961 * Release the already-written buffer, so we leave it in 1962 * a consistent dirty state. Note that all callers are 1963 * modifying the buffer, so they will immediately do 1964 * another (redundant) arc_release(). Therefore, leave 1965 * the buf thawed to save the effort of freezing & 1966 * immediately re-thawing it. 1967 */ 1968 if (dr->dt.dl.dr_data) 1969 arc_release(dr->dt.dl.dr_data, db); 1970 } 1971 1972 /* 1973 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1974 * data blocks in the free range, so that any future readers will find 1975 * empty blocks. 1976 */ 1977 void 1978 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1979 dmu_tx_t *tx) 1980 { 1981 dmu_buf_impl_t *db_search; 1982 dmu_buf_impl_t *db, *db_next; 1983 uint64_t txg = tx->tx_txg; 1984 avl_index_t where; 1985 dbuf_dirty_record_t *dr; 1986 1987 if (end_blkid > dn->dn_maxblkid && 1988 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1989 end_blkid = dn->dn_maxblkid; 1990 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1991 (u_longlong_t)end_blkid); 1992 1993 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1994 db_search->db_level = 0; 1995 db_search->db_blkid = start_blkid; 1996 db_search->db_state = DB_SEARCH; 1997 1998 mutex_enter(&dn->dn_dbufs_mtx); 1999 db = avl_find(&dn->dn_dbufs, db_search, &where); 2000 ASSERT3P(db, ==, NULL); 2001 2002 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2003 2004 for (; db != NULL; db = db_next) { 2005 db_next = AVL_NEXT(&dn->dn_dbufs, db); 2006 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2007 2008 if (db->db_level != 0 || db->db_blkid > end_blkid) { 2009 break; 2010 } 2011 ASSERT3U(db->db_blkid, >=, start_blkid); 2012 2013 /* found a level 0 buffer in the range */ 2014 mutex_enter(&db->db_mtx); 2015 if (dbuf_undirty(db, tx)) { 2016 /* mutex has been dropped and dbuf destroyed */ 2017 continue; 2018 } 2019 2020 if (db->db_state == DB_UNCACHED || 2021 db->db_state == DB_NOFILL || 2022 db->db_state == DB_EVICTING) { 2023 ASSERT(db->db.db_data == NULL); 2024 mutex_exit(&db->db_mtx); 2025 continue; 2026 } 2027 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2028 /* will be handled in dbuf_read_done or dbuf_rele */ 2029 db->db_freed_in_flight = TRUE; 2030 mutex_exit(&db->db_mtx); 2031 continue; 2032 } 2033 if (zfs_refcount_count(&db->db_holds) == 0) { 2034 ASSERT(db->db_buf); 2035 dbuf_destroy(db); 2036 continue; 2037 } 2038 /* The dbuf is referenced */ 2039 2040 dr = list_head(&db->db_dirty_records); 2041 if (dr != NULL) { 2042 if (dr->dr_txg == txg) { 2043 /* 2044 * This buffer is "in-use", re-adjust the file 2045 * size to reflect that this buffer may 2046 * contain new data when we sync. 2047 */ 2048 if (db->db_blkid != DMU_SPILL_BLKID && 2049 db->db_blkid > dn->dn_maxblkid) 2050 dn->dn_maxblkid = db->db_blkid; 2051 dbuf_unoverride(dr); 2052 } else { 2053 /* 2054 * This dbuf is not dirty in the open context. 2055 * Either uncache it (if its not referenced in 2056 * the open context) or reset its contents to 2057 * empty. 2058 */ 2059 dbuf_fix_old_data(db, txg); 2060 } 2061 } 2062 /* clear the contents if its cached */ 2063 if (db->db_state == DB_CACHED) { 2064 ASSERT(db->db.db_data != NULL); 2065 arc_release(db->db_buf, db); 2066 rw_enter(&db->db_rwlock, RW_WRITER); 2067 memset(db->db.db_data, 0, db->db.db_size); 2068 rw_exit(&db->db_rwlock); 2069 arc_buf_freeze(db->db_buf); 2070 } 2071 2072 mutex_exit(&db->db_mtx); 2073 } 2074 2075 mutex_exit(&dn->dn_dbufs_mtx); 2076 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2077 } 2078 2079 void 2080 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2081 { 2082 arc_buf_t *buf, *old_buf; 2083 dbuf_dirty_record_t *dr; 2084 int osize = db->db.db_size; 2085 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2086 dnode_t *dn; 2087 2088 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2089 2090 DB_DNODE_ENTER(db); 2091 dn = DB_DNODE(db); 2092 2093 /* 2094 * XXX we should be doing a dbuf_read, checking the return 2095 * value and returning that up to our callers 2096 */ 2097 dmu_buf_will_dirty(&db->db, tx); 2098 2099 VERIFY3P(db->db_buf, !=, NULL); 2100 2101 /* create the data buffer for the new block */ 2102 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2103 2104 /* copy old block data to the new block */ 2105 old_buf = db->db_buf; 2106 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2107 /* zero the remainder */ 2108 if (size > osize) 2109 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2110 2111 mutex_enter(&db->db_mtx); 2112 dbuf_set_data(db, buf); 2113 arc_buf_destroy(old_buf, db); 2114 db->db.db_size = size; 2115 2116 dr = list_head(&db->db_dirty_records); 2117 /* dirty record added by dmu_buf_will_dirty() */ 2118 VERIFY(dr != NULL); 2119 if (db->db_level == 0) 2120 dr->dt.dl.dr_data = buf; 2121 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2122 ASSERT3U(dr->dr_accounted, ==, osize); 2123 dr->dr_accounted = size; 2124 mutex_exit(&db->db_mtx); 2125 2126 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2127 DB_DNODE_EXIT(db); 2128 } 2129 2130 void 2131 dbuf_release_bp(dmu_buf_impl_t *db) 2132 { 2133 objset_t *os __maybe_unused = db->db_objset; 2134 2135 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2136 ASSERT(arc_released(os->os_phys_buf) || 2137 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2138 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2139 2140 (void) arc_release(db->db_buf, db); 2141 } 2142 2143 /* 2144 * We already have a dirty record for this TXG, and we are being 2145 * dirtied again. 2146 */ 2147 static void 2148 dbuf_redirty(dbuf_dirty_record_t *dr) 2149 { 2150 dmu_buf_impl_t *db = dr->dr_dbuf; 2151 2152 ASSERT(MUTEX_HELD(&db->db_mtx)); 2153 2154 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2155 /* 2156 * If this buffer has already been written out, 2157 * we now need to reset its state. 2158 */ 2159 dbuf_unoverride(dr); 2160 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2161 db->db_state != DB_NOFILL) { 2162 /* Already released on initial dirty, so just thaw. */ 2163 ASSERT(arc_released(db->db_buf)); 2164 arc_buf_thaw(db->db_buf); 2165 } 2166 } 2167 } 2168 2169 dbuf_dirty_record_t * 2170 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2171 { 2172 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2173 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2174 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2175 ASSERT(dn->dn_maxblkid >= blkid); 2176 2177 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2178 list_link_init(&dr->dr_dirty_node); 2179 list_link_init(&dr->dr_dbuf_node); 2180 dr->dr_dnode = dn; 2181 dr->dr_txg = tx->tx_txg; 2182 dr->dt.dll.dr_blkid = blkid; 2183 dr->dr_accounted = dn->dn_datablksz; 2184 2185 /* 2186 * There should not be any dbuf for the block that we're dirtying. 2187 * Otherwise the buffer contents could be inconsistent between the 2188 * dbuf and the lightweight dirty record. 2189 */ 2190 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2191 NULL)); 2192 2193 mutex_enter(&dn->dn_mtx); 2194 int txgoff = tx->tx_txg & TXG_MASK; 2195 if (dn->dn_free_ranges[txgoff] != NULL) { 2196 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2197 } 2198 2199 if (dn->dn_nlevels == 1) { 2200 ASSERT3U(blkid, <, dn->dn_nblkptr); 2201 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2202 mutex_exit(&dn->dn_mtx); 2203 rw_exit(&dn->dn_struct_rwlock); 2204 dnode_setdirty(dn, tx); 2205 } else { 2206 mutex_exit(&dn->dn_mtx); 2207 2208 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2209 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2210 1, blkid >> epbs, FTAG); 2211 rw_exit(&dn->dn_struct_rwlock); 2212 if (parent_db == NULL) { 2213 kmem_free(dr, sizeof (*dr)); 2214 return (NULL); 2215 } 2216 int err = dbuf_read(parent_db, NULL, 2217 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2218 if (err != 0) { 2219 dbuf_rele(parent_db, FTAG); 2220 kmem_free(dr, sizeof (*dr)); 2221 return (NULL); 2222 } 2223 2224 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2225 dbuf_rele(parent_db, FTAG); 2226 mutex_enter(&parent_dr->dt.di.dr_mtx); 2227 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2228 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2229 mutex_exit(&parent_dr->dt.di.dr_mtx); 2230 dr->dr_parent = parent_dr; 2231 } 2232 2233 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2234 2235 return (dr); 2236 } 2237 2238 dbuf_dirty_record_t * 2239 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2240 { 2241 dnode_t *dn; 2242 objset_t *os; 2243 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2244 int txgoff = tx->tx_txg & TXG_MASK; 2245 boolean_t drop_struct_rwlock = B_FALSE; 2246 2247 ASSERT(tx->tx_txg != 0); 2248 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2249 DMU_TX_DIRTY_BUF(tx, db); 2250 2251 DB_DNODE_ENTER(db); 2252 dn = DB_DNODE(db); 2253 /* 2254 * Shouldn't dirty a regular buffer in syncing context. Private 2255 * objects may be dirtied in syncing context, but only if they 2256 * were already pre-dirtied in open context. 2257 */ 2258 #ifdef ZFS_DEBUG 2259 if (dn->dn_objset->os_dsl_dataset != NULL) { 2260 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2261 RW_READER, FTAG); 2262 } 2263 ASSERT(!dmu_tx_is_syncing(tx) || 2264 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2265 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2266 dn->dn_objset->os_dsl_dataset == NULL); 2267 if (dn->dn_objset->os_dsl_dataset != NULL) 2268 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2269 #endif 2270 /* 2271 * We make this assert for private objects as well, but after we 2272 * check if we're already dirty. They are allowed to re-dirty 2273 * in syncing context. 2274 */ 2275 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2276 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2277 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2278 2279 mutex_enter(&db->db_mtx); 2280 /* 2281 * XXX make this true for indirects too? The problem is that 2282 * transactions created with dmu_tx_create_assigned() from 2283 * syncing context don't bother holding ahead. 2284 */ 2285 ASSERT(db->db_level != 0 || 2286 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2287 db->db_state == DB_NOFILL); 2288 2289 mutex_enter(&dn->dn_mtx); 2290 dnode_set_dirtyctx(dn, tx, db); 2291 if (tx->tx_txg > dn->dn_dirty_txg) 2292 dn->dn_dirty_txg = tx->tx_txg; 2293 mutex_exit(&dn->dn_mtx); 2294 2295 if (db->db_blkid == DMU_SPILL_BLKID) 2296 dn->dn_have_spill = B_TRUE; 2297 2298 /* 2299 * If this buffer is already dirty, we're done. 2300 */ 2301 dr_head = list_head(&db->db_dirty_records); 2302 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2303 db->db.db_object == DMU_META_DNODE_OBJECT); 2304 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2305 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2306 DB_DNODE_EXIT(db); 2307 2308 dbuf_redirty(dr_next); 2309 mutex_exit(&db->db_mtx); 2310 return (dr_next); 2311 } 2312 2313 /* 2314 * Only valid if not already dirty. 2315 */ 2316 ASSERT(dn->dn_object == 0 || 2317 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2318 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2319 2320 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2321 2322 /* 2323 * We should only be dirtying in syncing context if it's the 2324 * mos or we're initializing the os or it's a special object. 2325 * However, we are allowed to dirty in syncing context provided 2326 * we already dirtied it in open context. Hence we must make 2327 * this assertion only if we're not already dirty. 2328 */ 2329 os = dn->dn_objset; 2330 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2331 #ifdef ZFS_DEBUG 2332 if (dn->dn_objset->os_dsl_dataset != NULL) 2333 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2334 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2335 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2336 if (dn->dn_objset->os_dsl_dataset != NULL) 2337 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2338 #endif 2339 ASSERT(db->db.db_size != 0); 2340 2341 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2342 2343 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2344 dmu_objset_willuse_space(os, db->db.db_size, tx); 2345 } 2346 2347 /* 2348 * If this buffer is dirty in an old transaction group we need 2349 * to make a copy of it so that the changes we make in this 2350 * transaction group won't leak out when we sync the older txg. 2351 */ 2352 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP); 2353 memset(dr, 0, sizeof (*dr)); 2354 list_link_init(&dr->dr_dirty_node); 2355 list_link_init(&dr->dr_dbuf_node); 2356 dr->dr_dnode = dn; 2357 if (db->db_level == 0) { 2358 void *data_old = db->db_buf; 2359 2360 if (db->db_state != DB_NOFILL) { 2361 if (db->db_blkid == DMU_BONUS_BLKID) { 2362 dbuf_fix_old_data(db, tx->tx_txg); 2363 data_old = db->db.db_data; 2364 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2365 /* 2366 * Release the data buffer from the cache so 2367 * that we can modify it without impacting 2368 * possible other users of this cached data 2369 * block. Note that indirect blocks and 2370 * private objects are not released until the 2371 * syncing state (since they are only modified 2372 * then). 2373 */ 2374 arc_release(db->db_buf, db); 2375 dbuf_fix_old_data(db, tx->tx_txg); 2376 data_old = db->db_buf; 2377 } 2378 ASSERT(data_old != NULL); 2379 } 2380 dr->dt.dl.dr_data = data_old; 2381 } else { 2382 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2383 list_create(&dr->dt.di.dr_children, 2384 sizeof (dbuf_dirty_record_t), 2385 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2386 } 2387 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2388 dr->dr_accounted = db->db.db_size; 2389 } 2390 dr->dr_dbuf = db; 2391 dr->dr_txg = tx->tx_txg; 2392 list_insert_before(&db->db_dirty_records, dr_next, dr); 2393 2394 /* 2395 * We could have been freed_in_flight between the dbuf_noread 2396 * and dbuf_dirty. We win, as though the dbuf_noread() had 2397 * happened after the free. 2398 */ 2399 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2400 db->db_blkid != DMU_SPILL_BLKID) { 2401 mutex_enter(&dn->dn_mtx); 2402 if (dn->dn_free_ranges[txgoff] != NULL) { 2403 range_tree_clear(dn->dn_free_ranges[txgoff], 2404 db->db_blkid, 1); 2405 } 2406 mutex_exit(&dn->dn_mtx); 2407 db->db_freed_in_flight = FALSE; 2408 } 2409 2410 /* 2411 * This buffer is now part of this txg 2412 */ 2413 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2414 db->db_dirtycnt += 1; 2415 ASSERT3U(db->db_dirtycnt, <=, 3); 2416 2417 mutex_exit(&db->db_mtx); 2418 2419 if (db->db_blkid == DMU_BONUS_BLKID || 2420 db->db_blkid == DMU_SPILL_BLKID) { 2421 mutex_enter(&dn->dn_mtx); 2422 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2423 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2424 mutex_exit(&dn->dn_mtx); 2425 dnode_setdirty(dn, tx); 2426 DB_DNODE_EXIT(db); 2427 return (dr); 2428 } 2429 2430 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2431 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2432 drop_struct_rwlock = B_TRUE; 2433 } 2434 2435 /* 2436 * If we are overwriting a dedup BP, then unless it is snapshotted, 2437 * when we get to syncing context we will need to decrement its 2438 * refcount in the DDT. Prefetch the relevant DDT block so that 2439 * syncing context won't have to wait for the i/o. 2440 */ 2441 if (db->db_blkptr != NULL) { 2442 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2443 ddt_prefetch(os->os_spa, db->db_blkptr); 2444 dmu_buf_unlock_parent(db, dblt, FTAG); 2445 } 2446 2447 /* 2448 * We need to hold the dn_struct_rwlock to make this assertion, 2449 * because it protects dn_phys / dn_next_nlevels from changing. 2450 */ 2451 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2452 dn->dn_phys->dn_nlevels > db->db_level || 2453 dn->dn_next_nlevels[txgoff] > db->db_level || 2454 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2455 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2456 2457 2458 if (db->db_level == 0) { 2459 ASSERT(!db->db_objset->os_raw_receive || 2460 dn->dn_maxblkid >= db->db_blkid); 2461 dnode_new_blkid(dn, db->db_blkid, tx, 2462 drop_struct_rwlock, B_FALSE); 2463 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2464 } 2465 2466 if (db->db_level+1 < dn->dn_nlevels) { 2467 dmu_buf_impl_t *parent = db->db_parent; 2468 dbuf_dirty_record_t *di; 2469 int parent_held = FALSE; 2470 2471 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2472 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2473 parent = dbuf_hold_level(dn, db->db_level + 1, 2474 db->db_blkid >> epbs, FTAG); 2475 ASSERT(parent != NULL); 2476 parent_held = TRUE; 2477 } 2478 if (drop_struct_rwlock) 2479 rw_exit(&dn->dn_struct_rwlock); 2480 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2481 di = dbuf_dirty(parent, tx); 2482 if (parent_held) 2483 dbuf_rele(parent, FTAG); 2484 2485 mutex_enter(&db->db_mtx); 2486 /* 2487 * Since we've dropped the mutex, it's possible that 2488 * dbuf_undirty() might have changed this out from under us. 2489 */ 2490 if (list_head(&db->db_dirty_records) == dr || 2491 dn->dn_object == DMU_META_DNODE_OBJECT) { 2492 mutex_enter(&di->dt.di.dr_mtx); 2493 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2494 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2495 list_insert_tail(&di->dt.di.dr_children, dr); 2496 mutex_exit(&di->dt.di.dr_mtx); 2497 dr->dr_parent = di; 2498 } 2499 mutex_exit(&db->db_mtx); 2500 } else { 2501 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2502 ASSERT(db->db_blkid < dn->dn_nblkptr); 2503 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2504 mutex_enter(&dn->dn_mtx); 2505 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2506 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2507 mutex_exit(&dn->dn_mtx); 2508 if (drop_struct_rwlock) 2509 rw_exit(&dn->dn_struct_rwlock); 2510 } 2511 2512 dnode_setdirty(dn, tx); 2513 DB_DNODE_EXIT(db); 2514 return (dr); 2515 } 2516 2517 static void 2518 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2519 { 2520 dmu_buf_impl_t *db = dr->dr_dbuf; 2521 2522 if (dr->dt.dl.dr_data != db->db.db_data) { 2523 struct dnode *dn = dr->dr_dnode; 2524 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2525 2526 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2527 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2528 } 2529 db->db_data_pending = NULL; 2530 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2531 list_remove(&db->db_dirty_records, dr); 2532 if (dr->dr_dbuf->db_level != 0) { 2533 mutex_destroy(&dr->dt.di.dr_mtx); 2534 list_destroy(&dr->dt.di.dr_children); 2535 } 2536 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2537 ASSERT3U(db->db_dirtycnt, >, 0); 2538 db->db_dirtycnt -= 1; 2539 } 2540 2541 /* 2542 * Undirty a buffer in the transaction group referenced by the given 2543 * transaction. Return whether this evicted the dbuf. 2544 */ 2545 boolean_t 2546 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2547 { 2548 uint64_t txg = tx->tx_txg; 2549 boolean_t brtwrite; 2550 boolean_t diowrite; 2551 2552 ASSERT(txg != 0); 2553 2554 /* 2555 * Due to our use of dn_nlevels below, this can only be called 2556 * in open context, unless we are operating on the MOS. 2557 * From syncing context, dn_nlevels may be different from the 2558 * dn_nlevels used when dbuf was dirtied. 2559 */ 2560 ASSERT(db->db_objset == 2561 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2562 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2563 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2564 ASSERT0(db->db_level); 2565 ASSERT(MUTEX_HELD(&db->db_mtx)); 2566 2567 /* 2568 * If this buffer is not dirty, we're done. 2569 */ 2570 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2571 if (dr == NULL) 2572 return (B_FALSE); 2573 ASSERT(dr->dr_dbuf == db); 2574 2575 brtwrite = dr->dt.dl.dr_brtwrite; 2576 diowrite = dr->dt.dl.dr_diowrite; 2577 if (brtwrite) { 2578 ASSERT3B(diowrite, ==, B_FALSE); 2579 /* 2580 * We are freeing a block that we cloned in the same 2581 * transaction group. 2582 */ 2583 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 2584 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 2585 brt_pending_remove(dmu_objset_spa(db->db_objset), 2586 bp, tx); 2587 } 2588 } 2589 2590 dnode_t *dn = dr->dr_dnode; 2591 2592 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2593 2594 ASSERT(db->db.db_size != 0); 2595 2596 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2597 dr->dr_accounted, txg); 2598 2599 list_remove(&db->db_dirty_records, dr); 2600 2601 /* 2602 * Note that there are three places in dbuf_dirty() 2603 * where this dirty record may be put on a list. 2604 * Make sure to do a list_remove corresponding to 2605 * every one of those list_insert calls. 2606 */ 2607 if (dr->dr_parent) { 2608 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2609 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2610 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2611 } else if (db->db_blkid == DMU_SPILL_BLKID || 2612 db->db_level + 1 == dn->dn_nlevels) { 2613 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2614 mutex_enter(&dn->dn_mtx); 2615 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2616 mutex_exit(&dn->dn_mtx); 2617 } 2618 2619 if (db->db_state != DB_NOFILL && !brtwrite) { 2620 dbuf_unoverride(dr); 2621 2622 if (dr->dt.dl.dr_data != db->db_buf) { 2623 ASSERT(db->db_buf != NULL); 2624 ASSERT(dr->dt.dl.dr_data != NULL); 2625 arc_buf_destroy(dr->dt.dl.dr_data, db); 2626 } 2627 } 2628 2629 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2630 2631 ASSERT(db->db_dirtycnt > 0); 2632 db->db_dirtycnt -= 1; 2633 2634 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2635 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite || 2636 arc_released(db->db_buf)); 2637 dbuf_destroy(db); 2638 return (B_TRUE); 2639 } 2640 2641 return (B_FALSE); 2642 } 2643 2644 static void 2645 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2646 { 2647 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2648 boolean_t undirty = B_FALSE; 2649 2650 ASSERT(tx->tx_txg != 0); 2651 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2652 2653 /* 2654 * Quick check for dirtiness to improve performance for some workloads 2655 * (e.g. file deletion with indirect blocks cached). 2656 */ 2657 mutex_enter(&db->db_mtx); 2658 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2659 /* 2660 * It's possible that the dbuf is already dirty but not cached, 2661 * because there are some calls to dbuf_dirty() that don't 2662 * go through dmu_buf_will_dirty(). 2663 */ 2664 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2665 if (dr != NULL) { 2666 if (db->db_level == 0 && 2667 dr->dt.dl.dr_brtwrite) { 2668 /* 2669 * Block cloning: If we are dirtying a cloned 2670 * level 0 block, we cannot simply redirty it, 2671 * because this dr has no associated data. 2672 * We will go through a full undirtying below, 2673 * before dirtying it again. 2674 */ 2675 undirty = B_TRUE; 2676 } else { 2677 /* This dbuf is already dirty and cached. */ 2678 dbuf_redirty(dr); 2679 mutex_exit(&db->db_mtx); 2680 return; 2681 } 2682 } 2683 } 2684 mutex_exit(&db->db_mtx); 2685 2686 DB_DNODE_ENTER(db); 2687 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2688 flags |= DB_RF_HAVESTRUCT; 2689 DB_DNODE_EXIT(db); 2690 2691 /* 2692 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2693 * want to make sure dbuf_read() will read the pending cloned block and 2694 * not the uderlying block that is being replaced. dbuf_undirty() will 2695 * do brt_pending_remove() before removing the dirty record. 2696 */ 2697 (void) dbuf_read(db, NULL, flags); 2698 if (undirty) { 2699 mutex_enter(&db->db_mtx); 2700 VERIFY(!dbuf_undirty(db, tx)); 2701 mutex_exit(&db->db_mtx); 2702 } 2703 (void) dbuf_dirty(db, tx); 2704 } 2705 2706 void 2707 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2708 { 2709 dmu_buf_will_dirty_impl(db_fake, 2710 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2711 } 2712 2713 boolean_t 2714 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2715 { 2716 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2717 dbuf_dirty_record_t *dr; 2718 2719 mutex_enter(&db->db_mtx); 2720 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2721 mutex_exit(&db->db_mtx); 2722 return (dr != NULL); 2723 } 2724 2725 /* 2726 * Normally the db_blkptr points to the most recent on-disk content for the 2727 * dbuf (and anything newer will be cached in the dbuf). However, a pending 2728 * block clone or not yet synced Direct I/O write will have a dirty record BP 2729 * pointing to the most recent data. 2730 */ 2731 int 2732 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp) 2733 { 2734 ASSERT(MUTEX_HELD(&db->db_mtx)); 2735 int error = 0; 2736 2737 if (db->db_level != 0) { 2738 *bp = db->db_blkptr; 2739 return (0); 2740 } 2741 2742 *bp = db->db_blkptr; 2743 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2744 if (dr && db->db_state == DB_NOFILL) { 2745 /* Block clone */ 2746 if (!dr->dt.dl.dr_brtwrite) 2747 error = EIO; 2748 else 2749 *bp = &dr->dt.dl.dr_overridden_by; 2750 } else if (dr && db->db_state == DB_UNCACHED) { 2751 /* Direct I/O write */ 2752 if (dr->dt.dl.dr_diowrite) 2753 *bp = &dr->dt.dl.dr_overridden_by; 2754 } 2755 2756 return (error); 2757 } 2758 2759 /* 2760 * Direct I/O reads can read directly from the ARC, but the data has 2761 * to be untransformed in order to copy it over into user pages. 2762 */ 2763 int 2764 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa) 2765 { 2766 int err = 0; 2767 DB_DNODE_ENTER(db); 2768 dnode_t *dn = DB_DNODE(db); 2769 2770 ASSERT3S(db->db_state, ==, DB_CACHED); 2771 ASSERT(MUTEX_HELD(&db->db_mtx)); 2772 2773 /* 2774 * Ensure that this block's dnode has been decrypted if 2775 * the caller has requested decrypted data. 2776 */ 2777 err = dbuf_read_verify_dnode_crypt(db, dn, 0); 2778 2779 /* 2780 * If the arc buf is compressed or encrypted and the caller 2781 * requested uncompressed data, we need to untransform it 2782 * before returning. We also call arc_untransform() on any 2783 * unauthenticated blocks, which will verify their MAC if 2784 * the key is now available. 2785 */ 2786 if (err == 0 && db->db_buf != NULL && 2787 (arc_is_encrypted(db->db_buf) || 2788 arc_is_unauthenticated(db->db_buf) || 2789 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 2790 zbookmark_phys_t zb; 2791 2792 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 2793 db->db.db_object, db->db_level, db->db_blkid); 2794 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 2795 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 2796 dbuf_set_data(db, db->db_buf); 2797 } 2798 DB_DNODE_EXIT(db); 2799 DBUF_STAT_BUMP(hash_hits); 2800 2801 return (err); 2802 } 2803 2804 void 2805 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx) 2806 { 2807 /* 2808 * Block clones and Direct I/O writes always happen in open-context. 2809 */ 2810 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2811 ASSERT0(db->db_level); 2812 ASSERT(!dmu_tx_is_syncing(tx)); 2813 ASSERT0(db->db_level); 2814 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2815 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2816 2817 mutex_enter(&db->db_mtx); 2818 DBUF_VERIFY(db); 2819 2820 /* 2821 * We are going to clone or issue a Direct I/O write on this block, so 2822 * undirty modifications done to this block so far in this txg. This 2823 * includes writes and clones into this block. 2824 * 2825 * If there dirty record associated with this txg from a previous Direct 2826 * I/O write then space accounting cleanup takes place. It is important 2827 * to go ahead free up the space accounting through dbuf_undirty() -> 2828 * dbuf_unoverride() -> zio_free(). Space accountiung for determining 2829 * if a write can occur in zfs_write() happens through dmu_tx_assign(). 2830 * This can cause an issue with Direct I/O writes in the case of 2831 * overwriting the same block, because all DVA allocations are being 2832 * done in open-context. Constantly allowing Direct I/O overwrites to 2833 * the same block can exhaust the pools available space leading to 2834 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which 2835 * will eventually suspend the pool. By cleaning up sapce acccounting 2836 * now, the ENOSPC error can be avoided. 2837 * 2838 * Since we are undirtying the record in open-context, we must have a 2839 * hold on the db, so it should never be evicted after calling 2840 * dbuf_undirty(). 2841 */ 2842 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE); 2843 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2844 2845 if (db->db_buf != NULL) { 2846 /* 2847 * If there is an associated ARC buffer with this dbuf we can 2848 * only destroy it if the previous dirty record does not 2849 * reference it. 2850 */ 2851 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2852 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2853 arc_buf_destroy(db->db_buf, db); 2854 2855 /* 2856 * Setting the dbuf's data pointers to NULL will force all 2857 * future reads down to the devices to get the most up to date 2858 * version of the data after a Direct I/O write has completed. 2859 */ 2860 db->db_buf = NULL; 2861 dbuf_clear_data(db); 2862 } 2863 2864 ASSERT3P(db->db_buf, ==, NULL); 2865 ASSERT3P(db->db.db_data, ==, NULL); 2866 2867 db->db_state = DB_NOFILL; 2868 DTRACE_SET_STATE(db, 2869 "allocating NOFILL buffer for clone or direct I/O write"); 2870 2871 DBUF_VERIFY(db); 2872 mutex_exit(&db->db_mtx); 2873 2874 dbuf_noread(db); 2875 (void) dbuf_dirty(db, tx); 2876 } 2877 2878 void 2879 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2880 { 2881 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2882 2883 mutex_enter(&db->db_mtx); 2884 db->db_state = DB_NOFILL; 2885 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2886 mutex_exit(&db->db_mtx); 2887 2888 dbuf_noread(db); 2889 (void) dbuf_dirty(db, tx); 2890 } 2891 2892 void 2893 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2894 { 2895 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2896 2897 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2898 ASSERT(tx->tx_txg != 0); 2899 ASSERT(db->db_level == 0); 2900 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2901 2902 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2903 dmu_tx_private_ok(tx)); 2904 2905 mutex_enter(&db->db_mtx); 2906 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2907 if (db->db_state == DB_NOFILL || 2908 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) { 2909 /* 2910 * If the fill can fail we should have a way to return back to 2911 * the cloned or Direct I/O write data. 2912 */ 2913 if (canfail && dr) { 2914 mutex_exit(&db->db_mtx); 2915 dmu_buf_will_dirty(db_fake, tx); 2916 return; 2917 } 2918 /* 2919 * Block cloning: We will be completely overwriting a block 2920 * cloned in this transaction group, so let's undirty the 2921 * pending clone and mark the block as uncached. This will be 2922 * as if the clone was never done. 2923 */ 2924 if (db->db_state == DB_NOFILL) { 2925 VERIFY(!dbuf_undirty(db, tx)); 2926 db->db_state = DB_UNCACHED; 2927 } 2928 } 2929 mutex_exit(&db->db_mtx); 2930 2931 dbuf_noread(db); 2932 (void) dbuf_dirty(db, tx); 2933 } 2934 2935 /* 2936 * This function is effectively the same as dmu_buf_will_dirty(), but 2937 * indicates the caller expects raw encrypted data in the db, and provides 2938 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2939 * blkptr_t when this dbuf is written. This is only used for blocks of 2940 * dnodes, during raw receive. 2941 */ 2942 void 2943 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2944 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2945 { 2946 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2947 dbuf_dirty_record_t *dr; 2948 2949 /* 2950 * dr_has_raw_params is only processed for blocks of dnodes 2951 * (see dbuf_sync_dnode_leaf_crypt()). 2952 */ 2953 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2954 ASSERT0(db->db_level); 2955 ASSERT(db->db_objset->os_raw_receive); 2956 2957 dmu_buf_will_dirty_impl(db_fake, 2958 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2959 2960 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2961 2962 ASSERT3P(dr, !=, NULL); 2963 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN); 2964 2965 dr->dt.dl.dr_has_raw_params = B_TRUE; 2966 dr->dt.dl.dr_byteorder = byteorder; 2967 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2968 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2969 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2970 } 2971 2972 static void 2973 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2974 { 2975 struct dirty_leaf *dl; 2976 dbuf_dirty_record_t *dr; 2977 2978 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT); 2979 ASSERT0(db->db_level); 2980 2981 dr = list_head(&db->db_dirty_records); 2982 ASSERT3P(dr, !=, NULL); 2983 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2984 dl = &dr->dt.dl; 2985 ASSERT0(dl->dr_has_raw_params); 2986 dl->dr_overridden_by = *bp; 2987 dl->dr_override_state = DR_OVERRIDDEN; 2988 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2989 } 2990 2991 boolean_t 2992 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2993 { 2994 (void) tx; 2995 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2996 mutex_enter(&db->db_mtx); 2997 DBUF_VERIFY(db); 2998 2999 if (db->db_state == DB_FILL) { 3000 if (db->db_level == 0 && db->db_freed_in_flight) { 3001 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3002 /* we were freed while filling */ 3003 /* XXX dbuf_undirty? */ 3004 memset(db->db.db_data, 0, db->db.db_size); 3005 db->db_freed_in_flight = FALSE; 3006 db->db_state = DB_CACHED; 3007 DTRACE_SET_STATE(db, 3008 "fill done handling freed in flight"); 3009 failed = B_FALSE; 3010 } else if (failed) { 3011 VERIFY(!dbuf_undirty(db, tx)); 3012 arc_buf_destroy(db->db_buf, db); 3013 db->db_buf = NULL; 3014 dbuf_clear_data(db); 3015 DTRACE_SET_STATE(db, "fill failed"); 3016 } else { 3017 db->db_state = DB_CACHED; 3018 DTRACE_SET_STATE(db, "fill done"); 3019 } 3020 cv_broadcast(&db->db_changed); 3021 } else { 3022 db->db_state = DB_CACHED; 3023 failed = B_FALSE; 3024 } 3025 mutex_exit(&db->db_mtx); 3026 return (failed); 3027 } 3028 3029 void 3030 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 3031 bp_embedded_type_t etype, enum zio_compress comp, 3032 int uncompressed_size, int compressed_size, int byteorder, 3033 dmu_tx_t *tx) 3034 { 3035 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3036 struct dirty_leaf *dl; 3037 dmu_object_type_t type; 3038 dbuf_dirty_record_t *dr; 3039 3040 if (etype == BP_EMBEDDED_TYPE_DATA) { 3041 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 3042 SPA_FEATURE_EMBEDDED_DATA)); 3043 } 3044 3045 DB_DNODE_ENTER(db); 3046 type = DB_DNODE(db)->dn_type; 3047 DB_DNODE_EXIT(db); 3048 3049 ASSERT0(db->db_level); 3050 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3051 3052 dmu_buf_will_not_fill(dbuf, tx); 3053 3054 dr = list_head(&db->db_dirty_records); 3055 ASSERT3P(dr, !=, NULL); 3056 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3057 dl = &dr->dt.dl; 3058 ASSERT0(dl->dr_has_raw_params); 3059 encode_embedded_bp_compressed(&dl->dr_overridden_by, 3060 data, comp, uncompressed_size, compressed_size); 3061 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 3062 BP_SET_TYPE(&dl->dr_overridden_by, type); 3063 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 3064 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 3065 3066 dl->dr_override_state = DR_OVERRIDDEN; 3067 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3068 } 3069 3070 void 3071 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 3072 { 3073 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3074 dmu_object_type_t type; 3075 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 3076 SPA_FEATURE_REDACTED_DATASETS)); 3077 3078 DB_DNODE_ENTER(db); 3079 type = DB_DNODE(db)->dn_type; 3080 DB_DNODE_EXIT(db); 3081 3082 ASSERT0(db->db_level); 3083 dmu_buf_will_not_fill(dbuf, tx); 3084 3085 blkptr_t bp = { { { {0} } } }; 3086 BP_SET_TYPE(&bp, type); 3087 BP_SET_LEVEL(&bp, 0); 3088 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 3089 BP_SET_REDACTED(&bp); 3090 BPE_SET_LSIZE(&bp, dbuf->db_size); 3091 3092 dbuf_override_impl(db, &bp, tx); 3093 } 3094 3095 /* 3096 * Directly assign a provided arc buf to a given dbuf if it's not referenced 3097 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 3098 */ 3099 void 3100 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 3101 { 3102 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 3103 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3104 ASSERT(db->db_level == 0); 3105 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 3106 ASSERT(buf != NULL); 3107 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 3108 ASSERT(tx->tx_txg != 0); 3109 3110 arc_return_buf(buf, db); 3111 ASSERT(arc_released(buf)); 3112 3113 mutex_enter(&db->db_mtx); 3114 3115 while (db->db_state == DB_READ || db->db_state == DB_FILL) 3116 cv_wait(&db->db_changed, &db->db_mtx); 3117 3118 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 3119 db->db_state == DB_NOFILL); 3120 3121 if (db->db_state == DB_CACHED && 3122 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 3123 /* 3124 * In practice, we will never have a case where we have an 3125 * encrypted arc buffer while additional holds exist on the 3126 * dbuf. We don't handle this here so we simply assert that 3127 * fact instead. 3128 */ 3129 ASSERT(!arc_is_encrypted(buf)); 3130 mutex_exit(&db->db_mtx); 3131 (void) dbuf_dirty(db, tx); 3132 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 3133 arc_buf_destroy(buf, db); 3134 return; 3135 } 3136 3137 if (db->db_state == DB_CACHED) { 3138 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 3139 3140 ASSERT(db->db_buf != NULL); 3141 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 3142 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3143 3144 if (!arc_released(db->db_buf)) { 3145 ASSERT(dr->dt.dl.dr_override_state == 3146 DR_OVERRIDDEN); 3147 arc_release(db->db_buf, db); 3148 } 3149 dr->dt.dl.dr_data = buf; 3150 arc_buf_destroy(db->db_buf, db); 3151 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3152 arc_release(db->db_buf, db); 3153 arc_buf_destroy(db->db_buf, db); 3154 } 3155 db->db_buf = NULL; 3156 } else if (db->db_state == DB_NOFILL) { 3157 /* 3158 * We will be completely replacing the cloned block. In case 3159 * it was cloned in this transaction group, let's undirty the 3160 * pending clone and mark the block as uncached. This will be 3161 * as if the clone was never done. 3162 */ 3163 VERIFY(!dbuf_undirty(db, tx)); 3164 db->db_state = DB_UNCACHED; 3165 } 3166 ASSERT(db->db_buf == NULL); 3167 dbuf_set_data(db, buf); 3168 db->db_state = DB_FILL; 3169 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3170 mutex_exit(&db->db_mtx); 3171 (void) dbuf_dirty(db, tx); 3172 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3173 } 3174 3175 void 3176 dbuf_destroy(dmu_buf_impl_t *db) 3177 { 3178 dnode_t *dn; 3179 dmu_buf_impl_t *parent = db->db_parent; 3180 dmu_buf_impl_t *dndb; 3181 3182 ASSERT(MUTEX_HELD(&db->db_mtx)); 3183 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3184 3185 if (db->db_buf != NULL) { 3186 arc_buf_destroy(db->db_buf, db); 3187 db->db_buf = NULL; 3188 } 3189 3190 if (db->db_blkid == DMU_BONUS_BLKID) { 3191 int slots = DB_DNODE(db)->dn_num_slots; 3192 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3193 if (db->db.db_data != NULL) { 3194 kmem_free(db->db.db_data, bonuslen); 3195 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3196 db->db_state = DB_UNCACHED; 3197 DTRACE_SET_STATE(db, "buffer cleared"); 3198 } 3199 } 3200 3201 dbuf_clear_data(db); 3202 3203 if (multilist_link_active(&db->db_cache_link)) { 3204 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3205 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3206 3207 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3208 3209 ASSERT0(dmu_buf_user_size(&db->db)); 3210 (void) zfs_refcount_remove_many( 3211 &dbuf_caches[db->db_caching_status].size, 3212 db->db.db_size, db); 3213 3214 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3215 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3216 } else { 3217 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3218 DBUF_STAT_BUMPDOWN(cache_count); 3219 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3220 db->db.db_size); 3221 } 3222 db->db_caching_status = DB_NO_CACHE; 3223 } 3224 3225 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3226 ASSERT(db->db_data_pending == NULL); 3227 ASSERT(list_is_empty(&db->db_dirty_records)); 3228 3229 db->db_state = DB_EVICTING; 3230 DTRACE_SET_STATE(db, "buffer eviction started"); 3231 db->db_blkptr = NULL; 3232 3233 /* 3234 * Now that db_state is DB_EVICTING, nobody else can find this via 3235 * the hash table. We can now drop db_mtx, which allows us to 3236 * acquire the dn_dbufs_mtx. 3237 */ 3238 mutex_exit(&db->db_mtx); 3239 3240 DB_DNODE_ENTER(db); 3241 dn = DB_DNODE(db); 3242 dndb = dn->dn_dbuf; 3243 if (db->db_blkid != DMU_BONUS_BLKID) { 3244 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3245 if (needlock) 3246 mutex_enter_nested(&dn->dn_dbufs_mtx, 3247 NESTED_SINGLE); 3248 avl_remove(&dn->dn_dbufs, db); 3249 membar_producer(); 3250 DB_DNODE_EXIT(db); 3251 if (needlock) 3252 mutex_exit(&dn->dn_dbufs_mtx); 3253 /* 3254 * Decrementing the dbuf count means that the hold corresponding 3255 * to the removed dbuf is no longer discounted in dnode_move(), 3256 * so the dnode cannot be moved until after we release the hold. 3257 * The membar_producer() ensures visibility of the decremented 3258 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3259 * release any lock. 3260 */ 3261 mutex_enter(&dn->dn_mtx); 3262 dnode_rele_and_unlock(dn, db, B_TRUE); 3263 #ifdef USE_DNODE_HANDLE 3264 db->db_dnode_handle = NULL; 3265 #else 3266 db->db_dnode = NULL; 3267 #endif 3268 3269 dbuf_hash_remove(db); 3270 } else { 3271 DB_DNODE_EXIT(db); 3272 } 3273 3274 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3275 3276 db->db_parent = NULL; 3277 3278 ASSERT(db->db_buf == NULL); 3279 ASSERT(db->db.db_data == NULL); 3280 ASSERT(db->db_hash_next == NULL); 3281 ASSERT(db->db_blkptr == NULL); 3282 ASSERT(db->db_data_pending == NULL); 3283 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3284 ASSERT(!multilist_link_active(&db->db_cache_link)); 3285 3286 /* 3287 * If this dbuf is referenced from an indirect dbuf, 3288 * decrement the ref count on the indirect dbuf. 3289 */ 3290 if (parent && parent != dndb) { 3291 mutex_enter(&parent->db_mtx); 3292 dbuf_rele_and_unlock(parent, db, B_TRUE); 3293 } 3294 3295 kmem_cache_free(dbuf_kmem_cache, db); 3296 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3297 } 3298 3299 /* 3300 * Note: While bpp will always be updated if the function returns success, 3301 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3302 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3303 * object. 3304 */ 3305 __attribute__((always_inline)) 3306 static inline int 3307 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3308 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3309 { 3310 *parentp = NULL; 3311 *bpp = NULL; 3312 3313 ASSERT(blkid != DMU_BONUS_BLKID); 3314 3315 if (blkid == DMU_SPILL_BLKID) { 3316 mutex_enter(&dn->dn_mtx); 3317 if (dn->dn_have_spill && 3318 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3319 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3320 else 3321 *bpp = NULL; 3322 dbuf_add_ref(dn->dn_dbuf, NULL); 3323 *parentp = dn->dn_dbuf; 3324 mutex_exit(&dn->dn_mtx); 3325 return (0); 3326 } 3327 3328 int nlevels = 3329 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3330 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3331 3332 ASSERT3U(level * epbs, <, 64); 3333 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3334 /* 3335 * This assertion shouldn't trip as long as the max indirect block size 3336 * is less than 1M. The reason for this is that up to that point, 3337 * the number of levels required to address an entire object with blocks 3338 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3339 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3340 * (i.e. we can address the entire object), objects will all use at most 3341 * N-1 levels and the assertion won't overflow. However, once epbs is 3342 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3343 * enough to address an entire object, so objects will have 5 levels, 3344 * but then this assertion will overflow. 3345 * 3346 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3347 * need to redo this logic to handle overflows. 3348 */ 3349 ASSERT(level >= nlevels || 3350 ((nlevels - level - 1) * epbs) + 3351 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3352 if (level >= nlevels || 3353 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3354 ((nlevels - level - 1) * epbs)) || 3355 (fail_sparse && 3356 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3357 /* the buffer has no parent yet */ 3358 return (SET_ERROR(ENOENT)); 3359 } else if (level < nlevels-1) { 3360 /* this block is referenced from an indirect block */ 3361 int err; 3362 3363 err = dbuf_hold_impl(dn, level + 1, 3364 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3365 3366 if (err) 3367 return (err); 3368 err = dbuf_read(*parentp, NULL, 3369 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3370 if (err) { 3371 dbuf_rele(*parentp, NULL); 3372 *parentp = NULL; 3373 return (err); 3374 } 3375 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3376 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3377 (blkid & ((1ULL << epbs) - 1)); 3378 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3379 ASSERT(BP_IS_HOLE(*bpp)); 3380 rw_exit(&(*parentp)->db_rwlock); 3381 return (0); 3382 } else { 3383 /* the block is referenced from the dnode */ 3384 ASSERT3U(level, ==, nlevels-1); 3385 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3386 blkid < dn->dn_phys->dn_nblkptr); 3387 if (dn->dn_dbuf) { 3388 dbuf_add_ref(dn->dn_dbuf, NULL); 3389 *parentp = dn->dn_dbuf; 3390 } 3391 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3392 return (0); 3393 } 3394 } 3395 3396 static dmu_buf_impl_t * 3397 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3398 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3399 { 3400 objset_t *os = dn->dn_objset; 3401 dmu_buf_impl_t *db, *odb; 3402 3403 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3404 ASSERT(dn->dn_type != DMU_OT_NONE); 3405 3406 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3407 3408 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3409 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3410 3411 db->db_objset = os; 3412 db->db.db_object = dn->dn_object; 3413 db->db_level = level; 3414 db->db_blkid = blkid; 3415 db->db_dirtycnt = 0; 3416 #ifdef USE_DNODE_HANDLE 3417 db->db_dnode_handle = dn->dn_handle; 3418 #else 3419 db->db_dnode = dn; 3420 #endif 3421 db->db_parent = parent; 3422 db->db_blkptr = blkptr; 3423 db->db_hash = hash; 3424 3425 db->db_user = NULL; 3426 db->db_user_immediate_evict = FALSE; 3427 db->db_freed_in_flight = FALSE; 3428 db->db_pending_evict = FALSE; 3429 3430 if (blkid == DMU_BONUS_BLKID) { 3431 ASSERT3P(parent, ==, dn->dn_dbuf); 3432 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3433 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3434 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3435 db->db.db_offset = DMU_BONUS_BLKID; 3436 db->db_state = DB_UNCACHED; 3437 DTRACE_SET_STATE(db, "bonus buffer created"); 3438 db->db_caching_status = DB_NO_CACHE; 3439 /* the bonus dbuf is not placed in the hash table */ 3440 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3441 return (db); 3442 } else if (blkid == DMU_SPILL_BLKID) { 3443 db->db.db_size = (blkptr != NULL) ? 3444 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3445 db->db.db_offset = 0; 3446 } else { 3447 int blocksize = 3448 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3449 db->db.db_size = blocksize; 3450 db->db.db_offset = db->db_blkid * blocksize; 3451 } 3452 3453 /* 3454 * Hold the dn_dbufs_mtx while we get the new dbuf 3455 * in the hash table *and* added to the dbufs list. 3456 * This prevents a possible deadlock with someone 3457 * trying to look up this dbuf before it's added to the 3458 * dn_dbufs list. 3459 */ 3460 mutex_enter(&dn->dn_dbufs_mtx); 3461 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3462 if ((odb = dbuf_hash_insert(db)) != NULL) { 3463 /* someone else inserted it first */ 3464 mutex_exit(&dn->dn_dbufs_mtx); 3465 kmem_cache_free(dbuf_kmem_cache, db); 3466 DBUF_STAT_BUMP(hash_insert_race); 3467 return (odb); 3468 } 3469 avl_add(&dn->dn_dbufs, db); 3470 3471 db->db_state = DB_UNCACHED; 3472 DTRACE_SET_STATE(db, "regular buffer created"); 3473 db->db_caching_status = DB_NO_CACHE; 3474 mutex_exit(&dn->dn_dbufs_mtx); 3475 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3476 3477 if (parent && parent != dn->dn_dbuf) 3478 dbuf_add_ref(parent, db); 3479 3480 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3481 zfs_refcount_count(&dn->dn_holds) > 0); 3482 (void) zfs_refcount_add(&dn->dn_holds, db); 3483 3484 dprintf_dbuf(db, "db=%p\n", db); 3485 3486 return (db); 3487 } 3488 3489 /* 3490 * This function returns a block pointer and information about the object, 3491 * given a dnode and a block. This is a publicly accessible version of 3492 * dbuf_findbp that only returns some information, rather than the 3493 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3494 * should be locked as (at least) a reader. 3495 */ 3496 int 3497 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3498 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3499 { 3500 dmu_buf_impl_t *dbp = NULL; 3501 blkptr_t *bp2; 3502 int err = 0; 3503 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3504 3505 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3506 if (err == 0) { 3507 ASSERT3P(bp2, !=, NULL); 3508 *bp = *bp2; 3509 if (dbp != NULL) 3510 dbuf_rele(dbp, NULL); 3511 if (datablkszsec != NULL) 3512 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3513 if (indblkshift != NULL) 3514 *indblkshift = dn->dn_phys->dn_indblkshift; 3515 } 3516 3517 return (err); 3518 } 3519 3520 typedef struct dbuf_prefetch_arg { 3521 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3522 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3523 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3524 int dpa_curlevel; /* The current level that we're reading */ 3525 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3526 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3527 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3528 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3529 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3530 void *dpa_arg; /* prefetch completion arg */ 3531 } dbuf_prefetch_arg_t; 3532 3533 static void 3534 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3535 { 3536 if (dpa->dpa_cb != NULL) { 3537 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3538 dpa->dpa_zb.zb_blkid, io_done); 3539 } 3540 kmem_free(dpa, sizeof (*dpa)); 3541 } 3542 3543 static void 3544 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3545 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3546 { 3547 (void) zio, (void) zb, (void) iobp; 3548 dbuf_prefetch_arg_t *dpa = private; 3549 3550 if (abuf != NULL) 3551 arc_buf_destroy(abuf, private); 3552 3553 dbuf_prefetch_fini(dpa, B_TRUE); 3554 } 3555 3556 /* 3557 * Actually issue the prefetch read for the block given. 3558 */ 3559 static void 3560 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3561 { 3562 ASSERT(!BP_IS_REDACTED(bp) || 3563 dsl_dataset_feature_is_active( 3564 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3565 SPA_FEATURE_REDACTED_DATASETS)); 3566 3567 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3568 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3569 3570 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3571 arc_flags_t aflags = 3572 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3573 ARC_FLAG_NO_BUF; 3574 3575 /* dnodes are always read as raw and then converted later */ 3576 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3577 dpa->dpa_curlevel == 0) 3578 zio_flags |= ZIO_FLAG_RAW; 3579 3580 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3581 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3582 ASSERT(dpa->dpa_zio != NULL); 3583 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3584 dbuf_issue_final_prefetch_done, dpa, 3585 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3586 } 3587 3588 /* 3589 * Called when an indirect block above our prefetch target is read in. This 3590 * will either read in the next indirect block down the tree or issue the actual 3591 * prefetch if the next block down is our target. 3592 */ 3593 static void 3594 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3595 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3596 { 3597 (void) zb, (void) iobp; 3598 dbuf_prefetch_arg_t *dpa = private; 3599 3600 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3601 ASSERT3S(dpa->dpa_curlevel, >, 0); 3602 3603 if (abuf == NULL) { 3604 ASSERT(zio == NULL || zio->io_error != 0); 3605 dbuf_prefetch_fini(dpa, B_TRUE); 3606 return; 3607 } 3608 ASSERT(zio == NULL || zio->io_error == 0); 3609 3610 /* 3611 * The dpa_dnode is only valid if we are called with a NULL 3612 * zio. This indicates that the arc_read() returned without 3613 * first calling zio_read() to issue a physical read. Once 3614 * a physical read is made the dpa_dnode must be invalidated 3615 * as the locks guarding it may have been dropped. If the 3616 * dpa_dnode is still valid, then we want to add it to the dbuf 3617 * cache. To do so, we must hold the dbuf associated with the block 3618 * we just prefetched, read its contents so that we associate it 3619 * with an arc_buf_t, and then release it. 3620 */ 3621 if (zio != NULL) { 3622 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3623 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3624 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3625 } else { 3626 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3627 } 3628 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3629 3630 dpa->dpa_dnode = NULL; 3631 } else if (dpa->dpa_dnode != NULL) { 3632 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3633 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3634 dpa->dpa_zb.zb_level)); 3635 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3636 dpa->dpa_curlevel, curblkid, FTAG); 3637 if (db == NULL) { 3638 arc_buf_destroy(abuf, private); 3639 dbuf_prefetch_fini(dpa, B_TRUE); 3640 return; 3641 } 3642 (void) dbuf_read(db, NULL, 3643 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3644 dbuf_rele(db, FTAG); 3645 } 3646 3647 dpa->dpa_curlevel--; 3648 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3649 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3650 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3651 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3652 3653 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3654 dsl_dataset_feature_is_active( 3655 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3656 SPA_FEATURE_REDACTED_DATASETS))); 3657 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3658 arc_buf_destroy(abuf, private); 3659 dbuf_prefetch_fini(dpa, B_TRUE); 3660 return; 3661 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3662 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3663 dbuf_issue_final_prefetch(dpa, bp); 3664 } else { 3665 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3666 zbookmark_phys_t zb; 3667 3668 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3669 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3670 iter_aflags |= ARC_FLAG_L2CACHE; 3671 3672 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3673 3674 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3675 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3676 3677 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3678 bp, dbuf_prefetch_indirect_done, dpa, 3679 ZIO_PRIORITY_SYNC_READ, 3680 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3681 &iter_aflags, &zb); 3682 } 3683 3684 arc_buf_destroy(abuf, private); 3685 } 3686 3687 /* 3688 * Issue prefetch reads for the given block on the given level. If the indirect 3689 * blocks above that block are not in memory, we will read them in 3690 * asynchronously. As a result, this call never blocks waiting for a read to 3691 * complete. Note that the prefetch might fail if the dataset is encrypted and 3692 * the encryption key is unmapped before the IO completes. 3693 */ 3694 int 3695 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3696 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3697 void *arg) 3698 { 3699 blkptr_t bp; 3700 int epbs, nlevels, curlevel; 3701 uint64_t curblkid; 3702 3703 ASSERT(blkid != DMU_BONUS_BLKID); 3704 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3705 3706 if (blkid > dn->dn_maxblkid) 3707 goto no_issue; 3708 3709 if (level == 0 && dnode_block_freed(dn, blkid)) 3710 goto no_issue; 3711 3712 /* 3713 * This dnode hasn't been written to disk yet, so there's nothing to 3714 * prefetch. 3715 */ 3716 nlevels = dn->dn_phys->dn_nlevels; 3717 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3718 goto no_issue; 3719 3720 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3721 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3722 goto no_issue; 3723 3724 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3725 level, blkid, NULL); 3726 if (db != NULL) { 3727 mutex_exit(&db->db_mtx); 3728 /* 3729 * This dbuf already exists. It is either CACHED, or 3730 * (we assume) about to be read or filled. 3731 */ 3732 goto no_issue; 3733 } 3734 3735 /* 3736 * Find the closest ancestor (indirect block) of the target block 3737 * that is present in the cache. In this indirect block, we will 3738 * find the bp that is at curlevel, curblkid. 3739 */ 3740 curlevel = level; 3741 curblkid = blkid; 3742 while (curlevel < nlevels - 1) { 3743 int parent_level = curlevel + 1; 3744 uint64_t parent_blkid = curblkid >> epbs; 3745 dmu_buf_impl_t *db; 3746 3747 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3748 FALSE, TRUE, FTAG, &db) == 0) { 3749 blkptr_t *bpp = db->db_buf->b_data; 3750 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3751 dbuf_rele(db, FTAG); 3752 break; 3753 } 3754 3755 curlevel = parent_level; 3756 curblkid = parent_blkid; 3757 } 3758 3759 if (curlevel == nlevels - 1) { 3760 /* No cached indirect blocks found. */ 3761 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3762 bp = dn->dn_phys->dn_blkptr[curblkid]; 3763 } 3764 ASSERT(!BP_IS_REDACTED(&bp) || 3765 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3766 SPA_FEATURE_REDACTED_DATASETS)); 3767 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3768 goto no_issue; 3769 3770 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3771 3772 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3773 ZIO_FLAG_CANFAIL); 3774 3775 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3776 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3777 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3778 dn->dn_object, level, blkid); 3779 dpa->dpa_curlevel = curlevel; 3780 dpa->dpa_prio = prio; 3781 dpa->dpa_aflags = aflags; 3782 dpa->dpa_spa = dn->dn_objset->os_spa; 3783 dpa->dpa_dnode = dn; 3784 dpa->dpa_epbs = epbs; 3785 dpa->dpa_zio = pio; 3786 dpa->dpa_cb = cb; 3787 dpa->dpa_arg = arg; 3788 3789 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3790 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3791 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3792 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3793 3794 /* 3795 * If we have the indirect just above us, no need to do the asynchronous 3796 * prefetch chain; we'll just run the last step ourselves. If we're at 3797 * a higher level, though, we want to issue the prefetches for all the 3798 * indirect blocks asynchronously, so we can go on with whatever we were 3799 * doing. 3800 */ 3801 if (curlevel == level) { 3802 ASSERT3U(curblkid, ==, blkid); 3803 dbuf_issue_final_prefetch(dpa, &bp); 3804 } else { 3805 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3806 zbookmark_phys_t zb; 3807 3808 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3809 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3810 iter_aflags |= ARC_FLAG_L2CACHE; 3811 3812 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3813 dn->dn_object, curlevel, curblkid); 3814 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3815 &bp, dbuf_prefetch_indirect_done, dpa, 3816 ZIO_PRIORITY_SYNC_READ, 3817 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3818 &iter_aflags, &zb); 3819 } 3820 /* 3821 * We use pio here instead of dpa_zio since it's possible that 3822 * dpa may have already been freed. 3823 */ 3824 zio_nowait(pio); 3825 return (1); 3826 no_issue: 3827 if (cb != NULL) 3828 cb(arg, level, blkid, B_FALSE); 3829 return (0); 3830 } 3831 3832 int 3833 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3834 arc_flags_t aflags) 3835 { 3836 3837 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3838 } 3839 3840 /* 3841 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3842 * the case of encrypted, compressed and uncompressed buffers by 3843 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3844 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3845 * 3846 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3847 */ 3848 noinline static void 3849 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3850 { 3851 dbuf_dirty_record_t *dr = db->db_data_pending; 3852 arc_buf_t *data = dr->dt.dl.dr_data; 3853 enum zio_compress compress_type = arc_get_compression(data); 3854 uint8_t complevel = arc_get_complevel(data); 3855 3856 if (arc_is_encrypted(data)) { 3857 boolean_t byteorder; 3858 uint8_t salt[ZIO_DATA_SALT_LEN]; 3859 uint8_t iv[ZIO_DATA_IV_LEN]; 3860 uint8_t mac[ZIO_DATA_MAC_LEN]; 3861 3862 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3863 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3864 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3865 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3866 compress_type, complevel)); 3867 } else if (compress_type != ZIO_COMPRESS_OFF) { 3868 dbuf_set_data(db, arc_alloc_compressed_buf( 3869 dn->dn_objset->os_spa, db, arc_buf_size(data), 3870 arc_buf_lsize(data), compress_type, complevel)); 3871 } else { 3872 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3873 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3874 } 3875 3876 rw_enter(&db->db_rwlock, RW_WRITER); 3877 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3878 rw_exit(&db->db_rwlock); 3879 } 3880 3881 /* 3882 * Returns with db_holds incremented, and db_mtx not held. 3883 * Note: dn_struct_rwlock must be held. 3884 */ 3885 int 3886 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3887 boolean_t fail_sparse, boolean_t fail_uncached, 3888 const void *tag, dmu_buf_impl_t **dbp) 3889 { 3890 dmu_buf_impl_t *db, *parent = NULL; 3891 uint64_t hv; 3892 3893 /* If the pool has been created, verify the tx_sync_lock is not held */ 3894 spa_t *spa = dn->dn_objset->os_spa; 3895 dsl_pool_t *dp = spa->spa_dsl_pool; 3896 if (dp != NULL) { 3897 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3898 } 3899 3900 ASSERT(blkid != DMU_BONUS_BLKID); 3901 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3902 ASSERT3U(dn->dn_nlevels, >, level); 3903 3904 *dbp = NULL; 3905 3906 /* dbuf_find() returns with db_mtx held */ 3907 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3908 3909 if (db == NULL) { 3910 blkptr_t *bp = NULL; 3911 int err; 3912 3913 if (fail_uncached) 3914 return (SET_ERROR(ENOENT)); 3915 3916 ASSERT3P(parent, ==, NULL); 3917 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3918 if (fail_sparse) { 3919 if (err == 0 && bp && BP_IS_HOLE(bp)) 3920 err = SET_ERROR(ENOENT); 3921 if (err) { 3922 if (parent) 3923 dbuf_rele(parent, NULL); 3924 return (err); 3925 } 3926 } 3927 if (err && err != ENOENT) 3928 return (err); 3929 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3930 } 3931 3932 if (fail_uncached && db->db_state != DB_CACHED) { 3933 mutex_exit(&db->db_mtx); 3934 return (SET_ERROR(ENOENT)); 3935 } 3936 3937 if (db->db_buf != NULL) { 3938 arc_buf_access(db->db_buf); 3939 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3940 } 3941 3942 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3943 3944 /* 3945 * If this buffer is currently syncing out, and we are 3946 * still referencing it from db_data, we need to make a copy 3947 * of it in case we decide we want to dirty it again in this txg. 3948 */ 3949 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3950 dn->dn_object != DMU_META_DNODE_OBJECT && 3951 db->db_state == DB_CACHED && db->db_data_pending) { 3952 dbuf_dirty_record_t *dr = db->db_data_pending; 3953 if (dr->dt.dl.dr_data == db->db_buf) { 3954 ASSERT3P(db->db_buf, !=, NULL); 3955 dbuf_hold_copy(dn, db); 3956 } 3957 } 3958 3959 if (multilist_link_active(&db->db_cache_link)) { 3960 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3961 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3962 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3963 3964 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3965 3966 uint64_t size = db->db.db_size; 3967 uint64_t usize = dmu_buf_user_size(&db->db); 3968 (void) zfs_refcount_remove_many( 3969 &dbuf_caches[db->db_caching_status].size, size, db); 3970 (void) zfs_refcount_remove_many( 3971 &dbuf_caches[db->db_caching_status].size, usize, 3972 db->db_user); 3973 3974 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3975 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3976 } else { 3977 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3978 DBUF_STAT_BUMPDOWN(cache_count); 3979 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3980 size + usize); 3981 } 3982 db->db_caching_status = DB_NO_CACHE; 3983 } 3984 (void) zfs_refcount_add(&db->db_holds, tag); 3985 DBUF_VERIFY(db); 3986 mutex_exit(&db->db_mtx); 3987 3988 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3989 if (parent) 3990 dbuf_rele(parent, NULL); 3991 3992 ASSERT3P(DB_DNODE(db), ==, dn); 3993 ASSERT3U(db->db_blkid, ==, blkid); 3994 ASSERT3U(db->db_level, ==, level); 3995 *dbp = db; 3996 3997 return (0); 3998 } 3999 4000 dmu_buf_impl_t * 4001 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 4002 { 4003 return (dbuf_hold_level(dn, 0, blkid, tag)); 4004 } 4005 4006 dmu_buf_impl_t * 4007 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 4008 { 4009 dmu_buf_impl_t *db; 4010 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 4011 return (err ? NULL : db); 4012 } 4013 4014 void 4015 dbuf_create_bonus(dnode_t *dn) 4016 { 4017 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 4018 4019 ASSERT(dn->dn_bonus == NULL); 4020 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 4021 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 4022 } 4023 4024 int 4025 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 4026 { 4027 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4028 4029 if (db->db_blkid != DMU_SPILL_BLKID) 4030 return (SET_ERROR(ENOTSUP)); 4031 if (blksz == 0) 4032 blksz = SPA_MINBLOCKSIZE; 4033 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 4034 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 4035 4036 dbuf_new_size(db, blksz, tx); 4037 4038 return (0); 4039 } 4040 4041 void 4042 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 4043 { 4044 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 4045 } 4046 4047 #pragma weak dmu_buf_add_ref = dbuf_add_ref 4048 void 4049 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 4050 { 4051 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 4052 VERIFY3S(holds, >, 1); 4053 } 4054 4055 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 4056 boolean_t 4057 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 4058 const void *tag) 4059 { 4060 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4061 dmu_buf_impl_t *found_db; 4062 boolean_t result = B_FALSE; 4063 4064 if (blkid == DMU_BONUS_BLKID) 4065 found_db = dbuf_find_bonus(os, obj); 4066 else 4067 found_db = dbuf_find(os, obj, 0, blkid, NULL); 4068 4069 if (found_db != NULL) { 4070 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 4071 (void) zfs_refcount_add(&db->db_holds, tag); 4072 result = B_TRUE; 4073 } 4074 mutex_exit(&found_db->db_mtx); 4075 } 4076 return (result); 4077 } 4078 4079 /* 4080 * If you call dbuf_rele() you had better not be referencing the dnode handle 4081 * unless you have some other direct or indirect hold on the dnode. (An indirect 4082 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 4083 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 4084 * dnode's parent dbuf evicting its dnode handles. 4085 */ 4086 void 4087 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 4088 { 4089 mutex_enter(&db->db_mtx); 4090 dbuf_rele_and_unlock(db, tag, B_FALSE); 4091 } 4092 4093 void 4094 dmu_buf_rele(dmu_buf_t *db, const void *tag) 4095 { 4096 dbuf_rele((dmu_buf_impl_t *)db, tag); 4097 } 4098 4099 /* 4100 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 4101 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 4102 * argument should be set if we are already in the dbuf-evicting code 4103 * path, in which case we don't want to recursively evict. This allows us to 4104 * avoid deeply nested stacks that would have a call flow similar to this: 4105 * 4106 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 4107 * ^ | 4108 * | | 4109 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 4110 * 4111 */ 4112 void 4113 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 4114 { 4115 int64_t holds; 4116 uint64_t size; 4117 4118 ASSERT(MUTEX_HELD(&db->db_mtx)); 4119 DBUF_VERIFY(db); 4120 4121 /* 4122 * Remove the reference to the dbuf before removing its hold on the 4123 * dnode so we can guarantee in dnode_move() that a referenced bonus 4124 * buffer has a corresponding dnode hold. 4125 */ 4126 holds = zfs_refcount_remove(&db->db_holds, tag); 4127 ASSERT(holds >= 0); 4128 4129 /* 4130 * We can't freeze indirects if there is a possibility that they 4131 * may be modified in the current syncing context. 4132 */ 4133 if (db->db_buf != NULL && 4134 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 4135 arc_buf_freeze(db->db_buf); 4136 } 4137 4138 if (holds == db->db_dirtycnt && 4139 db->db_level == 0 && db->db_user_immediate_evict) 4140 dbuf_evict_user(db); 4141 4142 if (holds == 0) { 4143 if (db->db_blkid == DMU_BONUS_BLKID) { 4144 dnode_t *dn; 4145 boolean_t evict_dbuf = db->db_pending_evict; 4146 4147 /* 4148 * If the dnode moves here, we cannot cross this 4149 * barrier until the move completes. 4150 */ 4151 DB_DNODE_ENTER(db); 4152 4153 dn = DB_DNODE(db); 4154 atomic_dec_32(&dn->dn_dbufs_count); 4155 4156 /* 4157 * Decrementing the dbuf count means that the bonus 4158 * buffer's dnode hold is no longer discounted in 4159 * dnode_move(). The dnode cannot move until after 4160 * the dnode_rele() below. 4161 */ 4162 DB_DNODE_EXIT(db); 4163 4164 /* 4165 * Do not reference db after its lock is dropped. 4166 * Another thread may evict it. 4167 */ 4168 mutex_exit(&db->db_mtx); 4169 4170 if (evict_dbuf) 4171 dnode_evict_bonus(dn); 4172 4173 dnode_rele(dn, db); 4174 } else if (db->db_buf == NULL) { 4175 /* 4176 * This is a special case: we never associated this 4177 * dbuf with any data allocated from the ARC. 4178 */ 4179 ASSERT(db->db_state == DB_UNCACHED || 4180 db->db_state == DB_NOFILL); 4181 dbuf_destroy(db); 4182 } else if (arc_released(db->db_buf)) { 4183 /* 4184 * This dbuf has anonymous data associated with it. 4185 */ 4186 dbuf_destroy(db); 4187 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4188 db->db_pending_evict) { 4189 dbuf_destroy(db); 4190 } else if (!multilist_link_active(&db->db_cache_link)) { 4191 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4192 4193 dbuf_cached_state_t dcs = 4194 dbuf_include_in_metadata_cache(db) ? 4195 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4196 db->db_caching_status = dcs; 4197 4198 multilist_insert(&dbuf_caches[dcs].cache, db); 4199 uint64_t db_size = db->db.db_size; 4200 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4201 (void) zfs_refcount_add_many( 4202 &dbuf_caches[dcs].size, db_size, db); 4203 size = zfs_refcount_add_many( 4204 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4205 uint8_t db_level = db->db_level; 4206 mutex_exit(&db->db_mtx); 4207 4208 if (dcs == DB_DBUF_METADATA_CACHE) { 4209 DBUF_STAT_BUMP(metadata_cache_count); 4210 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4211 size); 4212 } else { 4213 DBUF_STAT_BUMP(cache_count); 4214 DBUF_STAT_MAX(cache_size_bytes_max, size); 4215 DBUF_STAT_BUMP(cache_levels[db_level]); 4216 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4217 db_size + dbu_size); 4218 } 4219 4220 if (dcs == DB_DBUF_CACHE && !evicting) 4221 dbuf_evict_notify(size); 4222 } 4223 } else { 4224 mutex_exit(&db->db_mtx); 4225 } 4226 } 4227 4228 #pragma weak dmu_buf_refcount = dbuf_refcount 4229 uint64_t 4230 dbuf_refcount(dmu_buf_impl_t *db) 4231 { 4232 return (zfs_refcount_count(&db->db_holds)); 4233 } 4234 4235 uint64_t 4236 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4237 { 4238 uint64_t holds; 4239 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4240 4241 mutex_enter(&db->db_mtx); 4242 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4243 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4244 mutex_exit(&db->db_mtx); 4245 4246 return (holds); 4247 } 4248 4249 void * 4250 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4251 dmu_buf_user_t *new_user) 4252 { 4253 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4254 4255 mutex_enter(&db->db_mtx); 4256 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4257 if (db->db_user == old_user) 4258 db->db_user = new_user; 4259 else 4260 old_user = db->db_user; 4261 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4262 mutex_exit(&db->db_mtx); 4263 4264 return (old_user); 4265 } 4266 4267 void * 4268 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4269 { 4270 return (dmu_buf_replace_user(db_fake, NULL, user)); 4271 } 4272 4273 void * 4274 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4275 { 4276 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4277 4278 db->db_user_immediate_evict = TRUE; 4279 return (dmu_buf_set_user(db_fake, user)); 4280 } 4281 4282 void * 4283 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4284 { 4285 return (dmu_buf_replace_user(db_fake, user, NULL)); 4286 } 4287 4288 void * 4289 dmu_buf_get_user(dmu_buf_t *db_fake) 4290 { 4291 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4292 4293 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4294 return (db->db_user); 4295 } 4296 4297 uint64_t 4298 dmu_buf_user_size(dmu_buf_t *db_fake) 4299 { 4300 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4301 if (db->db_user == NULL) 4302 return (0); 4303 return (atomic_load_64(&db->db_user->dbu_size)); 4304 } 4305 4306 void 4307 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4308 { 4309 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4310 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4311 ASSERT3P(db->db_user, !=, NULL); 4312 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4313 atomic_add_64(&db->db_user->dbu_size, nadd); 4314 } 4315 4316 void 4317 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4318 { 4319 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4320 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4321 ASSERT3P(db->db_user, !=, NULL); 4322 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4323 atomic_sub_64(&db->db_user->dbu_size, nsub); 4324 } 4325 4326 void 4327 dmu_buf_user_evict_wait(void) 4328 { 4329 taskq_wait(dbu_evict_taskq); 4330 } 4331 4332 blkptr_t * 4333 dmu_buf_get_blkptr(dmu_buf_t *db) 4334 { 4335 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4336 return (dbi->db_blkptr); 4337 } 4338 4339 objset_t * 4340 dmu_buf_get_objset(dmu_buf_t *db) 4341 { 4342 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4343 return (dbi->db_objset); 4344 } 4345 4346 static void 4347 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4348 { 4349 /* ASSERT(dmu_tx_is_syncing(tx) */ 4350 ASSERT(MUTEX_HELD(&db->db_mtx)); 4351 4352 if (db->db_blkptr != NULL) 4353 return; 4354 4355 if (db->db_blkid == DMU_SPILL_BLKID) { 4356 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4357 BP_ZERO(db->db_blkptr); 4358 return; 4359 } 4360 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4361 /* 4362 * This buffer was allocated at a time when there was 4363 * no available blkptrs from the dnode, or it was 4364 * inappropriate to hook it in (i.e., nlevels mismatch). 4365 */ 4366 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4367 ASSERT(db->db_parent == NULL); 4368 db->db_parent = dn->dn_dbuf; 4369 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4370 DBUF_VERIFY(db); 4371 } else { 4372 dmu_buf_impl_t *parent = db->db_parent; 4373 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4374 4375 ASSERT(dn->dn_phys->dn_nlevels > 1); 4376 if (parent == NULL) { 4377 mutex_exit(&db->db_mtx); 4378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4379 parent = dbuf_hold_level(dn, db->db_level + 1, 4380 db->db_blkid >> epbs, db); 4381 rw_exit(&dn->dn_struct_rwlock); 4382 mutex_enter(&db->db_mtx); 4383 db->db_parent = parent; 4384 } 4385 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4386 (db->db_blkid & ((1ULL << epbs) - 1)); 4387 DBUF_VERIFY(db); 4388 } 4389 } 4390 4391 static void 4392 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4393 { 4394 dmu_buf_impl_t *db = dr->dr_dbuf; 4395 void *data = dr->dt.dl.dr_data; 4396 4397 ASSERT0(db->db_level); 4398 ASSERT(MUTEX_HELD(&db->db_mtx)); 4399 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4400 ASSERT(data != NULL); 4401 4402 dnode_t *dn = dr->dr_dnode; 4403 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4404 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4405 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4406 4407 dbuf_sync_leaf_verify_bonus_dnode(dr); 4408 4409 dbuf_undirty_bonus(dr); 4410 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4411 } 4412 4413 /* 4414 * When syncing out a blocks of dnodes, adjust the block to deal with 4415 * encryption. Normally, we make sure the block is decrypted before writing 4416 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4417 * from a raw receive. In this case, set the ARC buf's crypt params so 4418 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4419 */ 4420 static void 4421 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4422 { 4423 int err; 4424 dmu_buf_impl_t *db = dr->dr_dbuf; 4425 4426 ASSERT(MUTEX_HELD(&db->db_mtx)); 4427 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4428 ASSERT3U(db->db_level, ==, 0); 4429 4430 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4431 zbookmark_phys_t zb; 4432 4433 /* 4434 * Unfortunately, there is currently no mechanism for 4435 * syncing context to handle decryption errors. An error 4436 * here is only possible if an attacker maliciously 4437 * changed a dnode block and updated the associated 4438 * checksums going up the block tree. 4439 */ 4440 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4441 db->db.db_object, db->db_level, db->db_blkid); 4442 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4443 &zb, B_TRUE); 4444 if (err) 4445 panic("Invalid dnode block MAC"); 4446 } else if (dr->dt.dl.dr_has_raw_params) { 4447 (void) arc_release(dr->dt.dl.dr_data, db); 4448 arc_convert_to_raw(dr->dt.dl.dr_data, 4449 dmu_objset_id(db->db_objset), 4450 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4451 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4452 } 4453 } 4454 4455 /* 4456 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4457 * is critical the we not allow the compiler to inline this function in to 4458 * dbuf_sync_list() thereby drastically bloating the stack usage. 4459 */ 4460 noinline static void 4461 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4462 { 4463 dmu_buf_impl_t *db = dr->dr_dbuf; 4464 dnode_t *dn = dr->dr_dnode; 4465 4466 ASSERT(dmu_tx_is_syncing(tx)); 4467 4468 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4469 4470 mutex_enter(&db->db_mtx); 4471 4472 ASSERT(db->db_level > 0); 4473 DBUF_VERIFY(db); 4474 4475 /* Read the block if it hasn't been read yet. */ 4476 if (db->db_buf == NULL) { 4477 mutex_exit(&db->db_mtx); 4478 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4479 mutex_enter(&db->db_mtx); 4480 } 4481 ASSERT3U(db->db_state, ==, DB_CACHED); 4482 ASSERT(db->db_buf != NULL); 4483 4484 /* Indirect block size must match what the dnode thinks it is. */ 4485 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4486 dbuf_check_blkptr(dn, db); 4487 4488 /* Provide the pending dirty record to child dbufs */ 4489 db->db_data_pending = dr; 4490 4491 mutex_exit(&db->db_mtx); 4492 4493 dbuf_write(dr, db->db_buf, tx); 4494 4495 zio_t *zio = dr->dr_zio; 4496 mutex_enter(&dr->dt.di.dr_mtx); 4497 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4498 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4499 mutex_exit(&dr->dt.di.dr_mtx); 4500 zio_nowait(zio); 4501 } 4502 4503 /* 4504 * Verify that the size of the data in our bonus buffer does not exceed 4505 * its recorded size. 4506 * 4507 * The purpose of this verification is to catch any cases in development 4508 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4509 * due to incorrect feature management, older pools expect to read more 4510 * data even though they didn't actually write it to begin with. 4511 * 4512 * For a example, this would catch an error in the feature logic where we 4513 * open an older pool and we expect to write the space map histogram of 4514 * a space map with size SPACE_MAP_SIZE_V0. 4515 */ 4516 static void 4517 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4518 { 4519 #ifdef ZFS_DEBUG 4520 dnode_t *dn = dr->dr_dnode; 4521 4522 /* 4523 * Encrypted bonus buffers can have data past their bonuslen. 4524 * Skip the verification of these blocks. 4525 */ 4526 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4527 return; 4528 4529 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4530 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4531 ASSERT3U(bonuslen, <=, maxbonuslen); 4532 4533 arc_buf_t *datap = dr->dt.dl.dr_data; 4534 char *datap_end = ((char *)datap) + bonuslen; 4535 char *datap_max = ((char *)datap) + maxbonuslen; 4536 4537 /* ensure that everything is zero after our data */ 4538 for (; datap_end < datap_max; datap_end++) 4539 ASSERT(*datap_end == 0); 4540 #endif 4541 } 4542 4543 static blkptr_t * 4544 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4545 { 4546 /* This must be a lightweight dirty record. */ 4547 ASSERT3P(dr->dr_dbuf, ==, NULL); 4548 dnode_t *dn = dr->dr_dnode; 4549 4550 if (dn->dn_phys->dn_nlevels == 1) { 4551 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4552 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4553 } else { 4554 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4555 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4556 VERIFY3U(parent_db->db_level, ==, 1); 4557 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4558 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4559 blkptr_t *bp = parent_db->db.db_data; 4560 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4561 } 4562 } 4563 4564 static void 4565 dbuf_lightweight_ready(zio_t *zio) 4566 { 4567 dbuf_dirty_record_t *dr = zio->io_private; 4568 blkptr_t *bp = zio->io_bp; 4569 4570 if (zio->io_error != 0) 4571 return; 4572 4573 dnode_t *dn = dr->dr_dnode; 4574 4575 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4576 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4577 int64_t delta = bp_get_dsize_sync(spa, bp) - 4578 bp_get_dsize_sync(spa, bp_orig); 4579 dnode_diduse_space(dn, delta); 4580 4581 uint64_t blkid = dr->dt.dll.dr_blkid; 4582 mutex_enter(&dn->dn_mtx); 4583 if (blkid > dn->dn_phys->dn_maxblkid) { 4584 ASSERT0(dn->dn_objset->os_raw_receive); 4585 dn->dn_phys->dn_maxblkid = blkid; 4586 } 4587 mutex_exit(&dn->dn_mtx); 4588 4589 if (!BP_IS_EMBEDDED(bp)) { 4590 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4591 BP_SET_FILL(bp, fill); 4592 } 4593 4594 dmu_buf_impl_t *parent_db; 4595 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4596 if (dr->dr_parent == NULL) { 4597 parent_db = dn->dn_dbuf; 4598 } else { 4599 parent_db = dr->dr_parent->dr_dbuf; 4600 } 4601 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4602 *bp_orig = *bp; 4603 rw_exit(&parent_db->db_rwlock); 4604 } 4605 4606 static void 4607 dbuf_lightweight_done(zio_t *zio) 4608 { 4609 dbuf_dirty_record_t *dr = zio->io_private; 4610 4611 VERIFY0(zio->io_error); 4612 4613 objset_t *os = dr->dr_dnode->dn_objset; 4614 dmu_tx_t *tx = os->os_synctx; 4615 4616 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4617 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4618 } else { 4619 dsl_dataset_t *ds = os->os_dsl_dataset; 4620 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4621 dsl_dataset_block_born(ds, zio->io_bp, tx); 4622 } 4623 4624 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4625 zio->io_txg); 4626 4627 abd_free(dr->dt.dll.dr_abd); 4628 kmem_free(dr, sizeof (*dr)); 4629 } 4630 4631 noinline static void 4632 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4633 { 4634 dnode_t *dn = dr->dr_dnode; 4635 zio_t *pio; 4636 if (dn->dn_phys->dn_nlevels == 1) { 4637 pio = dn->dn_zio; 4638 } else { 4639 pio = dr->dr_parent->dr_zio; 4640 } 4641 4642 zbookmark_phys_t zb = { 4643 .zb_objset = dmu_objset_id(dn->dn_objset), 4644 .zb_object = dn->dn_object, 4645 .zb_level = 0, 4646 .zb_blkid = dr->dt.dll.dr_blkid, 4647 }; 4648 4649 /* 4650 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4651 * will have the old BP in dbuf_lightweight_done(). 4652 */ 4653 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4654 4655 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4656 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4657 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4658 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4659 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4660 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4661 4662 zio_nowait(dr->dr_zio); 4663 } 4664 4665 /* 4666 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4667 * critical the we not allow the compiler to inline this function in to 4668 * dbuf_sync_list() thereby drastically bloating the stack usage. 4669 */ 4670 noinline static void 4671 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4672 { 4673 arc_buf_t **datap = &dr->dt.dl.dr_data; 4674 dmu_buf_impl_t *db = dr->dr_dbuf; 4675 dnode_t *dn = dr->dr_dnode; 4676 objset_t *os; 4677 uint64_t txg = tx->tx_txg; 4678 4679 ASSERT(dmu_tx_is_syncing(tx)); 4680 4681 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4682 4683 mutex_enter(&db->db_mtx); 4684 /* 4685 * To be synced, we must be dirtied. But we might have been freed 4686 * after the dirty. 4687 */ 4688 if (db->db_state == DB_UNCACHED) { 4689 /* This buffer has been freed since it was dirtied */ 4690 ASSERT3P(db->db.db_data, ==, NULL); 4691 } else if (db->db_state == DB_FILL) { 4692 /* This buffer was freed and is now being re-filled */ 4693 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4694 } else if (db->db_state == DB_READ) { 4695 /* 4696 * This buffer was either cloned or had a Direct I/O write 4697 * occur and has an in-flgiht read on the BP. It is safe to 4698 * issue the write here, because the read has already been 4699 * issued and the contents won't change. 4700 * 4701 * We can verify the case of both the clone and Direct I/O 4702 * write by making sure the first dirty record for the dbuf 4703 * has no ARC buffer associated with it. 4704 */ 4705 dbuf_dirty_record_t *dr_head = 4706 list_head(&db->db_dirty_records); 4707 ASSERT3P(db->db_buf, ==, NULL); 4708 ASSERT3P(db->db.db_data, ==, NULL); 4709 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL); 4710 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN); 4711 } else { 4712 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4713 } 4714 DBUF_VERIFY(db); 4715 4716 if (db->db_blkid == DMU_SPILL_BLKID) { 4717 mutex_enter(&dn->dn_mtx); 4718 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4719 /* 4720 * In the previous transaction group, the bonus buffer 4721 * was entirely used to store the attributes for the 4722 * dnode which overrode the dn_spill field. However, 4723 * when adding more attributes to the file a spill 4724 * block was required to hold the extra attributes. 4725 * 4726 * Make sure to clear the garbage left in the dn_spill 4727 * field from the previous attributes in the bonus 4728 * buffer. Otherwise, after writing out the spill 4729 * block to the new allocated dva, it will free 4730 * the old block pointed to by the invalid dn_spill. 4731 */ 4732 db->db_blkptr = NULL; 4733 } 4734 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4735 mutex_exit(&dn->dn_mtx); 4736 } 4737 4738 /* 4739 * If this is a bonus buffer, simply copy the bonus data into the 4740 * dnode. It will be written out when the dnode is synced (and it 4741 * will be synced, since it must have been dirty for dbuf_sync to 4742 * be called). 4743 */ 4744 if (db->db_blkid == DMU_BONUS_BLKID) { 4745 ASSERT(dr->dr_dbuf == db); 4746 dbuf_sync_bonus(dr, tx); 4747 return; 4748 } 4749 4750 os = dn->dn_objset; 4751 4752 /* 4753 * This function may have dropped the db_mtx lock allowing a dmu_sync 4754 * operation to sneak in. As a result, we need to ensure that we 4755 * don't check the dr_override_state until we have returned from 4756 * dbuf_check_blkptr. 4757 */ 4758 dbuf_check_blkptr(dn, db); 4759 4760 /* 4761 * If this buffer is in the middle of an immediate write, wait for the 4762 * synchronous IO to complete. 4763 * 4764 * This is also valid even with Direct I/O writes setting a dirty 4765 * records override state into DR_IN_DMU_SYNC, because all 4766 * Direct I/O writes happen in open-context. 4767 */ 4768 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4769 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4770 cv_wait(&db->db_changed, &db->db_mtx); 4771 } 4772 4773 /* 4774 * If this is a dnode block, ensure it is appropriately encrypted 4775 * or decrypted, depending on what we are writing to it this txg. 4776 */ 4777 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4778 dbuf_prepare_encrypted_dnode_leaf(dr); 4779 4780 if (*datap != NULL && *datap == db->db_buf && 4781 dn->dn_object != DMU_META_DNODE_OBJECT && 4782 zfs_refcount_count(&db->db_holds) > 1 && 4783 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) { 4784 /* 4785 * If this buffer is currently "in use" (i.e., there 4786 * are active holds and db_data still references it), 4787 * then make a copy before we start the write so that 4788 * any modifications from the open txg will not leak 4789 * into this write. 4790 * 4791 * NOTE: this copy does not need to be made for 4792 * objects only modified in the syncing context (e.g. 4793 * DNONE_DNODE blocks). 4794 */ 4795 int psize = arc_buf_size(*datap); 4796 int lsize = arc_buf_lsize(*datap); 4797 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4798 enum zio_compress compress_type = arc_get_compression(*datap); 4799 uint8_t complevel = arc_get_complevel(*datap); 4800 4801 if (arc_is_encrypted(*datap)) { 4802 boolean_t byteorder; 4803 uint8_t salt[ZIO_DATA_SALT_LEN]; 4804 uint8_t iv[ZIO_DATA_IV_LEN]; 4805 uint8_t mac[ZIO_DATA_MAC_LEN]; 4806 4807 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4808 *datap = arc_alloc_raw_buf(os->os_spa, db, 4809 dmu_objset_id(os), byteorder, salt, iv, mac, 4810 dn->dn_type, psize, lsize, compress_type, 4811 complevel); 4812 } else if (compress_type != ZIO_COMPRESS_OFF) { 4813 ASSERT3U(type, ==, ARC_BUFC_DATA); 4814 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4815 psize, lsize, compress_type, complevel); 4816 } else { 4817 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4818 } 4819 memcpy((*datap)->b_data, db->db.db_data, psize); 4820 } 4821 db->db_data_pending = dr; 4822 4823 mutex_exit(&db->db_mtx); 4824 4825 dbuf_write(dr, *datap, tx); 4826 4827 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4828 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4829 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4830 } else { 4831 zio_nowait(dr->dr_zio); 4832 } 4833 } 4834 4835 /* 4836 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4837 * called recursively from dbuf_sync_indirect(). 4838 */ 4839 void 4840 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4841 { 4842 dbuf_dirty_record_t *dr; 4843 4844 while ((dr = list_head(list))) { 4845 if (dr->dr_zio != NULL) { 4846 /* 4847 * If we find an already initialized zio then we 4848 * are processing the meta-dnode, and we have finished. 4849 * The dbufs for all dnodes are put back on the list 4850 * during processing, so that we can zio_wait() 4851 * these IOs after initiating all child IOs. 4852 */ 4853 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4854 DMU_META_DNODE_OBJECT); 4855 break; 4856 } 4857 list_remove(list, dr); 4858 if (dr->dr_dbuf == NULL) { 4859 dbuf_sync_lightweight(dr, tx); 4860 } else { 4861 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4862 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4863 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4864 } 4865 if (dr->dr_dbuf->db_level > 0) 4866 dbuf_sync_indirect(dr, tx); 4867 else 4868 dbuf_sync_leaf(dr, tx); 4869 } 4870 } 4871 } 4872 4873 static void 4874 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4875 { 4876 (void) buf; 4877 dmu_buf_impl_t *db = vdb; 4878 dnode_t *dn; 4879 blkptr_t *bp = zio->io_bp; 4880 blkptr_t *bp_orig = &zio->io_bp_orig; 4881 spa_t *spa = zio->io_spa; 4882 int64_t delta; 4883 uint64_t fill = 0; 4884 int i; 4885 4886 ASSERT3P(db->db_blkptr, !=, NULL); 4887 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4888 4889 DB_DNODE_ENTER(db); 4890 dn = DB_DNODE(db); 4891 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4892 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4893 zio->io_prev_space_delta = delta; 4894 4895 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4896 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4897 BP_GET_TYPE(bp) == dn->dn_type) || 4898 (db->db_blkid == DMU_SPILL_BLKID && 4899 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4900 BP_IS_EMBEDDED(bp)); 4901 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4902 } 4903 4904 mutex_enter(&db->db_mtx); 4905 4906 #ifdef ZFS_DEBUG 4907 if (db->db_blkid == DMU_SPILL_BLKID) { 4908 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4909 ASSERT(!(BP_IS_HOLE(bp)) && 4910 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4911 } 4912 #endif 4913 4914 if (db->db_level == 0) { 4915 mutex_enter(&dn->dn_mtx); 4916 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4917 db->db_blkid != DMU_SPILL_BLKID) { 4918 ASSERT0(db->db_objset->os_raw_receive); 4919 dn->dn_phys->dn_maxblkid = db->db_blkid; 4920 } 4921 mutex_exit(&dn->dn_mtx); 4922 4923 if (dn->dn_type == DMU_OT_DNODE) { 4924 i = 0; 4925 while (i < db->db.db_size) { 4926 dnode_phys_t *dnp = 4927 (void *)(((char *)db->db.db_data) + i); 4928 4929 i += DNODE_MIN_SIZE; 4930 if (dnp->dn_type != DMU_OT_NONE) { 4931 fill++; 4932 for (int j = 0; j < dnp->dn_nblkptr; 4933 j++) { 4934 (void) zfs_blkptr_verify(spa, 4935 &dnp->dn_blkptr[j], 4936 BLK_CONFIG_SKIP, 4937 BLK_VERIFY_HALT); 4938 } 4939 if (dnp->dn_flags & 4940 DNODE_FLAG_SPILL_BLKPTR) { 4941 (void) zfs_blkptr_verify(spa, 4942 DN_SPILL_BLKPTR(dnp), 4943 BLK_CONFIG_SKIP, 4944 BLK_VERIFY_HALT); 4945 } 4946 i += dnp->dn_extra_slots * 4947 DNODE_MIN_SIZE; 4948 } 4949 } 4950 } else { 4951 if (BP_IS_HOLE(bp)) { 4952 fill = 0; 4953 } else { 4954 fill = 1; 4955 } 4956 } 4957 } else { 4958 blkptr_t *ibp = db->db.db_data; 4959 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4960 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4961 if (BP_IS_HOLE(ibp)) 4962 continue; 4963 (void) zfs_blkptr_verify(spa, ibp, 4964 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4965 fill += BP_GET_FILL(ibp); 4966 } 4967 } 4968 DB_DNODE_EXIT(db); 4969 4970 if (!BP_IS_EMBEDDED(bp)) 4971 BP_SET_FILL(bp, fill); 4972 4973 mutex_exit(&db->db_mtx); 4974 4975 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4976 *db->db_blkptr = *bp; 4977 dmu_buf_unlock_parent(db, dblt, FTAG); 4978 } 4979 4980 /* 4981 * This function gets called just prior to running through the compression 4982 * stage of the zio pipeline. If we're an indirect block comprised of only 4983 * holes, then we want this indirect to be compressed away to a hole. In 4984 * order to do that we must zero out any information about the holes that 4985 * this indirect points to prior to before we try to compress it. 4986 */ 4987 static void 4988 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4989 { 4990 (void) zio, (void) buf; 4991 dmu_buf_impl_t *db = vdb; 4992 blkptr_t *bp; 4993 unsigned int epbs, i; 4994 4995 ASSERT3U(db->db_level, >, 0); 4996 DB_DNODE_ENTER(db); 4997 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4998 DB_DNODE_EXIT(db); 4999 ASSERT3U(epbs, <, 31); 5000 5001 /* Determine if all our children are holes */ 5002 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 5003 if (!BP_IS_HOLE(bp)) 5004 break; 5005 } 5006 5007 /* 5008 * If all the children are holes, then zero them all out so that 5009 * we may get compressed away. 5010 */ 5011 if (i == 1ULL << epbs) { 5012 /* 5013 * We only found holes. Grab the rwlock to prevent 5014 * anybody from reading the blocks we're about to 5015 * zero out. 5016 */ 5017 rw_enter(&db->db_rwlock, RW_WRITER); 5018 memset(db->db.db_data, 0, db->db.db_size); 5019 rw_exit(&db->db_rwlock); 5020 } 5021 } 5022 5023 static void 5024 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 5025 { 5026 (void) buf; 5027 dmu_buf_impl_t *db = vdb; 5028 blkptr_t *bp_orig = &zio->io_bp_orig; 5029 blkptr_t *bp = db->db_blkptr; 5030 objset_t *os = db->db_objset; 5031 dmu_tx_t *tx = os->os_synctx; 5032 5033 ASSERT0(zio->io_error); 5034 ASSERT(db->db_blkptr == bp); 5035 5036 /* 5037 * For nopwrites and rewrites we ensure that the bp matches our 5038 * original and bypass all the accounting. 5039 */ 5040 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 5041 ASSERT(BP_EQUAL(bp, bp_orig)); 5042 } else { 5043 dsl_dataset_t *ds = os->os_dsl_dataset; 5044 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 5045 dsl_dataset_block_born(ds, bp, tx); 5046 } 5047 5048 mutex_enter(&db->db_mtx); 5049 5050 DBUF_VERIFY(db); 5051 5052 dbuf_dirty_record_t *dr = db->db_data_pending; 5053 dnode_t *dn = dr->dr_dnode; 5054 ASSERT(!list_link_active(&dr->dr_dirty_node)); 5055 ASSERT(dr->dr_dbuf == db); 5056 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 5057 list_remove(&db->db_dirty_records, dr); 5058 5059 #ifdef ZFS_DEBUG 5060 if (db->db_blkid == DMU_SPILL_BLKID) { 5061 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 5062 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 5063 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 5064 } 5065 #endif 5066 5067 if (db->db_level == 0) { 5068 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 5069 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 5070 5071 /* no dr_data if this is a NO_FILL or Direct I/O */ 5072 if (dr->dt.dl.dr_data != NULL && 5073 dr->dt.dl.dr_data != db->db_buf) { 5074 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE); 5075 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE); 5076 arc_buf_destroy(dr->dt.dl.dr_data, db); 5077 } 5078 } else { 5079 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 5080 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 5081 if (!BP_IS_HOLE(db->db_blkptr)) { 5082 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 5083 SPA_BLKPTRSHIFT; 5084 ASSERT3U(db->db_blkid, <=, 5085 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 5086 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 5087 db->db.db_size); 5088 } 5089 mutex_destroy(&dr->dt.di.dr_mtx); 5090 list_destroy(&dr->dt.di.dr_children); 5091 } 5092 5093 cv_broadcast(&db->db_changed); 5094 ASSERT(db->db_dirtycnt > 0); 5095 db->db_dirtycnt -= 1; 5096 db->db_data_pending = NULL; 5097 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 5098 5099 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 5100 zio->io_txg); 5101 5102 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 5103 } 5104 5105 static void 5106 dbuf_write_nofill_ready(zio_t *zio) 5107 { 5108 dbuf_write_ready(zio, NULL, zio->io_private); 5109 } 5110 5111 static void 5112 dbuf_write_nofill_done(zio_t *zio) 5113 { 5114 dbuf_write_done(zio, NULL, zio->io_private); 5115 } 5116 5117 static void 5118 dbuf_write_override_ready(zio_t *zio) 5119 { 5120 dbuf_dirty_record_t *dr = zio->io_private; 5121 dmu_buf_impl_t *db = dr->dr_dbuf; 5122 5123 dbuf_write_ready(zio, NULL, db); 5124 } 5125 5126 static void 5127 dbuf_write_override_done(zio_t *zio) 5128 { 5129 dbuf_dirty_record_t *dr = zio->io_private; 5130 dmu_buf_impl_t *db = dr->dr_dbuf; 5131 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 5132 5133 mutex_enter(&db->db_mtx); 5134 if (!BP_EQUAL(zio->io_bp, obp)) { 5135 if (!BP_IS_HOLE(obp)) 5136 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 5137 arc_release(dr->dt.dl.dr_data, db); 5138 } 5139 mutex_exit(&db->db_mtx); 5140 5141 dbuf_write_done(zio, NULL, db); 5142 5143 if (zio->io_abd != NULL) 5144 abd_free(zio->io_abd); 5145 } 5146 5147 typedef struct dbuf_remap_impl_callback_arg { 5148 objset_t *drica_os; 5149 uint64_t drica_blk_birth; 5150 dmu_tx_t *drica_tx; 5151 } dbuf_remap_impl_callback_arg_t; 5152 5153 static void 5154 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 5155 void *arg) 5156 { 5157 dbuf_remap_impl_callback_arg_t *drica = arg; 5158 objset_t *os = drica->drica_os; 5159 spa_t *spa = dmu_objset_spa(os); 5160 dmu_tx_t *tx = drica->drica_tx; 5161 5162 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5163 5164 if (os == spa_meta_objset(spa)) { 5165 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5166 } else { 5167 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5168 size, drica->drica_blk_birth, tx); 5169 } 5170 } 5171 5172 static void 5173 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5174 { 5175 blkptr_t bp_copy = *bp; 5176 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5177 dbuf_remap_impl_callback_arg_t drica; 5178 5179 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5180 5181 drica.drica_os = dn->dn_objset; 5182 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5183 drica.drica_tx = tx; 5184 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5185 &drica)) { 5186 /* 5187 * If the blkptr being remapped is tracked by a livelist, 5188 * then we need to make sure the livelist reflects the update. 5189 * First, cancel out the old blkptr by appending a 'FREE' 5190 * entry. Next, add an 'ALLOC' to track the new version. This 5191 * way we avoid trying to free an inaccurate blkptr at delete. 5192 * Note that embedded blkptrs are not tracked in livelists. 5193 */ 5194 if (dn->dn_objset != spa_meta_objset(spa)) { 5195 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5196 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5197 BP_GET_LOGICAL_BIRTH(bp) > 5198 ds->ds_dir->dd_origin_txg) { 5199 ASSERT(!BP_IS_EMBEDDED(bp)); 5200 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5201 ASSERT(spa_feature_is_enabled(spa, 5202 SPA_FEATURE_LIVELIST)); 5203 bplist_append(&ds->ds_dir->dd_pending_frees, 5204 bp); 5205 bplist_append(&ds->ds_dir->dd_pending_allocs, 5206 &bp_copy); 5207 } 5208 } 5209 5210 /* 5211 * The db_rwlock prevents dbuf_read_impl() from 5212 * dereferencing the BP while we are changing it. To 5213 * avoid lock contention, only grab it when we are actually 5214 * changing the BP. 5215 */ 5216 if (rw != NULL) 5217 rw_enter(rw, RW_WRITER); 5218 *bp = bp_copy; 5219 if (rw != NULL) 5220 rw_exit(rw); 5221 } 5222 } 5223 5224 /* 5225 * Remap any existing BP's to concrete vdevs, if possible. 5226 */ 5227 static void 5228 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5229 { 5230 spa_t *spa = dmu_objset_spa(db->db_objset); 5231 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5232 5233 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5234 return; 5235 5236 if (db->db_level > 0) { 5237 blkptr_t *bp = db->db.db_data; 5238 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5239 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5240 } 5241 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5242 dnode_phys_t *dnp = db->db.db_data; 5243 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5244 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5245 i += dnp[i].dn_extra_slots + 1) { 5246 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5247 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5248 &dn->dn_dbuf->db_rwlock); 5249 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5250 tx); 5251 } 5252 } 5253 } 5254 } 5255 5256 5257 /* 5258 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5259 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5260 */ 5261 static void 5262 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5263 { 5264 dmu_buf_impl_t *db = dr->dr_dbuf; 5265 dnode_t *dn = dr->dr_dnode; 5266 objset_t *os; 5267 dmu_buf_impl_t *parent = db->db_parent; 5268 uint64_t txg = tx->tx_txg; 5269 zbookmark_phys_t zb; 5270 zio_prop_t zp; 5271 zio_t *pio; /* parent I/O */ 5272 int wp_flag = 0; 5273 5274 ASSERT(dmu_tx_is_syncing(tx)); 5275 5276 os = dn->dn_objset; 5277 5278 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5279 /* 5280 * Private object buffers are released here rather than in 5281 * dbuf_dirty() since they are only modified in the syncing 5282 * context and we don't want the overhead of making multiple 5283 * copies of the data. 5284 */ 5285 if (BP_IS_HOLE(db->db_blkptr)) 5286 arc_buf_thaw(data); 5287 else 5288 dbuf_release_bp(db); 5289 dbuf_remap(dn, db, tx); 5290 } 5291 5292 if (parent != dn->dn_dbuf) { 5293 /* Our parent is an indirect block. */ 5294 /* We have a dirty parent that has been scheduled for write. */ 5295 ASSERT(parent && parent->db_data_pending); 5296 /* Our parent's buffer is one level closer to the dnode. */ 5297 ASSERT(db->db_level == parent->db_level-1); 5298 /* 5299 * We're about to modify our parent's db_data by modifying 5300 * our block pointer, so the parent must be released. 5301 */ 5302 ASSERT(arc_released(parent->db_buf)); 5303 pio = parent->db_data_pending->dr_zio; 5304 } else { 5305 /* Our parent is the dnode itself. */ 5306 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5307 db->db_blkid != DMU_SPILL_BLKID) || 5308 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5309 if (db->db_blkid != DMU_SPILL_BLKID) 5310 ASSERT3P(db->db_blkptr, ==, 5311 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5312 pio = dn->dn_zio; 5313 } 5314 5315 ASSERT(db->db_level == 0 || data == db->db_buf); 5316 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5317 ASSERT(pio); 5318 5319 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5320 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5321 db->db.db_object, db->db_level, db->db_blkid); 5322 5323 if (db->db_blkid == DMU_SPILL_BLKID) 5324 wp_flag = WP_SPILL; 5325 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5326 5327 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5328 5329 /* 5330 * We copy the blkptr now (rather than when we instantiate the dirty 5331 * record), because its value can change between open context and 5332 * syncing context. We do not need to hold dn_struct_rwlock to read 5333 * db_blkptr because we are in syncing context. 5334 */ 5335 dr->dr_bp_copy = *db->db_blkptr; 5336 5337 if (db->db_level == 0 && 5338 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5339 /* 5340 * The BP for this block has been provided by open context 5341 * (by dmu_sync(), dmu_write_direct(), 5342 * or dmu_buf_write_embedded()). 5343 */ 5344 abd_t *contents = (data != NULL) ? 5345 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5346 5347 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5348 contents, db->db.db_size, db->db.db_size, &zp, 5349 dbuf_write_override_ready, NULL, 5350 dbuf_write_override_done, 5351 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5352 mutex_enter(&db->db_mtx); 5353 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5354 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5355 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5356 dr->dt.dl.dr_brtwrite); 5357 mutex_exit(&db->db_mtx); 5358 } else if (data == NULL) { 5359 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5360 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5361 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5362 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5363 dbuf_write_nofill_ready, NULL, 5364 dbuf_write_nofill_done, db, 5365 ZIO_PRIORITY_ASYNC_WRITE, 5366 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5367 } else { 5368 ASSERT(arc_released(data)); 5369 5370 /* 5371 * For indirect blocks, we want to setup the children 5372 * ready callback so that we can properly handle an indirect 5373 * block that only contains holes. 5374 */ 5375 arc_write_done_func_t *children_ready_cb = NULL; 5376 if (db->db_level != 0) 5377 children_ready_cb = dbuf_write_children_ready; 5378 5379 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5380 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5381 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready, 5382 children_ready_cb, dbuf_write_done, db, 5383 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5384 } 5385 } 5386 5387 EXPORT_SYMBOL(dbuf_find); 5388 EXPORT_SYMBOL(dbuf_is_metadata); 5389 EXPORT_SYMBOL(dbuf_destroy); 5390 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5391 EXPORT_SYMBOL(dbuf_whichblock); 5392 EXPORT_SYMBOL(dbuf_read); 5393 EXPORT_SYMBOL(dbuf_unoverride); 5394 EXPORT_SYMBOL(dbuf_free_range); 5395 EXPORT_SYMBOL(dbuf_new_size); 5396 EXPORT_SYMBOL(dbuf_release_bp); 5397 EXPORT_SYMBOL(dbuf_dirty); 5398 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5399 EXPORT_SYMBOL(dmu_buf_will_dirty); 5400 EXPORT_SYMBOL(dmu_buf_is_dirty); 5401 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio); 5402 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5403 EXPORT_SYMBOL(dmu_buf_will_fill); 5404 EXPORT_SYMBOL(dmu_buf_fill_done); 5405 EXPORT_SYMBOL(dmu_buf_rele); 5406 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5407 EXPORT_SYMBOL(dbuf_prefetch); 5408 EXPORT_SYMBOL(dbuf_hold_impl); 5409 EXPORT_SYMBOL(dbuf_hold); 5410 EXPORT_SYMBOL(dbuf_hold_level); 5411 EXPORT_SYMBOL(dbuf_create_bonus); 5412 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5413 EXPORT_SYMBOL(dbuf_rm_spill); 5414 EXPORT_SYMBOL(dbuf_add_ref); 5415 EXPORT_SYMBOL(dbuf_rele); 5416 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5417 EXPORT_SYMBOL(dbuf_refcount); 5418 EXPORT_SYMBOL(dbuf_sync_list); 5419 EXPORT_SYMBOL(dmu_buf_set_user); 5420 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5421 EXPORT_SYMBOL(dmu_buf_get_user); 5422 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5423 5424 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5425 "Maximum size in bytes of the dbuf cache."); 5426 5427 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5428 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5429 5430 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5431 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5432 5433 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5434 "Maximum size in bytes of dbuf metadata cache."); 5435 5436 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5437 "Set size of dbuf cache to log2 fraction of arc size."); 5438 5439 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5440 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5441 5442 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5443 "Set size of dbuf cache mutex array as log2 shift."); 5444