1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/arc.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_send.h> 37 #include <sys/dmu_impl.h> 38 #include <sys/dbuf.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/spa.h> 44 #include <sys/zio.h> 45 #include <sys/dmu_zfetch.h> 46 #include <sys/sa.h> 47 #include <sys/sa_impl.h> 48 #include <sys/zfeature.h> 49 #include <sys/blkptr.h> 50 #include <sys/range_tree.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/callb.h> 53 #include <sys/abd.h> 54 #include <sys/brt.h> 55 #include <sys/vdev.h> 56 #include <cityhash.h> 57 #include <sys/spa_impl.h> 58 #include <sys/wmsum.h> 59 #include <sys/vdev_impl.h> 60 61 static kstat_t *dbuf_ksp; 62 63 typedef struct dbuf_stats { 64 /* 65 * Various statistics about the size of the dbuf cache. 66 */ 67 kstat_named_t cache_count; 68 kstat_named_t cache_size_bytes; 69 kstat_named_t cache_size_bytes_max; 70 /* 71 * Statistics regarding the bounds on the dbuf cache size. 72 */ 73 kstat_named_t cache_target_bytes; 74 kstat_named_t cache_lowater_bytes; 75 kstat_named_t cache_hiwater_bytes; 76 /* 77 * Total number of dbuf cache evictions that have occurred. 78 */ 79 kstat_named_t cache_total_evicts; 80 /* 81 * The distribution of dbuf levels in the dbuf cache and 82 * the total size of all dbufs at each level. 83 */ 84 kstat_named_t cache_levels[DN_MAX_LEVELS]; 85 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 86 /* 87 * Statistics about the dbuf hash table. 88 */ 89 kstat_named_t hash_hits; 90 kstat_named_t hash_misses; 91 kstat_named_t hash_collisions; 92 kstat_named_t hash_elements; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_chains", KSTAT_DATA_UINT64 }, 138 { "hash_chain_max", KSTAT_DATA_UINT64 }, 139 { "hash_insert_race", KSTAT_DATA_UINT64 }, 140 { "hash_table_count", KSTAT_DATA_UINT64 }, 141 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 142 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 146 }; 147 148 struct { 149 wmsum_t cache_count; 150 wmsum_t cache_total_evicts; 151 wmsum_t cache_levels[DN_MAX_LEVELS]; 152 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 153 wmsum_t hash_hits; 154 wmsum_t hash_misses; 155 wmsum_t hash_collisions; 156 wmsum_t hash_elements; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 kmem_cache_t *dbuf_dirty_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 DBUF_STAT_BUMP(hash_elements); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 DBUF_STAT_BUMPDOWN(hash_elements); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT0(db->db_level); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, dbu); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 /* 640 * bp must be checked in the event it was passed from 641 * dbuf_read_impl() as the result of a the BP being set from 642 * a Direct I/O write in dbuf_read(). See comments in 643 * dbuf_read(). 644 */ 645 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp; 646 647 if (db_bp == NULL || BP_IS_HOLE(db_bp)) 648 return (B_FALSE); 649 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva); 650 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 651 vdev_t *vd = NULL; 652 653 if (vdev < rvd->vdev_children) 654 vd = rvd->vdev_child[vdev]; 655 656 if (vd == NULL) 657 return (B_TRUE); 658 659 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 660 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 661 return (B_TRUE); 662 } 663 return (B_FALSE); 664 } 665 666 static inline boolean_t 667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 668 { 669 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 670 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 671 (level > 0 || 672 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 673 if (l2arc_exclude_special == 0) 674 return (B_TRUE); 675 676 if (bp == NULL || BP_IS_HOLE(bp)) 677 return (B_FALSE); 678 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 679 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 680 vdev_t *vd = NULL; 681 682 if (vdev < rvd->vdev_children) 683 vd = rvd->vdev_child[vdev]; 684 685 if (vd == NULL) 686 return (B_TRUE); 687 688 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 689 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 690 return (B_TRUE); 691 } 692 return (B_FALSE); 693 } 694 695 696 /* 697 * This function *must* return indices evenly distributed between all 698 * sublists of the multilist. This is needed due to how the dbuf eviction 699 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 700 * distributed between all sublists and uses this assumption when 701 * deciding which sublist to evict from and how much to evict from it. 702 */ 703 static unsigned int 704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 705 { 706 dmu_buf_impl_t *db = obj; 707 708 /* 709 * The assumption here, is the hash value for a given 710 * dmu_buf_impl_t will remain constant throughout it's lifetime 711 * (i.e. it's objset, object, level and blkid fields don't change). 712 * Thus, we don't need to store the dbuf's sublist index 713 * on insertion, as this index can be recalculated on removal. 714 * 715 * Also, the low order bits of the hash value are thought to be 716 * distributed evenly. Otherwise, in the case that the multilist 717 * has a power of two number of sublists, each sublists' usage 718 * would not be evenly distributed. In this context full 64bit 719 * division would be a waste of time, so limit it to 32 bits. 720 */ 721 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 722 db->db_level, db->db_blkid) % 723 multilist_get_num_sublists(ml)); 724 } 725 726 /* 727 * The target size of the dbuf cache can grow with the ARC target, 728 * unless limited by the tunable dbuf_cache_max_bytes. 729 */ 730 static inline unsigned long 731 dbuf_cache_target_bytes(void) 732 { 733 return (MIN(dbuf_cache_max_bytes, 734 arc_target_bytes() >> dbuf_cache_shift)); 735 } 736 737 /* 738 * The target size of the dbuf metadata cache can grow with the ARC target, 739 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 740 */ 741 static inline unsigned long 742 dbuf_metadata_cache_target_bytes(void) 743 { 744 return (MIN(dbuf_metadata_cache_max_bytes, 745 arc_target_bytes() >> dbuf_metadata_cache_shift)); 746 } 747 748 static inline uint64_t 749 dbuf_cache_hiwater_bytes(void) 750 { 751 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 752 return (dbuf_cache_target + 753 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 754 } 755 756 static inline uint64_t 757 dbuf_cache_lowater_bytes(void) 758 { 759 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 760 return (dbuf_cache_target - 761 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 762 } 763 764 static inline boolean_t 765 dbuf_cache_above_lowater(void) 766 { 767 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 768 dbuf_cache_lowater_bytes()); 769 } 770 771 /* 772 * Evict the oldest eligible dbuf from the dbuf cache. 773 */ 774 static void 775 dbuf_evict_one(void) 776 { 777 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 778 multilist_sublist_t *mls = multilist_sublist_lock_idx( 779 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 780 781 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 782 783 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 784 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 785 db = multilist_sublist_prev(mls, db); 786 } 787 788 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 789 multilist_sublist_t *, mls); 790 791 if (db != NULL) { 792 multilist_sublist_remove(mls, db); 793 multilist_sublist_unlock(mls); 794 uint64_t size = db->db.db_size; 795 uint64_t usize = dmu_buf_user_size(&db->db); 796 (void) zfs_refcount_remove_many( 797 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 798 (void) zfs_refcount_remove_many( 799 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 800 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 801 DBUF_STAT_BUMPDOWN(cache_count); 802 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 803 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 804 db->db_caching_status = DB_NO_CACHE; 805 dbuf_destroy(db); 806 DBUF_STAT_BUMP(cache_total_evicts); 807 } else { 808 multilist_sublist_unlock(mls); 809 } 810 } 811 812 /* 813 * The dbuf evict thread is responsible for aging out dbufs from the 814 * cache. Once the cache has reached it's maximum size, dbufs are removed 815 * and destroyed. The eviction thread will continue running until the size 816 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 817 * out of the cache it is destroyed and becomes eligible for arc eviction. 818 */ 819 static __attribute__((noreturn)) void 820 dbuf_evict_thread(void *unused) 821 { 822 (void) unused; 823 callb_cpr_t cpr; 824 825 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 826 827 mutex_enter(&dbuf_evict_lock); 828 while (!dbuf_evict_thread_exit) { 829 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 830 CALLB_CPR_SAFE_BEGIN(&cpr); 831 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 832 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 833 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 834 } 835 mutex_exit(&dbuf_evict_lock); 836 837 /* 838 * Keep evicting as long as we're above the low water mark 839 * for the cache. We do this without holding the locks to 840 * minimize lock contention. 841 */ 842 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 843 dbuf_evict_one(); 844 } 845 846 mutex_enter(&dbuf_evict_lock); 847 } 848 849 dbuf_evict_thread_exit = B_FALSE; 850 cv_broadcast(&dbuf_evict_cv); 851 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 852 thread_exit(); 853 } 854 855 /* 856 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 857 * If the dbuf cache is at its high water mark, then evict a dbuf from the 858 * dbuf cache using the caller's context. 859 */ 860 static void 861 dbuf_evict_notify(uint64_t size) 862 { 863 /* 864 * We check if we should evict without holding the dbuf_evict_lock, 865 * because it's OK to occasionally make the wrong decision here, 866 * and grabbing the lock results in massive lock contention. 867 */ 868 if (size > dbuf_cache_target_bytes()) { 869 /* 870 * Avoid calling dbuf_evict_one() from memory reclaim context 871 * (e.g. Linux kswapd, FreeBSD pagedaemon) to prevent deadlocks. 872 * Memory reclaim threads can get stuck waiting for the dbuf 873 * hash lock. 874 */ 875 if (size > dbuf_cache_hiwater_bytes() && 876 !current_is_reclaim_thread()) { 877 dbuf_evict_one(); 878 } 879 cv_signal(&dbuf_evict_cv); 880 } 881 } 882 883 /* 884 * Since dbuf cache size is a fraction of target ARC size, ARC calls this when 885 * its target size is reduced due to memory pressure. 886 */ 887 void 888 dbuf_cache_reduce_target_size(void) 889 { 890 uint64_t size = zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 891 892 if (size > dbuf_cache_target_bytes()) 893 cv_signal(&dbuf_evict_cv); 894 } 895 896 static int 897 dbuf_kstat_update(kstat_t *ksp, int rw) 898 { 899 dbuf_stats_t *ds = ksp->ks_data; 900 dbuf_hash_table_t *h = &dbuf_hash_table; 901 902 if (rw == KSTAT_WRITE) 903 return (SET_ERROR(EACCES)); 904 905 ds->cache_count.value.ui64 = 906 wmsum_value(&dbuf_sums.cache_count); 907 ds->cache_size_bytes.value.ui64 = 908 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 909 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 910 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 911 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 912 ds->cache_total_evicts.value.ui64 = 913 wmsum_value(&dbuf_sums.cache_total_evicts); 914 for (int i = 0; i < DN_MAX_LEVELS; i++) { 915 ds->cache_levels[i].value.ui64 = 916 wmsum_value(&dbuf_sums.cache_levels[i]); 917 ds->cache_levels_bytes[i].value.ui64 = 918 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 919 } 920 ds->hash_hits.value.ui64 = 921 wmsum_value(&dbuf_sums.hash_hits); 922 ds->hash_misses.value.ui64 = 923 wmsum_value(&dbuf_sums.hash_misses); 924 ds->hash_collisions.value.ui64 = 925 wmsum_value(&dbuf_sums.hash_collisions); 926 ds->hash_elements.value.ui64 = 927 wmsum_value(&dbuf_sums.hash_elements); 928 ds->hash_chains.value.ui64 = 929 wmsum_value(&dbuf_sums.hash_chains); 930 ds->hash_insert_race.value.ui64 = 931 wmsum_value(&dbuf_sums.hash_insert_race); 932 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 933 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 934 ds->metadata_cache_count.value.ui64 = 935 wmsum_value(&dbuf_sums.metadata_cache_count); 936 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 937 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 938 ds->metadata_cache_overflow.value.ui64 = 939 wmsum_value(&dbuf_sums.metadata_cache_overflow); 940 return (0); 941 } 942 943 void 944 dbuf_init(void) 945 { 946 uint64_t hmsize, hsize = 1ULL << 16; 947 dbuf_hash_table_t *h = &dbuf_hash_table; 948 949 /* 950 * The hash table is big enough to fill one eighth of physical memory 951 * with an average block size of zfs_arc_average_blocksize (default 8K). 952 * By default, the table will take up 953 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 954 */ 955 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 956 hsize <<= 1; 957 958 h->hash_table = NULL; 959 while (h->hash_table == NULL) { 960 h->hash_table_mask = hsize - 1; 961 962 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 963 if (h->hash_table == NULL) 964 hsize >>= 1; 965 966 ASSERT3U(hsize, >=, 1ULL << 10); 967 } 968 969 /* 970 * The hash table buckets are protected by an array of mutexes where 971 * each mutex is reponsible for protecting 128 buckets. A minimum 972 * array size of 8192 is targeted to avoid contention. 973 */ 974 if (dbuf_mutex_cache_shift == 0) 975 hmsize = MAX(hsize >> 7, 1ULL << 13); 976 else 977 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 978 979 h->hash_mutexes = NULL; 980 while (h->hash_mutexes == NULL) { 981 h->hash_mutex_mask = hmsize - 1; 982 983 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 984 KM_SLEEP); 985 if (h->hash_mutexes == NULL) 986 hmsize >>= 1; 987 } 988 989 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 990 sizeof (dmu_buf_impl_t), 991 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 992 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t", 993 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 994 995 for (int i = 0; i < hmsize; i++) 996 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 997 998 dbuf_stats_init(h); 999 1000 /* 1001 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 1002 * configuration is not required. 1003 */ 1004 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 1005 1006 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1007 multilist_create(&dbuf_caches[dcs].cache, 1008 sizeof (dmu_buf_impl_t), 1009 offsetof(dmu_buf_impl_t, db_cache_link), 1010 dbuf_cache_multilist_index_func); 1011 zfs_refcount_create(&dbuf_caches[dcs].size); 1012 } 1013 1014 dbuf_evict_thread_exit = B_FALSE; 1015 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1016 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 1017 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 1018 NULL, 0, &p0, TS_RUN, minclsyspri); 1019 1020 wmsum_init(&dbuf_sums.cache_count, 0); 1021 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 1022 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1023 wmsum_init(&dbuf_sums.cache_levels[i], 0); 1024 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 1025 } 1026 wmsum_init(&dbuf_sums.hash_hits, 0); 1027 wmsum_init(&dbuf_sums.hash_misses, 0); 1028 wmsum_init(&dbuf_sums.hash_collisions, 0); 1029 wmsum_init(&dbuf_sums.hash_elements, 0); 1030 wmsum_init(&dbuf_sums.hash_chains, 0); 1031 wmsum_init(&dbuf_sums.hash_insert_race, 0); 1032 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1033 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1034 1035 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1036 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1037 KSTAT_FLAG_VIRTUAL); 1038 if (dbuf_ksp != NULL) { 1039 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1040 snprintf(dbuf_stats.cache_levels[i].name, 1041 KSTAT_STRLEN, "cache_level_%d", i); 1042 dbuf_stats.cache_levels[i].data_type = 1043 KSTAT_DATA_UINT64; 1044 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1045 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1046 dbuf_stats.cache_levels_bytes[i].data_type = 1047 KSTAT_DATA_UINT64; 1048 } 1049 dbuf_ksp->ks_data = &dbuf_stats; 1050 dbuf_ksp->ks_update = dbuf_kstat_update; 1051 kstat_install(dbuf_ksp); 1052 } 1053 } 1054 1055 void 1056 dbuf_fini(void) 1057 { 1058 dbuf_hash_table_t *h = &dbuf_hash_table; 1059 1060 dbuf_stats_destroy(); 1061 1062 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1063 mutex_destroy(&h->hash_mutexes[i]); 1064 1065 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1066 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1067 sizeof (kmutex_t)); 1068 1069 kmem_cache_destroy(dbuf_kmem_cache); 1070 kmem_cache_destroy(dbuf_dirty_kmem_cache); 1071 taskq_destroy(dbu_evict_taskq); 1072 1073 mutex_enter(&dbuf_evict_lock); 1074 dbuf_evict_thread_exit = B_TRUE; 1075 while (dbuf_evict_thread_exit) { 1076 cv_signal(&dbuf_evict_cv); 1077 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1078 } 1079 mutex_exit(&dbuf_evict_lock); 1080 1081 mutex_destroy(&dbuf_evict_lock); 1082 cv_destroy(&dbuf_evict_cv); 1083 1084 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1085 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1086 multilist_destroy(&dbuf_caches[dcs].cache); 1087 } 1088 1089 if (dbuf_ksp != NULL) { 1090 kstat_delete(dbuf_ksp); 1091 dbuf_ksp = NULL; 1092 } 1093 1094 wmsum_fini(&dbuf_sums.cache_count); 1095 wmsum_fini(&dbuf_sums.cache_total_evicts); 1096 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1097 wmsum_fini(&dbuf_sums.cache_levels[i]); 1098 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1099 } 1100 wmsum_fini(&dbuf_sums.hash_hits); 1101 wmsum_fini(&dbuf_sums.hash_misses); 1102 wmsum_fini(&dbuf_sums.hash_collisions); 1103 wmsum_fini(&dbuf_sums.hash_elements); 1104 wmsum_fini(&dbuf_sums.hash_chains); 1105 wmsum_fini(&dbuf_sums.hash_insert_race); 1106 wmsum_fini(&dbuf_sums.metadata_cache_count); 1107 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1108 } 1109 1110 /* 1111 * Other stuff. 1112 */ 1113 1114 #ifdef ZFS_DEBUG 1115 static void 1116 dbuf_verify(dmu_buf_impl_t *db) 1117 { 1118 dnode_t *dn; 1119 dbuf_dirty_record_t *dr; 1120 uint32_t txg_prev; 1121 1122 ASSERT(MUTEX_HELD(&db->db_mtx)); 1123 1124 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1125 return; 1126 1127 ASSERT(db->db_objset != NULL); 1128 DB_DNODE_ENTER(db); 1129 dn = DB_DNODE(db); 1130 if (dn == NULL) { 1131 ASSERT0P(db->db_parent); 1132 ASSERT0P(db->db_blkptr); 1133 } else { 1134 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1135 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1136 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1137 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1138 db->db_blkid == DMU_SPILL_BLKID || 1139 !avl_is_empty(&dn->dn_dbufs)); 1140 } 1141 if (db->db_blkid == DMU_BONUS_BLKID) { 1142 ASSERT(dn != NULL); 1143 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1144 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1145 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1146 ASSERT(dn != NULL); 1147 ASSERT0(db->db.db_offset); 1148 } else { 1149 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1150 } 1151 1152 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1153 ASSERT(dr->dr_dbuf == db); 1154 txg_prev = dr->dr_txg; 1155 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1156 dr = list_next(&db->db_dirty_records, dr)) { 1157 ASSERT(dr->dr_dbuf == db); 1158 ASSERT(txg_prev > dr->dr_txg); 1159 txg_prev = dr->dr_txg; 1160 } 1161 } 1162 1163 /* 1164 * We can't assert that db_size matches dn_datablksz because it 1165 * can be momentarily different when another thread is doing 1166 * dnode_set_blksz(). 1167 */ 1168 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1169 dr = db->db_data_pending; 1170 /* 1171 * It should only be modified in syncing context, so 1172 * make sure we only have one copy of the data. 1173 */ 1174 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1175 } 1176 1177 /* verify db->db_blkptr */ 1178 if (db->db_blkptr) { 1179 if (db->db_parent == dn->dn_dbuf) { 1180 /* db is pointed to by the dnode */ 1181 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1182 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1183 ASSERT0P(db->db_parent); 1184 else 1185 ASSERT(db->db_parent != NULL); 1186 if (db->db_blkid != DMU_SPILL_BLKID) 1187 ASSERT3P(db->db_blkptr, ==, 1188 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1189 } else { 1190 /* db is pointed to by an indirect block */ 1191 int epb __maybe_unused = db->db_parent->db.db_size >> 1192 SPA_BLKPTRSHIFT; 1193 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1194 ASSERT3U(db->db_parent->db.db_object, ==, 1195 db->db.db_object); 1196 ASSERT3P(db->db_blkptr, ==, 1197 ((blkptr_t *)db->db_parent->db.db_data + 1198 db->db_blkid % epb)); 1199 } 1200 } 1201 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1202 (db->db_buf == NULL || db->db_buf->b_data) && 1203 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1204 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1205 /* 1206 * If the blkptr isn't set but they have nonzero data, 1207 * it had better be dirty, otherwise we'll lose that 1208 * data when we evict this buffer. 1209 * 1210 * There is an exception to this rule for indirect blocks; in 1211 * this case, if the indirect block is a hole, we fill in a few 1212 * fields on each of the child blocks (importantly, birth time) 1213 * to prevent hole birth times from being lost when you 1214 * partially fill in a hole. 1215 */ 1216 if (db->db_dirtycnt == 0) { 1217 if (db->db_level == 0) { 1218 uint64_t *buf = db->db.db_data; 1219 int i; 1220 1221 for (i = 0; i < db->db.db_size >> 3; i++) { 1222 ASSERT0(buf[i]); 1223 } 1224 } else { 1225 blkptr_t *bps = db->db.db_data; 1226 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1227 db->db.db_size); 1228 /* 1229 * We want to verify that all the blkptrs in the 1230 * indirect block are holes, but we may have 1231 * automatically set up a few fields for them. 1232 * We iterate through each blkptr and verify 1233 * they only have those fields set. 1234 */ 1235 for (int i = 0; 1236 i < db->db.db_size / sizeof (blkptr_t); 1237 i++) { 1238 blkptr_t *bp = &bps[i]; 1239 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1240 &bp->blk_cksum)); 1241 ASSERT( 1242 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1243 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1244 DVA_IS_EMPTY(&bp->blk_dva[2])); 1245 ASSERT0(bp->blk_fill); 1246 ASSERT(!BP_IS_EMBEDDED(bp)); 1247 ASSERT(BP_IS_HOLE(bp)); 1248 ASSERT0(BP_GET_RAW_PHYSICAL_BIRTH(bp)); 1249 } 1250 } 1251 } 1252 } 1253 DB_DNODE_EXIT(db); 1254 } 1255 #endif 1256 1257 static void 1258 dbuf_clear_data(dmu_buf_impl_t *db) 1259 { 1260 ASSERT(MUTEX_HELD(&db->db_mtx)); 1261 dbuf_evict_user(db); 1262 ASSERT0P(db->db_buf); 1263 db->db.db_data = NULL; 1264 if (db->db_state != DB_NOFILL) { 1265 db->db_state = DB_UNCACHED; 1266 DTRACE_SET_STATE(db, "clear data"); 1267 } 1268 } 1269 1270 static void 1271 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1272 { 1273 ASSERT(MUTEX_HELD(&db->db_mtx)); 1274 ASSERT(buf != NULL); 1275 1276 db->db_buf = buf; 1277 ASSERT(buf->b_data != NULL); 1278 db->db.db_data = buf->b_data; 1279 } 1280 1281 static arc_buf_t * 1282 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1283 { 1284 spa_t *spa = db->db_objset->os_spa; 1285 1286 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1287 } 1288 1289 /* 1290 * Calculate which level n block references the data at the level 0 offset 1291 * provided. 1292 */ 1293 uint64_t 1294 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1295 { 1296 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1297 /* 1298 * The level n blkid is equal to the level 0 blkid divided by 1299 * the number of level 0s in a level n block. 1300 * 1301 * The level 0 blkid is offset >> datablkshift = 1302 * offset / 2^datablkshift. 1303 * 1304 * The number of level 0s in a level n is the number of block 1305 * pointers in an indirect block, raised to the power of level. 1306 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1307 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1308 * 1309 * Thus, the level n blkid is: offset / 1310 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1311 * = offset / 2^(datablkshift + level * 1312 * (indblkshift - SPA_BLKPTRSHIFT)) 1313 * = offset >> (datablkshift + level * 1314 * (indblkshift - SPA_BLKPTRSHIFT)) 1315 */ 1316 1317 const unsigned exp = dn->dn_datablkshift + 1318 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1319 1320 if (exp >= 8 * sizeof (offset)) { 1321 /* This only happens on the highest indirection level */ 1322 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1323 return (0); 1324 } 1325 1326 ASSERT3U(exp, <, 8 * sizeof (offset)); 1327 1328 return (offset >> exp); 1329 } else { 1330 ASSERT3U(offset, <, dn->dn_datablksz); 1331 return (0); 1332 } 1333 } 1334 1335 /* 1336 * This function is used to lock the parent of the provided dbuf. This should be 1337 * used when modifying or reading db_blkptr. 1338 */ 1339 db_lock_type_t 1340 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1341 { 1342 enum db_lock_type ret = DLT_NONE; 1343 if (db->db_parent != NULL) { 1344 rw_enter(&db->db_parent->db_rwlock, rw); 1345 ret = DLT_PARENT; 1346 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1347 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1348 tag); 1349 ret = DLT_OBJSET; 1350 } 1351 /* 1352 * We only return a DLT_NONE lock when it's the top-most indirect block 1353 * of the meta-dnode of the MOS. 1354 */ 1355 return (ret); 1356 } 1357 1358 /* 1359 * We need to pass the lock type in because it's possible that the block will 1360 * move from being the topmost indirect block in a dnode (and thus, have no 1361 * parent) to not the top-most via an indirection increase. This would cause a 1362 * panic if we didn't pass the lock type in. 1363 */ 1364 void 1365 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1366 { 1367 if (type == DLT_PARENT) 1368 rw_exit(&db->db_parent->db_rwlock); 1369 else if (type == DLT_OBJSET) 1370 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1371 } 1372 1373 static void 1374 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1375 arc_buf_t *buf, void *vdb) 1376 { 1377 (void) zb, (void) bp; 1378 dmu_buf_impl_t *db = vdb; 1379 1380 mutex_enter(&db->db_mtx); 1381 ASSERT3U(db->db_state, ==, DB_READ); 1382 1383 /* 1384 * All reads are synchronous, so we must have a hold on the dbuf 1385 */ 1386 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1387 ASSERT0P(db->db_buf); 1388 ASSERT0P(db->db.db_data); 1389 if (buf == NULL) { 1390 /* i/o error */ 1391 ASSERT(zio == NULL || zio->io_error != 0); 1392 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1393 ASSERT0P(db->db_buf); 1394 db->db_state = DB_UNCACHED; 1395 DTRACE_SET_STATE(db, "i/o error"); 1396 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1397 /* freed in flight */ 1398 ASSERT(zio == NULL || zio->io_error == 0); 1399 arc_release(buf, db); 1400 memset(buf->b_data, 0, db->db.db_size); 1401 arc_buf_freeze(buf); 1402 db->db_freed_in_flight = FALSE; 1403 dbuf_set_data(db, buf); 1404 db->db_state = DB_CACHED; 1405 DTRACE_SET_STATE(db, "freed in flight"); 1406 } else { 1407 /* success */ 1408 ASSERT(zio == NULL || zio->io_error == 0); 1409 dbuf_set_data(db, buf); 1410 db->db_state = DB_CACHED; 1411 DTRACE_SET_STATE(db, "successful read"); 1412 } 1413 cv_broadcast(&db->db_changed); 1414 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1415 } 1416 1417 /* 1418 * Shortcut for performing reads on bonus dbufs. Returns 1419 * an error if we fail to verify the dnode associated with 1420 * a decrypted block. Otherwise success. 1421 */ 1422 static int 1423 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1424 { 1425 void* db_data; 1426 int bonuslen, max_bonuslen; 1427 1428 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1429 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1430 ASSERT(MUTEX_HELD(&db->db_mtx)); 1431 ASSERT(DB_DNODE_HELD(db)); 1432 ASSERT3U(bonuslen, <=, db->db.db_size); 1433 db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1434 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1435 if (bonuslen < max_bonuslen) 1436 memset(db_data, 0, max_bonuslen); 1437 if (bonuslen) 1438 memcpy(db_data, DN_BONUS(dn->dn_phys), bonuslen); 1439 db->db.db_data = db_data; 1440 db->db_state = DB_CACHED; 1441 DTRACE_SET_STATE(db, "bonus buffer filled"); 1442 return (0); 1443 } 1444 1445 static void 1446 dbuf_handle_indirect_hole(void *data, dnode_t *dn, blkptr_t *dbbp) 1447 { 1448 blkptr_t *bps = data; 1449 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1450 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1451 1452 for (int i = 0; i < n_bps; i++) { 1453 blkptr_t *bp = &bps[i]; 1454 1455 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1456 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1457 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1458 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1459 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1460 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1461 } 1462 } 1463 1464 /* 1465 * Handle reads on dbufs that are holes, if necessary. This function 1466 * requires that the dbuf's mutex is held. Returns success (0) if action 1467 * was taken, ENOENT if no action was taken. 1468 */ 1469 static int 1470 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1471 { 1472 ASSERT(MUTEX_HELD(&db->db_mtx)); 1473 arc_buf_t *db_data; 1474 1475 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1476 /* 1477 * For level 0 blocks only, if the above check fails: 1478 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1479 * processes the delete record and clears the bp while we are waiting 1480 * for the dn_mtx (resulting in a "no" from block_freed). 1481 */ 1482 if (!is_hole && db->db_level == 0) 1483 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1484 1485 if (is_hole) { 1486 db_data = dbuf_alloc_arcbuf(db); 1487 memset(db_data->b_data, 0, db->db.db_size); 1488 1489 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1490 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1491 dbuf_handle_indirect_hole(db_data->b_data, dn, bp); 1492 } 1493 dbuf_set_data(db, db_data); 1494 db->db_state = DB_CACHED; 1495 DTRACE_SET_STATE(db, "hole read satisfied"); 1496 return (0); 1497 } 1498 return (ENOENT); 1499 } 1500 1501 /* 1502 * This function ensures that, when doing a decrypting read of a block, 1503 * we make sure we have decrypted the dnode associated with it. We must do 1504 * this so that we ensure we are fully authenticating the checksum-of-MACs 1505 * tree from the root of the objset down to this block. Indirect blocks are 1506 * always verified against their secure checksum-of-MACs assuming that the 1507 * dnode containing them is correct. Now that we are doing a decrypting read, 1508 * we can be sure that the key is loaded and verify that assumption. This is 1509 * especially important considering that we always read encrypted dnode 1510 * blocks as raw data (without verifying their MACs) to start, and 1511 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1512 */ 1513 static int 1514 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, 1515 dmu_flags_t flags) 1516 { 1517 objset_t *os = db->db_objset; 1518 dmu_buf_impl_t *dndb; 1519 arc_buf_t *dnbuf; 1520 zbookmark_phys_t zb; 1521 int err; 1522 1523 if ((flags & DMU_READ_NO_DECRYPT) != 0 || 1524 !os->os_encrypted || os->os_raw_receive || 1525 (dndb = dn->dn_dbuf) == NULL) 1526 return (0); 1527 1528 dnbuf = dndb->db_buf; 1529 if (!arc_is_encrypted(dnbuf)) 1530 return (0); 1531 1532 mutex_enter(&dndb->db_mtx); 1533 1534 /* 1535 * Since dnode buffer is modified by sync process, there can be only 1536 * one copy of it. It means we can not modify (decrypt) it while it 1537 * is being written. I don't see how this may happen now, since 1538 * encrypted dnode writes by receive should be completed before any 1539 * plain-text reads due to txg wait, but better be safe than sorry. 1540 */ 1541 while (1) { 1542 if (!arc_is_encrypted(dnbuf)) { 1543 mutex_exit(&dndb->db_mtx); 1544 return (0); 1545 } 1546 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1547 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1548 break; 1549 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1550 }; 1551 1552 SET_BOOKMARK(&zb, dmu_objset_id(os), 1553 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1554 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1555 1556 /* 1557 * An error code of EACCES tells us that the key is still not 1558 * available. This is ok if we are only reading authenticated 1559 * (and therefore non-encrypted) blocks. 1560 */ 1561 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1562 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1563 (db->db_blkid == DMU_BONUS_BLKID && 1564 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1565 err = 0; 1566 1567 mutex_exit(&dndb->db_mtx); 1568 1569 return (err); 1570 } 1571 1572 /* 1573 * Drops db_mtx and the parent lock specified by dblt and tag before 1574 * returning. 1575 */ 1576 static int 1577 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, dmu_flags_t flags, 1578 db_lock_type_t dblt, blkptr_t *bp, const void *tag) 1579 { 1580 zbookmark_phys_t zb; 1581 uint32_t aflags = ARC_FLAG_NOWAIT; 1582 int err, zio_flags; 1583 1584 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1585 ASSERT(MUTEX_HELD(&db->db_mtx)); 1586 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1587 ASSERT0P(db->db_buf); 1588 ASSERT(db->db_parent == NULL || 1589 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1590 1591 if (db->db_blkid == DMU_BONUS_BLKID) { 1592 err = dbuf_read_bonus(db, dn); 1593 goto early_unlock; 1594 } 1595 1596 err = dbuf_read_hole(db, dn, bp); 1597 if (err == 0) 1598 goto early_unlock; 1599 1600 ASSERT(bp != NULL); 1601 1602 /* 1603 * Any attempt to read a redacted block should result in an error. This 1604 * will never happen under normal conditions, but can be useful for 1605 * debugging purposes. 1606 */ 1607 if (BP_IS_REDACTED(bp)) { 1608 ASSERT(dsl_dataset_feature_is_active( 1609 db->db_objset->os_dsl_dataset, 1610 SPA_FEATURE_REDACTED_DATASETS)); 1611 err = SET_ERROR(EIO); 1612 goto early_unlock; 1613 } 1614 1615 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1616 db->db.db_object, db->db_level, db->db_blkid); 1617 1618 /* 1619 * All bps of an encrypted os should have the encryption bit set. 1620 * If this is not true it indicates tampering and we report an error. 1621 */ 1622 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) { 1623 spa_log_error(db->db_objset->os_spa, &zb, 1624 BP_GET_PHYSICAL_BIRTH(bp)); 1625 err = SET_ERROR(EIO); 1626 goto early_unlock; 1627 } 1628 1629 db->db_state = DB_READ; 1630 DTRACE_SET_STATE(db, "read issued"); 1631 mutex_exit(&db->db_mtx); 1632 1633 if (!DBUF_IS_CACHEABLE(db)) 1634 aflags |= ARC_FLAG_UNCACHED; 1635 else if (dbuf_is_l2cacheable(db, bp)) 1636 aflags |= ARC_FLAG_L2CACHE; 1637 1638 dbuf_add_ref(db, NULL); 1639 1640 zio_flags = (flags & DB_RF_CANFAIL) ? 1641 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1642 1643 if ((flags & DMU_READ_NO_DECRYPT) && BP_IS_PROTECTED(bp)) 1644 zio_flags |= ZIO_FLAG_RAW; 1645 1646 /* 1647 * The zio layer will copy the provided blkptr later, but we need to 1648 * do this now so that we can release the parent's rwlock. We have to 1649 * do that now so that if dbuf_read_done is called synchronously (on 1650 * an l1 cache hit) we don't acquire the db_mtx while holding the 1651 * parent's rwlock, which would be a lock ordering violation. 1652 */ 1653 blkptr_t copy = *bp; 1654 dmu_buf_unlock_parent(db, dblt, tag); 1655 return (arc_read(zio, db->db_objset->os_spa, ©, 1656 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1657 &aflags, &zb)); 1658 1659 early_unlock: 1660 mutex_exit(&db->db_mtx); 1661 dmu_buf_unlock_parent(db, dblt, tag); 1662 return (err); 1663 } 1664 1665 /* 1666 * This is our just-in-time copy function. It makes a copy of buffers that 1667 * have been modified in a previous transaction group before we access them in 1668 * the current active group. 1669 * 1670 * This function is used in three places: when we are dirtying a buffer for the 1671 * first time in a txg, when we are freeing a range in a dnode that includes 1672 * this buffer, and when we are accessing a buffer which was received compressed 1673 * and later referenced in a WRITE_BYREF record. 1674 * 1675 * Note that when we are called from dbuf_free_range() we do not put a hold on 1676 * the buffer, we just traverse the active dbuf list for the dnode. 1677 */ 1678 static void 1679 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1680 { 1681 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1682 1683 ASSERT(MUTEX_HELD(&db->db_mtx)); 1684 ASSERT(db->db.db_data != NULL); 1685 ASSERT0(db->db_level); 1686 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1687 1688 if (dr == NULL || 1689 (dr->dt.dl.dr_data != 1690 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1691 return; 1692 1693 /* 1694 * If the last dirty record for this dbuf has not yet synced 1695 * and its referencing the dbuf data, either: 1696 * reset the reference to point to a new copy, 1697 * or (if there a no active holders) 1698 * just null out the current db_data pointer. 1699 */ 1700 ASSERT3U(dr->dr_txg, >=, txg - 2); 1701 if (db->db_blkid == DMU_BONUS_BLKID) { 1702 dnode_t *dn = DB_DNODE(db); 1703 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1704 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1705 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1706 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1707 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1708 dnode_t *dn = DB_DNODE(db); 1709 int size = arc_buf_size(db->db_buf); 1710 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1711 spa_t *spa = db->db_objset->os_spa; 1712 enum zio_compress compress_type = 1713 arc_get_compression(db->db_buf); 1714 uint8_t complevel = arc_get_complevel(db->db_buf); 1715 1716 if (arc_is_encrypted(db->db_buf)) { 1717 boolean_t byteorder; 1718 uint8_t salt[ZIO_DATA_SALT_LEN]; 1719 uint8_t iv[ZIO_DATA_IV_LEN]; 1720 uint8_t mac[ZIO_DATA_MAC_LEN]; 1721 1722 arc_get_raw_params(db->db_buf, &byteorder, salt, 1723 iv, mac); 1724 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1725 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1726 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1727 compress_type, complevel); 1728 } else if (compress_type != ZIO_COMPRESS_OFF) { 1729 ASSERT3U(type, ==, ARC_BUFC_DATA); 1730 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1731 size, arc_buf_lsize(db->db_buf), compress_type, 1732 complevel); 1733 } else { 1734 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1735 } 1736 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1737 } else { 1738 db->db_buf = NULL; 1739 dbuf_clear_data(db); 1740 } 1741 } 1742 1743 int 1744 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, dmu_flags_t flags) 1745 { 1746 dnode_t *dn; 1747 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1748 int err; 1749 1750 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1751 1752 DB_DNODE_ENTER(db); 1753 dn = DB_DNODE(db); 1754 1755 /* 1756 * Ensure that this block's dnode has been decrypted if the caller 1757 * has requested decrypted data. 1758 */ 1759 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1760 if (err != 0) 1761 goto done; 1762 1763 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1764 (flags & DMU_READ_NO_PREFETCH) == 0; 1765 1766 mutex_enter(&db->db_mtx); 1767 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 1768 db->db_pending_evict = B_FALSE; 1769 if (flags & DMU_PARTIAL_FIRST) 1770 db->db_partial_read = B_TRUE; 1771 else if (!(flags & (DMU_PARTIAL_MORE | DMU_KEEP_CACHING))) 1772 db->db_partial_read = B_FALSE; 1773 miss = (db->db_state != DB_CACHED); 1774 1775 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1776 /* 1777 * Another reader came in while the dbuf was in flight between 1778 * UNCACHED and CACHED. Either a writer will finish filling 1779 * the buffer, sending the dbuf to CACHED, or the first reader's 1780 * request will reach the read_done callback and send the dbuf 1781 * to CACHED. Otherwise, a failure occurred and the dbuf will 1782 * be sent to UNCACHED. 1783 */ 1784 if (flags & DB_RF_NEVERWAIT) { 1785 mutex_exit(&db->db_mtx); 1786 DB_DNODE_EXIT(db); 1787 goto done; 1788 } 1789 do { 1790 ASSERT(db->db_state == DB_READ || 1791 (flags & DB_RF_HAVESTRUCT) == 0); 1792 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1793 zio_t *, pio); 1794 cv_wait(&db->db_changed, &db->db_mtx); 1795 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1796 if (db->db_state == DB_UNCACHED) { 1797 err = SET_ERROR(EIO); 1798 mutex_exit(&db->db_mtx); 1799 DB_DNODE_EXIT(db); 1800 goto done; 1801 } 1802 } 1803 1804 if (db->db_state == DB_CACHED) { 1805 /* 1806 * If the arc buf is compressed or encrypted and the caller 1807 * requested uncompressed data, we need to untransform it 1808 * before returning. We also call arc_untransform() on any 1809 * unauthenticated blocks, which will verify their MAC if 1810 * the key is now available. 1811 */ 1812 if ((flags & DMU_READ_NO_DECRYPT) == 0 && db->db_buf != NULL && 1813 (arc_is_encrypted(db->db_buf) || 1814 arc_is_unauthenticated(db->db_buf) || 1815 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1816 spa_t *spa = dn->dn_objset->os_spa; 1817 zbookmark_phys_t zb; 1818 1819 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1820 db->db.db_object, db->db_level, db->db_blkid); 1821 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1822 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1823 dbuf_set_data(db, db->db_buf); 1824 } 1825 mutex_exit(&db->db_mtx); 1826 } else { 1827 ASSERT(db->db_state == DB_UNCACHED || 1828 db->db_state == DB_NOFILL); 1829 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1830 blkptr_t *bp; 1831 1832 /* 1833 * If a block clone or Direct I/O write has occurred we will 1834 * get the dirty records overridden BP so we get the most 1835 * recent data. 1836 */ 1837 err = dmu_buf_get_bp_from_dbuf(db, &bp); 1838 1839 if (!err) { 1840 if (pio == NULL && (db->db_state == DB_NOFILL || 1841 (bp != NULL && !BP_IS_HOLE(bp)))) { 1842 spa_t *spa = dn->dn_objset->os_spa; 1843 pio = 1844 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1845 need_wait = B_TRUE; 1846 } 1847 1848 err = 1849 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG); 1850 } else { 1851 mutex_exit(&db->db_mtx); 1852 dmu_buf_unlock_parent(db, dblt, FTAG); 1853 } 1854 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1855 miss = (db->db_state != DB_CACHED); 1856 } 1857 1858 if (err == 0 && prefetch) { 1859 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1860 flags & DB_RF_HAVESTRUCT, (flags & DMU_UNCACHEDIO) || 1861 db->db_pending_evict); 1862 } 1863 DB_DNODE_EXIT(db); 1864 1865 /* 1866 * If we created a zio we must execute it to avoid leaking it, even if 1867 * it isn't attached to any work due to an error in dbuf_read_impl(). 1868 */ 1869 if (need_wait) { 1870 if (err == 0) 1871 err = zio_wait(pio); 1872 else 1873 (void) zio_wait(pio); 1874 pio = NULL; 1875 } 1876 1877 done: 1878 if (miss) 1879 DBUF_STAT_BUMP(hash_misses); 1880 else 1881 DBUF_STAT_BUMP(hash_hits); 1882 if (pio && err != 0) { 1883 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1884 ZIO_FLAG_CANFAIL); 1885 zio->io_error = err; 1886 zio_nowait(zio); 1887 } 1888 1889 return (err); 1890 } 1891 1892 static void 1893 dbuf_noread(dmu_buf_impl_t *db, dmu_flags_t flags) 1894 { 1895 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1897 mutex_enter(&db->db_mtx); 1898 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 1899 db->db_pending_evict = B_FALSE; 1900 db->db_partial_read = B_FALSE; 1901 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1902 cv_wait(&db->db_changed, &db->db_mtx); 1903 if (db->db_state == DB_UNCACHED) { 1904 ASSERT0P(db->db_buf); 1905 ASSERT0P(db->db.db_data); 1906 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1907 db->db_state = DB_FILL; 1908 DTRACE_SET_STATE(db, "assigning filled buffer"); 1909 } else if (db->db_state == DB_NOFILL) { 1910 dbuf_clear_data(db); 1911 } else { 1912 ASSERT3U(db->db_state, ==, DB_CACHED); 1913 } 1914 mutex_exit(&db->db_mtx); 1915 } 1916 1917 void 1918 dbuf_unoverride(dbuf_dirty_record_t *dr) 1919 { 1920 dmu_buf_impl_t *db = dr->dr_dbuf; 1921 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1922 uint64_t txg = dr->dr_txg; 1923 1924 ASSERT(MUTEX_HELD(&db->db_mtx)); 1925 1926 /* 1927 * This assert is valid because dmu_sync() expects to be called by 1928 * a zilog's get_data while holding a range lock. This call only 1929 * comes from dbuf_dirty() callers who must also hold a range lock. 1930 */ 1931 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1932 ASSERT0(db->db_level); 1933 1934 if (db->db_blkid == DMU_BONUS_BLKID || 1935 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1936 return; 1937 1938 ASSERT(db->db_data_pending != dr); 1939 1940 /* free this block */ 1941 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1942 zio_free(db->db_objset->os_spa, txg, bp); 1943 1944 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) { 1945 ASSERT0P(dr->dt.dl.dr_data); 1946 dr->dt.dl.dr_data = db->db_buf; 1947 } 1948 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1949 dr->dt.dl.dr_nopwrite = B_FALSE; 1950 dr->dt.dl.dr_brtwrite = B_FALSE; 1951 dr->dt.dl.dr_diowrite = B_FALSE; 1952 dr->dt.dl.dr_has_raw_params = B_FALSE; 1953 1954 /* 1955 * In the event that Direct I/O was used, we do not 1956 * need to release the buffer from the ARC. 1957 * 1958 * Release the already-written buffer, so we leave it in 1959 * a consistent dirty state. Note that all callers are 1960 * modifying the buffer, so they will immediately do 1961 * another (redundant) arc_release(). Therefore, leave 1962 * the buf thawed to save the effort of freezing & 1963 * immediately re-thawing it. 1964 */ 1965 if (dr->dt.dl.dr_data) 1966 arc_release(dr->dt.dl.dr_data, db); 1967 } 1968 1969 /* 1970 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1971 * data blocks in the free range, so that any future readers will find 1972 * empty blocks. 1973 */ 1974 void 1975 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1976 dmu_tx_t *tx) 1977 { 1978 dmu_buf_impl_t *db_search; 1979 dmu_buf_impl_t *db, *db_next; 1980 uint64_t txg = tx->tx_txg; 1981 avl_index_t where; 1982 dbuf_dirty_record_t *dr; 1983 1984 if (end_blkid > dn->dn_maxblkid && 1985 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1986 end_blkid = dn->dn_maxblkid; 1987 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1988 (u_longlong_t)end_blkid); 1989 1990 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1991 db_search->db_level = 0; 1992 db_search->db_blkid = start_blkid; 1993 db_search->db_state = DB_SEARCH; 1994 1995 mutex_enter(&dn->dn_dbufs_mtx); 1996 db = avl_find(&dn->dn_dbufs, db_search, &where); 1997 ASSERT0P(db); 1998 1999 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2000 2001 for (; db != NULL; db = db_next) { 2002 db_next = AVL_NEXT(&dn->dn_dbufs, db); 2003 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2004 2005 if (db->db_level != 0 || db->db_blkid > end_blkid) { 2006 break; 2007 } 2008 ASSERT3U(db->db_blkid, >=, start_blkid); 2009 2010 /* found a level 0 buffer in the range */ 2011 mutex_enter(&db->db_mtx); 2012 if (dbuf_undirty(db, tx)) { 2013 /* mutex has been dropped and dbuf destroyed */ 2014 continue; 2015 } 2016 2017 if (db->db_state == DB_UNCACHED || 2018 db->db_state == DB_NOFILL || 2019 db->db_state == DB_EVICTING) { 2020 ASSERT0P(db->db.db_data); 2021 mutex_exit(&db->db_mtx); 2022 continue; 2023 } 2024 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2025 /* will be handled in dbuf_read_done or dbuf_rele */ 2026 db->db_freed_in_flight = TRUE; 2027 mutex_exit(&db->db_mtx); 2028 continue; 2029 } 2030 if (zfs_refcount_count(&db->db_holds) == 0) { 2031 ASSERT(db->db_buf); 2032 dbuf_destroy(db); 2033 continue; 2034 } 2035 /* The dbuf is referenced */ 2036 2037 dr = list_head(&db->db_dirty_records); 2038 if (dr != NULL) { 2039 if (dr->dr_txg == txg) { 2040 /* 2041 * This buffer is "in-use", re-adjust the file 2042 * size to reflect that this buffer may 2043 * contain new data when we sync. 2044 */ 2045 if (db->db_blkid != DMU_SPILL_BLKID && 2046 db->db_blkid > dn->dn_maxblkid) 2047 dn->dn_maxblkid = db->db_blkid; 2048 dbuf_unoverride(dr); 2049 } else { 2050 /* 2051 * This dbuf is not dirty in the open context. 2052 * Either uncache it (if its not referenced in 2053 * the open context) or reset its contents to 2054 * empty. 2055 */ 2056 dbuf_fix_old_data(db, txg); 2057 } 2058 } 2059 /* clear the contents if its cached */ 2060 if (db->db_state == DB_CACHED) { 2061 ASSERT(db->db.db_data != NULL); 2062 arc_release(db->db_buf, db); 2063 rw_enter(&db->db_rwlock, RW_WRITER); 2064 memset(db->db.db_data, 0, db->db.db_size); 2065 rw_exit(&db->db_rwlock); 2066 arc_buf_freeze(db->db_buf); 2067 } 2068 2069 mutex_exit(&db->db_mtx); 2070 } 2071 2072 mutex_exit(&dn->dn_dbufs_mtx); 2073 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2074 } 2075 2076 void 2077 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2078 { 2079 arc_buf_t *buf, *old_buf; 2080 dbuf_dirty_record_t *dr; 2081 int osize = db->db.db_size; 2082 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2083 dnode_t *dn; 2084 2085 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2086 2087 DB_DNODE_ENTER(db); 2088 dn = DB_DNODE(db); 2089 2090 /* 2091 * XXX we should be doing a dbuf_read, checking the return 2092 * value and returning that up to our callers 2093 */ 2094 dmu_buf_will_dirty(&db->db, tx); 2095 2096 VERIFY3P(db->db_buf, !=, NULL); 2097 2098 /* create the data buffer for the new block */ 2099 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2100 2101 /* copy old block data to the new block */ 2102 old_buf = db->db_buf; 2103 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2104 /* zero the remainder */ 2105 if (size > osize) 2106 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2107 2108 mutex_enter(&db->db_mtx); 2109 dbuf_set_data(db, buf); 2110 arc_buf_destroy(old_buf, db); 2111 db->db.db_size = size; 2112 2113 dr = list_head(&db->db_dirty_records); 2114 /* dirty record added by dmu_buf_will_dirty() */ 2115 VERIFY(dr != NULL); 2116 if (db->db_level == 0) 2117 dr->dt.dl.dr_data = buf; 2118 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2119 ASSERT3U(dr->dr_accounted, ==, osize); 2120 dr->dr_accounted = size; 2121 mutex_exit(&db->db_mtx); 2122 2123 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2124 DB_DNODE_EXIT(db); 2125 } 2126 2127 void 2128 dbuf_release_bp(dmu_buf_impl_t *db) 2129 { 2130 objset_t *os __maybe_unused = db->db_objset; 2131 2132 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2133 ASSERT(arc_released(os->os_phys_buf) || 2134 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2135 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2136 2137 (void) arc_release(db->db_buf, db); 2138 } 2139 2140 /* 2141 * We already have a dirty record for this TXG, and we are being 2142 * dirtied again. 2143 */ 2144 static void 2145 dbuf_redirty(dbuf_dirty_record_t *dr) 2146 { 2147 dmu_buf_impl_t *db = dr->dr_dbuf; 2148 2149 ASSERT(MUTEX_HELD(&db->db_mtx)); 2150 2151 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2152 /* 2153 * If this buffer has already been written out, 2154 * we now need to reset its state. 2155 */ 2156 dbuf_unoverride(dr); 2157 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2158 db->db_state != DB_NOFILL) { 2159 /* Already released on initial dirty, so just thaw. */ 2160 ASSERT(arc_released(db->db_buf)); 2161 arc_buf_thaw(db->db_buf); 2162 } 2163 2164 /* 2165 * Clear the rewrite flag since this is now a logical 2166 * modification. 2167 */ 2168 dr->dt.dl.dr_rewrite = B_FALSE; 2169 } 2170 } 2171 2172 dbuf_dirty_record_t * 2173 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2174 { 2175 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2176 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2177 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2178 ASSERT(dn->dn_maxblkid >= blkid); 2179 2180 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2181 list_link_init(&dr->dr_dirty_node); 2182 list_link_init(&dr->dr_dbuf_node); 2183 dr->dr_dnode = dn; 2184 dr->dr_txg = tx->tx_txg; 2185 dr->dt.dll.dr_blkid = blkid; 2186 dr->dr_accounted = dn->dn_datablksz; 2187 2188 /* 2189 * There should not be any dbuf for the block that we're dirtying. 2190 * Otherwise the buffer contents could be inconsistent between the 2191 * dbuf and the lightweight dirty record. 2192 */ 2193 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2194 NULL)); 2195 2196 mutex_enter(&dn->dn_mtx); 2197 int txgoff = tx->tx_txg & TXG_MASK; 2198 if (dn->dn_free_ranges[txgoff] != NULL) { 2199 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2200 } 2201 2202 if (dn->dn_nlevels == 1) { 2203 ASSERT3U(blkid, <, dn->dn_nblkptr); 2204 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2205 mutex_exit(&dn->dn_mtx); 2206 rw_exit(&dn->dn_struct_rwlock); 2207 dnode_setdirty(dn, tx); 2208 } else { 2209 mutex_exit(&dn->dn_mtx); 2210 2211 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2212 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2213 1, blkid >> epbs, FTAG); 2214 rw_exit(&dn->dn_struct_rwlock); 2215 if (parent_db == NULL) { 2216 kmem_free(dr, sizeof (*dr)); 2217 return (NULL); 2218 } 2219 int err = dbuf_read(parent_db, NULL, DB_RF_CANFAIL | 2220 DMU_READ_NO_PREFETCH); 2221 if (err != 0) { 2222 dbuf_rele(parent_db, FTAG); 2223 kmem_free(dr, sizeof (*dr)); 2224 return (NULL); 2225 } 2226 2227 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2228 dbuf_rele(parent_db, FTAG); 2229 mutex_enter(&parent_dr->dt.di.dr_mtx); 2230 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2231 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2232 mutex_exit(&parent_dr->dt.di.dr_mtx); 2233 dr->dr_parent = parent_dr; 2234 } 2235 2236 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2237 2238 return (dr); 2239 } 2240 2241 dbuf_dirty_record_t * 2242 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2243 { 2244 dnode_t *dn; 2245 objset_t *os; 2246 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2247 int txgoff = tx->tx_txg & TXG_MASK; 2248 boolean_t drop_struct_rwlock = B_FALSE; 2249 2250 ASSERT(tx->tx_txg != 0); 2251 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2252 DMU_TX_DIRTY_BUF(tx, db); 2253 2254 DB_DNODE_ENTER(db); 2255 dn = DB_DNODE(db); 2256 /* 2257 * Shouldn't dirty a regular buffer in syncing context. Private 2258 * objects may be dirtied in syncing context, but only if they 2259 * were already pre-dirtied in open context. 2260 */ 2261 #ifdef ZFS_DEBUG 2262 if (dn->dn_objset->os_dsl_dataset != NULL) { 2263 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2264 RW_READER, FTAG); 2265 } 2266 ASSERT(!dmu_tx_is_syncing(tx) || 2267 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2268 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2269 dn->dn_objset->os_dsl_dataset == NULL); 2270 if (dn->dn_objset->os_dsl_dataset != NULL) 2271 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2272 #endif 2273 /* 2274 * We make this assert for private objects as well, but after we 2275 * check if we're already dirty. They are allowed to re-dirty 2276 * in syncing context. 2277 */ 2278 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2279 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2280 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2281 2282 mutex_enter(&db->db_mtx); 2283 /* 2284 * XXX make this true for indirects too? The problem is that 2285 * transactions created with dmu_tx_create_assigned() from 2286 * syncing context don't bother holding ahead. 2287 */ 2288 ASSERT(db->db_level != 0 || 2289 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2290 db->db_state == DB_NOFILL); 2291 2292 mutex_enter(&dn->dn_mtx); 2293 dnode_set_dirtyctx(dn, tx, db); 2294 if (tx->tx_txg > dn->dn_dirty_txg) 2295 dn->dn_dirty_txg = tx->tx_txg; 2296 mutex_exit(&dn->dn_mtx); 2297 2298 if (db->db_blkid == DMU_SPILL_BLKID) 2299 dn->dn_have_spill = B_TRUE; 2300 2301 /* 2302 * If this buffer is already dirty, we're done. 2303 */ 2304 dr_head = list_head(&db->db_dirty_records); 2305 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2306 db->db.db_object == DMU_META_DNODE_OBJECT); 2307 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2308 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2309 DB_DNODE_EXIT(db); 2310 2311 dbuf_redirty(dr_next); 2312 mutex_exit(&db->db_mtx); 2313 return (dr_next); 2314 } 2315 2316 /* 2317 * Only valid if not already dirty. 2318 */ 2319 ASSERT(dn->dn_object == 0 || 2320 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2321 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2322 2323 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2324 2325 /* 2326 * We should only be dirtying in syncing context if it's the 2327 * mos or we're initializing the os or it's a special object. 2328 * However, we are allowed to dirty in syncing context provided 2329 * we already dirtied it in open context. Hence we must make 2330 * this assertion only if we're not already dirty. 2331 */ 2332 os = dn->dn_objset; 2333 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2334 #ifdef ZFS_DEBUG 2335 if (dn->dn_objset->os_dsl_dataset != NULL) 2336 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2337 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2338 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2339 if (dn->dn_objset->os_dsl_dataset != NULL) 2340 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2341 #endif 2342 ASSERT(db->db.db_size != 0); 2343 2344 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2345 2346 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2347 dmu_objset_willuse_space(os, db->db.db_size, tx); 2348 } 2349 2350 /* 2351 * If this buffer is dirty in an old transaction group we need 2352 * to make a copy of it so that the changes we make in this 2353 * transaction group won't leak out when we sync the older txg. 2354 */ 2355 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP); 2356 memset(dr, 0, sizeof (*dr)); 2357 list_link_init(&dr->dr_dirty_node); 2358 list_link_init(&dr->dr_dbuf_node); 2359 dr->dr_dnode = dn; 2360 if (db->db_level == 0) { 2361 void *data_old = db->db_buf; 2362 2363 if (db->db_state != DB_NOFILL) { 2364 if (db->db_blkid == DMU_BONUS_BLKID) { 2365 dbuf_fix_old_data(db, tx->tx_txg); 2366 data_old = db->db.db_data; 2367 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2368 /* 2369 * Release the data buffer from the cache so 2370 * that we can modify it without impacting 2371 * possible other users of this cached data 2372 * block. Note that indirect blocks and 2373 * private objects are not released until the 2374 * syncing state (since they are only modified 2375 * then). 2376 */ 2377 arc_release(db->db_buf, db); 2378 dbuf_fix_old_data(db, tx->tx_txg); 2379 data_old = db->db_buf; 2380 } 2381 ASSERT(data_old != NULL); 2382 } 2383 dr->dt.dl.dr_data = data_old; 2384 } else { 2385 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2386 list_create(&dr->dt.di.dr_children, 2387 sizeof (dbuf_dirty_record_t), 2388 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2389 } 2390 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2391 dr->dr_accounted = db->db.db_size; 2392 } 2393 dr->dr_dbuf = db; 2394 dr->dr_txg = tx->tx_txg; 2395 list_insert_before(&db->db_dirty_records, dr_next, dr); 2396 2397 /* 2398 * We could have been freed_in_flight between the dbuf_noread 2399 * and dbuf_dirty. We win, as though the dbuf_noread() had 2400 * happened after the free. 2401 */ 2402 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2403 db->db_blkid != DMU_SPILL_BLKID) { 2404 mutex_enter(&dn->dn_mtx); 2405 if (dn->dn_free_ranges[txgoff] != NULL) { 2406 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], 2407 db->db_blkid, 1); 2408 } 2409 mutex_exit(&dn->dn_mtx); 2410 db->db_freed_in_flight = FALSE; 2411 } 2412 2413 /* 2414 * This buffer is now part of this txg 2415 */ 2416 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2417 db->db_dirtycnt += 1; 2418 ASSERT3U(db->db_dirtycnt, <=, 3); 2419 2420 mutex_exit(&db->db_mtx); 2421 2422 if (db->db_blkid == DMU_BONUS_BLKID || 2423 db->db_blkid == DMU_SPILL_BLKID) { 2424 mutex_enter(&dn->dn_mtx); 2425 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2426 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2427 mutex_exit(&dn->dn_mtx); 2428 dnode_setdirty(dn, tx); 2429 DB_DNODE_EXIT(db); 2430 return (dr); 2431 } 2432 2433 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2434 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2435 drop_struct_rwlock = B_TRUE; 2436 } 2437 2438 /* 2439 * If we are overwriting a dedup BP, then unless it is snapshotted, 2440 * when we get to syncing context we will need to decrement its 2441 * refcount in the DDT. Prefetch the relevant DDT block so that 2442 * syncing context won't have to wait for the i/o. 2443 */ 2444 if (db->db_blkptr != NULL) { 2445 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2446 ddt_prefetch(os->os_spa, db->db_blkptr); 2447 dmu_buf_unlock_parent(db, dblt, FTAG); 2448 } 2449 2450 /* 2451 * We need to hold the dn_struct_rwlock to make this assertion, 2452 * because it protects dn_phys / dn_next_nlevels from changing. 2453 */ 2454 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2455 dn->dn_phys->dn_nlevels > db->db_level || 2456 dn->dn_next_nlevels[txgoff] > db->db_level || 2457 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2458 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2459 2460 2461 if (db->db_level == 0) { 2462 ASSERT(!db->db_objset->os_raw_receive || 2463 dn->dn_maxblkid >= db->db_blkid); 2464 dnode_new_blkid(dn, db->db_blkid, tx, 2465 drop_struct_rwlock, B_FALSE); 2466 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2467 } 2468 2469 if (db->db_level+1 < dn->dn_nlevels) { 2470 dmu_buf_impl_t *parent = db->db_parent; 2471 dbuf_dirty_record_t *di; 2472 int parent_held = FALSE; 2473 2474 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2475 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2476 parent = dbuf_hold_level(dn, db->db_level + 1, 2477 db->db_blkid >> epbs, FTAG); 2478 ASSERT(parent != NULL); 2479 parent_held = TRUE; 2480 } 2481 if (drop_struct_rwlock) 2482 rw_exit(&dn->dn_struct_rwlock); 2483 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2484 di = dbuf_dirty(parent, tx); 2485 if (parent_held) 2486 dbuf_rele(parent, FTAG); 2487 2488 mutex_enter(&db->db_mtx); 2489 /* 2490 * Since we've dropped the mutex, it's possible that 2491 * dbuf_undirty() might have changed this out from under us. 2492 */ 2493 if (list_head(&db->db_dirty_records) == dr || 2494 dn->dn_object == DMU_META_DNODE_OBJECT) { 2495 mutex_enter(&di->dt.di.dr_mtx); 2496 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2497 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2498 list_insert_tail(&di->dt.di.dr_children, dr); 2499 mutex_exit(&di->dt.di.dr_mtx); 2500 dr->dr_parent = di; 2501 } 2502 mutex_exit(&db->db_mtx); 2503 } else { 2504 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2505 ASSERT(db->db_blkid < dn->dn_nblkptr); 2506 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2507 mutex_enter(&dn->dn_mtx); 2508 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2509 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2510 mutex_exit(&dn->dn_mtx); 2511 if (drop_struct_rwlock) 2512 rw_exit(&dn->dn_struct_rwlock); 2513 } 2514 2515 dnode_setdirty(dn, tx); 2516 DB_DNODE_EXIT(db); 2517 return (dr); 2518 } 2519 2520 static void 2521 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2522 { 2523 dmu_buf_impl_t *db = dr->dr_dbuf; 2524 2525 ASSERT(MUTEX_HELD(&db->db_mtx)); 2526 if (dr->dt.dl.dr_data != db->db.db_data) { 2527 struct dnode *dn = dr->dr_dnode; 2528 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2529 2530 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2531 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2532 } 2533 db->db_data_pending = NULL; 2534 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2535 list_remove(&db->db_dirty_records, dr); 2536 if (dr->dr_dbuf->db_level != 0) { 2537 mutex_destroy(&dr->dt.di.dr_mtx); 2538 list_destroy(&dr->dt.di.dr_children); 2539 } 2540 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2541 ASSERT3U(db->db_dirtycnt, >, 0); 2542 db->db_dirtycnt -= 1; 2543 } 2544 2545 /* 2546 * Undirty a buffer in the transaction group referenced by the given 2547 * transaction. Return whether this evicted the dbuf. 2548 */ 2549 boolean_t 2550 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2551 { 2552 uint64_t txg = tx->tx_txg; 2553 boolean_t brtwrite; 2554 boolean_t diowrite; 2555 2556 ASSERT(txg != 0); 2557 2558 /* 2559 * Due to our use of dn_nlevels below, this can only be called 2560 * in open context, unless we are operating on the MOS or it's 2561 * a special object. From syncing context, dn_nlevels may be 2562 * different from the dn_nlevels used when dbuf was dirtied. 2563 */ 2564 ASSERT(db->db_objset == 2565 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2566 DMU_OBJECT_IS_SPECIAL(db->db.db_object) || 2567 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2568 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2569 ASSERT0(db->db_level); 2570 ASSERT(MUTEX_HELD(&db->db_mtx)); 2571 2572 /* 2573 * If this buffer is not dirty, we're done. 2574 */ 2575 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2576 if (dr == NULL) 2577 return (B_FALSE); 2578 ASSERT(dr->dr_dbuf == db); 2579 2580 brtwrite = dr->dt.dl.dr_brtwrite; 2581 diowrite = dr->dt.dl.dr_diowrite; 2582 if (brtwrite) { 2583 ASSERT3B(diowrite, ==, B_FALSE); 2584 /* 2585 * We are freeing a block that we cloned in the same 2586 * transaction group. 2587 */ 2588 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 2589 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 2590 brt_pending_remove(dmu_objset_spa(db->db_objset), 2591 bp, tx); 2592 } 2593 } 2594 2595 dnode_t *dn = dr->dr_dnode; 2596 2597 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2598 2599 ASSERT(db->db.db_size != 0); 2600 2601 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2602 dr->dr_accounted, txg); 2603 2604 list_remove(&db->db_dirty_records, dr); 2605 2606 /* 2607 * Note that there are three places in dbuf_dirty() 2608 * where this dirty record may be put on a list. 2609 * Make sure to do a list_remove corresponding to 2610 * every one of those list_insert calls. 2611 */ 2612 if (dr->dr_parent) { 2613 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2614 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2615 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2616 } else if (db->db_blkid == DMU_SPILL_BLKID || 2617 db->db_level + 1 == dn->dn_nlevels) { 2618 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2619 mutex_enter(&dn->dn_mtx); 2620 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2621 mutex_exit(&dn->dn_mtx); 2622 } 2623 2624 if (db->db_state != DB_NOFILL && !brtwrite) { 2625 dbuf_unoverride(dr); 2626 2627 if (dr->dt.dl.dr_data != db->db_buf) { 2628 ASSERT(db->db_buf != NULL); 2629 ASSERT(dr->dt.dl.dr_data != NULL); 2630 arc_buf_destroy(dr->dt.dl.dr_data, db); 2631 } 2632 } 2633 2634 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2635 2636 ASSERT(db->db_dirtycnt > 0); 2637 db->db_dirtycnt -= 1; 2638 2639 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2640 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite || 2641 arc_released(db->db_buf)); 2642 dbuf_destroy(db); 2643 return (B_TRUE); 2644 } 2645 2646 return (B_FALSE); 2647 } 2648 2649 void 2650 dmu_buf_will_dirty_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, dmu_flags_t flags) 2651 { 2652 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2653 boolean_t undirty = B_FALSE; 2654 2655 ASSERT(tx->tx_txg != 0); 2656 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2657 2658 /* 2659 * Quick check for dirtiness to improve performance for some workloads 2660 * (e.g. file deletion with indirect blocks cached). 2661 */ 2662 mutex_enter(&db->db_mtx); 2663 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2664 /* 2665 * It's possible that the dbuf is already dirty but not cached, 2666 * because there are some calls to dbuf_dirty() that don't 2667 * go through dmu_buf_will_dirty(). 2668 */ 2669 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2670 if (dr != NULL) { 2671 if (db->db_level == 0 && 2672 dr->dt.dl.dr_brtwrite) { 2673 /* 2674 * Block cloning: If we are dirtying a cloned 2675 * level 0 block, we cannot simply redirty it, 2676 * because this dr has no associated data. 2677 * We will go through a full undirtying below, 2678 * before dirtying it again. 2679 */ 2680 undirty = B_TRUE; 2681 } else { 2682 /* This dbuf is already dirty and cached. */ 2683 dbuf_redirty(dr); 2684 mutex_exit(&db->db_mtx); 2685 return; 2686 } 2687 } 2688 } 2689 mutex_exit(&db->db_mtx); 2690 2691 DB_DNODE_ENTER(db); 2692 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2693 flags |= DB_RF_HAVESTRUCT; 2694 DB_DNODE_EXIT(db); 2695 2696 /* 2697 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2698 * want to make sure dbuf_read() will read the pending cloned block and 2699 * not the uderlying block that is being replaced. dbuf_undirty() will 2700 * do brt_pending_remove() before removing the dirty record. 2701 */ 2702 (void) dbuf_read(db, NULL, flags | DB_RF_MUST_SUCCEED); 2703 if (undirty) { 2704 mutex_enter(&db->db_mtx); 2705 VERIFY(!dbuf_undirty(db, tx)); 2706 mutex_exit(&db->db_mtx); 2707 } 2708 (void) dbuf_dirty(db, tx); 2709 } 2710 2711 void 2712 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2713 { 2714 dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH); 2715 } 2716 2717 void 2718 dmu_buf_will_rewrite(dmu_buf_t *db_fake, dmu_tx_t *tx) 2719 { 2720 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2721 2722 ASSERT(tx->tx_txg != 0); 2723 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2724 2725 /* 2726 * If the dbuf is already dirty in this txg, it will be written 2727 * anyway, so there's nothing to do. 2728 */ 2729 mutex_enter(&db->db_mtx); 2730 if (dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) { 2731 mutex_exit(&db->db_mtx); 2732 return; 2733 } 2734 mutex_exit(&db->db_mtx); 2735 2736 /* 2737 * The dbuf is not dirty, so we need to make it dirty and 2738 * mark it for rewrite (preserve logical birth time). 2739 */ 2740 dmu_buf_will_dirty_flags(db_fake, tx, DMU_READ_NO_PREFETCH); 2741 2742 mutex_enter(&db->db_mtx); 2743 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2744 if (dr != NULL && db->db_level == 0) 2745 dr->dt.dl.dr_rewrite = B_TRUE; 2746 mutex_exit(&db->db_mtx); 2747 } 2748 2749 boolean_t 2750 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2751 { 2752 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2753 dbuf_dirty_record_t *dr; 2754 2755 mutex_enter(&db->db_mtx); 2756 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2757 mutex_exit(&db->db_mtx); 2758 return (dr != NULL); 2759 } 2760 2761 /* 2762 * Normally the db_blkptr points to the most recent on-disk content for the 2763 * dbuf (and anything newer will be cached in the dbuf). However, a pending 2764 * block clone or not yet synced Direct I/O write will have a dirty record BP 2765 * pointing to the most recent data. 2766 */ 2767 int 2768 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp) 2769 { 2770 ASSERT(MUTEX_HELD(&db->db_mtx)); 2771 int error = 0; 2772 2773 if (db->db_level != 0) { 2774 *bp = db->db_blkptr; 2775 return (0); 2776 } 2777 2778 *bp = db->db_blkptr; 2779 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2780 if (dr && db->db_state == DB_NOFILL) { 2781 /* Block clone */ 2782 if (!dr->dt.dl.dr_brtwrite) 2783 error = EIO; 2784 else 2785 *bp = &dr->dt.dl.dr_overridden_by; 2786 } else if (dr && db->db_state == DB_UNCACHED) { 2787 /* Direct I/O write */ 2788 if (dr->dt.dl.dr_diowrite) 2789 *bp = &dr->dt.dl.dr_overridden_by; 2790 } 2791 2792 return (error); 2793 } 2794 2795 /* 2796 * Direct I/O reads can read directly from the ARC, but the data has 2797 * to be untransformed in order to copy it over into user pages. 2798 */ 2799 int 2800 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa) 2801 { 2802 int err = 0; 2803 DB_DNODE_ENTER(db); 2804 dnode_t *dn = DB_DNODE(db); 2805 2806 ASSERT3S(db->db_state, ==, DB_CACHED); 2807 ASSERT(MUTEX_HELD(&db->db_mtx)); 2808 2809 /* 2810 * Ensure that this block's dnode has been decrypted if 2811 * the caller has requested decrypted data. 2812 */ 2813 err = dbuf_read_verify_dnode_crypt(db, dn, 0); 2814 2815 /* 2816 * If the arc buf is compressed or encrypted and the caller 2817 * requested uncompressed data, we need to untransform it 2818 * before returning. We also call arc_untransform() on any 2819 * unauthenticated blocks, which will verify their MAC if 2820 * the key is now available. 2821 */ 2822 if (err == 0 && db->db_buf != NULL && 2823 (arc_is_encrypted(db->db_buf) || 2824 arc_is_unauthenticated(db->db_buf) || 2825 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 2826 zbookmark_phys_t zb; 2827 2828 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 2829 db->db.db_object, db->db_level, db->db_blkid); 2830 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 2831 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 2832 dbuf_set_data(db, db->db_buf); 2833 } 2834 DB_DNODE_EXIT(db); 2835 DBUF_STAT_BUMP(hash_hits); 2836 2837 return (err); 2838 } 2839 2840 void 2841 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx) 2842 { 2843 /* 2844 * Block clones and Direct I/O writes always happen in open-context. 2845 */ 2846 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2847 ASSERT0(db->db_level); 2848 ASSERT(!dmu_tx_is_syncing(tx)); 2849 ASSERT0(db->db_level); 2850 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2851 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2852 2853 mutex_enter(&db->db_mtx); 2854 DBUF_VERIFY(db); 2855 2856 /* 2857 * We are going to clone or issue a Direct I/O write on this block, so 2858 * undirty modifications done to this block so far in this txg. This 2859 * includes writes and clones into this block. 2860 * 2861 * If there dirty record associated with this txg from a previous Direct 2862 * I/O write then space accounting cleanup takes place. It is important 2863 * to go ahead free up the space accounting through dbuf_undirty() -> 2864 * dbuf_unoverride() -> zio_free(). Space accountiung for determining 2865 * if a write can occur in zfs_write() happens through dmu_tx_assign(). 2866 * This can cause an issue with Direct I/O writes in the case of 2867 * overwriting the same block, because all DVA allocations are being 2868 * done in open-context. Constantly allowing Direct I/O overwrites to 2869 * the same block can exhaust the pools available space leading to 2870 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which 2871 * will eventually suspend the pool. By cleaning up sapce acccounting 2872 * now, the ENOSPC error can be avoided. 2873 * 2874 * Since we are undirtying the record in open-context, we must have a 2875 * hold on the db, so it should never be evicted after calling 2876 * dbuf_undirty(). 2877 */ 2878 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE); 2879 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2880 2881 if (db->db_buf != NULL) { 2882 /* 2883 * If there is an associated ARC buffer with this dbuf we can 2884 * only destroy it if the previous dirty record does not 2885 * reference it. 2886 */ 2887 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2888 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2889 arc_buf_destroy(db->db_buf, db); 2890 2891 /* 2892 * Setting the dbuf's data pointers to NULL will force all 2893 * future reads down to the devices to get the most up to date 2894 * version of the data after a Direct I/O write has completed. 2895 */ 2896 db->db_buf = NULL; 2897 dbuf_clear_data(db); 2898 } 2899 2900 ASSERT0P(db->db_buf); 2901 ASSERT0P(db->db.db_data); 2902 2903 db->db_state = DB_NOFILL; 2904 DTRACE_SET_STATE(db, 2905 "allocating NOFILL buffer for clone or direct I/O write"); 2906 2907 DBUF_VERIFY(db); 2908 mutex_exit(&db->db_mtx); 2909 2910 dbuf_noread(db, DMU_KEEP_CACHING); 2911 (void) dbuf_dirty(db, tx); 2912 } 2913 2914 void 2915 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2916 { 2917 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2918 2919 mutex_enter(&db->db_mtx); 2920 db->db_state = DB_NOFILL; 2921 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2922 mutex_exit(&db->db_mtx); 2923 2924 dbuf_noread(db, DMU_KEEP_CACHING); 2925 (void) dbuf_dirty(db, tx); 2926 } 2927 2928 void 2929 dmu_buf_will_fill_flags(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail, 2930 dmu_flags_t flags) 2931 { 2932 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2933 2934 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2935 ASSERT(tx->tx_txg != 0); 2936 ASSERT0(db->db_level); 2937 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2938 2939 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2940 dmu_tx_private_ok(tx)); 2941 2942 mutex_enter(&db->db_mtx); 2943 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2944 if (db->db_state == DB_NOFILL || 2945 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) { 2946 /* 2947 * If the fill can fail we should have a way to return back to 2948 * the cloned or Direct I/O write data. 2949 */ 2950 if (canfail && dr) { 2951 mutex_exit(&db->db_mtx); 2952 dmu_buf_will_dirty_flags(db_fake, tx, flags); 2953 return; 2954 } 2955 /* 2956 * Block cloning: We will be completely overwriting a block 2957 * cloned in this transaction group, so let's undirty the 2958 * pending clone and mark the block as uncached. This will be 2959 * as if the clone was never done. 2960 */ 2961 if (db->db_state == DB_NOFILL) { 2962 VERIFY(!dbuf_undirty(db, tx)); 2963 db->db_state = DB_UNCACHED; 2964 } 2965 } 2966 mutex_exit(&db->db_mtx); 2967 2968 dbuf_noread(db, flags); 2969 (void) dbuf_dirty(db, tx); 2970 } 2971 2972 void 2973 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2974 { 2975 dmu_buf_will_fill_flags(db_fake, tx, canfail, DMU_READ_NO_PREFETCH); 2976 } 2977 2978 /* 2979 * This function is effectively the same as dmu_buf_will_dirty(), but 2980 * indicates the caller expects raw encrypted data in the db, and provides 2981 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2982 * blkptr_t when this dbuf is written. This is only used for blocks of 2983 * dnodes, during raw receive. 2984 */ 2985 void 2986 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2987 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2988 { 2989 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2990 dbuf_dirty_record_t *dr; 2991 2992 /* 2993 * dr_has_raw_params is only processed for blocks of dnodes 2994 * (see dbuf_sync_dnode_leaf_crypt()). 2995 */ 2996 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2997 ASSERT0(db->db_level); 2998 ASSERT(db->db_objset->os_raw_receive); 2999 3000 dmu_buf_will_dirty_flags(db_fake, tx, 3001 DMU_READ_NO_PREFETCH | DMU_READ_NO_DECRYPT); 3002 3003 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 3004 3005 ASSERT3P(dr, !=, NULL); 3006 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN); 3007 3008 dr->dt.dl.dr_has_raw_params = B_TRUE; 3009 dr->dt.dl.dr_byteorder = byteorder; 3010 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 3011 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 3012 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 3013 } 3014 3015 static void 3016 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 3017 { 3018 struct dirty_leaf *dl; 3019 dbuf_dirty_record_t *dr; 3020 3021 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT); 3022 ASSERT0(db->db_level); 3023 3024 dr = list_head(&db->db_dirty_records); 3025 ASSERT3P(dr, !=, NULL); 3026 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3027 dl = &dr->dt.dl; 3028 ASSERT0(dl->dr_has_raw_params); 3029 dl->dr_overridden_by = *bp; 3030 dl->dr_override_state = DR_OVERRIDDEN; 3031 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3032 } 3033 3034 boolean_t 3035 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 3036 { 3037 (void) tx; 3038 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3039 mutex_enter(&db->db_mtx); 3040 DBUF_VERIFY(db); 3041 3042 if (db->db_state == DB_FILL) { 3043 if (db->db_level == 0 && db->db_freed_in_flight) { 3044 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3045 /* we were freed while filling */ 3046 /* XXX dbuf_undirty? */ 3047 memset(db->db.db_data, 0, db->db.db_size); 3048 db->db_freed_in_flight = FALSE; 3049 db->db_state = DB_CACHED; 3050 DTRACE_SET_STATE(db, 3051 "fill done handling freed in flight"); 3052 failed = B_FALSE; 3053 } else if (failed) { 3054 VERIFY(!dbuf_undirty(db, tx)); 3055 arc_buf_destroy(db->db_buf, db); 3056 db->db_buf = NULL; 3057 dbuf_clear_data(db); 3058 DTRACE_SET_STATE(db, "fill failed"); 3059 } else { 3060 db->db_state = DB_CACHED; 3061 DTRACE_SET_STATE(db, "fill done"); 3062 } 3063 cv_broadcast(&db->db_changed); 3064 } else { 3065 db->db_state = DB_CACHED; 3066 failed = B_FALSE; 3067 } 3068 mutex_exit(&db->db_mtx); 3069 return (failed); 3070 } 3071 3072 void 3073 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 3074 bp_embedded_type_t etype, enum zio_compress comp, 3075 int uncompressed_size, int compressed_size, int byteorder, 3076 dmu_tx_t *tx) 3077 { 3078 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3079 struct dirty_leaf *dl; 3080 dmu_object_type_t type; 3081 dbuf_dirty_record_t *dr; 3082 3083 if (etype == BP_EMBEDDED_TYPE_DATA) { 3084 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 3085 SPA_FEATURE_EMBEDDED_DATA)); 3086 } 3087 3088 DB_DNODE_ENTER(db); 3089 type = DB_DNODE(db)->dn_type; 3090 DB_DNODE_EXIT(db); 3091 3092 ASSERT0(db->db_level); 3093 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3094 3095 dmu_buf_will_not_fill(dbuf, tx); 3096 3097 dr = list_head(&db->db_dirty_records); 3098 ASSERT3P(dr, !=, NULL); 3099 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3100 dl = &dr->dt.dl; 3101 ASSERT0(dl->dr_has_raw_params); 3102 encode_embedded_bp_compressed(&dl->dr_overridden_by, 3103 data, comp, uncompressed_size, compressed_size); 3104 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 3105 BP_SET_TYPE(&dl->dr_overridden_by, type); 3106 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 3107 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 3108 3109 dl->dr_override_state = DR_OVERRIDDEN; 3110 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3111 } 3112 3113 void 3114 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 3115 { 3116 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3117 dmu_object_type_t type; 3118 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 3119 SPA_FEATURE_REDACTED_DATASETS)); 3120 3121 DB_DNODE_ENTER(db); 3122 type = DB_DNODE(db)->dn_type; 3123 DB_DNODE_EXIT(db); 3124 3125 ASSERT0(db->db_level); 3126 dmu_buf_will_not_fill(dbuf, tx); 3127 3128 blkptr_t bp = { { { {0} } } }; 3129 BP_SET_TYPE(&bp, type); 3130 BP_SET_LEVEL(&bp, 0); 3131 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 3132 BP_SET_REDACTED(&bp); 3133 BPE_SET_LSIZE(&bp, dbuf->db_size); 3134 3135 dbuf_override_impl(db, &bp, tx); 3136 } 3137 3138 /* 3139 * Directly assign a provided arc buf to a given dbuf if it's not referenced 3140 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 3141 */ 3142 void 3143 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx, 3144 dmu_flags_t flags) 3145 { 3146 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 3147 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3148 ASSERT0(db->db_level); 3149 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 3150 ASSERT(buf != NULL); 3151 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 3152 ASSERT(tx->tx_txg != 0); 3153 3154 arc_return_buf(buf, db); 3155 ASSERT(arc_released(buf)); 3156 3157 mutex_enter(&db->db_mtx); 3158 if (!(flags & (DMU_UNCACHEDIO | DMU_KEEP_CACHING))) 3159 db->db_pending_evict = B_FALSE; 3160 db->db_partial_read = B_FALSE; 3161 3162 while (db->db_state == DB_READ || db->db_state == DB_FILL) 3163 cv_wait(&db->db_changed, &db->db_mtx); 3164 3165 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 3166 db->db_state == DB_NOFILL); 3167 3168 if (db->db_state == DB_CACHED && 3169 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 3170 /* 3171 * In practice, we will never have a case where we have an 3172 * encrypted arc buffer while additional holds exist on the 3173 * dbuf. We don't handle this here so we simply assert that 3174 * fact instead. 3175 */ 3176 ASSERT(!arc_is_encrypted(buf)); 3177 mutex_exit(&db->db_mtx); 3178 (void) dbuf_dirty(db, tx); 3179 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 3180 arc_buf_destroy(buf, db); 3181 return; 3182 } 3183 3184 if (db->db_state == DB_CACHED) { 3185 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 3186 3187 ASSERT(db->db_buf != NULL); 3188 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 3189 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3190 3191 if (!arc_released(db->db_buf)) { 3192 ASSERT(dr->dt.dl.dr_override_state == 3193 DR_OVERRIDDEN); 3194 arc_release(db->db_buf, db); 3195 } 3196 dr->dt.dl.dr_data = buf; 3197 arc_buf_destroy(db->db_buf, db); 3198 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3199 arc_release(db->db_buf, db); 3200 arc_buf_destroy(db->db_buf, db); 3201 } 3202 db->db_buf = NULL; 3203 } else if (db->db_state == DB_NOFILL) { 3204 /* 3205 * We will be completely replacing the cloned block. In case 3206 * it was cloned in this transaction group, let's undirty the 3207 * pending clone and mark the block as uncached. This will be 3208 * as if the clone was never done. 3209 */ 3210 VERIFY(!dbuf_undirty(db, tx)); 3211 db->db_state = DB_UNCACHED; 3212 } 3213 ASSERT0P(db->db_buf); 3214 dbuf_set_data(db, buf); 3215 db->db_state = DB_FILL; 3216 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3217 mutex_exit(&db->db_mtx); 3218 (void) dbuf_dirty(db, tx); 3219 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3220 } 3221 3222 void 3223 dbuf_destroy(dmu_buf_impl_t *db) 3224 { 3225 dnode_t *dn; 3226 dmu_buf_impl_t *parent = db->db_parent; 3227 dmu_buf_impl_t *dndb; 3228 3229 ASSERT(MUTEX_HELD(&db->db_mtx)); 3230 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3231 3232 if (db->db_buf != NULL) { 3233 arc_buf_destroy(db->db_buf, db); 3234 db->db_buf = NULL; 3235 } 3236 3237 if (db->db_blkid == DMU_BONUS_BLKID) { 3238 int slots = DB_DNODE(db)->dn_num_slots; 3239 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3240 if (db->db.db_data != NULL) { 3241 kmem_free(db->db.db_data, bonuslen); 3242 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3243 db->db_state = DB_UNCACHED; 3244 DTRACE_SET_STATE(db, "buffer cleared"); 3245 } 3246 } 3247 3248 dbuf_clear_data(db); 3249 3250 if (multilist_link_active(&db->db_cache_link)) { 3251 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3252 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3253 3254 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3255 3256 ASSERT0(dmu_buf_user_size(&db->db)); 3257 (void) zfs_refcount_remove_many( 3258 &dbuf_caches[db->db_caching_status].size, 3259 db->db.db_size, db); 3260 3261 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3262 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3263 } else { 3264 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3265 DBUF_STAT_BUMPDOWN(cache_count); 3266 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3267 db->db.db_size); 3268 } 3269 db->db_caching_status = DB_NO_CACHE; 3270 } 3271 3272 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3273 ASSERT0P(db->db_data_pending); 3274 ASSERT(list_is_empty(&db->db_dirty_records)); 3275 3276 db->db_state = DB_EVICTING; 3277 DTRACE_SET_STATE(db, "buffer eviction started"); 3278 db->db_blkptr = NULL; 3279 3280 /* 3281 * Now that db_state is DB_EVICTING, nobody else can find this via 3282 * the hash table. We can now drop db_mtx, which allows us to 3283 * acquire the dn_dbufs_mtx. 3284 */ 3285 mutex_exit(&db->db_mtx); 3286 3287 DB_DNODE_ENTER(db); 3288 dn = DB_DNODE(db); 3289 dndb = dn->dn_dbuf; 3290 if (db->db_blkid != DMU_BONUS_BLKID) { 3291 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3292 if (needlock) 3293 mutex_enter_nested(&dn->dn_dbufs_mtx, 3294 NESTED_SINGLE); 3295 avl_remove(&dn->dn_dbufs, db); 3296 membar_producer(); 3297 DB_DNODE_EXIT(db); 3298 if (needlock) 3299 mutex_exit(&dn->dn_dbufs_mtx); 3300 /* 3301 * Decrementing the dbuf count means that the hold corresponding 3302 * to the removed dbuf is no longer discounted in dnode_move(), 3303 * so the dnode cannot be moved until after we release the hold. 3304 * The membar_producer() ensures visibility of the decremented 3305 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3306 * release any lock. 3307 */ 3308 mutex_enter(&dn->dn_mtx); 3309 dnode_rele_and_unlock(dn, db, B_TRUE); 3310 #ifdef USE_DNODE_HANDLE 3311 db->db_dnode_handle = NULL; 3312 #else 3313 db->db_dnode = NULL; 3314 #endif 3315 3316 dbuf_hash_remove(db); 3317 } else { 3318 DB_DNODE_EXIT(db); 3319 } 3320 3321 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3322 3323 db->db_parent = NULL; 3324 3325 ASSERT0P(db->db_buf); 3326 ASSERT0P(db->db.db_data); 3327 ASSERT0P(db->db_hash_next); 3328 ASSERT0P(db->db_blkptr); 3329 ASSERT0P(db->db_data_pending); 3330 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3331 ASSERT(!multilist_link_active(&db->db_cache_link)); 3332 3333 /* 3334 * If this dbuf is referenced from an indirect dbuf, 3335 * decrement the ref count on the indirect dbuf. 3336 */ 3337 if (parent && parent != dndb) { 3338 mutex_enter(&parent->db_mtx); 3339 dbuf_rele_and_unlock(parent, db, B_TRUE); 3340 } 3341 3342 kmem_cache_free(dbuf_kmem_cache, db); 3343 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3344 } 3345 3346 /* 3347 * Note: While bpp will always be updated if the function returns success, 3348 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3349 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3350 * object. 3351 */ 3352 __attribute__((always_inline)) 3353 static inline int 3354 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3355 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3356 { 3357 *parentp = NULL; 3358 *bpp = NULL; 3359 3360 ASSERT(blkid != DMU_BONUS_BLKID); 3361 3362 if (blkid == DMU_SPILL_BLKID) { 3363 mutex_enter(&dn->dn_mtx); 3364 if (dn->dn_have_spill && 3365 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3366 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3367 else 3368 *bpp = NULL; 3369 dbuf_add_ref(dn->dn_dbuf, NULL); 3370 *parentp = dn->dn_dbuf; 3371 mutex_exit(&dn->dn_mtx); 3372 return (0); 3373 } 3374 3375 int nlevels = 3376 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3377 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3378 3379 ASSERT3U(level * epbs, <, 64); 3380 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3381 /* 3382 * This assertion shouldn't trip as long as the max indirect block size 3383 * is less than 1M. The reason for this is that up to that point, 3384 * the number of levels required to address an entire object with blocks 3385 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3386 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3387 * (i.e. we can address the entire object), objects will all use at most 3388 * N-1 levels and the assertion won't overflow. However, once epbs is 3389 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3390 * enough to address an entire object, so objects will have 5 levels, 3391 * but then this assertion will overflow. 3392 * 3393 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3394 * need to redo this logic to handle overflows. 3395 */ 3396 ASSERT(level >= nlevels || 3397 ((nlevels - level - 1) * epbs) + 3398 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3399 if (level >= nlevels || 3400 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3401 ((nlevels - level - 1) * epbs)) || 3402 (fail_sparse && 3403 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3404 /* the buffer has no parent yet */ 3405 return (SET_ERROR(ENOENT)); 3406 } else if (level < nlevels-1) { 3407 /* this block is referenced from an indirect block */ 3408 int err; 3409 3410 err = dbuf_hold_impl(dn, level + 1, 3411 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3412 3413 if (err) 3414 return (err); 3415 err = dbuf_read(*parentp, NULL, DB_RF_CANFAIL | 3416 DB_RF_HAVESTRUCT | DMU_READ_NO_PREFETCH); 3417 if (err) { 3418 dbuf_rele(*parentp, NULL); 3419 *parentp = NULL; 3420 return (err); 3421 } 3422 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3423 (blkid & ((1ULL << epbs) - 1)); 3424 return (0); 3425 } else { 3426 /* the block is referenced from the dnode */ 3427 ASSERT3U(level, ==, nlevels-1); 3428 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3429 blkid < dn->dn_phys->dn_nblkptr); 3430 if (dn->dn_dbuf) { 3431 dbuf_add_ref(dn->dn_dbuf, NULL); 3432 *parentp = dn->dn_dbuf; 3433 } 3434 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3435 return (0); 3436 } 3437 } 3438 3439 static dmu_buf_impl_t * 3440 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3441 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3442 { 3443 objset_t *os = dn->dn_objset; 3444 dmu_buf_impl_t *db, *odb; 3445 3446 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3447 ASSERT(dn->dn_type != DMU_OT_NONE); 3448 3449 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3450 3451 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3452 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3453 3454 db->db_objset = os; 3455 db->db.db_object = dn->dn_object; 3456 db->db_level = level; 3457 db->db_blkid = blkid; 3458 db->db_dirtycnt = 0; 3459 #ifdef USE_DNODE_HANDLE 3460 db->db_dnode_handle = dn->dn_handle; 3461 #else 3462 db->db_dnode = dn; 3463 #endif 3464 db->db_parent = parent; 3465 db->db_blkptr = blkptr; 3466 db->db_hash = hash; 3467 3468 db->db_user = NULL; 3469 db->db_user_immediate_evict = FALSE; 3470 db->db_freed_in_flight = FALSE; 3471 db->db_pending_evict = TRUE; 3472 db->db_partial_read = FALSE; 3473 3474 if (blkid == DMU_BONUS_BLKID) { 3475 ASSERT3P(parent, ==, dn->dn_dbuf); 3476 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3477 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3478 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3479 db->db.db_offset = DMU_BONUS_BLKID; 3480 db->db_state = DB_UNCACHED; 3481 DTRACE_SET_STATE(db, "bonus buffer created"); 3482 db->db_caching_status = DB_NO_CACHE; 3483 /* the bonus dbuf is not placed in the hash table */ 3484 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3485 return (db); 3486 } else if (blkid == DMU_SPILL_BLKID) { 3487 db->db.db_size = (blkptr != NULL) ? 3488 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3489 db->db.db_offset = 0; 3490 } else { 3491 int blocksize = 3492 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3493 db->db.db_size = blocksize; 3494 db->db.db_offset = db->db_blkid * blocksize; 3495 } 3496 3497 /* 3498 * Hold the dn_dbufs_mtx while we get the new dbuf 3499 * in the hash table *and* added to the dbufs list. 3500 * This prevents a possible deadlock with someone 3501 * trying to look up this dbuf before it's added to the 3502 * dn_dbufs list. 3503 */ 3504 mutex_enter(&dn->dn_dbufs_mtx); 3505 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3506 if ((odb = dbuf_hash_insert(db)) != NULL) { 3507 /* someone else inserted it first */ 3508 mutex_exit(&dn->dn_dbufs_mtx); 3509 kmem_cache_free(dbuf_kmem_cache, db); 3510 DBUF_STAT_BUMP(hash_insert_race); 3511 return (odb); 3512 } 3513 avl_add(&dn->dn_dbufs, db); 3514 3515 db->db_state = DB_UNCACHED; 3516 DTRACE_SET_STATE(db, "regular buffer created"); 3517 db->db_caching_status = DB_NO_CACHE; 3518 mutex_exit(&dn->dn_dbufs_mtx); 3519 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3520 3521 if (parent && parent != dn->dn_dbuf) 3522 dbuf_add_ref(parent, db); 3523 3524 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3525 zfs_refcount_count(&dn->dn_holds) > 0); 3526 (void) zfs_refcount_add(&dn->dn_holds, db); 3527 3528 dprintf_dbuf(db, "db=%p\n", db); 3529 3530 return (db); 3531 } 3532 3533 /* 3534 * This function returns a block pointer and information about the object, 3535 * given a dnode and a block. This is a publicly accessible version of 3536 * dbuf_findbp that only returns some information, rather than the 3537 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3538 * should be locked as (at least) a reader. 3539 */ 3540 int 3541 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3542 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3543 { 3544 dmu_buf_impl_t *dbp = NULL; 3545 blkptr_t *bp2; 3546 int err = 0; 3547 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3548 3549 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3550 if (err == 0) { 3551 ASSERT3P(bp2, !=, NULL); 3552 *bp = *bp2; 3553 if (dbp != NULL) 3554 dbuf_rele(dbp, NULL); 3555 if (datablkszsec != NULL) 3556 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3557 if (indblkshift != NULL) 3558 *indblkshift = dn->dn_phys->dn_indblkshift; 3559 } 3560 3561 return (err); 3562 } 3563 3564 typedef struct dbuf_prefetch_arg { 3565 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3566 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3567 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3568 int dpa_curlevel; /* The current level that we're reading */ 3569 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3570 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3571 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3572 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3573 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3574 void *dpa_arg; /* prefetch completion arg */ 3575 } dbuf_prefetch_arg_t; 3576 3577 static void 3578 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3579 { 3580 if (dpa->dpa_cb != NULL) { 3581 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3582 dpa->dpa_zb.zb_blkid, io_done); 3583 } 3584 kmem_free(dpa, sizeof (*dpa)); 3585 } 3586 3587 static void 3588 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3589 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3590 { 3591 (void) zio, (void) zb, (void) iobp; 3592 dbuf_prefetch_arg_t *dpa = private; 3593 3594 if (abuf != NULL) 3595 arc_buf_destroy(abuf, private); 3596 3597 dbuf_prefetch_fini(dpa, B_TRUE); 3598 } 3599 3600 /* 3601 * Actually issue the prefetch read for the block given. 3602 */ 3603 static void 3604 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3605 { 3606 ASSERT(!BP_IS_HOLE(bp)); 3607 ASSERT(!BP_IS_REDACTED(bp)); 3608 if (BP_IS_EMBEDDED(bp)) 3609 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3610 3611 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3612 arc_flags_t aflags = 3613 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3614 ARC_FLAG_NO_BUF; 3615 3616 /* dnodes are always read as raw and then converted later */ 3617 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3618 dpa->dpa_curlevel == 0) 3619 zio_flags |= ZIO_FLAG_RAW; 3620 3621 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3622 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3623 ASSERT(dpa->dpa_zio != NULL); 3624 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3625 dbuf_issue_final_prefetch_done, dpa, 3626 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3627 } 3628 3629 /* 3630 * Called when an indirect block above our prefetch target is read in. This 3631 * will either read in the next indirect block down the tree or issue the actual 3632 * prefetch if the next block down is our target. 3633 */ 3634 static void 3635 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3636 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3637 { 3638 (void) zb, (void) iobp; 3639 dbuf_prefetch_arg_t *dpa = private; 3640 3641 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3642 ASSERT3S(dpa->dpa_curlevel, >, 0); 3643 3644 if (abuf == NULL) { 3645 ASSERT(zio == NULL || zio->io_error != 0); 3646 dbuf_prefetch_fini(dpa, B_TRUE); 3647 return; 3648 } 3649 ASSERT(zio == NULL || zio->io_error == 0); 3650 3651 /* 3652 * The dpa_dnode is only valid if we are called with a NULL 3653 * zio. This indicates that the arc_read() returned without 3654 * first calling zio_read() to issue a physical read. Once 3655 * a physical read is made the dpa_dnode must be invalidated 3656 * as the locks guarding it may have been dropped. If the 3657 * dpa_dnode is still valid, then we want to add it to the dbuf 3658 * cache. To do so, we must hold the dbuf associated with the block 3659 * we just prefetched, read its contents so that we associate it 3660 * with an arc_buf_t, and then release it. 3661 */ 3662 if (zio != NULL) { 3663 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3664 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3665 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3666 } else { 3667 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3668 } 3669 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3670 3671 dpa->dpa_dnode = NULL; 3672 } else if (dpa->dpa_dnode != NULL) { 3673 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3674 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3675 dpa->dpa_zb.zb_level)); 3676 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3677 dpa->dpa_curlevel, curblkid, FTAG); 3678 if (db == NULL) { 3679 arc_buf_destroy(abuf, private); 3680 dbuf_prefetch_fini(dpa, B_TRUE); 3681 return; 3682 } 3683 (void) dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 3684 DMU_READ_NO_PREFETCH); 3685 dbuf_rele(db, FTAG); 3686 } 3687 3688 dpa->dpa_curlevel--; 3689 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3690 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3691 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3692 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3693 3694 ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL || 3695 dsl_dataset_feature_is_active( 3696 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3697 SPA_FEATURE_REDACTED_DATASETS)); 3698 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3699 arc_buf_destroy(abuf, private); 3700 dbuf_prefetch_fini(dpa, B_TRUE); 3701 return; 3702 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3703 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3704 dbuf_issue_final_prefetch(dpa, bp); 3705 } else { 3706 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3707 zbookmark_phys_t zb; 3708 3709 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3710 if (dpa->dpa_dnode) { 3711 if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode, 3712 dpa->dpa_curlevel)) 3713 iter_aflags |= ARC_FLAG_L2CACHE; 3714 } else { 3715 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3716 iter_aflags |= ARC_FLAG_L2CACHE; 3717 } 3718 3719 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3720 3721 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3722 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3723 3724 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3725 bp, dbuf_prefetch_indirect_done, dpa, 3726 ZIO_PRIORITY_SYNC_READ, 3727 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3728 &iter_aflags, &zb); 3729 } 3730 3731 arc_buf_destroy(abuf, private); 3732 } 3733 3734 /* 3735 * Issue prefetch reads for the given block on the given level. If the indirect 3736 * blocks above that block are not in memory, we will read them in 3737 * asynchronously. As a result, this call never blocks waiting for a read to 3738 * complete. Note that the prefetch might fail if the dataset is encrypted and 3739 * the encryption key is unmapped before the IO completes. 3740 */ 3741 int 3742 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3743 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3744 void *arg) 3745 { 3746 blkptr_t bp; 3747 int epbs, nlevels, curlevel; 3748 uint64_t curblkid; 3749 3750 ASSERT(blkid != DMU_BONUS_BLKID); 3751 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3752 3753 if (blkid > dn->dn_maxblkid) 3754 goto no_issue; 3755 3756 if (level == 0 && dnode_block_freed(dn, blkid)) 3757 goto no_issue; 3758 3759 /* 3760 * This dnode hasn't been written to disk yet, so there's nothing to 3761 * prefetch. 3762 */ 3763 nlevels = dn->dn_phys->dn_nlevels; 3764 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3765 goto no_issue; 3766 3767 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3768 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3769 goto no_issue; 3770 3771 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3772 level, blkid, NULL); 3773 if (db != NULL) { 3774 mutex_exit(&db->db_mtx); 3775 /* 3776 * This dbuf already exists. It is either CACHED, or 3777 * (we assume) about to be read or filled. 3778 */ 3779 goto no_issue; 3780 } 3781 3782 /* 3783 * Find the closest ancestor (indirect block) of the target block 3784 * that is present in the cache. In this indirect block, we will 3785 * find the bp that is at curlevel, curblkid. 3786 */ 3787 curlevel = level; 3788 curblkid = blkid; 3789 while (curlevel < nlevels - 1) { 3790 int parent_level = curlevel + 1; 3791 uint64_t parent_blkid = curblkid >> epbs; 3792 dmu_buf_impl_t *db; 3793 3794 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3795 FALSE, TRUE, FTAG, &db) == 0) { 3796 blkptr_t *bpp = db->db_buf->b_data; 3797 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3798 dbuf_rele(db, FTAG); 3799 break; 3800 } 3801 3802 curlevel = parent_level; 3803 curblkid = parent_blkid; 3804 } 3805 3806 if (curlevel == nlevels - 1) { 3807 /* No cached indirect blocks found. */ 3808 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3809 bp = dn->dn_phys->dn_blkptr[curblkid]; 3810 } 3811 ASSERT(!BP_IS_REDACTED(&bp) || 3812 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3813 SPA_FEATURE_REDACTED_DATASETS)); 3814 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3815 goto no_issue; 3816 3817 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3818 3819 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3820 ZIO_FLAG_CANFAIL); 3821 3822 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3823 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3824 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3825 dn->dn_object, level, blkid); 3826 dpa->dpa_curlevel = curlevel; 3827 dpa->dpa_prio = prio; 3828 dpa->dpa_aflags = aflags; 3829 dpa->dpa_spa = dn->dn_objset->os_spa; 3830 dpa->dpa_dnode = dn; 3831 dpa->dpa_epbs = epbs; 3832 dpa->dpa_zio = pio; 3833 dpa->dpa_cb = cb; 3834 dpa->dpa_arg = arg; 3835 3836 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3837 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3838 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3839 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3840 3841 /* 3842 * If we have the indirect just above us, no need to do the asynchronous 3843 * prefetch chain; we'll just run the last step ourselves. If we're at 3844 * a higher level, though, we want to issue the prefetches for all the 3845 * indirect blocks asynchronously, so we can go on with whatever we were 3846 * doing. 3847 */ 3848 if (curlevel == level) { 3849 ASSERT3U(curblkid, ==, blkid); 3850 dbuf_issue_final_prefetch(dpa, &bp); 3851 } else { 3852 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3853 zbookmark_phys_t zb; 3854 3855 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3856 if (dnode_level_is_l2cacheable(&bp, dn, curlevel)) 3857 iter_aflags |= ARC_FLAG_L2CACHE; 3858 3859 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3860 dn->dn_object, curlevel, curblkid); 3861 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3862 &bp, dbuf_prefetch_indirect_done, dpa, 3863 ZIO_PRIORITY_SYNC_READ, 3864 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3865 &iter_aflags, &zb); 3866 } 3867 /* 3868 * We use pio here instead of dpa_zio since it's possible that 3869 * dpa may have already been freed. 3870 */ 3871 zio_nowait(pio); 3872 return (1); 3873 no_issue: 3874 if (cb != NULL) 3875 cb(arg, level, blkid, B_FALSE); 3876 return (0); 3877 } 3878 3879 int 3880 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3881 arc_flags_t aflags) 3882 { 3883 3884 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3885 } 3886 3887 /* 3888 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3889 * the case of encrypted, compressed and uncompressed buffers by 3890 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3891 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3892 * 3893 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3894 */ 3895 noinline static void 3896 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3897 { 3898 dbuf_dirty_record_t *dr = db->db_data_pending; 3899 arc_buf_t *data = dr->dt.dl.dr_data; 3900 arc_buf_t *db_data; 3901 enum zio_compress compress_type = arc_get_compression(data); 3902 uint8_t complevel = arc_get_complevel(data); 3903 3904 if (arc_is_encrypted(data)) { 3905 boolean_t byteorder; 3906 uint8_t salt[ZIO_DATA_SALT_LEN]; 3907 uint8_t iv[ZIO_DATA_IV_LEN]; 3908 uint8_t mac[ZIO_DATA_MAC_LEN]; 3909 3910 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3911 db_data = arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3912 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3913 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3914 compress_type, complevel); 3915 } else if (compress_type != ZIO_COMPRESS_OFF) { 3916 db_data = arc_alloc_compressed_buf( 3917 dn->dn_objset->os_spa, db, arc_buf_size(data), 3918 arc_buf_lsize(data), compress_type, complevel); 3919 } else { 3920 db_data = arc_alloc_buf(dn->dn_objset->os_spa, db, 3921 DBUF_GET_BUFC_TYPE(db), db->db.db_size); 3922 } 3923 memcpy(db_data->b_data, data->b_data, arc_buf_size(data)); 3924 3925 dbuf_set_data(db, db_data); 3926 } 3927 3928 /* 3929 * Returns with db_holds incremented, and db_mtx not held. 3930 * Note: dn_struct_rwlock must be held. 3931 */ 3932 int 3933 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3934 boolean_t fail_sparse, boolean_t fail_uncached, 3935 const void *tag, dmu_buf_impl_t **dbp) 3936 { 3937 dmu_buf_impl_t *db, *parent = NULL; 3938 uint64_t hv; 3939 3940 /* If the pool has been created, verify the tx_sync_lock is not held */ 3941 spa_t *spa = dn->dn_objset->os_spa; 3942 dsl_pool_t *dp = spa->spa_dsl_pool; 3943 if (dp != NULL) { 3944 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3945 } 3946 3947 ASSERT(blkid != DMU_BONUS_BLKID); 3948 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3949 if (!fail_sparse) 3950 ASSERT3U(dn->dn_nlevels, >, level); 3951 3952 *dbp = NULL; 3953 3954 /* dbuf_find() returns with db_mtx held */ 3955 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3956 3957 if (db == NULL) { 3958 blkptr_t *bp = NULL; 3959 int err; 3960 3961 if (fail_uncached) 3962 return (SET_ERROR(ENOENT)); 3963 3964 ASSERT0P(parent); 3965 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3966 if (fail_sparse) { 3967 if (err == 0 && bp && BP_IS_HOLE(bp)) 3968 err = SET_ERROR(ENOENT); 3969 if (err) { 3970 if (parent) 3971 dbuf_rele(parent, NULL); 3972 return (err); 3973 } 3974 } 3975 if (err && err != ENOENT) 3976 return (err); 3977 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3978 } 3979 3980 if (fail_uncached && db->db_state != DB_CACHED) { 3981 mutex_exit(&db->db_mtx); 3982 return (SET_ERROR(ENOENT)); 3983 } 3984 3985 if (db->db_buf != NULL) { 3986 arc_buf_access(db->db_buf); 3987 ASSERT(MUTEX_HELD(&db->db_mtx)); 3988 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3989 } 3990 3991 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3992 3993 /* 3994 * If this buffer is currently syncing out, and we are 3995 * still referencing it from db_data, we need to make a copy 3996 * of it in case we decide we want to dirty it again in this txg. 3997 */ 3998 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3999 dn->dn_object != DMU_META_DNODE_OBJECT && 4000 db->db_state == DB_CACHED && db->db_data_pending) { 4001 dbuf_dirty_record_t *dr = db->db_data_pending; 4002 if (dr->dt.dl.dr_data == db->db_buf) { 4003 ASSERT3P(db->db_buf, !=, NULL); 4004 dbuf_hold_copy(dn, db); 4005 } 4006 } 4007 4008 if (multilist_link_active(&db->db_cache_link)) { 4009 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 4010 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 4011 db->db_caching_status == DB_DBUF_METADATA_CACHE); 4012 4013 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 4014 4015 uint64_t size = db->db.db_size; 4016 uint64_t usize = dmu_buf_user_size(&db->db); 4017 (void) zfs_refcount_remove_many( 4018 &dbuf_caches[db->db_caching_status].size, size, db); 4019 (void) zfs_refcount_remove_many( 4020 &dbuf_caches[db->db_caching_status].size, usize, 4021 db->db_user); 4022 4023 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 4024 DBUF_STAT_BUMPDOWN(metadata_cache_count); 4025 } else { 4026 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 4027 DBUF_STAT_BUMPDOWN(cache_count); 4028 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 4029 size + usize); 4030 } 4031 db->db_caching_status = DB_NO_CACHE; 4032 } 4033 (void) zfs_refcount_add(&db->db_holds, tag); 4034 DBUF_VERIFY(db); 4035 mutex_exit(&db->db_mtx); 4036 4037 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 4038 if (parent) 4039 dbuf_rele(parent, NULL); 4040 4041 ASSERT3P(DB_DNODE(db), ==, dn); 4042 ASSERT3U(db->db_blkid, ==, blkid); 4043 ASSERT3U(db->db_level, ==, level); 4044 *dbp = db; 4045 4046 return (0); 4047 } 4048 4049 dmu_buf_impl_t * 4050 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 4051 { 4052 return (dbuf_hold_level(dn, 0, blkid, tag)); 4053 } 4054 4055 dmu_buf_impl_t * 4056 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 4057 { 4058 dmu_buf_impl_t *db; 4059 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 4060 return (err ? NULL : db); 4061 } 4062 4063 void 4064 dbuf_create_bonus(dnode_t *dn) 4065 { 4066 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 4067 4068 ASSERT0P(dn->dn_bonus); 4069 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 4070 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 4071 dn->dn_bonus->db_pending_evict = FALSE; 4072 } 4073 4074 int 4075 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 4076 { 4077 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4078 4079 if (db->db_blkid != DMU_SPILL_BLKID) 4080 return (SET_ERROR(ENOTSUP)); 4081 if (blksz == 0) 4082 blksz = SPA_MINBLOCKSIZE; 4083 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 4084 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 4085 4086 dbuf_new_size(db, blksz, tx); 4087 4088 return (0); 4089 } 4090 4091 void 4092 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 4093 { 4094 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 4095 } 4096 4097 #pragma weak dmu_buf_add_ref = dbuf_add_ref 4098 void 4099 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 4100 { 4101 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 4102 VERIFY3S(holds, >, 1); 4103 } 4104 4105 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 4106 boolean_t 4107 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 4108 const void *tag) 4109 { 4110 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4111 dmu_buf_impl_t *found_db; 4112 boolean_t result = B_FALSE; 4113 4114 if (blkid == DMU_BONUS_BLKID) 4115 found_db = dbuf_find_bonus(os, obj); 4116 else 4117 found_db = dbuf_find(os, obj, 0, blkid, NULL); 4118 4119 if (found_db != NULL) { 4120 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 4121 (void) zfs_refcount_add(&db->db_holds, tag); 4122 result = B_TRUE; 4123 } 4124 mutex_exit(&found_db->db_mtx); 4125 } 4126 return (result); 4127 } 4128 4129 /* 4130 * If you call dbuf_rele() you had better not be referencing the dnode handle 4131 * unless you have some other direct or indirect hold on the dnode. (An indirect 4132 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 4133 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 4134 * dnode's parent dbuf evicting its dnode handles. 4135 */ 4136 void 4137 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 4138 { 4139 mutex_enter(&db->db_mtx); 4140 dbuf_rele_and_unlock(db, tag, B_FALSE); 4141 } 4142 4143 void 4144 dmu_buf_rele(dmu_buf_t *db, const void *tag) 4145 { 4146 dbuf_rele((dmu_buf_impl_t *)db, tag); 4147 } 4148 4149 /* 4150 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 4151 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 4152 * argument should be set if we are already in the dbuf-evicting code 4153 * path, in which case we don't want to recursively evict. This allows us to 4154 * avoid deeply nested stacks that would have a call flow similar to this: 4155 * 4156 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 4157 * ^ | 4158 * | | 4159 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 4160 * 4161 */ 4162 void 4163 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 4164 { 4165 int64_t holds; 4166 uint64_t size; 4167 4168 ASSERT(MUTEX_HELD(&db->db_mtx)); 4169 DBUF_VERIFY(db); 4170 4171 /* 4172 * Remove the reference to the dbuf before removing its hold on the 4173 * dnode so we can guarantee in dnode_move() that a referenced bonus 4174 * buffer has a corresponding dnode hold. 4175 */ 4176 holds = zfs_refcount_remove(&db->db_holds, tag); 4177 ASSERT(holds >= 0); 4178 4179 /* 4180 * We can't freeze indirects if there is a possibility that they 4181 * may be modified in the current syncing context. 4182 */ 4183 if (db->db_buf != NULL && 4184 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 4185 arc_buf_freeze(db->db_buf); 4186 } 4187 4188 if (holds == db->db_dirtycnt && 4189 db->db_level == 0 && db->db_user_immediate_evict) 4190 dbuf_evict_user(db); 4191 4192 if (holds == 0) { 4193 if (db->db_blkid == DMU_BONUS_BLKID) { 4194 dnode_t *dn; 4195 boolean_t evict_dbuf = db->db_pending_evict; 4196 4197 /* 4198 * If the dnode moves here, we cannot cross this 4199 * barrier until the move completes. 4200 */ 4201 DB_DNODE_ENTER(db); 4202 4203 dn = DB_DNODE(db); 4204 atomic_dec_32(&dn->dn_dbufs_count); 4205 4206 /* 4207 * Decrementing the dbuf count means that the bonus 4208 * buffer's dnode hold is no longer discounted in 4209 * dnode_move(). The dnode cannot move until after 4210 * the dnode_rele() below. 4211 */ 4212 DB_DNODE_EXIT(db); 4213 4214 /* 4215 * Do not reference db after its lock is dropped. 4216 * Another thread may evict it. 4217 */ 4218 mutex_exit(&db->db_mtx); 4219 4220 if (evict_dbuf) 4221 dnode_evict_bonus(dn); 4222 4223 dnode_rele(dn, db); 4224 } else if (db->db_buf == NULL) { 4225 /* 4226 * This is a special case: we never associated this 4227 * dbuf with any data allocated from the ARC. 4228 */ 4229 ASSERT(db->db_state == DB_UNCACHED || 4230 db->db_state == DB_NOFILL); 4231 dbuf_destroy(db); 4232 } else if (arc_released(db->db_buf)) { 4233 /* 4234 * This dbuf has anonymous data associated with it. 4235 */ 4236 dbuf_destroy(db); 4237 } else if (!db->db_partial_read && !DBUF_IS_CACHEABLE(db)) { 4238 /* 4239 * We don't expect more accesses to the dbuf, and it 4240 * is either not cacheable or was marked for eviction. 4241 */ 4242 dbuf_destroy(db); 4243 } else if (!multilist_link_active(&db->db_cache_link)) { 4244 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4245 4246 dbuf_cached_state_t dcs = 4247 dbuf_include_in_metadata_cache(db) ? 4248 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4249 db->db_caching_status = dcs; 4250 4251 multilist_insert(&dbuf_caches[dcs].cache, db); 4252 uint64_t db_size = db->db.db_size; 4253 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4254 (void) zfs_refcount_add_many( 4255 &dbuf_caches[dcs].size, db_size, db); 4256 size = zfs_refcount_add_many( 4257 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4258 uint8_t db_level = db->db_level; 4259 mutex_exit(&db->db_mtx); 4260 4261 if (dcs == DB_DBUF_METADATA_CACHE) { 4262 DBUF_STAT_BUMP(metadata_cache_count); 4263 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4264 size); 4265 } else { 4266 DBUF_STAT_BUMP(cache_count); 4267 DBUF_STAT_MAX(cache_size_bytes_max, size); 4268 DBUF_STAT_BUMP(cache_levels[db_level]); 4269 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4270 db_size + dbu_size); 4271 } 4272 4273 if (dcs == DB_DBUF_CACHE && !evicting) 4274 dbuf_evict_notify(size); 4275 } 4276 } else { 4277 mutex_exit(&db->db_mtx); 4278 } 4279 } 4280 4281 #pragma weak dmu_buf_refcount = dbuf_refcount 4282 uint64_t 4283 dbuf_refcount(dmu_buf_impl_t *db) 4284 { 4285 return (zfs_refcount_count(&db->db_holds)); 4286 } 4287 4288 uint64_t 4289 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4290 { 4291 uint64_t holds; 4292 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4293 4294 mutex_enter(&db->db_mtx); 4295 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4296 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4297 mutex_exit(&db->db_mtx); 4298 4299 return (holds); 4300 } 4301 4302 void * 4303 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4304 dmu_buf_user_t *new_user) 4305 { 4306 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4307 4308 mutex_enter(&db->db_mtx); 4309 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4310 if (db->db_user == old_user) 4311 db->db_user = new_user; 4312 else 4313 old_user = db->db_user; 4314 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4315 mutex_exit(&db->db_mtx); 4316 4317 return (old_user); 4318 } 4319 4320 void * 4321 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4322 { 4323 return (dmu_buf_replace_user(db_fake, NULL, user)); 4324 } 4325 4326 void * 4327 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4328 { 4329 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4330 4331 db->db_user_immediate_evict = TRUE; 4332 return (dmu_buf_set_user(db_fake, user)); 4333 } 4334 4335 void * 4336 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4337 { 4338 return (dmu_buf_replace_user(db_fake, user, NULL)); 4339 } 4340 4341 void * 4342 dmu_buf_get_user(dmu_buf_t *db_fake) 4343 { 4344 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4345 4346 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4347 return (db->db_user); 4348 } 4349 4350 uint64_t 4351 dmu_buf_user_size(dmu_buf_t *db_fake) 4352 { 4353 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4354 if (db->db_user == NULL) 4355 return (0); 4356 return (atomic_load_64(&db->db_user->dbu_size)); 4357 } 4358 4359 void 4360 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4361 { 4362 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4363 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4364 ASSERT3P(db->db_user, !=, NULL); 4365 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4366 atomic_add_64(&db->db_user->dbu_size, nadd); 4367 } 4368 4369 void 4370 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4371 { 4372 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4373 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4374 ASSERT3P(db->db_user, !=, NULL); 4375 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4376 atomic_sub_64(&db->db_user->dbu_size, nsub); 4377 } 4378 4379 void 4380 dmu_buf_user_evict_wait(void) 4381 { 4382 taskq_wait(dbu_evict_taskq); 4383 } 4384 4385 blkptr_t * 4386 dmu_buf_get_blkptr(dmu_buf_t *db) 4387 { 4388 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4389 return (dbi->db_blkptr); 4390 } 4391 4392 objset_t * 4393 dmu_buf_get_objset(dmu_buf_t *db) 4394 { 4395 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4396 return (dbi->db_objset); 4397 } 4398 4399 static void 4400 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4401 { 4402 /* ASSERT(dmu_tx_is_syncing(tx) */ 4403 ASSERT(MUTEX_HELD(&db->db_mtx)); 4404 4405 if (db->db_blkptr != NULL) 4406 return; 4407 4408 if (db->db_blkid == DMU_SPILL_BLKID) { 4409 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4410 BP_ZERO(db->db_blkptr); 4411 return; 4412 } 4413 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4414 /* 4415 * This buffer was allocated at a time when there was 4416 * no available blkptrs from the dnode, or it was 4417 * inappropriate to hook it in (i.e., nlevels mismatch). 4418 */ 4419 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4420 ASSERT0P(db->db_parent); 4421 db->db_parent = dn->dn_dbuf; 4422 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4423 DBUF_VERIFY(db); 4424 } else { 4425 dmu_buf_impl_t *parent = db->db_parent; 4426 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4427 4428 ASSERT(dn->dn_phys->dn_nlevels > 1); 4429 if (parent == NULL) { 4430 mutex_exit(&db->db_mtx); 4431 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4432 parent = dbuf_hold_level(dn, db->db_level + 1, 4433 db->db_blkid >> epbs, db); 4434 rw_exit(&dn->dn_struct_rwlock); 4435 mutex_enter(&db->db_mtx); 4436 db->db_parent = parent; 4437 } 4438 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4439 (db->db_blkid & ((1ULL << epbs) - 1)); 4440 DBUF_VERIFY(db); 4441 } 4442 } 4443 4444 static void 4445 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4446 { 4447 dmu_buf_impl_t *db = dr->dr_dbuf; 4448 void *data = dr->dt.dl.dr_data; 4449 4450 ASSERT0(db->db_level); 4451 ASSERT(MUTEX_HELD(&db->db_mtx)); 4452 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4453 ASSERT(data != NULL); 4454 4455 dnode_t *dn = dr->dr_dnode; 4456 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4457 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4458 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4459 4460 dbuf_sync_leaf_verify_bonus_dnode(dr); 4461 4462 dbuf_undirty_bonus(dr); 4463 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4464 } 4465 4466 /* 4467 * When syncing out a blocks of dnodes, adjust the block to deal with 4468 * encryption. Normally, we make sure the block is decrypted before writing 4469 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4470 * from a raw receive. In this case, set the ARC buf's crypt params so 4471 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4472 */ 4473 static void 4474 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4475 { 4476 int err; 4477 dmu_buf_impl_t *db = dr->dr_dbuf; 4478 4479 ASSERT(MUTEX_HELD(&db->db_mtx)); 4480 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4481 ASSERT0(db->db_level); 4482 4483 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4484 zbookmark_phys_t zb; 4485 4486 /* 4487 * Unfortunately, there is currently no mechanism for 4488 * syncing context to handle decryption errors. An error 4489 * here is only possible if an attacker maliciously 4490 * changed a dnode block and updated the associated 4491 * checksums going up the block tree. 4492 */ 4493 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4494 db->db.db_object, db->db_level, db->db_blkid); 4495 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4496 &zb, B_TRUE); 4497 if (err) 4498 panic("Invalid dnode block MAC"); 4499 } else if (dr->dt.dl.dr_has_raw_params) { 4500 (void) arc_release(dr->dt.dl.dr_data, db); 4501 arc_convert_to_raw(dr->dt.dl.dr_data, 4502 dmu_objset_id(db->db_objset), 4503 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4504 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4505 } 4506 } 4507 4508 /* 4509 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4510 * is critical the we not allow the compiler to inline this function in to 4511 * dbuf_sync_list() thereby drastically bloating the stack usage. 4512 */ 4513 noinline static void 4514 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4515 { 4516 dmu_buf_impl_t *db = dr->dr_dbuf; 4517 dnode_t *dn = dr->dr_dnode; 4518 4519 ASSERT(dmu_tx_is_syncing(tx)); 4520 4521 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4522 4523 mutex_enter(&db->db_mtx); 4524 4525 ASSERT(db->db_level > 0); 4526 DBUF_VERIFY(db); 4527 4528 /* Read the block if it hasn't been read yet. */ 4529 if (db->db_buf == NULL) { 4530 mutex_exit(&db->db_mtx); 4531 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4532 mutex_enter(&db->db_mtx); 4533 } 4534 ASSERT3U(db->db_state, ==, DB_CACHED); 4535 ASSERT(db->db_buf != NULL); 4536 4537 /* Indirect block size must match what the dnode thinks it is. */ 4538 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4539 dbuf_check_blkptr(dn, db); 4540 4541 /* Provide the pending dirty record to child dbufs */ 4542 db->db_data_pending = dr; 4543 4544 mutex_exit(&db->db_mtx); 4545 4546 dbuf_write(dr, db->db_buf, tx); 4547 4548 zio_t *zio = dr->dr_zio; 4549 mutex_enter(&dr->dt.di.dr_mtx); 4550 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4551 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4552 mutex_exit(&dr->dt.di.dr_mtx); 4553 zio_nowait(zio); 4554 } 4555 4556 /* 4557 * Verify that the size of the data in our bonus buffer does not exceed 4558 * its recorded size. 4559 * 4560 * The purpose of this verification is to catch any cases in development 4561 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4562 * due to incorrect feature management, older pools expect to read more 4563 * data even though they didn't actually write it to begin with. 4564 * 4565 * For a example, this would catch an error in the feature logic where we 4566 * open an older pool and we expect to write the space map histogram of 4567 * a space map with size SPACE_MAP_SIZE_V0. 4568 */ 4569 static void 4570 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4571 { 4572 #ifdef ZFS_DEBUG 4573 dnode_t *dn = dr->dr_dnode; 4574 4575 /* 4576 * Encrypted bonus buffers can have data past their bonuslen. 4577 * Skip the verification of these blocks. 4578 */ 4579 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4580 return; 4581 4582 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4583 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4584 ASSERT3U(bonuslen, <=, maxbonuslen); 4585 4586 arc_buf_t *datap = dr->dt.dl.dr_data; 4587 char *datap_end = ((char *)datap) + bonuslen; 4588 char *datap_max = ((char *)datap) + maxbonuslen; 4589 4590 /* ensure that everything is zero after our data */ 4591 for (; datap_end < datap_max; datap_end++) 4592 ASSERT0(*datap_end); 4593 #endif 4594 } 4595 4596 static blkptr_t * 4597 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4598 { 4599 /* This must be a lightweight dirty record. */ 4600 ASSERT0P(dr->dr_dbuf); 4601 dnode_t *dn = dr->dr_dnode; 4602 4603 if (dn->dn_phys->dn_nlevels == 1) { 4604 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4605 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4606 } else { 4607 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4608 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4609 VERIFY3U(parent_db->db_level, ==, 1); 4610 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4611 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4612 blkptr_t *bp = parent_db->db.db_data; 4613 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4614 } 4615 } 4616 4617 static void 4618 dbuf_lightweight_ready(zio_t *zio) 4619 { 4620 dbuf_dirty_record_t *dr = zio->io_private; 4621 blkptr_t *bp = zio->io_bp; 4622 4623 if (zio->io_error != 0) 4624 return; 4625 4626 dnode_t *dn = dr->dr_dnode; 4627 4628 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4629 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4630 int64_t delta = bp_get_dsize_sync(spa, bp) - 4631 bp_get_dsize_sync(spa, bp_orig); 4632 dnode_diduse_space(dn, delta); 4633 4634 uint64_t blkid = dr->dt.dll.dr_blkid; 4635 mutex_enter(&dn->dn_mtx); 4636 if (blkid > dn->dn_phys->dn_maxblkid) { 4637 ASSERT0(dn->dn_objset->os_raw_receive); 4638 dn->dn_phys->dn_maxblkid = blkid; 4639 } 4640 mutex_exit(&dn->dn_mtx); 4641 4642 if (!BP_IS_EMBEDDED(bp)) { 4643 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4644 BP_SET_FILL(bp, fill); 4645 } 4646 4647 dmu_buf_impl_t *parent_db; 4648 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4649 if (dr->dr_parent == NULL) { 4650 parent_db = dn->dn_dbuf; 4651 } else { 4652 parent_db = dr->dr_parent->dr_dbuf; 4653 } 4654 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4655 *bp_orig = *bp; 4656 rw_exit(&parent_db->db_rwlock); 4657 } 4658 4659 static void 4660 dbuf_lightweight_done(zio_t *zio) 4661 { 4662 dbuf_dirty_record_t *dr = zio->io_private; 4663 4664 VERIFY0(zio->io_error); 4665 4666 objset_t *os = dr->dr_dnode->dn_objset; 4667 dmu_tx_t *tx = os->os_synctx; 4668 4669 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4670 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4671 } else { 4672 dsl_dataset_t *ds = os->os_dsl_dataset; 4673 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4674 dsl_dataset_block_born(ds, zio->io_bp, tx); 4675 } 4676 4677 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4678 zio->io_txg); 4679 4680 abd_free(dr->dt.dll.dr_abd); 4681 kmem_free(dr, sizeof (*dr)); 4682 } 4683 4684 noinline static void 4685 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4686 { 4687 dnode_t *dn = dr->dr_dnode; 4688 zio_t *pio; 4689 if (dn->dn_phys->dn_nlevels == 1) { 4690 pio = dn->dn_zio; 4691 } else { 4692 pio = dr->dr_parent->dr_zio; 4693 } 4694 4695 zbookmark_phys_t zb = { 4696 .zb_objset = dmu_objset_id(dn->dn_objset), 4697 .zb_object = dn->dn_object, 4698 .zb_level = 0, 4699 .zb_blkid = dr->dt.dll.dr_blkid, 4700 }; 4701 4702 /* 4703 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4704 * will have the old BP in dbuf_lightweight_done(). 4705 */ 4706 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4707 4708 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4709 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4710 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4711 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4712 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4713 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4714 4715 zio_nowait(dr->dr_zio); 4716 } 4717 4718 /* 4719 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4720 * critical the we not allow the compiler to inline this function in to 4721 * dbuf_sync_list() thereby drastically bloating the stack usage. 4722 */ 4723 noinline static void 4724 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4725 { 4726 arc_buf_t **datap = &dr->dt.dl.dr_data; 4727 dmu_buf_impl_t *db = dr->dr_dbuf; 4728 dnode_t *dn = dr->dr_dnode; 4729 objset_t *os; 4730 uint64_t txg = tx->tx_txg; 4731 4732 ASSERT(dmu_tx_is_syncing(tx)); 4733 4734 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4735 4736 mutex_enter(&db->db_mtx); 4737 /* 4738 * To be synced, we must be dirtied. But we might have been freed 4739 * after the dirty. 4740 */ 4741 if (db->db_state == DB_UNCACHED) { 4742 /* This buffer has been freed since it was dirtied */ 4743 ASSERT0P(db->db.db_data); 4744 } else if (db->db_state == DB_FILL) { 4745 /* This buffer was freed and is now being re-filled */ 4746 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4747 } else if (db->db_state == DB_READ) { 4748 /* 4749 * This buffer was either cloned or had a Direct I/O write 4750 * occur and has an in-flgiht read on the BP. It is safe to 4751 * issue the write here, because the read has already been 4752 * issued and the contents won't change. 4753 * 4754 * We can verify the case of both the clone and Direct I/O 4755 * write by making sure the first dirty record for the dbuf 4756 * has no ARC buffer associated with it. 4757 */ 4758 dbuf_dirty_record_t *dr_head = 4759 list_head(&db->db_dirty_records); 4760 ASSERT0P(db->db_buf); 4761 ASSERT0P(db->db.db_data); 4762 ASSERT0P(dr_head->dt.dl.dr_data); 4763 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN); 4764 } else { 4765 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4766 } 4767 DBUF_VERIFY(db); 4768 4769 if (db->db_blkid == DMU_SPILL_BLKID) { 4770 mutex_enter(&dn->dn_mtx); 4771 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4772 /* 4773 * In the previous transaction group, the bonus buffer 4774 * was entirely used to store the attributes for the 4775 * dnode which overrode the dn_spill field. However, 4776 * when adding more attributes to the file a spill 4777 * block was required to hold the extra attributes. 4778 * 4779 * Make sure to clear the garbage left in the dn_spill 4780 * field from the previous attributes in the bonus 4781 * buffer. Otherwise, after writing out the spill 4782 * block to the new allocated dva, it will free 4783 * the old block pointed to by the invalid dn_spill. 4784 */ 4785 db->db_blkptr = NULL; 4786 } 4787 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4788 mutex_exit(&dn->dn_mtx); 4789 } 4790 4791 /* 4792 * If this is a bonus buffer, simply copy the bonus data into the 4793 * dnode. It will be written out when the dnode is synced (and it 4794 * will be synced, since it must have been dirty for dbuf_sync to 4795 * be called). 4796 */ 4797 if (db->db_blkid == DMU_BONUS_BLKID) { 4798 ASSERT(dr->dr_dbuf == db); 4799 dbuf_sync_bonus(dr, tx); 4800 return; 4801 } 4802 4803 os = dn->dn_objset; 4804 4805 /* 4806 * This function may have dropped the db_mtx lock allowing a dmu_sync 4807 * operation to sneak in. As a result, we need to ensure that we 4808 * don't check the dr_override_state until we have returned from 4809 * dbuf_check_blkptr. 4810 */ 4811 dbuf_check_blkptr(dn, db); 4812 4813 /* 4814 * If this buffer is in the middle of an immediate write, wait for the 4815 * synchronous IO to complete. 4816 * 4817 * This is also valid even with Direct I/O writes setting a dirty 4818 * records override state into DR_IN_DMU_SYNC, because all 4819 * Direct I/O writes happen in open-context. 4820 */ 4821 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4822 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4823 cv_wait(&db->db_changed, &db->db_mtx); 4824 } 4825 4826 /* 4827 * If this is a dnode block, ensure it is appropriately encrypted 4828 * or decrypted, depending on what we are writing to it this txg. 4829 */ 4830 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4831 dbuf_prepare_encrypted_dnode_leaf(dr); 4832 4833 if (*datap != NULL && *datap == db->db_buf && 4834 dn->dn_object != DMU_META_DNODE_OBJECT && 4835 zfs_refcount_count(&db->db_holds) > 1) { 4836 /* 4837 * If this buffer is currently "in use" (i.e., there 4838 * are active holds and db_data still references it), 4839 * then make a copy before we start the write so that 4840 * any modifications from the open txg will not leak 4841 * into this write. 4842 * 4843 * NOTE: this copy does not need to be made for 4844 * objects only modified in the syncing context (e.g. 4845 * DNONE_DNODE blocks). 4846 */ 4847 int psize = arc_buf_size(*datap); 4848 int lsize = arc_buf_lsize(*datap); 4849 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4850 enum zio_compress compress_type = arc_get_compression(*datap); 4851 uint8_t complevel = arc_get_complevel(*datap); 4852 4853 if (arc_is_encrypted(*datap)) { 4854 boolean_t byteorder; 4855 uint8_t salt[ZIO_DATA_SALT_LEN]; 4856 uint8_t iv[ZIO_DATA_IV_LEN]; 4857 uint8_t mac[ZIO_DATA_MAC_LEN]; 4858 4859 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4860 *datap = arc_alloc_raw_buf(os->os_spa, db, 4861 dmu_objset_id(os), byteorder, salt, iv, mac, 4862 dn->dn_type, psize, lsize, compress_type, 4863 complevel); 4864 } else if (compress_type != ZIO_COMPRESS_OFF) { 4865 ASSERT3U(type, ==, ARC_BUFC_DATA); 4866 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4867 psize, lsize, compress_type, complevel); 4868 } else { 4869 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4870 } 4871 memcpy((*datap)->b_data, db->db.db_data, psize); 4872 } 4873 db->db_data_pending = dr; 4874 4875 mutex_exit(&db->db_mtx); 4876 4877 dbuf_write(dr, *datap, tx); 4878 4879 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4880 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4881 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4882 } else { 4883 zio_nowait(dr->dr_zio); 4884 } 4885 } 4886 4887 /* 4888 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4889 * called recursively from dbuf_sync_indirect(). 4890 */ 4891 void 4892 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4893 { 4894 dbuf_dirty_record_t *dr; 4895 4896 while ((dr = list_head(list))) { 4897 if (dr->dr_zio != NULL) { 4898 /* 4899 * If we find an already initialized zio then we 4900 * are processing the meta-dnode, and we have finished. 4901 * The dbufs for all dnodes are put back on the list 4902 * during processing, so that we can zio_wait() 4903 * these IOs after initiating all child IOs. 4904 */ 4905 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4906 DMU_META_DNODE_OBJECT); 4907 break; 4908 } 4909 list_remove(list, dr); 4910 if (dr->dr_dbuf == NULL) { 4911 dbuf_sync_lightweight(dr, tx); 4912 } else { 4913 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4914 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4915 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4916 } 4917 if (dr->dr_dbuf->db_level > 0) 4918 dbuf_sync_indirect(dr, tx); 4919 else 4920 dbuf_sync_leaf(dr, tx); 4921 } 4922 } 4923 } 4924 4925 static void 4926 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4927 { 4928 (void) buf; 4929 dmu_buf_impl_t *db = vdb; 4930 dnode_t *dn; 4931 blkptr_t *bp = zio->io_bp; 4932 blkptr_t *bp_orig = &zio->io_bp_orig; 4933 spa_t *spa = zio->io_spa; 4934 int64_t delta; 4935 uint64_t fill = 0; 4936 int i; 4937 4938 ASSERT3P(db->db_blkptr, !=, NULL); 4939 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4940 4941 DB_DNODE_ENTER(db); 4942 dn = DB_DNODE(db); 4943 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4944 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4945 zio->io_prev_space_delta = delta; 4946 4947 if (BP_GET_BIRTH(bp) != 0) { 4948 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4949 BP_GET_TYPE(bp) == dn->dn_type) || 4950 (db->db_blkid == DMU_SPILL_BLKID && 4951 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4952 BP_IS_EMBEDDED(bp)); 4953 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4954 } 4955 4956 mutex_enter(&db->db_mtx); 4957 4958 #ifdef ZFS_DEBUG 4959 if (db->db_blkid == DMU_SPILL_BLKID) { 4960 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4961 ASSERT(!(BP_IS_HOLE(bp)) && 4962 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4963 } 4964 #endif 4965 4966 if (db->db_level == 0) { 4967 mutex_enter(&dn->dn_mtx); 4968 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4969 db->db_blkid != DMU_SPILL_BLKID) { 4970 ASSERT0(db->db_objset->os_raw_receive); 4971 dn->dn_phys->dn_maxblkid = db->db_blkid; 4972 } 4973 mutex_exit(&dn->dn_mtx); 4974 4975 if (dn->dn_type == DMU_OT_DNODE) { 4976 i = 0; 4977 while (i < db->db.db_size) { 4978 dnode_phys_t *dnp = 4979 (void *)(((char *)db->db.db_data) + i); 4980 4981 i += DNODE_MIN_SIZE; 4982 if (dnp->dn_type != DMU_OT_NONE) { 4983 fill++; 4984 for (int j = 0; j < dnp->dn_nblkptr; 4985 j++) { 4986 (void) zfs_blkptr_verify(spa, 4987 &dnp->dn_blkptr[j], 4988 BLK_CONFIG_SKIP, 4989 BLK_VERIFY_HALT); 4990 } 4991 if (dnp->dn_flags & 4992 DNODE_FLAG_SPILL_BLKPTR) { 4993 (void) zfs_blkptr_verify(spa, 4994 DN_SPILL_BLKPTR(dnp), 4995 BLK_CONFIG_SKIP, 4996 BLK_VERIFY_HALT); 4997 } 4998 i += dnp->dn_extra_slots * 4999 DNODE_MIN_SIZE; 5000 } 5001 } 5002 } else { 5003 if (BP_IS_HOLE(bp)) { 5004 fill = 0; 5005 } else { 5006 fill = 1; 5007 } 5008 } 5009 } else { 5010 blkptr_t *ibp = db->db.db_data; 5011 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 5012 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 5013 if (BP_IS_HOLE(ibp)) 5014 continue; 5015 (void) zfs_blkptr_verify(spa, ibp, 5016 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 5017 fill += BP_GET_FILL(ibp); 5018 } 5019 } 5020 DB_DNODE_EXIT(db); 5021 5022 if (!BP_IS_EMBEDDED(bp)) 5023 BP_SET_FILL(bp, fill); 5024 5025 mutex_exit(&db->db_mtx); 5026 5027 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 5028 *db->db_blkptr = *bp; 5029 dmu_buf_unlock_parent(db, dblt, FTAG); 5030 } 5031 5032 /* 5033 * This function gets called just prior to running through the compression 5034 * stage of the zio pipeline. If we're an indirect block comprised of only 5035 * holes, then we want this indirect to be compressed away to a hole. In 5036 * order to do that we must zero out any information about the holes that 5037 * this indirect points to prior to before we try to compress it. 5038 */ 5039 static void 5040 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 5041 { 5042 (void) zio, (void) buf; 5043 dmu_buf_impl_t *db = vdb; 5044 blkptr_t *bp; 5045 unsigned int epbs, i; 5046 5047 ASSERT3U(db->db_level, >, 0); 5048 DB_DNODE_ENTER(db); 5049 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 5050 DB_DNODE_EXIT(db); 5051 ASSERT3U(epbs, <, 31); 5052 5053 /* Determine if all our children are holes */ 5054 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 5055 if (!BP_IS_HOLE(bp)) 5056 break; 5057 } 5058 5059 /* 5060 * If all the children are holes, then zero them all out so that 5061 * we may get compressed away. 5062 */ 5063 if (i == 1ULL << epbs) { 5064 /* 5065 * We only found holes. Grab the rwlock to prevent 5066 * anybody from reading the blocks we're about to 5067 * zero out. 5068 */ 5069 rw_enter(&db->db_rwlock, RW_WRITER); 5070 memset(db->db.db_data, 0, db->db.db_size); 5071 rw_exit(&db->db_rwlock); 5072 } 5073 } 5074 5075 static void 5076 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 5077 { 5078 (void) buf; 5079 dmu_buf_impl_t *db = vdb; 5080 blkptr_t *bp_orig = &zio->io_bp_orig; 5081 blkptr_t *bp = db->db_blkptr; 5082 objset_t *os = db->db_objset; 5083 dmu_tx_t *tx = os->os_synctx; 5084 5085 ASSERT0(zio->io_error); 5086 ASSERT(db->db_blkptr == bp); 5087 5088 /* 5089 * For nopwrites and rewrites we ensure that the bp matches our 5090 * original and bypass all the accounting. 5091 */ 5092 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 5093 ASSERT(BP_EQUAL(bp, bp_orig)); 5094 } else { 5095 dsl_dataset_t *ds = os->os_dsl_dataset; 5096 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 5097 dsl_dataset_block_born(ds, bp, tx); 5098 } 5099 5100 mutex_enter(&db->db_mtx); 5101 5102 DBUF_VERIFY(db); 5103 5104 dbuf_dirty_record_t *dr = db->db_data_pending; 5105 dnode_t *dn = dr->dr_dnode; 5106 ASSERT(!list_link_active(&dr->dr_dirty_node)); 5107 ASSERT(dr->dr_dbuf == db); 5108 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 5109 list_remove(&db->db_dirty_records, dr); 5110 5111 #ifdef ZFS_DEBUG 5112 if (db->db_blkid == DMU_SPILL_BLKID) { 5113 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 5114 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 5115 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 5116 } 5117 #endif 5118 5119 if (db->db_level == 0) { 5120 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 5121 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 5122 5123 /* no dr_data if this is a NO_FILL or Direct I/O */ 5124 if (dr->dt.dl.dr_data != NULL && 5125 dr->dt.dl.dr_data != db->db_buf) { 5126 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE); 5127 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE); 5128 arc_buf_destroy(dr->dt.dl.dr_data, db); 5129 } 5130 } else { 5131 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 5132 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 5133 if (!BP_IS_HOLE(db->db_blkptr)) { 5134 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 5135 SPA_BLKPTRSHIFT; 5136 ASSERT3U(db->db_blkid, <=, 5137 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 5138 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 5139 db->db.db_size); 5140 } 5141 mutex_destroy(&dr->dt.di.dr_mtx); 5142 list_destroy(&dr->dt.di.dr_children); 5143 } 5144 5145 cv_broadcast(&db->db_changed); 5146 ASSERT(db->db_dirtycnt > 0); 5147 db->db_dirtycnt -= 1; 5148 db->db_data_pending = NULL; 5149 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 5150 5151 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 5152 zio->io_txg); 5153 5154 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 5155 } 5156 5157 static void 5158 dbuf_write_nofill_ready(zio_t *zio) 5159 { 5160 dbuf_write_ready(zio, NULL, zio->io_private); 5161 } 5162 5163 static void 5164 dbuf_write_nofill_done(zio_t *zio) 5165 { 5166 dbuf_write_done(zio, NULL, zio->io_private); 5167 } 5168 5169 static void 5170 dbuf_write_override_ready(zio_t *zio) 5171 { 5172 dbuf_dirty_record_t *dr = zio->io_private; 5173 dmu_buf_impl_t *db = dr->dr_dbuf; 5174 5175 dbuf_write_ready(zio, NULL, db); 5176 } 5177 5178 static void 5179 dbuf_write_override_done(zio_t *zio) 5180 { 5181 dbuf_dirty_record_t *dr = zio->io_private; 5182 dmu_buf_impl_t *db = dr->dr_dbuf; 5183 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 5184 5185 mutex_enter(&db->db_mtx); 5186 if (!BP_EQUAL(zio->io_bp, obp)) { 5187 if (!BP_IS_HOLE(obp)) 5188 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 5189 arc_release(dr->dt.dl.dr_data, db); 5190 } 5191 mutex_exit(&db->db_mtx); 5192 5193 dbuf_write_done(zio, NULL, db); 5194 5195 if (zio->io_abd != NULL) 5196 abd_free(zio->io_abd); 5197 } 5198 5199 typedef struct dbuf_remap_impl_callback_arg { 5200 objset_t *drica_os; 5201 uint64_t drica_blk_birth; 5202 dmu_tx_t *drica_tx; 5203 } dbuf_remap_impl_callback_arg_t; 5204 5205 static void 5206 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 5207 void *arg) 5208 { 5209 dbuf_remap_impl_callback_arg_t *drica = arg; 5210 objset_t *os = drica->drica_os; 5211 spa_t *spa = dmu_objset_spa(os); 5212 dmu_tx_t *tx = drica->drica_tx; 5213 5214 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5215 5216 if (os == spa_meta_objset(spa)) { 5217 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5218 } else { 5219 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5220 size, drica->drica_blk_birth, tx); 5221 } 5222 } 5223 5224 static void 5225 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5226 { 5227 blkptr_t bp_copy = *bp; 5228 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5229 dbuf_remap_impl_callback_arg_t drica; 5230 5231 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5232 5233 drica.drica_os = dn->dn_objset; 5234 drica.drica_blk_birth = BP_GET_BIRTH(bp); 5235 drica.drica_tx = tx; 5236 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5237 &drica)) { 5238 /* 5239 * If the blkptr being remapped is tracked by a livelist, 5240 * then we need to make sure the livelist reflects the update. 5241 * First, cancel out the old blkptr by appending a 'FREE' 5242 * entry. Next, add an 'ALLOC' to track the new version. This 5243 * way we avoid trying to free an inaccurate blkptr at delete. 5244 * Note that embedded blkptrs are not tracked in livelists. 5245 */ 5246 if (dn->dn_objset != spa_meta_objset(spa)) { 5247 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5248 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5249 BP_GET_BIRTH(bp) > ds->ds_dir->dd_origin_txg) { 5250 ASSERT(!BP_IS_EMBEDDED(bp)); 5251 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5252 ASSERT(spa_feature_is_enabled(spa, 5253 SPA_FEATURE_LIVELIST)); 5254 bplist_append(&ds->ds_dir->dd_pending_frees, 5255 bp); 5256 bplist_append(&ds->ds_dir->dd_pending_allocs, 5257 &bp_copy); 5258 } 5259 } 5260 5261 /* 5262 * The db_rwlock prevents dbuf_read_impl() from 5263 * dereferencing the BP while we are changing it. To 5264 * avoid lock contention, only grab it when we are actually 5265 * changing the BP. 5266 */ 5267 if (rw != NULL) 5268 rw_enter(rw, RW_WRITER); 5269 *bp = bp_copy; 5270 if (rw != NULL) 5271 rw_exit(rw); 5272 } 5273 } 5274 5275 /* 5276 * Remap any existing BP's to concrete vdevs, if possible. 5277 */ 5278 static void 5279 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5280 { 5281 spa_t *spa = dmu_objset_spa(db->db_objset); 5282 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5283 5284 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5285 return; 5286 5287 if (db->db_level > 0) { 5288 blkptr_t *bp = db->db.db_data; 5289 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5290 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5291 } 5292 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5293 dnode_phys_t *dnp = db->db.db_data; 5294 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5295 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5296 i += dnp[i].dn_extra_slots + 1) { 5297 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5298 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5299 &dn->dn_dbuf->db_rwlock); 5300 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5301 tx); 5302 } 5303 } 5304 } 5305 } 5306 5307 5308 /* 5309 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5310 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5311 */ 5312 static void 5313 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5314 { 5315 dmu_buf_impl_t *db = dr->dr_dbuf; 5316 dnode_t *dn = dr->dr_dnode; 5317 objset_t *os; 5318 dmu_buf_impl_t *parent = db->db_parent; 5319 uint64_t txg = tx->tx_txg; 5320 zbookmark_phys_t zb; 5321 zio_prop_t zp; 5322 zio_t *pio; /* parent I/O */ 5323 int wp_flag = 0; 5324 5325 ASSERT(dmu_tx_is_syncing(tx)); 5326 5327 os = dn->dn_objset; 5328 5329 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5330 /* 5331 * Private object buffers are released here rather than in 5332 * dbuf_dirty() since they are only modified in the syncing 5333 * context and we don't want the overhead of making multiple 5334 * copies of the data. 5335 */ 5336 if (BP_IS_HOLE(db->db_blkptr)) 5337 arc_buf_thaw(data); 5338 else 5339 dbuf_release_bp(db); 5340 dbuf_remap(dn, db, tx); 5341 } 5342 5343 if (parent != dn->dn_dbuf) { 5344 /* Our parent is an indirect block. */ 5345 /* We have a dirty parent that has been scheduled for write. */ 5346 ASSERT(parent && parent->db_data_pending); 5347 /* Our parent's buffer is one level closer to the dnode. */ 5348 ASSERT(db->db_level == parent->db_level-1); 5349 /* 5350 * We're about to modify our parent's db_data by modifying 5351 * our block pointer, so the parent must be released. 5352 */ 5353 ASSERT(arc_released(parent->db_buf)); 5354 pio = parent->db_data_pending->dr_zio; 5355 } else { 5356 /* Our parent is the dnode itself. */ 5357 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5358 db->db_blkid != DMU_SPILL_BLKID) || 5359 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5360 if (db->db_blkid != DMU_SPILL_BLKID) 5361 ASSERT3P(db->db_blkptr, ==, 5362 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5363 pio = dn->dn_zio; 5364 } 5365 5366 ASSERT(db->db_level == 0 || data == db->db_buf); 5367 ASSERT3U(BP_GET_BIRTH(db->db_blkptr), <=, txg); 5368 ASSERT(pio); 5369 5370 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5371 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5372 db->db.db_object, db->db_level, db->db_blkid); 5373 5374 if (db->db_blkid == DMU_SPILL_BLKID) 5375 wp_flag = WP_SPILL; 5376 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5377 5378 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5379 5380 /* 5381 * Set rewrite properties for zfs_rewrite() operations. 5382 */ 5383 if (db->db_level == 0 && dr->dt.dl.dr_rewrite) { 5384 zp.zp_rewrite = B_TRUE; 5385 5386 /* 5387 * Mark physical rewrite feature for activation. 5388 * This will be activated automatically during dataset sync. 5389 */ 5390 dsl_dataset_t *ds = os->os_dsl_dataset; 5391 if (!dsl_dataset_feature_is_active(ds, 5392 SPA_FEATURE_PHYSICAL_REWRITE)) { 5393 ds->ds_feature_activation[ 5394 SPA_FEATURE_PHYSICAL_REWRITE] = (void *)B_TRUE; 5395 } 5396 } 5397 5398 /* 5399 * We copy the blkptr now (rather than when we instantiate the dirty 5400 * record), because its value can change between open context and 5401 * syncing context. We do not need to hold dn_struct_rwlock to read 5402 * db_blkptr because we are in syncing context. 5403 */ 5404 dr->dr_bp_copy = *db->db_blkptr; 5405 5406 if (db->db_level == 0 && 5407 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5408 /* 5409 * The BP for this block has been provided by open context 5410 * (by dmu_sync(), dmu_write_direct(), 5411 * or dmu_buf_write_embedded()). 5412 */ 5413 abd_t *contents = (data != NULL) ? 5414 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5415 5416 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5417 contents, db->db.db_size, db->db.db_size, &zp, 5418 dbuf_write_override_ready, NULL, 5419 dbuf_write_override_done, 5420 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5421 mutex_enter(&db->db_mtx); 5422 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5423 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5424 dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies, 5425 dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite); 5426 mutex_exit(&db->db_mtx); 5427 } else if (data == NULL) { 5428 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5429 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5430 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5431 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5432 dbuf_write_nofill_ready, NULL, 5433 dbuf_write_nofill_done, db, 5434 ZIO_PRIORITY_ASYNC_WRITE, 5435 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5436 } else { 5437 ASSERT(arc_released(data)); 5438 5439 /* 5440 * For indirect blocks, we want to setup the children 5441 * ready callback so that we can properly handle an indirect 5442 * block that only contains holes. 5443 */ 5444 arc_write_done_func_t *children_ready_cb = NULL; 5445 if (db->db_level != 0) 5446 children_ready_cb = dbuf_write_children_ready; 5447 5448 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5449 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5450 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready, 5451 children_ready_cb, dbuf_write_done, db, 5452 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5453 } 5454 } 5455 5456 EXPORT_SYMBOL(dbuf_find); 5457 EXPORT_SYMBOL(dbuf_is_metadata); 5458 EXPORT_SYMBOL(dbuf_destroy); 5459 EXPORT_SYMBOL(dbuf_whichblock); 5460 EXPORT_SYMBOL(dbuf_read); 5461 EXPORT_SYMBOL(dbuf_unoverride); 5462 EXPORT_SYMBOL(dbuf_free_range); 5463 EXPORT_SYMBOL(dbuf_new_size); 5464 EXPORT_SYMBOL(dbuf_release_bp); 5465 EXPORT_SYMBOL(dbuf_dirty); 5466 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5467 EXPORT_SYMBOL(dmu_buf_will_dirty); 5468 EXPORT_SYMBOL(dmu_buf_will_rewrite); 5469 EXPORT_SYMBOL(dmu_buf_is_dirty); 5470 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio); 5471 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5472 EXPORT_SYMBOL(dmu_buf_will_fill); 5473 EXPORT_SYMBOL(dmu_buf_fill_done); 5474 EXPORT_SYMBOL(dmu_buf_rele); 5475 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5476 EXPORT_SYMBOL(dbuf_prefetch); 5477 EXPORT_SYMBOL(dbuf_hold_impl); 5478 EXPORT_SYMBOL(dbuf_hold); 5479 EXPORT_SYMBOL(dbuf_hold_level); 5480 EXPORT_SYMBOL(dbuf_create_bonus); 5481 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5482 EXPORT_SYMBOL(dbuf_rm_spill); 5483 EXPORT_SYMBOL(dbuf_add_ref); 5484 EXPORT_SYMBOL(dbuf_rele); 5485 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5486 EXPORT_SYMBOL(dbuf_refcount); 5487 EXPORT_SYMBOL(dbuf_sync_list); 5488 EXPORT_SYMBOL(dmu_buf_set_user); 5489 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5490 EXPORT_SYMBOL(dmu_buf_get_user); 5491 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5492 5493 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5494 "Maximum size in bytes of the dbuf cache."); 5495 5496 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5497 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5498 5499 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5500 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5501 5502 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5503 "Maximum size in bytes of dbuf metadata cache."); 5504 5505 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5506 "Set size of dbuf cache to log2 fraction of arc size."); 5507 5508 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5509 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5510 5511 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5512 "Set size of dbuf cache mutex array as log2 shift."); 5513