xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision b197d4b893974c9eb4d7b38704c6d5c486235d6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2019, Klara Inc.
28  * Copyright (c) 2019, Allan Jude
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/arc.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dbuf.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/spa.h>
42 #include <sys/zio.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/sa.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
51 #include <sys/abd.h>
52 #include <sys/vdev.h>
53 #include <cityhash.h>
54 #include <sys/spa_impl.h>
55 #include <sys/wmsum.h>
56 #include <sys/vdev_impl.h>
57 
58 static kstat_t *dbuf_ksp;
59 
60 typedef struct dbuf_stats {
61 	/*
62 	 * Various statistics about the size of the dbuf cache.
63 	 */
64 	kstat_named_t cache_count;
65 	kstat_named_t cache_size_bytes;
66 	kstat_named_t cache_size_bytes_max;
67 	/*
68 	 * Statistics regarding the bounds on the dbuf cache size.
69 	 */
70 	kstat_named_t cache_target_bytes;
71 	kstat_named_t cache_lowater_bytes;
72 	kstat_named_t cache_hiwater_bytes;
73 	/*
74 	 * Total number of dbuf cache evictions that have occurred.
75 	 */
76 	kstat_named_t cache_total_evicts;
77 	/*
78 	 * The distribution of dbuf levels in the dbuf cache and
79 	 * the total size of all dbufs at each level.
80 	 */
81 	kstat_named_t cache_levels[DN_MAX_LEVELS];
82 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
83 	/*
84 	 * Statistics about the dbuf hash table.
85 	 */
86 	kstat_named_t hash_hits;
87 	kstat_named_t hash_misses;
88 	kstat_named_t hash_collisions;
89 	kstat_named_t hash_elements;
90 	kstat_named_t hash_elements_max;
91 	/*
92 	 * Number of sublists containing more than one dbuf in the dbuf
93 	 * hash table. Keep track of the longest hash chain.
94 	 */
95 	kstat_named_t hash_chains;
96 	kstat_named_t hash_chain_max;
97 	/*
98 	 * Number of times a dbuf_create() discovers that a dbuf was
99 	 * already created and in the dbuf hash table.
100 	 */
101 	kstat_named_t hash_insert_race;
102 	/*
103 	 * Statistics about the size of the metadata dbuf cache.
104 	 */
105 	kstat_named_t metadata_cache_count;
106 	kstat_named_t metadata_cache_size_bytes;
107 	kstat_named_t metadata_cache_size_bytes_max;
108 	/*
109 	 * For diagnostic purposes, this is incremented whenever we can't add
110 	 * something to the metadata cache because it's full, and instead put
111 	 * the data in the regular dbuf cache.
112 	 */
113 	kstat_named_t metadata_cache_overflow;
114 } dbuf_stats_t;
115 
116 dbuf_stats_t dbuf_stats = {
117 	{ "cache_count",			KSTAT_DATA_UINT64 },
118 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
119 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
120 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
121 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
122 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
123 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
124 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
125 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
126 	{ "hash_hits",				KSTAT_DATA_UINT64 },
127 	{ "hash_misses",			KSTAT_DATA_UINT64 },
128 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
129 	{ "hash_elements",			KSTAT_DATA_UINT64 },
130 	{ "hash_elements_max",			KSTAT_DATA_UINT64 },
131 	{ "hash_chains",			KSTAT_DATA_UINT64 },
132 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
133 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
134 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
135 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
136 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
137 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
138 };
139 
140 struct {
141 	wmsum_t cache_count;
142 	wmsum_t cache_total_evicts;
143 	wmsum_t cache_levels[DN_MAX_LEVELS];
144 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
145 	wmsum_t hash_hits;
146 	wmsum_t hash_misses;
147 	wmsum_t hash_collisions;
148 	wmsum_t hash_chains;
149 	wmsum_t hash_insert_race;
150 	wmsum_t metadata_cache_count;
151 	wmsum_t metadata_cache_overflow;
152 } dbuf_sums;
153 
154 #define	DBUF_STAT_INCR(stat, val)	\
155 	wmsum_add(&dbuf_sums.stat, val);
156 #define	DBUF_STAT_DECR(stat, val)	\
157 	DBUF_STAT_INCR(stat, -(val));
158 #define	DBUF_STAT_BUMP(stat)		\
159 	DBUF_STAT_INCR(stat, 1);
160 #define	DBUF_STAT_BUMPDOWN(stat)	\
161 	DBUF_STAT_INCR(stat, -1);
162 #define	DBUF_STAT_MAX(stat, v) {					\
163 	uint64_t _m;							\
164 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
165 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
166 		continue;						\
167 }
168 
169 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
170 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
171 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
172 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
173 
174 /*
175  * Global data structures and functions for the dbuf cache.
176  */
177 static kmem_cache_t *dbuf_kmem_cache;
178 static taskq_t *dbu_evict_taskq;
179 
180 static kthread_t *dbuf_cache_evict_thread;
181 static kmutex_t dbuf_evict_lock;
182 static kcondvar_t dbuf_evict_cv;
183 static boolean_t dbuf_evict_thread_exit;
184 
185 /*
186  * There are two dbuf caches; each dbuf can only be in one of them at a time.
187  *
188  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
189  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
190  *    that represent the metadata that describes filesystems/snapshots/
191  *    bookmarks/properties/etc. We only evict from this cache when we export a
192  *    pool, to short-circuit as much I/O as possible for all administrative
193  *    commands that need the metadata. There is no eviction policy for this
194  *    cache, because we try to only include types in it which would occupy a
195  *    very small amount of space per object but create a large impact on the
196  *    performance of these commands. Instead, after it reaches a maximum size
197  *    (which should only happen on very small memory systems with a very large
198  *    number of filesystem objects), we stop taking new dbufs into the
199  *    metadata cache, instead putting them in the normal dbuf cache.
200  *
201  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
202  *    are not currently held but have been recently released. These dbufs
203  *    are not eligible for arc eviction until they are aged out of the cache.
204  *    Dbufs that are aged out of the cache will be immediately destroyed and
205  *    become eligible for arc eviction.
206  *
207  * Dbufs are added to these caches once the last hold is released. If a dbuf is
208  * later accessed and still exists in the dbuf cache, then it will be removed
209  * from the cache and later re-added to the head of the cache.
210  *
211  * If a given dbuf meets the requirements for the metadata cache, it will go
212  * there, otherwise it will be considered for the generic LRU dbuf cache. The
213  * caches and the refcounts tracking their sizes are stored in an array indexed
214  * by those caches' matching enum values (from dbuf_cached_state_t).
215  */
216 typedef struct dbuf_cache {
217 	multilist_t cache;
218 	zfs_refcount_t size ____cacheline_aligned;
219 } dbuf_cache_t;
220 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
221 
222 /* Size limits for the caches */
223 static unsigned long dbuf_cache_max_bytes = ULONG_MAX;
224 static unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX;
225 
226 /* Set the default sizes of the caches to log2 fraction of arc size */
227 static int dbuf_cache_shift = 5;
228 static int dbuf_metadata_cache_shift = 6;
229 
230 static unsigned long dbuf_cache_target_bytes(void);
231 static unsigned long dbuf_metadata_cache_target_bytes(void);
232 
233 /*
234  * The LRU dbuf cache uses a three-stage eviction policy:
235  *	- A low water marker designates when the dbuf eviction thread
236  *	should stop evicting from the dbuf cache.
237  *	- When we reach the maximum size (aka mid water mark), we
238  *	signal the eviction thread to run.
239  *	- The high water mark indicates when the eviction thread
240  *	is unable to keep up with the incoming load and eviction must
241  *	happen in the context of the calling thread.
242  *
243  * The dbuf cache:
244  *                                                 (max size)
245  *                                      low water   mid water   hi water
246  * +----------------------------------------+----------+----------+
247  * |                                        |          |          |
248  * |                                        |          |          |
249  * |                                        |          |          |
250  * |                                        |          |          |
251  * +----------------------------------------+----------+----------+
252  *                                        stop        signal     evict
253  *                                      evicting     eviction   directly
254  *                                                    thread
255  *
256  * The high and low water marks indicate the operating range for the eviction
257  * thread. The low water mark is, by default, 90% of the total size of the
258  * cache and the high water mark is at 110% (both of these percentages can be
259  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
260  * respectively). The eviction thread will try to ensure that the cache remains
261  * within this range by waking up every second and checking if the cache is
262  * above the low water mark. The thread can also be woken up by callers adding
263  * elements into the cache if the cache is larger than the mid water (i.e max
264  * cache size). Once the eviction thread is woken up and eviction is required,
265  * it will continue evicting buffers until it's able to reduce the cache size
266  * to the low water mark. If the cache size continues to grow and hits the high
267  * water mark, then callers adding elements to the cache will begin to evict
268  * directly from the cache until the cache is no longer above the high water
269  * mark.
270  */
271 
272 /*
273  * The percentage above and below the maximum cache size.
274  */
275 static uint_t dbuf_cache_hiwater_pct = 10;
276 static uint_t dbuf_cache_lowater_pct = 10;
277 
278 static int
279 dbuf_cons(void *vdb, void *unused, int kmflag)
280 {
281 	(void) unused, (void) kmflag;
282 	dmu_buf_impl_t *db = vdb;
283 	memset(db, 0, sizeof (dmu_buf_impl_t));
284 
285 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
286 	rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
287 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
288 	multilist_link_init(&db->db_cache_link);
289 	zfs_refcount_create(&db->db_holds);
290 
291 	return (0);
292 }
293 
294 static void
295 dbuf_dest(void *vdb, void *unused)
296 {
297 	(void) unused;
298 	dmu_buf_impl_t *db = vdb;
299 	mutex_destroy(&db->db_mtx);
300 	rw_destroy(&db->db_rwlock);
301 	cv_destroy(&db->db_changed);
302 	ASSERT(!multilist_link_active(&db->db_cache_link));
303 	zfs_refcount_destroy(&db->db_holds);
304 }
305 
306 /*
307  * dbuf hash table routines
308  */
309 static dbuf_hash_table_t dbuf_hash_table;
310 
311 /*
312  * We use Cityhash for this. It's fast, and has good hash properties without
313  * requiring any large static buffers.
314  */
315 static uint64_t
316 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
317 {
318 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
319 }
320 
321 #define	DTRACE_SET_STATE(db, why) \
322 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
323 	    const char *, why)
324 
325 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
326 	((dbuf)->db.db_object == (obj) &&		\
327 	(dbuf)->db_objset == (os) &&			\
328 	(dbuf)->db_level == (level) &&			\
329 	(dbuf)->db_blkid == (blkid))
330 
331 dmu_buf_impl_t *
332 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
333 {
334 	dbuf_hash_table_t *h = &dbuf_hash_table;
335 	uint64_t hv;
336 	uint64_t idx;
337 	dmu_buf_impl_t *db;
338 
339 	hv = dbuf_hash(os, obj, level, blkid);
340 	idx = hv & h->hash_table_mask;
341 
342 	rw_enter(DBUF_HASH_RWLOCK(h, idx), RW_READER);
343 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
344 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
345 			mutex_enter(&db->db_mtx);
346 			if (db->db_state != DB_EVICTING) {
347 				rw_exit(DBUF_HASH_RWLOCK(h, idx));
348 				return (db);
349 			}
350 			mutex_exit(&db->db_mtx);
351 		}
352 	}
353 	rw_exit(DBUF_HASH_RWLOCK(h, idx));
354 	return (NULL);
355 }
356 
357 static dmu_buf_impl_t *
358 dbuf_find_bonus(objset_t *os, uint64_t object)
359 {
360 	dnode_t *dn;
361 	dmu_buf_impl_t *db = NULL;
362 
363 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
364 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 		if (dn->dn_bonus != NULL) {
366 			db = dn->dn_bonus;
367 			mutex_enter(&db->db_mtx);
368 		}
369 		rw_exit(&dn->dn_struct_rwlock);
370 		dnode_rele(dn, FTAG);
371 	}
372 	return (db);
373 }
374 
375 /*
376  * Insert an entry into the hash table.  If there is already an element
377  * equal to elem in the hash table, then the already existing element
378  * will be returned and the new element will not be inserted.
379  * Otherwise returns NULL.
380  */
381 static dmu_buf_impl_t *
382 dbuf_hash_insert(dmu_buf_impl_t *db)
383 {
384 	dbuf_hash_table_t *h = &dbuf_hash_table;
385 	objset_t *os = db->db_objset;
386 	uint64_t obj = db->db.db_object;
387 	int level = db->db_level;
388 	uint64_t blkid, hv, idx;
389 	dmu_buf_impl_t *dbf;
390 	uint32_t i;
391 
392 	blkid = db->db_blkid;
393 	hv = dbuf_hash(os, obj, level, blkid);
394 	idx = hv & h->hash_table_mask;
395 
396 	rw_enter(DBUF_HASH_RWLOCK(h, idx), RW_WRITER);
397 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
398 	    dbf = dbf->db_hash_next, i++) {
399 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
400 			mutex_enter(&dbf->db_mtx);
401 			if (dbf->db_state != DB_EVICTING) {
402 				rw_exit(DBUF_HASH_RWLOCK(h, idx));
403 				return (dbf);
404 			}
405 			mutex_exit(&dbf->db_mtx);
406 		}
407 	}
408 
409 	if (i > 0) {
410 		DBUF_STAT_BUMP(hash_collisions);
411 		if (i == 1)
412 			DBUF_STAT_BUMP(hash_chains);
413 
414 		DBUF_STAT_MAX(hash_chain_max, i);
415 	}
416 
417 	mutex_enter(&db->db_mtx);
418 	db->db_hash_next = h->hash_table[idx];
419 	h->hash_table[idx] = db;
420 	rw_exit(DBUF_HASH_RWLOCK(h, idx));
421 	uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
422 	DBUF_STAT_MAX(hash_elements_max, he);
423 
424 	return (NULL);
425 }
426 
427 /*
428  * This returns whether this dbuf should be stored in the metadata cache, which
429  * is based on whether it's from one of the dnode types that store data related
430  * to traversing dataset hierarchies.
431  */
432 static boolean_t
433 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
434 {
435 	DB_DNODE_ENTER(db);
436 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
437 	DB_DNODE_EXIT(db);
438 
439 	/* Check if this dbuf is one of the types we care about */
440 	if (DMU_OT_IS_METADATA_CACHED(type)) {
441 		/* If we hit this, then we set something up wrong in dmu_ot */
442 		ASSERT(DMU_OT_IS_METADATA(type));
443 
444 		/*
445 		 * Sanity check for small-memory systems: don't allocate too
446 		 * much memory for this purpose.
447 		 */
448 		if (zfs_refcount_count(
449 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
450 		    dbuf_metadata_cache_target_bytes()) {
451 			DBUF_STAT_BUMP(metadata_cache_overflow);
452 			return (B_FALSE);
453 		}
454 
455 		return (B_TRUE);
456 	}
457 
458 	return (B_FALSE);
459 }
460 
461 /*
462  * Remove an entry from the hash table.  It must be in the EVICTING state.
463  */
464 static void
465 dbuf_hash_remove(dmu_buf_impl_t *db)
466 {
467 	dbuf_hash_table_t *h = &dbuf_hash_table;
468 	uint64_t hv, idx;
469 	dmu_buf_impl_t *dbf, **dbp;
470 
471 	hv = dbuf_hash(db->db_objset, db->db.db_object,
472 	    db->db_level, db->db_blkid);
473 	idx = hv & h->hash_table_mask;
474 
475 	/*
476 	 * We mustn't hold db_mtx to maintain lock ordering:
477 	 * DBUF_HASH_RWLOCK > db_mtx.
478 	 */
479 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
480 	ASSERT(db->db_state == DB_EVICTING);
481 	ASSERT(!MUTEX_HELD(&db->db_mtx));
482 
483 	rw_enter(DBUF_HASH_RWLOCK(h, idx), RW_WRITER);
484 	dbp = &h->hash_table[idx];
485 	while ((dbf = *dbp) != db) {
486 		dbp = &dbf->db_hash_next;
487 		ASSERT(dbf != NULL);
488 	}
489 	*dbp = db->db_hash_next;
490 	db->db_hash_next = NULL;
491 	if (h->hash_table[idx] &&
492 	    h->hash_table[idx]->db_hash_next == NULL)
493 		DBUF_STAT_BUMPDOWN(hash_chains);
494 	rw_exit(DBUF_HASH_RWLOCK(h, idx));
495 	atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
496 }
497 
498 typedef enum {
499 	DBVU_EVICTING,
500 	DBVU_NOT_EVICTING
501 } dbvu_verify_type_t;
502 
503 static void
504 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
505 {
506 #ifdef ZFS_DEBUG
507 	int64_t holds;
508 
509 	if (db->db_user == NULL)
510 		return;
511 
512 	/* Only data blocks support the attachment of user data. */
513 	ASSERT(db->db_level == 0);
514 
515 	/* Clients must resolve a dbuf before attaching user data. */
516 	ASSERT(db->db.db_data != NULL);
517 	ASSERT3U(db->db_state, ==, DB_CACHED);
518 
519 	holds = zfs_refcount_count(&db->db_holds);
520 	if (verify_type == DBVU_EVICTING) {
521 		/*
522 		 * Immediate eviction occurs when holds == dirtycnt.
523 		 * For normal eviction buffers, holds is zero on
524 		 * eviction, except when dbuf_fix_old_data() calls
525 		 * dbuf_clear_data().  However, the hold count can grow
526 		 * during eviction even though db_mtx is held (see
527 		 * dmu_bonus_hold() for an example), so we can only
528 		 * test the generic invariant that holds >= dirtycnt.
529 		 */
530 		ASSERT3U(holds, >=, db->db_dirtycnt);
531 	} else {
532 		if (db->db_user_immediate_evict == TRUE)
533 			ASSERT3U(holds, >=, db->db_dirtycnt);
534 		else
535 			ASSERT3U(holds, >, 0);
536 	}
537 #endif
538 }
539 
540 static void
541 dbuf_evict_user(dmu_buf_impl_t *db)
542 {
543 	dmu_buf_user_t *dbu = db->db_user;
544 
545 	ASSERT(MUTEX_HELD(&db->db_mtx));
546 
547 	if (dbu == NULL)
548 		return;
549 
550 	dbuf_verify_user(db, DBVU_EVICTING);
551 	db->db_user = NULL;
552 
553 #ifdef ZFS_DEBUG
554 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 		*dbu->dbu_clear_on_evict_dbufp = NULL;
556 #endif
557 
558 	/*
559 	 * There are two eviction callbacks - one that we call synchronously
560 	 * and one that we invoke via a taskq.  The async one is useful for
561 	 * avoiding lock order reversals and limiting stack depth.
562 	 *
563 	 * Note that if we have a sync callback but no async callback,
564 	 * it's likely that the sync callback will free the structure
565 	 * containing the dbu.  In that case we need to take care to not
566 	 * dereference dbu after calling the sync evict func.
567 	 */
568 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
569 
570 	if (dbu->dbu_evict_func_sync != NULL)
571 		dbu->dbu_evict_func_sync(dbu);
572 
573 	if (has_async) {
574 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 		    dbu, 0, &dbu->dbu_tqent);
576 	}
577 }
578 
579 boolean_t
580 dbuf_is_metadata(dmu_buf_impl_t *db)
581 {
582 	/*
583 	 * Consider indirect blocks and spill blocks to be meta data.
584 	 */
585 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
586 		return (B_TRUE);
587 	} else {
588 		boolean_t is_metadata;
589 
590 		DB_DNODE_ENTER(db);
591 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
592 		DB_DNODE_EXIT(db);
593 
594 		return (is_metadata);
595 	}
596 }
597 
598 /*
599  * We want to exclude buffers that are on a special allocation class from
600  * L2ARC.
601  */
602 boolean_t
603 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
604 {
605 	vdev_t *vd = NULL;
606 	zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
607 	blkptr_t *bp = db->db_blkptr;
608 
609 	if (bp != NULL && !BP_IS_HOLE(bp)) {
610 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
611 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
612 
613 		if (vdev < rvd->vdev_children)
614 			vd = rvd->vdev_child[vdev];
615 
616 		if (cache == ZFS_CACHE_ALL ||
617 		    (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
618 			if (vd == NULL)
619 				return (B_TRUE);
620 
621 			if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
622 			    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
623 			    l2arc_exclude_special == 0)
624 				return (B_TRUE);
625 		}
626 	}
627 
628 	return (B_FALSE);
629 }
630 
631 static inline boolean_t
632 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
633 {
634 	vdev_t *vd = NULL;
635 	zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
636 
637 	if (bp != NULL && !BP_IS_HOLE(bp)) {
638 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
639 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
640 
641 		if (vdev < rvd->vdev_children)
642 			vd = rvd->vdev_child[vdev];
643 
644 		if (cache == ZFS_CACHE_ALL || ((level > 0 ||
645 		    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
646 		    cache == ZFS_CACHE_METADATA)) {
647 			if (vd == NULL)
648 				return (B_TRUE);
649 
650 			if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
651 			    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
652 			    l2arc_exclude_special == 0)
653 				return (B_TRUE);
654 		}
655 	}
656 
657 	return (B_FALSE);
658 }
659 
660 
661 /*
662  * This function *must* return indices evenly distributed between all
663  * sublists of the multilist. This is needed due to how the dbuf eviction
664  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
665  * distributed between all sublists and uses this assumption when
666  * deciding which sublist to evict from and how much to evict from it.
667  */
668 static unsigned int
669 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
670 {
671 	dmu_buf_impl_t *db = obj;
672 
673 	/*
674 	 * The assumption here, is the hash value for a given
675 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
676 	 * (i.e. it's objset, object, level and blkid fields don't change).
677 	 * Thus, we don't need to store the dbuf's sublist index
678 	 * on insertion, as this index can be recalculated on removal.
679 	 *
680 	 * Also, the low order bits of the hash value are thought to be
681 	 * distributed evenly. Otherwise, in the case that the multilist
682 	 * has a power of two number of sublists, each sublists' usage
683 	 * would not be evenly distributed. In this context full 64bit
684 	 * division would be a waste of time, so limit it to 32 bits.
685 	 */
686 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
687 	    db->db_level, db->db_blkid) %
688 	    multilist_get_num_sublists(ml));
689 }
690 
691 /*
692  * The target size of the dbuf cache can grow with the ARC target,
693  * unless limited by the tunable dbuf_cache_max_bytes.
694  */
695 static inline unsigned long
696 dbuf_cache_target_bytes(void)
697 {
698 	return (MIN(dbuf_cache_max_bytes,
699 	    arc_target_bytes() >> dbuf_cache_shift));
700 }
701 
702 /*
703  * The target size of the dbuf metadata cache can grow with the ARC target,
704  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
705  */
706 static inline unsigned long
707 dbuf_metadata_cache_target_bytes(void)
708 {
709 	return (MIN(dbuf_metadata_cache_max_bytes,
710 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
711 }
712 
713 static inline uint64_t
714 dbuf_cache_hiwater_bytes(void)
715 {
716 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
717 	return (dbuf_cache_target +
718 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
719 }
720 
721 static inline uint64_t
722 dbuf_cache_lowater_bytes(void)
723 {
724 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
725 	return (dbuf_cache_target -
726 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
727 }
728 
729 static inline boolean_t
730 dbuf_cache_above_lowater(void)
731 {
732 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
733 	    dbuf_cache_lowater_bytes());
734 }
735 
736 /*
737  * Evict the oldest eligible dbuf from the dbuf cache.
738  */
739 static void
740 dbuf_evict_one(void)
741 {
742 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
743 	multilist_sublist_t *mls = multilist_sublist_lock(
744 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
745 
746 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
747 
748 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
749 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
750 		db = multilist_sublist_prev(mls, db);
751 	}
752 
753 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
754 	    multilist_sublist_t *, mls);
755 
756 	if (db != NULL) {
757 		multilist_sublist_remove(mls, db);
758 		multilist_sublist_unlock(mls);
759 		(void) zfs_refcount_remove_many(
760 		    &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
761 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
762 		DBUF_STAT_BUMPDOWN(cache_count);
763 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
764 		    db->db.db_size);
765 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
766 		db->db_caching_status = DB_NO_CACHE;
767 		dbuf_destroy(db);
768 		DBUF_STAT_BUMP(cache_total_evicts);
769 	} else {
770 		multilist_sublist_unlock(mls);
771 	}
772 }
773 
774 /*
775  * The dbuf evict thread is responsible for aging out dbufs from the
776  * cache. Once the cache has reached it's maximum size, dbufs are removed
777  * and destroyed. The eviction thread will continue running until the size
778  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
779  * out of the cache it is destroyed and becomes eligible for arc eviction.
780  */
781 static __attribute__((noreturn)) void
782 dbuf_evict_thread(void *unused)
783 {
784 	(void) unused;
785 	callb_cpr_t cpr;
786 
787 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
788 
789 	mutex_enter(&dbuf_evict_lock);
790 	while (!dbuf_evict_thread_exit) {
791 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
792 			CALLB_CPR_SAFE_BEGIN(&cpr);
793 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
794 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
795 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
796 		}
797 		mutex_exit(&dbuf_evict_lock);
798 
799 		/*
800 		 * Keep evicting as long as we're above the low water mark
801 		 * for the cache. We do this without holding the locks to
802 		 * minimize lock contention.
803 		 */
804 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
805 			dbuf_evict_one();
806 		}
807 
808 		mutex_enter(&dbuf_evict_lock);
809 	}
810 
811 	dbuf_evict_thread_exit = B_FALSE;
812 	cv_broadcast(&dbuf_evict_cv);
813 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
814 	thread_exit();
815 }
816 
817 /*
818  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
819  * If the dbuf cache is at its high water mark, then evict a dbuf from the
820  * dbuf cache using the caller's context.
821  */
822 static void
823 dbuf_evict_notify(uint64_t size)
824 {
825 	/*
826 	 * We check if we should evict without holding the dbuf_evict_lock,
827 	 * because it's OK to occasionally make the wrong decision here,
828 	 * and grabbing the lock results in massive lock contention.
829 	 */
830 	if (size > dbuf_cache_target_bytes()) {
831 		if (size > dbuf_cache_hiwater_bytes())
832 			dbuf_evict_one();
833 		cv_signal(&dbuf_evict_cv);
834 	}
835 }
836 
837 static int
838 dbuf_kstat_update(kstat_t *ksp, int rw)
839 {
840 	dbuf_stats_t *ds = ksp->ks_data;
841 
842 	if (rw == KSTAT_WRITE)
843 		return (SET_ERROR(EACCES));
844 
845 	ds->cache_count.value.ui64 =
846 	    wmsum_value(&dbuf_sums.cache_count);
847 	ds->cache_size_bytes.value.ui64 =
848 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
849 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
850 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
851 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
852 	ds->cache_total_evicts.value.ui64 =
853 	    wmsum_value(&dbuf_sums.cache_total_evicts);
854 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
855 		ds->cache_levels[i].value.ui64 =
856 		    wmsum_value(&dbuf_sums.cache_levels[i]);
857 		ds->cache_levels_bytes[i].value.ui64 =
858 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
859 	}
860 	ds->hash_hits.value.ui64 =
861 	    wmsum_value(&dbuf_sums.hash_hits);
862 	ds->hash_misses.value.ui64 =
863 	    wmsum_value(&dbuf_sums.hash_misses);
864 	ds->hash_collisions.value.ui64 =
865 	    wmsum_value(&dbuf_sums.hash_collisions);
866 	ds->hash_chains.value.ui64 =
867 	    wmsum_value(&dbuf_sums.hash_chains);
868 	ds->hash_insert_race.value.ui64 =
869 	    wmsum_value(&dbuf_sums.hash_insert_race);
870 	ds->metadata_cache_count.value.ui64 =
871 	    wmsum_value(&dbuf_sums.metadata_cache_count);
872 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
873 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
874 	ds->metadata_cache_overflow.value.ui64 =
875 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
876 	return (0);
877 }
878 
879 void
880 dbuf_init(void)
881 {
882 	uint64_t hsize = 1ULL << 16;
883 	dbuf_hash_table_t *h = &dbuf_hash_table;
884 	int i;
885 
886 	/*
887 	 * The hash table is big enough to fill one eighth of physical memory
888 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
889 	 * By default, the table will take up
890 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
891 	 */
892 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
893 		hsize <<= 1;
894 
895 retry:
896 	h->hash_table_mask = hsize - 1;
897 #if defined(_KERNEL)
898 	/*
899 	 * Large allocations which do not require contiguous pages
900 	 * should be using vmem_alloc() in the linux kernel
901 	 */
902 	h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
903 #else
904 	h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
905 #endif
906 	if (h->hash_table == NULL) {
907 		/* XXX - we should really return an error instead of assert */
908 		ASSERT(hsize > (1ULL << 10));
909 		hsize >>= 1;
910 		goto retry;
911 	}
912 
913 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
914 	    sizeof (dmu_buf_impl_t),
915 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
916 
917 	for (i = 0; i < DBUF_RWLOCKS; i++)
918 		rw_init(&h->hash_rwlocks[i], NULL, RW_DEFAULT, NULL);
919 
920 	dbuf_stats_init(h);
921 
922 	/*
923 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
924 	 * configuration is not required.
925 	 */
926 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
927 
928 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
929 		multilist_create(&dbuf_caches[dcs].cache,
930 		    sizeof (dmu_buf_impl_t),
931 		    offsetof(dmu_buf_impl_t, db_cache_link),
932 		    dbuf_cache_multilist_index_func);
933 		zfs_refcount_create(&dbuf_caches[dcs].size);
934 	}
935 
936 	dbuf_evict_thread_exit = B_FALSE;
937 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
938 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
939 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
940 	    NULL, 0, &p0, TS_RUN, minclsyspri);
941 
942 	wmsum_init(&dbuf_sums.cache_count, 0);
943 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
944 	for (i = 0; i < DN_MAX_LEVELS; i++) {
945 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
946 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
947 	}
948 	wmsum_init(&dbuf_sums.hash_hits, 0);
949 	wmsum_init(&dbuf_sums.hash_misses, 0);
950 	wmsum_init(&dbuf_sums.hash_collisions, 0);
951 	wmsum_init(&dbuf_sums.hash_chains, 0);
952 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
953 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
954 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
955 
956 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
957 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
958 	    KSTAT_FLAG_VIRTUAL);
959 	if (dbuf_ksp != NULL) {
960 		for (i = 0; i < DN_MAX_LEVELS; i++) {
961 			snprintf(dbuf_stats.cache_levels[i].name,
962 			    KSTAT_STRLEN, "cache_level_%d", i);
963 			dbuf_stats.cache_levels[i].data_type =
964 			    KSTAT_DATA_UINT64;
965 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
966 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
967 			dbuf_stats.cache_levels_bytes[i].data_type =
968 			    KSTAT_DATA_UINT64;
969 		}
970 		dbuf_ksp->ks_data = &dbuf_stats;
971 		dbuf_ksp->ks_update = dbuf_kstat_update;
972 		kstat_install(dbuf_ksp);
973 	}
974 }
975 
976 void
977 dbuf_fini(void)
978 {
979 	dbuf_hash_table_t *h = &dbuf_hash_table;
980 	int i;
981 
982 	dbuf_stats_destroy();
983 
984 	for (i = 0; i < DBUF_RWLOCKS; i++)
985 		rw_destroy(&h->hash_rwlocks[i]);
986 #if defined(_KERNEL)
987 	/*
988 	 * Large allocations which do not require contiguous pages
989 	 * should be using vmem_free() in the linux kernel
990 	 */
991 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
992 #else
993 	kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
994 #endif
995 	kmem_cache_destroy(dbuf_kmem_cache);
996 	taskq_destroy(dbu_evict_taskq);
997 
998 	mutex_enter(&dbuf_evict_lock);
999 	dbuf_evict_thread_exit = B_TRUE;
1000 	while (dbuf_evict_thread_exit) {
1001 		cv_signal(&dbuf_evict_cv);
1002 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1003 	}
1004 	mutex_exit(&dbuf_evict_lock);
1005 
1006 	mutex_destroy(&dbuf_evict_lock);
1007 	cv_destroy(&dbuf_evict_cv);
1008 
1009 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1010 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1011 		multilist_destroy(&dbuf_caches[dcs].cache);
1012 	}
1013 
1014 	if (dbuf_ksp != NULL) {
1015 		kstat_delete(dbuf_ksp);
1016 		dbuf_ksp = NULL;
1017 	}
1018 
1019 	wmsum_fini(&dbuf_sums.cache_count);
1020 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1021 	for (i = 0; i < DN_MAX_LEVELS; i++) {
1022 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1023 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1024 	}
1025 	wmsum_fini(&dbuf_sums.hash_hits);
1026 	wmsum_fini(&dbuf_sums.hash_misses);
1027 	wmsum_fini(&dbuf_sums.hash_collisions);
1028 	wmsum_fini(&dbuf_sums.hash_chains);
1029 	wmsum_fini(&dbuf_sums.hash_insert_race);
1030 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1031 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1032 }
1033 
1034 /*
1035  * Other stuff.
1036  */
1037 
1038 #ifdef ZFS_DEBUG
1039 static void
1040 dbuf_verify(dmu_buf_impl_t *db)
1041 {
1042 	dnode_t *dn;
1043 	dbuf_dirty_record_t *dr;
1044 	uint32_t txg_prev;
1045 
1046 	ASSERT(MUTEX_HELD(&db->db_mtx));
1047 
1048 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1049 		return;
1050 
1051 	ASSERT(db->db_objset != NULL);
1052 	DB_DNODE_ENTER(db);
1053 	dn = DB_DNODE(db);
1054 	if (dn == NULL) {
1055 		ASSERT(db->db_parent == NULL);
1056 		ASSERT(db->db_blkptr == NULL);
1057 	} else {
1058 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1059 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1060 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1061 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1062 		    db->db_blkid == DMU_SPILL_BLKID ||
1063 		    !avl_is_empty(&dn->dn_dbufs));
1064 	}
1065 	if (db->db_blkid == DMU_BONUS_BLKID) {
1066 		ASSERT(dn != NULL);
1067 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1068 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1069 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1070 		ASSERT(dn != NULL);
1071 		ASSERT0(db->db.db_offset);
1072 	} else {
1073 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1074 	}
1075 
1076 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1077 		ASSERT(dr->dr_dbuf == db);
1078 		txg_prev = dr->dr_txg;
1079 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1080 		    dr = list_next(&db->db_dirty_records, dr)) {
1081 			ASSERT(dr->dr_dbuf == db);
1082 			ASSERT(txg_prev > dr->dr_txg);
1083 			txg_prev = dr->dr_txg;
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * We can't assert that db_size matches dn_datablksz because it
1089 	 * can be momentarily different when another thread is doing
1090 	 * dnode_set_blksz().
1091 	 */
1092 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1093 		dr = db->db_data_pending;
1094 		/*
1095 		 * It should only be modified in syncing context, so
1096 		 * make sure we only have one copy of the data.
1097 		 */
1098 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1099 	}
1100 
1101 	/* verify db->db_blkptr */
1102 	if (db->db_blkptr) {
1103 		if (db->db_parent == dn->dn_dbuf) {
1104 			/* db is pointed to by the dnode */
1105 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1106 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1107 				ASSERT(db->db_parent == NULL);
1108 			else
1109 				ASSERT(db->db_parent != NULL);
1110 			if (db->db_blkid != DMU_SPILL_BLKID)
1111 				ASSERT3P(db->db_blkptr, ==,
1112 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1113 		} else {
1114 			/* db is pointed to by an indirect block */
1115 			int epb __maybe_unused = db->db_parent->db.db_size >>
1116 			    SPA_BLKPTRSHIFT;
1117 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1118 			ASSERT3U(db->db_parent->db.db_object, ==,
1119 			    db->db.db_object);
1120 			/*
1121 			 * dnode_grow_indblksz() can make this fail if we don't
1122 			 * have the parent's rwlock.  XXX indblksz no longer
1123 			 * grows.  safe to do this now?
1124 			 */
1125 			if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1126 				ASSERT3P(db->db_blkptr, ==,
1127 				    ((blkptr_t *)db->db_parent->db.db_data +
1128 				    db->db_blkid % epb));
1129 			}
1130 		}
1131 	}
1132 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1133 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1134 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1135 	    db->db_state != DB_FILL && !dn->dn_free_txg) {
1136 		/*
1137 		 * If the blkptr isn't set but they have nonzero data,
1138 		 * it had better be dirty, otherwise we'll lose that
1139 		 * data when we evict this buffer.
1140 		 *
1141 		 * There is an exception to this rule for indirect blocks; in
1142 		 * this case, if the indirect block is a hole, we fill in a few
1143 		 * fields on each of the child blocks (importantly, birth time)
1144 		 * to prevent hole birth times from being lost when you
1145 		 * partially fill in a hole.
1146 		 */
1147 		if (db->db_dirtycnt == 0) {
1148 			if (db->db_level == 0) {
1149 				uint64_t *buf = db->db.db_data;
1150 				int i;
1151 
1152 				for (i = 0; i < db->db.db_size >> 3; i++) {
1153 					ASSERT(buf[i] == 0);
1154 				}
1155 			} else {
1156 				blkptr_t *bps = db->db.db_data;
1157 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1158 				    db->db.db_size);
1159 				/*
1160 				 * We want to verify that all the blkptrs in the
1161 				 * indirect block are holes, but we may have
1162 				 * automatically set up a few fields for them.
1163 				 * We iterate through each blkptr and verify
1164 				 * they only have those fields set.
1165 				 */
1166 				for (int i = 0;
1167 				    i < db->db.db_size / sizeof (blkptr_t);
1168 				    i++) {
1169 					blkptr_t *bp = &bps[i];
1170 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1171 					    &bp->blk_cksum));
1172 					ASSERT(
1173 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1174 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1175 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1176 					ASSERT0(bp->blk_fill);
1177 					ASSERT0(bp->blk_pad[0]);
1178 					ASSERT0(bp->blk_pad[1]);
1179 					ASSERT(!BP_IS_EMBEDDED(bp));
1180 					ASSERT(BP_IS_HOLE(bp));
1181 					ASSERT0(bp->blk_phys_birth);
1182 				}
1183 			}
1184 		}
1185 	}
1186 	DB_DNODE_EXIT(db);
1187 }
1188 #endif
1189 
1190 static void
1191 dbuf_clear_data(dmu_buf_impl_t *db)
1192 {
1193 	ASSERT(MUTEX_HELD(&db->db_mtx));
1194 	dbuf_evict_user(db);
1195 	ASSERT3P(db->db_buf, ==, NULL);
1196 	db->db.db_data = NULL;
1197 	if (db->db_state != DB_NOFILL) {
1198 		db->db_state = DB_UNCACHED;
1199 		DTRACE_SET_STATE(db, "clear data");
1200 	}
1201 }
1202 
1203 static void
1204 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1205 {
1206 	ASSERT(MUTEX_HELD(&db->db_mtx));
1207 	ASSERT(buf != NULL);
1208 
1209 	db->db_buf = buf;
1210 	ASSERT(buf->b_data != NULL);
1211 	db->db.db_data = buf->b_data;
1212 }
1213 
1214 static arc_buf_t *
1215 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1216 {
1217 	spa_t *spa = db->db_objset->os_spa;
1218 
1219 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1220 }
1221 
1222 /*
1223  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1224  */
1225 arc_buf_t *
1226 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1227 {
1228 	arc_buf_t *abuf;
1229 
1230 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1231 	mutex_enter(&db->db_mtx);
1232 	if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1233 		int blksz = db->db.db_size;
1234 		spa_t *spa = db->db_objset->os_spa;
1235 
1236 		mutex_exit(&db->db_mtx);
1237 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
1238 		memcpy(abuf->b_data, db->db.db_data, blksz);
1239 	} else {
1240 		abuf = db->db_buf;
1241 		arc_loan_inuse_buf(abuf, db);
1242 		db->db_buf = NULL;
1243 		dbuf_clear_data(db);
1244 		mutex_exit(&db->db_mtx);
1245 	}
1246 	return (abuf);
1247 }
1248 
1249 /*
1250  * Calculate which level n block references the data at the level 0 offset
1251  * provided.
1252  */
1253 uint64_t
1254 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1255 {
1256 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1257 		/*
1258 		 * The level n blkid is equal to the level 0 blkid divided by
1259 		 * the number of level 0s in a level n block.
1260 		 *
1261 		 * The level 0 blkid is offset >> datablkshift =
1262 		 * offset / 2^datablkshift.
1263 		 *
1264 		 * The number of level 0s in a level n is the number of block
1265 		 * pointers in an indirect block, raised to the power of level.
1266 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1267 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1268 		 *
1269 		 * Thus, the level n blkid is: offset /
1270 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1271 		 * = offset / 2^(datablkshift + level *
1272 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1273 		 * = offset >> (datablkshift + level *
1274 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1275 		 */
1276 
1277 		const unsigned exp = dn->dn_datablkshift +
1278 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1279 
1280 		if (exp >= 8 * sizeof (offset)) {
1281 			/* This only happens on the highest indirection level */
1282 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1283 			return (0);
1284 		}
1285 
1286 		ASSERT3U(exp, <, 8 * sizeof (offset));
1287 
1288 		return (offset >> exp);
1289 	} else {
1290 		ASSERT3U(offset, <, dn->dn_datablksz);
1291 		return (0);
1292 	}
1293 }
1294 
1295 /*
1296  * This function is used to lock the parent of the provided dbuf. This should be
1297  * used when modifying or reading db_blkptr.
1298  */
1299 db_lock_type_t
1300 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1301 {
1302 	enum db_lock_type ret = DLT_NONE;
1303 	if (db->db_parent != NULL) {
1304 		rw_enter(&db->db_parent->db_rwlock, rw);
1305 		ret = DLT_PARENT;
1306 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1307 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1308 		    tag);
1309 		ret = DLT_OBJSET;
1310 	}
1311 	/*
1312 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1313 	 * of the meta-dnode of the MOS.
1314 	 */
1315 	return (ret);
1316 }
1317 
1318 /*
1319  * We need to pass the lock type in because it's possible that the block will
1320  * move from being the topmost indirect block in a dnode (and thus, have no
1321  * parent) to not the top-most via an indirection increase. This would cause a
1322  * panic if we didn't pass the lock type in.
1323  */
1324 void
1325 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1326 {
1327 	if (type == DLT_PARENT)
1328 		rw_exit(&db->db_parent->db_rwlock);
1329 	else if (type == DLT_OBJSET)
1330 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1331 }
1332 
1333 static void
1334 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1335     arc_buf_t *buf, void *vdb)
1336 {
1337 	(void) zb, (void) bp;
1338 	dmu_buf_impl_t *db = vdb;
1339 
1340 	mutex_enter(&db->db_mtx);
1341 	ASSERT3U(db->db_state, ==, DB_READ);
1342 	/*
1343 	 * All reads are synchronous, so we must have a hold on the dbuf
1344 	 */
1345 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1346 	ASSERT(db->db_buf == NULL);
1347 	ASSERT(db->db.db_data == NULL);
1348 	if (buf == NULL) {
1349 		/* i/o error */
1350 		ASSERT(zio == NULL || zio->io_error != 0);
1351 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1352 		ASSERT3P(db->db_buf, ==, NULL);
1353 		db->db_state = DB_UNCACHED;
1354 		DTRACE_SET_STATE(db, "i/o error");
1355 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1356 		/* freed in flight */
1357 		ASSERT(zio == NULL || zio->io_error == 0);
1358 		arc_release(buf, db);
1359 		memset(buf->b_data, 0, db->db.db_size);
1360 		arc_buf_freeze(buf);
1361 		db->db_freed_in_flight = FALSE;
1362 		dbuf_set_data(db, buf);
1363 		db->db_state = DB_CACHED;
1364 		DTRACE_SET_STATE(db, "freed in flight");
1365 	} else {
1366 		/* success */
1367 		ASSERT(zio == NULL || zio->io_error == 0);
1368 		dbuf_set_data(db, buf);
1369 		db->db_state = DB_CACHED;
1370 		DTRACE_SET_STATE(db, "successful read");
1371 	}
1372 	cv_broadcast(&db->db_changed);
1373 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1374 }
1375 
1376 /*
1377  * Shortcut for performing reads on bonus dbufs.  Returns
1378  * an error if we fail to verify the dnode associated with
1379  * a decrypted block. Otherwise success.
1380  */
1381 static int
1382 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1383 {
1384 	int bonuslen, max_bonuslen, err;
1385 
1386 	err = dbuf_read_verify_dnode_crypt(db, flags);
1387 	if (err)
1388 		return (err);
1389 
1390 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1391 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1392 	ASSERT(MUTEX_HELD(&db->db_mtx));
1393 	ASSERT(DB_DNODE_HELD(db));
1394 	ASSERT3U(bonuslen, <=, db->db.db_size);
1395 	db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1396 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1397 	if (bonuslen < max_bonuslen)
1398 		memset(db->db.db_data, 0, max_bonuslen);
1399 	if (bonuslen)
1400 		memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1401 	db->db_state = DB_CACHED;
1402 	DTRACE_SET_STATE(db, "bonus buffer filled");
1403 	return (0);
1404 }
1405 
1406 static void
1407 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1408 {
1409 	blkptr_t *bps = db->db.db_data;
1410 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1411 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1412 
1413 	for (int i = 0; i < n_bps; i++) {
1414 		blkptr_t *bp = &bps[i];
1415 
1416 		ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1417 		BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1418 		    dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1419 		BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1420 		BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1421 		BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1422 	}
1423 }
1424 
1425 /*
1426  * Handle reads on dbufs that are holes, if necessary.  This function
1427  * requires that the dbuf's mutex is held. Returns success (0) if action
1428  * was taken, ENOENT if no action was taken.
1429  */
1430 static int
1431 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
1432 {
1433 	ASSERT(MUTEX_HELD(&db->db_mtx));
1434 
1435 	int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1436 	/*
1437 	 * For level 0 blocks only, if the above check fails:
1438 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1439 	 * processes the delete record and clears the bp while we are waiting
1440 	 * for the dn_mtx (resulting in a "no" from block_freed).
1441 	 */
1442 	if (!is_hole && db->db_level == 0) {
1443 		is_hole = dnode_block_freed(dn, db->db_blkid) ||
1444 		    BP_IS_HOLE(db->db_blkptr);
1445 	}
1446 
1447 	if (is_hole) {
1448 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1449 		memset(db->db.db_data, 0, db->db.db_size);
1450 
1451 		if (db->db_blkptr != NULL && db->db_level > 0 &&
1452 		    BP_IS_HOLE(db->db_blkptr) &&
1453 		    db->db_blkptr->blk_birth != 0) {
1454 			dbuf_handle_indirect_hole(db, dn);
1455 		}
1456 		db->db_state = DB_CACHED;
1457 		DTRACE_SET_STATE(db, "hole read satisfied");
1458 		return (0);
1459 	}
1460 	return (ENOENT);
1461 }
1462 
1463 /*
1464  * This function ensures that, when doing a decrypting read of a block,
1465  * we make sure we have decrypted the dnode associated with it. We must do
1466  * this so that we ensure we are fully authenticating the checksum-of-MACs
1467  * tree from the root of the objset down to this block. Indirect blocks are
1468  * always verified against their secure checksum-of-MACs assuming that the
1469  * dnode containing them is correct. Now that we are doing a decrypting read,
1470  * we can be sure that the key is loaded and verify that assumption. This is
1471  * especially important considering that we always read encrypted dnode
1472  * blocks as raw data (without verifying their MACs) to start, and
1473  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1474  */
1475 static int
1476 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1477 {
1478 	int err = 0;
1479 	objset_t *os = db->db_objset;
1480 	arc_buf_t *dnode_abuf;
1481 	dnode_t *dn;
1482 	zbookmark_phys_t zb;
1483 
1484 	ASSERT(MUTEX_HELD(&db->db_mtx));
1485 
1486 	if (!os->os_encrypted || os->os_raw_receive ||
1487 	    (flags & DB_RF_NO_DECRYPT) != 0)
1488 		return (0);
1489 
1490 	DB_DNODE_ENTER(db);
1491 	dn = DB_DNODE(db);
1492 	dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1493 
1494 	if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1495 		DB_DNODE_EXIT(db);
1496 		return (0);
1497 	}
1498 
1499 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1500 	    DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1501 	err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1502 
1503 	/*
1504 	 * An error code of EACCES tells us that the key is still not
1505 	 * available. This is ok if we are only reading authenticated
1506 	 * (and therefore non-encrypted) blocks.
1507 	 */
1508 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1509 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1510 	    (db->db_blkid == DMU_BONUS_BLKID &&
1511 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1512 		err = 0;
1513 
1514 	DB_DNODE_EXIT(db);
1515 
1516 	return (err);
1517 }
1518 
1519 /*
1520  * Drops db_mtx and the parent lock specified by dblt and tag before
1521  * returning.
1522  */
1523 static int
1524 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1525     db_lock_type_t dblt, const void *tag)
1526 {
1527 	dnode_t *dn;
1528 	zbookmark_phys_t zb;
1529 	uint32_t aflags = ARC_FLAG_NOWAIT;
1530 	int err, zio_flags;
1531 
1532 	err = zio_flags = 0;
1533 	DB_DNODE_ENTER(db);
1534 	dn = DB_DNODE(db);
1535 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1536 	ASSERT(MUTEX_HELD(&db->db_mtx));
1537 	ASSERT(db->db_state == DB_UNCACHED);
1538 	ASSERT(db->db_buf == NULL);
1539 	ASSERT(db->db_parent == NULL ||
1540 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1541 
1542 	if (db->db_blkid == DMU_BONUS_BLKID) {
1543 		err = dbuf_read_bonus(db, dn, flags);
1544 		goto early_unlock;
1545 	}
1546 
1547 	err = dbuf_read_hole(db, dn);
1548 	if (err == 0)
1549 		goto early_unlock;
1550 
1551 	/*
1552 	 * Any attempt to read a redacted block should result in an error. This
1553 	 * will never happen under normal conditions, but can be useful for
1554 	 * debugging purposes.
1555 	 */
1556 	if (BP_IS_REDACTED(db->db_blkptr)) {
1557 		ASSERT(dsl_dataset_feature_is_active(
1558 		    db->db_objset->os_dsl_dataset,
1559 		    SPA_FEATURE_REDACTED_DATASETS));
1560 		err = SET_ERROR(EIO);
1561 		goto early_unlock;
1562 	}
1563 
1564 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1565 	    db->db.db_object, db->db_level, db->db_blkid);
1566 
1567 	/*
1568 	 * All bps of an encrypted os should have the encryption bit set.
1569 	 * If this is not true it indicates tampering and we report an error.
1570 	 */
1571 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1572 		spa_log_error(db->db_objset->os_spa, &zb);
1573 		zfs_panic_recover("unencrypted block in encrypted "
1574 		    "object set %llu", dmu_objset_id(db->db_objset));
1575 		err = SET_ERROR(EIO);
1576 		goto early_unlock;
1577 	}
1578 
1579 	err = dbuf_read_verify_dnode_crypt(db, flags);
1580 	if (err != 0)
1581 		goto early_unlock;
1582 
1583 	DB_DNODE_EXIT(db);
1584 
1585 	db->db_state = DB_READ;
1586 	DTRACE_SET_STATE(db, "read issued");
1587 	mutex_exit(&db->db_mtx);
1588 
1589 	if (dbuf_is_l2cacheable(db))
1590 		aflags |= ARC_FLAG_L2CACHE;
1591 
1592 	dbuf_add_ref(db, NULL);
1593 
1594 	zio_flags = (flags & DB_RF_CANFAIL) ?
1595 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1596 
1597 	if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1598 		zio_flags |= ZIO_FLAG_RAW;
1599 	/*
1600 	 * The zio layer will copy the provided blkptr later, but we need to
1601 	 * do this now so that we can release the parent's rwlock. We have to
1602 	 * do that now so that if dbuf_read_done is called synchronously (on
1603 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1604 	 * parent's rwlock, which would be a lock ordering violation.
1605 	 */
1606 	blkptr_t bp = *db->db_blkptr;
1607 	dmu_buf_unlock_parent(db, dblt, tag);
1608 	(void) arc_read(zio, db->db_objset->os_spa, &bp,
1609 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1610 	    &aflags, &zb);
1611 	return (err);
1612 early_unlock:
1613 	DB_DNODE_EXIT(db);
1614 	mutex_exit(&db->db_mtx);
1615 	dmu_buf_unlock_parent(db, dblt, tag);
1616 	return (err);
1617 }
1618 
1619 /*
1620  * This is our just-in-time copy function.  It makes a copy of buffers that
1621  * have been modified in a previous transaction group before we access them in
1622  * the current active group.
1623  *
1624  * This function is used in three places: when we are dirtying a buffer for the
1625  * first time in a txg, when we are freeing a range in a dnode that includes
1626  * this buffer, and when we are accessing a buffer which was received compressed
1627  * and later referenced in a WRITE_BYREF record.
1628  *
1629  * Note that when we are called from dbuf_free_range() we do not put a hold on
1630  * the buffer, we just traverse the active dbuf list for the dnode.
1631  */
1632 static void
1633 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1634 {
1635 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1636 
1637 	ASSERT(MUTEX_HELD(&db->db_mtx));
1638 	ASSERT(db->db.db_data != NULL);
1639 	ASSERT(db->db_level == 0);
1640 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1641 
1642 	if (dr == NULL ||
1643 	    (dr->dt.dl.dr_data !=
1644 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1645 		return;
1646 
1647 	/*
1648 	 * If the last dirty record for this dbuf has not yet synced
1649 	 * and its referencing the dbuf data, either:
1650 	 *	reset the reference to point to a new copy,
1651 	 * or (if there a no active holders)
1652 	 *	just null out the current db_data pointer.
1653 	 */
1654 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1655 	if (db->db_blkid == DMU_BONUS_BLKID) {
1656 		dnode_t *dn = DB_DNODE(db);
1657 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1658 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1659 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1660 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1661 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1662 		dnode_t *dn = DB_DNODE(db);
1663 		int size = arc_buf_size(db->db_buf);
1664 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1665 		spa_t *spa = db->db_objset->os_spa;
1666 		enum zio_compress compress_type =
1667 		    arc_get_compression(db->db_buf);
1668 		uint8_t complevel = arc_get_complevel(db->db_buf);
1669 
1670 		if (arc_is_encrypted(db->db_buf)) {
1671 			boolean_t byteorder;
1672 			uint8_t salt[ZIO_DATA_SALT_LEN];
1673 			uint8_t iv[ZIO_DATA_IV_LEN];
1674 			uint8_t mac[ZIO_DATA_MAC_LEN];
1675 
1676 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1677 			    iv, mac);
1678 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1679 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1680 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1681 			    compress_type, complevel);
1682 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1683 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1684 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1685 			    size, arc_buf_lsize(db->db_buf), compress_type,
1686 			    complevel);
1687 		} else {
1688 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1689 		}
1690 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1691 	} else {
1692 		db->db_buf = NULL;
1693 		dbuf_clear_data(db);
1694 	}
1695 }
1696 
1697 int
1698 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1699 {
1700 	int err = 0;
1701 	boolean_t prefetch;
1702 	dnode_t *dn;
1703 
1704 	/*
1705 	 * We don't have to hold the mutex to check db_state because it
1706 	 * can't be freed while we have a hold on the buffer.
1707 	 */
1708 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1709 
1710 	if (db->db_state == DB_NOFILL)
1711 		return (SET_ERROR(EIO));
1712 
1713 	DB_DNODE_ENTER(db);
1714 	dn = DB_DNODE(db);
1715 
1716 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1717 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1718 	    DBUF_IS_CACHEABLE(db);
1719 
1720 	mutex_enter(&db->db_mtx);
1721 	if (db->db_state == DB_CACHED) {
1722 		spa_t *spa = dn->dn_objset->os_spa;
1723 
1724 		/*
1725 		 * Ensure that this block's dnode has been decrypted if
1726 		 * the caller has requested decrypted data.
1727 		 */
1728 		err = dbuf_read_verify_dnode_crypt(db, flags);
1729 
1730 		/*
1731 		 * If the arc buf is compressed or encrypted and the caller
1732 		 * requested uncompressed data, we need to untransform it
1733 		 * before returning. We also call arc_untransform() on any
1734 		 * unauthenticated blocks, which will verify their MAC if
1735 		 * the key is now available.
1736 		 */
1737 		if (err == 0 && db->db_buf != NULL &&
1738 		    (flags & DB_RF_NO_DECRYPT) == 0 &&
1739 		    (arc_is_encrypted(db->db_buf) ||
1740 		    arc_is_unauthenticated(db->db_buf) ||
1741 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1742 			zbookmark_phys_t zb;
1743 
1744 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1745 			    db->db.db_object, db->db_level, db->db_blkid);
1746 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1747 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1748 			dbuf_set_data(db, db->db_buf);
1749 		}
1750 		mutex_exit(&db->db_mtx);
1751 		if (err == 0 && prefetch) {
1752 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1753 			    B_FALSE, flags & DB_RF_HAVESTRUCT);
1754 		}
1755 		DB_DNODE_EXIT(db);
1756 		DBUF_STAT_BUMP(hash_hits);
1757 	} else if (db->db_state == DB_UNCACHED) {
1758 		spa_t *spa = dn->dn_objset->os_spa;
1759 		boolean_t need_wait = B_FALSE;
1760 
1761 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1762 
1763 		if (zio == NULL &&
1764 		    db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1765 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1766 			need_wait = B_TRUE;
1767 		}
1768 		err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1769 		/*
1770 		 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1771 		 * for us
1772 		 */
1773 		if (!err && prefetch) {
1774 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1775 			    db->db_state != DB_CACHED,
1776 			    flags & DB_RF_HAVESTRUCT);
1777 		}
1778 
1779 		DB_DNODE_EXIT(db);
1780 		DBUF_STAT_BUMP(hash_misses);
1781 
1782 		/*
1783 		 * If we created a zio_root we must execute it to avoid
1784 		 * leaking it, even if it isn't attached to any work due
1785 		 * to an error in dbuf_read_impl().
1786 		 */
1787 		if (need_wait) {
1788 			if (err == 0)
1789 				err = zio_wait(zio);
1790 			else
1791 				VERIFY0(zio_wait(zio));
1792 		}
1793 	} else {
1794 		/*
1795 		 * Another reader came in while the dbuf was in flight
1796 		 * between UNCACHED and CACHED.  Either a writer will finish
1797 		 * writing the buffer (sending the dbuf to CACHED) or the
1798 		 * first reader's request will reach the read_done callback
1799 		 * and send the dbuf to CACHED.  Otherwise, a failure
1800 		 * occurred and the dbuf went to UNCACHED.
1801 		 */
1802 		mutex_exit(&db->db_mtx);
1803 		if (prefetch) {
1804 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1805 			    B_TRUE, flags & DB_RF_HAVESTRUCT);
1806 		}
1807 		DB_DNODE_EXIT(db);
1808 		DBUF_STAT_BUMP(hash_misses);
1809 
1810 		/* Skip the wait per the caller's request. */
1811 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1812 			mutex_enter(&db->db_mtx);
1813 			while (db->db_state == DB_READ ||
1814 			    db->db_state == DB_FILL) {
1815 				ASSERT(db->db_state == DB_READ ||
1816 				    (flags & DB_RF_HAVESTRUCT) == 0);
1817 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1818 				    db, zio_t *, zio);
1819 				cv_wait(&db->db_changed, &db->db_mtx);
1820 			}
1821 			if (db->db_state == DB_UNCACHED)
1822 				err = SET_ERROR(EIO);
1823 			mutex_exit(&db->db_mtx);
1824 		}
1825 	}
1826 
1827 	return (err);
1828 }
1829 
1830 static void
1831 dbuf_noread(dmu_buf_impl_t *db)
1832 {
1833 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1834 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1835 	mutex_enter(&db->db_mtx);
1836 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1837 		cv_wait(&db->db_changed, &db->db_mtx);
1838 	if (db->db_state == DB_UNCACHED) {
1839 		ASSERT(db->db_buf == NULL);
1840 		ASSERT(db->db.db_data == NULL);
1841 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1842 		db->db_state = DB_FILL;
1843 		DTRACE_SET_STATE(db, "assigning filled buffer");
1844 	} else if (db->db_state == DB_NOFILL) {
1845 		dbuf_clear_data(db);
1846 	} else {
1847 		ASSERT3U(db->db_state, ==, DB_CACHED);
1848 	}
1849 	mutex_exit(&db->db_mtx);
1850 }
1851 
1852 void
1853 dbuf_unoverride(dbuf_dirty_record_t *dr)
1854 {
1855 	dmu_buf_impl_t *db = dr->dr_dbuf;
1856 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1857 	uint64_t txg = dr->dr_txg;
1858 
1859 	ASSERT(MUTEX_HELD(&db->db_mtx));
1860 	/*
1861 	 * This assert is valid because dmu_sync() expects to be called by
1862 	 * a zilog's get_data while holding a range lock.  This call only
1863 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1864 	 */
1865 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1866 	ASSERT(db->db_level == 0);
1867 
1868 	if (db->db_blkid == DMU_BONUS_BLKID ||
1869 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1870 		return;
1871 
1872 	ASSERT(db->db_data_pending != dr);
1873 
1874 	/* free this block */
1875 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1876 		zio_free(db->db_objset->os_spa, txg, bp);
1877 
1878 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1879 	dr->dt.dl.dr_nopwrite = B_FALSE;
1880 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1881 
1882 	/*
1883 	 * Release the already-written buffer, so we leave it in
1884 	 * a consistent dirty state.  Note that all callers are
1885 	 * modifying the buffer, so they will immediately do
1886 	 * another (redundant) arc_release().  Therefore, leave
1887 	 * the buf thawed to save the effort of freezing &
1888 	 * immediately re-thawing it.
1889 	 */
1890 	arc_release(dr->dt.dl.dr_data, db);
1891 }
1892 
1893 /*
1894  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1895  * data blocks in the free range, so that any future readers will find
1896  * empty blocks.
1897  */
1898 void
1899 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1900     dmu_tx_t *tx)
1901 {
1902 	dmu_buf_impl_t *db_search;
1903 	dmu_buf_impl_t *db, *db_next;
1904 	uint64_t txg = tx->tx_txg;
1905 	avl_index_t where;
1906 	dbuf_dirty_record_t *dr;
1907 
1908 	if (end_blkid > dn->dn_maxblkid &&
1909 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1910 		end_blkid = dn->dn_maxblkid;
1911 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1912 	    (u_longlong_t)end_blkid);
1913 
1914 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1915 	db_search->db_level = 0;
1916 	db_search->db_blkid = start_blkid;
1917 	db_search->db_state = DB_SEARCH;
1918 
1919 	mutex_enter(&dn->dn_dbufs_mtx);
1920 	db = avl_find(&dn->dn_dbufs, db_search, &where);
1921 	ASSERT3P(db, ==, NULL);
1922 
1923 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1924 
1925 	for (; db != NULL; db = db_next) {
1926 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1927 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1928 
1929 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1930 			break;
1931 		}
1932 		ASSERT3U(db->db_blkid, >=, start_blkid);
1933 
1934 		/* found a level 0 buffer in the range */
1935 		mutex_enter(&db->db_mtx);
1936 		if (dbuf_undirty(db, tx)) {
1937 			/* mutex has been dropped and dbuf destroyed */
1938 			continue;
1939 		}
1940 
1941 		if (db->db_state == DB_UNCACHED ||
1942 		    db->db_state == DB_NOFILL ||
1943 		    db->db_state == DB_EVICTING) {
1944 			ASSERT(db->db.db_data == NULL);
1945 			mutex_exit(&db->db_mtx);
1946 			continue;
1947 		}
1948 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1949 			/* will be handled in dbuf_read_done or dbuf_rele */
1950 			db->db_freed_in_flight = TRUE;
1951 			mutex_exit(&db->db_mtx);
1952 			continue;
1953 		}
1954 		if (zfs_refcount_count(&db->db_holds) == 0) {
1955 			ASSERT(db->db_buf);
1956 			dbuf_destroy(db);
1957 			continue;
1958 		}
1959 		/* The dbuf is referenced */
1960 
1961 		dr = list_head(&db->db_dirty_records);
1962 		if (dr != NULL) {
1963 			if (dr->dr_txg == txg) {
1964 				/*
1965 				 * This buffer is "in-use", re-adjust the file
1966 				 * size to reflect that this buffer may
1967 				 * contain new data when we sync.
1968 				 */
1969 				if (db->db_blkid != DMU_SPILL_BLKID &&
1970 				    db->db_blkid > dn->dn_maxblkid)
1971 					dn->dn_maxblkid = db->db_blkid;
1972 				dbuf_unoverride(dr);
1973 			} else {
1974 				/*
1975 				 * This dbuf is not dirty in the open context.
1976 				 * Either uncache it (if its not referenced in
1977 				 * the open context) or reset its contents to
1978 				 * empty.
1979 				 */
1980 				dbuf_fix_old_data(db, txg);
1981 			}
1982 		}
1983 		/* clear the contents if its cached */
1984 		if (db->db_state == DB_CACHED) {
1985 			ASSERT(db->db.db_data != NULL);
1986 			arc_release(db->db_buf, db);
1987 			rw_enter(&db->db_rwlock, RW_WRITER);
1988 			memset(db->db.db_data, 0, db->db.db_size);
1989 			rw_exit(&db->db_rwlock);
1990 			arc_buf_freeze(db->db_buf);
1991 		}
1992 
1993 		mutex_exit(&db->db_mtx);
1994 	}
1995 
1996 	mutex_exit(&dn->dn_dbufs_mtx);
1997 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
1998 }
1999 
2000 void
2001 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2002 {
2003 	arc_buf_t *buf, *old_buf;
2004 	dbuf_dirty_record_t *dr;
2005 	int osize = db->db.db_size;
2006 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2007 	dnode_t *dn;
2008 
2009 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2010 
2011 	DB_DNODE_ENTER(db);
2012 	dn = DB_DNODE(db);
2013 
2014 	/*
2015 	 * XXX we should be doing a dbuf_read, checking the return
2016 	 * value and returning that up to our callers
2017 	 */
2018 	dmu_buf_will_dirty(&db->db, tx);
2019 
2020 	/* create the data buffer for the new block */
2021 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2022 
2023 	/* copy old block data to the new block */
2024 	old_buf = db->db_buf;
2025 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2026 	/* zero the remainder */
2027 	if (size > osize)
2028 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2029 
2030 	mutex_enter(&db->db_mtx);
2031 	dbuf_set_data(db, buf);
2032 	arc_buf_destroy(old_buf, db);
2033 	db->db.db_size = size;
2034 
2035 	dr = list_head(&db->db_dirty_records);
2036 	/* dirty record added by dmu_buf_will_dirty() */
2037 	VERIFY(dr != NULL);
2038 	if (db->db_level == 0)
2039 		dr->dt.dl.dr_data = buf;
2040 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2041 	ASSERT3U(dr->dr_accounted, ==, osize);
2042 	dr->dr_accounted = size;
2043 	mutex_exit(&db->db_mtx);
2044 
2045 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2046 	DB_DNODE_EXIT(db);
2047 }
2048 
2049 void
2050 dbuf_release_bp(dmu_buf_impl_t *db)
2051 {
2052 	objset_t *os __maybe_unused = db->db_objset;
2053 
2054 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2055 	ASSERT(arc_released(os->os_phys_buf) ||
2056 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2057 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2058 
2059 	(void) arc_release(db->db_buf, db);
2060 }
2061 
2062 /*
2063  * We already have a dirty record for this TXG, and we are being
2064  * dirtied again.
2065  */
2066 static void
2067 dbuf_redirty(dbuf_dirty_record_t *dr)
2068 {
2069 	dmu_buf_impl_t *db = dr->dr_dbuf;
2070 
2071 	ASSERT(MUTEX_HELD(&db->db_mtx));
2072 
2073 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2074 		/*
2075 		 * If this buffer has already been written out,
2076 		 * we now need to reset its state.
2077 		 */
2078 		dbuf_unoverride(dr);
2079 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2080 		    db->db_state != DB_NOFILL) {
2081 			/* Already released on initial dirty, so just thaw. */
2082 			ASSERT(arc_released(db->db_buf));
2083 			arc_buf_thaw(db->db_buf);
2084 		}
2085 	}
2086 }
2087 
2088 dbuf_dirty_record_t *
2089 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2090 {
2091 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2092 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2093 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2094 	ASSERT(dn->dn_maxblkid >= blkid);
2095 
2096 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2097 	list_link_init(&dr->dr_dirty_node);
2098 	list_link_init(&dr->dr_dbuf_node);
2099 	dr->dr_dnode = dn;
2100 	dr->dr_txg = tx->tx_txg;
2101 	dr->dt.dll.dr_blkid = blkid;
2102 	dr->dr_accounted = dn->dn_datablksz;
2103 
2104 	/*
2105 	 * There should not be any dbuf for the block that we're dirtying.
2106 	 * Otherwise the buffer contents could be inconsistent between the
2107 	 * dbuf and the lightweight dirty record.
2108 	 */
2109 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid));
2110 
2111 	mutex_enter(&dn->dn_mtx);
2112 	int txgoff = tx->tx_txg & TXG_MASK;
2113 	if (dn->dn_free_ranges[txgoff] != NULL) {
2114 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2115 	}
2116 
2117 	if (dn->dn_nlevels == 1) {
2118 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2119 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2120 		mutex_exit(&dn->dn_mtx);
2121 		rw_exit(&dn->dn_struct_rwlock);
2122 		dnode_setdirty(dn, tx);
2123 	} else {
2124 		mutex_exit(&dn->dn_mtx);
2125 
2126 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2127 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2128 		    1, blkid >> epbs, FTAG);
2129 		rw_exit(&dn->dn_struct_rwlock);
2130 		if (parent_db == NULL) {
2131 			kmem_free(dr, sizeof (*dr));
2132 			return (NULL);
2133 		}
2134 		int err = dbuf_read(parent_db, NULL,
2135 		    (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2136 		if (err != 0) {
2137 			dbuf_rele(parent_db, FTAG);
2138 			kmem_free(dr, sizeof (*dr));
2139 			return (NULL);
2140 		}
2141 
2142 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2143 		dbuf_rele(parent_db, FTAG);
2144 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2145 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2146 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2147 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2148 		dr->dr_parent = parent_dr;
2149 	}
2150 
2151 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2152 
2153 	return (dr);
2154 }
2155 
2156 dbuf_dirty_record_t *
2157 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2158 {
2159 	dnode_t *dn;
2160 	objset_t *os;
2161 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2162 	int txgoff = tx->tx_txg & TXG_MASK;
2163 	boolean_t drop_struct_rwlock = B_FALSE;
2164 
2165 	ASSERT(tx->tx_txg != 0);
2166 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2167 	DMU_TX_DIRTY_BUF(tx, db);
2168 
2169 	DB_DNODE_ENTER(db);
2170 	dn = DB_DNODE(db);
2171 	/*
2172 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2173 	 * objects may be dirtied in syncing context, but only if they
2174 	 * were already pre-dirtied in open context.
2175 	 */
2176 #ifdef ZFS_DEBUG
2177 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2178 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2179 		    RW_READER, FTAG);
2180 	}
2181 	ASSERT(!dmu_tx_is_syncing(tx) ||
2182 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2183 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2184 	    dn->dn_objset->os_dsl_dataset == NULL);
2185 	if (dn->dn_objset->os_dsl_dataset != NULL)
2186 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2187 #endif
2188 	/*
2189 	 * We make this assert for private objects as well, but after we
2190 	 * check if we're already dirty.  They are allowed to re-dirty
2191 	 * in syncing context.
2192 	 */
2193 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2194 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2195 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2196 
2197 	mutex_enter(&db->db_mtx);
2198 	/*
2199 	 * XXX make this true for indirects too?  The problem is that
2200 	 * transactions created with dmu_tx_create_assigned() from
2201 	 * syncing context don't bother holding ahead.
2202 	 */
2203 	ASSERT(db->db_level != 0 ||
2204 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2205 	    db->db_state == DB_NOFILL);
2206 
2207 	mutex_enter(&dn->dn_mtx);
2208 	dnode_set_dirtyctx(dn, tx, db);
2209 	if (tx->tx_txg > dn->dn_dirty_txg)
2210 		dn->dn_dirty_txg = tx->tx_txg;
2211 	mutex_exit(&dn->dn_mtx);
2212 
2213 	if (db->db_blkid == DMU_SPILL_BLKID)
2214 		dn->dn_have_spill = B_TRUE;
2215 
2216 	/*
2217 	 * If this buffer is already dirty, we're done.
2218 	 */
2219 	dr_head = list_head(&db->db_dirty_records);
2220 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2221 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2222 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2223 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2224 		DB_DNODE_EXIT(db);
2225 
2226 		dbuf_redirty(dr_next);
2227 		mutex_exit(&db->db_mtx);
2228 		return (dr_next);
2229 	}
2230 
2231 	/*
2232 	 * Only valid if not already dirty.
2233 	 */
2234 	ASSERT(dn->dn_object == 0 ||
2235 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2236 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2237 
2238 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2239 
2240 	/*
2241 	 * We should only be dirtying in syncing context if it's the
2242 	 * mos or we're initializing the os or it's a special object.
2243 	 * However, we are allowed to dirty in syncing context provided
2244 	 * we already dirtied it in open context.  Hence we must make
2245 	 * this assertion only if we're not already dirty.
2246 	 */
2247 	os = dn->dn_objset;
2248 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2249 #ifdef ZFS_DEBUG
2250 	if (dn->dn_objset->os_dsl_dataset != NULL)
2251 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2252 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2253 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2254 	if (dn->dn_objset->os_dsl_dataset != NULL)
2255 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2256 #endif
2257 	ASSERT(db->db.db_size != 0);
2258 
2259 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2260 
2261 	if (db->db_blkid != DMU_BONUS_BLKID) {
2262 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2263 	}
2264 
2265 	/*
2266 	 * If this buffer is dirty in an old transaction group we need
2267 	 * to make a copy of it so that the changes we make in this
2268 	 * transaction group won't leak out when we sync the older txg.
2269 	 */
2270 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2271 	list_link_init(&dr->dr_dirty_node);
2272 	list_link_init(&dr->dr_dbuf_node);
2273 	dr->dr_dnode = dn;
2274 	if (db->db_level == 0) {
2275 		void *data_old = db->db_buf;
2276 
2277 		if (db->db_state != DB_NOFILL) {
2278 			if (db->db_blkid == DMU_BONUS_BLKID) {
2279 				dbuf_fix_old_data(db, tx->tx_txg);
2280 				data_old = db->db.db_data;
2281 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2282 				/*
2283 				 * Release the data buffer from the cache so
2284 				 * that we can modify it without impacting
2285 				 * possible other users of this cached data
2286 				 * block.  Note that indirect blocks and
2287 				 * private objects are not released until the
2288 				 * syncing state (since they are only modified
2289 				 * then).
2290 				 */
2291 				arc_release(db->db_buf, db);
2292 				dbuf_fix_old_data(db, tx->tx_txg);
2293 				data_old = db->db_buf;
2294 			}
2295 			ASSERT(data_old != NULL);
2296 		}
2297 		dr->dt.dl.dr_data = data_old;
2298 	} else {
2299 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2300 		list_create(&dr->dt.di.dr_children,
2301 		    sizeof (dbuf_dirty_record_t),
2302 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2303 	}
2304 	if (db->db_blkid != DMU_BONUS_BLKID)
2305 		dr->dr_accounted = db->db.db_size;
2306 	dr->dr_dbuf = db;
2307 	dr->dr_txg = tx->tx_txg;
2308 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2309 
2310 	/*
2311 	 * We could have been freed_in_flight between the dbuf_noread
2312 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2313 	 * happened after the free.
2314 	 */
2315 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2316 	    db->db_blkid != DMU_SPILL_BLKID) {
2317 		mutex_enter(&dn->dn_mtx);
2318 		if (dn->dn_free_ranges[txgoff] != NULL) {
2319 			range_tree_clear(dn->dn_free_ranges[txgoff],
2320 			    db->db_blkid, 1);
2321 		}
2322 		mutex_exit(&dn->dn_mtx);
2323 		db->db_freed_in_flight = FALSE;
2324 	}
2325 
2326 	/*
2327 	 * This buffer is now part of this txg
2328 	 */
2329 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2330 	db->db_dirtycnt += 1;
2331 	ASSERT3U(db->db_dirtycnt, <=, 3);
2332 
2333 	mutex_exit(&db->db_mtx);
2334 
2335 	if (db->db_blkid == DMU_BONUS_BLKID ||
2336 	    db->db_blkid == DMU_SPILL_BLKID) {
2337 		mutex_enter(&dn->dn_mtx);
2338 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2339 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2340 		mutex_exit(&dn->dn_mtx);
2341 		dnode_setdirty(dn, tx);
2342 		DB_DNODE_EXIT(db);
2343 		return (dr);
2344 	}
2345 
2346 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2347 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2348 		drop_struct_rwlock = B_TRUE;
2349 	}
2350 
2351 	/*
2352 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2353 	 * when we get to syncing context we will need to decrement its
2354 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2355 	 * syncing context won't have to wait for the i/o.
2356 	 */
2357 	if (db->db_blkptr != NULL) {
2358 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2359 		ddt_prefetch(os->os_spa, db->db_blkptr);
2360 		dmu_buf_unlock_parent(db, dblt, FTAG);
2361 	}
2362 
2363 	/*
2364 	 * We need to hold the dn_struct_rwlock to make this assertion,
2365 	 * because it protects dn_phys / dn_next_nlevels from changing.
2366 	 */
2367 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2368 	    dn->dn_phys->dn_nlevels > db->db_level ||
2369 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2370 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2371 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2372 
2373 
2374 	if (db->db_level == 0) {
2375 		ASSERT(!db->db_objset->os_raw_receive ||
2376 		    dn->dn_maxblkid >= db->db_blkid);
2377 		dnode_new_blkid(dn, db->db_blkid, tx,
2378 		    drop_struct_rwlock, B_FALSE);
2379 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2380 	}
2381 
2382 	if (db->db_level+1 < dn->dn_nlevels) {
2383 		dmu_buf_impl_t *parent = db->db_parent;
2384 		dbuf_dirty_record_t *di;
2385 		int parent_held = FALSE;
2386 
2387 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2388 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2389 			parent = dbuf_hold_level(dn, db->db_level + 1,
2390 			    db->db_blkid >> epbs, FTAG);
2391 			ASSERT(parent != NULL);
2392 			parent_held = TRUE;
2393 		}
2394 		if (drop_struct_rwlock)
2395 			rw_exit(&dn->dn_struct_rwlock);
2396 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2397 		di = dbuf_dirty(parent, tx);
2398 		if (parent_held)
2399 			dbuf_rele(parent, FTAG);
2400 
2401 		mutex_enter(&db->db_mtx);
2402 		/*
2403 		 * Since we've dropped the mutex, it's possible that
2404 		 * dbuf_undirty() might have changed this out from under us.
2405 		 */
2406 		if (list_head(&db->db_dirty_records) == dr ||
2407 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2408 			mutex_enter(&di->dt.di.dr_mtx);
2409 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2410 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2411 			list_insert_tail(&di->dt.di.dr_children, dr);
2412 			mutex_exit(&di->dt.di.dr_mtx);
2413 			dr->dr_parent = di;
2414 		}
2415 		mutex_exit(&db->db_mtx);
2416 	} else {
2417 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2418 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2419 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2420 		mutex_enter(&dn->dn_mtx);
2421 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2422 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2423 		mutex_exit(&dn->dn_mtx);
2424 		if (drop_struct_rwlock)
2425 			rw_exit(&dn->dn_struct_rwlock);
2426 	}
2427 
2428 	dnode_setdirty(dn, tx);
2429 	DB_DNODE_EXIT(db);
2430 	return (dr);
2431 }
2432 
2433 static void
2434 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2435 {
2436 	dmu_buf_impl_t *db = dr->dr_dbuf;
2437 
2438 	if (dr->dt.dl.dr_data != db->db.db_data) {
2439 		struct dnode *dn = dr->dr_dnode;
2440 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2441 
2442 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2443 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2444 	}
2445 	db->db_data_pending = NULL;
2446 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2447 	list_remove(&db->db_dirty_records, dr);
2448 	if (dr->dr_dbuf->db_level != 0) {
2449 		mutex_destroy(&dr->dt.di.dr_mtx);
2450 		list_destroy(&dr->dt.di.dr_children);
2451 	}
2452 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2453 	ASSERT3U(db->db_dirtycnt, >, 0);
2454 	db->db_dirtycnt -= 1;
2455 }
2456 
2457 /*
2458  * Undirty a buffer in the transaction group referenced by the given
2459  * transaction.  Return whether this evicted the dbuf.
2460  */
2461 static boolean_t
2462 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2463 {
2464 	uint64_t txg = tx->tx_txg;
2465 
2466 	ASSERT(txg != 0);
2467 
2468 	/*
2469 	 * Due to our use of dn_nlevels below, this can only be called
2470 	 * in open context, unless we are operating on the MOS.
2471 	 * From syncing context, dn_nlevels may be different from the
2472 	 * dn_nlevels used when dbuf was dirtied.
2473 	 */
2474 	ASSERT(db->db_objset ==
2475 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2476 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2477 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2478 	ASSERT0(db->db_level);
2479 	ASSERT(MUTEX_HELD(&db->db_mtx));
2480 
2481 	/*
2482 	 * If this buffer is not dirty, we're done.
2483 	 */
2484 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2485 	if (dr == NULL)
2486 		return (B_FALSE);
2487 	ASSERT(dr->dr_dbuf == db);
2488 
2489 	dnode_t *dn = dr->dr_dnode;
2490 
2491 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2492 
2493 	ASSERT(db->db.db_size != 0);
2494 
2495 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2496 	    dr->dr_accounted, txg);
2497 
2498 	list_remove(&db->db_dirty_records, dr);
2499 
2500 	/*
2501 	 * Note that there are three places in dbuf_dirty()
2502 	 * where this dirty record may be put on a list.
2503 	 * Make sure to do a list_remove corresponding to
2504 	 * every one of those list_insert calls.
2505 	 */
2506 	if (dr->dr_parent) {
2507 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2508 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2509 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2510 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2511 	    db->db_level + 1 == dn->dn_nlevels) {
2512 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2513 		mutex_enter(&dn->dn_mtx);
2514 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2515 		mutex_exit(&dn->dn_mtx);
2516 	}
2517 
2518 	if (db->db_state != DB_NOFILL) {
2519 		dbuf_unoverride(dr);
2520 
2521 		ASSERT(db->db_buf != NULL);
2522 		ASSERT(dr->dt.dl.dr_data != NULL);
2523 		if (dr->dt.dl.dr_data != db->db_buf)
2524 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2525 	}
2526 
2527 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2528 
2529 	ASSERT(db->db_dirtycnt > 0);
2530 	db->db_dirtycnt -= 1;
2531 
2532 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2533 		ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2534 		dbuf_destroy(db);
2535 		return (B_TRUE);
2536 	}
2537 
2538 	return (B_FALSE);
2539 }
2540 
2541 static void
2542 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2543 {
2544 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2545 
2546 	ASSERT(tx->tx_txg != 0);
2547 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2548 
2549 	/*
2550 	 * Quick check for dirtiness.  For already dirty blocks, this
2551 	 * reduces runtime of this function by >90%, and overall performance
2552 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
2553 	 * cached).
2554 	 */
2555 	mutex_enter(&db->db_mtx);
2556 
2557 	if (db->db_state == DB_CACHED) {
2558 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2559 		/*
2560 		 * It's possible that it is already dirty but not cached,
2561 		 * because there are some calls to dbuf_dirty() that don't
2562 		 * go through dmu_buf_will_dirty().
2563 		 */
2564 		if (dr != NULL) {
2565 			/* This dbuf is already dirty and cached. */
2566 			dbuf_redirty(dr);
2567 			mutex_exit(&db->db_mtx);
2568 			return;
2569 		}
2570 	}
2571 	mutex_exit(&db->db_mtx);
2572 
2573 	DB_DNODE_ENTER(db);
2574 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2575 		flags |= DB_RF_HAVESTRUCT;
2576 	DB_DNODE_EXIT(db);
2577 	(void) dbuf_read(db, NULL, flags);
2578 	(void) dbuf_dirty(db, tx);
2579 }
2580 
2581 void
2582 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2583 {
2584 	dmu_buf_will_dirty_impl(db_fake,
2585 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2586 }
2587 
2588 boolean_t
2589 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2590 {
2591 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2592 	dbuf_dirty_record_t *dr;
2593 
2594 	mutex_enter(&db->db_mtx);
2595 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2596 	mutex_exit(&db->db_mtx);
2597 	return (dr != NULL);
2598 }
2599 
2600 void
2601 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2602 {
2603 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2604 
2605 	db->db_state = DB_NOFILL;
2606 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2607 	dmu_buf_will_fill(db_fake, tx);
2608 }
2609 
2610 void
2611 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2612 {
2613 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2614 
2615 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2616 	ASSERT(tx->tx_txg != 0);
2617 	ASSERT(db->db_level == 0);
2618 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2619 
2620 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2621 	    dmu_tx_private_ok(tx));
2622 
2623 	dbuf_noread(db);
2624 	(void) dbuf_dirty(db, tx);
2625 }
2626 
2627 /*
2628  * This function is effectively the same as dmu_buf_will_dirty(), but
2629  * indicates the caller expects raw encrypted data in the db, and provides
2630  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2631  * blkptr_t when this dbuf is written.  This is only used for blocks of
2632  * dnodes, during raw receive.
2633  */
2634 void
2635 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2636     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2637 {
2638 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2639 	dbuf_dirty_record_t *dr;
2640 
2641 	/*
2642 	 * dr_has_raw_params is only processed for blocks of dnodes
2643 	 * (see dbuf_sync_dnode_leaf_crypt()).
2644 	 */
2645 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2646 	ASSERT3U(db->db_level, ==, 0);
2647 	ASSERT(db->db_objset->os_raw_receive);
2648 
2649 	dmu_buf_will_dirty_impl(db_fake,
2650 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2651 
2652 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2653 
2654 	ASSERT3P(dr, !=, NULL);
2655 
2656 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2657 	dr->dt.dl.dr_byteorder = byteorder;
2658 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2659 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2660 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2661 }
2662 
2663 static void
2664 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2665 {
2666 	struct dirty_leaf *dl;
2667 	dbuf_dirty_record_t *dr;
2668 
2669 	dr = list_head(&db->db_dirty_records);
2670 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2671 	dl = &dr->dt.dl;
2672 	dl->dr_overridden_by = *bp;
2673 	dl->dr_override_state = DR_OVERRIDDEN;
2674 	dl->dr_overridden_by.blk_birth = dr->dr_txg;
2675 }
2676 
2677 void
2678 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2679 {
2680 	(void) tx;
2681 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2682 	dbuf_states_t old_state;
2683 	mutex_enter(&db->db_mtx);
2684 	DBUF_VERIFY(db);
2685 
2686 	old_state = db->db_state;
2687 	db->db_state = DB_CACHED;
2688 	if (old_state == DB_FILL) {
2689 		if (db->db_level == 0 && db->db_freed_in_flight) {
2690 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2691 			/* we were freed while filling */
2692 			/* XXX dbuf_undirty? */
2693 			memset(db->db.db_data, 0, db->db.db_size);
2694 			db->db_freed_in_flight = FALSE;
2695 			DTRACE_SET_STATE(db,
2696 			    "fill done handling freed in flight");
2697 		} else {
2698 			DTRACE_SET_STATE(db, "fill done");
2699 		}
2700 		cv_broadcast(&db->db_changed);
2701 	}
2702 	mutex_exit(&db->db_mtx);
2703 }
2704 
2705 void
2706 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2707     bp_embedded_type_t etype, enum zio_compress comp,
2708     int uncompressed_size, int compressed_size, int byteorder,
2709     dmu_tx_t *tx)
2710 {
2711 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2712 	struct dirty_leaf *dl;
2713 	dmu_object_type_t type;
2714 	dbuf_dirty_record_t *dr;
2715 
2716 	if (etype == BP_EMBEDDED_TYPE_DATA) {
2717 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2718 		    SPA_FEATURE_EMBEDDED_DATA));
2719 	}
2720 
2721 	DB_DNODE_ENTER(db);
2722 	type = DB_DNODE(db)->dn_type;
2723 	DB_DNODE_EXIT(db);
2724 
2725 	ASSERT0(db->db_level);
2726 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2727 
2728 	dmu_buf_will_not_fill(dbuf, tx);
2729 
2730 	dr = list_head(&db->db_dirty_records);
2731 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2732 	dl = &dr->dt.dl;
2733 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
2734 	    data, comp, uncompressed_size, compressed_size);
2735 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2736 	BP_SET_TYPE(&dl->dr_overridden_by, type);
2737 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2738 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2739 
2740 	dl->dr_override_state = DR_OVERRIDDEN;
2741 	dl->dr_overridden_by.blk_birth = dr->dr_txg;
2742 }
2743 
2744 void
2745 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2746 {
2747 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2748 	dmu_object_type_t type;
2749 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2750 	    SPA_FEATURE_REDACTED_DATASETS));
2751 
2752 	DB_DNODE_ENTER(db);
2753 	type = DB_DNODE(db)->dn_type;
2754 	DB_DNODE_EXIT(db);
2755 
2756 	ASSERT0(db->db_level);
2757 	dmu_buf_will_not_fill(dbuf, tx);
2758 
2759 	blkptr_t bp = { { { {0} } } };
2760 	BP_SET_TYPE(&bp, type);
2761 	BP_SET_LEVEL(&bp, 0);
2762 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2763 	BP_SET_REDACTED(&bp);
2764 	BPE_SET_LSIZE(&bp, dbuf->db_size);
2765 
2766 	dbuf_override_impl(db, &bp, tx);
2767 }
2768 
2769 /*
2770  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2771  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2772  */
2773 void
2774 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2775 {
2776 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2777 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2778 	ASSERT(db->db_level == 0);
2779 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2780 	ASSERT(buf != NULL);
2781 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2782 	ASSERT(tx->tx_txg != 0);
2783 
2784 	arc_return_buf(buf, db);
2785 	ASSERT(arc_released(buf));
2786 
2787 	mutex_enter(&db->db_mtx);
2788 
2789 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2790 		cv_wait(&db->db_changed, &db->db_mtx);
2791 
2792 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2793 
2794 	if (db->db_state == DB_CACHED &&
2795 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2796 		/*
2797 		 * In practice, we will never have a case where we have an
2798 		 * encrypted arc buffer while additional holds exist on the
2799 		 * dbuf. We don't handle this here so we simply assert that
2800 		 * fact instead.
2801 		 */
2802 		ASSERT(!arc_is_encrypted(buf));
2803 		mutex_exit(&db->db_mtx);
2804 		(void) dbuf_dirty(db, tx);
2805 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2806 		arc_buf_destroy(buf, db);
2807 		return;
2808 	}
2809 
2810 	if (db->db_state == DB_CACHED) {
2811 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2812 
2813 		ASSERT(db->db_buf != NULL);
2814 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2815 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2816 
2817 			if (!arc_released(db->db_buf)) {
2818 				ASSERT(dr->dt.dl.dr_override_state ==
2819 				    DR_OVERRIDDEN);
2820 				arc_release(db->db_buf, db);
2821 			}
2822 			dr->dt.dl.dr_data = buf;
2823 			arc_buf_destroy(db->db_buf, db);
2824 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2825 			arc_release(db->db_buf, db);
2826 			arc_buf_destroy(db->db_buf, db);
2827 		}
2828 		db->db_buf = NULL;
2829 	}
2830 	ASSERT(db->db_buf == NULL);
2831 	dbuf_set_data(db, buf);
2832 	db->db_state = DB_FILL;
2833 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
2834 	mutex_exit(&db->db_mtx);
2835 	(void) dbuf_dirty(db, tx);
2836 	dmu_buf_fill_done(&db->db, tx);
2837 }
2838 
2839 void
2840 dbuf_destroy(dmu_buf_impl_t *db)
2841 {
2842 	dnode_t *dn;
2843 	dmu_buf_impl_t *parent = db->db_parent;
2844 	dmu_buf_impl_t *dndb;
2845 
2846 	ASSERT(MUTEX_HELD(&db->db_mtx));
2847 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
2848 
2849 	if (db->db_buf != NULL) {
2850 		arc_buf_destroy(db->db_buf, db);
2851 		db->db_buf = NULL;
2852 	}
2853 
2854 	if (db->db_blkid == DMU_BONUS_BLKID) {
2855 		int slots = DB_DNODE(db)->dn_num_slots;
2856 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2857 		if (db->db.db_data != NULL) {
2858 			kmem_free(db->db.db_data, bonuslen);
2859 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
2860 			db->db_state = DB_UNCACHED;
2861 			DTRACE_SET_STATE(db, "buffer cleared");
2862 		}
2863 	}
2864 
2865 	dbuf_clear_data(db);
2866 
2867 	if (multilist_link_active(&db->db_cache_link)) {
2868 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2869 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
2870 
2871 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
2872 		(void) zfs_refcount_remove_many(
2873 		    &dbuf_caches[db->db_caching_status].size,
2874 		    db->db.db_size, db);
2875 
2876 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2877 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
2878 		} else {
2879 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2880 			DBUF_STAT_BUMPDOWN(cache_count);
2881 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2882 			    db->db.db_size);
2883 		}
2884 		db->db_caching_status = DB_NO_CACHE;
2885 	}
2886 
2887 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2888 	ASSERT(db->db_data_pending == NULL);
2889 	ASSERT(list_is_empty(&db->db_dirty_records));
2890 
2891 	db->db_state = DB_EVICTING;
2892 	DTRACE_SET_STATE(db, "buffer eviction started");
2893 	db->db_blkptr = NULL;
2894 
2895 	/*
2896 	 * Now that db_state is DB_EVICTING, nobody else can find this via
2897 	 * the hash table.  We can now drop db_mtx, which allows us to
2898 	 * acquire the dn_dbufs_mtx.
2899 	 */
2900 	mutex_exit(&db->db_mtx);
2901 
2902 	DB_DNODE_ENTER(db);
2903 	dn = DB_DNODE(db);
2904 	dndb = dn->dn_dbuf;
2905 	if (db->db_blkid != DMU_BONUS_BLKID) {
2906 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2907 		if (needlock)
2908 			mutex_enter_nested(&dn->dn_dbufs_mtx,
2909 			    NESTED_SINGLE);
2910 		avl_remove(&dn->dn_dbufs, db);
2911 		membar_producer();
2912 		DB_DNODE_EXIT(db);
2913 		if (needlock)
2914 			mutex_exit(&dn->dn_dbufs_mtx);
2915 		/*
2916 		 * Decrementing the dbuf count means that the hold corresponding
2917 		 * to the removed dbuf is no longer discounted in dnode_move(),
2918 		 * so the dnode cannot be moved until after we release the hold.
2919 		 * The membar_producer() ensures visibility of the decremented
2920 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2921 		 * release any lock.
2922 		 */
2923 		mutex_enter(&dn->dn_mtx);
2924 		dnode_rele_and_unlock(dn, db, B_TRUE);
2925 		db->db_dnode_handle = NULL;
2926 
2927 		dbuf_hash_remove(db);
2928 	} else {
2929 		DB_DNODE_EXIT(db);
2930 	}
2931 
2932 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
2933 
2934 	db->db_parent = NULL;
2935 
2936 	ASSERT(db->db_buf == NULL);
2937 	ASSERT(db->db.db_data == NULL);
2938 	ASSERT(db->db_hash_next == NULL);
2939 	ASSERT(db->db_blkptr == NULL);
2940 	ASSERT(db->db_data_pending == NULL);
2941 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2942 	ASSERT(!multilist_link_active(&db->db_cache_link));
2943 
2944 	/*
2945 	 * If this dbuf is referenced from an indirect dbuf,
2946 	 * decrement the ref count on the indirect dbuf.
2947 	 */
2948 	if (parent && parent != dndb) {
2949 		mutex_enter(&parent->db_mtx);
2950 		dbuf_rele_and_unlock(parent, db, B_TRUE);
2951 	}
2952 
2953 	kmem_cache_free(dbuf_kmem_cache, db);
2954 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2955 }
2956 
2957 /*
2958  * Note: While bpp will always be updated if the function returns success,
2959  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2960  * this happens when the dnode is the meta-dnode, or {user|group|project}used
2961  * object.
2962  */
2963 __attribute__((always_inline))
2964 static inline int
2965 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2966     dmu_buf_impl_t **parentp, blkptr_t **bpp)
2967 {
2968 	*parentp = NULL;
2969 	*bpp = NULL;
2970 
2971 	ASSERT(blkid != DMU_BONUS_BLKID);
2972 
2973 	if (blkid == DMU_SPILL_BLKID) {
2974 		mutex_enter(&dn->dn_mtx);
2975 		if (dn->dn_have_spill &&
2976 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2977 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2978 		else
2979 			*bpp = NULL;
2980 		dbuf_add_ref(dn->dn_dbuf, NULL);
2981 		*parentp = dn->dn_dbuf;
2982 		mutex_exit(&dn->dn_mtx);
2983 		return (0);
2984 	}
2985 
2986 	int nlevels =
2987 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2988 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2989 
2990 	ASSERT3U(level * epbs, <, 64);
2991 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2992 	/*
2993 	 * This assertion shouldn't trip as long as the max indirect block size
2994 	 * is less than 1M.  The reason for this is that up to that point,
2995 	 * the number of levels required to address an entire object with blocks
2996 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
2997 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2998 	 * (i.e. we can address the entire object), objects will all use at most
2999 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3000 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3001 	 * enough to address an entire object, so objects will have 5 levels,
3002 	 * but then this assertion will overflow.
3003 	 *
3004 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3005 	 * need to redo this logic to handle overflows.
3006 	 */
3007 	ASSERT(level >= nlevels ||
3008 	    ((nlevels - level - 1) * epbs) +
3009 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3010 	if (level >= nlevels ||
3011 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3012 	    ((nlevels - level - 1) * epbs)) ||
3013 	    (fail_sparse &&
3014 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3015 		/* the buffer has no parent yet */
3016 		return (SET_ERROR(ENOENT));
3017 	} else if (level < nlevels-1) {
3018 		/* this block is referenced from an indirect block */
3019 		int err;
3020 
3021 		err = dbuf_hold_impl(dn, level + 1,
3022 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3023 
3024 		if (err)
3025 			return (err);
3026 		err = dbuf_read(*parentp, NULL,
3027 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3028 		if (err) {
3029 			dbuf_rele(*parentp, NULL);
3030 			*parentp = NULL;
3031 			return (err);
3032 		}
3033 		rw_enter(&(*parentp)->db_rwlock, RW_READER);
3034 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3035 		    (blkid & ((1ULL << epbs) - 1));
3036 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3037 			ASSERT(BP_IS_HOLE(*bpp));
3038 		rw_exit(&(*parentp)->db_rwlock);
3039 		return (0);
3040 	} else {
3041 		/* the block is referenced from the dnode */
3042 		ASSERT3U(level, ==, nlevels-1);
3043 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3044 		    blkid < dn->dn_phys->dn_nblkptr);
3045 		if (dn->dn_dbuf) {
3046 			dbuf_add_ref(dn->dn_dbuf, NULL);
3047 			*parentp = dn->dn_dbuf;
3048 		}
3049 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3050 		return (0);
3051 	}
3052 }
3053 
3054 static dmu_buf_impl_t *
3055 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3056     dmu_buf_impl_t *parent, blkptr_t *blkptr)
3057 {
3058 	objset_t *os = dn->dn_objset;
3059 	dmu_buf_impl_t *db, *odb;
3060 
3061 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3062 	ASSERT(dn->dn_type != DMU_OT_NONE);
3063 
3064 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3065 
3066 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3067 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3068 
3069 	db->db_objset = os;
3070 	db->db.db_object = dn->dn_object;
3071 	db->db_level = level;
3072 	db->db_blkid = blkid;
3073 	db->db_dirtycnt = 0;
3074 	db->db_dnode_handle = dn->dn_handle;
3075 	db->db_parent = parent;
3076 	db->db_blkptr = blkptr;
3077 
3078 	db->db_user = NULL;
3079 	db->db_user_immediate_evict = FALSE;
3080 	db->db_freed_in_flight = FALSE;
3081 	db->db_pending_evict = FALSE;
3082 
3083 	if (blkid == DMU_BONUS_BLKID) {
3084 		ASSERT3P(parent, ==, dn->dn_dbuf);
3085 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3086 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3087 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3088 		db->db.db_offset = DMU_BONUS_BLKID;
3089 		db->db_state = DB_UNCACHED;
3090 		DTRACE_SET_STATE(db, "bonus buffer created");
3091 		db->db_caching_status = DB_NO_CACHE;
3092 		/* the bonus dbuf is not placed in the hash table */
3093 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3094 		return (db);
3095 	} else if (blkid == DMU_SPILL_BLKID) {
3096 		db->db.db_size = (blkptr != NULL) ?
3097 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3098 		db->db.db_offset = 0;
3099 	} else {
3100 		int blocksize =
3101 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3102 		db->db.db_size = blocksize;
3103 		db->db.db_offset = db->db_blkid * blocksize;
3104 	}
3105 
3106 	/*
3107 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3108 	 * in the hash table *and* added to the dbufs list.
3109 	 * This prevents a possible deadlock with someone
3110 	 * trying to look up this dbuf before it's added to the
3111 	 * dn_dbufs list.
3112 	 */
3113 	mutex_enter(&dn->dn_dbufs_mtx);
3114 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3115 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3116 		/* someone else inserted it first */
3117 		mutex_exit(&dn->dn_dbufs_mtx);
3118 		kmem_cache_free(dbuf_kmem_cache, db);
3119 		DBUF_STAT_BUMP(hash_insert_race);
3120 		return (odb);
3121 	}
3122 	avl_add(&dn->dn_dbufs, db);
3123 
3124 	db->db_state = DB_UNCACHED;
3125 	DTRACE_SET_STATE(db, "regular buffer created");
3126 	db->db_caching_status = DB_NO_CACHE;
3127 	mutex_exit(&dn->dn_dbufs_mtx);
3128 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3129 
3130 	if (parent && parent != dn->dn_dbuf)
3131 		dbuf_add_ref(parent, db);
3132 
3133 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3134 	    zfs_refcount_count(&dn->dn_holds) > 0);
3135 	(void) zfs_refcount_add(&dn->dn_holds, db);
3136 
3137 	dprintf_dbuf(db, "db=%p\n", db);
3138 
3139 	return (db);
3140 }
3141 
3142 /*
3143  * This function returns a block pointer and information about the object,
3144  * given a dnode and a block.  This is a publicly accessible version of
3145  * dbuf_findbp that only returns some information, rather than the
3146  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3147  * should be locked as (at least) a reader.
3148  */
3149 int
3150 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3151     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3152 {
3153 	dmu_buf_impl_t *dbp = NULL;
3154 	blkptr_t *bp2;
3155 	int err = 0;
3156 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3157 
3158 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3159 	if (err == 0) {
3160 		*bp = *bp2;
3161 		if (dbp != NULL)
3162 			dbuf_rele(dbp, NULL);
3163 		if (datablkszsec != NULL)
3164 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3165 		if (indblkshift != NULL)
3166 			*indblkshift = dn->dn_phys->dn_indblkshift;
3167 	}
3168 
3169 	return (err);
3170 }
3171 
3172 typedef struct dbuf_prefetch_arg {
3173 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3174 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3175 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3176 	int dpa_curlevel; /* The current level that we're reading */
3177 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3178 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3179 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3180 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3181 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3182 	void *dpa_arg; /* prefetch completion arg */
3183 } dbuf_prefetch_arg_t;
3184 
3185 static void
3186 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3187 {
3188 	if (dpa->dpa_cb != NULL) {
3189 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3190 		    dpa->dpa_zb.zb_blkid, io_done);
3191 	}
3192 	kmem_free(dpa, sizeof (*dpa));
3193 }
3194 
3195 static void
3196 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3197     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3198 {
3199 	(void) zio, (void) zb, (void) iobp;
3200 	dbuf_prefetch_arg_t *dpa = private;
3201 
3202 	if (abuf != NULL)
3203 		arc_buf_destroy(abuf, private);
3204 
3205 	dbuf_prefetch_fini(dpa, B_TRUE);
3206 }
3207 
3208 /*
3209  * Actually issue the prefetch read for the block given.
3210  */
3211 static void
3212 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3213 {
3214 	ASSERT(!BP_IS_REDACTED(bp) ||
3215 	    dsl_dataset_feature_is_active(
3216 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3217 	    SPA_FEATURE_REDACTED_DATASETS));
3218 
3219 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3220 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3221 
3222 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3223 	arc_flags_t aflags =
3224 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3225 	    ARC_FLAG_NO_BUF;
3226 
3227 	/* dnodes are always read as raw and then converted later */
3228 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3229 	    dpa->dpa_curlevel == 0)
3230 		zio_flags |= ZIO_FLAG_RAW;
3231 
3232 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3233 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3234 	ASSERT(dpa->dpa_zio != NULL);
3235 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3236 	    dbuf_issue_final_prefetch_done, dpa,
3237 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3238 }
3239 
3240 /*
3241  * Called when an indirect block above our prefetch target is read in.  This
3242  * will either read in the next indirect block down the tree or issue the actual
3243  * prefetch if the next block down is our target.
3244  */
3245 static void
3246 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3247     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3248 {
3249 	(void) zb, (void) iobp;
3250 	dbuf_prefetch_arg_t *dpa = private;
3251 
3252 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3253 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3254 
3255 	if (abuf == NULL) {
3256 		ASSERT(zio == NULL || zio->io_error != 0);
3257 		return (dbuf_prefetch_fini(dpa, B_TRUE));
3258 	}
3259 	ASSERT(zio == NULL || zio->io_error == 0);
3260 
3261 	/*
3262 	 * The dpa_dnode is only valid if we are called with a NULL
3263 	 * zio. This indicates that the arc_read() returned without
3264 	 * first calling zio_read() to issue a physical read. Once
3265 	 * a physical read is made the dpa_dnode must be invalidated
3266 	 * as the locks guarding it may have been dropped. If the
3267 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3268 	 * cache. To do so, we must hold the dbuf associated with the block
3269 	 * we just prefetched, read its contents so that we associate it
3270 	 * with an arc_buf_t, and then release it.
3271 	 */
3272 	if (zio != NULL) {
3273 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3274 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3275 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3276 		} else {
3277 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3278 		}
3279 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3280 
3281 		dpa->dpa_dnode = NULL;
3282 	} else if (dpa->dpa_dnode != NULL) {
3283 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3284 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3285 		    dpa->dpa_zb.zb_level));
3286 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3287 		    dpa->dpa_curlevel, curblkid, FTAG);
3288 		if (db == NULL) {
3289 			arc_buf_destroy(abuf, private);
3290 			return (dbuf_prefetch_fini(dpa, B_TRUE));
3291 		}
3292 		(void) dbuf_read(db, NULL,
3293 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3294 		dbuf_rele(db, FTAG);
3295 	}
3296 
3297 	dpa->dpa_curlevel--;
3298 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3299 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3300 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3301 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3302 
3303 	ASSERT(!BP_IS_REDACTED(bp) ||
3304 	    dsl_dataset_feature_is_active(
3305 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3306 	    SPA_FEATURE_REDACTED_DATASETS));
3307 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3308 		dbuf_prefetch_fini(dpa, B_TRUE);
3309 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3310 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3311 		dbuf_issue_final_prefetch(dpa, bp);
3312 	} else {
3313 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3314 		zbookmark_phys_t zb;
3315 
3316 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3317 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3318 			iter_aflags |= ARC_FLAG_L2CACHE;
3319 
3320 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3321 
3322 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3323 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3324 
3325 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3326 		    bp, dbuf_prefetch_indirect_done, dpa,
3327 		    ZIO_PRIORITY_SYNC_READ,
3328 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3329 		    &iter_aflags, &zb);
3330 	}
3331 
3332 	arc_buf_destroy(abuf, private);
3333 }
3334 
3335 /*
3336  * Issue prefetch reads for the given block on the given level.  If the indirect
3337  * blocks above that block are not in memory, we will read them in
3338  * asynchronously.  As a result, this call never blocks waiting for a read to
3339  * complete. Note that the prefetch might fail if the dataset is encrypted and
3340  * the encryption key is unmapped before the IO completes.
3341  */
3342 int
3343 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3344     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3345     void *arg)
3346 {
3347 	blkptr_t bp;
3348 	int epbs, nlevels, curlevel;
3349 	uint64_t curblkid;
3350 
3351 	ASSERT(blkid != DMU_BONUS_BLKID);
3352 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3353 
3354 	if (blkid > dn->dn_maxblkid)
3355 		goto no_issue;
3356 
3357 	if (level == 0 && dnode_block_freed(dn, blkid))
3358 		goto no_issue;
3359 
3360 	/*
3361 	 * This dnode hasn't been written to disk yet, so there's nothing to
3362 	 * prefetch.
3363 	 */
3364 	nlevels = dn->dn_phys->dn_nlevels;
3365 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3366 		goto no_issue;
3367 
3368 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3369 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3370 		goto no_issue;
3371 
3372 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3373 	    level, blkid);
3374 	if (db != NULL) {
3375 		mutex_exit(&db->db_mtx);
3376 		/*
3377 		 * This dbuf already exists.  It is either CACHED, or
3378 		 * (we assume) about to be read or filled.
3379 		 */
3380 		goto no_issue;
3381 	}
3382 
3383 	/*
3384 	 * Find the closest ancestor (indirect block) of the target block
3385 	 * that is present in the cache.  In this indirect block, we will
3386 	 * find the bp that is at curlevel, curblkid.
3387 	 */
3388 	curlevel = level;
3389 	curblkid = blkid;
3390 	while (curlevel < nlevels - 1) {
3391 		int parent_level = curlevel + 1;
3392 		uint64_t parent_blkid = curblkid >> epbs;
3393 		dmu_buf_impl_t *db;
3394 
3395 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3396 		    FALSE, TRUE, FTAG, &db) == 0) {
3397 			blkptr_t *bpp = db->db_buf->b_data;
3398 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3399 			dbuf_rele(db, FTAG);
3400 			break;
3401 		}
3402 
3403 		curlevel = parent_level;
3404 		curblkid = parent_blkid;
3405 	}
3406 
3407 	if (curlevel == nlevels - 1) {
3408 		/* No cached indirect blocks found. */
3409 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3410 		bp = dn->dn_phys->dn_blkptr[curblkid];
3411 	}
3412 	ASSERT(!BP_IS_REDACTED(&bp) ||
3413 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3414 	    SPA_FEATURE_REDACTED_DATASETS));
3415 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3416 		goto no_issue;
3417 
3418 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3419 
3420 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3421 	    ZIO_FLAG_CANFAIL);
3422 
3423 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3424 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3425 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3426 	    dn->dn_object, level, blkid);
3427 	dpa->dpa_curlevel = curlevel;
3428 	dpa->dpa_prio = prio;
3429 	dpa->dpa_aflags = aflags;
3430 	dpa->dpa_spa = dn->dn_objset->os_spa;
3431 	dpa->dpa_dnode = dn;
3432 	dpa->dpa_epbs = epbs;
3433 	dpa->dpa_zio = pio;
3434 	dpa->dpa_cb = cb;
3435 	dpa->dpa_arg = arg;
3436 
3437 	/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3438 	if (dnode_level_is_l2cacheable(&bp, dn, level))
3439 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3440 
3441 	/*
3442 	 * If we have the indirect just above us, no need to do the asynchronous
3443 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3444 	 * a higher level, though, we want to issue the prefetches for all the
3445 	 * indirect blocks asynchronously, so we can go on with whatever we were
3446 	 * doing.
3447 	 */
3448 	if (curlevel == level) {
3449 		ASSERT3U(curblkid, ==, blkid);
3450 		dbuf_issue_final_prefetch(dpa, &bp);
3451 	} else {
3452 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3453 		zbookmark_phys_t zb;
3454 
3455 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3456 		if (dnode_level_is_l2cacheable(&bp, dn, level))
3457 			iter_aflags |= ARC_FLAG_L2CACHE;
3458 
3459 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3460 		    dn->dn_object, curlevel, curblkid);
3461 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3462 		    &bp, dbuf_prefetch_indirect_done, dpa,
3463 		    ZIO_PRIORITY_SYNC_READ,
3464 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3465 		    &iter_aflags, &zb);
3466 	}
3467 	/*
3468 	 * We use pio here instead of dpa_zio since it's possible that
3469 	 * dpa may have already been freed.
3470 	 */
3471 	zio_nowait(pio);
3472 	return (1);
3473 no_issue:
3474 	if (cb != NULL)
3475 		cb(arg, level, blkid, B_FALSE);
3476 	return (0);
3477 }
3478 
3479 int
3480 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3481     arc_flags_t aflags)
3482 {
3483 
3484 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3485 }
3486 
3487 /*
3488  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3489  * the case of encrypted, compressed and uncompressed buffers by
3490  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3491  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3492  *
3493  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3494  */
3495 noinline static void
3496 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3497 {
3498 	dbuf_dirty_record_t *dr = db->db_data_pending;
3499 	arc_buf_t *data = dr->dt.dl.dr_data;
3500 	enum zio_compress compress_type = arc_get_compression(data);
3501 	uint8_t complevel = arc_get_complevel(data);
3502 
3503 	if (arc_is_encrypted(data)) {
3504 		boolean_t byteorder;
3505 		uint8_t salt[ZIO_DATA_SALT_LEN];
3506 		uint8_t iv[ZIO_DATA_IV_LEN];
3507 		uint8_t mac[ZIO_DATA_MAC_LEN];
3508 
3509 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3510 		dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3511 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3512 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3513 		    compress_type, complevel));
3514 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3515 		dbuf_set_data(db, arc_alloc_compressed_buf(
3516 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3517 		    arc_buf_lsize(data), compress_type, complevel));
3518 	} else {
3519 		dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3520 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3521 	}
3522 
3523 	rw_enter(&db->db_rwlock, RW_WRITER);
3524 	memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3525 	rw_exit(&db->db_rwlock);
3526 }
3527 
3528 /*
3529  * Returns with db_holds incremented, and db_mtx not held.
3530  * Note: dn_struct_rwlock must be held.
3531  */
3532 int
3533 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3534     boolean_t fail_sparse, boolean_t fail_uncached,
3535     const void *tag, dmu_buf_impl_t **dbp)
3536 {
3537 	dmu_buf_impl_t *db, *parent = NULL;
3538 
3539 	/* If the pool has been created, verify the tx_sync_lock is not held */
3540 	spa_t *spa = dn->dn_objset->os_spa;
3541 	dsl_pool_t *dp = spa->spa_dsl_pool;
3542 	if (dp != NULL) {
3543 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3544 	}
3545 
3546 	ASSERT(blkid != DMU_BONUS_BLKID);
3547 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3548 	ASSERT3U(dn->dn_nlevels, >, level);
3549 
3550 	*dbp = NULL;
3551 
3552 	/* dbuf_find() returns with db_mtx held */
3553 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
3554 
3555 	if (db == NULL) {
3556 		blkptr_t *bp = NULL;
3557 		int err;
3558 
3559 		if (fail_uncached)
3560 			return (SET_ERROR(ENOENT));
3561 
3562 		ASSERT3P(parent, ==, NULL);
3563 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3564 		if (fail_sparse) {
3565 			if (err == 0 && bp && BP_IS_HOLE(bp))
3566 				err = SET_ERROR(ENOENT);
3567 			if (err) {
3568 				if (parent)
3569 					dbuf_rele(parent, NULL);
3570 				return (err);
3571 			}
3572 		}
3573 		if (err && err != ENOENT)
3574 			return (err);
3575 		db = dbuf_create(dn, level, blkid, parent, bp);
3576 	}
3577 
3578 	if (fail_uncached && db->db_state != DB_CACHED) {
3579 		mutex_exit(&db->db_mtx);
3580 		return (SET_ERROR(ENOENT));
3581 	}
3582 
3583 	if (db->db_buf != NULL) {
3584 		arc_buf_access(db->db_buf);
3585 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3586 	}
3587 
3588 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3589 
3590 	/*
3591 	 * If this buffer is currently syncing out, and we are
3592 	 * still referencing it from db_data, we need to make a copy
3593 	 * of it in case we decide we want to dirty it again in this txg.
3594 	 */
3595 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3596 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3597 	    db->db_state == DB_CACHED && db->db_data_pending) {
3598 		dbuf_dirty_record_t *dr = db->db_data_pending;
3599 		if (dr->dt.dl.dr_data == db->db_buf)
3600 			dbuf_hold_copy(dn, db);
3601 	}
3602 
3603 	if (multilist_link_active(&db->db_cache_link)) {
3604 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3605 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3606 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3607 
3608 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3609 		(void) zfs_refcount_remove_many(
3610 		    &dbuf_caches[db->db_caching_status].size,
3611 		    db->db.db_size, db);
3612 
3613 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3614 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3615 		} else {
3616 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3617 			DBUF_STAT_BUMPDOWN(cache_count);
3618 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3619 			    db->db.db_size);
3620 		}
3621 		db->db_caching_status = DB_NO_CACHE;
3622 	}
3623 	(void) zfs_refcount_add(&db->db_holds, tag);
3624 	DBUF_VERIFY(db);
3625 	mutex_exit(&db->db_mtx);
3626 
3627 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
3628 	if (parent)
3629 		dbuf_rele(parent, NULL);
3630 
3631 	ASSERT3P(DB_DNODE(db), ==, dn);
3632 	ASSERT3U(db->db_blkid, ==, blkid);
3633 	ASSERT3U(db->db_level, ==, level);
3634 	*dbp = db;
3635 
3636 	return (0);
3637 }
3638 
3639 dmu_buf_impl_t *
3640 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3641 {
3642 	return (dbuf_hold_level(dn, 0, blkid, tag));
3643 }
3644 
3645 dmu_buf_impl_t *
3646 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3647 {
3648 	dmu_buf_impl_t *db;
3649 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3650 	return (err ? NULL : db);
3651 }
3652 
3653 void
3654 dbuf_create_bonus(dnode_t *dn)
3655 {
3656 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3657 
3658 	ASSERT(dn->dn_bonus == NULL);
3659 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3660 }
3661 
3662 int
3663 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3664 {
3665 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3666 
3667 	if (db->db_blkid != DMU_SPILL_BLKID)
3668 		return (SET_ERROR(ENOTSUP));
3669 	if (blksz == 0)
3670 		blksz = SPA_MINBLOCKSIZE;
3671 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3672 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3673 
3674 	dbuf_new_size(db, blksz, tx);
3675 
3676 	return (0);
3677 }
3678 
3679 void
3680 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3681 {
3682 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3683 }
3684 
3685 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3686 void
3687 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3688 {
3689 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3690 	VERIFY3S(holds, >, 1);
3691 }
3692 
3693 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3694 boolean_t
3695 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3696     const void *tag)
3697 {
3698 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3699 	dmu_buf_impl_t *found_db;
3700 	boolean_t result = B_FALSE;
3701 
3702 	if (blkid == DMU_BONUS_BLKID)
3703 		found_db = dbuf_find_bonus(os, obj);
3704 	else
3705 		found_db = dbuf_find(os, obj, 0, blkid);
3706 
3707 	if (found_db != NULL) {
3708 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3709 			(void) zfs_refcount_add(&db->db_holds, tag);
3710 			result = B_TRUE;
3711 		}
3712 		mutex_exit(&found_db->db_mtx);
3713 	}
3714 	return (result);
3715 }
3716 
3717 /*
3718  * If you call dbuf_rele() you had better not be referencing the dnode handle
3719  * unless you have some other direct or indirect hold on the dnode. (An indirect
3720  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3721  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3722  * dnode's parent dbuf evicting its dnode handles.
3723  */
3724 void
3725 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3726 {
3727 	mutex_enter(&db->db_mtx);
3728 	dbuf_rele_and_unlock(db, tag, B_FALSE);
3729 }
3730 
3731 void
3732 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3733 {
3734 	dbuf_rele((dmu_buf_impl_t *)db, tag);
3735 }
3736 
3737 /*
3738  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3739  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
3740  * argument should be set if we are already in the dbuf-evicting code
3741  * path, in which case we don't want to recursively evict.  This allows us to
3742  * avoid deeply nested stacks that would have a call flow similar to this:
3743  *
3744  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3745  *	^						|
3746  *	|						|
3747  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
3748  *
3749  */
3750 void
3751 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3752 {
3753 	int64_t holds;
3754 	uint64_t size;
3755 
3756 	ASSERT(MUTEX_HELD(&db->db_mtx));
3757 	DBUF_VERIFY(db);
3758 
3759 	/*
3760 	 * Remove the reference to the dbuf before removing its hold on the
3761 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
3762 	 * buffer has a corresponding dnode hold.
3763 	 */
3764 	holds = zfs_refcount_remove(&db->db_holds, tag);
3765 	ASSERT(holds >= 0);
3766 
3767 	/*
3768 	 * We can't freeze indirects if there is a possibility that they
3769 	 * may be modified in the current syncing context.
3770 	 */
3771 	if (db->db_buf != NULL &&
3772 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3773 		arc_buf_freeze(db->db_buf);
3774 	}
3775 
3776 	if (holds == db->db_dirtycnt &&
3777 	    db->db_level == 0 && db->db_user_immediate_evict)
3778 		dbuf_evict_user(db);
3779 
3780 	if (holds == 0) {
3781 		if (db->db_blkid == DMU_BONUS_BLKID) {
3782 			dnode_t *dn;
3783 			boolean_t evict_dbuf = db->db_pending_evict;
3784 
3785 			/*
3786 			 * If the dnode moves here, we cannot cross this
3787 			 * barrier until the move completes.
3788 			 */
3789 			DB_DNODE_ENTER(db);
3790 
3791 			dn = DB_DNODE(db);
3792 			atomic_dec_32(&dn->dn_dbufs_count);
3793 
3794 			/*
3795 			 * Decrementing the dbuf count means that the bonus
3796 			 * buffer's dnode hold is no longer discounted in
3797 			 * dnode_move(). The dnode cannot move until after
3798 			 * the dnode_rele() below.
3799 			 */
3800 			DB_DNODE_EXIT(db);
3801 
3802 			/*
3803 			 * Do not reference db after its lock is dropped.
3804 			 * Another thread may evict it.
3805 			 */
3806 			mutex_exit(&db->db_mtx);
3807 
3808 			if (evict_dbuf)
3809 				dnode_evict_bonus(dn);
3810 
3811 			dnode_rele(dn, db);
3812 		} else if (db->db_buf == NULL) {
3813 			/*
3814 			 * This is a special case: we never associated this
3815 			 * dbuf with any data allocated from the ARC.
3816 			 */
3817 			ASSERT(db->db_state == DB_UNCACHED ||
3818 			    db->db_state == DB_NOFILL);
3819 			dbuf_destroy(db);
3820 		} else if (arc_released(db->db_buf)) {
3821 			/*
3822 			 * This dbuf has anonymous data associated with it.
3823 			 */
3824 			dbuf_destroy(db);
3825 		} else {
3826 			boolean_t do_arc_evict = B_FALSE;
3827 			blkptr_t bp;
3828 			spa_t *spa = dmu_objset_spa(db->db_objset);
3829 
3830 			if (!DBUF_IS_CACHEABLE(db) &&
3831 			    db->db_blkptr != NULL &&
3832 			    !BP_IS_HOLE(db->db_blkptr) &&
3833 			    !BP_IS_EMBEDDED(db->db_blkptr)) {
3834 				do_arc_evict = B_TRUE;
3835 				bp = *db->db_blkptr;
3836 			}
3837 
3838 			if (!DBUF_IS_CACHEABLE(db) ||
3839 			    db->db_pending_evict) {
3840 				dbuf_destroy(db);
3841 			} else if (!multilist_link_active(&db->db_cache_link)) {
3842 				ASSERT3U(db->db_caching_status, ==,
3843 				    DB_NO_CACHE);
3844 
3845 				dbuf_cached_state_t dcs =
3846 				    dbuf_include_in_metadata_cache(db) ?
3847 				    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3848 				db->db_caching_status = dcs;
3849 
3850 				multilist_insert(&dbuf_caches[dcs].cache, db);
3851 				uint64_t db_size = db->db.db_size;
3852 				size = zfs_refcount_add_many(
3853 				    &dbuf_caches[dcs].size, db_size, db);
3854 				uint8_t db_level = db->db_level;
3855 				mutex_exit(&db->db_mtx);
3856 
3857 				if (dcs == DB_DBUF_METADATA_CACHE) {
3858 					DBUF_STAT_BUMP(metadata_cache_count);
3859 					DBUF_STAT_MAX(
3860 					    metadata_cache_size_bytes_max,
3861 					    size);
3862 				} else {
3863 					DBUF_STAT_BUMP(cache_count);
3864 					DBUF_STAT_MAX(cache_size_bytes_max,
3865 					    size);
3866 					DBUF_STAT_BUMP(cache_levels[db_level]);
3867 					DBUF_STAT_INCR(
3868 					    cache_levels_bytes[db_level],
3869 					    db_size);
3870 				}
3871 
3872 				if (dcs == DB_DBUF_CACHE && !evicting)
3873 					dbuf_evict_notify(size);
3874 			}
3875 
3876 			if (do_arc_evict)
3877 				arc_freed(spa, &bp);
3878 		}
3879 	} else {
3880 		mutex_exit(&db->db_mtx);
3881 	}
3882 
3883 }
3884 
3885 #pragma weak dmu_buf_refcount = dbuf_refcount
3886 uint64_t
3887 dbuf_refcount(dmu_buf_impl_t *db)
3888 {
3889 	return (zfs_refcount_count(&db->db_holds));
3890 }
3891 
3892 uint64_t
3893 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3894 {
3895 	uint64_t holds;
3896 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3897 
3898 	mutex_enter(&db->db_mtx);
3899 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3900 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3901 	mutex_exit(&db->db_mtx);
3902 
3903 	return (holds);
3904 }
3905 
3906 void *
3907 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3908     dmu_buf_user_t *new_user)
3909 {
3910 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3911 
3912 	mutex_enter(&db->db_mtx);
3913 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3914 	if (db->db_user == old_user)
3915 		db->db_user = new_user;
3916 	else
3917 		old_user = db->db_user;
3918 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3919 	mutex_exit(&db->db_mtx);
3920 
3921 	return (old_user);
3922 }
3923 
3924 void *
3925 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3926 {
3927 	return (dmu_buf_replace_user(db_fake, NULL, user));
3928 }
3929 
3930 void *
3931 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3932 {
3933 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3934 
3935 	db->db_user_immediate_evict = TRUE;
3936 	return (dmu_buf_set_user(db_fake, user));
3937 }
3938 
3939 void *
3940 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3941 {
3942 	return (dmu_buf_replace_user(db_fake, user, NULL));
3943 }
3944 
3945 void *
3946 dmu_buf_get_user(dmu_buf_t *db_fake)
3947 {
3948 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3949 
3950 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
3951 	return (db->db_user);
3952 }
3953 
3954 void
3955 dmu_buf_user_evict_wait(void)
3956 {
3957 	taskq_wait(dbu_evict_taskq);
3958 }
3959 
3960 blkptr_t *
3961 dmu_buf_get_blkptr(dmu_buf_t *db)
3962 {
3963 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3964 	return (dbi->db_blkptr);
3965 }
3966 
3967 objset_t *
3968 dmu_buf_get_objset(dmu_buf_t *db)
3969 {
3970 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3971 	return (dbi->db_objset);
3972 }
3973 
3974 dnode_t *
3975 dmu_buf_dnode_enter(dmu_buf_t *db)
3976 {
3977 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3978 	DB_DNODE_ENTER(dbi);
3979 	return (DB_DNODE(dbi));
3980 }
3981 
3982 void
3983 dmu_buf_dnode_exit(dmu_buf_t *db)
3984 {
3985 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3986 	DB_DNODE_EXIT(dbi);
3987 }
3988 
3989 static void
3990 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3991 {
3992 	/* ASSERT(dmu_tx_is_syncing(tx) */
3993 	ASSERT(MUTEX_HELD(&db->db_mtx));
3994 
3995 	if (db->db_blkptr != NULL)
3996 		return;
3997 
3998 	if (db->db_blkid == DMU_SPILL_BLKID) {
3999 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4000 		BP_ZERO(db->db_blkptr);
4001 		return;
4002 	}
4003 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4004 		/*
4005 		 * This buffer was allocated at a time when there was
4006 		 * no available blkptrs from the dnode, or it was
4007 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4008 		 */
4009 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4010 		ASSERT(db->db_parent == NULL);
4011 		db->db_parent = dn->dn_dbuf;
4012 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4013 		DBUF_VERIFY(db);
4014 	} else {
4015 		dmu_buf_impl_t *parent = db->db_parent;
4016 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4017 
4018 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4019 		if (parent == NULL) {
4020 			mutex_exit(&db->db_mtx);
4021 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4022 			parent = dbuf_hold_level(dn, db->db_level + 1,
4023 			    db->db_blkid >> epbs, db);
4024 			rw_exit(&dn->dn_struct_rwlock);
4025 			mutex_enter(&db->db_mtx);
4026 			db->db_parent = parent;
4027 		}
4028 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4029 		    (db->db_blkid & ((1ULL << epbs) - 1));
4030 		DBUF_VERIFY(db);
4031 	}
4032 }
4033 
4034 static void
4035 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4036 {
4037 	dmu_buf_impl_t *db = dr->dr_dbuf;
4038 	void *data = dr->dt.dl.dr_data;
4039 
4040 	ASSERT0(db->db_level);
4041 	ASSERT(MUTEX_HELD(&db->db_mtx));
4042 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4043 	ASSERT(data != NULL);
4044 
4045 	dnode_t *dn = dr->dr_dnode;
4046 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4047 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4048 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4049 
4050 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4051 
4052 	dbuf_undirty_bonus(dr);
4053 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4054 }
4055 
4056 /*
4057  * When syncing out a blocks of dnodes, adjust the block to deal with
4058  * encryption.  Normally, we make sure the block is decrypted before writing
4059  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4060  * from a raw receive.  In this case, set the ARC buf's crypt params so
4061  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4062  */
4063 static void
4064 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4065 {
4066 	int err;
4067 	dmu_buf_impl_t *db = dr->dr_dbuf;
4068 
4069 	ASSERT(MUTEX_HELD(&db->db_mtx));
4070 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4071 	ASSERT3U(db->db_level, ==, 0);
4072 
4073 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4074 		zbookmark_phys_t zb;
4075 
4076 		/*
4077 		 * Unfortunately, there is currently no mechanism for
4078 		 * syncing context to handle decryption errors. An error
4079 		 * here is only possible if an attacker maliciously
4080 		 * changed a dnode block and updated the associated
4081 		 * checksums going up the block tree.
4082 		 */
4083 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4084 		    db->db.db_object, db->db_level, db->db_blkid);
4085 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4086 		    &zb, B_TRUE);
4087 		if (err)
4088 			panic("Invalid dnode block MAC");
4089 	} else if (dr->dt.dl.dr_has_raw_params) {
4090 		(void) arc_release(dr->dt.dl.dr_data, db);
4091 		arc_convert_to_raw(dr->dt.dl.dr_data,
4092 		    dmu_objset_id(db->db_objset),
4093 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4094 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4095 	}
4096 }
4097 
4098 /*
4099  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4100  * is critical the we not allow the compiler to inline this function in to
4101  * dbuf_sync_list() thereby drastically bloating the stack usage.
4102  */
4103 noinline static void
4104 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4105 {
4106 	dmu_buf_impl_t *db = dr->dr_dbuf;
4107 	dnode_t *dn = dr->dr_dnode;
4108 
4109 	ASSERT(dmu_tx_is_syncing(tx));
4110 
4111 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4112 
4113 	mutex_enter(&db->db_mtx);
4114 
4115 	ASSERT(db->db_level > 0);
4116 	DBUF_VERIFY(db);
4117 
4118 	/* Read the block if it hasn't been read yet. */
4119 	if (db->db_buf == NULL) {
4120 		mutex_exit(&db->db_mtx);
4121 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4122 		mutex_enter(&db->db_mtx);
4123 	}
4124 	ASSERT3U(db->db_state, ==, DB_CACHED);
4125 	ASSERT(db->db_buf != NULL);
4126 
4127 	/* Indirect block size must match what the dnode thinks it is. */
4128 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4129 	dbuf_check_blkptr(dn, db);
4130 
4131 	/* Provide the pending dirty record to child dbufs */
4132 	db->db_data_pending = dr;
4133 
4134 	mutex_exit(&db->db_mtx);
4135 
4136 	dbuf_write(dr, db->db_buf, tx);
4137 
4138 	zio_t *zio = dr->dr_zio;
4139 	mutex_enter(&dr->dt.di.dr_mtx);
4140 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4141 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4142 	mutex_exit(&dr->dt.di.dr_mtx);
4143 	zio_nowait(zio);
4144 }
4145 
4146 /*
4147  * Verify that the size of the data in our bonus buffer does not exceed
4148  * its recorded size.
4149  *
4150  * The purpose of this verification is to catch any cases in development
4151  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4152  * due to incorrect feature management, older pools expect to read more
4153  * data even though they didn't actually write it to begin with.
4154  *
4155  * For a example, this would catch an error in the feature logic where we
4156  * open an older pool and we expect to write the space map histogram of
4157  * a space map with size SPACE_MAP_SIZE_V0.
4158  */
4159 static void
4160 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4161 {
4162 #ifdef ZFS_DEBUG
4163 	dnode_t *dn = dr->dr_dnode;
4164 
4165 	/*
4166 	 * Encrypted bonus buffers can have data past their bonuslen.
4167 	 * Skip the verification of these blocks.
4168 	 */
4169 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4170 		return;
4171 
4172 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4173 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4174 	ASSERT3U(bonuslen, <=, maxbonuslen);
4175 
4176 	arc_buf_t *datap = dr->dt.dl.dr_data;
4177 	char *datap_end = ((char *)datap) + bonuslen;
4178 	char *datap_max = ((char *)datap) + maxbonuslen;
4179 
4180 	/* ensure that everything is zero after our data */
4181 	for (; datap_end < datap_max; datap_end++)
4182 		ASSERT(*datap_end == 0);
4183 #endif
4184 }
4185 
4186 static blkptr_t *
4187 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4188 {
4189 	/* This must be a lightweight dirty record. */
4190 	ASSERT3P(dr->dr_dbuf, ==, NULL);
4191 	dnode_t *dn = dr->dr_dnode;
4192 
4193 	if (dn->dn_phys->dn_nlevels == 1) {
4194 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4195 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4196 	} else {
4197 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4198 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4199 		VERIFY3U(parent_db->db_level, ==, 1);
4200 		VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4201 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4202 		blkptr_t *bp = parent_db->db.db_data;
4203 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4204 	}
4205 }
4206 
4207 static void
4208 dbuf_lightweight_ready(zio_t *zio)
4209 {
4210 	dbuf_dirty_record_t *dr = zio->io_private;
4211 	blkptr_t *bp = zio->io_bp;
4212 
4213 	if (zio->io_error != 0)
4214 		return;
4215 
4216 	dnode_t *dn = dr->dr_dnode;
4217 
4218 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4219 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4220 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4221 	    bp_get_dsize_sync(spa, bp_orig);
4222 	dnode_diduse_space(dn, delta);
4223 
4224 	uint64_t blkid = dr->dt.dll.dr_blkid;
4225 	mutex_enter(&dn->dn_mtx);
4226 	if (blkid > dn->dn_phys->dn_maxblkid) {
4227 		ASSERT0(dn->dn_objset->os_raw_receive);
4228 		dn->dn_phys->dn_maxblkid = blkid;
4229 	}
4230 	mutex_exit(&dn->dn_mtx);
4231 
4232 	if (!BP_IS_EMBEDDED(bp)) {
4233 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4234 		BP_SET_FILL(bp, fill);
4235 	}
4236 
4237 	dmu_buf_impl_t *parent_db;
4238 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4239 	if (dr->dr_parent == NULL) {
4240 		parent_db = dn->dn_dbuf;
4241 	} else {
4242 		parent_db = dr->dr_parent->dr_dbuf;
4243 	}
4244 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4245 	*bp_orig = *bp;
4246 	rw_exit(&parent_db->db_rwlock);
4247 }
4248 
4249 static void
4250 dbuf_lightweight_physdone(zio_t *zio)
4251 {
4252 	dbuf_dirty_record_t *dr = zio->io_private;
4253 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4254 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4255 
4256 	/*
4257 	 * The callback will be called io_phys_children times.  Retire one
4258 	 * portion of our dirty space each time we are called.  Any rounding
4259 	 * error will be cleaned up by dbuf_lightweight_done().
4260 	 */
4261 	int delta = dr->dr_accounted / zio->io_phys_children;
4262 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
4263 }
4264 
4265 static void
4266 dbuf_lightweight_done(zio_t *zio)
4267 {
4268 	dbuf_dirty_record_t *dr = zio->io_private;
4269 
4270 	VERIFY0(zio->io_error);
4271 
4272 	objset_t *os = dr->dr_dnode->dn_objset;
4273 	dmu_tx_t *tx = os->os_synctx;
4274 
4275 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4276 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4277 	} else {
4278 		dsl_dataset_t *ds = os->os_dsl_dataset;
4279 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4280 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4281 	}
4282 
4283 	/*
4284 	 * See comment in dbuf_write_done().
4285 	 */
4286 	if (zio->io_phys_children == 0) {
4287 		dsl_pool_undirty_space(dmu_objset_pool(os),
4288 		    dr->dr_accounted, zio->io_txg);
4289 	} else {
4290 		dsl_pool_undirty_space(dmu_objset_pool(os),
4291 		    dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4292 	}
4293 
4294 	abd_free(dr->dt.dll.dr_abd);
4295 	kmem_free(dr, sizeof (*dr));
4296 }
4297 
4298 noinline static void
4299 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4300 {
4301 	dnode_t *dn = dr->dr_dnode;
4302 	zio_t *pio;
4303 	if (dn->dn_phys->dn_nlevels == 1) {
4304 		pio = dn->dn_zio;
4305 	} else {
4306 		pio = dr->dr_parent->dr_zio;
4307 	}
4308 
4309 	zbookmark_phys_t zb = {
4310 		.zb_objset = dmu_objset_id(dn->dn_objset),
4311 		.zb_object = dn->dn_object,
4312 		.zb_level = 0,
4313 		.zb_blkid = dr->dt.dll.dr_blkid,
4314 	};
4315 
4316 	/*
4317 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4318 	 * will have the old BP in dbuf_lightweight_done().
4319 	 */
4320 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4321 
4322 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4323 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4324 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4325 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4326 	    dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4327 	    ZIO_PRIORITY_ASYNC_WRITE,
4328 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4329 
4330 	zio_nowait(dr->dr_zio);
4331 }
4332 
4333 /*
4334  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4335  * critical the we not allow the compiler to inline this function in to
4336  * dbuf_sync_list() thereby drastically bloating the stack usage.
4337  */
4338 noinline static void
4339 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4340 {
4341 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4342 	dmu_buf_impl_t *db = dr->dr_dbuf;
4343 	dnode_t *dn = dr->dr_dnode;
4344 	objset_t *os;
4345 	uint64_t txg = tx->tx_txg;
4346 
4347 	ASSERT(dmu_tx_is_syncing(tx));
4348 
4349 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4350 
4351 	mutex_enter(&db->db_mtx);
4352 	/*
4353 	 * To be synced, we must be dirtied.  But we
4354 	 * might have been freed after the dirty.
4355 	 */
4356 	if (db->db_state == DB_UNCACHED) {
4357 		/* This buffer has been freed since it was dirtied */
4358 		ASSERT(db->db.db_data == NULL);
4359 	} else if (db->db_state == DB_FILL) {
4360 		/* This buffer was freed and is now being re-filled */
4361 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4362 	} else {
4363 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4364 	}
4365 	DBUF_VERIFY(db);
4366 
4367 	if (db->db_blkid == DMU_SPILL_BLKID) {
4368 		mutex_enter(&dn->dn_mtx);
4369 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4370 			/*
4371 			 * In the previous transaction group, the bonus buffer
4372 			 * was entirely used to store the attributes for the
4373 			 * dnode which overrode the dn_spill field.  However,
4374 			 * when adding more attributes to the file a spill
4375 			 * block was required to hold the extra attributes.
4376 			 *
4377 			 * Make sure to clear the garbage left in the dn_spill
4378 			 * field from the previous attributes in the bonus
4379 			 * buffer.  Otherwise, after writing out the spill
4380 			 * block to the new allocated dva, it will free
4381 			 * the old block pointed to by the invalid dn_spill.
4382 			 */
4383 			db->db_blkptr = NULL;
4384 		}
4385 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4386 		mutex_exit(&dn->dn_mtx);
4387 	}
4388 
4389 	/*
4390 	 * If this is a bonus buffer, simply copy the bonus data into the
4391 	 * dnode.  It will be written out when the dnode is synced (and it
4392 	 * will be synced, since it must have been dirty for dbuf_sync to
4393 	 * be called).
4394 	 */
4395 	if (db->db_blkid == DMU_BONUS_BLKID) {
4396 		ASSERT(dr->dr_dbuf == db);
4397 		dbuf_sync_bonus(dr, tx);
4398 		return;
4399 	}
4400 
4401 	os = dn->dn_objset;
4402 
4403 	/*
4404 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4405 	 * operation to sneak in. As a result, we need to ensure that we
4406 	 * don't check the dr_override_state until we have returned from
4407 	 * dbuf_check_blkptr.
4408 	 */
4409 	dbuf_check_blkptr(dn, db);
4410 
4411 	/*
4412 	 * If this buffer is in the middle of an immediate write,
4413 	 * wait for the synchronous IO to complete.
4414 	 */
4415 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4416 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4417 		cv_wait(&db->db_changed, &db->db_mtx);
4418 		ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4419 	}
4420 
4421 	/*
4422 	 * If this is a dnode block, ensure it is appropriately encrypted
4423 	 * or decrypted, depending on what we are writing to it this txg.
4424 	 */
4425 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4426 		dbuf_prepare_encrypted_dnode_leaf(dr);
4427 
4428 	if (db->db_state != DB_NOFILL &&
4429 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4430 	    zfs_refcount_count(&db->db_holds) > 1 &&
4431 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4432 	    *datap == db->db_buf) {
4433 		/*
4434 		 * If this buffer is currently "in use" (i.e., there
4435 		 * are active holds and db_data still references it),
4436 		 * then make a copy before we start the write so that
4437 		 * any modifications from the open txg will not leak
4438 		 * into this write.
4439 		 *
4440 		 * NOTE: this copy does not need to be made for
4441 		 * objects only modified in the syncing context (e.g.
4442 		 * DNONE_DNODE blocks).
4443 		 */
4444 		int psize = arc_buf_size(*datap);
4445 		int lsize = arc_buf_lsize(*datap);
4446 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4447 		enum zio_compress compress_type = arc_get_compression(*datap);
4448 		uint8_t complevel = arc_get_complevel(*datap);
4449 
4450 		if (arc_is_encrypted(*datap)) {
4451 			boolean_t byteorder;
4452 			uint8_t salt[ZIO_DATA_SALT_LEN];
4453 			uint8_t iv[ZIO_DATA_IV_LEN];
4454 			uint8_t mac[ZIO_DATA_MAC_LEN];
4455 
4456 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4457 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4458 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4459 			    dn->dn_type, psize, lsize, compress_type,
4460 			    complevel);
4461 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4462 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4463 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4464 			    psize, lsize, compress_type, complevel);
4465 		} else {
4466 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4467 		}
4468 		memcpy((*datap)->b_data, db->db.db_data, psize);
4469 	}
4470 	db->db_data_pending = dr;
4471 
4472 	mutex_exit(&db->db_mtx);
4473 
4474 	dbuf_write(dr, *datap, tx);
4475 
4476 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4477 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4478 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4479 	} else {
4480 		zio_nowait(dr->dr_zio);
4481 	}
4482 }
4483 
4484 void
4485 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4486 {
4487 	dbuf_dirty_record_t *dr;
4488 
4489 	while ((dr = list_head(list))) {
4490 		if (dr->dr_zio != NULL) {
4491 			/*
4492 			 * If we find an already initialized zio then we
4493 			 * are processing the meta-dnode, and we have finished.
4494 			 * The dbufs for all dnodes are put back on the list
4495 			 * during processing, so that we can zio_wait()
4496 			 * these IOs after initiating all child IOs.
4497 			 */
4498 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4499 			    DMU_META_DNODE_OBJECT);
4500 			break;
4501 		}
4502 		list_remove(list, dr);
4503 		if (dr->dr_dbuf == NULL) {
4504 			dbuf_sync_lightweight(dr, tx);
4505 		} else {
4506 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4507 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4508 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4509 			}
4510 			if (dr->dr_dbuf->db_level > 0)
4511 				dbuf_sync_indirect(dr, tx);
4512 			else
4513 				dbuf_sync_leaf(dr, tx);
4514 		}
4515 	}
4516 }
4517 
4518 static void
4519 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4520 {
4521 	(void) buf;
4522 	dmu_buf_impl_t *db = vdb;
4523 	dnode_t *dn;
4524 	blkptr_t *bp = zio->io_bp;
4525 	blkptr_t *bp_orig = &zio->io_bp_orig;
4526 	spa_t *spa = zio->io_spa;
4527 	int64_t delta;
4528 	uint64_t fill = 0;
4529 	int i;
4530 
4531 	ASSERT3P(db->db_blkptr, !=, NULL);
4532 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4533 
4534 	DB_DNODE_ENTER(db);
4535 	dn = DB_DNODE(db);
4536 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4537 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4538 	zio->io_prev_space_delta = delta;
4539 
4540 	if (bp->blk_birth != 0) {
4541 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4542 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4543 		    (db->db_blkid == DMU_SPILL_BLKID &&
4544 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4545 		    BP_IS_EMBEDDED(bp));
4546 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4547 	}
4548 
4549 	mutex_enter(&db->db_mtx);
4550 
4551 #ifdef ZFS_DEBUG
4552 	if (db->db_blkid == DMU_SPILL_BLKID) {
4553 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4554 		ASSERT(!(BP_IS_HOLE(bp)) &&
4555 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4556 	}
4557 #endif
4558 
4559 	if (db->db_level == 0) {
4560 		mutex_enter(&dn->dn_mtx);
4561 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4562 		    db->db_blkid != DMU_SPILL_BLKID) {
4563 			ASSERT0(db->db_objset->os_raw_receive);
4564 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4565 		}
4566 		mutex_exit(&dn->dn_mtx);
4567 
4568 		if (dn->dn_type == DMU_OT_DNODE) {
4569 			i = 0;
4570 			while (i < db->db.db_size) {
4571 				dnode_phys_t *dnp =
4572 				    (void *)(((char *)db->db.db_data) + i);
4573 
4574 				i += DNODE_MIN_SIZE;
4575 				if (dnp->dn_type != DMU_OT_NONE) {
4576 					fill++;
4577 					i += dnp->dn_extra_slots *
4578 					    DNODE_MIN_SIZE;
4579 				}
4580 			}
4581 		} else {
4582 			if (BP_IS_HOLE(bp)) {
4583 				fill = 0;
4584 			} else {
4585 				fill = 1;
4586 			}
4587 		}
4588 	} else {
4589 		blkptr_t *ibp = db->db.db_data;
4590 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4591 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4592 			if (BP_IS_HOLE(ibp))
4593 				continue;
4594 			fill += BP_GET_FILL(ibp);
4595 		}
4596 	}
4597 	DB_DNODE_EXIT(db);
4598 
4599 	if (!BP_IS_EMBEDDED(bp))
4600 		BP_SET_FILL(bp, fill);
4601 
4602 	mutex_exit(&db->db_mtx);
4603 
4604 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4605 	*db->db_blkptr = *bp;
4606 	dmu_buf_unlock_parent(db, dblt, FTAG);
4607 }
4608 
4609 /*
4610  * This function gets called just prior to running through the compression
4611  * stage of the zio pipeline. If we're an indirect block comprised of only
4612  * holes, then we want this indirect to be compressed away to a hole. In
4613  * order to do that we must zero out any information about the holes that
4614  * this indirect points to prior to before we try to compress it.
4615  */
4616 static void
4617 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4618 {
4619 	(void) zio, (void) buf;
4620 	dmu_buf_impl_t *db = vdb;
4621 	dnode_t *dn;
4622 	blkptr_t *bp;
4623 	unsigned int epbs, i;
4624 
4625 	ASSERT3U(db->db_level, >, 0);
4626 	DB_DNODE_ENTER(db);
4627 	dn = DB_DNODE(db);
4628 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4629 	ASSERT3U(epbs, <, 31);
4630 
4631 	/* Determine if all our children are holes */
4632 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4633 		if (!BP_IS_HOLE(bp))
4634 			break;
4635 	}
4636 
4637 	/*
4638 	 * If all the children are holes, then zero them all out so that
4639 	 * we may get compressed away.
4640 	 */
4641 	if (i == 1ULL << epbs) {
4642 		/*
4643 		 * We only found holes. Grab the rwlock to prevent
4644 		 * anybody from reading the blocks we're about to
4645 		 * zero out.
4646 		 */
4647 		rw_enter(&db->db_rwlock, RW_WRITER);
4648 		memset(db->db.db_data, 0, db->db.db_size);
4649 		rw_exit(&db->db_rwlock);
4650 	}
4651 	DB_DNODE_EXIT(db);
4652 }
4653 
4654 /*
4655  * The SPA will call this callback several times for each zio - once
4656  * for every physical child i/o (zio->io_phys_children times).  This
4657  * allows the DMU to monitor the progress of each logical i/o.  For example,
4658  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4659  * block.  There may be a long delay before all copies/fragments are completed,
4660  * so this callback allows us to retire dirty space gradually, as the physical
4661  * i/os complete.
4662  */
4663 static void
4664 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4665 {
4666 	(void) buf;
4667 	dmu_buf_impl_t *db = arg;
4668 	objset_t *os = db->db_objset;
4669 	dsl_pool_t *dp = dmu_objset_pool(os);
4670 	dbuf_dirty_record_t *dr;
4671 	int delta = 0;
4672 
4673 	dr = db->db_data_pending;
4674 	ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4675 
4676 	/*
4677 	 * The callback will be called io_phys_children times.  Retire one
4678 	 * portion of our dirty space each time we are called.  Any rounding
4679 	 * error will be cleaned up by dbuf_write_done().
4680 	 */
4681 	delta = dr->dr_accounted / zio->io_phys_children;
4682 	dsl_pool_undirty_space(dp, delta, zio->io_txg);
4683 }
4684 
4685 static void
4686 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4687 {
4688 	(void) buf;
4689 	dmu_buf_impl_t *db = vdb;
4690 	blkptr_t *bp_orig = &zio->io_bp_orig;
4691 	blkptr_t *bp = db->db_blkptr;
4692 	objset_t *os = db->db_objset;
4693 	dmu_tx_t *tx = os->os_synctx;
4694 
4695 	ASSERT0(zio->io_error);
4696 	ASSERT(db->db_blkptr == bp);
4697 
4698 	/*
4699 	 * For nopwrites and rewrites we ensure that the bp matches our
4700 	 * original and bypass all the accounting.
4701 	 */
4702 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4703 		ASSERT(BP_EQUAL(bp, bp_orig));
4704 	} else {
4705 		dsl_dataset_t *ds = os->os_dsl_dataset;
4706 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4707 		dsl_dataset_block_born(ds, bp, tx);
4708 	}
4709 
4710 	mutex_enter(&db->db_mtx);
4711 
4712 	DBUF_VERIFY(db);
4713 
4714 	dbuf_dirty_record_t *dr = db->db_data_pending;
4715 	dnode_t *dn = dr->dr_dnode;
4716 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4717 	ASSERT(dr->dr_dbuf == db);
4718 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4719 	list_remove(&db->db_dirty_records, dr);
4720 
4721 #ifdef ZFS_DEBUG
4722 	if (db->db_blkid == DMU_SPILL_BLKID) {
4723 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4724 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4725 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4726 	}
4727 #endif
4728 
4729 	if (db->db_level == 0) {
4730 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4731 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4732 		if (db->db_state != DB_NOFILL) {
4733 			if (dr->dt.dl.dr_data != db->db_buf)
4734 				arc_buf_destroy(dr->dt.dl.dr_data, db);
4735 		}
4736 	} else {
4737 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4738 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4739 		if (!BP_IS_HOLE(db->db_blkptr)) {
4740 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4741 			    SPA_BLKPTRSHIFT;
4742 			ASSERT3U(db->db_blkid, <=,
4743 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4744 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4745 			    db->db.db_size);
4746 		}
4747 		mutex_destroy(&dr->dt.di.dr_mtx);
4748 		list_destroy(&dr->dt.di.dr_children);
4749 	}
4750 
4751 	cv_broadcast(&db->db_changed);
4752 	ASSERT(db->db_dirtycnt > 0);
4753 	db->db_dirtycnt -= 1;
4754 	db->db_data_pending = NULL;
4755 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4756 
4757 	/*
4758 	 * If we didn't do a physical write in this ZIO and we
4759 	 * still ended up here, it means that the space of the
4760 	 * dbuf that we just released (and undirtied) above hasn't
4761 	 * been marked as undirtied in the pool's accounting.
4762 	 *
4763 	 * Thus, we undirty that space in the pool's view of the
4764 	 * world here. For physical writes this type of update
4765 	 * happens in dbuf_write_physdone().
4766 	 *
4767 	 * If we did a physical write, cleanup any rounding errors
4768 	 * that came up due to writing multiple copies of a block
4769 	 * on disk [see dbuf_write_physdone()].
4770 	 */
4771 	if (zio->io_phys_children == 0) {
4772 		dsl_pool_undirty_space(dmu_objset_pool(os),
4773 		    dr->dr_accounted, zio->io_txg);
4774 	} else {
4775 		dsl_pool_undirty_space(dmu_objset_pool(os),
4776 		    dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4777 	}
4778 
4779 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
4780 }
4781 
4782 static void
4783 dbuf_write_nofill_ready(zio_t *zio)
4784 {
4785 	dbuf_write_ready(zio, NULL, zio->io_private);
4786 }
4787 
4788 static void
4789 dbuf_write_nofill_done(zio_t *zio)
4790 {
4791 	dbuf_write_done(zio, NULL, zio->io_private);
4792 }
4793 
4794 static void
4795 dbuf_write_override_ready(zio_t *zio)
4796 {
4797 	dbuf_dirty_record_t *dr = zio->io_private;
4798 	dmu_buf_impl_t *db = dr->dr_dbuf;
4799 
4800 	dbuf_write_ready(zio, NULL, db);
4801 }
4802 
4803 static void
4804 dbuf_write_override_done(zio_t *zio)
4805 {
4806 	dbuf_dirty_record_t *dr = zio->io_private;
4807 	dmu_buf_impl_t *db = dr->dr_dbuf;
4808 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4809 
4810 	mutex_enter(&db->db_mtx);
4811 	if (!BP_EQUAL(zio->io_bp, obp)) {
4812 		if (!BP_IS_HOLE(obp))
4813 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4814 		arc_release(dr->dt.dl.dr_data, db);
4815 	}
4816 	mutex_exit(&db->db_mtx);
4817 
4818 	dbuf_write_done(zio, NULL, db);
4819 
4820 	if (zio->io_abd != NULL)
4821 		abd_free(zio->io_abd);
4822 }
4823 
4824 typedef struct dbuf_remap_impl_callback_arg {
4825 	objset_t	*drica_os;
4826 	uint64_t	drica_blk_birth;
4827 	dmu_tx_t	*drica_tx;
4828 } dbuf_remap_impl_callback_arg_t;
4829 
4830 static void
4831 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4832     void *arg)
4833 {
4834 	dbuf_remap_impl_callback_arg_t *drica = arg;
4835 	objset_t *os = drica->drica_os;
4836 	spa_t *spa = dmu_objset_spa(os);
4837 	dmu_tx_t *tx = drica->drica_tx;
4838 
4839 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4840 
4841 	if (os == spa_meta_objset(spa)) {
4842 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4843 	} else {
4844 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4845 		    size, drica->drica_blk_birth, tx);
4846 	}
4847 }
4848 
4849 static void
4850 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4851 {
4852 	blkptr_t bp_copy = *bp;
4853 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4854 	dbuf_remap_impl_callback_arg_t drica;
4855 
4856 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4857 
4858 	drica.drica_os = dn->dn_objset;
4859 	drica.drica_blk_birth = bp->blk_birth;
4860 	drica.drica_tx = tx;
4861 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4862 	    &drica)) {
4863 		/*
4864 		 * If the blkptr being remapped is tracked by a livelist,
4865 		 * then we need to make sure the livelist reflects the update.
4866 		 * First, cancel out the old blkptr by appending a 'FREE'
4867 		 * entry. Next, add an 'ALLOC' to track the new version. This
4868 		 * way we avoid trying to free an inaccurate blkptr at delete.
4869 		 * Note that embedded blkptrs are not tracked in livelists.
4870 		 */
4871 		if (dn->dn_objset != spa_meta_objset(spa)) {
4872 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4873 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4874 			    bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4875 				ASSERT(!BP_IS_EMBEDDED(bp));
4876 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
4877 				ASSERT(spa_feature_is_enabled(spa,
4878 				    SPA_FEATURE_LIVELIST));
4879 				bplist_append(&ds->ds_dir->dd_pending_frees,
4880 				    bp);
4881 				bplist_append(&ds->ds_dir->dd_pending_allocs,
4882 				    &bp_copy);
4883 			}
4884 		}
4885 
4886 		/*
4887 		 * The db_rwlock prevents dbuf_read_impl() from
4888 		 * dereferencing the BP while we are changing it.  To
4889 		 * avoid lock contention, only grab it when we are actually
4890 		 * changing the BP.
4891 		 */
4892 		if (rw != NULL)
4893 			rw_enter(rw, RW_WRITER);
4894 		*bp = bp_copy;
4895 		if (rw != NULL)
4896 			rw_exit(rw);
4897 	}
4898 }
4899 
4900 /*
4901  * Remap any existing BP's to concrete vdevs, if possible.
4902  */
4903 static void
4904 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4905 {
4906 	spa_t *spa = dmu_objset_spa(db->db_objset);
4907 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4908 
4909 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4910 		return;
4911 
4912 	if (db->db_level > 0) {
4913 		blkptr_t *bp = db->db.db_data;
4914 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4915 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4916 		}
4917 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4918 		dnode_phys_t *dnp = db->db.db_data;
4919 		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4920 		    DMU_OT_DNODE);
4921 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4922 		    i += dnp[i].dn_extra_slots + 1) {
4923 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4924 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4925 				    &dn->dn_dbuf->db_rwlock);
4926 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4927 				    tx);
4928 			}
4929 		}
4930 	}
4931 }
4932 
4933 
4934 /* Issue I/O to commit a dirty buffer to disk. */
4935 static void
4936 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4937 {
4938 	dmu_buf_impl_t *db = dr->dr_dbuf;
4939 	dnode_t *dn = dr->dr_dnode;
4940 	objset_t *os;
4941 	dmu_buf_impl_t *parent = db->db_parent;
4942 	uint64_t txg = tx->tx_txg;
4943 	zbookmark_phys_t zb;
4944 	zio_prop_t zp;
4945 	zio_t *pio; /* parent I/O */
4946 	int wp_flag = 0;
4947 
4948 	ASSERT(dmu_tx_is_syncing(tx));
4949 
4950 	os = dn->dn_objset;
4951 
4952 	if (db->db_state != DB_NOFILL) {
4953 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4954 			/*
4955 			 * Private object buffers are released here rather
4956 			 * than in dbuf_dirty() since they are only modified
4957 			 * in the syncing context and we don't want the
4958 			 * overhead of making multiple copies of the data.
4959 			 */
4960 			if (BP_IS_HOLE(db->db_blkptr)) {
4961 				arc_buf_thaw(data);
4962 			} else {
4963 				dbuf_release_bp(db);
4964 			}
4965 			dbuf_remap(dn, db, tx);
4966 		}
4967 	}
4968 
4969 	if (parent != dn->dn_dbuf) {
4970 		/* Our parent is an indirect block. */
4971 		/* We have a dirty parent that has been scheduled for write. */
4972 		ASSERT(parent && parent->db_data_pending);
4973 		/* Our parent's buffer is one level closer to the dnode. */
4974 		ASSERT(db->db_level == parent->db_level-1);
4975 		/*
4976 		 * We're about to modify our parent's db_data by modifying
4977 		 * our block pointer, so the parent must be released.
4978 		 */
4979 		ASSERT(arc_released(parent->db_buf));
4980 		pio = parent->db_data_pending->dr_zio;
4981 	} else {
4982 		/* Our parent is the dnode itself. */
4983 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4984 		    db->db_blkid != DMU_SPILL_BLKID) ||
4985 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4986 		if (db->db_blkid != DMU_SPILL_BLKID)
4987 			ASSERT3P(db->db_blkptr, ==,
4988 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
4989 		pio = dn->dn_zio;
4990 	}
4991 
4992 	ASSERT(db->db_level == 0 || data == db->db_buf);
4993 	ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4994 	ASSERT(pio);
4995 
4996 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4997 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4998 	    db->db.db_object, db->db_level, db->db_blkid);
4999 
5000 	if (db->db_blkid == DMU_SPILL_BLKID)
5001 		wp_flag = WP_SPILL;
5002 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5003 
5004 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5005 
5006 	/*
5007 	 * We copy the blkptr now (rather than when we instantiate the dirty
5008 	 * record), because its value can change between open context and
5009 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5010 	 * db_blkptr because we are in syncing context.
5011 	 */
5012 	dr->dr_bp_copy = *db->db_blkptr;
5013 
5014 	if (db->db_level == 0 &&
5015 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5016 		/*
5017 		 * The BP for this block has been provided by open context
5018 		 * (by dmu_sync() or dmu_buf_write_embedded()).
5019 		 */
5020 		abd_t *contents = (data != NULL) ?
5021 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5022 
5023 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5024 		    contents, db->db.db_size, db->db.db_size, &zp,
5025 		    dbuf_write_override_ready, NULL, NULL,
5026 		    dbuf_write_override_done,
5027 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5028 		mutex_enter(&db->db_mtx);
5029 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5030 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5031 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
5032 		mutex_exit(&db->db_mtx);
5033 	} else if (db->db_state == DB_NOFILL) {
5034 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5035 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5036 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5037 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5038 		    dbuf_write_nofill_ready, NULL, NULL,
5039 		    dbuf_write_nofill_done, db,
5040 		    ZIO_PRIORITY_ASYNC_WRITE,
5041 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5042 	} else {
5043 		ASSERT(arc_released(data));
5044 
5045 		/*
5046 		 * For indirect blocks, we want to setup the children
5047 		 * ready callback so that we can properly handle an indirect
5048 		 * block that only contains holes.
5049 		 */
5050 		arc_write_done_func_t *children_ready_cb = NULL;
5051 		if (db->db_level != 0)
5052 			children_ready_cb = dbuf_write_children_ready;
5053 
5054 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5055 		    &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db),
5056 		    &zp, dbuf_write_ready,
5057 		    children_ready_cb, dbuf_write_physdone,
5058 		    dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5059 		    ZIO_FLAG_MUSTSUCCEED, &zb);
5060 	}
5061 }
5062 
5063 EXPORT_SYMBOL(dbuf_find);
5064 EXPORT_SYMBOL(dbuf_is_metadata);
5065 EXPORT_SYMBOL(dbuf_destroy);
5066 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5067 EXPORT_SYMBOL(dbuf_whichblock);
5068 EXPORT_SYMBOL(dbuf_read);
5069 EXPORT_SYMBOL(dbuf_unoverride);
5070 EXPORT_SYMBOL(dbuf_free_range);
5071 EXPORT_SYMBOL(dbuf_new_size);
5072 EXPORT_SYMBOL(dbuf_release_bp);
5073 EXPORT_SYMBOL(dbuf_dirty);
5074 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5075 EXPORT_SYMBOL(dmu_buf_will_dirty);
5076 EXPORT_SYMBOL(dmu_buf_is_dirty);
5077 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5078 EXPORT_SYMBOL(dmu_buf_will_fill);
5079 EXPORT_SYMBOL(dmu_buf_fill_done);
5080 EXPORT_SYMBOL(dmu_buf_rele);
5081 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5082 EXPORT_SYMBOL(dbuf_prefetch);
5083 EXPORT_SYMBOL(dbuf_hold_impl);
5084 EXPORT_SYMBOL(dbuf_hold);
5085 EXPORT_SYMBOL(dbuf_hold_level);
5086 EXPORT_SYMBOL(dbuf_create_bonus);
5087 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5088 EXPORT_SYMBOL(dbuf_rm_spill);
5089 EXPORT_SYMBOL(dbuf_add_ref);
5090 EXPORT_SYMBOL(dbuf_rele);
5091 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5092 EXPORT_SYMBOL(dbuf_refcount);
5093 EXPORT_SYMBOL(dbuf_sync_list);
5094 EXPORT_SYMBOL(dmu_buf_set_user);
5095 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5096 EXPORT_SYMBOL(dmu_buf_get_user);
5097 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5098 
5099 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
5100 	"Maximum size in bytes of the dbuf cache.");
5101 
5102 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5103 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5104 
5105 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5106 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5107 
5108 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
5109 	"Maximum size in bytes of dbuf metadata cache.");
5110 
5111 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW,
5112 	"Set size of dbuf cache to log2 fraction of arc size.");
5113 
5114 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW,
5115 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5116