xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2019, Klara Inc.
28  * Copyright (c) 2019, Allan Jude
29  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59 
60 static kstat_t *dbuf_ksp;
61 
62 typedef struct dbuf_stats {
63 	/*
64 	 * Various statistics about the size of the dbuf cache.
65 	 */
66 	kstat_named_t cache_count;
67 	kstat_named_t cache_size_bytes;
68 	kstat_named_t cache_size_bytes_max;
69 	/*
70 	 * Statistics regarding the bounds on the dbuf cache size.
71 	 */
72 	kstat_named_t cache_target_bytes;
73 	kstat_named_t cache_lowater_bytes;
74 	kstat_named_t cache_hiwater_bytes;
75 	/*
76 	 * Total number of dbuf cache evictions that have occurred.
77 	 */
78 	kstat_named_t cache_total_evicts;
79 	/*
80 	 * The distribution of dbuf levels in the dbuf cache and
81 	 * the total size of all dbufs at each level.
82 	 */
83 	kstat_named_t cache_levels[DN_MAX_LEVELS];
84 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 	/*
86 	 * Statistics about the dbuf hash table.
87 	 */
88 	kstat_named_t hash_hits;
89 	kstat_named_t hash_misses;
90 	kstat_named_t hash_collisions;
91 	kstat_named_t hash_elements;
92 	kstat_named_t hash_elements_max;
93 	/*
94 	 * Number of sublists containing more than one dbuf in the dbuf
95 	 * hash table. Keep track of the longest hash chain.
96 	 */
97 	kstat_named_t hash_chains;
98 	kstat_named_t hash_chain_max;
99 	/*
100 	 * Number of times a dbuf_create() discovers that a dbuf was
101 	 * already created and in the dbuf hash table.
102 	 */
103 	kstat_named_t hash_insert_race;
104 	/*
105 	 * Number of entries in the hash table dbuf and mutex arrays.
106 	 */
107 	kstat_named_t hash_table_count;
108 	kstat_named_t hash_mutex_count;
109 	/*
110 	 * Statistics about the size of the metadata dbuf cache.
111 	 */
112 	kstat_named_t metadata_cache_count;
113 	kstat_named_t metadata_cache_size_bytes;
114 	kstat_named_t metadata_cache_size_bytes_max;
115 	/*
116 	 * For diagnostic purposes, this is incremented whenever we can't add
117 	 * something to the metadata cache because it's full, and instead put
118 	 * the data in the regular dbuf cache.
119 	 */
120 	kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122 
123 dbuf_stats_t dbuf_stats = {
124 	{ "cache_count",			KSTAT_DATA_UINT64 },
125 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
126 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
127 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
128 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
129 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
130 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
131 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
132 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
133 	{ "hash_hits",				KSTAT_DATA_UINT64 },
134 	{ "hash_misses",			KSTAT_DATA_UINT64 },
135 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
136 	{ "hash_elements",			KSTAT_DATA_UINT64 },
137 	{ "hash_elements_max",			KSTAT_DATA_UINT64 },
138 	{ "hash_chains",			KSTAT_DATA_UINT64 },
139 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
140 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
141 	{ "hash_table_count",			KSTAT_DATA_UINT64 },
142 	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
143 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
144 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
145 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
146 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
147 };
148 
149 struct {
150 	wmsum_t cache_count;
151 	wmsum_t cache_total_evicts;
152 	wmsum_t cache_levels[DN_MAX_LEVELS];
153 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 	wmsum_t hash_hits;
155 	wmsum_t hash_misses;
156 	wmsum_t hash_collisions;
157 	wmsum_t hash_chains;
158 	wmsum_t hash_insert_race;
159 	wmsum_t metadata_cache_count;
160 	wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162 
163 #define	DBUF_STAT_INCR(stat, val)	\
164 	wmsum_add(&dbuf_sums.stat, val)
165 #define	DBUF_STAT_DECR(stat, val)	\
166 	DBUF_STAT_INCR(stat, -(val))
167 #define	DBUF_STAT_BUMP(stat)		\
168 	DBUF_STAT_INCR(stat, 1)
169 #define	DBUF_STAT_BUMPDOWN(stat)	\
170 	DBUF_STAT_INCR(stat, -1)
171 #define	DBUF_STAT_MAX(stat, v) {					\
172 	uint64_t _m;							\
173 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
174 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 		continue;						\
176 }
177 
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 
181 /*
182  * Global data structures and functions for the dbuf cache.
183  */
184 static kmem_cache_t *dbuf_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
186 
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
191 
192 /*
193  * There are two dbuf caches; each dbuf can only be in one of them at a time.
194  *
195  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197  *    that represent the metadata that describes filesystems/snapshots/
198  *    bookmarks/properties/etc. We only evict from this cache when we export a
199  *    pool, to short-circuit as much I/O as possible for all administrative
200  *    commands that need the metadata. There is no eviction policy for this
201  *    cache, because we try to only include types in it which would occupy a
202  *    very small amount of space per object but create a large impact on the
203  *    performance of these commands. Instead, after it reaches a maximum size
204  *    (which should only happen on very small memory systems with a very large
205  *    number of filesystem objects), we stop taking new dbufs into the
206  *    metadata cache, instead putting them in the normal dbuf cache.
207  *
208  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209  *    are not currently held but have been recently released. These dbufs
210  *    are not eligible for arc eviction until they are aged out of the cache.
211  *    Dbufs that are aged out of the cache will be immediately destroyed and
212  *    become eligible for arc eviction.
213  *
214  * Dbufs are added to these caches once the last hold is released. If a dbuf is
215  * later accessed and still exists in the dbuf cache, then it will be removed
216  * from the cache and later re-added to the head of the cache.
217  *
218  * If a given dbuf meets the requirements for the metadata cache, it will go
219  * there, otherwise it will be considered for the generic LRU dbuf cache. The
220  * caches and the refcounts tracking their sizes are stored in an array indexed
221  * by those caches' matching enum values (from dbuf_cached_state_t).
222  */
223 typedef struct dbuf_cache {
224 	multilist_t cache;
225 	zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
228 
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
232 
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
236 
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
239 
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
242 
243 /*
244  * The LRU dbuf cache uses a three-stage eviction policy:
245  *	- A low water marker designates when the dbuf eviction thread
246  *	should stop evicting from the dbuf cache.
247  *	- When we reach the maximum size (aka mid water mark), we
248  *	signal the eviction thread to run.
249  *	- The high water mark indicates when the eviction thread
250  *	is unable to keep up with the incoming load and eviction must
251  *	happen in the context of the calling thread.
252  *
253  * The dbuf cache:
254  *                                                 (max size)
255  *                                      low water   mid water   hi water
256  * +----------------------------------------+----------+----------+
257  * |                                        |          |          |
258  * |                                        |          |          |
259  * |                                        |          |          |
260  * |                                        |          |          |
261  * +----------------------------------------+----------+----------+
262  *                                        stop        signal     evict
263  *                                      evicting     eviction   directly
264  *                                                    thread
265  *
266  * The high and low water marks indicate the operating range for the eviction
267  * thread. The low water mark is, by default, 90% of the total size of the
268  * cache and the high water mark is at 110% (both of these percentages can be
269  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270  * respectively). The eviction thread will try to ensure that the cache remains
271  * within this range by waking up every second and checking if the cache is
272  * above the low water mark. The thread can also be woken up by callers adding
273  * elements into the cache if the cache is larger than the mid water (i.e max
274  * cache size). Once the eviction thread is woken up and eviction is required,
275  * it will continue evicting buffers until it's able to reduce the cache size
276  * to the low water mark. If the cache size continues to grow and hits the high
277  * water mark, then callers adding elements to the cache will begin to evict
278  * directly from the cache until the cache is no longer above the high water
279  * mark.
280  */
281 
282 /*
283  * The percentage above and below the maximum cache size.
284  */
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
287 
288 static int
289 dbuf_cons(void *vdb, void *unused, int kmflag)
290 {
291 	(void) unused, (void) kmflag;
292 	dmu_buf_impl_t *db = vdb;
293 	memset(db, 0, sizeof (dmu_buf_impl_t));
294 
295 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
296 	rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
297 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 	multilist_link_init(&db->db_cache_link);
299 	zfs_refcount_create(&db->db_holds);
300 
301 	return (0);
302 }
303 
304 static void
305 dbuf_dest(void *vdb, void *unused)
306 {
307 	(void) unused;
308 	dmu_buf_impl_t *db = vdb;
309 	mutex_destroy(&db->db_mtx);
310 	rw_destroy(&db->db_rwlock);
311 	cv_destroy(&db->db_changed);
312 	ASSERT(!multilist_link_active(&db->db_cache_link));
313 	zfs_refcount_destroy(&db->db_holds);
314 }
315 
316 /*
317  * dbuf hash table routines
318  */
319 static dbuf_hash_table_t dbuf_hash_table;
320 
321 /*
322  * We use Cityhash for this. It's fast, and has good hash properties without
323  * requiring any large static buffers.
324  */
325 static uint64_t
326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
327 {
328 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
329 }
330 
331 #define	DTRACE_SET_STATE(db, why) \
332 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
333 	    const char *, why)
334 
335 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
336 	((dbuf)->db.db_object == (obj) &&		\
337 	(dbuf)->db_objset == (os) &&			\
338 	(dbuf)->db_level == (level) &&			\
339 	(dbuf)->db_blkid == (blkid))
340 
341 dmu_buf_impl_t *
342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
343     uint64_t *hash_out)
344 {
345 	dbuf_hash_table_t *h = &dbuf_hash_table;
346 	uint64_t hv;
347 	uint64_t idx;
348 	dmu_buf_impl_t *db;
349 
350 	hv = dbuf_hash(os, obj, level, blkid);
351 	idx = hv & h->hash_table_mask;
352 
353 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
355 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
356 			mutex_enter(&db->db_mtx);
357 			if (db->db_state != DB_EVICTING) {
358 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 				return (db);
360 			}
361 			mutex_exit(&db->db_mtx);
362 		}
363 	}
364 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
365 	if (hash_out != NULL)
366 		*hash_out = hv;
367 	return (NULL);
368 }
369 
370 static dmu_buf_impl_t *
371 dbuf_find_bonus(objset_t *os, uint64_t object)
372 {
373 	dnode_t *dn;
374 	dmu_buf_impl_t *db = NULL;
375 
376 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
377 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 		if (dn->dn_bonus != NULL) {
379 			db = dn->dn_bonus;
380 			mutex_enter(&db->db_mtx);
381 		}
382 		rw_exit(&dn->dn_struct_rwlock);
383 		dnode_rele(dn, FTAG);
384 	}
385 	return (db);
386 }
387 
388 /*
389  * Insert an entry into the hash table.  If there is already an element
390  * equal to elem in the hash table, then the already existing element
391  * will be returned and the new element will not be inserted.
392  * Otherwise returns NULL.
393  */
394 static dmu_buf_impl_t *
395 dbuf_hash_insert(dmu_buf_impl_t *db)
396 {
397 	dbuf_hash_table_t *h = &dbuf_hash_table;
398 	objset_t *os = db->db_objset;
399 	uint64_t obj = db->db.db_object;
400 	int level = db->db_level;
401 	uint64_t blkid, idx;
402 	dmu_buf_impl_t *dbf;
403 	uint32_t i;
404 
405 	blkid = db->db_blkid;
406 	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
407 	idx = db->db_hash & h->hash_table_mask;
408 
409 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
410 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
411 	    dbf = dbf->db_hash_next, i++) {
412 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
413 			mutex_enter(&dbf->db_mtx);
414 			if (dbf->db_state != DB_EVICTING) {
415 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
416 				return (dbf);
417 			}
418 			mutex_exit(&dbf->db_mtx);
419 		}
420 	}
421 
422 	if (i > 0) {
423 		DBUF_STAT_BUMP(hash_collisions);
424 		if (i == 1)
425 			DBUF_STAT_BUMP(hash_chains);
426 
427 		DBUF_STAT_MAX(hash_chain_max, i);
428 	}
429 
430 	mutex_enter(&db->db_mtx);
431 	db->db_hash_next = h->hash_table[idx];
432 	h->hash_table[idx] = db;
433 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
434 	uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
435 	DBUF_STAT_MAX(hash_elements_max, he);
436 
437 	return (NULL);
438 }
439 
440 /*
441  * This returns whether this dbuf should be stored in the metadata cache, which
442  * is based on whether it's from one of the dnode types that store data related
443  * to traversing dataset hierarchies.
444  */
445 static boolean_t
446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
447 {
448 	DB_DNODE_ENTER(db);
449 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 	DB_DNODE_EXIT(db);
451 
452 	/* Check if this dbuf is one of the types we care about */
453 	if (DMU_OT_IS_METADATA_CACHED(type)) {
454 		/* If we hit this, then we set something up wrong in dmu_ot */
455 		ASSERT(DMU_OT_IS_METADATA(type));
456 
457 		/*
458 		 * Sanity check for small-memory systems: don't allocate too
459 		 * much memory for this purpose.
460 		 */
461 		if (zfs_refcount_count(
462 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 		    dbuf_metadata_cache_target_bytes()) {
464 			DBUF_STAT_BUMP(metadata_cache_overflow);
465 			return (B_FALSE);
466 		}
467 
468 		return (B_TRUE);
469 	}
470 
471 	return (B_FALSE);
472 }
473 
474 /*
475  * Remove an entry from the hash table.  It must be in the EVICTING state.
476  */
477 static void
478 dbuf_hash_remove(dmu_buf_impl_t *db)
479 {
480 	dbuf_hash_table_t *h = &dbuf_hash_table;
481 	uint64_t idx;
482 	dmu_buf_impl_t *dbf, **dbp;
483 
484 	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 	    db->db_blkid), ==, db->db_hash);
486 	idx = db->db_hash & h->hash_table_mask;
487 
488 	/*
489 	 * We mustn't hold db_mtx to maintain lock ordering:
490 	 * DBUF_HASH_MUTEX > db_mtx.
491 	 */
492 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 	ASSERT(db->db_state == DB_EVICTING);
494 	ASSERT(!MUTEX_HELD(&db->db_mtx));
495 
496 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 	dbp = &h->hash_table[idx];
498 	while ((dbf = *dbp) != db) {
499 		dbp = &dbf->db_hash_next;
500 		ASSERT(dbf != NULL);
501 	}
502 	*dbp = db->db_hash_next;
503 	db->db_hash_next = NULL;
504 	if (h->hash_table[idx] &&
505 	    h->hash_table[idx]->db_hash_next == NULL)
506 		DBUF_STAT_BUMPDOWN(hash_chains);
507 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 	atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
509 }
510 
511 typedef enum {
512 	DBVU_EVICTING,
513 	DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
515 
516 static void
517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
518 {
519 #ifdef ZFS_DEBUG
520 	int64_t holds;
521 
522 	if (db->db_user == NULL)
523 		return;
524 
525 	/* Only data blocks support the attachment of user data. */
526 	ASSERT(db->db_level == 0);
527 
528 	/* Clients must resolve a dbuf before attaching user data. */
529 	ASSERT(db->db.db_data != NULL);
530 	ASSERT3U(db->db_state, ==, DB_CACHED);
531 
532 	holds = zfs_refcount_count(&db->db_holds);
533 	if (verify_type == DBVU_EVICTING) {
534 		/*
535 		 * Immediate eviction occurs when holds == dirtycnt.
536 		 * For normal eviction buffers, holds is zero on
537 		 * eviction, except when dbuf_fix_old_data() calls
538 		 * dbuf_clear_data().  However, the hold count can grow
539 		 * during eviction even though db_mtx is held (see
540 		 * dmu_bonus_hold() for an example), so we can only
541 		 * test the generic invariant that holds >= dirtycnt.
542 		 */
543 		ASSERT3U(holds, >=, db->db_dirtycnt);
544 	} else {
545 		if (db->db_user_immediate_evict == TRUE)
546 			ASSERT3U(holds, >=, db->db_dirtycnt);
547 		else
548 			ASSERT3U(holds, >, 0);
549 	}
550 #endif
551 }
552 
553 static void
554 dbuf_evict_user(dmu_buf_impl_t *db)
555 {
556 	dmu_buf_user_t *dbu = db->db_user;
557 
558 	ASSERT(MUTEX_HELD(&db->db_mtx));
559 
560 	if (dbu == NULL)
561 		return;
562 
563 	dbuf_verify_user(db, DBVU_EVICTING);
564 	db->db_user = NULL;
565 
566 #ifdef ZFS_DEBUG
567 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 		*dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
570 
571 	if (db->db_caching_status != DB_NO_CACHE) {
572 		/*
573 		 * This is a cached dbuf, so the size of the user data is
574 		 * included in its cached amount. We adjust it here because the
575 		 * user data has already been detached from the dbuf, and the
576 		 * sync functions are not supposed to touch it (the dbuf might
577 		 * not exist anymore by the time the sync functions run.
578 		 */
579 		uint64_t size = dbu->dbu_size;
580 		(void) zfs_refcount_remove_many(
581 		    &dbuf_caches[db->db_caching_status].size, size, db);
582 		if (db->db_caching_status == DB_DBUF_CACHE)
583 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
584 	}
585 
586 	/*
587 	 * There are two eviction callbacks - one that we call synchronously
588 	 * and one that we invoke via a taskq.  The async one is useful for
589 	 * avoiding lock order reversals and limiting stack depth.
590 	 *
591 	 * Note that if we have a sync callback but no async callback,
592 	 * it's likely that the sync callback will free the structure
593 	 * containing the dbu.  In that case we need to take care to not
594 	 * dereference dbu after calling the sync evict func.
595 	 */
596 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
597 
598 	if (dbu->dbu_evict_func_sync != NULL)
599 		dbu->dbu_evict_func_sync(dbu);
600 
601 	if (has_async) {
602 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
603 		    dbu, 0, &dbu->dbu_tqent);
604 	}
605 }
606 
607 boolean_t
608 dbuf_is_metadata(dmu_buf_impl_t *db)
609 {
610 	/*
611 	 * Consider indirect blocks and spill blocks to be meta data.
612 	 */
613 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
614 		return (B_TRUE);
615 	} else {
616 		boolean_t is_metadata;
617 
618 		DB_DNODE_ENTER(db);
619 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
620 		DB_DNODE_EXIT(db);
621 
622 		return (is_metadata);
623 	}
624 }
625 
626 /*
627  * We want to exclude buffers that are on a special allocation class from
628  * L2ARC.
629  */
630 boolean_t
631 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
632 {
633 	if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
634 	    (db->db_objset->os_secondary_cache ==
635 	    ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
636 		if (l2arc_exclude_special == 0)
637 			return (B_TRUE);
638 
639 		blkptr_t *bp = db->db_blkptr;
640 		if (bp == NULL || BP_IS_HOLE(bp))
641 			return (B_FALSE);
642 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
643 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
644 		vdev_t *vd = NULL;
645 
646 		if (vdev < rvd->vdev_children)
647 			vd = rvd->vdev_child[vdev];
648 
649 		if (vd == NULL)
650 			return (B_TRUE);
651 
652 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
653 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
654 			return (B_TRUE);
655 	}
656 	return (B_FALSE);
657 }
658 
659 static inline boolean_t
660 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
661 {
662 	if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
663 	    (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
664 	    (level > 0 ||
665 	    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
666 		if (l2arc_exclude_special == 0)
667 			return (B_TRUE);
668 
669 		if (bp == NULL || BP_IS_HOLE(bp))
670 			return (B_FALSE);
671 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
672 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
673 		vdev_t *vd = NULL;
674 
675 		if (vdev < rvd->vdev_children)
676 			vd = rvd->vdev_child[vdev];
677 
678 		if (vd == NULL)
679 			return (B_TRUE);
680 
681 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
682 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
683 			return (B_TRUE);
684 	}
685 	return (B_FALSE);
686 }
687 
688 
689 /*
690  * This function *must* return indices evenly distributed between all
691  * sublists of the multilist. This is needed due to how the dbuf eviction
692  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
693  * distributed between all sublists and uses this assumption when
694  * deciding which sublist to evict from and how much to evict from it.
695  */
696 static unsigned int
697 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
698 {
699 	dmu_buf_impl_t *db = obj;
700 
701 	/*
702 	 * The assumption here, is the hash value for a given
703 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
704 	 * (i.e. it's objset, object, level and blkid fields don't change).
705 	 * Thus, we don't need to store the dbuf's sublist index
706 	 * on insertion, as this index can be recalculated on removal.
707 	 *
708 	 * Also, the low order bits of the hash value are thought to be
709 	 * distributed evenly. Otherwise, in the case that the multilist
710 	 * has a power of two number of sublists, each sublists' usage
711 	 * would not be evenly distributed. In this context full 64bit
712 	 * division would be a waste of time, so limit it to 32 bits.
713 	 */
714 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
715 	    db->db_level, db->db_blkid) %
716 	    multilist_get_num_sublists(ml));
717 }
718 
719 /*
720  * The target size of the dbuf cache can grow with the ARC target,
721  * unless limited by the tunable dbuf_cache_max_bytes.
722  */
723 static inline unsigned long
724 dbuf_cache_target_bytes(void)
725 {
726 	return (MIN(dbuf_cache_max_bytes,
727 	    arc_target_bytes() >> dbuf_cache_shift));
728 }
729 
730 /*
731  * The target size of the dbuf metadata cache can grow with the ARC target,
732  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
733  */
734 static inline unsigned long
735 dbuf_metadata_cache_target_bytes(void)
736 {
737 	return (MIN(dbuf_metadata_cache_max_bytes,
738 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
739 }
740 
741 static inline uint64_t
742 dbuf_cache_hiwater_bytes(void)
743 {
744 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
745 	return (dbuf_cache_target +
746 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
747 }
748 
749 static inline uint64_t
750 dbuf_cache_lowater_bytes(void)
751 {
752 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
753 	return (dbuf_cache_target -
754 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
755 }
756 
757 static inline boolean_t
758 dbuf_cache_above_lowater(void)
759 {
760 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
761 	    dbuf_cache_lowater_bytes());
762 }
763 
764 /*
765  * Evict the oldest eligible dbuf from the dbuf cache.
766  */
767 static void
768 dbuf_evict_one(void)
769 {
770 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
771 	multilist_sublist_t *mls = multilist_sublist_lock_idx(
772 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
773 
774 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
775 
776 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
777 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
778 		db = multilist_sublist_prev(mls, db);
779 	}
780 
781 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
782 	    multilist_sublist_t *, mls);
783 
784 	if (db != NULL) {
785 		multilist_sublist_remove(mls, db);
786 		multilist_sublist_unlock(mls);
787 		uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
788 		(void) zfs_refcount_remove_many(
789 		    &dbuf_caches[DB_DBUF_CACHE].size, size, db);
790 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
791 		DBUF_STAT_BUMPDOWN(cache_count);
792 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
793 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
794 		db->db_caching_status = DB_NO_CACHE;
795 		dbuf_destroy(db);
796 		DBUF_STAT_BUMP(cache_total_evicts);
797 	} else {
798 		multilist_sublist_unlock(mls);
799 	}
800 }
801 
802 /*
803  * The dbuf evict thread is responsible for aging out dbufs from the
804  * cache. Once the cache has reached it's maximum size, dbufs are removed
805  * and destroyed. The eviction thread will continue running until the size
806  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
807  * out of the cache it is destroyed and becomes eligible for arc eviction.
808  */
809 static __attribute__((noreturn)) void
810 dbuf_evict_thread(void *unused)
811 {
812 	(void) unused;
813 	callb_cpr_t cpr;
814 
815 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
816 
817 	mutex_enter(&dbuf_evict_lock);
818 	while (!dbuf_evict_thread_exit) {
819 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
820 			CALLB_CPR_SAFE_BEGIN(&cpr);
821 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
822 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
823 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
824 		}
825 		mutex_exit(&dbuf_evict_lock);
826 
827 		/*
828 		 * Keep evicting as long as we're above the low water mark
829 		 * for the cache. We do this without holding the locks to
830 		 * minimize lock contention.
831 		 */
832 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
833 			dbuf_evict_one();
834 		}
835 
836 		mutex_enter(&dbuf_evict_lock);
837 	}
838 
839 	dbuf_evict_thread_exit = B_FALSE;
840 	cv_broadcast(&dbuf_evict_cv);
841 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
842 	thread_exit();
843 }
844 
845 /*
846  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
847  * If the dbuf cache is at its high water mark, then evict a dbuf from the
848  * dbuf cache using the caller's context.
849  */
850 static void
851 dbuf_evict_notify(uint64_t size)
852 {
853 	/*
854 	 * We check if we should evict without holding the dbuf_evict_lock,
855 	 * because it's OK to occasionally make the wrong decision here,
856 	 * and grabbing the lock results in massive lock contention.
857 	 */
858 	if (size > dbuf_cache_target_bytes()) {
859 		if (size > dbuf_cache_hiwater_bytes())
860 			dbuf_evict_one();
861 		cv_signal(&dbuf_evict_cv);
862 	}
863 }
864 
865 static int
866 dbuf_kstat_update(kstat_t *ksp, int rw)
867 {
868 	dbuf_stats_t *ds = ksp->ks_data;
869 	dbuf_hash_table_t *h = &dbuf_hash_table;
870 
871 	if (rw == KSTAT_WRITE)
872 		return (SET_ERROR(EACCES));
873 
874 	ds->cache_count.value.ui64 =
875 	    wmsum_value(&dbuf_sums.cache_count);
876 	ds->cache_size_bytes.value.ui64 =
877 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
878 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
879 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
880 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
881 	ds->cache_total_evicts.value.ui64 =
882 	    wmsum_value(&dbuf_sums.cache_total_evicts);
883 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
884 		ds->cache_levels[i].value.ui64 =
885 		    wmsum_value(&dbuf_sums.cache_levels[i]);
886 		ds->cache_levels_bytes[i].value.ui64 =
887 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
888 	}
889 	ds->hash_hits.value.ui64 =
890 	    wmsum_value(&dbuf_sums.hash_hits);
891 	ds->hash_misses.value.ui64 =
892 	    wmsum_value(&dbuf_sums.hash_misses);
893 	ds->hash_collisions.value.ui64 =
894 	    wmsum_value(&dbuf_sums.hash_collisions);
895 	ds->hash_chains.value.ui64 =
896 	    wmsum_value(&dbuf_sums.hash_chains);
897 	ds->hash_insert_race.value.ui64 =
898 	    wmsum_value(&dbuf_sums.hash_insert_race);
899 	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
900 	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
901 	ds->metadata_cache_count.value.ui64 =
902 	    wmsum_value(&dbuf_sums.metadata_cache_count);
903 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
904 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
905 	ds->metadata_cache_overflow.value.ui64 =
906 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
907 	return (0);
908 }
909 
910 void
911 dbuf_init(void)
912 {
913 	uint64_t hmsize, hsize = 1ULL << 16;
914 	dbuf_hash_table_t *h = &dbuf_hash_table;
915 
916 	/*
917 	 * The hash table is big enough to fill one eighth of physical memory
918 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
919 	 * By default, the table will take up
920 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
921 	 */
922 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
923 		hsize <<= 1;
924 
925 	h->hash_table = NULL;
926 	while (h->hash_table == NULL) {
927 		h->hash_table_mask = hsize - 1;
928 
929 		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
930 		if (h->hash_table == NULL)
931 			hsize >>= 1;
932 
933 		ASSERT3U(hsize, >=, 1ULL << 10);
934 	}
935 
936 	/*
937 	 * The hash table buckets are protected by an array of mutexes where
938 	 * each mutex is reponsible for protecting 128 buckets.  A minimum
939 	 * array size of 8192 is targeted to avoid contention.
940 	 */
941 	if (dbuf_mutex_cache_shift == 0)
942 		hmsize = MAX(hsize >> 7, 1ULL << 13);
943 	else
944 		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
945 
946 	h->hash_mutexes = NULL;
947 	while (h->hash_mutexes == NULL) {
948 		h->hash_mutex_mask = hmsize - 1;
949 
950 		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
951 		    KM_SLEEP);
952 		if (h->hash_mutexes == NULL)
953 			hmsize >>= 1;
954 	}
955 
956 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
957 	    sizeof (dmu_buf_impl_t),
958 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
959 
960 	for (int i = 0; i < hmsize; i++)
961 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
962 
963 	dbuf_stats_init(h);
964 
965 	/*
966 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
967 	 * configuration is not required.
968 	 */
969 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
970 
971 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
972 		multilist_create(&dbuf_caches[dcs].cache,
973 		    sizeof (dmu_buf_impl_t),
974 		    offsetof(dmu_buf_impl_t, db_cache_link),
975 		    dbuf_cache_multilist_index_func);
976 		zfs_refcount_create(&dbuf_caches[dcs].size);
977 	}
978 
979 	dbuf_evict_thread_exit = B_FALSE;
980 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
981 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
982 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
983 	    NULL, 0, &p0, TS_RUN, minclsyspri);
984 
985 	wmsum_init(&dbuf_sums.cache_count, 0);
986 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
987 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
988 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
989 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
990 	}
991 	wmsum_init(&dbuf_sums.hash_hits, 0);
992 	wmsum_init(&dbuf_sums.hash_misses, 0);
993 	wmsum_init(&dbuf_sums.hash_collisions, 0);
994 	wmsum_init(&dbuf_sums.hash_chains, 0);
995 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
996 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
997 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
998 
999 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1000 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1001 	    KSTAT_FLAG_VIRTUAL);
1002 	if (dbuf_ksp != NULL) {
1003 		for (int i = 0; i < DN_MAX_LEVELS; i++) {
1004 			snprintf(dbuf_stats.cache_levels[i].name,
1005 			    KSTAT_STRLEN, "cache_level_%d", i);
1006 			dbuf_stats.cache_levels[i].data_type =
1007 			    KSTAT_DATA_UINT64;
1008 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
1009 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
1010 			dbuf_stats.cache_levels_bytes[i].data_type =
1011 			    KSTAT_DATA_UINT64;
1012 		}
1013 		dbuf_ksp->ks_data = &dbuf_stats;
1014 		dbuf_ksp->ks_update = dbuf_kstat_update;
1015 		kstat_install(dbuf_ksp);
1016 	}
1017 }
1018 
1019 void
1020 dbuf_fini(void)
1021 {
1022 	dbuf_hash_table_t *h = &dbuf_hash_table;
1023 
1024 	dbuf_stats_destroy();
1025 
1026 	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1027 		mutex_destroy(&h->hash_mutexes[i]);
1028 
1029 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1030 	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1031 	    sizeof (kmutex_t));
1032 
1033 	kmem_cache_destroy(dbuf_kmem_cache);
1034 	taskq_destroy(dbu_evict_taskq);
1035 
1036 	mutex_enter(&dbuf_evict_lock);
1037 	dbuf_evict_thread_exit = B_TRUE;
1038 	while (dbuf_evict_thread_exit) {
1039 		cv_signal(&dbuf_evict_cv);
1040 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1041 	}
1042 	mutex_exit(&dbuf_evict_lock);
1043 
1044 	mutex_destroy(&dbuf_evict_lock);
1045 	cv_destroy(&dbuf_evict_cv);
1046 
1047 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1048 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1049 		multilist_destroy(&dbuf_caches[dcs].cache);
1050 	}
1051 
1052 	if (dbuf_ksp != NULL) {
1053 		kstat_delete(dbuf_ksp);
1054 		dbuf_ksp = NULL;
1055 	}
1056 
1057 	wmsum_fini(&dbuf_sums.cache_count);
1058 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1059 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1060 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1061 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1062 	}
1063 	wmsum_fini(&dbuf_sums.hash_hits);
1064 	wmsum_fini(&dbuf_sums.hash_misses);
1065 	wmsum_fini(&dbuf_sums.hash_collisions);
1066 	wmsum_fini(&dbuf_sums.hash_chains);
1067 	wmsum_fini(&dbuf_sums.hash_insert_race);
1068 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1069 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1070 }
1071 
1072 /*
1073  * Other stuff.
1074  */
1075 
1076 #ifdef ZFS_DEBUG
1077 static void
1078 dbuf_verify(dmu_buf_impl_t *db)
1079 {
1080 	dnode_t *dn;
1081 	dbuf_dirty_record_t *dr;
1082 	uint32_t txg_prev;
1083 
1084 	ASSERT(MUTEX_HELD(&db->db_mtx));
1085 
1086 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1087 		return;
1088 
1089 	ASSERT(db->db_objset != NULL);
1090 	DB_DNODE_ENTER(db);
1091 	dn = DB_DNODE(db);
1092 	if (dn == NULL) {
1093 		ASSERT(db->db_parent == NULL);
1094 		ASSERT(db->db_blkptr == NULL);
1095 	} else {
1096 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1097 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1098 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1099 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1100 		    db->db_blkid == DMU_SPILL_BLKID ||
1101 		    !avl_is_empty(&dn->dn_dbufs));
1102 	}
1103 	if (db->db_blkid == DMU_BONUS_BLKID) {
1104 		ASSERT(dn != NULL);
1105 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1106 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1107 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1108 		ASSERT(dn != NULL);
1109 		ASSERT0(db->db.db_offset);
1110 	} else {
1111 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1112 	}
1113 
1114 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1115 		ASSERT(dr->dr_dbuf == db);
1116 		txg_prev = dr->dr_txg;
1117 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1118 		    dr = list_next(&db->db_dirty_records, dr)) {
1119 			ASSERT(dr->dr_dbuf == db);
1120 			ASSERT(txg_prev > dr->dr_txg);
1121 			txg_prev = dr->dr_txg;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * We can't assert that db_size matches dn_datablksz because it
1127 	 * can be momentarily different when another thread is doing
1128 	 * dnode_set_blksz().
1129 	 */
1130 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1131 		dr = db->db_data_pending;
1132 		/*
1133 		 * It should only be modified in syncing context, so
1134 		 * make sure we only have one copy of the data.
1135 		 */
1136 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1137 	}
1138 
1139 	/* verify db->db_blkptr */
1140 	if (db->db_blkptr) {
1141 		if (db->db_parent == dn->dn_dbuf) {
1142 			/* db is pointed to by the dnode */
1143 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1144 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1145 				ASSERT(db->db_parent == NULL);
1146 			else
1147 				ASSERT(db->db_parent != NULL);
1148 			if (db->db_blkid != DMU_SPILL_BLKID)
1149 				ASSERT3P(db->db_blkptr, ==,
1150 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1151 		} else {
1152 			/* db is pointed to by an indirect block */
1153 			int epb __maybe_unused = db->db_parent->db.db_size >>
1154 			    SPA_BLKPTRSHIFT;
1155 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1156 			ASSERT3U(db->db_parent->db.db_object, ==,
1157 			    db->db.db_object);
1158 			/*
1159 			 * dnode_grow_indblksz() can make this fail if we don't
1160 			 * have the parent's rwlock.  XXX indblksz no longer
1161 			 * grows.  safe to do this now?
1162 			 */
1163 			if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1164 				ASSERT3P(db->db_blkptr, ==,
1165 				    ((blkptr_t *)db->db_parent->db.db_data +
1166 				    db->db_blkid % epb));
1167 			}
1168 		}
1169 	}
1170 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1171 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1172 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1173 	    db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1174 		/*
1175 		 * If the blkptr isn't set but they have nonzero data,
1176 		 * it had better be dirty, otherwise we'll lose that
1177 		 * data when we evict this buffer.
1178 		 *
1179 		 * There is an exception to this rule for indirect blocks; in
1180 		 * this case, if the indirect block is a hole, we fill in a few
1181 		 * fields on each of the child blocks (importantly, birth time)
1182 		 * to prevent hole birth times from being lost when you
1183 		 * partially fill in a hole.
1184 		 */
1185 		if (db->db_dirtycnt == 0) {
1186 			if (db->db_level == 0) {
1187 				uint64_t *buf = db->db.db_data;
1188 				int i;
1189 
1190 				for (i = 0; i < db->db.db_size >> 3; i++) {
1191 					ASSERT(buf[i] == 0);
1192 				}
1193 			} else {
1194 				blkptr_t *bps = db->db.db_data;
1195 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1196 				    db->db.db_size);
1197 				/*
1198 				 * We want to verify that all the blkptrs in the
1199 				 * indirect block are holes, but we may have
1200 				 * automatically set up a few fields for them.
1201 				 * We iterate through each blkptr and verify
1202 				 * they only have those fields set.
1203 				 */
1204 				for (int i = 0;
1205 				    i < db->db.db_size / sizeof (blkptr_t);
1206 				    i++) {
1207 					blkptr_t *bp = &bps[i];
1208 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1209 					    &bp->blk_cksum));
1210 					ASSERT(
1211 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1212 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1213 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1214 					ASSERT0(bp->blk_fill);
1215 					ASSERT0(bp->blk_pad[0]);
1216 					ASSERT0(bp->blk_pad[1]);
1217 					ASSERT(!BP_IS_EMBEDDED(bp));
1218 					ASSERT(BP_IS_HOLE(bp));
1219 					ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
1220 				}
1221 			}
1222 		}
1223 	}
1224 	DB_DNODE_EXIT(db);
1225 }
1226 #endif
1227 
1228 static void
1229 dbuf_clear_data(dmu_buf_impl_t *db)
1230 {
1231 	ASSERT(MUTEX_HELD(&db->db_mtx));
1232 	dbuf_evict_user(db);
1233 	ASSERT3P(db->db_buf, ==, NULL);
1234 	db->db.db_data = NULL;
1235 	if (db->db_state != DB_NOFILL) {
1236 		db->db_state = DB_UNCACHED;
1237 		DTRACE_SET_STATE(db, "clear data");
1238 	}
1239 }
1240 
1241 static void
1242 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1243 {
1244 	ASSERT(MUTEX_HELD(&db->db_mtx));
1245 	ASSERT(buf != NULL);
1246 
1247 	db->db_buf = buf;
1248 	ASSERT(buf->b_data != NULL);
1249 	db->db.db_data = buf->b_data;
1250 }
1251 
1252 static arc_buf_t *
1253 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1254 {
1255 	spa_t *spa = db->db_objset->os_spa;
1256 
1257 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1258 }
1259 
1260 /*
1261  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1262  */
1263 arc_buf_t *
1264 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1265 {
1266 	arc_buf_t *abuf;
1267 
1268 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1269 	mutex_enter(&db->db_mtx);
1270 	if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1271 		int blksz = db->db.db_size;
1272 		spa_t *spa = db->db_objset->os_spa;
1273 
1274 		mutex_exit(&db->db_mtx);
1275 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
1276 		memcpy(abuf->b_data, db->db.db_data, blksz);
1277 	} else {
1278 		abuf = db->db_buf;
1279 		arc_loan_inuse_buf(abuf, db);
1280 		db->db_buf = NULL;
1281 		dbuf_clear_data(db);
1282 		mutex_exit(&db->db_mtx);
1283 	}
1284 	return (abuf);
1285 }
1286 
1287 /*
1288  * Calculate which level n block references the data at the level 0 offset
1289  * provided.
1290  */
1291 uint64_t
1292 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1293 {
1294 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1295 		/*
1296 		 * The level n blkid is equal to the level 0 blkid divided by
1297 		 * the number of level 0s in a level n block.
1298 		 *
1299 		 * The level 0 blkid is offset >> datablkshift =
1300 		 * offset / 2^datablkshift.
1301 		 *
1302 		 * The number of level 0s in a level n is the number of block
1303 		 * pointers in an indirect block, raised to the power of level.
1304 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1305 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1306 		 *
1307 		 * Thus, the level n blkid is: offset /
1308 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1309 		 * = offset / 2^(datablkshift + level *
1310 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1311 		 * = offset >> (datablkshift + level *
1312 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1313 		 */
1314 
1315 		const unsigned exp = dn->dn_datablkshift +
1316 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1317 
1318 		if (exp >= 8 * sizeof (offset)) {
1319 			/* This only happens on the highest indirection level */
1320 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1321 			return (0);
1322 		}
1323 
1324 		ASSERT3U(exp, <, 8 * sizeof (offset));
1325 
1326 		return (offset >> exp);
1327 	} else {
1328 		ASSERT3U(offset, <, dn->dn_datablksz);
1329 		return (0);
1330 	}
1331 }
1332 
1333 /*
1334  * This function is used to lock the parent of the provided dbuf. This should be
1335  * used when modifying or reading db_blkptr.
1336  */
1337 db_lock_type_t
1338 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1339 {
1340 	enum db_lock_type ret = DLT_NONE;
1341 	if (db->db_parent != NULL) {
1342 		rw_enter(&db->db_parent->db_rwlock, rw);
1343 		ret = DLT_PARENT;
1344 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1345 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1346 		    tag);
1347 		ret = DLT_OBJSET;
1348 	}
1349 	/*
1350 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1351 	 * of the meta-dnode of the MOS.
1352 	 */
1353 	return (ret);
1354 }
1355 
1356 /*
1357  * We need to pass the lock type in because it's possible that the block will
1358  * move from being the topmost indirect block in a dnode (and thus, have no
1359  * parent) to not the top-most via an indirection increase. This would cause a
1360  * panic if we didn't pass the lock type in.
1361  */
1362 void
1363 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1364 {
1365 	if (type == DLT_PARENT)
1366 		rw_exit(&db->db_parent->db_rwlock);
1367 	else if (type == DLT_OBJSET)
1368 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1369 }
1370 
1371 static void
1372 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1373     arc_buf_t *buf, void *vdb)
1374 {
1375 	(void) zb, (void) bp;
1376 	dmu_buf_impl_t *db = vdb;
1377 
1378 	mutex_enter(&db->db_mtx);
1379 	ASSERT3U(db->db_state, ==, DB_READ);
1380 	/*
1381 	 * All reads are synchronous, so we must have a hold on the dbuf
1382 	 */
1383 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1384 	ASSERT(db->db_buf == NULL);
1385 	ASSERT(db->db.db_data == NULL);
1386 	if (buf == NULL) {
1387 		/* i/o error */
1388 		ASSERT(zio == NULL || zio->io_error != 0);
1389 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1390 		ASSERT3P(db->db_buf, ==, NULL);
1391 		db->db_state = DB_UNCACHED;
1392 		DTRACE_SET_STATE(db, "i/o error");
1393 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1394 		/* freed in flight */
1395 		ASSERT(zio == NULL || zio->io_error == 0);
1396 		arc_release(buf, db);
1397 		memset(buf->b_data, 0, db->db.db_size);
1398 		arc_buf_freeze(buf);
1399 		db->db_freed_in_flight = FALSE;
1400 		dbuf_set_data(db, buf);
1401 		db->db_state = DB_CACHED;
1402 		DTRACE_SET_STATE(db, "freed in flight");
1403 	} else {
1404 		/* success */
1405 		ASSERT(zio == NULL || zio->io_error == 0);
1406 		dbuf_set_data(db, buf);
1407 		db->db_state = DB_CACHED;
1408 		DTRACE_SET_STATE(db, "successful read");
1409 	}
1410 	cv_broadcast(&db->db_changed);
1411 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1412 }
1413 
1414 /*
1415  * Shortcut for performing reads on bonus dbufs.  Returns
1416  * an error if we fail to verify the dnode associated with
1417  * a decrypted block. Otherwise success.
1418  */
1419 static int
1420 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1421 {
1422 	int bonuslen, max_bonuslen;
1423 
1424 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1425 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1426 	ASSERT(MUTEX_HELD(&db->db_mtx));
1427 	ASSERT(DB_DNODE_HELD(db));
1428 	ASSERT3U(bonuslen, <=, db->db.db_size);
1429 	db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1430 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1431 	if (bonuslen < max_bonuslen)
1432 		memset(db->db.db_data, 0, max_bonuslen);
1433 	if (bonuslen)
1434 		memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1435 	db->db_state = DB_CACHED;
1436 	DTRACE_SET_STATE(db, "bonus buffer filled");
1437 	return (0);
1438 }
1439 
1440 static void
1441 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1442 {
1443 	blkptr_t *bps = db->db.db_data;
1444 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1445 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1446 
1447 	for (int i = 0; i < n_bps; i++) {
1448 		blkptr_t *bp = &bps[i];
1449 
1450 		ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1451 		BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1452 		    dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1453 		BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1454 		BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1455 		BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1456 	}
1457 }
1458 
1459 /*
1460  * Handle reads on dbufs that are holes, if necessary.  This function
1461  * requires that the dbuf's mutex is held. Returns success (0) if action
1462  * was taken, ENOENT if no action was taken.
1463  */
1464 static int
1465 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1466 {
1467 	ASSERT(MUTEX_HELD(&db->db_mtx));
1468 
1469 	int is_hole = bp == NULL || BP_IS_HOLE(bp);
1470 	/*
1471 	 * For level 0 blocks only, if the above check fails:
1472 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1473 	 * processes the delete record and clears the bp while we are waiting
1474 	 * for the dn_mtx (resulting in a "no" from block_freed).
1475 	 */
1476 	if (!is_hole && db->db_level == 0)
1477 		is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1478 
1479 	if (is_hole) {
1480 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1481 		memset(db->db.db_data, 0, db->db.db_size);
1482 
1483 		if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1484 		    BP_GET_LOGICAL_BIRTH(bp) != 0) {
1485 			dbuf_handle_indirect_hole(db, dn, bp);
1486 		}
1487 		db->db_state = DB_CACHED;
1488 		DTRACE_SET_STATE(db, "hole read satisfied");
1489 		return (0);
1490 	}
1491 	return (ENOENT);
1492 }
1493 
1494 /*
1495  * This function ensures that, when doing a decrypting read of a block,
1496  * we make sure we have decrypted the dnode associated with it. We must do
1497  * this so that we ensure we are fully authenticating the checksum-of-MACs
1498  * tree from the root of the objset down to this block. Indirect blocks are
1499  * always verified against their secure checksum-of-MACs assuming that the
1500  * dnode containing them is correct. Now that we are doing a decrypting read,
1501  * we can be sure that the key is loaded and verify that assumption. This is
1502  * especially important considering that we always read encrypted dnode
1503  * blocks as raw data (without verifying their MACs) to start, and
1504  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1505  */
1506 static int
1507 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1508 {
1509 	objset_t *os = db->db_objset;
1510 	dmu_buf_impl_t *dndb;
1511 	arc_buf_t *dnbuf;
1512 	zbookmark_phys_t zb;
1513 	int err;
1514 
1515 	if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1516 	    !os->os_encrypted || os->os_raw_receive ||
1517 	    (dndb = dn->dn_dbuf) == NULL)
1518 		return (0);
1519 
1520 	dnbuf = dndb->db_buf;
1521 	if (!arc_is_encrypted(dnbuf))
1522 		return (0);
1523 
1524 	mutex_enter(&dndb->db_mtx);
1525 
1526 	/*
1527 	 * Since dnode buffer is modified by sync process, there can be only
1528 	 * one copy of it.  It means we can not modify (decrypt) it while it
1529 	 * is being written.  I don't see how this may happen now, since
1530 	 * encrypted dnode writes by receive should be completed before any
1531 	 * plain-text reads due to txg wait, but better be safe than sorry.
1532 	 */
1533 	while (1) {
1534 		if (!arc_is_encrypted(dnbuf)) {
1535 			mutex_exit(&dndb->db_mtx);
1536 			return (0);
1537 		}
1538 		dbuf_dirty_record_t *dr = dndb->db_data_pending;
1539 		if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1540 			break;
1541 		cv_wait(&dndb->db_changed, &dndb->db_mtx);
1542 	};
1543 
1544 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1545 	    DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1546 	err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1547 
1548 	/*
1549 	 * An error code of EACCES tells us that the key is still not
1550 	 * available. This is ok if we are only reading authenticated
1551 	 * (and therefore non-encrypted) blocks.
1552 	 */
1553 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1554 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1555 	    (db->db_blkid == DMU_BONUS_BLKID &&
1556 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1557 		err = 0;
1558 
1559 	mutex_exit(&dndb->db_mtx);
1560 
1561 	return (err);
1562 }
1563 
1564 /*
1565  * Drops db_mtx and the parent lock specified by dblt and tag before
1566  * returning.
1567  */
1568 static int
1569 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags,
1570     db_lock_type_t dblt, const void *tag)
1571 {
1572 	zbookmark_phys_t zb;
1573 	uint32_t aflags = ARC_FLAG_NOWAIT;
1574 	int err, zio_flags;
1575 	blkptr_t bp, *bpp = NULL;
1576 
1577 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1578 	ASSERT(MUTEX_HELD(&db->db_mtx));
1579 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1580 	ASSERT(db->db_buf == NULL);
1581 	ASSERT(db->db_parent == NULL ||
1582 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1583 
1584 	if (db->db_blkid == DMU_BONUS_BLKID) {
1585 		err = dbuf_read_bonus(db, dn);
1586 		goto early_unlock;
1587 	}
1588 
1589 	/*
1590 	 * If we have a pending block clone, we don't want to read the
1591 	 * underlying block, but the content of the block being cloned,
1592 	 * pointed by the dirty record, so we have the most recent data.
1593 	 * If there is no dirty record, then we hit a race in a sync
1594 	 * process when the dirty record is already removed, while the
1595 	 * dbuf is not yet destroyed. Such case is equivalent to uncached.
1596 	 */
1597 	if (db->db_state == DB_NOFILL) {
1598 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1599 		if (dr != NULL) {
1600 			if (!dr->dt.dl.dr_brtwrite) {
1601 				err = EIO;
1602 				goto early_unlock;
1603 			}
1604 			bp = dr->dt.dl.dr_overridden_by;
1605 			bpp = &bp;
1606 		}
1607 	}
1608 
1609 	if (bpp == NULL && db->db_blkptr != NULL) {
1610 		bp = *db->db_blkptr;
1611 		bpp = &bp;
1612 	}
1613 
1614 	err = dbuf_read_hole(db, dn, bpp);
1615 	if (err == 0)
1616 		goto early_unlock;
1617 
1618 	ASSERT(bpp != NULL);
1619 
1620 	/*
1621 	 * Any attempt to read a redacted block should result in an error. This
1622 	 * will never happen under normal conditions, but can be useful for
1623 	 * debugging purposes.
1624 	 */
1625 	if (BP_IS_REDACTED(bpp)) {
1626 		ASSERT(dsl_dataset_feature_is_active(
1627 		    db->db_objset->os_dsl_dataset,
1628 		    SPA_FEATURE_REDACTED_DATASETS));
1629 		err = SET_ERROR(EIO);
1630 		goto early_unlock;
1631 	}
1632 
1633 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1634 	    db->db.db_object, db->db_level, db->db_blkid);
1635 
1636 	/*
1637 	 * All bps of an encrypted os should have the encryption bit set.
1638 	 * If this is not true it indicates tampering and we report an error.
1639 	 */
1640 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) {
1641 		spa_log_error(db->db_objset->os_spa, &zb,
1642 		    BP_GET_LOGICAL_BIRTH(bpp));
1643 		err = SET_ERROR(EIO);
1644 		goto early_unlock;
1645 	}
1646 
1647 	db->db_state = DB_READ;
1648 	DTRACE_SET_STATE(db, "read issued");
1649 	mutex_exit(&db->db_mtx);
1650 
1651 	if (!DBUF_IS_CACHEABLE(db))
1652 		aflags |= ARC_FLAG_UNCACHED;
1653 	else if (dbuf_is_l2cacheable(db))
1654 		aflags |= ARC_FLAG_L2CACHE;
1655 
1656 	dbuf_add_ref(db, NULL);
1657 
1658 	zio_flags = (flags & DB_RF_CANFAIL) ?
1659 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1660 
1661 	if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1662 		zio_flags |= ZIO_FLAG_RAW;
1663 	/*
1664 	 * The zio layer will copy the provided blkptr later, but we have our
1665 	 * own copy so that we can release the parent's rwlock. We have to
1666 	 * do that so that if dbuf_read_done is called synchronously (on
1667 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1668 	 * parent's rwlock, which would be a lock ordering violation.
1669 	 */
1670 	dmu_buf_unlock_parent(db, dblt, tag);
1671 	return (arc_read(zio, db->db_objset->os_spa, bpp,
1672 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1673 	    &aflags, &zb));
1674 
1675 early_unlock:
1676 	mutex_exit(&db->db_mtx);
1677 	dmu_buf_unlock_parent(db, dblt, tag);
1678 	return (err);
1679 }
1680 
1681 /*
1682  * This is our just-in-time copy function.  It makes a copy of buffers that
1683  * have been modified in a previous transaction group before we access them in
1684  * the current active group.
1685  *
1686  * This function is used in three places: when we are dirtying a buffer for the
1687  * first time in a txg, when we are freeing a range in a dnode that includes
1688  * this buffer, and when we are accessing a buffer which was received compressed
1689  * and later referenced in a WRITE_BYREF record.
1690  *
1691  * Note that when we are called from dbuf_free_range() we do not put a hold on
1692  * the buffer, we just traverse the active dbuf list for the dnode.
1693  */
1694 static void
1695 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1696 {
1697 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1698 
1699 	ASSERT(MUTEX_HELD(&db->db_mtx));
1700 	ASSERT(db->db.db_data != NULL);
1701 	ASSERT(db->db_level == 0);
1702 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1703 
1704 	if (dr == NULL ||
1705 	    (dr->dt.dl.dr_data !=
1706 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1707 		return;
1708 
1709 	/*
1710 	 * If the last dirty record for this dbuf has not yet synced
1711 	 * and its referencing the dbuf data, either:
1712 	 *	reset the reference to point to a new copy,
1713 	 * or (if there a no active holders)
1714 	 *	just null out the current db_data pointer.
1715 	 */
1716 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1717 	if (db->db_blkid == DMU_BONUS_BLKID) {
1718 		dnode_t *dn = DB_DNODE(db);
1719 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1720 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1721 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1722 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1723 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1724 		dnode_t *dn = DB_DNODE(db);
1725 		int size = arc_buf_size(db->db_buf);
1726 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1727 		spa_t *spa = db->db_objset->os_spa;
1728 		enum zio_compress compress_type =
1729 		    arc_get_compression(db->db_buf);
1730 		uint8_t complevel = arc_get_complevel(db->db_buf);
1731 
1732 		if (arc_is_encrypted(db->db_buf)) {
1733 			boolean_t byteorder;
1734 			uint8_t salt[ZIO_DATA_SALT_LEN];
1735 			uint8_t iv[ZIO_DATA_IV_LEN];
1736 			uint8_t mac[ZIO_DATA_MAC_LEN];
1737 
1738 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1739 			    iv, mac);
1740 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1741 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1742 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1743 			    compress_type, complevel);
1744 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1745 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1746 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1747 			    size, arc_buf_lsize(db->db_buf), compress_type,
1748 			    complevel);
1749 		} else {
1750 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1751 		}
1752 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1753 	} else {
1754 		db->db_buf = NULL;
1755 		dbuf_clear_data(db);
1756 	}
1757 }
1758 
1759 int
1760 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags)
1761 {
1762 	dnode_t *dn;
1763 	boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1764 	int err;
1765 
1766 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1767 
1768 	DB_DNODE_ENTER(db);
1769 	dn = DB_DNODE(db);
1770 
1771 	/*
1772 	 * Ensure that this block's dnode has been decrypted if the caller
1773 	 * has requested decrypted data.
1774 	 */
1775 	err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1776 	if (err != 0)
1777 		goto done;
1778 
1779 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1780 	    (flags & DB_RF_NOPREFETCH) == 0;
1781 
1782 	mutex_enter(&db->db_mtx);
1783 	if (flags & DB_RF_PARTIAL_FIRST)
1784 		db->db_partial_read = B_TRUE;
1785 	else if (!(flags & DB_RF_PARTIAL_MORE))
1786 		db->db_partial_read = B_FALSE;
1787 	miss = (db->db_state != DB_CACHED);
1788 
1789 	if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1790 		/*
1791 		 * Another reader came in while the dbuf was in flight between
1792 		 * UNCACHED and CACHED.  Either a writer will finish filling
1793 		 * the buffer, sending the dbuf to CACHED, or the first reader's
1794 		 * request will reach the read_done callback and send the dbuf
1795 		 * to CACHED.  Otherwise, a failure occurred and the dbuf will
1796 		 * be sent to UNCACHED.
1797 		 */
1798 		if (flags & DB_RF_NEVERWAIT) {
1799 			mutex_exit(&db->db_mtx);
1800 			DB_DNODE_EXIT(db);
1801 			goto done;
1802 		}
1803 		do {
1804 			ASSERT(db->db_state == DB_READ ||
1805 			    (flags & DB_RF_HAVESTRUCT) == 0);
1806 			DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1807 			    zio_t *, pio);
1808 			cv_wait(&db->db_changed, &db->db_mtx);
1809 		} while (db->db_state == DB_READ || db->db_state == DB_FILL);
1810 		if (db->db_state == DB_UNCACHED) {
1811 			err = SET_ERROR(EIO);
1812 			mutex_exit(&db->db_mtx);
1813 			DB_DNODE_EXIT(db);
1814 			goto done;
1815 		}
1816 	}
1817 
1818 	if (db->db_state == DB_CACHED) {
1819 		/*
1820 		 * If the arc buf is compressed or encrypted and the caller
1821 		 * requested uncompressed data, we need to untransform it
1822 		 * before returning. We also call arc_untransform() on any
1823 		 * unauthenticated blocks, which will verify their MAC if
1824 		 * the key is now available.
1825 		 */
1826 		if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1827 		    (arc_is_encrypted(db->db_buf) ||
1828 		    arc_is_unauthenticated(db->db_buf) ||
1829 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1830 			spa_t *spa = dn->dn_objset->os_spa;
1831 			zbookmark_phys_t zb;
1832 
1833 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1834 			    db->db.db_object, db->db_level, db->db_blkid);
1835 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1836 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1837 			dbuf_set_data(db, db->db_buf);
1838 		}
1839 		mutex_exit(&db->db_mtx);
1840 	} else {
1841 		ASSERT(db->db_state == DB_UNCACHED ||
1842 		    db->db_state == DB_NOFILL);
1843 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1844 		if (pio == NULL && (db->db_state == DB_NOFILL ||
1845 		    (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) {
1846 			spa_t *spa = dn->dn_objset->os_spa;
1847 			pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1848 			need_wait = B_TRUE;
1849 		}
1850 		err = dbuf_read_impl(db, dn, pio, flags, dblt, FTAG);
1851 		/* dbuf_read_impl drops db_mtx and parent's rwlock. */
1852 		miss = (db->db_state != DB_CACHED);
1853 	}
1854 
1855 	if (err == 0 && prefetch) {
1856 		dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1857 		    flags & DB_RF_HAVESTRUCT);
1858 	}
1859 	DB_DNODE_EXIT(db);
1860 
1861 	/*
1862 	 * If we created a zio we must execute it to avoid leaking it, even if
1863 	 * it isn't attached to any work due to an error in dbuf_read_impl().
1864 	 */
1865 	if (need_wait) {
1866 		if (err == 0)
1867 			err = zio_wait(pio);
1868 		else
1869 			(void) zio_wait(pio);
1870 		pio = NULL;
1871 	}
1872 
1873 done:
1874 	if (miss)
1875 		DBUF_STAT_BUMP(hash_misses);
1876 	else
1877 		DBUF_STAT_BUMP(hash_hits);
1878 	if (pio && err != 0) {
1879 		zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1880 		    ZIO_FLAG_CANFAIL);
1881 		zio->io_error = err;
1882 		zio_nowait(zio);
1883 	}
1884 
1885 	return (err);
1886 }
1887 
1888 static void
1889 dbuf_noread(dmu_buf_impl_t *db)
1890 {
1891 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1892 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1893 	mutex_enter(&db->db_mtx);
1894 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1895 		cv_wait(&db->db_changed, &db->db_mtx);
1896 	if (db->db_state == DB_UNCACHED) {
1897 		ASSERT(db->db_buf == NULL);
1898 		ASSERT(db->db.db_data == NULL);
1899 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1900 		db->db_state = DB_FILL;
1901 		DTRACE_SET_STATE(db, "assigning filled buffer");
1902 	} else if (db->db_state == DB_NOFILL) {
1903 		dbuf_clear_data(db);
1904 	} else {
1905 		ASSERT3U(db->db_state, ==, DB_CACHED);
1906 	}
1907 	mutex_exit(&db->db_mtx);
1908 }
1909 
1910 void
1911 dbuf_unoverride(dbuf_dirty_record_t *dr)
1912 {
1913 	dmu_buf_impl_t *db = dr->dr_dbuf;
1914 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1915 	uint64_t txg = dr->dr_txg;
1916 
1917 	ASSERT(MUTEX_HELD(&db->db_mtx));
1918 	/*
1919 	 * This assert is valid because dmu_sync() expects to be called by
1920 	 * a zilog's get_data while holding a range lock.  This call only
1921 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1922 	 */
1923 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1924 	ASSERT(db->db_level == 0);
1925 
1926 	if (db->db_blkid == DMU_BONUS_BLKID ||
1927 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1928 		return;
1929 
1930 	ASSERT(db->db_data_pending != dr);
1931 
1932 	/* free this block */
1933 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1934 		zio_free(db->db_objset->os_spa, txg, bp);
1935 
1936 	if (dr->dt.dl.dr_brtwrite) {
1937 		ASSERT0P(dr->dt.dl.dr_data);
1938 		dr->dt.dl.dr_data = db->db_buf;
1939 	}
1940 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1941 	dr->dt.dl.dr_nopwrite = B_FALSE;
1942 	dr->dt.dl.dr_brtwrite = B_FALSE;
1943 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1944 
1945 	/*
1946 	 * Release the already-written buffer, so we leave it in
1947 	 * a consistent dirty state.  Note that all callers are
1948 	 * modifying the buffer, so they will immediately do
1949 	 * another (redundant) arc_release().  Therefore, leave
1950 	 * the buf thawed to save the effort of freezing &
1951 	 * immediately re-thawing it.
1952 	 */
1953 	if (dr->dt.dl.dr_data)
1954 		arc_release(dr->dt.dl.dr_data, db);
1955 }
1956 
1957 /*
1958  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1959  * data blocks in the free range, so that any future readers will find
1960  * empty blocks.
1961  */
1962 void
1963 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1964     dmu_tx_t *tx)
1965 {
1966 	dmu_buf_impl_t *db_search;
1967 	dmu_buf_impl_t *db, *db_next;
1968 	uint64_t txg = tx->tx_txg;
1969 	avl_index_t where;
1970 	dbuf_dirty_record_t *dr;
1971 
1972 	if (end_blkid > dn->dn_maxblkid &&
1973 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1974 		end_blkid = dn->dn_maxblkid;
1975 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1976 	    (u_longlong_t)end_blkid);
1977 
1978 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1979 	db_search->db_level = 0;
1980 	db_search->db_blkid = start_blkid;
1981 	db_search->db_state = DB_SEARCH;
1982 
1983 	mutex_enter(&dn->dn_dbufs_mtx);
1984 	db = avl_find(&dn->dn_dbufs, db_search, &where);
1985 	ASSERT3P(db, ==, NULL);
1986 
1987 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1988 
1989 	for (; db != NULL; db = db_next) {
1990 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1991 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1992 
1993 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1994 			break;
1995 		}
1996 		ASSERT3U(db->db_blkid, >=, start_blkid);
1997 
1998 		/* found a level 0 buffer in the range */
1999 		mutex_enter(&db->db_mtx);
2000 		if (dbuf_undirty(db, tx)) {
2001 			/* mutex has been dropped and dbuf destroyed */
2002 			continue;
2003 		}
2004 
2005 		if (db->db_state == DB_UNCACHED ||
2006 		    db->db_state == DB_NOFILL ||
2007 		    db->db_state == DB_EVICTING) {
2008 			ASSERT(db->db.db_data == NULL);
2009 			mutex_exit(&db->db_mtx);
2010 			continue;
2011 		}
2012 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2013 			/* will be handled in dbuf_read_done or dbuf_rele */
2014 			db->db_freed_in_flight = TRUE;
2015 			mutex_exit(&db->db_mtx);
2016 			continue;
2017 		}
2018 		if (zfs_refcount_count(&db->db_holds) == 0) {
2019 			ASSERT(db->db_buf);
2020 			dbuf_destroy(db);
2021 			continue;
2022 		}
2023 		/* The dbuf is referenced */
2024 
2025 		dr = list_head(&db->db_dirty_records);
2026 		if (dr != NULL) {
2027 			if (dr->dr_txg == txg) {
2028 				/*
2029 				 * This buffer is "in-use", re-adjust the file
2030 				 * size to reflect that this buffer may
2031 				 * contain new data when we sync.
2032 				 */
2033 				if (db->db_blkid != DMU_SPILL_BLKID &&
2034 				    db->db_blkid > dn->dn_maxblkid)
2035 					dn->dn_maxblkid = db->db_blkid;
2036 				dbuf_unoverride(dr);
2037 			} else {
2038 				/*
2039 				 * This dbuf is not dirty in the open context.
2040 				 * Either uncache it (if its not referenced in
2041 				 * the open context) or reset its contents to
2042 				 * empty.
2043 				 */
2044 				dbuf_fix_old_data(db, txg);
2045 			}
2046 		}
2047 		/* clear the contents if its cached */
2048 		if (db->db_state == DB_CACHED) {
2049 			ASSERT(db->db.db_data != NULL);
2050 			arc_release(db->db_buf, db);
2051 			rw_enter(&db->db_rwlock, RW_WRITER);
2052 			memset(db->db.db_data, 0, db->db.db_size);
2053 			rw_exit(&db->db_rwlock);
2054 			arc_buf_freeze(db->db_buf);
2055 		}
2056 
2057 		mutex_exit(&db->db_mtx);
2058 	}
2059 
2060 	mutex_exit(&dn->dn_dbufs_mtx);
2061 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2062 }
2063 
2064 void
2065 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2066 {
2067 	arc_buf_t *buf, *old_buf;
2068 	dbuf_dirty_record_t *dr;
2069 	int osize = db->db.db_size;
2070 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2071 	dnode_t *dn;
2072 
2073 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2074 
2075 	DB_DNODE_ENTER(db);
2076 	dn = DB_DNODE(db);
2077 
2078 	/*
2079 	 * XXX we should be doing a dbuf_read, checking the return
2080 	 * value and returning that up to our callers
2081 	 */
2082 	dmu_buf_will_dirty(&db->db, tx);
2083 
2084 	/* create the data buffer for the new block */
2085 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2086 
2087 	/* copy old block data to the new block */
2088 	old_buf = db->db_buf;
2089 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2090 	/* zero the remainder */
2091 	if (size > osize)
2092 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2093 
2094 	mutex_enter(&db->db_mtx);
2095 	dbuf_set_data(db, buf);
2096 	arc_buf_destroy(old_buf, db);
2097 	db->db.db_size = size;
2098 
2099 	dr = list_head(&db->db_dirty_records);
2100 	/* dirty record added by dmu_buf_will_dirty() */
2101 	VERIFY(dr != NULL);
2102 	if (db->db_level == 0)
2103 		dr->dt.dl.dr_data = buf;
2104 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2105 	ASSERT3U(dr->dr_accounted, ==, osize);
2106 	dr->dr_accounted = size;
2107 	mutex_exit(&db->db_mtx);
2108 
2109 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2110 	DB_DNODE_EXIT(db);
2111 }
2112 
2113 void
2114 dbuf_release_bp(dmu_buf_impl_t *db)
2115 {
2116 	objset_t *os __maybe_unused = db->db_objset;
2117 
2118 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2119 	ASSERT(arc_released(os->os_phys_buf) ||
2120 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2121 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2122 
2123 	(void) arc_release(db->db_buf, db);
2124 }
2125 
2126 /*
2127  * We already have a dirty record for this TXG, and we are being
2128  * dirtied again.
2129  */
2130 static void
2131 dbuf_redirty(dbuf_dirty_record_t *dr)
2132 {
2133 	dmu_buf_impl_t *db = dr->dr_dbuf;
2134 
2135 	ASSERT(MUTEX_HELD(&db->db_mtx));
2136 
2137 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2138 		/*
2139 		 * If this buffer has already been written out,
2140 		 * we now need to reset its state.
2141 		 */
2142 		dbuf_unoverride(dr);
2143 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2144 		    db->db_state != DB_NOFILL) {
2145 			/* Already released on initial dirty, so just thaw. */
2146 			ASSERT(arc_released(db->db_buf));
2147 			arc_buf_thaw(db->db_buf);
2148 		}
2149 	}
2150 }
2151 
2152 dbuf_dirty_record_t *
2153 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2154 {
2155 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2156 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2157 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2158 	ASSERT(dn->dn_maxblkid >= blkid);
2159 
2160 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2161 	list_link_init(&dr->dr_dirty_node);
2162 	list_link_init(&dr->dr_dbuf_node);
2163 	dr->dr_dnode = dn;
2164 	dr->dr_txg = tx->tx_txg;
2165 	dr->dt.dll.dr_blkid = blkid;
2166 	dr->dr_accounted = dn->dn_datablksz;
2167 
2168 	/*
2169 	 * There should not be any dbuf for the block that we're dirtying.
2170 	 * Otherwise the buffer contents could be inconsistent between the
2171 	 * dbuf and the lightweight dirty record.
2172 	 */
2173 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2174 	    NULL));
2175 
2176 	mutex_enter(&dn->dn_mtx);
2177 	int txgoff = tx->tx_txg & TXG_MASK;
2178 	if (dn->dn_free_ranges[txgoff] != NULL) {
2179 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2180 	}
2181 
2182 	if (dn->dn_nlevels == 1) {
2183 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2184 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2185 		mutex_exit(&dn->dn_mtx);
2186 		rw_exit(&dn->dn_struct_rwlock);
2187 		dnode_setdirty(dn, tx);
2188 	} else {
2189 		mutex_exit(&dn->dn_mtx);
2190 
2191 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2192 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2193 		    1, blkid >> epbs, FTAG);
2194 		rw_exit(&dn->dn_struct_rwlock);
2195 		if (parent_db == NULL) {
2196 			kmem_free(dr, sizeof (*dr));
2197 			return (NULL);
2198 		}
2199 		int err = dbuf_read(parent_db, NULL,
2200 		    (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2201 		if (err != 0) {
2202 			dbuf_rele(parent_db, FTAG);
2203 			kmem_free(dr, sizeof (*dr));
2204 			return (NULL);
2205 		}
2206 
2207 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2208 		dbuf_rele(parent_db, FTAG);
2209 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2210 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2211 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2212 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2213 		dr->dr_parent = parent_dr;
2214 	}
2215 
2216 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2217 
2218 	return (dr);
2219 }
2220 
2221 dbuf_dirty_record_t *
2222 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2223 {
2224 	dnode_t *dn;
2225 	objset_t *os;
2226 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2227 	int txgoff = tx->tx_txg & TXG_MASK;
2228 	boolean_t drop_struct_rwlock = B_FALSE;
2229 
2230 	ASSERT(tx->tx_txg != 0);
2231 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2232 	DMU_TX_DIRTY_BUF(tx, db);
2233 
2234 	DB_DNODE_ENTER(db);
2235 	dn = DB_DNODE(db);
2236 	/*
2237 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2238 	 * objects may be dirtied in syncing context, but only if they
2239 	 * were already pre-dirtied in open context.
2240 	 */
2241 #ifdef ZFS_DEBUG
2242 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2243 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2244 		    RW_READER, FTAG);
2245 	}
2246 	ASSERT(!dmu_tx_is_syncing(tx) ||
2247 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2248 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2249 	    dn->dn_objset->os_dsl_dataset == NULL);
2250 	if (dn->dn_objset->os_dsl_dataset != NULL)
2251 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2252 #endif
2253 	/*
2254 	 * We make this assert for private objects as well, but after we
2255 	 * check if we're already dirty.  They are allowed to re-dirty
2256 	 * in syncing context.
2257 	 */
2258 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2259 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2260 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2261 
2262 	mutex_enter(&db->db_mtx);
2263 	/*
2264 	 * XXX make this true for indirects too?  The problem is that
2265 	 * transactions created with dmu_tx_create_assigned() from
2266 	 * syncing context don't bother holding ahead.
2267 	 */
2268 	ASSERT(db->db_level != 0 ||
2269 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2270 	    db->db_state == DB_NOFILL);
2271 
2272 	mutex_enter(&dn->dn_mtx);
2273 	dnode_set_dirtyctx(dn, tx, db);
2274 	if (tx->tx_txg > dn->dn_dirty_txg)
2275 		dn->dn_dirty_txg = tx->tx_txg;
2276 	mutex_exit(&dn->dn_mtx);
2277 
2278 	if (db->db_blkid == DMU_SPILL_BLKID)
2279 		dn->dn_have_spill = B_TRUE;
2280 
2281 	/*
2282 	 * If this buffer is already dirty, we're done.
2283 	 */
2284 	dr_head = list_head(&db->db_dirty_records);
2285 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2286 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2287 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2288 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2289 		DB_DNODE_EXIT(db);
2290 
2291 		dbuf_redirty(dr_next);
2292 		mutex_exit(&db->db_mtx);
2293 		return (dr_next);
2294 	}
2295 
2296 	/*
2297 	 * Only valid if not already dirty.
2298 	 */
2299 	ASSERT(dn->dn_object == 0 ||
2300 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2301 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2302 
2303 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2304 
2305 	/*
2306 	 * We should only be dirtying in syncing context if it's the
2307 	 * mos or we're initializing the os or it's a special object.
2308 	 * However, we are allowed to dirty in syncing context provided
2309 	 * we already dirtied it in open context.  Hence we must make
2310 	 * this assertion only if we're not already dirty.
2311 	 */
2312 	os = dn->dn_objset;
2313 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2314 #ifdef ZFS_DEBUG
2315 	if (dn->dn_objset->os_dsl_dataset != NULL)
2316 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2317 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2318 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2319 	if (dn->dn_objset->os_dsl_dataset != NULL)
2320 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2321 #endif
2322 	ASSERT(db->db.db_size != 0);
2323 
2324 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2325 
2326 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2327 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2328 	}
2329 
2330 	/*
2331 	 * If this buffer is dirty in an old transaction group we need
2332 	 * to make a copy of it so that the changes we make in this
2333 	 * transaction group won't leak out when we sync the older txg.
2334 	 */
2335 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2336 	list_link_init(&dr->dr_dirty_node);
2337 	list_link_init(&dr->dr_dbuf_node);
2338 	dr->dr_dnode = dn;
2339 	if (db->db_level == 0) {
2340 		void *data_old = db->db_buf;
2341 
2342 		if (db->db_state != DB_NOFILL) {
2343 			if (db->db_blkid == DMU_BONUS_BLKID) {
2344 				dbuf_fix_old_data(db, tx->tx_txg);
2345 				data_old = db->db.db_data;
2346 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2347 				/*
2348 				 * Release the data buffer from the cache so
2349 				 * that we can modify it without impacting
2350 				 * possible other users of this cached data
2351 				 * block.  Note that indirect blocks and
2352 				 * private objects are not released until the
2353 				 * syncing state (since they are only modified
2354 				 * then).
2355 				 */
2356 				arc_release(db->db_buf, db);
2357 				dbuf_fix_old_data(db, tx->tx_txg);
2358 				data_old = db->db_buf;
2359 			}
2360 			ASSERT(data_old != NULL);
2361 		}
2362 		dr->dt.dl.dr_data = data_old;
2363 	} else {
2364 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2365 		list_create(&dr->dt.di.dr_children,
2366 		    sizeof (dbuf_dirty_record_t),
2367 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2368 	}
2369 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2370 		dr->dr_accounted = db->db.db_size;
2371 	}
2372 	dr->dr_dbuf = db;
2373 	dr->dr_txg = tx->tx_txg;
2374 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2375 
2376 	/*
2377 	 * We could have been freed_in_flight between the dbuf_noread
2378 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2379 	 * happened after the free.
2380 	 */
2381 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2382 	    db->db_blkid != DMU_SPILL_BLKID) {
2383 		mutex_enter(&dn->dn_mtx);
2384 		if (dn->dn_free_ranges[txgoff] != NULL) {
2385 			range_tree_clear(dn->dn_free_ranges[txgoff],
2386 			    db->db_blkid, 1);
2387 		}
2388 		mutex_exit(&dn->dn_mtx);
2389 		db->db_freed_in_flight = FALSE;
2390 	}
2391 
2392 	/*
2393 	 * This buffer is now part of this txg
2394 	 */
2395 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2396 	db->db_dirtycnt += 1;
2397 	ASSERT3U(db->db_dirtycnt, <=, 3);
2398 
2399 	mutex_exit(&db->db_mtx);
2400 
2401 	if (db->db_blkid == DMU_BONUS_BLKID ||
2402 	    db->db_blkid == DMU_SPILL_BLKID) {
2403 		mutex_enter(&dn->dn_mtx);
2404 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2405 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2406 		mutex_exit(&dn->dn_mtx);
2407 		dnode_setdirty(dn, tx);
2408 		DB_DNODE_EXIT(db);
2409 		return (dr);
2410 	}
2411 
2412 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2413 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2414 		drop_struct_rwlock = B_TRUE;
2415 	}
2416 
2417 	/*
2418 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2419 	 * when we get to syncing context we will need to decrement its
2420 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2421 	 * syncing context won't have to wait for the i/o.
2422 	 */
2423 	if (db->db_blkptr != NULL) {
2424 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2425 		ddt_prefetch(os->os_spa, db->db_blkptr);
2426 		dmu_buf_unlock_parent(db, dblt, FTAG);
2427 	}
2428 
2429 	/*
2430 	 * We need to hold the dn_struct_rwlock to make this assertion,
2431 	 * because it protects dn_phys / dn_next_nlevels from changing.
2432 	 */
2433 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2434 	    dn->dn_phys->dn_nlevels > db->db_level ||
2435 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2436 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2437 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2438 
2439 
2440 	if (db->db_level == 0) {
2441 		ASSERT(!db->db_objset->os_raw_receive ||
2442 		    dn->dn_maxblkid >= db->db_blkid);
2443 		dnode_new_blkid(dn, db->db_blkid, tx,
2444 		    drop_struct_rwlock, B_FALSE);
2445 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2446 	}
2447 
2448 	if (db->db_level+1 < dn->dn_nlevels) {
2449 		dmu_buf_impl_t *parent = db->db_parent;
2450 		dbuf_dirty_record_t *di;
2451 		int parent_held = FALSE;
2452 
2453 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2454 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2455 			parent = dbuf_hold_level(dn, db->db_level + 1,
2456 			    db->db_blkid >> epbs, FTAG);
2457 			ASSERT(parent != NULL);
2458 			parent_held = TRUE;
2459 		}
2460 		if (drop_struct_rwlock)
2461 			rw_exit(&dn->dn_struct_rwlock);
2462 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2463 		di = dbuf_dirty(parent, tx);
2464 		if (parent_held)
2465 			dbuf_rele(parent, FTAG);
2466 
2467 		mutex_enter(&db->db_mtx);
2468 		/*
2469 		 * Since we've dropped the mutex, it's possible that
2470 		 * dbuf_undirty() might have changed this out from under us.
2471 		 */
2472 		if (list_head(&db->db_dirty_records) == dr ||
2473 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2474 			mutex_enter(&di->dt.di.dr_mtx);
2475 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2476 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2477 			list_insert_tail(&di->dt.di.dr_children, dr);
2478 			mutex_exit(&di->dt.di.dr_mtx);
2479 			dr->dr_parent = di;
2480 		}
2481 		mutex_exit(&db->db_mtx);
2482 	} else {
2483 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2484 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2485 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2486 		mutex_enter(&dn->dn_mtx);
2487 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2488 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2489 		mutex_exit(&dn->dn_mtx);
2490 		if (drop_struct_rwlock)
2491 			rw_exit(&dn->dn_struct_rwlock);
2492 	}
2493 
2494 	dnode_setdirty(dn, tx);
2495 	DB_DNODE_EXIT(db);
2496 	return (dr);
2497 }
2498 
2499 static void
2500 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2501 {
2502 	dmu_buf_impl_t *db = dr->dr_dbuf;
2503 
2504 	if (dr->dt.dl.dr_data != db->db.db_data) {
2505 		struct dnode *dn = dr->dr_dnode;
2506 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2507 
2508 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2509 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2510 	}
2511 	db->db_data_pending = NULL;
2512 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2513 	list_remove(&db->db_dirty_records, dr);
2514 	if (dr->dr_dbuf->db_level != 0) {
2515 		mutex_destroy(&dr->dt.di.dr_mtx);
2516 		list_destroy(&dr->dt.di.dr_children);
2517 	}
2518 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2519 	ASSERT3U(db->db_dirtycnt, >, 0);
2520 	db->db_dirtycnt -= 1;
2521 }
2522 
2523 /*
2524  * Undirty a buffer in the transaction group referenced by the given
2525  * transaction.  Return whether this evicted the dbuf.
2526  */
2527 boolean_t
2528 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2529 {
2530 	uint64_t txg = tx->tx_txg;
2531 	boolean_t brtwrite;
2532 
2533 	ASSERT(txg != 0);
2534 
2535 	/*
2536 	 * Due to our use of dn_nlevels below, this can only be called
2537 	 * in open context, unless we are operating on the MOS.
2538 	 * From syncing context, dn_nlevels may be different from the
2539 	 * dn_nlevels used when dbuf was dirtied.
2540 	 */
2541 	ASSERT(db->db_objset ==
2542 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2543 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2544 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2545 	ASSERT0(db->db_level);
2546 	ASSERT(MUTEX_HELD(&db->db_mtx));
2547 
2548 	/*
2549 	 * If this buffer is not dirty, we're done.
2550 	 */
2551 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2552 	if (dr == NULL)
2553 		return (B_FALSE);
2554 	ASSERT(dr->dr_dbuf == db);
2555 
2556 	brtwrite = dr->dt.dl.dr_brtwrite;
2557 	if (brtwrite) {
2558 		/*
2559 		 * We are freeing a block that we cloned in the same
2560 		 * transaction group.
2561 		 */
2562 		brt_pending_remove(dmu_objset_spa(db->db_objset),
2563 		    &dr->dt.dl.dr_overridden_by, tx);
2564 	}
2565 
2566 	dnode_t *dn = dr->dr_dnode;
2567 
2568 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2569 
2570 	ASSERT(db->db.db_size != 0);
2571 
2572 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2573 	    dr->dr_accounted, txg);
2574 
2575 	list_remove(&db->db_dirty_records, dr);
2576 
2577 	/*
2578 	 * Note that there are three places in dbuf_dirty()
2579 	 * where this dirty record may be put on a list.
2580 	 * Make sure to do a list_remove corresponding to
2581 	 * every one of those list_insert calls.
2582 	 */
2583 	if (dr->dr_parent) {
2584 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2585 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2586 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2587 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2588 	    db->db_level + 1 == dn->dn_nlevels) {
2589 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2590 		mutex_enter(&dn->dn_mtx);
2591 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2592 		mutex_exit(&dn->dn_mtx);
2593 	}
2594 
2595 	if (db->db_state != DB_NOFILL && !brtwrite) {
2596 		dbuf_unoverride(dr);
2597 
2598 		ASSERT(db->db_buf != NULL);
2599 		ASSERT(dr->dt.dl.dr_data != NULL);
2600 		if (dr->dt.dl.dr_data != db->db_buf)
2601 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2602 	}
2603 
2604 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2605 
2606 	ASSERT(db->db_dirtycnt > 0);
2607 	db->db_dirtycnt -= 1;
2608 
2609 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2610 		ASSERT(db->db_state == DB_NOFILL || brtwrite ||
2611 		    arc_released(db->db_buf));
2612 		dbuf_destroy(db);
2613 		return (B_TRUE);
2614 	}
2615 
2616 	return (B_FALSE);
2617 }
2618 
2619 static void
2620 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2621 {
2622 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2623 	boolean_t undirty = B_FALSE;
2624 
2625 	ASSERT(tx->tx_txg != 0);
2626 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2627 
2628 	/*
2629 	 * Quick check for dirtiness to improve performance for some workloads
2630 	 * (e.g. file deletion with indirect blocks cached).
2631 	 */
2632 	mutex_enter(&db->db_mtx);
2633 	if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2634 		/*
2635 		 * It's possible that the dbuf is already dirty but not cached,
2636 		 * because there are some calls to dbuf_dirty() that don't
2637 		 * go through dmu_buf_will_dirty().
2638 		 */
2639 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2640 		if (dr != NULL) {
2641 			if (db->db_level == 0 &&
2642 			    dr->dt.dl.dr_brtwrite) {
2643 				/*
2644 				 * Block cloning: If we are dirtying a cloned
2645 				 * level 0 block, we cannot simply redirty it,
2646 				 * because this dr has no associated data.
2647 				 * We will go through a full undirtying below,
2648 				 * before dirtying it again.
2649 				 */
2650 				undirty = B_TRUE;
2651 			} else {
2652 				/* This dbuf is already dirty and cached. */
2653 				dbuf_redirty(dr);
2654 				mutex_exit(&db->db_mtx);
2655 				return;
2656 			}
2657 		}
2658 	}
2659 	mutex_exit(&db->db_mtx);
2660 
2661 	DB_DNODE_ENTER(db);
2662 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2663 		flags |= DB_RF_HAVESTRUCT;
2664 	DB_DNODE_EXIT(db);
2665 
2666 	/*
2667 	 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2668 	 * want to make sure dbuf_read() will read the pending cloned block and
2669 	 * not the uderlying block that is being replaced. dbuf_undirty() will
2670 	 * do dbuf_unoverride(), so we will end up with cloned block content,
2671 	 * without overridden BP.
2672 	 */
2673 	(void) dbuf_read(db, NULL, flags);
2674 	if (undirty) {
2675 		mutex_enter(&db->db_mtx);
2676 		VERIFY(!dbuf_undirty(db, tx));
2677 		mutex_exit(&db->db_mtx);
2678 	}
2679 	(void) dbuf_dirty(db, tx);
2680 }
2681 
2682 void
2683 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2684 {
2685 	dmu_buf_will_dirty_impl(db_fake,
2686 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2687 }
2688 
2689 boolean_t
2690 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2691 {
2692 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2693 	dbuf_dirty_record_t *dr;
2694 
2695 	mutex_enter(&db->db_mtx);
2696 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2697 	mutex_exit(&db->db_mtx);
2698 	return (dr != NULL);
2699 }
2700 
2701 void
2702 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx)
2703 {
2704 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2705 
2706 	/*
2707 	 * Block cloning: We are going to clone into this block, so undirty
2708 	 * modifications done to this block so far in this txg. This includes
2709 	 * writes and clones into this block.
2710 	 */
2711 	mutex_enter(&db->db_mtx);
2712 	DBUF_VERIFY(db);
2713 	VERIFY(!dbuf_undirty(db, tx));
2714 	ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2715 	if (db->db_buf != NULL) {
2716 		arc_buf_destroy(db->db_buf, db);
2717 		db->db_buf = NULL;
2718 		dbuf_clear_data(db);
2719 	}
2720 
2721 	db->db_state = DB_NOFILL;
2722 	DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone");
2723 
2724 	DBUF_VERIFY(db);
2725 	mutex_exit(&db->db_mtx);
2726 
2727 	dbuf_noread(db);
2728 	(void) dbuf_dirty(db, tx);
2729 }
2730 
2731 void
2732 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2733 {
2734 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2735 
2736 	mutex_enter(&db->db_mtx);
2737 	db->db_state = DB_NOFILL;
2738 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2739 	mutex_exit(&db->db_mtx);
2740 
2741 	dbuf_noread(db);
2742 	(void) dbuf_dirty(db, tx);
2743 }
2744 
2745 void
2746 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2747 {
2748 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2749 
2750 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2751 	ASSERT(tx->tx_txg != 0);
2752 	ASSERT(db->db_level == 0);
2753 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2754 
2755 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2756 	    dmu_tx_private_ok(tx));
2757 
2758 	mutex_enter(&db->db_mtx);
2759 	if (db->db_state == DB_NOFILL) {
2760 		/*
2761 		 * Block cloning: We will be completely overwriting a block
2762 		 * cloned in this transaction group, so let's undirty the
2763 		 * pending clone and mark the block as uncached. This will be
2764 		 * as if the clone was never done.  But if the fill can fail
2765 		 * we should have a way to return back to the cloned data.
2766 		 */
2767 		if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2768 			mutex_exit(&db->db_mtx);
2769 			dmu_buf_will_dirty(db_fake, tx);
2770 			return;
2771 		}
2772 		VERIFY(!dbuf_undirty(db, tx));
2773 		db->db_state = DB_UNCACHED;
2774 	}
2775 	mutex_exit(&db->db_mtx);
2776 
2777 	dbuf_noread(db);
2778 	(void) dbuf_dirty(db, tx);
2779 }
2780 
2781 /*
2782  * This function is effectively the same as dmu_buf_will_dirty(), but
2783  * indicates the caller expects raw encrypted data in the db, and provides
2784  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2785  * blkptr_t when this dbuf is written.  This is only used for blocks of
2786  * dnodes, during raw receive.
2787  */
2788 void
2789 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2790     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2791 {
2792 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2793 	dbuf_dirty_record_t *dr;
2794 
2795 	/*
2796 	 * dr_has_raw_params is only processed for blocks of dnodes
2797 	 * (see dbuf_sync_dnode_leaf_crypt()).
2798 	 */
2799 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2800 	ASSERT3U(db->db_level, ==, 0);
2801 	ASSERT(db->db_objset->os_raw_receive);
2802 
2803 	dmu_buf_will_dirty_impl(db_fake,
2804 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2805 
2806 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2807 
2808 	ASSERT3P(dr, !=, NULL);
2809 
2810 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2811 	dr->dt.dl.dr_byteorder = byteorder;
2812 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2813 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2814 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2815 }
2816 
2817 static void
2818 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2819 {
2820 	struct dirty_leaf *dl;
2821 	dbuf_dirty_record_t *dr;
2822 
2823 	dr = list_head(&db->db_dirty_records);
2824 	ASSERT3P(dr, !=, NULL);
2825 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2826 	dl = &dr->dt.dl;
2827 	dl->dr_overridden_by = *bp;
2828 	dl->dr_override_state = DR_OVERRIDDEN;
2829 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2830 }
2831 
2832 boolean_t
2833 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2834 {
2835 	(void) tx;
2836 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2837 	mutex_enter(&db->db_mtx);
2838 	DBUF_VERIFY(db);
2839 
2840 	if (db->db_state == DB_FILL) {
2841 		if (db->db_level == 0 && db->db_freed_in_flight) {
2842 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2843 			/* we were freed while filling */
2844 			/* XXX dbuf_undirty? */
2845 			memset(db->db.db_data, 0, db->db.db_size);
2846 			db->db_freed_in_flight = FALSE;
2847 			db->db_state = DB_CACHED;
2848 			DTRACE_SET_STATE(db,
2849 			    "fill done handling freed in flight");
2850 			failed = B_FALSE;
2851 		} else if (failed) {
2852 			VERIFY(!dbuf_undirty(db, tx));
2853 			db->db_buf = NULL;
2854 			dbuf_clear_data(db);
2855 			DTRACE_SET_STATE(db, "fill failed");
2856 		} else {
2857 			db->db_state = DB_CACHED;
2858 			DTRACE_SET_STATE(db, "fill done");
2859 		}
2860 		cv_broadcast(&db->db_changed);
2861 	} else {
2862 		db->db_state = DB_CACHED;
2863 		failed = B_FALSE;
2864 	}
2865 	mutex_exit(&db->db_mtx);
2866 	return (failed);
2867 }
2868 
2869 void
2870 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2871     bp_embedded_type_t etype, enum zio_compress comp,
2872     int uncompressed_size, int compressed_size, int byteorder,
2873     dmu_tx_t *tx)
2874 {
2875 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2876 	struct dirty_leaf *dl;
2877 	dmu_object_type_t type;
2878 	dbuf_dirty_record_t *dr;
2879 
2880 	if (etype == BP_EMBEDDED_TYPE_DATA) {
2881 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2882 		    SPA_FEATURE_EMBEDDED_DATA));
2883 	}
2884 
2885 	DB_DNODE_ENTER(db);
2886 	type = DB_DNODE(db)->dn_type;
2887 	DB_DNODE_EXIT(db);
2888 
2889 	ASSERT0(db->db_level);
2890 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2891 
2892 	dmu_buf_will_not_fill(dbuf, tx);
2893 
2894 	dr = list_head(&db->db_dirty_records);
2895 	ASSERT3P(dr, !=, NULL);
2896 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2897 	dl = &dr->dt.dl;
2898 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
2899 	    data, comp, uncompressed_size, compressed_size);
2900 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2901 	BP_SET_TYPE(&dl->dr_overridden_by, type);
2902 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2903 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2904 
2905 	dl->dr_override_state = DR_OVERRIDDEN;
2906 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2907 }
2908 
2909 void
2910 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2911 {
2912 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2913 	dmu_object_type_t type;
2914 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2915 	    SPA_FEATURE_REDACTED_DATASETS));
2916 
2917 	DB_DNODE_ENTER(db);
2918 	type = DB_DNODE(db)->dn_type;
2919 	DB_DNODE_EXIT(db);
2920 
2921 	ASSERT0(db->db_level);
2922 	dmu_buf_will_not_fill(dbuf, tx);
2923 
2924 	blkptr_t bp = { { { {0} } } };
2925 	BP_SET_TYPE(&bp, type);
2926 	BP_SET_LEVEL(&bp, 0);
2927 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2928 	BP_SET_REDACTED(&bp);
2929 	BPE_SET_LSIZE(&bp, dbuf->db_size);
2930 
2931 	dbuf_override_impl(db, &bp, tx);
2932 }
2933 
2934 /*
2935  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2936  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2937  */
2938 void
2939 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2940 {
2941 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2942 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2943 	ASSERT(db->db_level == 0);
2944 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2945 	ASSERT(buf != NULL);
2946 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2947 	ASSERT(tx->tx_txg != 0);
2948 
2949 	arc_return_buf(buf, db);
2950 	ASSERT(arc_released(buf));
2951 
2952 	mutex_enter(&db->db_mtx);
2953 
2954 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2955 		cv_wait(&db->db_changed, &db->db_mtx);
2956 
2957 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
2958 	    db->db_state == DB_NOFILL);
2959 
2960 	if (db->db_state == DB_CACHED &&
2961 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2962 		/*
2963 		 * In practice, we will never have a case where we have an
2964 		 * encrypted arc buffer while additional holds exist on the
2965 		 * dbuf. We don't handle this here so we simply assert that
2966 		 * fact instead.
2967 		 */
2968 		ASSERT(!arc_is_encrypted(buf));
2969 		mutex_exit(&db->db_mtx);
2970 		(void) dbuf_dirty(db, tx);
2971 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2972 		arc_buf_destroy(buf, db);
2973 		return;
2974 	}
2975 
2976 	if (db->db_state == DB_CACHED) {
2977 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2978 
2979 		ASSERT(db->db_buf != NULL);
2980 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2981 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2982 
2983 			if (!arc_released(db->db_buf)) {
2984 				ASSERT(dr->dt.dl.dr_override_state ==
2985 				    DR_OVERRIDDEN);
2986 				arc_release(db->db_buf, db);
2987 			}
2988 			dr->dt.dl.dr_data = buf;
2989 			arc_buf_destroy(db->db_buf, db);
2990 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2991 			arc_release(db->db_buf, db);
2992 			arc_buf_destroy(db->db_buf, db);
2993 		}
2994 		db->db_buf = NULL;
2995 	} else if (db->db_state == DB_NOFILL) {
2996 		/*
2997 		 * We will be completely replacing the cloned block.  In case
2998 		 * it was cloned in this transaction group, let's undirty the
2999 		 * pending clone and mark the block as uncached. This will be
3000 		 * as if the clone was never done.
3001 		 */
3002 		VERIFY(!dbuf_undirty(db, tx));
3003 		db->db_state = DB_UNCACHED;
3004 	}
3005 	ASSERT(db->db_buf == NULL);
3006 	dbuf_set_data(db, buf);
3007 	db->db_state = DB_FILL;
3008 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
3009 	mutex_exit(&db->db_mtx);
3010 	(void) dbuf_dirty(db, tx);
3011 	dmu_buf_fill_done(&db->db, tx, B_FALSE);
3012 }
3013 
3014 void
3015 dbuf_destroy(dmu_buf_impl_t *db)
3016 {
3017 	dnode_t *dn;
3018 	dmu_buf_impl_t *parent = db->db_parent;
3019 	dmu_buf_impl_t *dndb;
3020 
3021 	ASSERT(MUTEX_HELD(&db->db_mtx));
3022 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3023 
3024 	if (db->db_buf != NULL) {
3025 		arc_buf_destroy(db->db_buf, db);
3026 		db->db_buf = NULL;
3027 	}
3028 
3029 	if (db->db_blkid == DMU_BONUS_BLKID) {
3030 		int slots = DB_DNODE(db)->dn_num_slots;
3031 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3032 		if (db->db.db_data != NULL) {
3033 			kmem_free(db->db.db_data, bonuslen);
3034 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
3035 			db->db_state = DB_UNCACHED;
3036 			DTRACE_SET_STATE(db, "buffer cleared");
3037 		}
3038 	}
3039 
3040 	dbuf_clear_data(db);
3041 
3042 	if (multilist_link_active(&db->db_cache_link)) {
3043 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3044 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3045 
3046 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3047 
3048 		ASSERT0(dmu_buf_user_size(&db->db));
3049 		(void) zfs_refcount_remove_many(
3050 		    &dbuf_caches[db->db_caching_status].size,
3051 		    db->db.db_size, db);
3052 
3053 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3054 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3055 		} else {
3056 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3057 			DBUF_STAT_BUMPDOWN(cache_count);
3058 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3059 			    db->db.db_size);
3060 		}
3061 		db->db_caching_status = DB_NO_CACHE;
3062 	}
3063 
3064 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3065 	ASSERT(db->db_data_pending == NULL);
3066 	ASSERT(list_is_empty(&db->db_dirty_records));
3067 
3068 	db->db_state = DB_EVICTING;
3069 	DTRACE_SET_STATE(db, "buffer eviction started");
3070 	db->db_blkptr = NULL;
3071 
3072 	/*
3073 	 * Now that db_state is DB_EVICTING, nobody else can find this via
3074 	 * the hash table.  We can now drop db_mtx, which allows us to
3075 	 * acquire the dn_dbufs_mtx.
3076 	 */
3077 	mutex_exit(&db->db_mtx);
3078 
3079 	DB_DNODE_ENTER(db);
3080 	dn = DB_DNODE(db);
3081 	dndb = dn->dn_dbuf;
3082 	if (db->db_blkid != DMU_BONUS_BLKID) {
3083 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3084 		if (needlock)
3085 			mutex_enter_nested(&dn->dn_dbufs_mtx,
3086 			    NESTED_SINGLE);
3087 		avl_remove(&dn->dn_dbufs, db);
3088 		membar_producer();
3089 		DB_DNODE_EXIT(db);
3090 		if (needlock)
3091 			mutex_exit(&dn->dn_dbufs_mtx);
3092 		/*
3093 		 * Decrementing the dbuf count means that the hold corresponding
3094 		 * to the removed dbuf is no longer discounted in dnode_move(),
3095 		 * so the dnode cannot be moved until after we release the hold.
3096 		 * The membar_producer() ensures visibility of the decremented
3097 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3098 		 * release any lock.
3099 		 */
3100 		mutex_enter(&dn->dn_mtx);
3101 		dnode_rele_and_unlock(dn, db, B_TRUE);
3102 		db->db_dnode_handle = NULL;
3103 
3104 		dbuf_hash_remove(db);
3105 	} else {
3106 		DB_DNODE_EXIT(db);
3107 	}
3108 
3109 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3110 
3111 	db->db_parent = NULL;
3112 
3113 	ASSERT(db->db_buf == NULL);
3114 	ASSERT(db->db.db_data == NULL);
3115 	ASSERT(db->db_hash_next == NULL);
3116 	ASSERT(db->db_blkptr == NULL);
3117 	ASSERT(db->db_data_pending == NULL);
3118 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3119 	ASSERT(!multilist_link_active(&db->db_cache_link));
3120 
3121 	/*
3122 	 * If this dbuf is referenced from an indirect dbuf,
3123 	 * decrement the ref count on the indirect dbuf.
3124 	 */
3125 	if (parent && parent != dndb) {
3126 		mutex_enter(&parent->db_mtx);
3127 		dbuf_rele_and_unlock(parent, db, B_TRUE);
3128 	}
3129 
3130 	kmem_cache_free(dbuf_kmem_cache, db);
3131 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3132 }
3133 
3134 /*
3135  * Note: While bpp will always be updated if the function returns success,
3136  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3137  * this happens when the dnode is the meta-dnode, or {user|group|project}used
3138  * object.
3139  */
3140 __attribute__((always_inline))
3141 static inline int
3142 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3143     dmu_buf_impl_t **parentp, blkptr_t **bpp)
3144 {
3145 	*parentp = NULL;
3146 	*bpp = NULL;
3147 
3148 	ASSERT(blkid != DMU_BONUS_BLKID);
3149 
3150 	if (blkid == DMU_SPILL_BLKID) {
3151 		mutex_enter(&dn->dn_mtx);
3152 		if (dn->dn_have_spill &&
3153 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3154 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3155 		else
3156 			*bpp = NULL;
3157 		dbuf_add_ref(dn->dn_dbuf, NULL);
3158 		*parentp = dn->dn_dbuf;
3159 		mutex_exit(&dn->dn_mtx);
3160 		return (0);
3161 	}
3162 
3163 	int nlevels =
3164 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3165 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3166 
3167 	ASSERT3U(level * epbs, <, 64);
3168 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3169 	/*
3170 	 * This assertion shouldn't trip as long as the max indirect block size
3171 	 * is less than 1M.  The reason for this is that up to that point,
3172 	 * the number of levels required to address an entire object with blocks
3173 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
3174 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3175 	 * (i.e. we can address the entire object), objects will all use at most
3176 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3177 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3178 	 * enough to address an entire object, so objects will have 5 levels,
3179 	 * but then this assertion will overflow.
3180 	 *
3181 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3182 	 * need to redo this logic to handle overflows.
3183 	 */
3184 	ASSERT(level >= nlevels ||
3185 	    ((nlevels - level - 1) * epbs) +
3186 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3187 	if (level >= nlevels ||
3188 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3189 	    ((nlevels - level - 1) * epbs)) ||
3190 	    (fail_sparse &&
3191 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3192 		/* the buffer has no parent yet */
3193 		return (SET_ERROR(ENOENT));
3194 	} else if (level < nlevels-1) {
3195 		/* this block is referenced from an indirect block */
3196 		int err;
3197 
3198 		err = dbuf_hold_impl(dn, level + 1,
3199 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3200 
3201 		if (err)
3202 			return (err);
3203 		err = dbuf_read(*parentp, NULL,
3204 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3205 		if (err) {
3206 			dbuf_rele(*parentp, NULL);
3207 			*parentp = NULL;
3208 			return (err);
3209 		}
3210 		rw_enter(&(*parentp)->db_rwlock, RW_READER);
3211 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3212 		    (blkid & ((1ULL << epbs) - 1));
3213 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3214 			ASSERT(BP_IS_HOLE(*bpp));
3215 		rw_exit(&(*parentp)->db_rwlock);
3216 		return (0);
3217 	} else {
3218 		/* the block is referenced from the dnode */
3219 		ASSERT3U(level, ==, nlevels-1);
3220 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3221 		    blkid < dn->dn_phys->dn_nblkptr);
3222 		if (dn->dn_dbuf) {
3223 			dbuf_add_ref(dn->dn_dbuf, NULL);
3224 			*parentp = dn->dn_dbuf;
3225 		}
3226 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3227 		return (0);
3228 	}
3229 }
3230 
3231 static dmu_buf_impl_t *
3232 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3233     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3234 {
3235 	objset_t *os = dn->dn_objset;
3236 	dmu_buf_impl_t *db, *odb;
3237 
3238 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3239 	ASSERT(dn->dn_type != DMU_OT_NONE);
3240 
3241 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3242 
3243 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3244 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3245 
3246 	db->db_objset = os;
3247 	db->db.db_object = dn->dn_object;
3248 	db->db_level = level;
3249 	db->db_blkid = blkid;
3250 	db->db_dirtycnt = 0;
3251 	db->db_dnode_handle = dn->dn_handle;
3252 	db->db_parent = parent;
3253 	db->db_blkptr = blkptr;
3254 	db->db_hash = hash;
3255 
3256 	db->db_user = NULL;
3257 	db->db_user_immediate_evict = FALSE;
3258 	db->db_freed_in_flight = FALSE;
3259 	db->db_pending_evict = FALSE;
3260 
3261 	if (blkid == DMU_BONUS_BLKID) {
3262 		ASSERT3P(parent, ==, dn->dn_dbuf);
3263 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3264 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3265 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3266 		db->db.db_offset = DMU_BONUS_BLKID;
3267 		db->db_state = DB_UNCACHED;
3268 		DTRACE_SET_STATE(db, "bonus buffer created");
3269 		db->db_caching_status = DB_NO_CACHE;
3270 		/* the bonus dbuf is not placed in the hash table */
3271 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3272 		return (db);
3273 	} else if (blkid == DMU_SPILL_BLKID) {
3274 		db->db.db_size = (blkptr != NULL) ?
3275 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3276 		db->db.db_offset = 0;
3277 	} else {
3278 		int blocksize =
3279 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3280 		db->db.db_size = blocksize;
3281 		db->db.db_offset = db->db_blkid * blocksize;
3282 	}
3283 
3284 	/*
3285 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3286 	 * in the hash table *and* added to the dbufs list.
3287 	 * This prevents a possible deadlock with someone
3288 	 * trying to look up this dbuf before it's added to the
3289 	 * dn_dbufs list.
3290 	 */
3291 	mutex_enter(&dn->dn_dbufs_mtx);
3292 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3293 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3294 		/* someone else inserted it first */
3295 		mutex_exit(&dn->dn_dbufs_mtx);
3296 		kmem_cache_free(dbuf_kmem_cache, db);
3297 		DBUF_STAT_BUMP(hash_insert_race);
3298 		return (odb);
3299 	}
3300 	avl_add(&dn->dn_dbufs, db);
3301 
3302 	db->db_state = DB_UNCACHED;
3303 	DTRACE_SET_STATE(db, "regular buffer created");
3304 	db->db_caching_status = DB_NO_CACHE;
3305 	mutex_exit(&dn->dn_dbufs_mtx);
3306 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3307 
3308 	if (parent && parent != dn->dn_dbuf)
3309 		dbuf_add_ref(parent, db);
3310 
3311 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3312 	    zfs_refcount_count(&dn->dn_holds) > 0);
3313 	(void) zfs_refcount_add(&dn->dn_holds, db);
3314 
3315 	dprintf_dbuf(db, "db=%p\n", db);
3316 
3317 	return (db);
3318 }
3319 
3320 /*
3321  * This function returns a block pointer and information about the object,
3322  * given a dnode and a block.  This is a publicly accessible version of
3323  * dbuf_findbp that only returns some information, rather than the
3324  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3325  * should be locked as (at least) a reader.
3326  */
3327 int
3328 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3329     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3330 {
3331 	dmu_buf_impl_t *dbp = NULL;
3332 	blkptr_t *bp2;
3333 	int err = 0;
3334 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3335 
3336 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3337 	if (err == 0) {
3338 		ASSERT3P(bp2, !=, NULL);
3339 		*bp = *bp2;
3340 		if (dbp != NULL)
3341 			dbuf_rele(dbp, NULL);
3342 		if (datablkszsec != NULL)
3343 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3344 		if (indblkshift != NULL)
3345 			*indblkshift = dn->dn_phys->dn_indblkshift;
3346 	}
3347 
3348 	return (err);
3349 }
3350 
3351 typedef struct dbuf_prefetch_arg {
3352 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3353 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3354 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3355 	int dpa_curlevel; /* The current level that we're reading */
3356 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3357 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3358 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3359 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3360 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3361 	void *dpa_arg; /* prefetch completion arg */
3362 } dbuf_prefetch_arg_t;
3363 
3364 static void
3365 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3366 {
3367 	if (dpa->dpa_cb != NULL) {
3368 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3369 		    dpa->dpa_zb.zb_blkid, io_done);
3370 	}
3371 	kmem_free(dpa, sizeof (*dpa));
3372 }
3373 
3374 static void
3375 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3376     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3377 {
3378 	(void) zio, (void) zb, (void) iobp;
3379 	dbuf_prefetch_arg_t *dpa = private;
3380 
3381 	if (abuf != NULL)
3382 		arc_buf_destroy(abuf, private);
3383 
3384 	dbuf_prefetch_fini(dpa, B_TRUE);
3385 }
3386 
3387 /*
3388  * Actually issue the prefetch read for the block given.
3389  */
3390 static void
3391 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3392 {
3393 	ASSERT(!BP_IS_REDACTED(bp) ||
3394 	    dsl_dataset_feature_is_active(
3395 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3396 	    SPA_FEATURE_REDACTED_DATASETS));
3397 
3398 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3399 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3400 
3401 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3402 	arc_flags_t aflags =
3403 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3404 	    ARC_FLAG_NO_BUF;
3405 
3406 	/* dnodes are always read as raw and then converted later */
3407 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3408 	    dpa->dpa_curlevel == 0)
3409 		zio_flags |= ZIO_FLAG_RAW;
3410 
3411 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3412 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3413 	ASSERT(dpa->dpa_zio != NULL);
3414 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3415 	    dbuf_issue_final_prefetch_done, dpa,
3416 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3417 }
3418 
3419 /*
3420  * Called when an indirect block above our prefetch target is read in.  This
3421  * will either read in the next indirect block down the tree or issue the actual
3422  * prefetch if the next block down is our target.
3423  */
3424 static void
3425 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3426     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3427 {
3428 	(void) zb, (void) iobp;
3429 	dbuf_prefetch_arg_t *dpa = private;
3430 
3431 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3432 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3433 
3434 	if (abuf == NULL) {
3435 		ASSERT(zio == NULL || zio->io_error != 0);
3436 		dbuf_prefetch_fini(dpa, B_TRUE);
3437 		return;
3438 	}
3439 	ASSERT(zio == NULL || zio->io_error == 0);
3440 
3441 	/*
3442 	 * The dpa_dnode is only valid if we are called with a NULL
3443 	 * zio. This indicates that the arc_read() returned without
3444 	 * first calling zio_read() to issue a physical read. Once
3445 	 * a physical read is made the dpa_dnode must be invalidated
3446 	 * as the locks guarding it may have been dropped. If the
3447 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3448 	 * cache. To do so, we must hold the dbuf associated with the block
3449 	 * we just prefetched, read its contents so that we associate it
3450 	 * with an arc_buf_t, and then release it.
3451 	 */
3452 	if (zio != NULL) {
3453 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3454 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3455 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3456 		} else {
3457 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3458 		}
3459 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3460 
3461 		dpa->dpa_dnode = NULL;
3462 	} else if (dpa->dpa_dnode != NULL) {
3463 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3464 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3465 		    dpa->dpa_zb.zb_level));
3466 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3467 		    dpa->dpa_curlevel, curblkid, FTAG);
3468 		if (db == NULL) {
3469 			arc_buf_destroy(abuf, private);
3470 			dbuf_prefetch_fini(dpa, B_TRUE);
3471 			return;
3472 		}
3473 		(void) dbuf_read(db, NULL,
3474 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3475 		dbuf_rele(db, FTAG);
3476 	}
3477 
3478 	dpa->dpa_curlevel--;
3479 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3480 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3481 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3482 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3483 
3484 	ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3485 	    dsl_dataset_feature_is_active(
3486 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3487 	    SPA_FEATURE_REDACTED_DATASETS)));
3488 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3489 		arc_buf_destroy(abuf, private);
3490 		dbuf_prefetch_fini(dpa, B_TRUE);
3491 		return;
3492 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3493 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3494 		dbuf_issue_final_prefetch(dpa, bp);
3495 	} else {
3496 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3497 		zbookmark_phys_t zb;
3498 
3499 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3500 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3501 			iter_aflags |= ARC_FLAG_L2CACHE;
3502 
3503 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3504 
3505 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3506 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3507 
3508 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3509 		    bp, dbuf_prefetch_indirect_done, dpa,
3510 		    ZIO_PRIORITY_SYNC_READ,
3511 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3512 		    &iter_aflags, &zb);
3513 	}
3514 
3515 	arc_buf_destroy(abuf, private);
3516 }
3517 
3518 /*
3519  * Issue prefetch reads for the given block on the given level.  If the indirect
3520  * blocks above that block are not in memory, we will read them in
3521  * asynchronously.  As a result, this call never blocks waiting for a read to
3522  * complete. Note that the prefetch might fail if the dataset is encrypted and
3523  * the encryption key is unmapped before the IO completes.
3524  */
3525 int
3526 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3527     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3528     void *arg)
3529 {
3530 	blkptr_t bp;
3531 	int epbs, nlevels, curlevel;
3532 	uint64_t curblkid;
3533 
3534 	ASSERT(blkid != DMU_BONUS_BLKID);
3535 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3536 
3537 	if (blkid > dn->dn_maxblkid)
3538 		goto no_issue;
3539 
3540 	if (level == 0 && dnode_block_freed(dn, blkid))
3541 		goto no_issue;
3542 
3543 	/*
3544 	 * This dnode hasn't been written to disk yet, so there's nothing to
3545 	 * prefetch.
3546 	 */
3547 	nlevels = dn->dn_phys->dn_nlevels;
3548 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3549 		goto no_issue;
3550 
3551 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3552 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3553 		goto no_issue;
3554 
3555 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3556 	    level, blkid, NULL);
3557 	if (db != NULL) {
3558 		mutex_exit(&db->db_mtx);
3559 		/*
3560 		 * This dbuf already exists.  It is either CACHED, or
3561 		 * (we assume) about to be read or filled.
3562 		 */
3563 		goto no_issue;
3564 	}
3565 
3566 	/*
3567 	 * Find the closest ancestor (indirect block) of the target block
3568 	 * that is present in the cache.  In this indirect block, we will
3569 	 * find the bp that is at curlevel, curblkid.
3570 	 */
3571 	curlevel = level;
3572 	curblkid = blkid;
3573 	while (curlevel < nlevels - 1) {
3574 		int parent_level = curlevel + 1;
3575 		uint64_t parent_blkid = curblkid >> epbs;
3576 		dmu_buf_impl_t *db;
3577 
3578 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3579 		    FALSE, TRUE, FTAG, &db) == 0) {
3580 			blkptr_t *bpp = db->db_buf->b_data;
3581 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3582 			dbuf_rele(db, FTAG);
3583 			break;
3584 		}
3585 
3586 		curlevel = parent_level;
3587 		curblkid = parent_blkid;
3588 	}
3589 
3590 	if (curlevel == nlevels - 1) {
3591 		/* No cached indirect blocks found. */
3592 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3593 		bp = dn->dn_phys->dn_blkptr[curblkid];
3594 	}
3595 	ASSERT(!BP_IS_REDACTED(&bp) ||
3596 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3597 	    SPA_FEATURE_REDACTED_DATASETS));
3598 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3599 		goto no_issue;
3600 
3601 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3602 
3603 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3604 	    ZIO_FLAG_CANFAIL);
3605 
3606 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3607 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3608 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3609 	    dn->dn_object, level, blkid);
3610 	dpa->dpa_curlevel = curlevel;
3611 	dpa->dpa_prio = prio;
3612 	dpa->dpa_aflags = aflags;
3613 	dpa->dpa_spa = dn->dn_objset->os_spa;
3614 	dpa->dpa_dnode = dn;
3615 	dpa->dpa_epbs = epbs;
3616 	dpa->dpa_zio = pio;
3617 	dpa->dpa_cb = cb;
3618 	dpa->dpa_arg = arg;
3619 
3620 	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3621 		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3622 	else if (dnode_level_is_l2cacheable(&bp, dn, level))
3623 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3624 
3625 	/*
3626 	 * If we have the indirect just above us, no need to do the asynchronous
3627 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3628 	 * a higher level, though, we want to issue the prefetches for all the
3629 	 * indirect blocks asynchronously, so we can go on with whatever we were
3630 	 * doing.
3631 	 */
3632 	if (curlevel == level) {
3633 		ASSERT3U(curblkid, ==, blkid);
3634 		dbuf_issue_final_prefetch(dpa, &bp);
3635 	} else {
3636 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3637 		zbookmark_phys_t zb;
3638 
3639 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3640 		if (dnode_level_is_l2cacheable(&bp, dn, level))
3641 			iter_aflags |= ARC_FLAG_L2CACHE;
3642 
3643 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3644 		    dn->dn_object, curlevel, curblkid);
3645 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3646 		    &bp, dbuf_prefetch_indirect_done, dpa,
3647 		    ZIO_PRIORITY_SYNC_READ,
3648 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3649 		    &iter_aflags, &zb);
3650 	}
3651 	/*
3652 	 * We use pio here instead of dpa_zio since it's possible that
3653 	 * dpa may have already been freed.
3654 	 */
3655 	zio_nowait(pio);
3656 	return (1);
3657 no_issue:
3658 	if (cb != NULL)
3659 		cb(arg, level, blkid, B_FALSE);
3660 	return (0);
3661 }
3662 
3663 int
3664 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3665     arc_flags_t aflags)
3666 {
3667 
3668 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3669 }
3670 
3671 /*
3672  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3673  * the case of encrypted, compressed and uncompressed buffers by
3674  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3675  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3676  *
3677  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3678  */
3679 noinline static void
3680 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3681 {
3682 	dbuf_dirty_record_t *dr = db->db_data_pending;
3683 	arc_buf_t *data = dr->dt.dl.dr_data;
3684 	enum zio_compress compress_type = arc_get_compression(data);
3685 	uint8_t complevel = arc_get_complevel(data);
3686 
3687 	if (arc_is_encrypted(data)) {
3688 		boolean_t byteorder;
3689 		uint8_t salt[ZIO_DATA_SALT_LEN];
3690 		uint8_t iv[ZIO_DATA_IV_LEN];
3691 		uint8_t mac[ZIO_DATA_MAC_LEN];
3692 
3693 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3694 		dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3695 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3696 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3697 		    compress_type, complevel));
3698 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3699 		dbuf_set_data(db, arc_alloc_compressed_buf(
3700 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3701 		    arc_buf_lsize(data), compress_type, complevel));
3702 	} else {
3703 		dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3704 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3705 	}
3706 
3707 	rw_enter(&db->db_rwlock, RW_WRITER);
3708 	memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3709 	rw_exit(&db->db_rwlock);
3710 }
3711 
3712 /*
3713  * Returns with db_holds incremented, and db_mtx not held.
3714  * Note: dn_struct_rwlock must be held.
3715  */
3716 int
3717 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3718     boolean_t fail_sparse, boolean_t fail_uncached,
3719     const void *tag, dmu_buf_impl_t **dbp)
3720 {
3721 	dmu_buf_impl_t *db, *parent = NULL;
3722 	uint64_t hv;
3723 
3724 	/* If the pool has been created, verify the tx_sync_lock is not held */
3725 	spa_t *spa = dn->dn_objset->os_spa;
3726 	dsl_pool_t *dp = spa->spa_dsl_pool;
3727 	if (dp != NULL) {
3728 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3729 	}
3730 
3731 	ASSERT(blkid != DMU_BONUS_BLKID);
3732 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3733 	ASSERT3U(dn->dn_nlevels, >, level);
3734 
3735 	*dbp = NULL;
3736 
3737 	/* dbuf_find() returns with db_mtx held */
3738 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3739 
3740 	if (db == NULL) {
3741 		blkptr_t *bp = NULL;
3742 		int err;
3743 
3744 		if (fail_uncached)
3745 			return (SET_ERROR(ENOENT));
3746 
3747 		ASSERT3P(parent, ==, NULL);
3748 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3749 		if (fail_sparse) {
3750 			if (err == 0 && bp && BP_IS_HOLE(bp))
3751 				err = SET_ERROR(ENOENT);
3752 			if (err) {
3753 				if (parent)
3754 					dbuf_rele(parent, NULL);
3755 				return (err);
3756 			}
3757 		}
3758 		if (err && err != ENOENT)
3759 			return (err);
3760 		db = dbuf_create(dn, level, blkid, parent, bp, hv);
3761 	}
3762 
3763 	if (fail_uncached && db->db_state != DB_CACHED) {
3764 		mutex_exit(&db->db_mtx);
3765 		return (SET_ERROR(ENOENT));
3766 	}
3767 
3768 	if (db->db_buf != NULL) {
3769 		arc_buf_access(db->db_buf);
3770 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3771 	}
3772 
3773 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3774 
3775 	/*
3776 	 * If this buffer is currently syncing out, and we are
3777 	 * still referencing it from db_data, we need to make a copy
3778 	 * of it in case we decide we want to dirty it again in this txg.
3779 	 */
3780 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3781 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3782 	    db->db_state == DB_CACHED && db->db_data_pending) {
3783 		dbuf_dirty_record_t *dr = db->db_data_pending;
3784 		if (dr->dt.dl.dr_data == db->db_buf) {
3785 			ASSERT3P(db->db_buf, !=, NULL);
3786 			dbuf_hold_copy(dn, db);
3787 		}
3788 	}
3789 
3790 	if (multilist_link_active(&db->db_cache_link)) {
3791 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3792 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3793 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3794 
3795 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3796 
3797 		uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
3798 		(void) zfs_refcount_remove_many(
3799 		    &dbuf_caches[db->db_caching_status].size, size, db);
3800 
3801 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3802 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3803 		} else {
3804 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3805 			DBUF_STAT_BUMPDOWN(cache_count);
3806 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
3807 		}
3808 		db->db_caching_status = DB_NO_CACHE;
3809 	}
3810 	(void) zfs_refcount_add(&db->db_holds, tag);
3811 	DBUF_VERIFY(db);
3812 	mutex_exit(&db->db_mtx);
3813 
3814 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
3815 	if (parent)
3816 		dbuf_rele(parent, NULL);
3817 
3818 	ASSERT3P(DB_DNODE(db), ==, dn);
3819 	ASSERT3U(db->db_blkid, ==, blkid);
3820 	ASSERT3U(db->db_level, ==, level);
3821 	*dbp = db;
3822 
3823 	return (0);
3824 }
3825 
3826 dmu_buf_impl_t *
3827 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3828 {
3829 	return (dbuf_hold_level(dn, 0, blkid, tag));
3830 }
3831 
3832 dmu_buf_impl_t *
3833 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3834 {
3835 	dmu_buf_impl_t *db;
3836 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3837 	return (err ? NULL : db);
3838 }
3839 
3840 void
3841 dbuf_create_bonus(dnode_t *dn)
3842 {
3843 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3844 
3845 	ASSERT(dn->dn_bonus == NULL);
3846 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3847 	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3848 }
3849 
3850 int
3851 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3852 {
3853 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3854 
3855 	if (db->db_blkid != DMU_SPILL_BLKID)
3856 		return (SET_ERROR(ENOTSUP));
3857 	if (blksz == 0)
3858 		blksz = SPA_MINBLOCKSIZE;
3859 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3860 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3861 
3862 	dbuf_new_size(db, blksz, tx);
3863 
3864 	return (0);
3865 }
3866 
3867 void
3868 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3869 {
3870 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3871 }
3872 
3873 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3874 void
3875 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3876 {
3877 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3878 	VERIFY3S(holds, >, 1);
3879 }
3880 
3881 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3882 boolean_t
3883 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3884     const void *tag)
3885 {
3886 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3887 	dmu_buf_impl_t *found_db;
3888 	boolean_t result = B_FALSE;
3889 
3890 	if (blkid == DMU_BONUS_BLKID)
3891 		found_db = dbuf_find_bonus(os, obj);
3892 	else
3893 		found_db = dbuf_find(os, obj, 0, blkid, NULL);
3894 
3895 	if (found_db != NULL) {
3896 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3897 			(void) zfs_refcount_add(&db->db_holds, tag);
3898 			result = B_TRUE;
3899 		}
3900 		mutex_exit(&found_db->db_mtx);
3901 	}
3902 	return (result);
3903 }
3904 
3905 /*
3906  * If you call dbuf_rele() you had better not be referencing the dnode handle
3907  * unless you have some other direct or indirect hold on the dnode. (An indirect
3908  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3909  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3910  * dnode's parent dbuf evicting its dnode handles.
3911  */
3912 void
3913 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3914 {
3915 	mutex_enter(&db->db_mtx);
3916 	dbuf_rele_and_unlock(db, tag, B_FALSE);
3917 }
3918 
3919 void
3920 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3921 {
3922 	dbuf_rele((dmu_buf_impl_t *)db, tag);
3923 }
3924 
3925 /*
3926  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3927  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
3928  * argument should be set if we are already in the dbuf-evicting code
3929  * path, in which case we don't want to recursively evict.  This allows us to
3930  * avoid deeply nested stacks that would have a call flow similar to this:
3931  *
3932  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3933  *	^						|
3934  *	|						|
3935  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
3936  *
3937  */
3938 void
3939 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3940 {
3941 	int64_t holds;
3942 	uint64_t size;
3943 
3944 	ASSERT(MUTEX_HELD(&db->db_mtx));
3945 	DBUF_VERIFY(db);
3946 
3947 	/*
3948 	 * Remove the reference to the dbuf before removing its hold on the
3949 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
3950 	 * buffer has a corresponding dnode hold.
3951 	 */
3952 	holds = zfs_refcount_remove(&db->db_holds, tag);
3953 	ASSERT(holds >= 0);
3954 
3955 	/*
3956 	 * We can't freeze indirects if there is a possibility that they
3957 	 * may be modified in the current syncing context.
3958 	 */
3959 	if (db->db_buf != NULL &&
3960 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3961 		arc_buf_freeze(db->db_buf);
3962 	}
3963 
3964 	if (holds == db->db_dirtycnt &&
3965 	    db->db_level == 0 && db->db_user_immediate_evict)
3966 		dbuf_evict_user(db);
3967 
3968 	if (holds == 0) {
3969 		if (db->db_blkid == DMU_BONUS_BLKID) {
3970 			dnode_t *dn;
3971 			boolean_t evict_dbuf = db->db_pending_evict;
3972 
3973 			/*
3974 			 * If the dnode moves here, we cannot cross this
3975 			 * barrier until the move completes.
3976 			 */
3977 			DB_DNODE_ENTER(db);
3978 
3979 			dn = DB_DNODE(db);
3980 			atomic_dec_32(&dn->dn_dbufs_count);
3981 
3982 			/*
3983 			 * Decrementing the dbuf count means that the bonus
3984 			 * buffer's dnode hold is no longer discounted in
3985 			 * dnode_move(). The dnode cannot move until after
3986 			 * the dnode_rele() below.
3987 			 */
3988 			DB_DNODE_EXIT(db);
3989 
3990 			/*
3991 			 * Do not reference db after its lock is dropped.
3992 			 * Another thread may evict it.
3993 			 */
3994 			mutex_exit(&db->db_mtx);
3995 
3996 			if (evict_dbuf)
3997 				dnode_evict_bonus(dn);
3998 
3999 			dnode_rele(dn, db);
4000 		} else if (db->db_buf == NULL) {
4001 			/*
4002 			 * This is a special case: we never associated this
4003 			 * dbuf with any data allocated from the ARC.
4004 			 */
4005 			ASSERT(db->db_state == DB_UNCACHED ||
4006 			    db->db_state == DB_NOFILL);
4007 			dbuf_destroy(db);
4008 		} else if (arc_released(db->db_buf)) {
4009 			/*
4010 			 * This dbuf has anonymous data associated with it.
4011 			 */
4012 			dbuf_destroy(db);
4013 		} else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4014 		    db->db_pending_evict) {
4015 			dbuf_destroy(db);
4016 		} else if (!multilist_link_active(&db->db_cache_link)) {
4017 			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4018 
4019 			dbuf_cached_state_t dcs =
4020 			    dbuf_include_in_metadata_cache(db) ?
4021 			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4022 			db->db_caching_status = dcs;
4023 
4024 			multilist_insert(&dbuf_caches[dcs].cache, db);
4025 			uint64_t db_size = db->db.db_size +
4026 			    dmu_buf_user_size(&db->db);
4027 			size = zfs_refcount_add_many(
4028 			    &dbuf_caches[dcs].size, db_size, db);
4029 			uint8_t db_level = db->db_level;
4030 			mutex_exit(&db->db_mtx);
4031 
4032 			if (dcs == DB_DBUF_METADATA_CACHE) {
4033 				DBUF_STAT_BUMP(metadata_cache_count);
4034 				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4035 				    size);
4036 			} else {
4037 				DBUF_STAT_BUMP(cache_count);
4038 				DBUF_STAT_MAX(cache_size_bytes_max, size);
4039 				DBUF_STAT_BUMP(cache_levels[db_level]);
4040 				DBUF_STAT_INCR(cache_levels_bytes[db_level],
4041 				    db_size);
4042 			}
4043 
4044 			if (dcs == DB_DBUF_CACHE && !evicting)
4045 				dbuf_evict_notify(size);
4046 		}
4047 	} else {
4048 		mutex_exit(&db->db_mtx);
4049 	}
4050 
4051 }
4052 
4053 #pragma weak dmu_buf_refcount = dbuf_refcount
4054 uint64_t
4055 dbuf_refcount(dmu_buf_impl_t *db)
4056 {
4057 	return (zfs_refcount_count(&db->db_holds));
4058 }
4059 
4060 uint64_t
4061 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4062 {
4063 	uint64_t holds;
4064 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4065 
4066 	mutex_enter(&db->db_mtx);
4067 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4068 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4069 	mutex_exit(&db->db_mtx);
4070 
4071 	return (holds);
4072 }
4073 
4074 void *
4075 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4076     dmu_buf_user_t *new_user)
4077 {
4078 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4079 
4080 	mutex_enter(&db->db_mtx);
4081 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4082 	if (db->db_user == old_user)
4083 		db->db_user = new_user;
4084 	else
4085 		old_user = db->db_user;
4086 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4087 	mutex_exit(&db->db_mtx);
4088 
4089 	return (old_user);
4090 }
4091 
4092 void *
4093 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4094 {
4095 	return (dmu_buf_replace_user(db_fake, NULL, user));
4096 }
4097 
4098 void *
4099 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4100 {
4101 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4102 
4103 	db->db_user_immediate_evict = TRUE;
4104 	return (dmu_buf_set_user(db_fake, user));
4105 }
4106 
4107 void *
4108 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4109 {
4110 	return (dmu_buf_replace_user(db_fake, user, NULL));
4111 }
4112 
4113 void *
4114 dmu_buf_get_user(dmu_buf_t *db_fake)
4115 {
4116 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4117 
4118 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4119 	return (db->db_user);
4120 }
4121 
4122 uint64_t
4123 dmu_buf_user_size(dmu_buf_t *db_fake)
4124 {
4125 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4126 	if (db->db_user == NULL)
4127 		return (0);
4128 	return (atomic_load_64(&db->db_user->dbu_size));
4129 }
4130 
4131 void
4132 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4133 {
4134 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4135 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4136 	ASSERT3P(db->db_user, !=, NULL);
4137 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4138 	atomic_add_64(&db->db_user->dbu_size, nadd);
4139 }
4140 
4141 void
4142 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4143 {
4144 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4145 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4146 	ASSERT3P(db->db_user, !=, NULL);
4147 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4148 	atomic_sub_64(&db->db_user->dbu_size, nsub);
4149 }
4150 
4151 void
4152 dmu_buf_user_evict_wait(void)
4153 {
4154 	taskq_wait(dbu_evict_taskq);
4155 }
4156 
4157 blkptr_t *
4158 dmu_buf_get_blkptr(dmu_buf_t *db)
4159 {
4160 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4161 	return (dbi->db_blkptr);
4162 }
4163 
4164 objset_t *
4165 dmu_buf_get_objset(dmu_buf_t *db)
4166 {
4167 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4168 	return (dbi->db_objset);
4169 }
4170 
4171 static void
4172 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4173 {
4174 	/* ASSERT(dmu_tx_is_syncing(tx) */
4175 	ASSERT(MUTEX_HELD(&db->db_mtx));
4176 
4177 	if (db->db_blkptr != NULL)
4178 		return;
4179 
4180 	if (db->db_blkid == DMU_SPILL_BLKID) {
4181 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4182 		BP_ZERO(db->db_blkptr);
4183 		return;
4184 	}
4185 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4186 		/*
4187 		 * This buffer was allocated at a time when there was
4188 		 * no available blkptrs from the dnode, or it was
4189 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4190 		 */
4191 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4192 		ASSERT(db->db_parent == NULL);
4193 		db->db_parent = dn->dn_dbuf;
4194 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4195 		DBUF_VERIFY(db);
4196 	} else {
4197 		dmu_buf_impl_t *parent = db->db_parent;
4198 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4199 
4200 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4201 		if (parent == NULL) {
4202 			mutex_exit(&db->db_mtx);
4203 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4204 			parent = dbuf_hold_level(dn, db->db_level + 1,
4205 			    db->db_blkid >> epbs, db);
4206 			rw_exit(&dn->dn_struct_rwlock);
4207 			mutex_enter(&db->db_mtx);
4208 			db->db_parent = parent;
4209 		}
4210 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4211 		    (db->db_blkid & ((1ULL << epbs) - 1));
4212 		DBUF_VERIFY(db);
4213 	}
4214 }
4215 
4216 static void
4217 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4218 {
4219 	dmu_buf_impl_t *db = dr->dr_dbuf;
4220 	void *data = dr->dt.dl.dr_data;
4221 
4222 	ASSERT0(db->db_level);
4223 	ASSERT(MUTEX_HELD(&db->db_mtx));
4224 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4225 	ASSERT(data != NULL);
4226 
4227 	dnode_t *dn = dr->dr_dnode;
4228 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4229 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4230 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4231 
4232 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4233 
4234 	dbuf_undirty_bonus(dr);
4235 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4236 }
4237 
4238 /*
4239  * When syncing out a blocks of dnodes, adjust the block to deal with
4240  * encryption.  Normally, we make sure the block is decrypted before writing
4241  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4242  * from a raw receive.  In this case, set the ARC buf's crypt params so
4243  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4244  */
4245 static void
4246 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4247 {
4248 	int err;
4249 	dmu_buf_impl_t *db = dr->dr_dbuf;
4250 
4251 	ASSERT(MUTEX_HELD(&db->db_mtx));
4252 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4253 	ASSERT3U(db->db_level, ==, 0);
4254 
4255 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4256 		zbookmark_phys_t zb;
4257 
4258 		/*
4259 		 * Unfortunately, there is currently no mechanism for
4260 		 * syncing context to handle decryption errors. An error
4261 		 * here is only possible if an attacker maliciously
4262 		 * changed a dnode block and updated the associated
4263 		 * checksums going up the block tree.
4264 		 */
4265 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4266 		    db->db.db_object, db->db_level, db->db_blkid);
4267 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4268 		    &zb, B_TRUE);
4269 		if (err)
4270 			panic("Invalid dnode block MAC");
4271 	} else if (dr->dt.dl.dr_has_raw_params) {
4272 		(void) arc_release(dr->dt.dl.dr_data, db);
4273 		arc_convert_to_raw(dr->dt.dl.dr_data,
4274 		    dmu_objset_id(db->db_objset),
4275 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4276 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4277 	}
4278 }
4279 
4280 /*
4281  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4282  * is critical the we not allow the compiler to inline this function in to
4283  * dbuf_sync_list() thereby drastically bloating the stack usage.
4284  */
4285 noinline static void
4286 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4287 {
4288 	dmu_buf_impl_t *db = dr->dr_dbuf;
4289 	dnode_t *dn = dr->dr_dnode;
4290 
4291 	ASSERT(dmu_tx_is_syncing(tx));
4292 
4293 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4294 
4295 	mutex_enter(&db->db_mtx);
4296 
4297 	ASSERT(db->db_level > 0);
4298 	DBUF_VERIFY(db);
4299 
4300 	/* Read the block if it hasn't been read yet. */
4301 	if (db->db_buf == NULL) {
4302 		mutex_exit(&db->db_mtx);
4303 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4304 		mutex_enter(&db->db_mtx);
4305 	}
4306 	ASSERT3U(db->db_state, ==, DB_CACHED);
4307 	ASSERT(db->db_buf != NULL);
4308 
4309 	/* Indirect block size must match what the dnode thinks it is. */
4310 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4311 	dbuf_check_blkptr(dn, db);
4312 
4313 	/* Provide the pending dirty record to child dbufs */
4314 	db->db_data_pending = dr;
4315 
4316 	mutex_exit(&db->db_mtx);
4317 
4318 	dbuf_write(dr, db->db_buf, tx);
4319 
4320 	zio_t *zio = dr->dr_zio;
4321 	mutex_enter(&dr->dt.di.dr_mtx);
4322 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4323 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4324 	mutex_exit(&dr->dt.di.dr_mtx);
4325 	zio_nowait(zio);
4326 }
4327 
4328 /*
4329  * Verify that the size of the data in our bonus buffer does not exceed
4330  * its recorded size.
4331  *
4332  * The purpose of this verification is to catch any cases in development
4333  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4334  * due to incorrect feature management, older pools expect to read more
4335  * data even though they didn't actually write it to begin with.
4336  *
4337  * For a example, this would catch an error in the feature logic where we
4338  * open an older pool and we expect to write the space map histogram of
4339  * a space map with size SPACE_MAP_SIZE_V0.
4340  */
4341 static void
4342 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4343 {
4344 #ifdef ZFS_DEBUG
4345 	dnode_t *dn = dr->dr_dnode;
4346 
4347 	/*
4348 	 * Encrypted bonus buffers can have data past their bonuslen.
4349 	 * Skip the verification of these blocks.
4350 	 */
4351 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4352 		return;
4353 
4354 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4355 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4356 	ASSERT3U(bonuslen, <=, maxbonuslen);
4357 
4358 	arc_buf_t *datap = dr->dt.dl.dr_data;
4359 	char *datap_end = ((char *)datap) + bonuslen;
4360 	char *datap_max = ((char *)datap) + maxbonuslen;
4361 
4362 	/* ensure that everything is zero after our data */
4363 	for (; datap_end < datap_max; datap_end++)
4364 		ASSERT(*datap_end == 0);
4365 #endif
4366 }
4367 
4368 static blkptr_t *
4369 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4370 {
4371 	/* This must be a lightweight dirty record. */
4372 	ASSERT3P(dr->dr_dbuf, ==, NULL);
4373 	dnode_t *dn = dr->dr_dnode;
4374 
4375 	if (dn->dn_phys->dn_nlevels == 1) {
4376 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4377 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4378 	} else {
4379 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4380 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4381 		VERIFY3U(parent_db->db_level, ==, 1);
4382 		VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4383 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4384 		blkptr_t *bp = parent_db->db.db_data;
4385 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4386 	}
4387 }
4388 
4389 static void
4390 dbuf_lightweight_ready(zio_t *zio)
4391 {
4392 	dbuf_dirty_record_t *dr = zio->io_private;
4393 	blkptr_t *bp = zio->io_bp;
4394 
4395 	if (zio->io_error != 0)
4396 		return;
4397 
4398 	dnode_t *dn = dr->dr_dnode;
4399 
4400 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4401 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4402 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4403 	    bp_get_dsize_sync(spa, bp_orig);
4404 	dnode_diduse_space(dn, delta);
4405 
4406 	uint64_t blkid = dr->dt.dll.dr_blkid;
4407 	mutex_enter(&dn->dn_mtx);
4408 	if (blkid > dn->dn_phys->dn_maxblkid) {
4409 		ASSERT0(dn->dn_objset->os_raw_receive);
4410 		dn->dn_phys->dn_maxblkid = blkid;
4411 	}
4412 	mutex_exit(&dn->dn_mtx);
4413 
4414 	if (!BP_IS_EMBEDDED(bp)) {
4415 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4416 		BP_SET_FILL(bp, fill);
4417 	}
4418 
4419 	dmu_buf_impl_t *parent_db;
4420 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4421 	if (dr->dr_parent == NULL) {
4422 		parent_db = dn->dn_dbuf;
4423 	} else {
4424 		parent_db = dr->dr_parent->dr_dbuf;
4425 	}
4426 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4427 	*bp_orig = *bp;
4428 	rw_exit(&parent_db->db_rwlock);
4429 }
4430 
4431 static void
4432 dbuf_lightweight_done(zio_t *zio)
4433 {
4434 	dbuf_dirty_record_t *dr = zio->io_private;
4435 
4436 	VERIFY0(zio->io_error);
4437 
4438 	objset_t *os = dr->dr_dnode->dn_objset;
4439 	dmu_tx_t *tx = os->os_synctx;
4440 
4441 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4442 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4443 	} else {
4444 		dsl_dataset_t *ds = os->os_dsl_dataset;
4445 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4446 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4447 	}
4448 
4449 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4450 	    zio->io_txg);
4451 
4452 	abd_free(dr->dt.dll.dr_abd);
4453 	kmem_free(dr, sizeof (*dr));
4454 }
4455 
4456 noinline static void
4457 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4458 {
4459 	dnode_t *dn = dr->dr_dnode;
4460 	zio_t *pio;
4461 	if (dn->dn_phys->dn_nlevels == 1) {
4462 		pio = dn->dn_zio;
4463 	} else {
4464 		pio = dr->dr_parent->dr_zio;
4465 	}
4466 
4467 	zbookmark_phys_t zb = {
4468 		.zb_objset = dmu_objset_id(dn->dn_objset),
4469 		.zb_object = dn->dn_object,
4470 		.zb_level = 0,
4471 		.zb_blkid = dr->dt.dll.dr_blkid,
4472 	};
4473 
4474 	/*
4475 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4476 	 * will have the old BP in dbuf_lightweight_done().
4477 	 */
4478 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4479 
4480 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4481 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4482 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4483 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4484 	    dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4485 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4486 
4487 	zio_nowait(dr->dr_zio);
4488 }
4489 
4490 /*
4491  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4492  * critical the we not allow the compiler to inline this function in to
4493  * dbuf_sync_list() thereby drastically bloating the stack usage.
4494  */
4495 noinline static void
4496 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4497 {
4498 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4499 	dmu_buf_impl_t *db = dr->dr_dbuf;
4500 	dnode_t *dn = dr->dr_dnode;
4501 	objset_t *os;
4502 	uint64_t txg = tx->tx_txg;
4503 
4504 	ASSERT(dmu_tx_is_syncing(tx));
4505 
4506 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4507 
4508 	mutex_enter(&db->db_mtx);
4509 	/*
4510 	 * To be synced, we must be dirtied.  But we
4511 	 * might have been freed after the dirty.
4512 	 */
4513 	if (db->db_state == DB_UNCACHED) {
4514 		/* This buffer has been freed since it was dirtied */
4515 		ASSERT(db->db.db_data == NULL);
4516 	} else if (db->db_state == DB_FILL) {
4517 		/* This buffer was freed and is now being re-filled */
4518 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4519 	} else if (db->db_state == DB_READ) {
4520 		/*
4521 		 * This buffer has a clone we need to write, and an in-flight
4522 		 * read on the BP we're about to clone. Its safe to issue the
4523 		 * write here because the read has already been issued and the
4524 		 * contents won't change.
4525 		 */
4526 		ASSERT(dr->dt.dl.dr_brtwrite &&
4527 		    dr->dt.dl.dr_override_state == DR_OVERRIDDEN);
4528 	} else {
4529 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4530 	}
4531 	DBUF_VERIFY(db);
4532 
4533 	if (db->db_blkid == DMU_SPILL_BLKID) {
4534 		mutex_enter(&dn->dn_mtx);
4535 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4536 			/*
4537 			 * In the previous transaction group, the bonus buffer
4538 			 * was entirely used to store the attributes for the
4539 			 * dnode which overrode the dn_spill field.  However,
4540 			 * when adding more attributes to the file a spill
4541 			 * block was required to hold the extra attributes.
4542 			 *
4543 			 * Make sure to clear the garbage left in the dn_spill
4544 			 * field from the previous attributes in the bonus
4545 			 * buffer.  Otherwise, after writing out the spill
4546 			 * block to the new allocated dva, it will free
4547 			 * the old block pointed to by the invalid dn_spill.
4548 			 */
4549 			db->db_blkptr = NULL;
4550 		}
4551 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4552 		mutex_exit(&dn->dn_mtx);
4553 	}
4554 
4555 	/*
4556 	 * If this is a bonus buffer, simply copy the bonus data into the
4557 	 * dnode.  It will be written out when the dnode is synced (and it
4558 	 * will be synced, since it must have been dirty for dbuf_sync to
4559 	 * be called).
4560 	 */
4561 	if (db->db_blkid == DMU_BONUS_BLKID) {
4562 		ASSERT(dr->dr_dbuf == db);
4563 		dbuf_sync_bonus(dr, tx);
4564 		return;
4565 	}
4566 
4567 	os = dn->dn_objset;
4568 
4569 	/*
4570 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4571 	 * operation to sneak in. As a result, we need to ensure that we
4572 	 * don't check the dr_override_state until we have returned from
4573 	 * dbuf_check_blkptr.
4574 	 */
4575 	dbuf_check_blkptr(dn, db);
4576 
4577 	/*
4578 	 * If this buffer is in the middle of an immediate write,
4579 	 * wait for the synchronous IO to complete.
4580 	 */
4581 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4582 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4583 		cv_wait(&db->db_changed, &db->db_mtx);
4584 	}
4585 
4586 	/*
4587 	 * If this is a dnode block, ensure it is appropriately encrypted
4588 	 * or decrypted, depending on what we are writing to it this txg.
4589 	 */
4590 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4591 		dbuf_prepare_encrypted_dnode_leaf(dr);
4592 
4593 	if (*datap != NULL && *datap == db->db_buf &&
4594 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4595 	    zfs_refcount_count(&db->db_holds) > 1 &&
4596 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN) {
4597 		/*
4598 		 * If this buffer is currently "in use" (i.e., there
4599 		 * are active holds and db_data still references it),
4600 		 * then make a copy before we start the write so that
4601 		 * any modifications from the open txg will not leak
4602 		 * into this write.
4603 		 *
4604 		 * NOTE: this copy does not need to be made for
4605 		 * objects only modified in the syncing context (e.g.
4606 		 * DNONE_DNODE blocks).
4607 		 */
4608 		int psize = arc_buf_size(*datap);
4609 		int lsize = arc_buf_lsize(*datap);
4610 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4611 		enum zio_compress compress_type = arc_get_compression(*datap);
4612 		uint8_t complevel = arc_get_complevel(*datap);
4613 
4614 		if (arc_is_encrypted(*datap)) {
4615 			boolean_t byteorder;
4616 			uint8_t salt[ZIO_DATA_SALT_LEN];
4617 			uint8_t iv[ZIO_DATA_IV_LEN];
4618 			uint8_t mac[ZIO_DATA_MAC_LEN];
4619 
4620 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4621 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4622 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4623 			    dn->dn_type, psize, lsize, compress_type,
4624 			    complevel);
4625 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4626 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4627 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4628 			    psize, lsize, compress_type, complevel);
4629 		} else {
4630 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4631 		}
4632 		memcpy((*datap)->b_data, db->db.db_data, psize);
4633 	}
4634 	db->db_data_pending = dr;
4635 
4636 	mutex_exit(&db->db_mtx);
4637 
4638 	dbuf_write(dr, *datap, tx);
4639 
4640 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4641 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4642 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4643 	} else {
4644 		zio_nowait(dr->dr_zio);
4645 	}
4646 }
4647 
4648 /*
4649  * Syncs out a range of dirty records for indirect or leaf dbufs.  May be
4650  * called recursively from dbuf_sync_indirect().
4651  */
4652 void
4653 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4654 {
4655 	dbuf_dirty_record_t *dr;
4656 
4657 	while ((dr = list_head(list))) {
4658 		if (dr->dr_zio != NULL) {
4659 			/*
4660 			 * If we find an already initialized zio then we
4661 			 * are processing the meta-dnode, and we have finished.
4662 			 * The dbufs for all dnodes are put back on the list
4663 			 * during processing, so that we can zio_wait()
4664 			 * these IOs after initiating all child IOs.
4665 			 */
4666 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4667 			    DMU_META_DNODE_OBJECT);
4668 			break;
4669 		}
4670 		list_remove(list, dr);
4671 		if (dr->dr_dbuf == NULL) {
4672 			dbuf_sync_lightweight(dr, tx);
4673 		} else {
4674 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4675 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4676 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4677 			}
4678 			if (dr->dr_dbuf->db_level > 0)
4679 				dbuf_sync_indirect(dr, tx);
4680 			else
4681 				dbuf_sync_leaf(dr, tx);
4682 		}
4683 	}
4684 }
4685 
4686 static void
4687 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4688 {
4689 	(void) buf;
4690 	dmu_buf_impl_t *db = vdb;
4691 	dnode_t *dn;
4692 	blkptr_t *bp = zio->io_bp;
4693 	blkptr_t *bp_orig = &zio->io_bp_orig;
4694 	spa_t *spa = zio->io_spa;
4695 	int64_t delta;
4696 	uint64_t fill = 0;
4697 	int i;
4698 
4699 	ASSERT3P(db->db_blkptr, !=, NULL);
4700 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4701 
4702 	DB_DNODE_ENTER(db);
4703 	dn = DB_DNODE(db);
4704 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4705 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4706 	zio->io_prev_space_delta = delta;
4707 
4708 	if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
4709 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4710 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4711 		    (db->db_blkid == DMU_SPILL_BLKID &&
4712 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4713 		    BP_IS_EMBEDDED(bp));
4714 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4715 	}
4716 
4717 	mutex_enter(&db->db_mtx);
4718 
4719 #ifdef ZFS_DEBUG
4720 	if (db->db_blkid == DMU_SPILL_BLKID) {
4721 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4722 		ASSERT(!(BP_IS_HOLE(bp)) &&
4723 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4724 	}
4725 #endif
4726 
4727 	if (db->db_level == 0) {
4728 		mutex_enter(&dn->dn_mtx);
4729 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4730 		    db->db_blkid != DMU_SPILL_BLKID) {
4731 			ASSERT0(db->db_objset->os_raw_receive);
4732 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4733 		}
4734 		mutex_exit(&dn->dn_mtx);
4735 
4736 		if (dn->dn_type == DMU_OT_DNODE) {
4737 			i = 0;
4738 			while (i < db->db.db_size) {
4739 				dnode_phys_t *dnp =
4740 				    (void *)(((char *)db->db.db_data) + i);
4741 
4742 				i += DNODE_MIN_SIZE;
4743 				if (dnp->dn_type != DMU_OT_NONE) {
4744 					fill++;
4745 					for (int j = 0; j < dnp->dn_nblkptr;
4746 					    j++) {
4747 						(void) zfs_blkptr_verify(spa,
4748 						    &dnp->dn_blkptr[j],
4749 						    BLK_CONFIG_SKIP,
4750 						    BLK_VERIFY_HALT);
4751 					}
4752 					if (dnp->dn_flags &
4753 					    DNODE_FLAG_SPILL_BLKPTR) {
4754 						(void) zfs_blkptr_verify(spa,
4755 						    DN_SPILL_BLKPTR(dnp),
4756 						    BLK_CONFIG_SKIP,
4757 						    BLK_VERIFY_HALT);
4758 					}
4759 					i += dnp->dn_extra_slots *
4760 					    DNODE_MIN_SIZE;
4761 				}
4762 			}
4763 		} else {
4764 			if (BP_IS_HOLE(bp)) {
4765 				fill = 0;
4766 			} else {
4767 				fill = 1;
4768 			}
4769 		}
4770 	} else {
4771 		blkptr_t *ibp = db->db.db_data;
4772 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4773 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4774 			if (BP_IS_HOLE(ibp))
4775 				continue;
4776 			(void) zfs_blkptr_verify(spa, ibp,
4777 			    BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4778 			fill += BP_GET_FILL(ibp);
4779 		}
4780 	}
4781 	DB_DNODE_EXIT(db);
4782 
4783 	if (!BP_IS_EMBEDDED(bp))
4784 		BP_SET_FILL(bp, fill);
4785 
4786 	mutex_exit(&db->db_mtx);
4787 
4788 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4789 	*db->db_blkptr = *bp;
4790 	dmu_buf_unlock_parent(db, dblt, FTAG);
4791 }
4792 
4793 /*
4794  * This function gets called just prior to running through the compression
4795  * stage of the zio pipeline. If we're an indirect block comprised of only
4796  * holes, then we want this indirect to be compressed away to a hole. In
4797  * order to do that we must zero out any information about the holes that
4798  * this indirect points to prior to before we try to compress it.
4799  */
4800 static void
4801 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4802 {
4803 	(void) zio, (void) buf;
4804 	dmu_buf_impl_t *db = vdb;
4805 	dnode_t *dn;
4806 	blkptr_t *bp;
4807 	unsigned int epbs, i;
4808 
4809 	ASSERT3U(db->db_level, >, 0);
4810 	DB_DNODE_ENTER(db);
4811 	dn = DB_DNODE(db);
4812 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4813 	ASSERT3U(epbs, <, 31);
4814 
4815 	/* Determine if all our children are holes */
4816 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4817 		if (!BP_IS_HOLE(bp))
4818 			break;
4819 	}
4820 
4821 	/*
4822 	 * If all the children are holes, then zero them all out so that
4823 	 * we may get compressed away.
4824 	 */
4825 	if (i == 1ULL << epbs) {
4826 		/*
4827 		 * We only found holes. Grab the rwlock to prevent
4828 		 * anybody from reading the blocks we're about to
4829 		 * zero out.
4830 		 */
4831 		rw_enter(&db->db_rwlock, RW_WRITER);
4832 		memset(db->db.db_data, 0, db->db.db_size);
4833 		rw_exit(&db->db_rwlock);
4834 	}
4835 	DB_DNODE_EXIT(db);
4836 }
4837 
4838 static void
4839 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4840 {
4841 	(void) buf;
4842 	dmu_buf_impl_t *db = vdb;
4843 	blkptr_t *bp_orig = &zio->io_bp_orig;
4844 	blkptr_t *bp = db->db_blkptr;
4845 	objset_t *os = db->db_objset;
4846 	dmu_tx_t *tx = os->os_synctx;
4847 
4848 	ASSERT0(zio->io_error);
4849 	ASSERT(db->db_blkptr == bp);
4850 
4851 	/*
4852 	 * For nopwrites and rewrites we ensure that the bp matches our
4853 	 * original and bypass all the accounting.
4854 	 */
4855 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4856 		ASSERT(BP_EQUAL(bp, bp_orig));
4857 	} else {
4858 		dsl_dataset_t *ds = os->os_dsl_dataset;
4859 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4860 		dsl_dataset_block_born(ds, bp, tx);
4861 	}
4862 
4863 	mutex_enter(&db->db_mtx);
4864 
4865 	DBUF_VERIFY(db);
4866 
4867 	dbuf_dirty_record_t *dr = db->db_data_pending;
4868 	dnode_t *dn = dr->dr_dnode;
4869 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4870 	ASSERT(dr->dr_dbuf == db);
4871 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4872 	list_remove(&db->db_dirty_records, dr);
4873 
4874 #ifdef ZFS_DEBUG
4875 	if (db->db_blkid == DMU_SPILL_BLKID) {
4876 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4877 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4878 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4879 	}
4880 #endif
4881 
4882 	if (db->db_level == 0) {
4883 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4884 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4885 		if (dr->dt.dl.dr_data != NULL &&
4886 		    dr->dt.dl.dr_data != db->db_buf) {
4887 			arc_buf_destroy(dr->dt.dl.dr_data, db);
4888 		}
4889 	} else {
4890 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4891 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4892 		if (!BP_IS_HOLE(db->db_blkptr)) {
4893 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4894 			    SPA_BLKPTRSHIFT;
4895 			ASSERT3U(db->db_blkid, <=,
4896 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4897 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4898 			    db->db.db_size);
4899 		}
4900 		mutex_destroy(&dr->dt.di.dr_mtx);
4901 		list_destroy(&dr->dt.di.dr_children);
4902 	}
4903 
4904 	cv_broadcast(&db->db_changed);
4905 	ASSERT(db->db_dirtycnt > 0);
4906 	db->db_dirtycnt -= 1;
4907 	db->db_data_pending = NULL;
4908 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4909 
4910 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4911 	    zio->io_txg);
4912 
4913 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
4914 }
4915 
4916 static void
4917 dbuf_write_nofill_ready(zio_t *zio)
4918 {
4919 	dbuf_write_ready(zio, NULL, zio->io_private);
4920 }
4921 
4922 static void
4923 dbuf_write_nofill_done(zio_t *zio)
4924 {
4925 	dbuf_write_done(zio, NULL, zio->io_private);
4926 }
4927 
4928 static void
4929 dbuf_write_override_ready(zio_t *zio)
4930 {
4931 	dbuf_dirty_record_t *dr = zio->io_private;
4932 	dmu_buf_impl_t *db = dr->dr_dbuf;
4933 
4934 	dbuf_write_ready(zio, NULL, db);
4935 }
4936 
4937 static void
4938 dbuf_write_override_done(zio_t *zio)
4939 {
4940 	dbuf_dirty_record_t *dr = zio->io_private;
4941 	dmu_buf_impl_t *db = dr->dr_dbuf;
4942 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4943 
4944 	mutex_enter(&db->db_mtx);
4945 	if (!BP_EQUAL(zio->io_bp, obp)) {
4946 		if (!BP_IS_HOLE(obp))
4947 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4948 		arc_release(dr->dt.dl.dr_data, db);
4949 	}
4950 	mutex_exit(&db->db_mtx);
4951 
4952 	dbuf_write_done(zio, NULL, db);
4953 
4954 	if (zio->io_abd != NULL)
4955 		abd_free(zio->io_abd);
4956 }
4957 
4958 typedef struct dbuf_remap_impl_callback_arg {
4959 	objset_t	*drica_os;
4960 	uint64_t	drica_blk_birth;
4961 	dmu_tx_t	*drica_tx;
4962 } dbuf_remap_impl_callback_arg_t;
4963 
4964 static void
4965 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4966     void *arg)
4967 {
4968 	dbuf_remap_impl_callback_arg_t *drica = arg;
4969 	objset_t *os = drica->drica_os;
4970 	spa_t *spa = dmu_objset_spa(os);
4971 	dmu_tx_t *tx = drica->drica_tx;
4972 
4973 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4974 
4975 	if (os == spa_meta_objset(spa)) {
4976 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4977 	} else {
4978 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4979 		    size, drica->drica_blk_birth, tx);
4980 	}
4981 }
4982 
4983 static void
4984 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4985 {
4986 	blkptr_t bp_copy = *bp;
4987 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4988 	dbuf_remap_impl_callback_arg_t drica;
4989 
4990 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4991 
4992 	drica.drica_os = dn->dn_objset;
4993 	drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp);
4994 	drica.drica_tx = tx;
4995 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4996 	    &drica)) {
4997 		/*
4998 		 * If the blkptr being remapped is tracked by a livelist,
4999 		 * then we need to make sure the livelist reflects the update.
5000 		 * First, cancel out the old blkptr by appending a 'FREE'
5001 		 * entry. Next, add an 'ALLOC' to track the new version. This
5002 		 * way we avoid trying to free an inaccurate blkptr at delete.
5003 		 * Note that embedded blkptrs are not tracked in livelists.
5004 		 */
5005 		if (dn->dn_objset != spa_meta_objset(spa)) {
5006 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5007 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5008 			    BP_GET_LOGICAL_BIRTH(bp) >
5009 			    ds->ds_dir->dd_origin_txg) {
5010 				ASSERT(!BP_IS_EMBEDDED(bp));
5011 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
5012 				ASSERT(spa_feature_is_enabled(spa,
5013 				    SPA_FEATURE_LIVELIST));
5014 				bplist_append(&ds->ds_dir->dd_pending_frees,
5015 				    bp);
5016 				bplist_append(&ds->ds_dir->dd_pending_allocs,
5017 				    &bp_copy);
5018 			}
5019 		}
5020 
5021 		/*
5022 		 * The db_rwlock prevents dbuf_read_impl() from
5023 		 * dereferencing the BP while we are changing it.  To
5024 		 * avoid lock contention, only grab it when we are actually
5025 		 * changing the BP.
5026 		 */
5027 		if (rw != NULL)
5028 			rw_enter(rw, RW_WRITER);
5029 		*bp = bp_copy;
5030 		if (rw != NULL)
5031 			rw_exit(rw);
5032 	}
5033 }
5034 
5035 /*
5036  * Remap any existing BP's to concrete vdevs, if possible.
5037  */
5038 static void
5039 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5040 {
5041 	spa_t *spa = dmu_objset_spa(db->db_objset);
5042 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5043 
5044 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5045 		return;
5046 
5047 	if (db->db_level > 0) {
5048 		blkptr_t *bp = db->db.db_data;
5049 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5050 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5051 		}
5052 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5053 		dnode_phys_t *dnp = db->db.db_data;
5054 		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
5055 		    DMU_OT_DNODE);
5056 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5057 		    i += dnp[i].dn_extra_slots + 1) {
5058 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5059 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5060 				    &dn->dn_dbuf->db_rwlock);
5061 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5062 				    tx);
5063 			}
5064 		}
5065 	}
5066 }
5067 
5068 
5069 /*
5070  * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5071  * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5072  */
5073 static void
5074 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5075 {
5076 	dmu_buf_impl_t *db = dr->dr_dbuf;
5077 	dnode_t *dn = dr->dr_dnode;
5078 	objset_t *os;
5079 	dmu_buf_impl_t *parent = db->db_parent;
5080 	uint64_t txg = tx->tx_txg;
5081 	zbookmark_phys_t zb;
5082 	zio_prop_t zp;
5083 	zio_t *pio; /* parent I/O */
5084 	int wp_flag = 0;
5085 
5086 	ASSERT(dmu_tx_is_syncing(tx));
5087 
5088 	os = dn->dn_objset;
5089 
5090 	if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5091 		/*
5092 		 * Private object buffers are released here rather than in
5093 		 * dbuf_dirty() since they are only modified in the syncing
5094 		 * context and we don't want the overhead of making multiple
5095 		 * copies of the data.
5096 		 */
5097 		if (BP_IS_HOLE(db->db_blkptr))
5098 			arc_buf_thaw(data);
5099 		else
5100 			dbuf_release_bp(db);
5101 		dbuf_remap(dn, db, tx);
5102 	}
5103 
5104 	if (parent != dn->dn_dbuf) {
5105 		/* Our parent is an indirect block. */
5106 		/* We have a dirty parent that has been scheduled for write. */
5107 		ASSERT(parent && parent->db_data_pending);
5108 		/* Our parent's buffer is one level closer to the dnode. */
5109 		ASSERT(db->db_level == parent->db_level-1);
5110 		/*
5111 		 * We're about to modify our parent's db_data by modifying
5112 		 * our block pointer, so the parent must be released.
5113 		 */
5114 		ASSERT(arc_released(parent->db_buf));
5115 		pio = parent->db_data_pending->dr_zio;
5116 	} else {
5117 		/* Our parent is the dnode itself. */
5118 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5119 		    db->db_blkid != DMU_SPILL_BLKID) ||
5120 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5121 		if (db->db_blkid != DMU_SPILL_BLKID)
5122 			ASSERT3P(db->db_blkptr, ==,
5123 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
5124 		pio = dn->dn_zio;
5125 	}
5126 
5127 	ASSERT(db->db_level == 0 || data == db->db_buf);
5128 	ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg);
5129 	ASSERT(pio);
5130 
5131 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5132 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5133 	    db->db.db_object, db->db_level, db->db_blkid);
5134 
5135 	if (db->db_blkid == DMU_SPILL_BLKID)
5136 		wp_flag = WP_SPILL;
5137 	wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5138 
5139 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5140 
5141 	/*
5142 	 * We copy the blkptr now (rather than when we instantiate the dirty
5143 	 * record), because its value can change between open context and
5144 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5145 	 * db_blkptr because we are in syncing context.
5146 	 */
5147 	dr->dr_bp_copy = *db->db_blkptr;
5148 
5149 	if (db->db_level == 0 &&
5150 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5151 		/*
5152 		 * The BP for this block has been provided by open context
5153 		 * (by dmu_sync() or dmu_buf_write_embedded()).
5154 		 */
5155 		abd_t *contents = (data != NULL) ?
5156 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5157 
5158 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5159 		    contents, db->db.db_size, db->db.db_size, &zp,
5160 		    dbuf_write_override_ready, NULL,
5161 		    dbuf_write_override_done,
5162 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5163 		mutex_enter(&db->db_mtx);
5164 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5165 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5166 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5167 		    dr->dt.dl.dr_brtwrite);
5168 		mutex_exit(&db->db_mtx);
5169 	} else if (data == NULL) {
5170 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5171 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5172 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5173 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5174 		    dbuf_write_nofill_ready, NULL,
5175 		    dbuf_write_nofill_done, db,
5176 		    ZIO_PRIORITY_ASYNC_WRITE,
5177 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5178 	} else {
5179 		ASSERT(arc_released(data));
5180 
5181 		/*
5182 		 * For indirect blocks, we want to setup the children
5183 		 * ready callback so that we can properly handle an indirect
5184 		 * block that only contains holes.
5185 		 */
5186 		arc_write_done_func_t *children_ready_cb = NULL;
5187 		if (db->db_level != 0)
5188 			children_ready_cb = dbuf_write_children_ready;
5189 
5190 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5191 		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5192 		    dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5193 		    children_ready_cb, dbuf_write_done, db,
5194 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5195 	}
5196 }
5197 
5198 EXPORT_SYMBOL(dbuf_find);
5199 EXPORT_SYMBOL(dbuf_is_metadata);
5200 EXPORT_SYMBOL(dbuf_destroy);
5201 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5202 EXPORT_SYMBOL(dbuf_whichblock);
5203 EXPORT_SYMBOL(dbuf_read);
5204 EXPORT_SYMBOL(dbuf_unoverride);
5205 EXPORT_SYMBOL(dbuf_free_range);
5206 EXPORT_SYMBOL(dbuf_new_size);
5207 EXPORT_SYMBOL(dbuf_release_bp);
5208 EXPORT_SYMBOL(dbuf_dirty);
5209 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5210 EXPORT_SYMBOL(dmu_buf_will_dirty);
5211 EXPORT_SYMBOL(dmu_buf_is_dirty);
5212 EXPORT_SYMBOL(dmu_buf_will_clone);
5213 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5214 EXPORT_SYMBOL(dmu_buf_will_fill);
5215 EXPORT_SYMBOL(dmu_buf_fill_done);
5216 EXPORT_SYMBOL(dmu_buf_rele);
5217 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5218 EXPORT_SYMBOL(dbuf_prefetch);
5219 EXPORT_SYMBOL(dbuf_hold_impl);
5220 EXPORT_SYMBOL(dbuf_hold);
5221 EXPORT_SYMBOL(dbuf_hold_level);
5222 EXPORT_SYMBOL(dbuf_create_bonus);
5223 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5224 EXPORT_SYMBOL(dbuf_rm_spill);
5225 EXPORT_SYMBOL(dbuf_add_ref);
5226 EXPORT_SYMBOL(dbuf_rele);
5227 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5228 EXPORT_SYMBOL(dbuf_refcount);
5229 EXPORT_SYMBOL(dbuf_sync_list);
5230 EXPORT_SYMBOL(dmu_buf_set_user);
5231 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5232 EXPORT_SYMBOL(dmu_buf_get_user);
5233 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5234 
5235 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5236 	"Maximum size in bytes of the dbuf cache.");
5237 
5238 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5239 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5240 
5241 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5242 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5243 
5244 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5245 	"Maximum size in bytes of dbuf metadata cache.");
5246 
5247 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5248 	"Set size of dbuf cache to log2 fraction of arc size.");
5249 
5250 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5251 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5252 
5253 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5254 	"Set size of dbuf cache mutex array as log2 shift.");
5255