1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val); 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)); 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1); 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1); 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 181 182 /* 183 * Global data structures and functions for the dbuf cache. 184 */ 185 static kmem_cache_t *dbuf_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 436 DBUF_STAT_MAX(hash_elements_max, he); 437 438 return (NULL); 439 } 440 441 /* 442 * This returns whether this dbuf should be stored in the metadata cache, which 443 * is based on whether it's from one of the dnode types that store data related 444 * to traversing dataset hierarchies. 445 */ 446 static boolean_t 447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 448 { 449 DB_DNODE_ENTER(db); 450 dmu_object_type_t type = DB_DNODE(db)->dn_type; 451 DB_DNODE_EXIT(db); 452 453 /* Check if this dbuf is one of the types we care about */ 454 if (DMU_OT_IS_METADATA_CACHED(type)) { 455 /* If we hit this, then we set something up wrong in dmu_ot */ 456 ASSERT(DMU_OT_IS_METADATA(type)); 457 458 /* 459 * Sanity check for small-memory systems: don't allocate too 460 * much memory for this purpose. 461 */ 462 if (zfs_refcount_count( 463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 464 dbuf_metadata_cache_target_bytes()) { 465 DBUF_STAT_BUMP(metadata_cache_overflow); 466 return (B_FALSE); 467 } 468 469 return (B_TRUE); 470 } 471 472 return (B_FALSE); 473 } 474 475 /* 476 * Remove an entry from the hash table. It must be in the EVICTING state. 477 */ 478 static void 479 dbuf_hash_remove(dmu_buf_impl_t *db) 480 { 481 dbuf_hash_table_t *h = &dbuf_hash_table; 482 uint64_t idx; 483 dmu_buf_impl_t *dbf, **dbp; 484 485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 486 db->db_blkid), ==, db->db_hash); 487 idx = db->db_hash & h->hash_table_mask; 488 489 /* 490 * We mustn't hold db_mtx to maintain lock ordering: 491 * DBUF_HASH_MUTEX > db_mtx. 492 */ 493 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 494 ASSERT(db->db_state == DB_EVICTING); 495 ASSERT(!MUTEX_HELD(&db->db_mtx)); 496 497 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 498 dbp = &h->hash_table[idx]; 499 while ((dbf = *dbp) != db) { 500 dbp = &dbf->db_hash_next; 501 ASSERT(dbf != NULL); 502 } 503 *dbp = db->db_hash_next; 504 db->db_hash_next = NULL; 505 if (h->hash_table[idx] && 506 h->hash_table[idx]->db_hash_next == NULL) 507 DBUF_STAT_BUMPDOWN(hash_chains); 508 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 510 } 511 512 typedef enum { 513 DBVU_EVICTING, 514 DBVU_NOT_EVICTING 515 } dbvu_verify_type_t; 516 517 static void 518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 519 { 520 #ifdef ZFS_DEBUG 521 int64_t holds; 522 523 if (db->db_user == NULL) 524 return; 525 526 /* Only data blocks support the attachment of user data. */ 527 ASSERT(db->db_level == 0); 528 529 /* Clients must resolve a dbuf before attaching user data. */ 530 ASSERT(db->db.db_data != NULL); 531 ASSERT3U(db->db_state, ==, DB_CACHED); 532 533 holds = zfs_refcount_count(&db->db_holds); 534 if (verify_type == DBVU_EVICTING) { 535 /* 536 * Immediate eviction occurs when holds == dirtycnt. 537 * For normal eviction buffers, holds is zero on 538 * eviction, except when dbuf_fix_old_data() calls 539 * dbuf_clear_data(). However, the hold count can grow 540 * during eviction even though db_mtx is held (see 541 * dmu_bonus_hold() for an example), so we can only 542 * test the generic invariant that holds >= dirtycnt. 543 */ 544 ASSERT3U(holds, >=, db->db_dirtycnt); 545 } else { 546 if (db->db_user_immediate_evict == TRUE) 547 ASSERT3U(holds, >=, db->db_dirtycnt); 548 else 549 ASSERT3U(holds, >, 0); 550 } 551 #endif 552 } 553 554 static void 555 dbuf_evict_user(dmu_buf_impl_t *db) 556 { 557 dmu_buf_user_t *dbu = db->db_user; 558 559 ASSERT(MUTEX_HELD(&db->db_mtx)); 560 561 if (dbu == NULL) 562 return; 563 564 dbuf_verify_user(db, DBVU_EVICTING); 565 db->db_user = NULL; 566 567 #ifdef ZFS_DEBUG 568 if (dbu->dbu_clear_on_evict_dbufp != NULL) 569 *dbu->dbu_clear_on_evict_dbufp = NULL; 570 #endif 571 572 /* 573 * There are two eviction callbacks - one that we call synchronously 574 * and one that we invoke via a taskq. The async one is useful for 575 * avoiding lock order reversals and limiting stack depth. 576 * 577 * Note that if we have a sync callback but no async callback, 578 * it's likely that the sync callback will free the structure 579 * containing the dbu. In that case we need to take care to not 580 * dereference dbu after calling the sync evict func. 581 */ 582 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 583 584 if (dbu->dbu_evict_func_sync != NULL) 585 dbu->dbu_evict_func_sync(dbu); 586 587 if (has_async) { 588 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 589 dbu, 0, &dbu->dbu_tqent); 590 } 591 } 592 593 boolean_t 594 dbuf_is_metadata(dmu_buf_impl_t *db) 595 { 596 /* 597 * Consider indirect blocks and spill blocks to be meta data. 598 */ 599 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 600 return (B_TRUE); 601 } else { 602 boolean_t is_metadata; 603 604 DB_DNODE_ENTER(db); 605 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 606 DB_DNODE_EXIT(db); 607 608 return (is_metadata); 609 } 610 } 611 612 /* 613 * We want to exclude buffers that are on a special allocation class from 614 * L2ARC. 615 */ 616 boolean_t 617 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 618 { 619 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 620 (db->db_objset->os_secondary_cache == 621 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 622 if (l2arc_exclude_special == 0) 623 return (B_TRUE); 624 625 blkptr_t *bp = db->db_blkptr; 626 if (bp == NULL || BP_IS_HOLE(bp)) 627 return (B_FALSE); 628 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 629 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 630 vdev_t *vd = NULL; 631 632 if (vdev < rvd->vdev_children) 633 vd = rvd->vdev_child[vdev]; 634 635 if (vd == NULL) 636 return (B_TRUE); 637 638 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 639 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 640 return (B_TRUE); 641 } 642 return (B_FALSE); 643 } 644 645 static inline boolean_t 646 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 647 { 648 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 649 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 650 (level > 0 || 651 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 652 if (l2arc_exclude_special == 0) 653 return (B_TRUE); 654 655 if (bp == NULL || BP_IS_HOLE(bp)) 656 return (B_FALSE); 657 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 658 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 659 vdev_t *vd = NULL; 660 661 if (vdev < rvd->vdev_children) 662 vd = rvd->vdev_child[vdev]; 663 664 if (vd == NULL) 665 return (B_TRUE); 666 667 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 668 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 669 return (B_TRUE); 670 } 671 return (B_FALSE); 672 } 673 674 675 /* 676 * This function *must* return indices evenly distributed between all 677 * sublists of the multilist. This is needed due to how the dbuf eviction 678 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 679 * distributed between all sublists and uses this assumption when 680 * deciding which sublist to evict from and how much to evict from it. 681 */ 682 static unsigned int 683 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 684 { 685 dmu_buf_impl_t *db = obj; 686 687 /* 688 * The assumption here, is the hash value for a given 689 * dmu_buf_impl_t will remain constant throughout it's lifetime 690 * (i.e. it's objset, object, level and blkid fields don't change). 691 * Thus, we don't need to store the dbuf's sublist index 692 * on insertion, as this index can be recalculated on removal. 693 * 694 * Also, the low order bits of the hash value are thought to be 695 * distributed evenly. Otherwise, in the case that the multilist 696 * has a power of two number of sublists, each sublists' usage 697 * would not be evenly distributed. In this context full 64bit 698 * division would be a waste of time, so limit it to 32 bits. 699 */ 700 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 701 db->db_level, db->db_blkid) % 702 multilist_get_num_sublists(ml)); 703 } 704 705 /* 706 * The target size of the dbuf cache can grow with the ARC target, 707 * unless limited by the tunable dbuf_cache_max_bytes. 708 */ 709 static inline unsigned long 710 dbuf_cache_target_bytes(void) 711 { 712 return (MIN(dbuf_cache_max_bytes, 713 arc_target_bytes() >> dbuf_cache_shift)); 714 } 715 716 /* 717 * The target size of the dbuf metadata cache can grow with the ARC target, 718 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 719 */ 720 static inline unsigned long 721 dbuf_metadata_cache_target_bytes(void) 722 { 723 return (MIN(dbuf_metadata_cache_max_bytes, 724 arc_target_bytes() >> dbuf_metadata_cache_shift)); 725 } 726 727 static inline uint64_t 728 dbuf_cache_hiwater_bytes(void) 729 { 730 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 731 return (dbuf_cache_target + 732 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 733 } 734 735 static inline uint64_t 736 dbuf_cache_lowater_bytes(void) 737 { 738 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 739 return (dbuf_cache_target - 740 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 741 } 742 743 static inline boolean_t 744 dbuf_cache_above_lowater(void) 745 { 746 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 747 dbuf_cache_lowater_bytes()); 748 } 749 750 /* 751 * Evict the oldest eligible dbuf from the dbuf cache. 752 */ 753 static void 754 dbuf_evict_one(void) 755 { 756 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 757 multilist_sublist_t *mls = multilist_sublist_lock( 758 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 759 760 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 761 762 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 763 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 764 db = multilist_sublist_prev(mls, db); 765 } 766 767 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 768 multilist_sublist_t *, mls); 769 770 if (db != NULL) { 771 multilist_sublist_remove(mls, db); 772 multilist_sublist_unlock(mls); 773 (void) zfs_refcount_remove_many( 774 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 775 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 776 DBUF_STAT_BUMPDOWN(cache_count); 777 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 778 db->db.db_size); 779 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 780 db->db_caching_status = DB_NO_CACHE; 781 dbuf_destroy(db); 782 DBUF_STAT_BUMP(cache_total_evicts); 783 } else { 784 multilist_sublist_unlock(mls); 785 } 786 } 787 788 /* 789 * The dbuf evict thread is responsible for aging out dbufs from the 790 * cache. Once the cache has reached it's maximum size, dbufs are removed 791 * and destroyed. The eviction thread will continue running until the size 792 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 793 * out of the cache it is destroyed and becomes eligible for arc eviction. 794 */ 795 static __attribute__((noreturn)) void 796 dbuf_evict_thread(void *unused) 797 { 798 (void) unused; 799 callb_cpr_t cpr; 800 801 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 802 803 mutex_enter(&dbuf_evict_lock); 804 while (!dbuf_evict_thread_exit) { 805 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 806 CALLB_CPR_SAFE_BEGIN(&cpr); 807 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 808 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 809 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 810 } 811 mutex_exit(&dbuf_evict_lock); 812 813 /* 814 * Keep evicting as long as we're above the low water mark 815 * for the cache. We do this without holding the locks to 816 * minimize lock contention. 817 */ 818 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 819 dbuf_evict_one(); 820 } 821 822 mutex_enter(&dbuf_evict_lock); 823 } 824 825 dbuf_evict_thread_exit = B_FALSE; 826 cv_broadcast(&dbuf_evict_cv); 827 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 828 thread_exit(); 829 } 830 831 /* 832 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 833 * If the dbuf cache is at its high water mark, then evict a dbuf from the 834 * dbuf cache using the caller's context. 835 */ 836 static void 837 dbuf_evict_notify(uint64_t size) 838 { 839 /* 840 * We check if we should evict without holding the dbuf_evict_lock, 841 * because it's OK to occasionally make the wrong decision here, 842 * and grabbing the lock results in massive lock contention. 843 */ 844 if (size > dbuf_cache_target_bytes()) { 845 if (size > dbuf_cache_hiwater_bytes()) 846 dbuf_evict_one(); 847 cv_signal(&dbuf_evict_cv); 848 } 849 } 850 851 static int 852 dbuf_kstat_update(kstat_t *ksp, int rw) 853 { 854 dbuf_stats_t *ds = ksp->ks_data; 855 dbuf_hash_table_t *h = &dbuf_hash_table; 856 857 if (rw == KSTAT_WRITE) 858 return (SET_ERROR(EACCES)); 859 860 ds->cache_count.value.ui64 = 861 wmsum_value(&dbuf_sums.cache_count); 862 ds->cache_size_bytes.value.ui64 = 863 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 864 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 865 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 866 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 867 ds->cache_total_evicts.value.ui64 = 868 wmsum_value(&dbuf_sums.cache_total_evicts); 869 for (int i = 0; i < DN_MAX_LEVELS; i++) { 870 ds->cache_levels[i].value.ui64 = 871 wmsum_value(&dbuf_sums.cache_levels[i]); 872 ds->cache_levels_bytes[i].value.ui64 = 873 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 874 } 875 ds->hash_hits.value.ui64 = 876 wmsum_value(&dbuf_sums.hash_hits); 877 ds->hash_misses.value.ui64 = 878 wmsum_value(&dbuf_sums.hash_misses); 879 ds->hash_collisions.value.ui64 = 880 wmsum_value(&dbuf_sums.hash_collisions); 881 ds->hash_chains.value.ui64 = 882 wmsum_value(&dbuf_sums.hash_chains); 883 ds->hash_insert_race.value.ui64 = 884 wmsum_value(&dbuf_sums.hash_insert_race); 885 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 886 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 887 ds->metadata_cache_count.value.ui64 = 888 wmsum_value(&dbuf_sums.metadata_cache_count); 889 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 890 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 891 ds->metadata_cache_overflow.value.ui64 = 892 wmsum_value(&dbuf_sums.metadata_cache_overflow); 893 return (0); 894 } 895 896 void 897 dbuf_init(void) 898 { 899 uint64_t hmsize, hsize = 1ULL << 16; 900 dbuf_hash_table_t *h = &dbuf_hash_table; 901 902 /* 903 * The hash table is big enough to fill one eighth of physical memory 904 * with an average block size of zfs_arc_average_blocksize (default 8K). 905 * By default, the table will take up 906 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 907 */ 908 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 909 hsize <<= 1; 910 911 h->hash_table = NULL; 912 while (h->hash_table == NULL) { 913 h->hash_table_mask = hsize - 1; 914 915 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 916 if (h->hash_table == NULL) 917 hsize >>= 1; 918 919 ASSERT3U(hsize, >=, 1ULL << 10); 920 } 921 922 /* 923 * The hash table buckets are protected by an array of mutexes where 924 * each mutex is reponsible for protecting 128 buckets. A minimum 925 * array size of 8192 is targeted to avoid contention. 926 */ 927 if (dbuf_mutex_cache_shift == 0) 928 hmsize = MAX(hsize >> 7, 1ULL << 13); 929 else 930 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 931 932 h->hash_mutexes = NULL; 933 while (h->hash_mutexes == NULL) { 934 h->hash_mutex_mask = hmsize - 1; 935 936 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 937 KM_SLEEP); 938 if (h->hash_mutexes == NULL) 939 hmsize >>= 1; 940 } 941 942 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 943 sizeof (dmu_buf_impl_t), 944 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 945 946 for (int i = 0; i < hmsize; i++) 947 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 948 949 dbuf_stats_init(h); 950 951 /* 952 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 953 * configuration is not required. 954 */ 955 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 956 957 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 958 multilist_create(&dbuf_caches[dcs].cache, 959 sizeof (dmu_buf_impl_t), 960 offsetof(dmu_buf_impl_t, db_cache_link), 961 dbuf_cache_multilist_index_func); 962 zfs_refcount_create(&dbuf_caches[dcs].size); 963 } 964 965 dbuf_evict_thread_exit = B_FALSE; 966 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 967 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 968 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 969 NULL, 0, &p0, TS_RUN, minclsyspri); 970 971 wmsum_init(&dbuf_sums.cache_count, 0); 972 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 973 for (int i = 0; i < DN_MAX_LEVELS; i++) { 974 wmsum_init(&dbuf_sums.cache_levels[i], 0); 975 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 976 } 977 wmsum_init(&dbuf_sums.hash_hits, 0); 978 wmsum_init(&dbuf_sums.hash_misses, 0); 979 wmsum_init(&dbuf_sums.hash_collisions, 0); 980 wmsum_init(&dbuf_sums.hash_chains, 0); 981 wmsum_init(&dbuf_sums.hash_insert_race, 0); 982 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 983 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 984 985 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 986 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 987 KSTAT_FLAG_VIRTUAL); 988 if (dbuf_ksp != NULL) { 989 for (int i = 0; i < DN_MAX_LEVELS; i++) { 990 snprintf(dbuf_stats.cache_levels[i].name, 991 KSTAT_STRLEN, "cache_level_%d", i); 992 dbuf_stats.cache_levels[i].data_type = 993 KSTAT_DATA_UINT64; 994 snprintf(dbuf_stats.cache_levels_bytes[i].name, 995 KSTAT_STRLEN, "cache_level_%d_bytes", i); 996 dbuf_stats.cache_levels_bytes[i].data_type = 997 KSTAT_DATA_UINT64; 998 } 999 dbuf_ksp->ks_data = &dbuf_stats; 1000 dbuf_ksp->ks_update = dbuf_kstat_update; 1001 kstat_install(dbuf_ksp); 1002 } 1003 } 1004 1005 void 1006 dbuf_fini(void) 1007 { 1008 dbuf_hash_table_t *h = &dbuf_hash_table; 1009 1010 dbuf_stats_destroy(); 1011 1012 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1013 mutex_destroy(&h->hash_mutexes[i]); 1014 1015 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1016 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1017 sizeof (kmutex_t)); 1018 1019 kmem_cache_destroy(dbuf_kmem_cache); 1020 taskq_destroy(dbu_evict_taskq); 1021 1022 mutex_enter(&dbuf_evict_lock); 1023 dbuf_evict_thread_exit = B_TRUE; 1024 while (dbuf_evict_thread_exit) { 1025 cv_signal(&dbuf_evict_cv); 1026 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1027 } 1028 mutex_exit(&dbuf_evict_lock); 1029 1030 mutex_destroy(&dbuf_evict_lock); 1031 cv_destroy(&dbuf_evict_cv); 1032 1033 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1034 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1035 multilist_destroy(&dbuf_caches[dcs].cache); 1036 } 1037 1038 if (dbuf_ksp != NULL) { 1039 kstat_delete(dbuf_ksp); 1040 dbuf_ksp = NULL; 1041 } 1042 1043 wmsum_fini(&dbuf_sums.cache_count); 1044 wmsum_fini(&dbuf_sums.cache_total_evicts); 1045 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1046 wmsum_fini(&dbuf_sums.cache_levels[i]); 1047 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1048 } 1049 wmsum_fini(&dbuf_sums.hash_hits); 1050 wmsum_fini(&dbuf_sums.hash_misses); 1051 wmsum_fini(&dbuf_sums.hash_collisions); 1052 wmsum_fini(&dbuf_sums.hash_chains); 1053 wmsum_fini(&dbuf_sums.hash_insert_race); 1054 wmsum_fini(&dbuf_sums.metadata_cache_count); 1055 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1056 } 1057 1058 /* 1059 * Other stuff. 1060 */ 1061 1062 #ifdef ZFS_DEBUG 1063 static void 1064 dbuf_verify(dmu_buf_impl_t *db) 1065 { 1066 dnode_t *dn; 1067 dbuf_dirty_record_t *dr; 1068 uint32_t txg_prev; 1069 1070 ASSERT(MUTEX_HELD(&db->db_mtx)); 1071 1072 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1073 return; 1074 1075 ASSERT(db->db_objset != NULL); 1076 DB_DNODE_ENTER(db); 1077 dn = DB_DNODE(db); 1078 if (dn == NULL) { 1079 ASSERT(db->db_parent == NULL); 1080 ASSERT(db->db_blkptr == NULL); 1081 } else { 1082 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1083 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1084 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1085 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1086 db->db_blkid == DMU_SPILL_BLKID || 1087 !avl_is_empty(&dn->dn_dbufs)); 1088 } 1089 if (db->db_blkid == DMU_BONUS_BLKID) { 1090 ASSERT(dn != NULL); 1091 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1092 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1093 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1094 ASSERT(dn != NULL); 1095 ASSERT0(db->db.db_offset); 1096 } else { 1097 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1098 } 1099 1100 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1101 ASSERT(dr->dr_dbuf == db); 1102 txg_prev = dr->dr_txg; 1103 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1104 dr = list_next(&db->db_dirty_records, dr)) { 1105 ASSERT(dr->dr_dbuf == db); 1106 ASSERT(txg_prev > dr->dr_txg); 1107 txg_prev = dr->dr_txg; 1108 } 1109 } 1110 1111 /* 1112 * We can't assert that db_size matches dn_datablksz because it 1113 * can be momentarily different when another thread is doing 1114 * dnode_set_blksz(). 1115 */ 1116 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1117 dr = db->db_data_pending; 1118 /* 1119 * It should only be modified in syncing context, so 1120 * make sure we only have one copy of the data. 1121 */ 1122 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1123 } 1124 1125 /* verify db->db_blkptr */ 1126 if (db->db_blkptr) { 1127 if (db->db_parent == dn->dn_dbuf) { 1128 /* db is pointed to by the dnode */ 1129 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1130 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1131 ASSERT(db->db_parent == NULL); 1132 else 1133 ASSERT(db->db_parent != NULL); 1134 if (db->db_blkid != DMU_SPILL_BLKID) 1135 ASSERT3P(db->db_blkptr, ==, 1136 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1137 } else { 1138 /* db is pointed to by an indirect block */ 1139 int epb __maybe_unused = db->db_parent->db.db_size >> 1140 SPA_BLKPTRSHIFT; 1141 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1142 ASSERT3U(db->db_parent->db.db_object, ==, 1143 db->db.db_object); 1144 /* 1145 * dnode_grow_indblksz() can make this fail if we don't 1146 * have the parent's rwlock. XXX indblksz no longer 1147 * grows. safe to do this now? 1148 */ 1149 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1150 ASSERT3P(db->db_blkptr, ==, 1151 ((blkptr_t *)db->db_parent->db.db_data + 1152 db->db_blkid % epb)); 1153 } 1154 } 1155 } 1156 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1157 (db->db_buf == NULL || db->db_buf->b_data) && 1158 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1159 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1160 /* 1161 * If the blkptr isn't set but they have nonzero data, 1162 * it had better be dirty, otherwise we'll lose that 1163 * data when we evict this buffer. 1164 * 1165 * There is an exception to this rule for indirect blocks; in 1166 * this case, if the indirect block is a hole, we fill in a few 1167 * fields on each of the child blocks (importantly, birth time) 1168 * to prevent hole birth times from being lost when you 1169 * partially fill in a hole. 1170 */ 1171 if (db->db_dirtycnt == 0) { 1172 if (db->db_level == 0) { 1173 uint64_t *buf = db->db.db_data; 1174 int i; 1175 1176 for (i = 0; i < db->db.db_size >> 3; i++) { 1177 ASSERT(buf[i] == 0); 1178 } 1179 } else { 1180 blkptr_t *bps = db->db.db_data; 1181 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1182 db->db.db_size); 1183 /* 1184 * We want to verify that all the blkptrs in the 1185 * indirect block are holes, but we may have 1186 * automatically set up a few fields for them. 1187 * We iterate through each blkptr and verify 1188 * they only have those fields set. 1189 */ 1190 for (int i = 0; 1191 i < db->db.db_size / sizeof (blkptr_t); 1192 i++) { 1193 blkptr_t *bp = &bps[i]; 1194 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1195 &bp->blk_cksum)); 1196 ASSERT( 1197 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1198 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1199 DVA_IS_EMPTY(&bp->blk_dva[2])); 1200 ASSERT0(bp->blk_fill); 1201 ASSERT0(bp->blk_pad[0]); 1202 ASSERT0(bp->blk_pad[1]); 1203 ASSERT(!BP_IS_EMBEDDED(bp)); 1204 ASSERT(BP_IS_HOLE(bp)); 1205 ASSERT0(bp->blk_phys_birth); 1206 } 1207 } 1208 } 1209 } 1210 DB_DNODE_EXIT(db); 1211 } 1212 #endif 1213 1214 static void 1215 dbuf_clear_data(dmu_buf_impl_t *db) 1216 { 1217 ASSERT(MUTEX_HELD(&db->db_mtx)); 1218 dbuf_evict_user(db); 1219 ASSERT3P(db->db_buf, ==, NULL); 1220 db->db.db_data = NULL; 1221 if (db->db_state != DB_NOFILL) { 1222 db->db_state = DB_UNCACHED; 1223 DTRACE_SET_STATE(db, "clear data"); 1224 } 1225 } 1226 1227 static void 1228 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1229 { 1230 ASSERT(MUTEX_HELD(&db->db_mtx)); 1231 ASSERT(buf != NULL); 1232 1233 db->db_buf = buf; 1234 ASSERT(buf->b_data != NULL); 1235 db->db.db_data = buf->b_data; 1236 } 1237 1238 static arc_buf_t * 1239 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1240 { 1241 spa_t *spa = db->db_objset->os_spa; 1242 1243 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1244 } 1245 1246 /* 1247 * Loan out an arc_buf for read. Return the loaned arc_buf. 1248 */ 1249 arc_buf_t * 1250 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1251 { 1252 arc_buf_t *abuf; 1253 1254 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1255 mutex_enter(&db->db_mtx); 1256 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1257 int blksz = db->db.db_size; 1258 spa_t *spa = db->db_objset->os_spa; 1259 1260 mutex_exit(&db->db_mtx); 1261 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1262 memcpy(abuf->b_data, db->db.db_data, blksz); 1263 } else { 1264 abuf = db->db_buf; 1265 arc_loan_inuse_buf(abuf, db); 1266 db->db_buf = NULL; 1267 dbuf_clear_data(db); 1268 mutex_exit(&db->db_mtx); 1269 } 1270 return (abuf); 1271 } 1272 1273 /* 1274 * Calculate which level n block references the data at the level 0 offset 1275 * provided. 1276 */ 1277 uint64_t 1278 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1279 { 1280 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1281 /* 1282 * The level n blkid is equal to the level 0 blkid divided by 1283 * the number of level 0s in a level n block. 1284 * 1285 * The level 0 blkid is offset >> datablkshift = 1286 * offset / 2^datablkshift. 1287 * 1288 * The number of level 0s in a level n is the number of block 1289 * pointers in an indirect block, raised to the power of level. 1290 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1291 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1292 * 1293 * Thus, the level n blkid is: offset / 1294 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1295 * = offset / 2^(datablkshift + level * 1296 * (indblkshift - SPA_BLKPTRSHIFT)) 1297 * = offset >> (datablkshift + level * 1298 * (indblkshift - SPA_BLKPTRSHIFT)) 1299 */ 1300 1301 const unsigned exp = dn->dn_datablkshift + 1302 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1303 1304 if (exp >= 8 * sizeof (offset)) { 1305 /* This only happens on the highest indirection level */ 1306 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1307 return (0); 1308 } 1309 1310 ASSERT3U(exp, <, 8 * sizeof (offset)); 1311 1312 return (offset >> exp); 1313 } else { 1314 ASSERT3U(offset, <, dn->dn_datablksz); 1315 return (0); 1316 } 1317 } 1318 1319 /* 1320 * This function is used to lock the parent of the provided dbuf. This should be 1321 * used when modifying or reading db_blkptr. 1322 */ 1323 db_lock_type_t 1324 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1325 { 1326 enum db_lock_type ret = DLT_NONE; 1327 if (db->db_parent != NULL) { 1328 rw_enter(&db->db_parent->db_rwlock, rw); 1329 ret = DLT_PARENT; 1330 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1331 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1332 tag); 1333 ret = DLT_OBJSET; 1334 } 1335 /* 1336 * We only return a DLT_NONE lock when it's the top-most indirect block 1337 * of the meta-dnode of the MOS. 1338 */ 1339 return (ret); 1340 } 1341 1342 /* 1343 * We need to pass the lock type in because it's possible that the block will 1344 * move from being the topmost indirect block in a dnode (and thus, have no 1345 * parent) to not the top-most via an indirection increase. This would cause a 1346 * panic if we didn't pass the lock type in. 1347 */ 1348 void 1349 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1350 { 1351 if (type == DLT_PARENT) 1352 rw_exit(&db->db_parent->db_rwlock); 1353 else if (type == DLT_OBJSET) 1354 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1355 } 1356 1357 static void 1358 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1359 arc_buf_t *buf, void *vdb) 1360 { 1361 (void) zb, (void) bp; 1362 dmu_buf_impl_t *db = vdb; 1363 1364 mutex_enter(&db->db_mtx); 1365 ASSERT3U(db->db_state, ==, DB_READ); 1366 /* 1367 * All reads are synchronous, so we must have a hold on the dbuf 1368 */ 1369 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1370 ASSERT(db->db_buf == NULL); 1371 ASSERT(db->db.db_data == NULL); 1372 if (buf == NULL) { 1373 /* i/o error */ 1374 ASSERT(zio == NULL || zio->io_error != 0); 1375 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1376 ASSERT3P(db->db_buf, ==, NULL); 1377 db->db_state = DB_UNCACHED; 1378 DTRACE_SET_STATE(db, "i/o error"); 1379 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1380 /* freed in flight */ 1381 ASSERT(zio == NULL || zio->io_error == 0); 1382 arc_release(buf, db); 1383 memset(buf->b_data, 0, db->db.db_size); 1384 arc_buf_freeze(buf); 1385 db->db_freed_in_flight = FALSE; 1386 dbuf_set_data(db, buf); 1387 db->db_state = DB_CACHED; 1388 DTRACE_SET_STATE(db, "freed in flight"); 1389 } else { 1390 /* success */ 1391 ASSERT(zio == NULL || zio->io_error == 0); 1392 dbuf_set_data(db, buf); 1393 db->db_state = DB_CACHED; 1394 DTRACE_SET_STATE(db, "successful read"); 1395 } 1396 cv_broadcast(&db->db_changed); 1397 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1398 } 1399 1400 /* 1401 * Shortcut for performing reads on bonus dbufs. Returns 1402 * an error if we fail to verify the dnode associated with 1403 * a decrypted block. Otherwise success. 1404 */ 1405 static int 1406 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1407 { 1408 int bonuslen, max_bonuslen, err; 1409 1410 err = dbuf_read_verify_dnode_crypt(db, flags); 1411 if (err) 1412 return (err); 1413 1414 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1415 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1416 ASSERT(MUTEX_HELD(&db->db_mtx)); 1417 ASSERT(DB_DNODE_HELD(db)); 1418 ASSERT3U(bonuslen, <=, db->db.db_size); 1419 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1420 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1421 if (bonuslen < max_bonuslen) 1422 memset(db->db.db_data, 0, max_bonuslen); 1423 if (bonuslen) 1424 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1425 db->db_state = DB_CACHED; 1426 DTRACE_SET_STATE(db, "bonus buffer filled"); 1427 return (0); 1428 } 1429 1430 static void 1431 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1432 { 1433 blkptr_t *bps = db->db.db_data; 1434 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1435 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1436 1437 for (int i = 0; i < n_bps; i++) { 1438 blkptr_t *bp = &bps[i]; 1439 1440 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1441 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1442 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1443 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1444 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1445 BP_SET_BIRTH(bp, dbbp->blk_birth, 0); 1446 } 1447 } 1448 1449 /* 1450 * Handle reads on dbufs that are holes, if necessary. This function 1451 * requires that the dbuf's mutex is held. Returns success (0) if action 1452 * was taken, ENOENT if no action was taken. 1453 */ 1454 static int 1455 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1456 { 1457 ASSERT(MUTEX_HELD(&db->db_mtx)); 1458 1459 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1460 /* 1461 * For level 0 blocks only, if the above check fails: 1462 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1463 * processes the delete record and clears the bp while we are waiting 1464 * for the dn_mtx (resulting in a "no" from block_freed). 1465 */ 1466 if (!is_hole && db->db_level == 0) 1467 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1468 1469 if (is_hole) { 1470 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1471 memset(db->db.db_data, 0, db->db.db_size); 1472 1473 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1474 bp->blk_birth != 0) { 1475 dbuf_handle_indirect_hole(db, dn, bp); 1476 } 1477 db->db_state = DB_CACHED; 1478 DTRACE_SET_STATE(db, "hole read satisfied"); 1479 return (0); 1480 } 1481 return (ENOENT); 1482 } 1483 1484 /* 1485 * This function ensures that, when doing a decrypting read of a block, 1486 * we make sure we have decrypted the dnode associated with it. We must do 1487 * this so that we ensure we are fully authenticating the checksum-of-MACs 1488 * tree from the root of the objset down to this block. Indirect blocks are 1489 * always verified against their secure checksum-of-MACs assuming that the 1490 * dnode containing them is correct. Now that we are doing a decrypting read, 1491 * we can be sure that the key is loaded and verify that assumption. This is 1492 * especially important considering that we always read encrypted dnode 1493 * blocks as raw data (without verifying their MACs) to start, and 1494 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1495 */ 1496 static int 1497 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1498 { 1499 int err = 0; 1500 objset_t *os = db->db_objset; 1501 arc_buf_t *dnode_abuf; 1502 dnode_t *dn; 1503 zbookmark_phys_t zb; 1504 1505 ASSERT(MUTEX_HELD(&db->db_mtx)); 1506 1507 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1508 !os->os_encrypted || os->os_raw_receive) 1509 return (0); 1510 1511 DB_DNODE_ENTER(db); 1512 dn = DB_DNODE(db); 1513 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1514 1515 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1516 DB_DNODE_EXIT(db); 1517 return (0); 1518 } 1519 1520 SET_BOOKMARK(&zb, dmu_objset_id(os), 1521 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1522 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1523 1524 /* 1525 * An error code of EACCES tells us that the key is still not 1526 * available. This is ok if we are only reading authenticated 1527 * (and therefore non-encrypted) blocks. 1528 */ 1529 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1530 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1531 (db->db_blkid == DMU_BONUS_BLKID && 1532 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1533 err = 0; 1534 1535 DB_DNODE_EXIT(db); 1536 1537 return (err); 1538 } 1539 1540 /* 1541 * Drops db_mtx and the parent lock specified by dblt and tag before 1542 * returning. 1543 */ 1544 static int 1545 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1546 db_lock_type_t dblt, const void *tag) 1547 { 1548 dnode_t *dn; 1549 zbookmark_phys_t zb; 1550 uint32_t aflags = ARC_FLAG_NOWAIT; 1551 int err, zio_flags; 1552 blkptr_t bp, *bpp; 1553 1554 DB_DNODE_ENTER(db); 1555 dn = DB_DNODE(db); 1556 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1557 ASSERT(MUTEX_HELD(&db->db_mtx)); 1558 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1559 ASSERT(db->db_buf == NULL); 1560 ASSERT(db->db_parent == NULL || 1561 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1562 1563 if (db->db_blkid == DMU_BONUS_BLKID) { 1564 err = dbuf_read_bonus(db, dn, flags); 1565 goto early_unlock; 1566 } 1567 1568 if (db->db_state == DB_UNCACHED) { 1569 if (db->db_blkptr == NULL) { 1570 bpp = NULL; 1571 } else { 1572 bp = *db->db_blkptr; 1573 bpp = &bp; 1574 } 1575 } else { 1576 struct dirty_leaf *dl; 1577 dbuf_dirty_record_t *dr; 1578 1579 ASSERT3S(db->db_state, ==, DB_NOFILL); 1580 1581 dr = list_head(&db->db_dirty_records); 1582 if (dr == NULL) { 1583 err = EIO; 1584 goto early_unlock; 1585 } else { 1586 dl = &dr->dt.dl; 1587 if (!dl->dr_brtwrite) { 1588 err = EIO; 1589 goto early_unlock; 1590 } 1591 bp = dl->dr_overridden_by; 1592 bpp = &bp; 1593 } 1594 } 1595 1596 err = dbuf_read_hole(db, dn, bpp); 1597 if (err == 0) 1598 goto early_unlock; 1599 1600 ASSERT(bpp != NULL); 1601 1602 /* 1603 * Any attempt to read a redacted block should result in an error. This 1604 * will never happen under normal conditions, but can be useful for 1605 * debugging purposes. 1606 */ 1607 if (BP_IS_REDACTED(bpp)) { 1608 ASSERT(dsl_dataset_feature_is_active( 1609 db->db_objset->os_dsl_dataset, 1610 SPA_FEATURE_REDACTED_DATASETS)); 1611 err = SET_ERROR(EIO); 1612 goto early_unlock; 1613 } 1614 1615 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1616 db->db.db_object, db->db_level, db->db_blkid); 1617 1618 /* 1619 * All bps of an encrypted os should have the encryption bit set. 1620 * If this is not true it indicates tampering and we report an error. 1621 */ 1622 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { 1623 spa_log_error(db->db_objset->os_spa, &zb, &bpp->blk_birth); 1624 zfs_panic_recover("unencrypted block in encrypted " 1625 "object set %llu", dmu_objset_id(db->db_objset)); 1626 err = SET_ERROR(EIO); 1627 goto early_unlock; 1628 } 1629 1630 err = dbuf_read_verify_dnode_crypt(db, flags); 1631 if (err != 0) 1632 goto early_unlock; 1633 1634 DB_DNODE_EXIT(db); 1635 1636 db->db_state = DB_READ; 1637 DTRACE_SET_STATE(db, "read issued"); 1638 mutex_exit(&db->db_mtx); 1639 1640 if (!DBUF_IS_CACHEABLE(db)) 1641 aflags |= ARC_FLAG_UNCACHED; 1642 else if (dbuf_is_l2cacheable(db)) 1643 aflags |= ARC_FLAG_L2CACHE; 1644 1645 dbuf_add_ref(db, NULL); 1646 1647 zio_flags = (flags & DB_RF_CANFAIL) ? 1648 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1649 1650 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1651 zio_flags |= ZIO_FLAG_RAW; 1652 /* 1653 * The zio layer will copy the provided blkptr later, but we have our 1654 * own copy so that we can release the parent's rwlock. We have to 1655 * do that so that if dbuf_read_done is called synchronously (on 1656 * an l1 cache hit) we don't acquire the db_mtx while holding the 1657 * parent's rwlock, which would be a lock ordering violation. 1658 */ 1659 dmu_buf_unlock_parent(db, dblt, tag); 1660 (void) arc_read(zio, db->db_objset->os_spa, bpp, 1661 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1662 &aflags, &zb); 1663 return (err); 1664 early_unlock: 1665 DB_DNODE_EXIT(db); 1666 mutex_exit(&db->db_mtx); 1667 dmu_buf_unlock_parent(db, dblt, tag); 1668 return (err); 1669 } 1670 1671 /* 1672 * This is our just-in-time copy function. It makes a copy of buffers that 1673 * have been modified in a previous transaction group before we access them in 1674 * the current active group. 1675 * 1676 * This function is used in three places: when we are dirtying a buffer for the 1677 * first time in a txg, when we are freeing a range in a dnode that includes 1678 * this buffer, and when we are accessing a buffer which was received compressed 1679 * and later referenced in a WRITE_BYREF record. 1680 * 1681 * Note that when we are called from dbuf_free_range() we do not put a hold on 1682 * the buffer, we just traverse the active dbuf list for the dnode. 1683 */ 1684 static void 1685 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1686 { 1687 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1688 1689 ASSERT(MUTEX_HELD(&db->db_mtx)); 1690 ASSERT(db->db.db_data != NULL); 1691 ASSERT(db->db_level == 0); 1692 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1693 1694 if (dr == NULL || 1695 (dr->dt.dl.dr_data != 1696 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1697 return; 1698 1699 /* 1700 * If the last dirty record for this dbuf has not yet synced 1701 * and its referencing the dbuf data, either: 1702 * reset the reference to point to a new copy, 1703 * or (if there a no active holders) 1704 * just null out the current db_data pointer. 1705 */ 1706 ASSERT3U(dr->dr_txg, >=, txg - 2); 1707 if (db->db_blkid == DMU_BONUS_BLKID) { 1708 dnode_t *dn = DB_DNODE(db); 1709 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1710 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1711 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1712 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1713 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1714 dnode_t *dn = DB_DNODE(db); 1715 int size = arc_buf_size(db->db_buf); 1716 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1717 spa_t *spa = db->db_objset->os_spa; 1718 enum zio_compress compress_type = 1719 arc_get_compression(db->db_buf); 1720 uint8_t complevel = arc_get_complevel(db->db_buf); 1721 1722 if (arc_is_encrypted(db->db_buf)) { 1723 boolean_t byteorder; 1724 uint8_t salt[ZIO_DATA_SALT_LEN]; 1725 uint8_t iv[ZIO_DATA_IV_LEN]; 1726 uint8_t mac[ZIO_DATA_MAC_LEN]; 1727 1728 arc_get_raw_params(db->db_buf, &byteorder, salt, 1729 iv, mac); 1730 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1731 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1732 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1733 compress_type, complevel); 1734 } else if (compress_type != ZIO_COMPRESS_OFF) { 1735 ASSERT3U(type, ==, ARC_BUFC_DATA); 1736 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1737 size, arc_buf_lsize(db->db_buf), compress_type, 1738 complevel); 1739 } else { 1740 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1741 } 1742 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1743 } else { 1744 db->db_buf = NULL; 1745 dbuf_clear_data(db); 1746 } 1747 } 1748 1749 int 1750 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1751 { 1752 int err = 0; 1753 boolean_t prefetch; 1754 dnode_t *dn; 1755 1756 /* 1757 * We don't have to hold the mutex to check db_state because it 1758 * can't be freed while we have a hold on the buffer. 1759 */ 1760 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1761 1762 DB_DNODE_ENTER(db); 1763 dn = DB_DNODE(db); 1764 1765 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1766 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL; 1767 1768 mutex_enter(&db->db_mtx); 1769 if (flags & DB_RF_PARTIAL_FIRST) 1770 db->db_partial_read = B_TRUE; 1771 else if (!(flags & DB_RF_PARTIAL_MORE)) 1772 db->db_partial_read = B_FALSE; 1773 if (db->db_state == DB_CACHED) { 1774 /* 1775 * Ensure that this block's dnode has been decrypted if 1776 * the caller has requested decrypted data. 1777 */ 1778 err = dbuf_read_verify_dnode_crypt(db, flags); 1779 1780 /* 1781 * If the arc buf is compressed or encrypted and the caller 1782 * requested uncompressed data, we need to untransform it 1783 * before returning. We also call arc_untransform() on any 1784 * unauthenticated blocks, which will verify their MAC if 1785 * the key is now available. 1786 */ 1787 if (err == 0 && db->db_buf != NULL && 1788 (flags & DB_RF_NO_DECRYPT) == 0 && 1789 (arc_is_encrypted(db->db_buf) || 1790 arc_is_unauthenticated(db->db_buf) || 1791 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1792 spa_t *spa = dn->dn_objset->os_spa; 1793 zbookmark_phys_t zb; 1794 1795 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1796 db->db.db_object, db->db_level, db->db_blkid); 1797 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1798 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1799 dbuf_set_data(db, db->db_buf); 1800 } 1801 mutex_exit(&db->db_mtx); 1802 if (err == 0 && prefetch) { 1803 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1804 B_FALSE, flags & DB_RF_HAVESTRUCT); 1805 } 1806 DB_DNODE_EXIT(db); 1807 DBUF_STAT_BUMP(hash_hits); 1808 } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) { 1809 boolean_t need_wait = B_FALSE; 1810 1811 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1812 1813 if (zio == NULL && (db->db_state == DB_NOFILL || 1814 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { 1815 spa_t *spa = dn->dn_objset->os_spa; 1816 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1817 need_wait = B_TRUE; 1818 } 1819 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1820 /* 1821 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1822 * for us 1823 */ 1824 if (!err && prefetch) { 1825 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1826 db->db_state != DB_CACHED, 1827 flags & DB_RF_HAVESTRUCT); 1828 } 1829 1830 DB_DNODE_EXIT(db); 1831 DBUF_STAT_BUMP(hash_misses); 1832 1833 /* 1834 * If we created a zio_root we must execute it to avoid 1835 * leaking it, even if it isn't attached to any work due 1836 * to an error in dbuf_read_impl(). 1837 */ 1838 if (need_wait) { 1839 if (err == 0) 1840 err = zio_wait(zio); 1841 else 1842 VERIFY0(zio_wait(zio)); 1843 } 1844 } else { 1845 /* 1846 * Another reader came in while the dbuf was in flight 1847 * between UNCACHED and CACHED. Either a writer will finish 1848 * writing the buffer (sending the dbuf to CACHED) or the 1849 * first reader's request will reach the read_done callback 1850 * and send the dbuf to CACHED. Otherwise, a failure 1851 * occurred and the dbuf went to UNCACHED. 1852 */ 1853 mutex_exit(&db->db_mtx); 1854 if (prefetch) { 1855 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1856 B_TRUE, flags & DB_RF_HAVESTRUCT); 1857 } 1858 DB_DNODE_EXIT(db); 1859 DBUF_STAT_BUMP(hash_misses); 1860 1861 /* Skip the wait per the caller's request. */ 1862 if ((flags & DB_RF_NEVERWAIT) == 0) { 1863 mutex_enter(&db->db_mtx); 1864 while (db->db_state == DB_READ || 1865 db->db_state == DB_FILL) { 1866 ASSERT(db->db_state == DB_READ || 1867 (flags & DB_RF_HAVESTRUCT) == 0); 1868 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1869 db, zio_t *, zio); 1870 cv_wait(&db->db_changed, &db->db_mtx); 1871 } 1872 if (db->db_state == DB_UNCACHED) 1873 err = SET_ERROR(EIO); 1874 mutex_exit(&db->db_mtx); 1875 } 1876 } 1877 1878 return (err); 1879 } 1880 1881 static void 1882 dbuf_noread(dmu_buf_impl_t *db) 1883 { 1884 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1885 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1886 mutex_enter(&db->db_mtx); 1887 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1888 cv_wait(&db->db_changed, &db->db_mtx); 1889 if (db->db_state == DB_UNCACHED) { 1890 ASSERT(db->db_buf == NULL); 1891 ASSERT(db->db.db_data == NULL); 1892 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1893 db->db_state = DB_FILL; 1894 DTRACE_SET_STATE(db, "assigning filled buffer"); 1895 } else if (db->db_state == DB_NOFILL) { 1896 dbuf_clear_data(db); 1897 } else { 1898 ASSERT3U(db->db_state, ==, DB_CACHED); 1899 } 1900 mutex_exit(&db->db_mtx); 1901 } 1902 1903 void 1904 dbuf_unoverride(dbuf_dirty_record_t *dr) 1905 { 1906 dmu_buf_impl_t *db = dr->dr_dbuf; 1907 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1908 uint64_t txg = dr->dr_txg; 1909 1910 ASSERT(MUTEX_HELD(&db->db_mtx)); 1911 /* 1912 * This assert is valid because dmu_sync() expects to be called by 1913 * a zilog's get_data while holding a range lock. This call only 1914 * comes from dbuf_dirty() callers who must also hold a range lock. 1915 */ 1916 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1917 ASSERT(db->db_level == 0); 1918 1919 if (db->db_blkid == DMU_BONUS_BLKID || 1920 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1921 return; 1922 1923 ASSERT(db->db_data_pending != dr); 1924 1925 /* free this block */ 1926 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1927 zio_free(db->db_objset->os_spa, txg, bp); 1928 1929 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1930 dr->dt.dl.dr_nopwrite = B_FALSE; 1931 dr->dt.dl.dr_has_raw_params = B_FALSE; 1932 1933 /* 1934 * Release the already-written buffer, so we leave it in 1935 * a consistent dirty state. Note that all callers are 1936 * modifying the buffer, so they will immediately do 1937 * another (redundant) arc_release(). Therefore, leave 1938 * the buf thawed to save the effort of freezing & 1939 * immediately re-thawing it. 1940 */ 1941 if (!dr->dt.dl.dr_brtwrite) 1942 arc_release(dr->dt.dl.dr_data, db); 1943 } 1944 1945 /* 1946 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1947 * data blocks in the free range, so that any future readers will find 1948 * empty blocks. 1949 */ 1950 void 1951 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1952 dmu_tx_t *tx) 1953 { 1954 dmu_buf_impl_t *db_search; 1955 dmu_buf_impl_t *db, *db_next; 1956 uint64_t txg = tx->tx_txg; 1957 avl_index_t where; 1958 dbuf_dirty_record_t *dr; 1959 1960 if (end_blkid > dn->dn_maxblkid && 1961 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1962 end_blkid = dn->dn_maxblkid; 1963 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1964 (u_longlong_t)end_blkid); 1965 1966 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1967 db_search->db_level = 0; 1968 db_search->db_blkid = start_blkid; 1969 db_search->db_state = DB_SEARCH; 1970 1971 mutex_enter(&dn->dn_dbufs_mtx); 1972 db = avl_find(&dn->dn_dbufs, db_search, &where); 1973 ASSERT3P(db, ==, NULL); 1974 1975 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1976 1977 for (; db != NULL; db = db_next) { 1978 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1979 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1980 1981 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1982 break; 1983 } 1984 ASSERT3U(db->db_blkid, >=, start_blkid); 1985 1986 /* found a level 0 buffer in the range */ 1987 mutex_enter(&db->db_mtx); 1988 if (dbuf_undirty(db, tx)) { 1989 /* mutex has been dropped and dbuf destroyed */ 1990 continue; 1991 } 1992 1993 if (db->db_state == DB_UNCACHED || 1994 db->db_state == DB_NOFILL || 1995 db->db_state == DB_EVICTING) { 1996 ASSERT(db->db.db_data == NULL); 1997 mutex_exit(&db->db_mtx); 1998 continue; 1999 } 2000 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2001 /* will be handled in dbuf_read_done or dbuf_rele */ 2002 db->db_freed_in_flight = TRUE; 2003 mutex_exit(&db->db_mtx); 2004 continue; 2005 } 2006 if (zfs_refcount_count(&db->db_holds) == 0) { 2007 ASSERT(db->db_buf); 2008 dbuf_destroy(db); 2009 continue; 2010 } 2011 /* The dbuf is referenced */ 2012 2013 dr = list_head(&db->db_dirty_records); 2014 if (dr != NULL) { 2015 if (dr->dr_txg == txg) { 2016 /* 2017 * This buffer is "in-use", re-adjust the file 2018 * size to reflect that this buffer may 2019 * contain new data when we sync. 2020 */ 2021 if (db->db_blkid != DMU_SPILL_BLKID && 2022 db->db_blkid > dn->dn_maxblkid) 2023 dn->dn_maxblkid = db->db_blkid; 2024 dbuf_unoverride(dr); 2025 if (dr->dt.dl.dr_brtwrite) { 2026 ASSERT(db->db.db_data == NULL); 2027 mutex_exit(&db->db_mtx); 2028 continue; 2029 } 2030 } else { 2031 /* 2032 * This dbuf is not dirty in the open context. 2033 * Either uncache it (if its not referenced in 2034 * the open context) or reset its contents to 2035 * empty. 2036 */ 2037 dbuf_fix_old_data(db, txg); 2038 } 2039 } 2040 /* clear the contents if its cached */ 2041 if (db->db_state == DB_CACHED) { 2042 ASSERT(db->db.db_data != NULL); 2043 arc_release(db->db_buf, db); 2044 rw_enter(&db->db_rwlock, RW_WRITER); 2045 memset(db->db.db_data, 0, db->db.db_size); 2046 rw_exit(&db->db_rwlock); 2047 arc_buf_freeze(db->db_buf); 2048 } 2049 2050 mutex_exit(&db->db_mtx); 2051 } 2052 2053 mutex_exit(&dn->dn_dbufs_mtx); 2054 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2055 } 2056 2057 void 2058 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2059 { 2060 arc_buf_t *buf, *old_buf; 2061 dbuf_dirty_record_t *dr; 2062 int osize = db->db.db_size; 2063 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2064 dnode_t *dn; 2065 2066 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2067 2068 DB_DNODE_ENTER(db); 2069 dn = DB_DNODE(db); 2070 2071 /* 2072 * XXX we should be doing a dbuf_read, checking the return 2073 * value and returning that up to our callers 2074 */ 2075 dmu_buf_will_dirty(&db->db, tx); 2076 2077 /* create the data buffer for the new block */ 2078 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2079 2080 /* copy old block data to the new block */ 2081 old_buf = db->db_buf; 2082 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2083 /* zero the remainder */ 2084 if (size > osize) 2085 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2086 2087 mutex_enter(&db->db_mtx); 2088 dbuf_set_data(db, buf); 2089 arc_buf_destroy(old_buf, db); 2090 db->db.db_size = size; 2091 2092 dr = list_head(&db->db_dirty_records); 2093 /* dirty record added by dmu_buf_will_dirty() */ 2094 VERIFY(dr != NULL); 2095 if (db->db_level == 0) 2096 dr->dt.dl.dr_data = buf; 2097 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2098 ASSERT3U(dr->dr_accounted, ==, osize); 2099 dr->dr_accounted = size; 2100 mutex_exit(&db->db_mtx); 2101 2102 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2103 DB_DNODE_EXIT(db); 2104 } 2105 2106 void 2107 dbuf_release_bp(dmu_buf_impl_t *db) 2108 { 2109 objset_t *os __maybe_unused = db->db_objset; 2110 2111 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2112 ASSERT(arc_released(os->os_phys_buf) || 2113 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2114 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2115 2116 (void) arc_release(db->db_buf, db); 2117 } 2118 2119 /* 2120 * We already have a dirty record for this TXG, and we are being 2121 * dirtied again. 2122 */ 2123 static void 2124 dbuf_redirty(dbuf_dirty_record_t *dr) 2125 { 2126 dmu_buf_impl_t *db = dr->dr_dbuf; 2127 2128 ASSERT(MUTEX_HELD(&db->db_mtx)); 2129 2130 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2131 /* 2132 * If this buffer has already been written out, 2133 * we now need to reset its state. 2134 */ 2135 dbuf_unoverride(dr); 2136 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2137 db->db_state != DB_NOFILL) { 2138 /* Already released on initial dirty, so just thaw. */ 2139 ASSERT(arc_released(db->db_buf)); 2140 arc_buf_thaw(db->db_buf); 2141 } 2142 } 2143 } 2144 2145 dbuf_dirty_record_t * 2146 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2147 { 2148 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2149 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2150 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2151 ASSERT(dn->dn_maxblkid >= blkid); 2152 2153 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2154 list_link_init(&dr->dr_dirty_node); 2155 list_link_init(&dr->dr_dbuf_node); 2156 dr->dr_dnode = dn; 2157 dr->dr_txg = tx->tx_txg; 2158 dr->dt.dll.dr_blkid = blkid; 2159 dr->dr_accounted = dn->dn_datablksz; 2160 2161 /* 2162 * There should not be any dbuf for the block that we're dirtying. 2163 * Otherwise the buffer contents could be inconsistent between the 2164 * dbuf and the lightweight dirty record. 2165 */ 2166 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2167 NULL)); 2168 2169 mutex_enter(&dn->dn_mtx); 2170 int txgoff = tx->tx_txg & TXG_MASK; 2171 if (dn->dn_free_ranges[txgoff] != NULL) { 2172 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2173 } 2174 2175 if (dn->dn_nlevels == 1) { 2176 ASSERT3U(blkid, <, dn->dn_nblkptr); 2177 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2178 mutex_exit(&dn->dn_mtx); 2179 rw_exit(&dn->dn_struct_rwlock); 2180 dnode_setdirty(dn, tx); 2181 } else { 2182 mutex_exit(&dn->dn_mtx); 2183 2184 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2185 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2186 1, blkid >> epbs, FTAG); 2187 rw_exit(&dn->dn_struct_rwlock); 2188 if (parent_db == NULL) { 2189 kmem_free(dr, sizeof (*dr)); 2190 return (NULL); 2191 } 2192 int err = dbuf_read(parent_db, NULL, 2193 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2194 if (err != 0) { 2195 dbuf_rele(parent_db, FTAG); 2196 kmem_free(dr, sizeof (*dr)); 2197 return (NULL); 2198 } 2199 2200 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2201 dbuf_rele(parent_db, FTAG); 2202 mutex_enter(&parent_dr->dt.di.dr_mtx); 2203 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2204 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2205 mutex_exit(&parent_dr->dt.di.dr_mtx); 2206 dr->dr_parent = parent_dr; 2207 } 2208 2209 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2210 2211 return (dr); 2212 } 2213 2214 dbuf_dirty_record_t * 2215 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2216 { 2217 dnode_t *dn; 2218 objset_t *os; 2219 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2220 int txgoff = tx->tx_txg & TXG_MASK; 2221 boolean_t drop_struct_rwlock = B_FALSE; 2222 2223 ASSERT(tx->tx_txg != 0); 2224 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2225 DMU_TX_DIRTY_BUF(tx, db); 2226 2227 DB_DNODE_ENTER(db); 2228 dn = DB_DNODE(db); 2229 /* 2230 * Shouldn't dirty a regular buffer in syncing context. Private 2231 * objects may be dirtied in syncing context, but only if they 2232 * were already pre-dirtied in open context. 2233 */ 2234 #ifdef ZFS_DEBUG 2235 if (dn->dn_objset->os_dsl_dataset != NULL) { 2236 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2237 RW_READER, FTAG); 2238 } 2239 ASSERT(!dmu_tx_is_syncing(tx) || 2240 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2241 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2242 dn->dn_objset->os_dsl_dataset == NULL); 2243 if (dn->dn_objset->os_dsl_dataset != NULL) 2244 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2245 #endif 2246 /* 2247 * We make this assert for private objects as well, but after we 2248 * check if we're already dirty. They are allowed to re-dirty 2249 * in syncing context. 2250 */ 2251 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2252 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2253 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2254 2255 mutex_enter(&db->db_mtx); 2256 /* 2257 * XXX make this true for indirects too? The problem is that 2258 * transactions created with dmu_tx_create_assigned() from 2259 * syncing context don't bother holding ahead. 2260 */ 2261 ASSERT(db->db_level != 0 || 2262 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2263 db->db_state == DB_NOFILL); 2264 2265 mutex_enter(&dn->dn_mtx); 2266 dnode_set_dirtyctx(dn, tx, db); 2267 if (tx->tx_txg > dn->dn_dirty_txg) 2268 dn->dn_dirty_txg = tx->tx_txg; 2269 mutex_exit(&dn->dn_mtx); 2270 2271 if (db->db_blkid == DMU_SPILL_BLKID) 2272 dn->dn_have_spill = B_TRUE; 2273 2274 /* 2275 * If this buffer is already dirty, we're done. 2276 */ 2277 dr_head = list_head(&db->db_dirty_records); 2278 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2279 db->db.db_object == DMU_META_DNODE_OBJECT); 2280 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2281 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2282 DB_DNODE_EXIT(db); 2283 2284 dbuf_redirty(dr_next); 2285 mutex_exit(&db->db_mtx); 2286 return (dr_next); 2287 } 2288 2289 /* 2290 * Only valid if not already dirty. 2291 */ 2292 ASSERT(dn->dn_object == 0 || 2293 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2294 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2295 2296 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2297 2298 /* 2299 * We should only be dirtying in syncing context if it's the 2300 * mos or we're initializing the os or it's a special object. 2301 * However, we are allowed to dirty in syncing context provided 2302 * we already dirtied it in open context. Hence we must make 2303 * this assertion only if we're not already dirty. 2304 */ 2305 os = dn->dn_objset; 2306 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2307 #ifdef ZFS_DEBUG 2308 if (dn->dn_objset->os_dsl_dataset != NULL) 2309 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2310 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2311 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2312 if (dn->dn_objset->os_dsl_dataset != NULL) 2313 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2314 #endif 2315 ASSERT(db->db.db_size != 0); 2316 2317 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2318 2319 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2320 dmu_objset_willuse_space(os, db->db.db_size, tx); 2321 } 2322 2323 /* 2324 * If this buffer is dirty in an old transaction group we need 2325 * to make a copy of it so that the changes we make in this 2326 * transaction group won't leak out when we sync the older txg. 2327 */ 2328 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2329 list_link_init(&dr->dr_dirty_node); 2330 list_link_init(&dr->dr_dbuf_node); 2331 dr->dr_dnode = dn; 2332 if (db->db_level == 0) { 2333 void *data_old = db->db_buf; 2334 2335 if (db->db_state != DB_NOFILL) { 2336 if (db->db_blkid == DMU_BONUS_BLKID) { 2337 dbuf_fix_old_data(db, tx->tx_txg); 2338 data_old = db->db.db_data; 2339 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2340 /* 2341 * Release the data buffer from the cache so 2342 * that we can modify it without impacting 2343 * possible other users of this cached data 2344 * block. Note that indirect blocks and 2345 * private objects are not released until the 2346 * syncing state (since they are only modified 2347 * then). 2348 */ 2349 arc_release(db->db_buf, db); 2350 dbuf_fix_old_data(db, tx->tx_txg); 2351 data_old = db->db_buf; 2352 } 2353 ASSERT(data_old != NULL); 2354 } 2355 dr->dt.dl.dr_data = data_old; 2356 } else { 2357 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2358 list_create(&dr->dt.di.dr_children, 2359 sizeof (dbuf_dirty_record_t), 2360 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2361 } 2362 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2363 dr->dr_accounted = db->db.db_size; 2364 } 2365 dr->dr_dbuf = db; 2366 dr->dr_txg = tx->tx_txg; 2367 list_insert_before(&db->db_dirty_records, dr_next, dr); 2368 2369 /* 2370 * We could have been freed_in_flight between the dbuf_noread 2371 * and dbuf_dirty. We win, as though the dbuf_noread() had 2372 * happened after the free. 2373 */ 2374 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2375 db->db_blkid != DMU_SPILL_BLKID) { 2376 mutex_enter(&dn->dn_mtx); 2377 if (dn->dn_free_ranges[txgoff] != NULL) { 2378 range_tree_clear(dn->dn_free_ranges[txgoff], 2379 db->db_blkid, 1); 2380 } 2381 mutex_exit(&dn->dn_mtx); 2382 db->db_freed_in_flight = FALSE; 2383 } 2384 2385 /* 2386 * This buffer is now part of this txg 2387 */ 2388 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2389 db->db_dirtycnt += 1; 2390 ASSERT3U(db->db_dirtycnt, <=, 3); 2391 2392 mutex_exit(&db->db_mtx); 2393 2394 if (db->db_blkid == DMU_BONUS_BLKID || 2395 db->db_blkid == DMU_SPILL_BLKID) { 2396 mutex_enter(&dn->dn_mtx); 2397 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2398 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2399 mutex_exit(&dn->dn_mtx); 2400 dnode_setdirty(dn, tx); 2401 DB_DNODE_EXIT(db); 2402 return (dr); 2403 } 2404 2405 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2406 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2407 drop_struct_rwlock = B_TRUE; 2408 } 2409 2410 /* 2411 * If we are overwriting a dedup BP, then unless it is snapshotted, 2412 * when we get to syncing context we will need to decrement its 2413 * refcount in the DDT. Prefetch the relevant DDT block so that 2414 * syncing context won't have to wait for the i/o. 2415 */ 2416 if (db->db_blkptr != NULL) { 2417 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2418 ddt_prefetch(os->os_spa, db->db_blkptr); 2419 dmu_buf_unlock_parent(db, dblt, FTAG); 2420 } 2421 2422 /* 2423 * We need to hold the dn_struct_rwlock to make this assertion, 2424 * because it protects dn_phys / dn_next_nlevels from changing. 2425 */ 2426 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2427 dn->dn_phys->dn_nlevels > db->db_level || 2428 dn->dn_next_nlevels[txgoff] > db->db_level || 2429 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2430 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2431 2432 2433 if (db->db_level == 0) { 2434 ASSERT(!db->db_objset->os_raw_receive || 2435 dn->dn_maxblkid >= db->db_blkid); 2436 dnode_new_blkid(dn, db->db_blkid, tx, 2437 drop_struct_rwlock, B_FALSE); 2438 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2439 } 2440 2441 if (db->db_level+1 < dn->dn_nlevels) { 2442 dmu_buf_impl_t *parent = db->db_parent; 2443 dbuf_dirty_record_t *di; 2444 int parent_held = FALSE; 2445 2446 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2447 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2448 parent = dbuf_hold_level(dn, db->db_level + 1, 2449 db->db_blkid >> epbs, FTAG); 2450 ASSERT(parent != NULL); 2451 parent_held = TRUE; 2452 } 2453 if (drop_struct_rwlock) 2454 rw_exit(&dn->dn_struct_rwlock); 2455 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2456 di = dbuf_dirty(parent, tx); 2457 if (parent_held) 2458 dbuf_rele(parent, FTAG); 2459 2460 mutex_enter(&db->db_mtx); 2461 /* 2462 * Since we've dropped the mutex, it's possible that 2463 * dbuf_undirty() might have changed this out from under us. 2464 */ 2465 if (list_head(&db->db_dirty_records) == dr || 2466 dn->dn_object == DMU_META_DNODE_OBJECT) { 2467 mutex_enter(&di->dt.di.dr_mtx); 2468 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2469 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2470 list_insert_tail(&di->dt.di.dr_children, dr); 2471 mutex_exit(&di->dt.di.dr_mtx); 2472 dr->dr_parent = di; 2473 } 2474 mutex_exit(&db->db_mtx); 2475 } else { 2476 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2477 ASSERT(db->db_blkid < dn->dn_nblkptr); 2478 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2479 mutex_enter(&dn->dn_mtx); 2480 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2481 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2482 mutex_exit(&dn->dn_mtx); 2483 if (drop_struct_rwlock) 2484 rw_exit(&dn->dn_struct_rwlock); 2485 } 2486 2487 dnode_setdirty(dn, tx); 2488 DB_DNODE_EXIT(db); 2489 return (dr); 2490 } 2491 2492 static void 2493 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2494 { 2495 dmu_buf_impl_t *db = dr->dr_dbuf; 2496 2497 if (dr->dt.dl.dr_data != db->db.db_data) { 2498 struct dnode *dn = dr->dr_dnode; 2499 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2500 2501 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2502 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2503 } 2504 db->db_data_pending = NULL; 2505 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2506 list_remove(&db->db_dirty_records, dr); 2507 if (dr->dr_dbuf->db_level != 0) { 2508 mutex_destroy(&dr->dt.di.dr_mtx); 2509 list_destroy(&dr->dt.di.dr_children); 2510 } 2511 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2512 ASSERT3U(db->db_dirtycnt, >, 0); 2513 db->db_dirtycnt -= 1; 2514 } 2515 2516 /* 2517 * Undirty a buffer in the transaction group referenced by the given 2518 * transaction. Return whether this evicted the dbuf. 2519 */ 2520 boolean_t 2521 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2522 { 2523 uint64_t txg = tx->tx_txg; 2524 boolean_t brtwrite; 2525 2526 ASSERT(txg != 0); 2527 2528 /* 2529 * Due to our use of dn_nlevels below, this can only be called 2530 * in open context, unless we are operating on the MOS. 2531 * From syncing context, dn_nlevels may be different from the 2532 * dn_nlevels used when dbuf was dirtied. 2533 */ 2534 ASSERT(db->db_objset == 2535 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2536 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2537 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2538 ASSERT0(db->db_level); 2539 ASSERT(MUTEX_HELD(&db->db_mtx)); 2540 2541 /* 2542 * If this buffer is not dirty, we're done. 2543 */ 2544 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2545 if (dr == NULL) 2546 return (B_FALSE); 2547 ASSERT(dr->dr_dbuf == db); 2548 2549 brtwrite = dr->dt.dl.dr_brtwrite; 2550 if (brtwrite) { 2551 /* 2552 * We are freeing a block that we cloned in the same 2553 * transaction group. 2554 */ 2555 brt_pending_remove(dmu_objset_spa(db->db_objset), 2556 &dr->dt.dl.dr_overridden_by, tx); 2557 } 2558 2559 dnode_t *dn = dr->dr_dnode; 2560 2561 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2562 2563 ASSERT(db->db.db_size != 0); 2564 2565 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2566 dr->dr_accounted, txg); 2567 2568 list_remove(&db->db_dirty_records, dr); 2569 2570 /* 2571 * Note that there are three places in dbuf_dirty() 2572 * where this dirty record may be put on a list. 2573 * Make sure to do a list_remove corresponding to 2574 * every one of those list_insert calls. 2575 */ 2576 if (dr->dr_parent) { 2577 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2578 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2579 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2580 } else if (db->db_blkid == DMU_SPILL_BLKID || 2581 db->db_level + 1 == dn->dn_nlevels) { 2582 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2583 mutex_enter(&dn->dn_mtx); 2584 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2585 mutex_exit(&dn->dn_mtx); 2586 } 2587 2588 if (db->db_state != DB_NOFILL && !brtwrite) { 2589 dbuf_unoverride(dr); 2590 2591 ASSERT(db->db_buf != NULL); 2592 ASSERT(dr->dt.dl.dr_data != NULL); 2593 if (dr->dt.dl.dr_data != db->db_buf) 2594 arc_buf_destroy(dr->dt.dl.dr_data, db); 2595 } 2596 2597 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2598 2599 ASSERT(db->db_dirtycnt > 0); 2600 db->db_dirtycnt -= 1; 2601 2602 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2603 ASSERT(db->db_state == DB_NOFILL || brtwrite || 2604 arc_released(db->db_buf)); 2605 dbuf_destroy(db); 2606 return (B_TRUE); 2607 } 2608 2609 return (B_FALSE); 2610 } 2611 2612 static void 2613 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2614 { 2615 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2616 2617 ASSERT(tx->tx_txg != 0); 2618 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2619 2620 /* 2621 * Quick check for dirtiness. For already dirty blocks, this 2622 * reduces runtime of this function by >90%, and overall performance 2623 * by 50% for some workloads (e.g. file deletion with indirect blocks 2624 * cached). 2625 */ 2626 mutex_enter(&db->db_mtx); 2627 2628 if (db->db_state == DB_CACHED) { 2629 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2630 /* 2631 * It's possible that it is already dirty but not cached, 2632 * because there are some calls to dbuf_dirty() that don't 2633 * go through dmu_buf_will_dirty(). 2634 */ 2635 if (dr != NULL) { 2636 /* This dbuf is already dirty and cached. */ 2637 dbuf_redirty(dr); 2638 mutex_exit(&db->db_mtx); 2639 return; 2640 } 2641 } 2642 mutex_exit(&db->db_mtx); 2643 2644 DB_DNODE_ENTER(db); 2645 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2646 flags |= DB_RF_HAVESTRUCT; 2647 DB_DNODE_EXIT(db); 2648 (void) dbuf_read(db, NULL, flags); 2649 (void) dbuf_dirty(db, tx); 2650 } 2651 2652 void 2653 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2654 { 2655 dmu_buf_will_dirty_impl(db_fake, 2656 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2657 } 2658 2659 boolean_t 2660 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2661 { 2662 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2663 dbuf_dirty_record_t *dr; 2664 2665 mutex_enter(&db->db_mtx); 2666 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2667 mutex_exit(&db->db_mtx); 2668 return (dr != NULL); 2669 } 2670 2671 void 2672 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2673 { 2674 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2675 2676 db->db_state = DB_NOFILL; 2677 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2678 dmu_buf_will_fill(db_fake, tx); 2679 } 2680 2681 void 2682 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2683 { 2684 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2685 2686 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2687 ASSERT(tx->tx_txg != 0); 2688 ASSERT(db->db_level == 0); 2689 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2690 2691 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2692 dmu_tx_private_ok(tx)); 2693 2694 dbuf_noread(db); 2695 (void) dbuf_dirty(db, tx); 2696 } 2697 2698 /* 2699 * This function is effectively the same as dmu_buf_will_dirty(), but 2700 * indicates the caller expects raw encrypted data in the db, and provides 2701 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2702 * blkptr_t when this dbuf is written. This is only used for blocks of 2703 * dnodes, during raw receive. 2704 */ 2705 void 2706 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2707 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2708 { 2709 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2710 dbuf_dirty_record_t *dr; 2711 2712 /* 2713 * dr_has_raw_params is only processed for blocks of dnodes 2714 * (see dbuf_sync_dnode_leaf_crypt()). 2715 */ 2716 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2717 ASSERT3U(db->db_level, ==, 0); 2718 ASSERT(db->db_objset->os_raw_receive); 2719 2720 dmu_buf_will_dirty_impl(db_fake, 2721 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2722 2723 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2724 2725 ASSERT3P(dr, !=, NULL); 2726 2727 dr->dt.dl.dr_has_raw_params = B_TRUE; 2728 dr->dt.dl.dr_byteorder = byteorder; 2729 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2730 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2731 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2732 } 2733 2734 static void 2735 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2736 { 2737 struct dirty_leaf *dl; 2738 dbuf_dirty_record_t *dr; 2739 2740 dr = list_head(&db->db_dirty_records); 2741 ASSERT3P(dr, !=, NULL); 2742 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2743 dl = &dr->dt.dl; 2744 dl->dr_overridden_by = *bp; 2745 dl->dr_override_state = DR_OVERRIDDEN; 2746 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2747 } 2748 2749 void 2750 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2751 { 2752 (void) tx; 2753 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2754 dbuf_states_t old_state; 2755 mutex_enter(&db->db_mtx); 2756 DBUF_VERIFY(db); 2757 2758 old_state = db->db_state; 2759 db->db_state = DB_CACHED; 2760 if (old_state == DB_FILL) { 2761 if (db->db_level == 0 && db->db_freed_in_flight) { 2762 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2763 /* we were freed while filling */ 2764 /* XXX dbuf_undirty? */ 2765 memset(db->db.db_data, 0, db->db.db_size); 2766 db->db_freed_in_flight = FALSE; 2767 DTRACE_SET_STATE(db, 2768 "fill done handling freed in flight"); 2769 } else { 2770 DTRACE_SET_STATE(db, "fill done"); 2771 } 2772 cv_broadcast(&db->db_changed); 2773 } 2774 mutex_exit(&db->db_mtx); 2775 } 2776 2777 void 2778 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2779 bp_embedded_type_t etype, enum zio_compress comp, 2780 int uncompressed_size, int compressed_size, int byteorder, 2781 dmu_tx_t *tx) 2782 { 2783 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2784 struct dirty_leaf *dl; 2785 dmu_object_type_t type; 2786 dbuf_dirty_record_t *dr; 2787 2788 if (etype == BP_EMBEDDED_TYPE_DATA) { 2789 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2790 SPA_FEATURE_EMBEDDED_DATA)); 2791 } 2792 2793 DB_DNODE_ENTER(db); 2794 type = DB_DNODE(db)->dn_type; 2795 DB_DNODE_EXIT(db); 2796 2797 ASSERT0(db->db_level); 2798 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2799 2800 dmu_buf_will_not_fill(dbuf, tx); 2801 2802 dr = list_head(&db->db_dirty_records); 2803 ASSERT3P(dr, !=, NULL); 2804 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2805 dl = &dr->dt.dl; 2806 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2807 data, comp, uncompressed_size, compressed_size); 2808 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2809 BP_SET_TYPE(&dl->dr_overridden_by, type); 2810 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2811 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2812 2813 dl->dr_override_state = DR_OVERRIDDEN; 2814 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2815 } 2816 2817 void 2818 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2819 { 2820 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2821 dmu_object_type_t type; 2822 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2823 SPA_FEATURE_REDACTED_DATASETS)); 2824 2825 DB_DNODE_ENTER(db); 2826 type = DB_DNODE(db)->dn_type; 2827 DB_DNODE_EXIT(db); 2828 2829 ASSERT0(db->db_level); 2830 dmu_buf_will_not_fill(dbuf, tx); 2831 2832 blkptr_t bp = { { { {0} } } }; 2833 BP_SET_TYPE(&bp, type); 2834 BP_SET_LEVEL(&bp, 0); 2835 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2836 BP_SET_REDACTED(&bp); 2837 BPE_SET_LSIZE(&bp, dbuf->db_size); 2838 2839 dbuf_override_impl(db, &bp, tx); 2840 } 2841 2842 /* 2843 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2844 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2845 */ 2846 void 2847 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2848 { 2849 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2850 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2851 ASSERT(db->db_level == 0); 2852 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2853 ASSERT(buf != NULL); 2854 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2855 ASSERT(tx->tx_txg != 0); 2856 2857 arc_return_buf(buf, db); 2858 ASSERT(arc_released(buf)); 2859 2860 mutex_enter(&db->db_mtx); 2861 2862 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2863 cv_wait(&db->db_changed, &db->db_mtx); 2864 2865 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2866 2867 if (db->db_state == DB_CACHED && 2868 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2869 /* 2870 * In practice, we will never have a case where we have an 2871 * encrypted arc buffer while additional holds exist on the 2872 * dbuf. We don't handle this here so we simply assert that 2873 * fact instead. 2874 */ 2875 ASSERT(!arc_is_encrypted(buf)); 2876 mutex_exit(&db->db_mtx); 2877 (void) dbuf_dirty(db, tx); 2878 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2879 arc_buf_destroy(buf, db); 2880 return; 2881 } 2882 2883 if (db->db_state == DB_CACHED) { 2884 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2885 2886 ASSERT(db->db_buf != NULL); 2887 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2888 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2889 2890 if (!arc_released(db->db_buf)) { 2891 ASSERT(dr->dt.dl.dr_override_state == 2892 DR_OVERRIDDEN); 2893 arc_release(db->db_buf, db); 2894 } 2895 dr->dt.dl.dr_data = buf; 2896 arc_buf_destroy(db->db_buf, db); 2897 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2898 arc_release(db->db_buf, db); 2899 arc_buf_destroy(db->db_buf, db); 2900 } 2901 db->db_buf = NULL; 2902 } 2903 ASSERT(db->db_buf == NULL); 2904 dbuf_set_data(db, buf); 2905 db->db_state = DB_FILL; 2906 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2907 mutex_exit(&db->db_mtx); 2908 (void) dbuf_dirty(db, tx); 2909 dmu_buf_fill_done(&db->db, tx); 2910 } 2911 2912 void 2913 dbuf_destroy(dmu_buf_impl_t *db) 2914 { 2915 dnode_t *dn; 2916 dmu_buf_impl_t *parent = db->db_parent; 2917 dmu_buf_impl_t *dndb; 2918 2919 ASSERT(MUTEX_HELD(&db->db_mtx)); 2920 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2921 2922 if (db->db_buf != NULL) { 2923 arc_buf_destroy(db->db_buf, db); 2924 db->db_buf = NULL; 2925 } 2926 2927 if (db->db_blkid == DMU_BONUS_BLKID) { 2928 int slots = DB_DNODE(db)->dn_num_slots; 2929 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2930 if (db->db.db_data != NULL) { 2931 kmem_free(db->db.db_data, bonuslen); 2932 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2933 db->db_state = DB_UNCACHED; 2934 DTRACE_SET_STATE(db, "buffer cleared"); 2935 } 2936 } 2937 2938 dbuf_clear_data(db); 2939 2940 if (multilist_link_active(&db->db_cache_link)) { 2941 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2942 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2943 2944 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2945 (void) zfs_refcount_remove_many( 2946 &dbuf_caches[db->db_caching_status].size, 2947 db->db.db_size, db); 2948 2949 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2950 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2951 } else { 2952 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2953 DBUF_STAT_BUMPDOWN(cache_count); 2954 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2955 db->db.db_size); 2956 } 2957 db->db_caching_status = DB_NO_CACHE; 2958 } 2959 2960 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2961 ASSERT(db->db_data_pending == NULL); 2962 ASSERT(list_is_empty(&db->db_dirty_records)); 2963 2964 db->db_state = DB_EVICTING; 2965 DTRACE_SET_STATE(db, "buffer eviction started"); 2966 db->db_blkptr = NULL; 2967 2968 /* 2969 * Now that db_state is DB_EVICTING, nobody else can find this via 2970 * the hash table. We can now drop db_mtx, which allows us to 2971 * acquire the dn_dbufs_mtx. 2972 */ 2973 mutex_exit(&db->db_mtx); 2974 2975 DB_DNODE_ENTER(db); 2976 dn = DB_DNODE(db); 2977 dndb = dn->dn_dbuf; 2978 if (db->db_blkid != DMU_BONUS_BLKID) { 2979 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2980 if (needlock) 2981 mutex_enter_nested(&dn->dn_dbufs_mtx, 2982 NESTED_SINGLE); 2983 avl_remove(&dn->dn_dbufs, db); 2984 membar_producer(); 2985 DB_DNODE_EXIT(db); 2986 if (needlock) 2987 mutex_exit(&dn->dn_dbufs_mtx); 2988 /* 2989 * Decrementing the dbuf count means that the hold corresponding 2990 * to the removed dbuf is no longer discounted in dnode_move(), 2991 * so the dnode cannot be moved until after we release the hold. 2992 * The membar_producer() ensures visibility of the decremented 2993 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2994 * release any lock. 2995 */ 2996 mutex_enter(&dn->dn_mtx); 2997 dnode_rele_and_unlock(dn, db, B_TRUE); 2998 db->db_dnode_handle = NULL; 2999 3000 dbuf_hash_remove(db); 3001 } else { 3002 DB_DNODE_EXIT(db); 3003 } 3004 3005 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3006 3007 db->db_parent = NULL; 3008 3009 ASSERT(db->db_buf == NULL); 3010 ASSERT(db->db.db_data == NULL); 3011 ASSERT(db->db_hash_next == NULL); 3012 ASSERT(db->db_blkptr == NULL); 3013 ASSERT(db->db_data_pending == NULL); 3014 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3015 ASSERT(!multilist_link_active(&db->db_cache_link)); 3016 3017 /* 3018 * If this dbuf is referenced from an indirect dbuf, 3019 * decrement the ref count on the indirect dbuf. 3020 */ 3021 if (parent && parent != dndb) { 3022 mutex_enter(&parent->db_mtx); 3023 dbuf_rele_and_unlock(parent, db, B_TRUE); 3024 } 3025 3026 kmem_cache_free(dbuf_kmem_cache, db); 3027 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3028 } 3029 3030 /* 3031 * Note: While bpp will always be updated if the function returns success, 3032 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3033 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3034 * object. 3035 */ 3036 __attribute__((always_inline)) 3037 static inline int 3038 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3039 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3040 { 3041 *parentp = NULL; 3042 *bpp = NULL; 3043 3044 ASSERT(blkid != DMU_BONUS_BLKID); 3045 3046 if (blkid == DMU_SPILL_BLKID) { 3047 mutex_enter(&dn->dn_mtx); 3048 if (dn->dn_have_spill && 3049 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3050 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3051 else 3052 *bpp = NULL; 3053 dbuf_add_ref(dn->dn_dbuf, NULL); 3054 *parentp = dn->dn_dbuf; 3055 mutex_exit(&dn->dn_mtx); 3056 return (0); 3057 } 3058 3059 int nlevels = 3060 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3061 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3062 3063 ASSERT3U(level * epbs, <, 64); 3064 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3065 /* 3066 * This assertion shouldn't trip as long as the max indirect block size 3067 * is less than 1M. The reason for this is that up to that point, 3068 * the number of levels required to address an entire object with blocks 3069 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3070 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3071 * (i.e. we can address the entire object), objects will all use at most 3072 * N-1 levels and the assertion won't overflow. However, once epbs is 3073 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3074 * enough to address an entire object, so objects will have 5 levels, 3075 * but then this assertion will overflow. 3076 * 3077 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3078 * need to redo this logic to handle overflows. 3079 */ 3080 ASSERT(level >= nlevels || 3081 ((nlevels - level - 1) * epbs) + 3082 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3083 if (level >= nlevels || 3084 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3085 ((nlevels - level - 1) * epbs)) || 3086 (fail_sparse && 3087 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3088 /* the buffer has no parent yet */ 3089 return (SET_ERROR(ENOENT)); 3090 } else if (level < nlevels-1) { 3091 /* this block is referenced from an indirect block */ 3092 int err; 3093 3094 err = dbuf_hold_impl(dn, level + 1, 3095 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3096 3097 if (err) 3098 return (err); 3099 err = dbuf_read(*parentp, NULL, 3100 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3101 if (err) { 3102 dbuf_rele(*parentp, NULL); 3103 *parentp = NULL; 3104 return (err); 3105 } 3106 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3107 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3108 (blkid & ((1ULL << epbs) - 1)); 3109 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3110 ASSERT(BP_IS_HOLE(*bpp)); 3111 rw_exit(&(*parentp)->db_rwlock); 3112 return (0); 3113 } else { 3114 /* the block is referenced from the dnode */ 3115 ASSERT3U(level, ==, nlevels-1); 3116 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3117 blkid < dn->dn_phys->dn_nblkptr); 3118 if (dn->dn_dbuf) { 3119 dbuf_add_ref(dn->dn_dbuf, NULL); 3120 *parentp = dn->dn_dbuf; 3121 } 3122 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3123 return (0); 3124 } 3125 } 3126 3127 static dmu_buf_impl_t * 3128 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3129 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3130 { 3131 objset_t *os = dn->dn_objset; 3132 dmu_buf_impl_t *db, *odb; 3133 3134 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3135 ASSERT(dn->dn_type != DMU_OT_NONE); 3136 3137 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3138 3139 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3140 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3141 3142 db->db_objset = os; 3143 db->db.db_object = dn->dn_object; 3144 db->db_level = level; 3145 db->db_blkid = blkid; 3146 db->db_dirtycnt = 0; 3147 db->db_dnode_handle = dn->dn_handle; 3148 db->db_parent = parent; 3149 db->db_blkptr = blkptr; 3150 db->db_hash = hash; 3151 3152 db->db_user = NULL; 3153 db->db_user_immediate_evict = FALSE; 3154 db->db_freed_in_flight = FALSE; 3155 db->db_pending_evict = FALSE; 3156 3157 if (blkid == DMU_BONUS_BLKID) { 3158 ASSERT3P(parent, ==, dn->dn_dbuf); 3159 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3160 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3161 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3162 db->db.db_offset = DMU_BONUS_BLKID; 3163 db->db_state = DB_UNCACHED; 3164 DTRACE_SET_STATE(db, "bonus buffer created"); 3165 db->db_caching_status = DB_NO_CACHE; 3166 /* the bonus dbuf is not placed in the hash table */ 3167 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3168 return (db); 3169 } else if (blkid == DMU_SPILL_BLKID) { 3170 db->db.db_size = (blkptr != NULL) ? 3171 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3172 db->db.db_offset = 0; 3173 } else { 3174 int blocksize = 3175 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3176 db->db.db_size = blocksize; 3177 db->db.db_offset = db->db_blkid * blocksize; 3178 } 3179 3180 /* 3181 * Hold the dn_dbufs_mtx while we get the new dbuf 3182 * in the hash table *and* added to the dbufs list. 3183 * This prevents a possible deadlock with someone 3184 * trying to look up this dbuf before it's added to the 3185 * dn_dbufs list. 3186 */ 3187 mutex_enter(&dn->dn_dbufs_mtx); 3188 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3189 if ((odb = dbuf_hash_insert(db)) != NULL) { 3190 /* someone else inserted it first */ 3191 mutex_exit(&dn->dn_dbufs_mtx); 3192 kmem_cache_free(dbuf_kmem_cache, db); 3193 DBUF_STAT_BUMP(hash_insert_race); 3194 return (odb); 3195 } 3196 avl_add(&dn->dn_dbufs, db); 3197 3198 db->db_state = DB_UNCACHED; 3199 DTRACE_SET_STATE(db, "regular buffer created"); 3200 db->db_caching_status = DB_NO_CACHE; 3201 mutex_exit(&dn->dn_dbufs_mtx); 3202 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3203 3204 if (parent && parent != dn->dn_dbuf) 3205 dbuf_add_ref(parent, db); 3206 3207 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3208 zfs_refcount_count(&dn->dn_holds) > 0); 3209 (void) zfs_refcount_add(&dn->dn_holds, db); 3210 3211 dprintf_dbuf(db, "db=%p\n", db); 3212 3213 return (db); 3214 } 3215 3216 /* 3217 * This function returns a block pointer and information about the object, 3218 * given a dnode and a block. This is a publicly accessible version of 3219 * dbuf_findbp that only returns some information, rather than the 3220 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3221 * should be locked as (at least) a reader. 3222 */ 3223 int 3224 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3225 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3226 { 3227 dmu_buf_impl_t *dbp = NULL; 3228 blkptr_t *bp2; 3229 int err = 0; 3230 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3231 3232 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3233 if (err == 0) { 3234 ASSERT3P(bp2, !=, NULL); 3235 *bp = *bp2; 3236 if (dbp != NULL) 3237 dbuf_rele(dbp, NULL); 3238 if (datablkszsec != NULL) 3239 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3240 if (indblkshift != NULL) 3241 *indblkshift = dn->dn_phys->dn_indblkshift; 3242 } 3243 3244 return (err); 3245 } 3246 3247 typedef struct dbuf_prefetch_arg { 3248 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3249 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3250 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3251 int dpa_curlevel; /* The current level that we're reading */ 3252 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3253 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3254 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3255 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3256 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3257 void *dpa_arg; /* prefetch completion arg */ 3258 } dbuf_prefetch_arg_t; 3259 3260 static void 3261 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3262 { 3263 if (dpa->dpa_cb != NULL) { 3264 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3265 dpa->dpa_zb.zb_blkid, io_done); 3266 } 3267 kmem_free(dpa, sizeof (*dpa)); 3268 } 3269 3270 static void 3271 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3272 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3273 { 3274 (void) zio, (void) zb, (void) iobp; 3275 dbuf_prefetch_arg_t *dpa = private; 3276 3277 if (abuf != NULL) 3278 arc_buf_destroy(abuf, private); 3279 3280 dbuf_prefetch_fini(dpa, B_TRUE); 3281 } 3282 3283 /* 3284 * Actually issue the prefetch read for the block given. 3285 */ 3286 static void 3287 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3288 { 3289 ASSERT(!BP_IS_REDACTED(bp) || 3290 dsl_dataset_feature_is_active( 3291 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3292 SPA_FEATURE_REDACTED_DATASETS)); 3293 3294 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3295 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3296 3297 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3298 arc_flags_t aflags = 3299 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3300 ARC_FLAG_NO_BUF; 3301 3302 /* dnodes are always read as raw and then converted later */ 3303 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3304 dpa->dpa_curlevel == 0) 3305 zio_flags |= ZIO_FLAG_RAW; 3306 3307 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3308 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3309 ASSERT(dpa->dpa_zio != NULL); 3310 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3311 dbuf_issue_final_prefetch_done, dpa, 3312 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3313 } 3314 3315 /* 3316 * Called when an indirect block above our prefetch target is read in. This 3317 * will either read in the next indirect block down the tree or issue the actual 3318 * prefetch if the next block down is our target. 3319 */ 3320 static void 3321 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3322 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3323 { 3324 (void) zb, (void) iobp; 3325 dbuf_prefetch_arg_t *dpa = private; 3326 3327 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3328 ASSERT3S(dpa->dpa_curlevel, >, 0); 3329 3330 if (abuf == NULL) { 3331 ASSERT(zio == NULL || zio->io_error != 0); 3332 dbuf_prefetch_fini(dpa, B_TRUE); 3333 return; 3334 } 3335 ASSERT(zio == NULL || zio->io_error == 0); 3336 3337 /* 3338 * The dpa_dnode is only valid if we are called with a NULL 3339 * zio. This indicates that the arc_read() returned without 3340 * first calling zio_read() to issue a physical read. Once 3341 * a physical read is made the dpa_dnode must be invalidated 3342 * as the locks guarding it may have been dropped. If the 3343 * dpa_dnode is still valid, then we want to add it to the dbuf 3344 * cache. To do so, we must hold the dbuf associated with the block 3345 * we just prefetched, read its contents so that we associate it 3346 * with an arc_buf_t, and then release it. 3347 */ 3348 if (zio != NULL) { 3349 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3350 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3351 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3352 } else { 3353 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3354 } 3355 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3356 3357 dpa->dpa_dnode = NULL; 3358 } else if (dpa->dpa_dnode != NULL) { 3359 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3360 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3361 dpa->dpa_zb.zb_level)); 3362 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3363 dpa->dpa_curlevel, curblkid, FTAG); 3364 if (db == NULL) { 3365 arc_buf_destroy(abuf, private); 3366 dbuf_prefetch_fini(dpa, B_TRUE); 3367 return; 3368 } 3369 (void) dbuf_read(db, NULL, 3370 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3371 dbuf_rele(db, FTAG); 3372 } 3373 3374 dpa->dpa_curlevel--; 3375 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3376 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3377 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3378 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3379 3380 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3381 dsl_dataset_feature_is_active( 3382 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3383 SPA_FEATURE_REDACTED_DATASETS))); 3384 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3385 arc_buf_destroy(abuf, private); 3386 dbuf_prefetch_fini(dpa, B_TRUE); 3387 return; 3388 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3389 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3390 dbuf_issue_final_prefetch(dpa, bp); 3391 } else { 3392 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3393 zbookmark_phys_t zb; 3394 3395 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3396 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3397 iter_aflags |= ARC_FLAG_L2CACHE; 3398 3399 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3400 3401 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3402 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3403 3404 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3405 bp, dbuf_prefetch_indirect_done, dpa, 3406 ZIO_PRIORITY_SYNC_READ, 3407 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3408 &iter_aflags, &zb); 3409 } 3410 3411 arc_buf_destroy(abuf, private); 3412 } 3413 3414 /* 3415 * Issue prefetch reads for the given block on the given level. If the indirect 3416 * blocks above that block are not in memory, we will read them in 3417 * asynchronously. As a result, this call never blocks waiting for a read to 3418 * complete. Note that the prefetch might fail if the dataset is encrypted and 3419 * the encryption key is unmapped before the IO completes. 3420 */ 3421 int 3422 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3423 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3424 void *arg) 3425 { 3426 blkptr_t bp; 3427 int epbs, nlevels, curlevel; 3428 uint64_t curblkid; 3429 3430 ASSERT(blkid != DMU_BONUS_BLKID); 3431 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3432 3433 if (blkid > dn->dn_maxblkid) 3434 goto no_issue; 3435 3436 if (level == 0 && dnode_block_freed(dn, blkid)) 3437 goto no_issue; 3438 3439 /* 3440 * This dnode hasn't been written to disk yet, so there's nothing to 3441 * prefetch. 3442 */ 3443 nlevels = dn->dn_phys->dn_nlevels; 3444 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3445 goto no_issue; 3446 3447 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3448 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3449 goto no_issue; 3450 3451 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3452 level, blkid, NULL); 3453 if (db != NULL) { 3454 mutex_exit(&db->db_mtx); 3455 /* 3456 * This dbuf already exists. It is either CACHED, or 3457 * (we assume) about to be read or filled. 3458 */ 3459 goto no_issue; 3460 } 3461 3462 /* 3463 * Find the closest ancestor (indirect block) of the target block 3464 * that is present in the cache. In this indirect block, we will 3465 * find the bp that is at curlevel, curblkid. 3466 */ 3467 curlevel = level; 3468 curblkid = blkid; 3469 while (curlevel < nlevels - 1) { 3470 int parent_level = curlevel + 1; 3471 uint64_t parent_blkid = curblkid >> epbs; 3472 dmu_buf_impl_t *db; 3473 3474 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3475 FALSE, TRUE, FTAG, &db) == 0) { 3476 blkptr_t *bpp = db->db_buf->b_data; 3477 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3478 dbuf_rele(db, FTAG); 3479 break; 3480 } 3481 3482 curlevel = parent_level; 3483 curblkid = parent_blkid; 3484 } 3485 3486 if (curlevel == nlevels - 1) { 3487 /* No cached indirect blocks found. */ 3488 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3489 bp = dn->dn_phys->dn_blkptr[curblkid]; 3490 } 3491 ASSERT(!BP_IS_REDACTED(&bp) || 3492 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3493 SPA_FEATURE_REDACTED_DATASETS)); 3494 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3495 goto no_issue; 3496 3497 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3498 3499 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3500 ZIO_FLAG_CANFAIL); 3501 3502 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3503 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3504 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3505 dn->dn_object, level, blkid); 3506 dpa->dpa_curlevel = curlevel; 3507 dpa->dpa_prio = prio; 3508 dpa->dpa_aflags = aflags; 3509 dpa->dpa_spa = dn->dn_objset->os_spa; 3510 dpa->dpa_dnode = dn; 3511 dpa->dpa_epbs = epbs; 3512 dpa->dpa_zio = pio; 3513 dpa->dpa_cb = cb; 3514 dpa->dpa_arg = arg; 3515 3516 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3517 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3518 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3519 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3520 3521 /* 3522 * If we have the indirect just above us, no need to do the asynchronous 3523 * prefetch chain; we'll just run the last step ourselves. If we're at 3524 * a higher level, though, we want to issue the prefetches for all the 3525 * indirect blocks asynchronously, so we can go on with whatever we were 3526 * doing. 3527 */ 3528 if (curlevel == level) { 3529 ASSERT3U(curblkid, ==, blkid); 3530 dbuf_issue_final_prefetch(dpa, &bp); 3531 } else { 3532 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3533 zbookmark_phys_t zb; 3534 3535 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3536 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3537 iter_aflags |= ARC_FLAG_L2CACHE; 3538 3539 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3540 dn->dn_object, curlevel, curblkid); 3541 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3542 &bp, dbuf_prefetch_indirect_done, dpa, 3543 ZIO_PRIORITY_SYNC_READ, 3544 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3545 &iter_aflags, &zb); 3546 } 3547 /* 3548 * We use pio here instead of dpa_zio since it's possible that 3549 * dpa may have already been freed. 3550 */ 3551 zio_nowait(pio); 3552 return (1); 3553 no_issue: 3554 if (cb != NULL) 3555 cb(arg, level, blkid, B_FALSE); 3556 return (0); 3557 } 3558 3559 int 3560 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3561 arc_flags_t aflags) 3562 { 3563 3564 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3565 } 3566 3567 /* 3568 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3569 * the case of encrypted, compressed and uncompressed buffers by 3570 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3571 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3572 * 3573 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3574 */ 3575 noinline static void 3576 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3577 { 3578 dbuf_dirty_record_t *dr = db->db_data_pending; 3579 arc_buf_t *data = dr->dt.dl.dr_data; 3580 enum zio_compress compress_type = arc_get_compression(data); 3581 uint8_t complevel = arc_get_complevel(data); 3582 3583 if (arc_is_encrypted(data)) { 3584 boolean_t byteorder; 3585 uint8_t salt[ZIO_DATA_SALT_LEN]; 3586 uint8_t iv[ZIO_DATA_IV_LEN]; 3587 uint8_t mac[ZIO_DATA_MAC_LEN]; 3588 3589 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3590 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3591 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3592 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3593 compress_type, complevel)); 3594 } else if (compress_type != ZIO_COMPRESS_OFF) { 3595 dbuf_set_data(db, arc_alloc_compressed_buf( 3596 dn->dn_objset->os_spa, db, arc_buf_size(data), 3597 arc_buf_lsize(data), compress_type, complevel)); 3598 } else { 3599 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3600 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3601 } 3602 3603 rw_enter(&db->db_rwlock, RW_WRITER); 3604 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3605 rw_exit(&db->db_rwlock); 3606 } 3607 3608 /* 3609 * Returns with db_holds incremented, and db_mtx not held. 3610 * Note: dn_struct_rwlock must be held. 3611 */ 3612 int 3613 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3614 boolean_t fail_sparse, boolean_t fail_uncached, 3615 const void *tag, dmu_buf_impl_t **dbp) 3616 { 3617 dmu_buf_impl_t *db, *parent = NULL; 3618 uint64_t hv; 3619 3620 /* If the pool has been created, verify the tx_sync_lock is not held */ 3621 spa_t *spa = dn->dn_objset->os_spa; 3622 dsl_pool_t *dp = spa->spa_dsl_pool; 3623 if (dp != NULL) { 3624 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3625 } 3626 3627 ASSERT(blkid != DMU_BONUS_BLKID); 3628 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3629 ASSERT3U(dn->dn_nlevels, >, level); 3630 3631 *dbp = NULL; 3632 3633 /* dbuf_find() returns with db_mtx held */ 3634 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3635 3636 if (db == NULL) { 3637 blkptr_t *bp = NULL; 3638 int err; 3639 3640 if (fail_uncached) 3641 return (SET_ERROR(ENOENT)); 3642 3643 ASSERT3P(parent, ==, NULL); 3644 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3645 if (fail_sparse) { 3646 if (err == 0 && bp && BP_IS_HOLE(bp)) 3647 err = SET_ERROR(ENOENT); 3648 if (err) { 3649 if (parent) 3650 dbuf_rele(parent, NULL); 3651 return (err); 3652 } 3653 } 3654 if (err && err != ENOENT) 3655 return (err); 3656 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3657 } 3658 3659 if (fail_uncached && db->db_state != DB_CACHED) { 3660 mutex_exit(&db->db_mtx); 3661 return (SET_ERROR(ENOENT)); 3662 } 3663 3664 if (db->db_buf != NULL) { 3665 arc_buf_access(db->db_buf); 3666 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3667 } 3668 3669 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3670 3671 /* 3672 * If this buffer is currently syncing out, and we are 3673 * still referencing it from db_data, we need to make a copy 3674 * of it in case we decide we want to dirty it again in this txg. 3675 */ 3676 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3677 dn->dn_object != DMU_META_DNODE_OBJECT && 3678 db->db_state == DB_CACHED && db->db_data_pending) { 3679 dbuf_dirty_record_t *dr = db->db_data_pending; 3680 if (dr->dt.dl.dr_data == db->db_buf) { 3681 ASSERT3P(db->db_buf, !=, NULL); 3682 dbuf_hold_copy(dn, db); 3683 } 3684 } 3685 3686 if (multilist_link_active(&db->db_cache_link)) { 3687 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3688 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3689 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3690 3691 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3692 (void) zfs_refcount_remove_many( 3693 &dbuf_caches[db->db_caching_status].size, 3694 db->db.db_size, db); 3695 3696 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3697 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3698 } else { 3699 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3700 DBUF_STAT_BUMPDOWN(cache_count); 3701 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3702 db->db.db_size); 3703 } 3704 db->db_caching_status = DB_NO_CACHE; 3705 } 3706 (void) zfs_refcount_add(&db->db_holds, tag); 3707 DBUF_VERIFY(db); 3708 mutex_exit(&db->db_mtx); 3709 3710 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3711 if (parent) 3712 dbuf_rele(parent, NULL); 3713 3714 ASSERT3P(DB_DNODE(db), ==, dn); 3715 ASSERT3U(db->db_blkid, ==, blkid); 3716 ASSERT3U(db->db_level, ==, level); 3717 *dbp = db; 3718 3719 return (0); 3720 } 3721 3722 dmu_buf_impl_t * 3723 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3724 { 3725 return (dbuf_hold_level(dn, 0, blkid, tag)); 3726 } 3727 3728 dmu_buf_impl_t * 3729 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3730 { 3731 dmu_buf_impl_t *db; 3732 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3733 return (err ? NULL : db); 3734 } 3735 3736 void 3737 dbuf_create_bonus(dnode_t *dn) 3738 { 3739 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3740 3741 ASSERT(dn->dn_bonus == NULL); 3742 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 3743 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 3744 } 3745 3746 int 3747 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3748 { 3749 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3750 3751 if (db->db_blkid != DMU_SPILL_BLKID) 3752 return (SET_ERROR(ENOTSUP)); 3753 if (blksz == 0) 3754 blksz = SPA_MINBLOCKSIZE; 3755 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3756 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3757 3758 dbuf_new_size(db, blksz, tx); 3759 3760 return (0); 3761 } 3762 3763 void 3764 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3765 { 3766 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3767 } 3768 3769 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3770 void 3771 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3772 { 3773 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3774 VERIFY3S(holds, >, 1); 3775 } 3776 3777 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3778 boolean_t 3779 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3780 const void *tag) 3781 { 3782 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3783 dmu_buf_impl_t *found_db; 3784 boolean_t result = B_FALSE; 3785 3786 if (blkid == DMU_BONUS_BLKID) 3787 found_db = dbuf_find_bonus(os, obj); 3788 else 3789 found_db = dbuf_find(os, obj, 0, blkid, NULL); 3790 3791 if (found_db != NULL) { 3792 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3793 (void) zfs_refcount_add(&db->db_holds, tag); 3794 result = B_TRUE; 3795 } 3796 mutex_exit(&found_db->db_mtx); 3797 } 3798 return (result); 3799 } 3800 3801 /* 3802 * If you call dbuf_rele() you had better not be referencing the dnode handle 3803 * unless you have some other direct or indirect hold on the dnode. (An indirect 3804 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3805 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3806 * dnode's parent dbuf evicting its dnode handles. 3807 */ 3808 void 3809 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3810 { 3811 mutex_enter(&db->db_mtx); 3812 dbuf_rele_and_unlock(db, tag, B_FALSE); 3813 } 3814 3815 void 3816 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3817 { 3818 dbuf_rele((dmu_buf_impl_t *)db, tag); 3819 } 3820 3821 /* 3822 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3823 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3824 * argument should be set if we are already in the dbuf-evicting code 3825 * path, in which case we don't want to recursively evict. This allows us to 3826 * avoid deeply nested stacks that would have a call flow similar to this: 3827 * 3828 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3829 * ^ | 3830 * | | 3831 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3832 * 3833 */ 3834 void 3835 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3836 { 3837 int64_t holds; 3838 uint64_t size; 3839 3840 ASSERT(MUTEX_HELD(&db->db_mtx)); 3841 DBUF_VERIFY(db); 3842 3843 /* 3844 * Remove the reference to the dbuf before removing its hold on the 3845 * dnode so we can guarantee in dnode_move() that a referenced bonus 3846 * buffer has a corresponding dnode hold. 3847 */ 3848 holds = zfs_refcount_remove(&db->db_holds, tag); 3849 ASSERT(holds >= 0); 3850 3851 /* 3852 * We can't freeze indirects if there is a possibility that they 3853 * may be modified in the current syncing context. 3854 */ 3855 if (db->db_buf != NULL && 3856 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3857 arc_buf_freeze(db->db_buf); 3858 } 3859 3860 if (holds == db->db_dirtycnt && 3861 db->db_level == 0 && db->db_user_immediate_evict) 3862 dbuf_evict_user(db); 3863 3864 if (holds == 0) { 3865 if (db->db_blkid == DMU_BONUS_BLKID) { 3866 dnode_t *dn; 3867 boolean_t evict_dbuf = db->db_pending_evict; 3868 3869 /* 3870 * If the dnode moves here, we cannot cross this 3871 * barrier until the move completes. 3872 */ 3873 DB_DNODE_ENTER(db); 3874 3875 dn = DB_DNODE(db); 3876 atomic_dec_32(&dn->dn_dbufs_count); 3877 3878 /* 3879 * Decrementing the dbuf count means that the bonus 3880 * buffer's dnode hold is no longer discounted in 3881 * dnode_move(). The dnode cannot move until after 3882 * the dnode_rele() below. 3883 */ 3884 DB_DNODE_EXIT(db); 3885 3886 /* 3887 * Do not reference db after its lock is dropped. 3888 * Another thread may evict it. 3889 */ 3890 mutex_exit(&db->db_mtx); 3891 3892 if (evict_dbuf) 3893 dnode_evict_bonus(dn); 3894 3895 dnode_rele(dn, db); 3896 } else if (db->db_buf == NULL) { 3897 /* 3898 * This is a special case: we never associated this 3899 * dbuf with any data allocated from the ARC. 3900 */ 3901 ASSERT(db->db_state == DB_UNCACHED || 3902 db->db_state == DB_NOFILL); 3903 dbuf_destroy(db); 3904 } else if (arc_released(db->db_buf)) { 3905 /* 3906 * This dbuf has anonymous data associated with it. 3907 */ 3908 dbuf_destroy(db); 3909 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 3910 db->db_pending_evict) { 3911 dbuf_destroy(db); 3912 } else if (!multilist_link_active(&db->db_cache_link)) { 3913 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3914 3915 dbuf_cached_state_t dcs = 3916 dbuf_include_in_metadata_cache(db) ? 3917 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3918 db->db_caching_status = dcs; 3919 3920 multilist_insert(&dbuf_caches[dcs].cache, db); 3921 uint64_t db_size = db->db.db_size; 3922 size = zfs_refcount_add_many( 3923 &dbuf_caches[dcs].size, db_size, db); 3924 uint8_t db_level = db->db_level; 3925 mutex_exit(&db->db_mtx); 3926 3927 if (dcs == DB_DBUF_METADATA_CACHE) { 3928 DBUF_STAT_BUMP(metadata_cache_count); 3929 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 3930 size); 3931 } else { 3932 DBUF_STAT_BUMP(cache_count); 3933 DBUF_STAT_MAX(cache_size_bytes_max, size); 3934 DBUF_STAT_BUMP(cache_levels[db_level]); 3935 DBUF_STAT_INCR(cache_levels_bytes[db_level], 3936 db_size); 3937 } 3938 3939 if (dcs == DB_DBUF_CACHE && !evicting) 3940 dbuf_evict_notify(size); 3941 } 3942 } else { 3943 mutex_exit(&db->db_mtx); 3944 } 3945 3946 } 3947 3948 #pragma weak dmu_buf_refcount = dbuf_refcount 3949 uint64_t 3950 dbuf_refcount(dmu_buf_impl_t *db) 3951 { 3952 return (zfs_refcount_count(&db->db_holds)); 3953 } 3954 3955 uint64_t 3956 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3957 { 3958 uint64_t holds; 3959 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3960 3961 mutex_enter(&db->db_mtx); 3962 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3963 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3964 mutex_exit(&db->db_mtx); 3965 3966 return (holds); 3967 } 3968 3969 void * 3970 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3971 dmu_buf_user_t *new_user) 3972 { 3973 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3974 3975 mutex_enter(&db->db_mtx); 3976 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3977 if (db->db_user == old_user) 3978 db->db_user = new_user; 3979 else 3980 old_user = db->db_user; 3981 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3982 mutex_exit(&db->db_mtx); 3983 3984 return (old_user); 3985 } 3986 3987 void * 3988 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3989 { 3990 return (dmu_buf_replace_user(db_fake, NULL, user)); 3991 } 3992 3993 void * 3994 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3995 { 3996 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3997 3998 db->db_user_immediate_evict = TRUE; 3999 return (dmu_buf_set_user(db_fake, user)); 4000 } 4001 4002 void * 4003 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4004 { 4005 return (dmu_buf_replace_user(db_fake, user, NULL)); 4006 } 4007 4008 void * 4009 dmu_buf_get_user(dmu_buf_t *db_fake) 4010 { 4011 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4012 4013 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4014 return (db->db_user); 4015 } 4016 4017 void 4018 dmu_buf_user_evict_wait(void) 4019 { 4020 taskq_wait(dbu_evict_taskq); 4021 } 4022 4023 blkptr_t * 4024 dmu_buf_get_blkptr(dmu_buf_t *db) 4025 { 4026 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4027 return (dbi->db_blkptr); 4028 } 4029 4030 objset_t * 4031 dmu_buf_get_objset(dmu_buf_t *db) 4032 { 4033 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4034 return (dbi->db_objset); 4035 } 4036 4037 dnode_t * 4038 dmu_buf_dnode_enter(dmu_buf_t *db) 4039 { 4040 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4041 DB_DNODE_ENTER(dbi); 4042 return (DB_DNODE(dbi)); 4043 } 4044 4045 void 4046 dmu_buf_dnode_exit(dmu_buf_t *db) 4047 { 4048 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4049 DB_DNODE_EXIT(dbi); 4050 } 4051 4052 static void 4053 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4054 { 4055 /* ASSERT(dmu_tx_is_syncing(tx) */ 4056 ASSERT(MUTEX_HELD(&db->db_mtx)); 4057 4058 if (db->db_blkptr != NULL) 4059 return; 4060 4061 if (db->db_blkid == DMU_SPILL_BLKID) { 4062 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4063 BP_ZERO(db->db_blkptr); 4064 return; 4065 } 4066 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4067 /* 4068 * This buffer was allocated at a time when there was 4069 * no available blkptrs from the dnode, or it was 4070 * inappropriate to hook it in (i.e., nlevels mismatch). 4071 */ 4072 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4073 ASSERT(db->db_parent == NULL); 4074 db->db_parent = dn->dn_dbuf; 4075 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4076 DBUF_VERIFY(db); 4077 } else { 4078 dmu_buf_impl_t *parent = db->db_parent; 4079 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4080 4081 ASSERT(dn->dn_phys->dn_nlevels > 1); 4082 if (parent == NULL) { 4083 mutex_exit(&db->db_mtx); 4084 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4085 parent = dbuf_hold_level(dn, db->db_level + 1, 4086 db->db_blkid >> epbs, db); 4087 rw_exit(&dn->dn_struct_rwlock); 4088 mutex_enter(&db->db_mtx); 4089 db->db_parent = parent; 4090 } 4091 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4092 (db->db_blkid & ((1ULL << epbs) - 1)); 4093 DBUF_VERIFY(db); 4094 } 4095 } 4096 4097 static void 4098 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4099 { 4100 dmu_buf_impl_t *db = dr->dr_dbuf; 4101 void *data = dr->dt.dl.dr_data; 4102 4103 ASSERT0(db->db_level); 4104 ASSERT(MUTEX_HELD(&db->db_mtx)); 4105 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4106 ASSERT(data != NULL); 4107 4108 dnode_t *dn = dr->dr_dnode; 4109 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4110 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4111 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4112 4113 dbuf_sync_leaf_verify_bonus_dnode(dr); 4114 4115 dbuf_undirty_bonus(dr); 4116 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4117 } 4118 4119 /* 4120 * When syncing out a blocks of dnodes, adjust the block to deal with 4121 * encryption. Normally, we make sure the block is decrypted before writing 4122 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4123 * from a raw receive. In this case, set the ARC buf's crypt params so 4124 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4125 */ 4126 static void 4127 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4128 { 4129 int err; 4130 dmu_buf_impl_t *db = dr->dr_dbuf; 4131 4132 ASSERT(MUTEX_HELD(&db->db_mtx)); 4133 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4134 ASSERT3U(db->db_level, ==, 0); 4135 4136 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4137 zbookmark_phys_t zb; 4138 4139 /* 4140 * Unfortunately, there is currently no mechanism for 4141 * syncing context to handle decryption errors. An error 4142 * here is only possible if an attacker maliciously 4143 * changed a dnode block and updated the associated 4144 * checksums going up the block tree. 4145 */ 4146 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4147 db->db.db_object, db->db_level, db->db_blkid); 4148 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4149 &zb, B_TRUE); 4150 if (err) 4151 panic("Invalid dnode block MAC"); 4152 } else if (dr->dt.dl.dr_has_raw_params) { 4153 (void) arc_release(dr->dt.dl.dr_data, db); 4154 arc_convert_to_raw(dr->dt.dl.dr_data, 4155 dmu_objset_id(db->db_objset), 4156 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4157 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4158 } 4159 } 4160 4161 /* 4162 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4163 * is critical the we not allow the compiler to inline this function in to 4164 * dbuf_sync_list() thereby drastically bloating the stack usage. 4165 */ 4166 noinline static void 4167 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4168 { 4169 dmu_buf_impl_t *db = dr->dr_dbuf; 4170 dnode_t *dn = dr->dr_dnode; 4171 4172 ASSERT(dmu_tx_is_syncing(tx)); 4173 4174 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4175 4176 mutex_enter(&db->db_mtx); 4177 4178 ASSERT(db->db_level > 0); 4179 DBUF_VERIFY(db); 4180 4181 /* Read the block if it hasn't been read yet. */ 4182 if (db->db_buf == NULL) { 4183 mutex_exit(&db->db_mtx); 4184 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4185 mutex_enter(&db->db_mtx); 4186 } 4187 ASSERT3U(db->db_state, ==, DB_CACHED); 4188 ASSERT(db->db_buf != NULL); 4189 4190 /* Indirect block size must match what the dnode thinks it is. */ 4191 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4192 dbuf_check_blkptr(dn, db); 4193 4194 /* Provide the pending dirty record to child dbufs */ 4195 db->db_data_pending = dr; 4196 4197 mutex_exit(&db->db_mtx); 4198 4199 dbuf_write(dr, db->db_buf, tx); 4200 4201 zio_t *zio = dr->dr_zio; 4202 mutex_enter(&dr->dt.di.dr_mtx); 4203 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4204 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4205 mutex_exit(&dr->dt.di.dr_mtx); 4206 zio_nowait(zio); 4207 } 4208 4209 /* 4210 * Verify that the size of the data in our bonus buffer does not exceed 4211 * its recorded size. 4212 * 4213 * The purpose of this verification is to catch any cases in development 4214 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4215 * due to incorrect feature management, older pools expect to read more 4216 * data even though they didn't actually write it to begin with. 4217 * 4218 * For a example, this would catch an error in the feature logic where we 4219 * open an older pool and we expect to write the space map histogram of 4220 * a space map with size SPACE_MAP_SIZE_V0. 4221 */ 4222 static void 4223 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4224 { 4225 #ifdef ZFS_DEBUG 4226 dnode_t *dn = dr->dr_dnode; 4227 4228 /* 4229 * Encrypted bonus buffers can have data past their bonuslen. 4230 * Skip the verification of these blocks. 4231 */ 4232 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4233 return; 4234 4235 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4236 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4237 ASSERT3U(bonuslen, <=, maxbonuslen); 4238 4239 arc_buf_t *datap = dr->dt.dl.dr_data; 4240 char *datap_end = ((char *)datap) + bonuslen; 4241 char *datap_max = ((char *)datap) + maxbonuslen; 4242 4243 /* ensure that everything is zero after our data */ 4244 for (; datap_end < datap_max; datap_end++) 4245 ASSERT(*datap_end == 0); 4246 #endif 4247 } 4248 4249 static blkptr_t * 4250 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4251 { 4252 /* This must be a lightweight dirty record. */ 4253 ASSERT3P(dr->dr_dbuf, ==, NULL); 4254 dnode_t *dn = dr->dr_dnode; 4255 4256 if (dn->dn_phys->dn_nlevels == 1) { 4257 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4258 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4259 } else { 4260 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4261 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4262 VERIFY3U(parent_db->db_level, ==, 1); 4263 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4264 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4265 blkptr_t *bp = parent_db->db.db_data; 4266 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4267 } 4268 } 4269 4270 static void 4271 dbuf_lightweight_ready(zio_t *zio) 4272 { 4273 dbuf_dirty_record_t *dr = zio->io_private; 4274 blkptr_t *bp = zio->io_bp; 4275 4276 if (zio->io_error != 0) 4277 return; 4278 4279 dnode_t *dn = dr->dr_dnode; 4280 4281 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4282 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4283 int64_t delta = bp_get_dsize_sync(spa, bp) - 4284 bp_get_dsize_sync(spa, bp_orig); 4285 dnode_diduse_space(dn, delta); 4286 4287 uint64_t blkid = dr->dt.dll.dr_blkid; 4288 mutex_enter(&dn->dn_mtx); 4289 if (blkid > dn->dn_phys->dn_maxblkid) { 4290 ASSERT0(dn->dn_objset->os_raw_receive); 4291 dn->dn_phys->dn_maxblkid = blkid; 4292 } 4293 mutex_exit(&dn->dn_mtx); 4294 4295 if (!BP_IS_EMBEDDED(bp)) { 4296 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4297 BP_SET_FILL(bp, fill); 4298 } 4299 4300 dmu_buf_impl_t *parent_db; 4301 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4302 if (dr->dr_parent == NULL) { 4303 parent_db = dn->dn_dbuf; 4304 } else { 4305 parent_db = dr->dr_parent->dr_dbuf; 4306 } 4307 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4308 *bp_orig = *bp; 4309 rw_exit(&parent_db->db_rwlock); 4310 } 4311 4312 static void 4313 dbuf_lightweight_physdone(zio_t *zio) 4314 { 4315 dbuf_dirty_record_t *dr = zio->io_private; 4316 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4317 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4318 4319 /* 4320 * The callback will be called io_phys_children times. Retire one 4321 * portion of our dirty space each time we are called. Any rounding 4322 * error will be cleaned up by dbuf_lightweight_done(). 4323 */ 4324 int delta = dr->dr_accounted / zio->io_phys_children; 4325 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4326 } 4327 4328 static void 4329 dbuf_lightweight_done(zio_t *zio) 4330 { 4331 dbuf_dirty_record_t *dr = zio->io_private; 4332 4333 VERIFY0(zio->io_error); 4334 4335 objset_t *os = dr->dr_dnode->dn_objset; 4336 dmu_tx_t *tx = os->os_synctx; 4337 4338 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4339 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4340 } else { 4341 dsl_dataset_t *ds = os->os_dsl_dataset; 4342 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4343 dsl_dataset_block_born(ds, zio->io_bp, tx); 4344 } 4345 4346 /* 4347 * See comment in dbuf_write_done(). 4348 */ 4349 if (zio->io_phys_children == 0) { 4350 dsl_pool_undirty_space(dmu_objset_pool(os), 4351 dr->dr_accounted, zio->io_txg); 4352 } else { 4353 dsl_pool_undirty_space(dmu_objset_pool(os), 4354 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4355 } 4356 4357 abd_free(dr->dt.dll.dr_abd); 4358 kmem_free(dr, sizeof (*dr)); 4359 } 4360 4361 noinline static void 4362 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4363 { 4364 dnode_t *dn = dr->dr_dnode; 4365 zio_t *pio; 4366 if (dn->dn_phys->dn_nlevels == 1) { 4367 pio = dn->dn_zio; 4368 } else { 4369 pio = dr->dr_parent->dr_zio; 4370 } 4371 4372 zbookmark_phys_t zb = { 4373 .zb_objset = dmu_objset_id(dn->dn_objset), 4374 .zb_object = dn->dn_object, 4375 .zb_level = 0, 4376 .zb_blkid = dr->dt.dll.dr_blkid, 4377 }; 4378 4379 /* 4380 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4381 * will have the old BP in dbuf_lightweight_done(). 4382 */ 4383 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4384 4385 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4386 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4387 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4388 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4389 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4390 ZIO_PRIORITY_ASYNC_WRITE, 4391 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4392 4393 zio_nowait(dr->dr_zio); 4394 } 4395 4396 /* 4397 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4398 * critical the we not allow the compiler to inline this function in to 4399 * dbuf_sync_list() thereby drastically bloating the stack usage. 4400 */ 4401 noinline static void 4402 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4403 { 4404 arc_buf_t **datap = &dr->dt.dl.dr_data; 4405 dmu_buf_impl_t *db = dr->dr_dbuf; 4406 dnode_t *dn = dr->dr_dnode; 4407 objset_t *os; 4408 uint64_t txg = tx->tx_txg; 4409 4410 ASSERT(dmu_tx_is_syncing(tx)); 4411 4412 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4413 4414 mutex_enter(&db->db_mtx); 4415 /* 4416 * To be synced, we must be dirtied. But we 4417 * might have been freed after the dirty. 4418 */ 4419 if (db->db_state == DB_UNCACHED) { 4420 /* This buffer has been freed since it was dirtied */ 4421 ASSERT(db->db.db_data == NULL); 4422 } else if (db->db_state == DB_FILL) { 4423 /* This buffer was freed and is now being re-filled */ 4424 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4425 } else { 4426 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4427 } 4428 DBUF_VERIFY(db); 4429 4430 if (db->db_blkid == DMU_SPILL_BLKID) { 4431 mutex_enter(&dn->dn_mtx); 4432 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4433 /* 4434 * In the previous transaction group, the bonus buffer 4435 * was entirely used to store the attributes for the 4436 * dnode which overrode the dn_spill field. However, 4437 * when adding more attributes to the file a spill 4438 * block was required to hold the extra attributes. 4439 * 4440 * Make sure to clear the garbage left in the dn_spill 4441 * field from the previous attributes in the bonus 4442 * buffer. Otherwise, after writing out the spill 4443 * block to the new allocated dva, it will free 4444 * the old block pointed to by the invalid dn_spill. 4445 */ 4446 db->db_blkptr = NULL; 4447 } 4448 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4449 mutex_exit(&dn->dn_mtx); 4450 } 4451 4452 /* 4453 * If this is a bonus buffer, simply copy the bonus data into the 4454 * dnode. It will be written out when the dnode is synced (and it 4455 * will be synced, since it must have been dirty for dbuf_sync to 4456 * be called). 4457 */ 4458 if (db->db_blkid == DMU_BONUS_BLKID) { 4459 ASSERT(dr->dr_dbuf == db); 4460 dbuf_sync_bonus(dr, tx); 4461 return; 4462 } 4463 4464 os = dn->dn_objset; 4465 4466 /* 4467 * This function may have dropped the db_mtx lock allowing a dmu_sync 4468 * operation to sneak in. As a result, we need to ensure that we 4469 * don't check the dr_override_state until we have returned from 4470 * dbuf_check_blkptr. 4471 */ 4472 dbuf_check_blkptr(dn, db); 4473 4474 /* 4475 * If this buffer is in the middle of an immediate write, 4476 * wait for the synchronous IO to complete. 4477 */ 4478 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4479 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4480 cv_wait(&db->db_changed, &db->db_mtx); 4481 } 4482 4483 /* 4484 * If this is a dnode block, ensure it is appropriately encrypted 4485 * or decrypted, depending on what we are writing to it this txg. 4486 */ 4487 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4488 dbuf_prepare_encrypted_dnode_leaf(dr); 4489 4490 if (db->db_state != DB_NOFILL && 4491 dn->dn_object != DMU_META_DNODE_OBJECT && 4492 zfs_refcount_count(&db->db_holds) > 1 && 4493 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4494 *datap == db->db_buf) { 4495 /* 4496 * If this buffer is currently "in use" (i.e., there 4497 * are active holds and db_data still references it), 4498 * then make a copy before we start the write so that 4499 * any modifications from the open txg will not leak 4500 * into this write. 4501 * 4502 * NOTE: this copy does not need to be made for 4503 * objects only modified in the syncing context (e.g. 4504 * DNONE_DNODE blocks). 4505 */ 4506 int psize = arc_buf_size(*datap); 4507 int lsize = arc_buf_lsize(*datap); 4508 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4509 enum zio_compress compress_type = arc_get_compression(*datap); 4510 uint8_t complevel = arc_get_complevel(*datap); 4511 4512 if (arc_is_encrypted(*datap)) { 4513 boolean_t byteorder; 4514 uint8_t salt[ZIO_DATA_SALT_LEN]; 4515 uint8_t iv[ZIO_DATA_IV_LEN]; 4516 uint8_t mac[ZIO_DATA_MAC_LEN]; 4517 4518 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4519 *datap = arc_alloc_raw_buf(os->os_spa, db, 4520 dmu_objset_id(os), byteorder, salt, iv, mac, 4521 dn->dn_type, psize, lsize, compress_type, 4522 complevel); 4523 } else if (compress_type != ZIO_COMPRESS_OFF) { 4524 ASSERT3U(type, ==, ARC_BUFC_DATA); 4525 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4526 psize, lsize, compress_type, complevel); 4527 } else { 4528 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4529 } 4530 memcpy((*datap)->b_data, db->db.db_data, psize); 4531 } 4532 db->db_data_pending = dr; 4533 4534 mutex_exit(&db->db_mtx); 4535 4536 dbuf_write(dr, *datap, tx); 4537 4538 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4539 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4540 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4541 } else { 4542 zio_nowait(dr->dr_zio); 4543 } 4544 } 4545 4546 void 4547 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4548 { 4549 dbuf_dirty_record_t *dr; 4550 4551 while ((dr = list_head(list))) { 4552 if (dr->dr_zio != NULL) { 4553 /* 4554 * If we find an already initialized zio then we 4555 * are processing the meta-dnode, and we have finished. 4556 * The dbufs for all dnodes are put back on the list 4557 * during processing, so that we can zio_wait() 4558 * these IOs after initiating all child IOs. 4559 */ 4560 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4561 DMU_META_DNODE_OBJECT); 4562 break; 4563 } 4564 list_remove(list, dr); 4565 if (dr->dr_dbuf == NULL) { 4566 dbuf_sync_lightweight(dr, tx); 4567 } else { 4568 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4569 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4570 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4571 } 4572 if (dr->dr_dbuf->db_level > 0) 4573 dbuf_sync_indirect(dr, tx); 4574 else 4575 dbuf_sync_leaf(dr, tx); 4576 } 4577 } 4578 } 4579 4580 static void 4581 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4582 { 4583 (void) buf; 4584 dmu_buf_impl_t *db = vdb; 4585 dnode_t *dn; 4586 blkptr_t *bp = zio->io_bp; 4587 blkptr_t *bp_orig = &zio->io_bp_orig; 4588 spa_t *spa = zio->io_spa; 4589 int64_t delta; 4590 uint64_t fill = 0; 4591 int i; 4592 4593 ASSERT3P(db->db_blkptr, !=, NULL); 4594 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4595 4596 DB_DNODE_ENTER(db); 4597 dn = DB_DNODE(db); 4598 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4599 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4600 zio->io_prev_space_delta = delta; 4601 4602 if (bp->blk_birth != 0) { 4603 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4604 BP_GET_TYPE(bp) == dn->dn_type) || 4605 (db->db_blkid == DMU_SPILL_BLKID && 4606 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4607 BP_IS_EMBEDDED(bp)); 4608 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4609 } 4610 4611 mutex_enter(&db->db_mtx); 4612 4613 #ifdef ZFS_DEBUG 4614 if (db->db_blkid == DMU_SPILL_BLKID) { 4615 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4616 ASSERT(!(BP_IS_HOLE(bp)) && 4617 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4618 } 4619 #endif 4620 4621 if (db->db_level == 0) { 4622 mutex_enter(&dn->dn_mtx); 4623 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4624 db->db_blkid != DMU_SPILL_BLKID) { 4625 ASSERT0(db->db_objset->os_raw_receive); 4626 dn->dn_phys->dn_maxblkid = db->db_blkid; 4627 } 4628 mutex_exit(&dn->dn_mtx); 4629 4630 if (dn->dn_type == DMU_OT_DNODE) { 4631 i = 0; 4632 while (i < db->db.db_size) { 4633 dnode_phys_t *dnp = 4634 (void *)(((char *)db->db.db_data) + i); 4635 4636 i += DNODE_MIN_SIZE; 4637 if (dnp->dn_type != DMU_OT_NONE) { 4638 fill++; 4639 i += dnp->dn_extra_slots * 4640 DNODE_MIN_SIZE; 4641 } 4642 } 4643 } else { 4644 if (BP_IS_HOLE(bp)) { 4645 fill = 0; 4646 } else { 4647 fill = 1; 4648 } 4649 } 4650 } else { 4651 blkptr_t *ibp = db->db.db_data; 4652 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4653 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4654 if (BP_IS_HOLE(ibp)) 4655 continue; 4656 fill += BP_GET_FILL(ibp); 4657 } 4658 } 4659 DB_DNODE_EXIT(db); 4660 4661 if (!BP_IS_EMBEDDED(bp)) 4662 BP_SET_FILL(bp, fill); 4663 4664 mutex_exit(&db->db_mtx); 4665 4666 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4667 *db->db_blkptr = *bp; 4668 dmu_buf_unlock_parent(db, dblt, FTAG); 4669 } 4670 4671 /* 4672 * This function gets called just prior to running through the compression 4673 * stage of the zio pipeline. If we're an indirect block comprised of only 4674 * holes, then we want this indirect to be compressed away to a hole. In 4675 * order to do that we must zero out any information about the holes that 4676 * this indirect points to prior to before we try to compress it. 4677 */ 4678 static void 4679 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4680 { 4681 (void) zio, (void) buf; 4682 dmu_buf_impl_t *db = vdb; 4683 dnode_t *dn; 4684 blkptr_t *bp; 4685 unsigned int epbs, i; 4686 4687 ASSERT3U(db->db_level, >, 0); 4688 DB_DNODE_ENTER(db); 4689 dn = DB_DNODE(db); 4690 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4691 ASSERT3U(epbs, <, 31); 4692 4693 /* Determine if all our children are holes */ 4694 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4695 if (!BP_IS_HOLE(bp)) 4696 break; 4697 } 4698 4699 /* 4700 * If all the children are holes, then zero them all out so that 4701 * we may get compressed away. 4702 */ 4703 if (i == 1ULL << epbs) { 4704 /* 4705 * We only found holes. Grab the rwlock to prevent 4706 * anybody from reading the blocks we're about to 4707 * zero out. 4708 */ 4709 rw_enter(&db->db_rwlock, RW_WRITER); 4710 memset(db->db.db_data, 0, db->db.db_size); 4711 rw_exit(&db->db_rwlock); 4712 } 4713 DB_DNODE_EXIT(db); 4714 } 4715 4716 /* 4717 * The SPA will call this callback several times for each zio - once 4718 * for every physical child i/o (zio->io_phys_children times). This 4719 * allows the DMU to monitor the progress of each logical i/o. For example, 4720 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4721 * block. There may be a long delay before all copies/fragments are completed, 4722 * so this callback allows us to retire dirty space gradually, as the physical 4723 * i/os complete. 4724 */ 4725 static void 4726 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4727 { 4728 (void) buf; 4729 dmu_buf_impl_t *db = arg; 4730 objset_t *os = db->db_objset; 4731 dsl_pool_t *dp = dmu_objset_pool(os); 4732 dbuf_dirty_record_t *dr; 4733 int delta = 0; 4734 4735 dr = db->db_data_pending; 4736 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4737 4738 /* 4739 * The callback will be called io_phys_children times. Retire one 4740 * portion of our dirty space each time we are called. Any rounding 4741 * error will be cleaned up by dbuf_write_done(). 4742 */ 4743 delta = dr->dr_accounted / zio->io_phys_children; 4744 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4745 } 4746 4747 static void 4748 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4749 { 4750 (void) buf; 4751 dmu_buf_impl_t *db = vdb; 4752 blkptr_t *bp_orig = &zio->io_bp_orig; 4753 blkptr_t *bp = db->db_blkptr; 4754 objset_t *os = db->db_objset; 4755 dmu_tx_t *tx = os->os_synctx; 4756 4757 ASSERT0(zio->io_error); 4758 ASSERT(db->db_blkptr == bp); 4759 4760 /* 4761 * For nopwrites and rewrites we ensure that the bp matches our 4762 * original and bypass all the accounting. 4763 */ 4764 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4765 ASSERT(BP_EQUAL(bp, bp_orig)); 4766 } else { 4767 dsl_dataset_t *ds = os->os_dsl_dataset; 4768 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4769 dsl_dataset_block_born(ds, bp, tx); 4770 } 4771 4772 mutex_enter(&db->db_mtx); 4773 4774 DBUF_VERIFY(db); 4775 4776 dbuf_dirty_record_t *dr = db->db_data_pending; 4777 dnode_t *dn = dr->dr_dnode; 4778 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4779 ASSERT(dr->dr_dbuf == db); 4780 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4781 list_remove(&db->db_dirty_records, dr); 4782 4783 #ifdef ZFS_DEBUG 4784 if (db->db_blkid == DMU_SPILL_BLKID) { 4785 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4786 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4787 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4788 } 4789 #endif 4790 4791 if (db->db_level == 0) { 4792 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4793 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4794 if (db->db_state != DB_NOFILL) { 4795 if (dr->dt.dl.dr_data != NULL && 4796 dr->dt.dl.dr_data != db->db_buf) { 4797 arc_buf_destroy(dr->dt.dl.dr_data, db); 4798 } 4799 } 4800 } else { 4801 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4802 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4803 if (!BP_IS_HOLE(db->db_blkptr)) { 4804 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4805 SPA_BLKPTRSHIFT; 4806 ASSERT3U(db->db_blkid, <=, 4807 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4808 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4809 db->db.db_size); 4810 } 4811 mutex_destroy(&dr->dt.di.dr_mtx); 4812 list_destroy(&dr->dt.di.dr_children); 4813 } 4814 4815 cv_broadcast(&db->db_changed); 4816 ASSERT(db->db_dirtycnt > 0); 4817 db->db_dirtycnt -= 1; 4818 db->db_data_pending = NULL; 4819 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4820 4821 /* 4822 * If we didn't do a physical write in this ZIO and we 4823 * still ended up here, it means that the space of the 4824 * dbuf that we just released (and undirtied) above hasn't 4825 * been marked as undirtied in the pool's accounting. 4826 * 4827 * Thus, we undirty that space in the pool's view of the 4828 * world here. For physical writes this type of update 4829 * happens in dbuf_write_physdone(). 4830 * 4831 * If we did a physical write, cleanup any rounding errors 4832 * that came up due to writing multiple copies of a block 4833 * on disk [see dbuf_write_physdone()]. 4834 */ 4835 if (zio->io_phys_children == 0) { 4836 dsl_pool_undirty_space(dmu_objset_pool(os), 4837 dr->dr_accounted, zio->io_txg); 4838 } else { 4839 dsl_pool_undirty_space(dmu_objset_pool(os), 4840 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4841 } 4842 4843 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4844 } 4845 4846 static void 4847 dbuf_write_nofill_ready(zio_t *zio) 4848 { 4849 dbuf_write_ready(zio, NULL, zio->io_private); 4850 } 4851 4852 static void 4853 dbuf_write_nofill_done(zio_t *zio) 4854 { 4855 dbuf_write_done(zio, NULL, zio->io_private); 4856 } 4857 4858 static void 4859 dbuf_write_override_ready(zio_t *zio) 4860 { 4861 dbuf_dirty_record_t *dr = zio->io_private; 4862 dmu_buf_impl_t *db = dr->dr_dbuf; 4863 4864 dbuf_write_ready(zio, NULL, db); 4865 } 4866 4867 static void 4868 dbuf_write_override_done(zio_t *zio) 4869 { 4870 dbuf_dirty_record_t *dr = zio->io_private; 4871 dmu_buf_impl_t *db = dr->dr_dbuf; 4872 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4873 4874 mutex_enter(&db->db_mtx); 4875 if (!BP_EQUAL(zio->io_bp, obp)) { 4876 if (!BP_IS_HOLE(obp)) 4877 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4878 arc_release(dr->dt.dl.dr_data, db); 4879 } 4880 mutex_exit(&db->db_mtx); 4881 4882 dbuf_write_done(zio, NULL, db); 4883 4884 if (zio->io_abd != NULL) 4885 abd_free(zio->io_abd); 4886 } 4887 4888 typedef struct dbuf_remap_impl_callback_arg { 4889 objset_t *drica_os; 4890 uint64_t drica_blk_birth; 4891 dmu_tx_t *drica_tx; 4892 } dbuf_remap_impl_callback_arg_t; 4893 4894 static void 4895 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4896 void *arg) 4897 { 4898 dbuf_remap_impl_callback_arg_t *drica = arg; 4899 objset_t *os = drica->drica_os; 4900 spa_t *spa = dmu_objset_spa(os); 4901 dmu_tx_t *tx = drica->drica_tx; 4902 4903 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4904 4905 if (os == spa_meta_objset(spa)) { 4906 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4907 } else { 4908 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4909 size, drica->drica_blk_birth, tx); 4910 } 4911 } 4912 4913 static void 4914 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4915 { 4916 blkptr_t bp_copy = *bp; 4917 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4918 dbuf_remap_impl_callback_arg_t drica; 4919 4920 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4921 4922 drica.drica_os = dn->dn_objset; 4923 drica.drica_blk_birth = bp->blk_birth; 4924 drica.drica_tx = tx; 4925 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4926 &drica)) { 4927 /* 4928 * If the blkptr being remapped is tracked by a livelist, 4929 * then we need to make sure the livelist reflects the update. 4930 * First, cancel out the old blkptr by appending a 'FREE' 4931 * entry. Next, add an 'ALLOC' to track the new version. This 4932 * way we avoid trying to free an inaccurate blkptr at delete. 4933 * Note that embedded blkptrs are not tracked in livelists. 4934 */ 4935 if (dn->dn_objset != spa_meta_objset(spa)) { 4936 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4937 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4938 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4939 ASSERT(!BP_IS_EMBEDDED(bp)); 4940 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4941 ASSERT(spa_feature_is_enabled(spa, 4942 SPA_FEATURE_LIVELIST)); 4943 bplist_append(&ds->ds_dir->dd_pending_frees, 4944 bp); 4945 bplist_append(&ds->ds_dir->dd_pending_allocs, 4946 &bp_copy); 4947 } 4948 } 4949 4950 /* 4951 * The db_rwlock prevents dbuf_read_impl() from 4952 * dereferencing the BP while we are changing it. To 4953 * avoid lock contention, only grab it when we are actually 4954 * changing the BP. 4955 */ 4956 if (rw != NULL) 4957 rw_enter(rw, RW_WRITER); 4958 *bp = bp_copy; 4959 if (rw != NULL) 4960 rw_exit(rw); 4961 } 4962 } 4963 4964 /* 4965 * Remap any existing BP's to concrete vdevs, if possible. 4966 */ 4967 static void 4968 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4969 { 4970 spa_t *spa = dmu_objset_spa(db->db_objset); 4971 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4972 4973 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4974 return; 4975 4976 if (db->db_level > 0) { 4977 blkptr_t *bp = db->db.db_data; 4978 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4979 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4980 } 4981 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4982 dnode_phys_t *dnp = db->db.db_data; 4983 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4984 DMU_OT_DNODE); 4985 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4986 i += dnp[i].dn_extra_slots + 1) { 4987 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4988 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4989 &dn->dn_dbuf->db_rwlock); 4990 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4991 tx); 4992 } 4993 } 4994 } 4995 } 4996 4997 4998 /* Issue I/O to commit a dirty buffer to disk. */ 4999 static void 5000 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5001 { 5002 dmu_buf_impl_t *db = dr->dr_dbuf; 5003 dnode_t *dn = dr->dr_dnode; 5004 objset_t *os; 5005 dmu_buf_impl_t *parent = db->db_parent; 5006 uint64_t txg = tx->tx_txg; 5007 zbookmark_phys_t zb; 5008 zio_prop_t zp; 5009 zio_t *pio; /* parent I/O */ 5010 int wp_flag = 0; 5011 5012 ASSERT(dmu_tx_is_syncing(tx)); 5013 5014 os = dn->dn_objset; 5015 5016 if (db->db_state != DB_NOFILL) { 5017 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5018 /* 5019 * Private object buffers are released here rather 5020 * than in dbuf_dirty() since they are only modified 5021 * in the syncing context and we don't want the 5022 * overhead of making multiple copies of the data. 5023 */ 5024 if (BP_IS_HOLE(db->db_blkptr)) { 5025 arc_buf_thaw(data); 5026 } else { 5027 dbuf_release_bp(db); 5028 } 5029 dbuf_remap(dn, db, tx); 5030 } 5031 } 5032 5033 if (parent != dn->dn_dbuf) { 5034 /* Our parent is an indirect block. */ 5035 /* We have a dirty parent that has been scheduled for write. */ 5036 ASSERT(parent && parent->db_data_pending); 5037 /* Our parent's buffer is one level closer to the dnode. */ 5038 ASSERT(db->db_level == parent->db_level-1); 5039 /* 5040 * We're about to modify our parent's db_data by modifying 5041 * our block pointer, so the parent must be released. 5042 */ 5043 ASSERT(arc_released(parent->db_buf)); 5044 pio = parent->db_data_pending->dr_zio; 5045 } else { 5046 /* Our parent is the dnode itself. */ 5047 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5048 db->db_blkid != DMU_SPILL_BLKID) || 5049 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5050 if (db->db_blkid != DMU_SPILL_BLKID) 5051 ASSERT3P(db->db_blkptr, ==, 5052 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5053 pio = dn->dn_zio; 5054 } 5055 5056 ASSERT(db->db_level == 0 || data == db->db_buf); 5057 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 5058 ASSERT(pio); 5059 5060 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5061 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5062 db->db.db_object, db->db_level, db->db_blkid); 5063 5064 if (db->db_blkid == DMU_SPILL_BLKID) 5065 wp_flag = WP_SPILL; 5066 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 5067 5068 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5069 5070 /* 5071 * We copy the blkptr now (rather than when we instantiate the dirty 5072 * record), because its value can change between open context and 5073 * syncing context. We do not need to hold dn_struct_rwlock to read 5074 * db_blkptr because we are in syncing context. 5075 */ 5076 dr->dr_bp_copy = *db->db_blkptr; 5077 5078 if (db->db_level == 0 && 5079 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5080 /* 5081 * The BP for this block has been provided by open context 5082 * (by dmu_sync() or dmu_buf_write_embedded()). 5083 */ 5084 abd_t *contents = (data != NULL) ? 5085 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5086 5087 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5088 contents, db->db.db_size, db->db.db_size, &zp, 5089 dbuf_write_override_ready, NULL, NULL, 5090 dbuf_write_override_done, 5091 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5092 mutex_enter(&db->db_mtx); 5093 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5094 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5095 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5096 dr->dt.dl.dr_brtwrite); 5097 mutex_exit(&db->db_mtx); 5098 } else if (db->db_state == DB_NOFILL) { 5099 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5100 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5101 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5102 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5103 dbuf_write_nofill_ready, NULL, NULL, 5104 dbuf_write_nofill_done, db, 5105 ZIO_PRIORITY_ASYNC_WRITE, 5106 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5107 } else { 5108 ASSERT(arc_released(data)); 5109 5110 /* 5111 * For indirect blocks, we want to setup the children 5112 * ready callback so that we can properly handle an indirect 5113 * block that only contains holes. 5114 */ 5115 arc_write_done_func_t *children_ready_cb = NULL; 5116 if (db->db_level != 0) 5117 children_ready_cb = dbuf_write_children_ready; 5118 5119 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5120 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5121 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, 5122 children_ready_cb, dbuf_write_physdone, 5123 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 5124 ZIO_FLAG_MUSTSUCCEED, &zb); 5125 } 5126 } 5127 5128 EXPORT_SYMBOL(dbuf_find); 5129 EXPORT_SYMBOL(dbuf_is_metadata); 5130 EXPORT_SYMBOL(dbuf_destroy); 5131 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5132 EXPORT_SYMBOL(dbuf_whichblock); 5133 EXPORT_SYMBOL(dbuf_read); 5134 EXPORT_SYMBOL(dbuf_unoverride); 5135 EXPORT_SYMBOL(dbuf_free_range); 5136 EXPORT_SYMBOL(dbuf_new_size); 5137 EXPORT_SYMBOL(dbuf_release_bp); 5138 EXPORT_SYMBOL(dbuf_dirty); 5139 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5140 EXPORT_SYMBOL(dmu_buf_will_dirty); 5141 EXPORT_SYMBOL(dmu_buf_is_dirty); 5142 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5143 EXPORT_SYMBOL(dmu_buf_will_fill); 5144 EXPORT_SYMBOL(dmu_buf_fill_done); 5145 EXPORT_SYMBOL(dmu_buf_rele); 5146 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5147 EXPORT_SYMBOL(dbuf_prefetch); 5148 EXPORT_SYMBOL(dbuf_hold_impl); 5149 EXPORT_SYMBOL(dbuf_hold); 5150 EXPORT_SYMBOL(dbuf_hold_level); 5151 EXPORT_SYMBOL(dbuf_create_bonus); 5152 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5153 EXPORT_SYMBOL(dbuf_rm_spill); 5154 EXPORT_SYMBOL(dbuf_add_ref); 5155 EXPORT_SYMBOL(dbuf_rele); 5156 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5157 EXPORT_SYMBOL(dbuf_refcount); 5158 EXPORT_SYMBOL(dbuf_sync_list); 5159 EXPORT_SYMBOL(dmu_buf_set_user); 5160 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5161 EXPORT_SYMBOL(dmu_buf_get_user); 5162 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5163 5164 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5165 "Maximum size in bytes of the dbuf cache."); 5166 5167 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5168 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5169 5170 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5171 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5172 5173 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5174 "Maximum size in bytes of dbuf metadata cache."); 5175 5176 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5177 "Set size of dbuf cache to log2 fraction of arc size."); 5178 5179 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5180 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5181 5182 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5183 "Set size of dbuf cache mutex array as log2 shift."); 5184