1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 26 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright (c) 2019, Klara Inc. 29 * Copyright (c) 2019, Allan Jude 30 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/arc.h> 35 #include <sys/dmu.h> 36 #include <sys/dmu_send.h> 37 #include <sys/dmu_impl.h> 38 #include <sys/dbuf.h> 39 #include <sys/dmu_objset.h> 40 #include <sys/dsl_dataset.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/spa.h> 44 #include <sys/zio.h> 45 #include <sys/dmu_zfetch.h> 46 #include <sys/sa.h> 47 #include <sys/sa_impl.h> 48 #include <sys/zfeature.h> 49 #include <sys/blkptr.h> 50 #include <sys/range_tree.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/callb.h> 53 #include <sys/abd.h> 54 #include <sys/brt.h> 55 #include <sys/vdev.h> 56 #include <cityhash.h> 57 #include <sys/spa_impl.h> 58 #include <sys/wmsum.h> 59 #include <sys/vdev_impl.h> 60 61 static kstat_t *dbuf_ksp; 62 63 typedef struct dbuf_stats { 64 /* 65 * Various statistics about the size of the dbuf cache. 66 */ 67 kstat_named_t cache_count; 68 kstat_named_t cache_size_bytes; 69 kstat_named_t cache_size_bytes_max; 70 /* 71 * Statistics regarding the bounds on the dbuf cache size. 72 */ 73 kstat_named_t cache_target_bytes; 74 kstat_named_t cache_lowater_bytes; 75 kstat_named_t cache_hiwater_bytes; 76 /* 77 * Total number of dbuf cache evictions that have occurred. 78 */ 79 kstat_named_t cache_total_evicts; 80 /* 81 * The distribution of dbuf levels in the dbuf cache and 82 * the total size of all dbufs at each level. 83 */ 84 kstat_named_t cache_levels[DN_MAX_LEVELS]; 85 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 86 /* 87 * Statistics about the dbuf hash table. 88 */ 89 kstat_named_t hash_hits; 90 kstat_named_t hash_misses; 91 kstat_named_t hash_collisions; 92 kstat_named_t hash_elements; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_chains", KSTAT_DATA_UINT64 }, 138 { "hash_chain_max", KSTAT_DATA_UINT64 }, 139 { "hash_insert_race", KSTAT_DATA_UINT64 }, 140 { "hash_table_count", KSTAT_DATA_UINT64 }, 141 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 142 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 146 }; 147 148 struct { 149 wmsum_t cache_count; 150 wmsum_t cache_total_evicts; 151 wmsum_t cache_levels[DN_MAX_LEVELS]; 152 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 153 wmsum_t hash_hits; 154 wmsum_t hash_misses; 155 wmsum_t hash_collisions; 156 wmsum_t hash_elements; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 kmem_cache_t *dbuf_dirty_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 DBUF_STAT_BUMP(hash_elements); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 DBUF_STAT_BUMPDOWN(hash_elements); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT(db->db_level == 0); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, dbu); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 /* 640 * bp must be checked in the event it was passed from 641 * dbuf_read_impl() as the result of a the BP being set from 642 * a Direct I/O write in dbuf_read(). See comments in 643 * dbuf_read(). 644 */ 645 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp; 646 647 if (db_bp == NULL || BP_IS_HOLE(db_bp)) 648 return (B_FALSE); 649 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva); 650 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 651 vdev_t *vd = NULL; 652 653 if (vdev < rvd->vdev_children) 654 vd = rvd->vdev_child[vdev]; 655 656 if (vd == NULL) 657 return (B_TRUE); 658 659 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 660 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 661 return (B_TRUE); 662 } 663 return (B_FALSE); 664 } 665 666 static inline boolean_t 667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 668 { 669 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 670 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 671 (level > 0 || 672 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 673 if (l2arc_exclude_special == 0) 674 return (B_TRUE); 675 676 if (bp == NULL || BP_IS_HOLE(bp)) 677 return (B_FALSE); 678 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 679 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 680 vdev_t *vd = NULL; 681 682 if (vdev < rvd->vdev_children) 683 vd = rvd->vdev_child[vdev]; 684 685 if (vd == NULL) 686 return (B_TRUE); 687 688 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 689 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 690 return (B_TRUE); 691 } 692 return (B_FALSE); 693 } 694 695 696 /* 697 * This function *must* return indices evenly distributed between all 698 * sublists of the multilist. This is needed due to how the dbuf eviction 699 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 700 * distributed between all sublists and uses this assumption when 701 * deciding which sublist to evict from and how much to evict from it. 702 */ 703 static unsigned int 704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 705 { 706 dmu_buf_impl_t *db = obj; 707 708 /* 709 * The assumption here, is the hash value for a given 710 * dmu_buf_impl_t will remain constant throughout it's lifetime 711 * (i.e. it's objset, object, level and blkid fields don't change). 712 * Thus, we don't need to store the dbuf's sublist index 713 * on insertion, as this index can be recalculated on removal. 714 * 715 * Also, the low order bits of the hash value are thought to be 716 * distributed evenly. Otherwise, in the case that the multilist 717 * has a power of two number of sublists, each sublists' usage 718 * would not be evenly distributed. In this context full 64bit 719 * division would be a waste of time, so limit it to 32 bits. 720 */ 721 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 722 db->db_level, db->db_blkid) % 723 multilist_get_num_sublists(ml)); 724 } 725 726 /* 727 * The target size of the dbuf cache can grow with the ARC target, 728 * unless limited by the tunable dbuf_cache_max_bytes. 729 */ 730 static inline unsigned long 731 dbuf_cache_target_bytes(void) 732 { 733 return (MIN(dbuf_cache_max_bytes, 734 arc_target_bytes() >> dbuf_cache_shift)); 735 } 736 737 /* 738 * The target size of the dbuf metadata cache can grow with the ARC target, 739 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 740 */ 741 static inline unsigned long 742 dbuf_metadata_cache_target_bytes(void) 743 { 744 return (MIN(dbuf_metadata_cache_max_bytes, 745 arc_target_bytes() >> dbuf_metadata_cache_shift)); 746 } 747 748 static inline uint64_t 749 dbuf_cache_hiwater_bytes(void) 750 { 751 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 752 return (dbuf_cache_target + 753 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 754 } 755 756 static inline uint64_t 757 dbuf_cache_lowater_bytes(void) 758 { 759 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 760 return (dbuf_cache_target - 761 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 762 } 763 764 static inline boolean_t 765 dbuf_cache_above_lowater(void) 766 { 767 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 768 dbuf_cache_lowater_bytes()); 769 } 770 771 /* 772 * Evict the oldest eligible dbuf from the dbuf cache. 773 */ 774 static void 775 dbuf_evict_one(void) 776 { 777 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 778 multilist_sublist_t *mls = multilist_sublist_lock_idx( 779 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 780 781 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 782 783 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 784 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 785 db = multilist_sublist_prev(mls, db); 786 } 787 788 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 789 multilist_sublist_t *, mls); 790 791 if (db != NULL) { 792 multilist_sublist_remove(mls, db); 793 multilist_sublist_unlock(mls); 794 uint64_t size = db->db.db_size; 795 uint64_t usize = dmu_buf_user_size(&db->db); 796 (void) zfs_refcount_remove_many( 797 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 798 (void) zfs_refcount_remove_many( 799 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 800 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 801 DBUF_STAT_BUMPDOWN(cache_count); 802 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 803 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 804 db->db_caching_status = DB_NO_CACHE; 805 dbuf_destroy(db); 806 DBUF_STAT_BUMP(cache_total_evicts); 807 } else { 808 multilist_sublist_unlock(mls); 809 } 810 } 811 812 /* 813 * The dbuf evict thread is responsible for aging out dbufs from the 814 * cache. Once the cache has reached it's maximum size, dbufs are removed 815 * and destroyed. The eviction thread will continue running until the size 816 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 817 * out of the cache it is destroyed and becomes eligible for arc eviction. 818 */ 819 static __attribute__((noreturn)) void 820 dbuf_evict_thread(void *unused) 821 { 822 (void) unused; 823 callb_cpr_t cpr; 824 825 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 826 827 mutex_enter(&dbuf_evict_lock); 828 while (!dbuf_evict_thread_exit) { 829 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 830 CALLB_CPR_SAFE_BEGIN(&cpr); 831 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 832 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 833 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 834 } 835 mutex_exit(&dbuf_evict_lock); 836 837 /* 838 * Keep evicting as long as we're above the low water mark 839 * for the cache. We do this without holding the locks to 840 * minimize lock contention. 841 */ 842 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 843 dbuf_evict_one(); 844 } 845 846 mutex_enter(&dbuf_evict_lock); 847 } 848 849 dbuf_evict_thread_exit = B_FALSE; 850 cv_broadcast(&dbuf_evict_cv); 851 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 852 thread_exit(); 853 } 854 855 /* 856 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 857 * If the dbuf cache is at its high water mark, then evict a dbuf from the 858 * dbuf cache using the caller's context. 859 */ 860 static void 861 dbuf_evict_notify(uint64_t size) 862 { 863 /* 864 * We check if we should evict without holding the dbuf_evict_lock, 865 * because it's OK to occasionally make the wrong decision here, 866 * and grabbing the lock results in massive lock contention. 867 */ 868 if (size > dbuf_cache_target_bytes()) { 869 if (size > dbuf_cache_hiwater_bytes()) 870 dbuf_evict_one(); 871 cv_signal(&dbuf_evict_cv); 872 } 873 } 874 875 static int 876 dbuf_kstat_update(kstat_t *ksp, int rw) 877 { 878 dbuf_stats_t *ds = ksp->ks_data; 879 dbuf_hash_table_t *h = &dbuf_hash_table; 880 881 if (rw == KSTAT_WRITE) 882 return (SET_ERROR(EACCES)); 883 884 ds->cache_count.value.ui64 = 885 wmsum_value(&dbuf_sums.cache_count); 886 ds->cache_size_bytes.value.ui64 = 887 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 888 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 889 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 890 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 891 ds->cache_total_evicts.value.ui64 = 892 wmsum_value(&dbuf_sums.cache_total_evicts); 893 for (int i = 0; i < DN_MAX_LEVELS; i++) { 894 ds->cache_levels[i].value.ui64 = 895 wmsum_value(&dbuf_sums.cache_levels[i]); 896 ds->cache_levels_bytes[i].value.ui64 = 897 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 898 } 899 ds->hash_hits.value.ui64 = 900 wmsum_value(&dbuf_sums.hash_hits); 901 ds->hash_misses.value.ui64 = 902 wmsum_value(&dbuf_sums.hash_misses); 903 ds->hash_collisions.value.ui64 = 904 wmsum_value(&dbuf_sums.hash_collisions); 905 ds->hash_elements.value.ui64 = 906 wmsum_value(&dbuf_sums.hash_elements); 907 ds->hash_chains.value.ui64 = 908 wmsum_value(&dbuf_sums.hash_chains); 909 ds->hash_insert_race.value.ui64 = 910 wmsum_value(&dbuf_sums.hash_insert_race); 911 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 912 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 913 ds->metadata_cache_count.value.ui64 = 914 wmsum_value(&dbuf_sums.metadata_cache_count); 915 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 916 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 917 ds->metadata_cache_overflow.value.ui64 = 918 wmsum_value(&dbuf_sums.metadata_cache_overflow); 919 return (0); 920 } 921 922 void 923 dbuf_init(void) 924 { 925 uint64_t hmsize, hsize = 1ULL << 16; 926 dbuf_hash_table_t *h = &dbuf_hash_table; 927 928 /* 929 * The hash table is big enough to fill one eighth of physical memory 930 * with an average block size of zfs_arc_average_blocksize (default 8K). 931 * By default, the table will take up 932 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 933 */ 934 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 935 hsize <<= 1; 936 937 h->hash_table = NULL; 938 while (h->hash_table == NULL) { 939 h->hash_table_mask = hsize - 1; 940 941 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 942 if (h->hash_table == NULL) 943 hsize >>= 1; 944 945 ASSERT3U(hsize, >=, 1ULL << 10); 946 } 947 948 /* 949 * The hash table buckets are protected by an array of mutexes where 950 * each mutex is reponsible for protecting 128 buckets. A minimum 951 * array size of 8192 is targeted to avoid contention. 952 */ 953 if (dbuf_mutex_cache_shift == 0) 954 hmsize = MAX(hsize >> 7, 1ULL << 13); 955 else 956 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 957 958 h->hash_mutexes = NULL; 959 while (h->hash_mutexes == NULL) { 960 h->hash_mutex_mask = hmsize - 1; 961 962 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 963 KM_SLEEP); 964 if (h->hash_mutexes == NULL) 965 hmsize >>= 1; 966 } 967 968 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 969 sizeof (dmu_buf_impl_t), 970 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 971 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t", 972 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 973 974 for (int i = 0; i < hmsize; i++) 975 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 976 977 dbuf_stats_init(h); 978 979 /* 980 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 981 * configuration is not required. 982 */ 983 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 984 985 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 986 multilist_create(&dbuf_caches[dcs].cache, 987 sizeof (dmu_buf_impl_t), 988 offsetof(dmu_buf_impl_t, db_cache_link), 989 dbuf_cache_multilist_index_func); 990 zfs_refcount_create(&dbuf_caches[dcs].size); 991 } 992 993 dbuf_evict_thread_exit = B_FALSE; 994 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 995 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 996 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 997 NULL, 0, &p0, TS_RUN, minclsyspri); 998 999 wmsum_init(&dbuf_sums.cache_count, 0); 1000 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 1001 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1002 wmsum_init(&dbuf_sums.cache_levels[i], 0); 1003 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 1004 } 1005 wmsum_init(&dbuf_sums.hash_hits, 0); 1006 wmsum_init(&dbuf_sums.hash_misses, 0); 1007 wmsum_init(&dbuf_sums.hash_collisions, 0); 1008 wmsum_init(&dbuf_sums.hash_elements, 0); 1009 wmsum_init(&dbuf_sums.hash_chains, 0); 1010 wmsum_init(&dbuf_sums.hash_insert_race, 0); 1011 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1012 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1013 1014 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1015 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1016 KSTAT_FLAG_VIRTUAL); 1017 if (dbuf_ksp != NULL) { 1018 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1019 snprintf(dbuf_stats.cache_levels[i].name, 1020 KSTAT_STRLEN, "cache_level_%d", i); 1021 dbuf_stats.cache_levels[i].data_type = 1022 KSTAT_DATA_UINT64; 1023 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1024 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1025 dbuf_stats.cache_levels_bytes[i].data_type = 1026 KSTAT_DATA_UINT64; 1027 } 1028 dbuf_ksp->ks_data = &dbuf_stats; 1029 dbuf_ksp->ks_update = dbuf_kstat_update; 1030 kstat_install(dbuf_ksp); 1031 } 1032 } 1033 1034 void 1035 dbuf_fini(void) 1036 { 1037 dbuf_hash_table_t *h = &dbuf_hash_table; 1038 1039 dbuf_stats_destroy(); 1040 1041 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1042 mutex_destroy(&h->hash_mutexes[i]); 1043 1044 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1045 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1046 sizeof (kmutex_t)); 1047 1048 kmem_cache_destroy(dbuf_kmem_cache); 1049 kmem_cache_destroy(dbuf_dirty_kmem_cache); 1050 taskq_destroy(dbu_evict_taskq); 1051 1052 mutex_enter(&dbuf_evict_lock); 1053 dbuf_evict_thread_exit = B_TRUE; 1054 while (dbuf_evict_thread_exit) { 1055 cv_signal(&dbuf_evict_cv); 1056 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1057 } 1058 mutex_exit(&dbuf_evict_lock); 1059 1060 mutex_destroy(&dbuf_evict_lock); 1061 cv_destroy(&dbuf_evict_cv); 1062 1063 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1064 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1065 multilist_destroy(&dbuf_caches[dcs].cache); 1066 } 1067 1068 if (dbuf_ksp != NULL) { 1069 kstat_delete(dbuf_ksp); 1070 dbuf_ksp = NULL; 1071 } 1072 1073 wmsum_fini(&dbuf_sums.cache_count); 1074 wmsum_fini(&dbuf_sums.cache_total_evicts); 1075 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1076 wmsum_fini(&dbuf_sums.cache_levels[i]); 1077 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1078 } 1079 wmsum_fini(&dbuf_sums.hash_hits); 1080 wmsum_fini(&dbuf_sums.hash_misses); 1081 wmsum_fini(&dbuf_sums.hash_collisions); 1082 wmsum_fini(&dbuf_sums.hash_elements); 1083 wmsum_fini(&dbuf_sums.hash_chains); 1084 wmsum_fini(&dbuf_sums.hash_insert_race); 1085 wmsum_fini(&dbuf_sums.metadata_cache_count); 1086 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1087 } 1088 1089 /* 1090 * Other stuff. 1091 */ 1092 1093 #ifdef ZFS_DEBUG 1094 static void 1095 dbuf_verify(dmu_buf_impl_t *db) 1096 { 1097 dnode_t *dn; 1098 dbuf_dirty_record_t *dr; 1099 uint32_t txg_prev; 1100 1101 ASSERT(MUTEX_HELD(&db->db_mtx)); 1102 1103 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1104 return; 1105 1106 ASSERT(db->db_objset != NULL); 1107 DB_DNODE_ENTER(db); 1108 dn = DB_DNODE(db); 1109 if (dn == NULL) { 1110 ASSERT(db->db_parent == NULL); 1111 ASSERT(db->db_blkptr == NULL); 1112 } else { 1113 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1114 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1115 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1116 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1117 db->db_blkid == DMU_SPILL_BLKID || 1118 !avl_is_empty(&dn->dn_dbufs)); 1119 } 1120 if (db->db_blkid == DMU_BONUS_BLKID) { 1121 ASSERT(dn != NULL); 1122 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1123 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1124 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1125 ASSERT(dn != NULL); 1126 ASSERT0(db->db.db_offset); 1127 } else { 1128 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1129 } 1130 1131 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1132 ASSERT(dr->dr_dbuf == db); 1133 txg_prev = dr->dr_txg; 1134 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1135 dr = list_next(&db->db_dirty_records, dr)) { 1136 ASSERT(dr->dr_dbuf == db); 1137 ASSERT(txg_prev > dr->dr_txg); 1138 txg_prev = dr->dr_txg; 1139 } 1140 } 1141 1142 /* 1143 * We can't assert that db_size matches dn_datablksz because it 1144 * can be momentarily different when another thread is doing 1145 * dnode_set_blksz(). 1146 */ 1147 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1148 dr = db->db_data_pending; 1149 /* 1150 * It should only be modified in syncing context, so 1151 * make sure we only have one copy of the data. 1152 */ 1153 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1154 } 1155 1156 /* verify db->db_blkptr */ 1157 if (db->db_blkptr) { 1158 if (db->db_parent == dn->dn_dbuf) { 1159 /* db is pointed to by the dnode */ 1160 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1161 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1162 ASSERT(db->db_parent == NULL); 1163 else 1164 ASSERT(db->db_parent != NULL); 1165 if (db->db_blkid != DMU_SPILL_BLKID) 1166 ASSERT3P(db->db_blkptr, ==, 1167 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1168 } else { 1169 /* db is pointed to by an indirect block */ 1170 int epb __maybe_unused = db->db_parent->db.db_size >> 1171 SPA_BLKPTRSHIFT; 1172 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1173 ASSERT3U(db->db_parent->db.db_object, ==, 1174 db->db.db_object); 1175 /* 1176 * dnode_grow_indblksz() can make this fail if we don't 1177 * have the parent's rwlock. XXX indblksz no longer 1178 * grows. safe to do this now? 1179 */ 1180 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1181 ASSERT3P(db->db_blkptr, ==, 1182 ((blkptr_t *)db->db_parent->db.db_data + 1183 db->db_blkid % epb)); 1184 } 1185 } 1186 } 1187 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1188 (db->db_buf == NULL || db->db_buf->b_data) && 1189 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1190 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1191 /* 1192 * If the blkptr isn't set but they have nonzero data, 1193 * it had better be dirty, otherwise we'll lose that 1194 * data when we evict this buffer. 1195 * 1196 * There is an exception to this rule for indirect blocks; in 1197 * this case, if the indirect block is a hole, we fill in a few 1198 * fields on each of the child blocks (importantly, birth time) 1199 * to prevent hole birth times from being lost when you 1200 * partially fill in a hole. 1201 */ 1202 if (db->db_dirtycnt == 0) { 1203 if (db->db_level == 0) { 1204 uint64_t *buf = db->db.db_data; 1205 int i; 1206 1207 for (i = 0; i < db->db.db_size >> 3; i++) { 1208 ASSERT(buf[i] == 0); 1209 } 1210 } else { 1211 blkptr_t *bps = db->db.db_data; 1212 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1213 db->db.db_size); 1214 /* 1215 * We want to verify that all the blkptrs in the 1216 * indirect block are holes, but we may have 1217 * automatically set up a few fields for them. 1218 * We iterate through each blkptr and verify 1219 * they only have those fields set. 1220 */ 1221 for (int i = 0; 1222 i < db->db.db_size / sizeof (blkptr_t); 1223 i++) { 1224 blkptr_t *bp = &bps[i]; 1225 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1226 &bp->blk_cksum)); 1227 ASSERT( 1228 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1229 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1230 DVA_IS_EMPTY(&bp->blk_dva[2])); 1231 ASSERT0(bp->blk_fill); 1232 ASSERT0(bp->blk_pad[0]); 1233 ASSERT0(bp->blk_pad[1]); 1234 ASSERT(!BP_IS_EMBEDDED(bp)); 1235 ASSERT(BP_IS_HOLE(bp)); 1236 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1237 } 1238 } 1239 } 1240 } 1241 DB_DNODE_EXIT(db); 1242 } 1243 #endif 1244 1245 static void 1246 dbuf_clear_data(dmu_buf_impl_t *db) 1247 { 1248 ASSERT(MUTEX_HELD(&db->db_mtx)); 1249 dbuf_evict_user(db); 1250 ASSERT3P(db->db_buf, ==, NULL); 1251 db->db.db_data = NULL; 1252 if (db->db_state != DB_NOFILL) { 1253 db->db_state = DB_UNCACHED; 1254 DTRACE_SET_STATE(db, "clear data"); 1255 } 1256 } 1257 1258 static void 1259 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1260 { 1261 ASSERT(MUTEX_HELD(&db->db_mtx)); 1262 ASSERT(buf != NULL); 1263 1264 db->db_buf = buf; 1265 ASSERT(buf->b_data != NULL); 1266 db->db.db_data = buf->b_data; 1267 } 1268 1269 static arc_buf_t * 1270 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1271 { 1272 spa_t *spa = db->db_objset->os_spa; 1273 1274 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1275 } 1276 1277 /* 1278 * Loan out an arc_buf for read. Return the loaned arc_buf. 1279 */ 1280 arc_buf_t * 1281 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1282 { 1283 arc_buf_t *abuf; 1284 1285 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1286 mutex_enter(&db->db_mtx); 1287 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1288 int blksz = db->db.db_size; 1289 spa_t *spa = db->db_objset->os_spa; 1290 1291 mutex_exit(&db->db_mtx); 1292 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1293 memcpy(abuf->b_data, db->db.db_data, blksz); 1294 } else { 1295 abuf = db->db_buf; 1296 arc_loan_inuse_buf(abuf, db); 1297 db->db_buf = NULL; 1298 dbuf_clear_data(db); 1299 mutex_exit(&db->db_mtx); 1300 } 1301 return (abuf); 1302 } 1303 1304 /* 1305 * Calculate which level n block references the data at the level 0 offset 1306 * provided. 1307 */ 1308 uint64_t 1309 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1310 { 1311 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1312 /* 1313 * The level n blkid is equal to the level 0 blkid divided by 1314 * the number of level 0s in a level n block. 1315 * 1316 * The level 0 blkid is offset >> datablkshift = 1317 * offset / 2^datablkshift. 1318 * 1319 * The number of level 0s in a level n is the number of block 1320 * pointers in an indirect block, raised to the power of level. 1321 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1322 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1323 * 1324 * Thus, the level n blkid is: offset / 1325 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1326 * = offset / 2^(datablkshift + level * 1327 * (indblkshift - SPA_BLKPTRSHIFT)) 1328 * = offset >> (datablkshift + level * 1329 * (indblkshift - SPA_BLKPTRSHIFT)) 1330 */ 1331 1332 const unsigned exp = dn->dn_datablkshift + 1333 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1334 1335 if (exp >= 8 * sizeof (offset)) { 1336 /* This only happens on the highest indirection level */ 1337 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1338 return (0); 1339 } 1340 1341 ASSERT3U(exp, <, 8 * sizeof (offset)); 1342 1343 return (offset >> exp); 1344 } else { 1345 ASSERT3U(offset, <, dn->dn_datablksz); 1346 return (0); 1347 } 1348 } 1349 1350 /* 1351 * This function is used to lock the parent of the provided dbuf. This should be 1352 * used when modifying or reading db_blkptr. 1353 */ 1354 db_lock_type_t 1355 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1356 { 1357 enum db_lock_type ret = DLT_NONE; 1358 if (db->db_parent != NULL) { 1359 rw_enter(&db->db_parent->db_rwlock, rw); 1360 ret = DLT_PARENT; 1361 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1362 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1363 tag); 1364 ret = DLT_OBJSET; 1365 } 1366 /* 1367 * We only return a DLT_NONE lock when it's the top-most indirect block 1368 * of the meta-dnode of the MOS. 1369 */ 1370 return (ret); 1371 } 1372 1373 /* 1374 * We need to pass the lock type in because it's possible that the block will 1375 * move from being the topmost indirect block in a dnode (and thus, have no 1376 * parent) to not the top-most via an indirection increase. This would cause a 1377 * panic if we didn't pass the lock type in. 1378 */ 1379 void 1380 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1381 { 1382 if (type == DLT_PARENT) 1383 rw_exit(&db->db_parent->db_rwlock); 1384 else if (type == DLT_OBJSET) 1385 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1386 } 1387 1388 static void 1389 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1390 arc_buf_t *buf, void *vdb) 1391 { 1392 (void) zb, (void) bp; 1393 dmu_buf_impl_t *db = vdb; 1394 1395 mutex_enter(&db->db_mtx); 1396 ASSERT3U(db->db_state, ==, DB_READ); 1397 1398 /* 1399 * All reads are synchronous, so we must have a hold on the dbuf 1400 */ 1401 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1402 ASSERT(db->db_buf == NULL); 1403 ASSERT(db->db.db_data == NULL); 1404 if (buf == NULL) { 1405 /* i/o error */ 1406 ASSERT(zio == NULL || zio->io_error != 0); 1407 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1408 ASSERT3P(db->db_buf, ==, NULL); 1409 db->db_state = DB_UNCACHED; 1410 DTRACE_SET_STATE(db, "i/o error"); 1411 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1412 /* freed in flight */ 1413 ASSERT(zio == NULL || zio->io_error == 0); 1414 arc_release(buf, db); 1415 memset(buf->b_data, 0, db->db.db_size); 1416 arc_buf_freeze(buf); 1417 db->db_freed_in_flight = FALSE; 1418 dbuf_set_data(db, buf); 1419 db->db_state = DB_CACHED; 1420 DTRACE_SET_STATE(db, "freed in flight"); 1421 } else { 1422 /* success */ 1423 ASSERT(zio == NULL || zio->io_error == 0); 1424 dbuf_set_data(db, buf); 1425 db->db_state = DB_CACHED; 1426 DTRACE_SET_STATE(db, "successful read"); 1427 } 1428 cv_broadcast(&db->db_changed); 1429 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1430 } 1431 1432 /* 1433 * Shortcut for performing reads on bonus dbufs. Returns 1434 * an error if we fail to verify the dnode associated with 1435 * a decrypted block. Otherwise success. 1436 */ 1437 static int 1438 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1439 { 1440 int bonuslen, max_bonuslen; 1441 1442 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1443 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1444 ASSERT(MUTEX_HELD(&db->db_mtx)); 1445 ASSERT(DB_DNODE_HELD(db)); 1446 ASSERT3U(bonuslen, <=, db->db.db_size); 1447 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1448 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1449 if (bonuslen < max_bonuslen) 1450 memset(db->db.db_data, 0, max_bonuslen); 1451 if (bonuslen) 1452 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1453 db->db_state = DB_CACHED; 1454 DTRACE_SET_STATE(db, "bonus buffer filled"); 1455 return (0); 1456 } 1457 1458 static void 1459 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1460 { 1461 blkptr_t *bps = db->db.db_data; 1462 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1463 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1464 1465 for (int i = 0; i < n_bps; i++) { 1466 blkptr_t *bp = &bps[i]; 1467 1468 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1469 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1470 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1471 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1472 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1473 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1474 } 1475 } 1476 1477 /* 1478 * Handle reads on dbufs that are holes, if necessary. This function 1479 * requires that the dbuf's mutex is held. Returns success (0) if action 1480 * was taken, ENOENT if no action was taken. 1481 */ 1482 static int 1483 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1484 { 1485 ASSERT(MUTEX_HELD(&db->db_mtx)); 1486 1487 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1488 /* 1489 * For level 0 blocks only, if the above check fails: 1490 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1491 * processes the delete record and clears the bp while we are waiting 1492 * for the dn_mtx (resulting in a "no" from block_freed). 1493 */ 1494 if (!is_hole && db->db_level == 0) 1495 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1496 1497 if (is_hole) { 1498 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1499 memset(db->db.db_data, 0, db->db.db_size); 1500 1501 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1502 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1503 dbuf_handle_indirect_hole(db, dn, bp); 1504 } 1505 db->db_state = DB_CACHED; 1506 DTRACE_SET_STATE(db, "hole read satisfied"); 1507 return (0); 1508 } 1509 return (ENOENT); 1510 } 1511 1512 /* 1513 * This function ensures that, when doing a decrypting read of a block, 1514 * we make sure we have decrypted the dnode associated with it. We must do 1515 * this so that we ensure we are fully authenticating the checksum-of-MACs 1516 * tree from the root of the objset down to this block. Indirect blocks are 1517 * always verified against their secure checksum-of-MACs assuming that the 1518 * dnode containing them is correct. Now that we are doing a decrypting read, 1519 * we can be sure that the key is loaded and verify that assumption. This is 1520 * especially important considering that we always read encrypted dnode 1521 * blocks as raw data (without verifying their MACs) to start, and 1522 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1523 */ 1524 static int 1525 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1526 { 1527 objset_t *os = db->db_objset; 1528 dmu_buf_impl_t *dndb; 1529 arc_buf_t *dnbuf; 1530 zbookmark_phys_t zb; 1531 int err; 1532 1533 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1534 !os->os_encrypted || os->os_raw_receive || 1535 (dndb = dn->dn_dbuf) == NULL) 1536 return (0); 1537 1538 dnbuf = dndb->db_buf; 1539 if (!arc_is_encrypted(dnbuf)) 1540 return (0); 1541 1542 mutex_enter(&dndb->db_mtx); 1543 1544 /* 1545 * Since dnode buffer is modified by sync process, there can be only 1546 * one copy of it. It means we can not modify (decrypt) it while it 1547 * is being written. I don't see how this may happen now, since 1548 * encrypted dnode writes by receive should be completed before any 1549 * plain-text reads due to txg wait, but better be safe than sorry. 1550 */ 1551 while (1) { 1552 if (!arc_is_encrypted(dnbuf)) { 1553 mutex_exit(&dndb->db_mtx); 1554 return (0); 1555 } 1556 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1557 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1558 break; 1559 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1560 }; 1561 1562 SET_BOOKMARK(&zb, dmu_objset_id(os), 1563 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1564 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1565 1566 /* 1567 * An error code of EACCES tells us that the key is still not 1568 * available. This is ok if we are only reading authenticated 1569 * (and therefore non-encrypted) blocks. 1570 */ 1571 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1572 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1573 (db->db_blkid == DMU_BONUS_BLKID && 1574 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1575 err = 0; 1576 1577 mutex_exit(&dndb->db_mtx); 1578 1579 return (err); 1580 } 1581 1582 /* 1583 * Drops db_mtx and the parent lock specified by dblt and tag before 1584 * returning. 1585 */ 1586 static int 1587 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, 1588 db_lock_type_t dblt, blkptr_t *bp, const void *tag) 1589 { 1590 zbookmark_phys_t zb; 1591 uint32_t aflags = ARC_FLAG_NOWAIT; 1592 int err, zio_flags; 1593 1594 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1595 ASSERT(MUTEX_HELD(&db->db_mtx)); 1596 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1597 ASSERT(db->db_buf == NULL); 1598 ASSERT(db->db_parent == NULL || 1599 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1600 1601 if (db->db_blkid == DMU_BONUS_BLKID) { 1602 err = dbuf_read_bonus(db, dn); 1603 goto early_unlock; 1604 } 1605 1606 err = dbuf_read_hole(db, dn, bp); 1607 if (err == 0) 1608 goto early_unlock; 1609 1610 ASSERT(bp != NULL); 1611 1612 /* 1613 * Any attempt to read a redacted block should result in an error. This 1614 * will never happen under normal conditions, but can be useful for 1615 * debugging purposes. 1616 */ 1617 if (BP_IS_REDACTED(bp)) { 1618 ASSERT(dsl_dataset_feature_is_active( 1619 db->db_objset->os_dsl_dataset, 1620 SPA_FEATURE_REDACTED_DATASETS)); 1621 err = SET_ERROR(EIO); 1622 goto early_unlock; 1623 } 1624 1625 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1626 db->db.db_object, db->db_level, db->db_blkid); 1627 1628 /* 1629 * All bps of an encrypted os should have the encryption bit set. 1630 * If this is not true it indicates tampering and we report an error. 1631 */ 1632 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) { 1633 spa_log_error(db->db_objset->os_spa, &zb, 1634 BP_GET_LOGICAL_BIRTH(bp)); 1635 err = SET_ERROR(EIO); 1636 goto early_unlock; 1637 } 1638 1639 db->db_state = DB_READ; 1640 DTRACE_SET_STATE(db, "read issued"); 1641 mutex_exit(&db->db_mtx); 1642 1643 if (!DBUF_IS_CACHEABLE(db)) 1644 aflags |= ARC_FLAG_UNCACHED; 1645 else if (dbuf_is_l2cacheable(db, bp)) 1646 aflags |= ARC_FLAG_L2CACHE; 1647 1648 dbuf_add_ref(db, NULL); 1649 1650 zio_flags = (flags & DB_RF_CANFAIL) ? 1651 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1652 1653 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(bp)) 1654 zio_flags |= ZIO_FLAG_RAW; 1655 1656 /* 1657 * The zio layer will copy the provided blkptr later, but we need to 1658 * do this now so that we can release the parent's rwlock. We have to 1659 * do that now so that if dbuf_read_done is called synchronously (on 1660 * an l1 cache hit) we don't acquire the db_mtx while holding the 1661 * parent's rwlock, which would be a lock ordering violation. 1662 */ 1663 blkptr_t copy = *bp; 1664 dmu_buf_unlock_parent(db, dblt, tag); 1665 return (arc_read(zio, db->db_objset->os_spa, ©, 1666 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1667 &aflags, &zb)); 1668 1669 early_unlock: 1670 mutex_exit(&db->db_mtx); 1671 dmu_buf_unlock_parent(db, dblt, tag); 1672 return (err); 1673 } 1674 1675 /* 1676 * This is our just-in-time copy function. It makes a copy of buffers that 1677 * have been modified in a previous transaction group before we access them in 1678 * the current active group. 1679 * 1680 * This function is used in three places: when we are dirtying a buffer for the 1681 * first time in a txg, when we are freeing a range in a dnode that includes 1682 * this buffer, and when we are accessing a buffer which was received compressed 1683 * and later referenced in a WRITE_BYREF record. 1684 * 1685 * Note that when we are called from dbuf_free_range() we do not put a hold on 1686 * the buffer, we just traverse the active dbuf list for the dnode. 1687 */ 1688 static void 1689 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1690 { 1691 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1692 1693 ASSERT(MUTEX_HELD(&db->db_mtx)); 1694 ASSERT(db->db.db_data != NULL); 1695 ASSERT(db->db_level == 0); 1696 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1697 1698 if (dr == NULL || 1699 (dr->dt.dl.dr_data != 1700 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1701 return; 1702 1703 /* 1704 * If the last dirty record for this dbuf has not yet synced 1705 * and its referencing the dbuf data, either: 1706 * reset the reference to point to a new copy, 1707 * or (if there a no active holders) 1708 * just null out the current db_data pointer. 1709 */ 1710 ASSERT3U(dr->dr_txg, >=, txg - 2); 1711 if (db->db_blkid == DMU_BONUS_BLKID) { 1712 dnode_t *dn = DB_DNODE(db); 1713 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1714 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1715 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1716 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1717 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1718 dnode_t *dn = DB_DNODE(db); 1719 int size = arc_buf_size(db->db_buf); 1720 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1721 spa_t *spa = db->db_objset->os_spa; 1722 enum zio_compress compress_type = 1723 arc_get_compression(db->db_buf); 1724 uint8_t complevel = arc_get_complevel(db->db_buf); 1725 1726 if (arc_is_encrypted(db->db_buf)) { 1727 boolean_t byteorder; 1728 uint8_t salt[ZIO_DATA_SALT_LEN]; 1729 uint8_t iv[ZIO_DATA_IV_LEN]; 1730 uint8_t mac[ZIO_DATA_MAC_LEN]; 1731 1732 arc_get_raw_params(db->db_buf, &byteorder, salt, 1733 iv, mac); 1734 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1735 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1736 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1737 compress_type, complevel); 1738 } else if (compress_type != ZIO_COMPRESS_OFF) { 1739 ASSERT3U(type, ==, ARC_BUFC_DATA); 1740 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1741 size, arc_buf_lsize(db->db_buf), compress_type, 1742 complevel); 1743 } else { 1744 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1745 } 1746 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1747 } else { 1748 db->db_buf = NULL; 1749 dbuf_clear_data(db); 1750 } 1751 } 1752 1753 int 1754 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) 1755 { 1756 dnode_t *dn; 1757 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1758 int err; 1759 1760 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1761 1762 DB_DNODE_ENTER(db); 1763 dn = DB_DNODE(db); 1764 1765 /* 1766 * Ensure that this block's dnode has been decrypted if the caller 1767 * has requested decrypted data. 1768 */ 1769 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1770 if (err != 0) 1771 goto done; 1772 1773 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1774 (flags & DB_RF_NOPREFETCH) == 0; 1775 1776 mutex_enter(&db->db_mtx); 1777 if (flags & DB_RF_PARTIAL_FIRST) 1778 db->db_partial_read = B_TRUE; 1779 else if (!(flags & DB_RF_PARTIAL_MORE)) 1780 db->db_partial_read = B_FALSE; 1781 miss = (db->db_state != DB_CACHED); 1782 1783 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1784 /* 1785 * Another reader came in while the dbuf was in flight between 1786 * UNCACHED and CACHED. Either a writer will finish filling 1787 * the buffer, sending the dbuf to CACHED, or the first reader's 1788 * request will reach the read_done callback and send the dbuf 1789 * to CACHED. Otherwise, a failure occurred and the dbuf will 1790 * be sent to UNCACHED. 1791 */ 1792 if (flags & DB_RF_NEVERWAIT) { 1793 mutex_exit(&db->db_mtx); 1794 DB_DNODE_EXIT(db); 1795 goto done; 1796 } 1797 do { 1798 ASSERT(db->db_state == DB_READ || 1799 (flags & DB_RF_HAVESTRUCT) == 0); 1800 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1801 zio_t *, pio); 1802 cv_wait(&db->db_changed, &db->db_mtx); 1803 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1804 if (db->db_state == DB_UNCACHED) { 1805 err = SET_ERROR(EIO); 1806 mutex_exit(&db->db_mtx); 1807 DB_DNODE_EXIT(db); 1808 goto done; 1809 } 1810 } 1811 1812 if (db->db_state == DB_CACHED) { 1813 /* 1814 * If the arc buf is compressed or encrypted and the caller 1815 * requested uncompressed data, we need to untransform it 1816 * before returning. We also call arc_untransform() on any 1817 * unauthenticated blocks, which will verify their MAC if 1818 * the key is now available. 1819 */ 1820 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL && 1821 (arc_is_encrypted(db->db_buf) || 1822 arc_is_unauthenticated(db->db_buf) || 1823 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1824 spa_t *spa = dn->dn_objset->os_spa; 1825 zbookmark_phys_t zb; 1826 1827 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1828 db->db.db_object, db->db_level, db->db_blkid); 1829 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1830 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1831 dbuf_set_data(db, db->db_buf); 1832 } 1833 mutex_exit(&db->db_mtx); 1834 } else { 1835 ASSERT(db->db_state == DB_UNCACHED || 1836 db->db_state == DB_NOFILL); 1837 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1838 blkptr_t *bp; 1839 1840 /* 1841 * If a block clone or Direct I/O write has occurred we will 1842 * get the dirty records overridden BP so we get the most 1843 * recent data. 1844 */ 1845 err = dmu_buf_get_bp_from_dbuf(db, &bp); 1846 1847 if (!err) { 1848 if (pio == NULL && (db->db_state == DB_NOFILL || 1849 (bp != NULL && !BP_IS_HOLE(bp)))) { 1850 spa_t *spa = dn->dn_objset->os_spa; 1851 pio = 1852 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1853 need_wait = B_TRUE; 1854 } 1855 1856 err = 1857 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG); 1858 } else { 1859 mutex_exit(&db->db_mtx); 1860 dmu_buf_unlock_parent(db, dblt, FTAG); 1861 } 1862 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1863 miss = (db->db_state != DB_CACHED); 1864 } 1865 1866 if (err == 0 && prefetch) { 1867 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1868 flags & DB_RF_HAVESTRUCT); 1869 } 1870 DB_DNODE_EXIT(db); 1871 1872 /* 1873 * If we created a zio we must execute it to avoid leaking it, even if 1874 * it isn't attached to any work due to an error in dbuf_read_impl(). 1875 */ 1876 if (need_wait) { 1877 if (err == 0) 1878 err = zio_wait(pio); 1879 else 1880 (void) zio_wait(pio); 1881 pio = NULL; 1882 } 1883 1884 done: 1885 if (miss) 1886 DBUF_STAT_BUMP(hash_misses); 1887 else 1888 DBUF_STAT_BUMP(hash_hits); 1889 if (pio && err != 0) { 1890 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1891 ZIO_FLAG_CANFAIL); 1892 zio->io_error = err; 1893 zio_nowait(zio); 1894 } 1895 1896 return (err); 1897 } 1898 1899 static void 1900 dbuf_noread(dmu_buf_impl_t *db) 1901 { 1902 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1903 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1904 mutex_enter(&db->db_mtx); 1905 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1906 cv_wait(&db->db_changed, &db->db_mtx); 1907 if (db->db_state == DB_UNCACHED) { 1908 ASSERT(db->db_buf == NULL); 1909 ASSERT(db->db.db_data == NULL); 1910 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1911 db->db_state = DB_FILL; 1912 DTRACE_SET_STATE(db, "assigning filled buffer"); 1913 } else if (db->db_state == DB_NOFILL) { 1914 dbuf_clear_data(db); 1915 } else { 1916 ASSERT3U(db->db_state, ==, DB_CACHED); 1917 } 1918 mutex_exit(&db->db_mtx); 1919 } 1920 1921 void 1922 dbuf_unoverride(dbuf_dirty_record_t *dr) 1923 { 1924 dmu_buf_impl_t *db = dr->dr_dbuf; 1925 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1926 uint64_t txg = dr->dr_txg; 1927 1928 ASSERT(MUTEX_HELD(&db->db_mtx)); 1929 1930 /* 1931 * This assert is valid because dmu_sync() expects to be called by 1932 * a zilog's get_data while holding a range lock. This call only 1933 * comes from dbuf_dirty() callers who must also hold a range lock. 1934 */ 1935 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1936 ASSERT(db->db_level == 0); 1937 1938 if (db->db_blkid == DMU_BONUS_BLKID || 1939 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1940 return; 1941 1942 ASSERT(db->db_data_pending != dr); 1943 1944 /* free this block */ 1945 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1946 zio_free(db->db_objset->os_spa, txg, bp); 1947 1948 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) { 1949 ASSERT0P(dr->dt.dl.dr_data); 1950 dr->dt.dl.dr_data = db->db_buf; 1951 } 1952 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1953 dr->dt.dl.dr_nopwrite = B_FALSE; 1954 dr->dt.dl.dr_brtwrite = B_FALSE; 1955 dr->dt.dl.dr_diowrite = B_FALSE; 1956 dr->dt.dl.dr_has_raw_params = B_FALSE; 1957 1958 /* 1959 * In the event that Direct I/O was used, we do not 1960 * need to release the buffer from the ARC. 1961 * 1962 * Release the already-written buffer, so we leave it in 1963 * a consistent dirty state. Note that all callers are 1964 * modifying the buffer, so they will immediately do 1965 * another (redundant) arc_release(). Therefore, leave 1966 * the buf thawed to save the effort of freezing & 1967 * immediately re-thawing it. 1968 */ 1969 if (dr->dt.dl.dr_data) 1970 arc_release(dr->dt.dl.dr_data, db); 1971 } 1972 1973 /* 1974 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1975 * data blocks in the free range, so that any future readers will find 1976 * empty blocks. 1977 */ 1978 void 1979 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1980 dmu_tx_t *tx) 1981 { 1982 dmu_buf_impl_t *db_search; 1983 dmu_buf_impl_t *db, *db_next; 1984 uint64_t txg = tx->tx_txg; 1985 avl_index_t where; 1986 dbuf_dirty_record_t *dr; 1987 1988 if (end_blkid > dn->dn_maxblkid && 1989 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1990 end_blkid = dn->dn_maxblkid; 1991 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1992 (u_longlong_t)end_blkid); 1993 1994 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1995 db_search->db_level = 0; 1996 db_search->db_blkid = start_blkid; 1997 db_search->db_state = DB_SEARCH; 1998 1999 mutex_enter(&dn->dn_dbufs_mtx); 2000 db = avl_find(&dn->dn_dbufs, db_search, &where); 2001 ASSERT3P(db, ==, NULL); 2002 2003 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2004 2005 for (; db != NULL; db = db_next) { 2006 db_next = AVL_NEXT(&dn->dn_dbufs, db); 2007 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2008 2009 if (db->db_level != 0 || db->db_blkid > end_blkid) { 2010 break; 2011 } 2012 ASSERT3U(db->db_blkid, >=, start_blkid); 2013 2014 /* found a level 0 buffer in the range */ 2015 mutex_enter(&db->db_mtx); 2016 if (dbuf_undirty(db, tx)) { 2017 /* mutex has been dropped and dbuf destroyed */ 2018 continue; 2019 } 2020 2021 if (db->db_state == DB_UNCACHED || 2022 db->db_state == DB_NOFILL || 2023 db->db_state == DB_EVICTING) { 2024 ASSERT(db->db.db_data == NULL); 2025 mutex_exit(&db->db_mtx); 2026 continue; 2027 } 2028 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2029 /* will be handled in dbuf_read_done or dbuf_rele */ 2030 db->db_freed_in_flight = TRUE; 2031 mutex_exit(&db->db_mtx); 2032 continue; 2033 } 2034 if (zfs_refcount_count(&db->db_holds) == 0) { 2035 ASSERT(db->db_buf); 2036 dbuf_destroy(db); 2037 continue; 2038 } 2039 /* The dbuf is referenced */ 2040 2041 dr = list_head(&db->db_dirty_records); 2042 if (dr != NULL) { 2043 if (dr->dr_txg == txg) { 2044 /* 2045 * This buffer is "in-use", re-adjust the file 2046 * size to reflect that this buffer may 2047 * contain new data when we sync. 2048 */ 2049 if (db->db_blkid != DMU_SPILL_BLKID && 2050 db->db_blkid > dn->dn_maxblkid) 2051 dn->dn_maxblkid = db->db_blkid; 2052 dbuf_unoverride(dr); 2053 } else { 2054 /* 2055 * This dbuf is not dirty in the open context. 2056 * Either uncache it (if its not referenced in 2057 * the open context) or reset its contents to 2058 * empty. 2059 */ 2060 dbuf_fix_old_data(db, txg); 2061 } 2062 } 2063 /* clear the contents if its cached */ 2064 if (db->db_state == DB_CACHED) { 2065 ASSERT(db->db.db_data != NULL); 2066 arc_release(db->db_buf, db); 2067 rw_enter(&db->db_rwlock, RW_WRITER); 2068 memset(db->db.db_data, 0, db->db.db_size); 2069 rw_exit(&db->db_rwlock); 2070 arc_buf_freeze(db->db_buf); 2071 } 2072 2073 mutex_exit(&db->db_mtx); 2074 } 2075 2076 mutex_exit(&dn->dn_dbufs_mtx); 2077 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2078 } 2079 2080 void 2081 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2082 { 2083 arc_buf_t *buf, *old_buf; 2084 dbuf_dirty_record_t *dr; 2085 int osize = db->db.db_size; 2086 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2087 dnode_t *dn; 2088 2089 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2090 2091 DB_DNODE_ENTER(db); 2092 dn = DB_DNODE(db); 2093 2094 /* 2095 * XXX we should be doing a dbuf_read, checking the return 2096 * value and returning that up to our callers 2097 */ 2098 dmu_buf_will_dirty(&db->db, tx); 2099 2100 VERIFY3P(db->db_buf, !=, NULL); 2101 2102 /* create the data buffer for the new block */ 2103 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2104 2105 /* copy old block data to the new block */ 2106 old_buf = db->db_buf; 2107 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2108 /* zero the remainder */ 2109 if (size > osize) 2110 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2111 2112 mutex_enter(&db->db_mtx); 2113 dbuf_set_data(db, buf); 2114 arc_buf_destroy(old_buf, db); 2115 db->db.db_size = size; 2116 2117 dr = list_head(&db->db_dirty_records); 2118 /* dirty record added by dmu_buf_will_dirty() */ 2119 VERIFY(dr != NULL); 2120 if (db->db_level == 0) 2121 dr->dt.dl.dr_data = buf; 2122 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2123 ASSERT3U(dr->dr_accounted, ==, osize); 2124 dr->dr_accounted = size; 2125 mutex_exit(&db->db_mtx); 2126 2127 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2128 DB_DNODE_EXIT(db); 2129 } 2130 2131 void 2132 dbuf_release_bp(dmu_buf_impl_t *db) 2133 { 2134 objset_t *os __maybe_unused = db->db_objset; 2135 2136 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2137 ASSERT(arc_released(os->os_phys_buf) || 2138 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2139 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2140 2141 (void) arc_release(db->db_buf, db); 2142 } 2143 2144 /* 2145 * We already have a dirty record for this TXG, and we are being 2146 * dirtied again. 2147 */ 2148 static void 2149 dbuf_redirty(dbuf_dirty_record_t *dr) 2150 { 2151 dmu_buf_impl_t *db = dr->dr_dbuf; 2152 2153 ASSERT(MUTEX_HELD(&db->db_mtx)); 2154 2155 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2156 /* 2157 * If this buffer has already been written out, 2158 * we now need to reset its state. 2159 */ 2160 dbuf_unoverride(dr); 2161 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2162 db->db_state != DB_NOFILL) { 2163 /* Already released on initial dirty, so just thaw. */ 2164 ASSERT(arc_released(db->db_buf)); 2165 arc_buf_thaw(db->db_buf); 2166 } 2167 } 2168 } 2169 2170 dbuf_dirty_record_t * 2171 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2172 { 2173 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2174 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2175 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2176 ASSERT(dn->dn_maxblkid >= blkid); 2177 2178 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2179 list_link_init(&dr->dr_dirty_node); 2180 list_link_init(&dr->dr_dbuf_node); 2181 dr->dr_dnode = dn; 2182 dr->dr_txg = tx->tx_txg; 2183 dr->dt.dll.dr_blkid = blkid; 2184 dr->dr_accounted = dn->dn_datablksz; 2185 2186 /* 2187 * There should not be any dbuf for the block that we're dirtying. 2188 * Otherwise the buffer contents could be inconsistent between the 2189 * dbuf and the lightweight dirty record. 2190 */ 2191 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2192 NULL)); 2193 2194 mutex_enter(&dn->dn_mtx); 2195 int txgoff = tx->tx_txg & TXG_MASK; 2196 if (dn->dn_free_ranges[txgoff] != NULL) { 2197 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2198 } 2199 2200 if (dn->dn_nlevels == 1) { 2201 ASSERT3U(blkid, <, dn->dn_nblkptr); 2202 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2203 mutex_exit(&dn->dn_mtx); 2204 rw_exit(&dn->dn_struct_rwlock); 2205 dnode_setdirty(dn, tx); 2206 } else { 2207 mutex_exit(&dn->dn_mtx); 2208 2209 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2210 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2211 1, blkid >> epbs, FTAG); 2212 rw_exit(&dn->dn_struct_rwlock); 2213 if (parent_db == NULL) { 2214 kmem_free(dr, sizeof (*dr)); 2215 return (NULL); 2216 } 2217 int err = dbuf_read(parent_db, NULL, 2218 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2219 if (err != 0) { 2220 dbuf_rele(parent_db, FTAG); 2221 kmem_free(dr, sizeof (*dr)); 2222 return (NULL); 2223 } 2224 2225 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2226 dbuf_rele(parent_db, FTAG); 2227 mutex_enter(&parent_dr->dt.di.dr_mtx); 2228 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2229 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2230 mutex_exit(&parent_dr->dt.di.dr_mtx); 2231 dr->dr_parent = parent_dr; 2232 } 2233 2234 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2235 2236 return (dr); 2237 } 2238 2239 dbuf_dirty_record_t * 2240 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2241 { 2242 dnode_t *dn; 2243 objset_t *os; 2244 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2245 int txgoff = tx->tx_txg & TXG_MASK; 2246 boolean_t drop_struct_rwlock = B_FALSE; 2247 2248 ASSERT(tx->tx_txg != 0); 2249 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2250 DMU_TX_DIRTY_BUF(tx, db); 2251 2252 DB_DNODE_ENTER(db); 2253 dn = DB_DNODE(db); 2254 /* 2255 * Shouldn't dirty a regular buffer in syncing context. Private 2256 * objects may be dirtied in syncing context, but only if they 2257 * were already pre-dirtied in open context. 2258 */ 2259 #ifdef ZFS_DEBUG 2260 if (dn->dn_objset->os_dsl_dataset != NULL) { 2261 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2262 RW_READER, FTAG); 2263 } 2264 ASSERT(!dmu_tx_is_syncing(tx) || 2265 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2266 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2267 dn->dn_objset->os_dsl_dataset == NULL); 2268 if (dn->dn_objset->os_dsl_dataset != NULL) 2269 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2270 #endif 2271 /* 2272 * We make this assert for private objects as well, but after we 2273 * check if we're already dirty. They are allowed to re-dirty 2274 * in syncing context. 2275 */ 2276 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2277 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2278 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2279 2280 mutex_enter(&db->db_mtx); 2281 /* 2282 * XXX make this true for indirects too? The problem is that 2283 * transactions created with dmu_tx_create_assigned() from 2284 * syncing context don't bother holding ahead. 2285 */ 2286 ASSERT(db->db_level != 0 || 2287 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2288 db->db_state == DB_NOFILL); 2289 2290 mutex_enter(&dn->dn_mtx); 2291 dnode_set_dirtyctx(dn, tx, db); 2292 if (tx->tx_txg > dn->dn_dirty_txg) 2293 dn->dn_dirty_txg = tx->tx_txg; 2294 mutex_exit(&dn->dn_mtx); 2295 2296 if (db->db_blkid == DMU_SPILL_BLKID) 2297 dn->dn_have_spill = B_TRUE; 2298 2299 /* 2300 * If this buffer is already dirty, we're done. 2301 */ 2302 dr_head = list_head(&db->db_dirty_records); 2303 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2304 db->db.db_object == DMU_META_DNODE_OBJECT); 2305 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2306 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2307 DB_DNODE_EXIT(db); 2308 2309 dbuf_redirty(dr_next); 2310 mutex_exit(&db->db_mtx); 2311 return (dr_next); 2312 } 2313 2314 /* 2315 * Only valid if not already dirty. 2316 */ 2317 ASSERT(dn->dn_object == 0 || 2318 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2319 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2320 2321 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2322 2323 /* 2324 * We should only be dirtying in syncing context if it's the 2325 * mos or we're initializing the os or it's a special object. 2326 * However, we are allowed to dirty in syncing context provided 2327 * we already dirtied it in open context. Hence we must make 2328 * this assertion only if we're not already dirty. 2329 */ 2330 os = dn->dn_objset; 2331 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2332 #ifdef ZFS_DEBUG 2333 if (dn->dn_objset->os_dsl_dataset != NULL) 2334 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2335 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2336 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2337 if (dn->dn_objset->os_dsl_dataset != NULL) 2338 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2339 #endif 2340 ASSERT(db->db.db_size != 0); 2341 2342 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2343 2344 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2345 dmu_objset_willuse_space(os, db->db.db_size, tx); 2346 } 2347 2348 /* 2349 * If this buffer is dirty in an old transaction group we need 2350 * to make a copy of it so that the changes we make in this 2351 * transaction group won't leak out when we sync the older txg. 2352 */ 2353 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP); 2354 memset(dr, 0, sizeof (*dr)); 2355 list_link_init(&dr->dr_dirty_node); 2356 list_link_init(&dr->dr_dbuf_node); 2357 dr->dr_dnode = dn; 2358 if (db->db_level == 0) { 2359 void *data_old = db->db_buf; 2360 2361 if (db->db_state != DB_NOFILL) { 2362 if (db->db_blkid == DMU_BONUS_BLKID) { 2363 dbuf_fix_old_data(db, tx->tx_txg); 2364 data_old = db->db.db_data; 2365 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2366 /* 2367 * Release the data buffer from the cache so 2368 * that we can modify it without impacting 2369 * possible other users of this cached data 2370 * block. Note that indirect blocks and 2371 * private objects are not released until the 2372 * syncing state (since they are only modified 2373 * then). 2374 */ 2375 arc_release(db->db_buf, db); 2376 dbuf_fix_old_data(db, tx->tx_txg); 2377 data_old = db->db_buf; 2378 } 2379 ASSERT(data_old != NULL); 2380 } 2381 dr->dt.dl.dr_data = data_old; 2382 } else { 2383 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2384 list_create(&dr->dt.di.dr_children, 2385 sizeof (dbuf_dirty_record_t), 2386 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2387 } 2388 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2389 dr->dr_accounted = db->db.db_size; 2390 } 2391 dr->dr_dbuf = db; 2392 dr->dr_txg = tx->tx_txg; 2393 list_insert_before(&db->db_dirty_records, dr_next, dr); 2394 2395 /* 2396 * We could have been freed_in_flight between the dbuf_noread 2397 * and dbuf_dirty. We win, as though the dbuf_noread() had 2398 * happened after the free. 2399 */ 2400 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2401 db->db_blkid != DMU_SPILL_BLKID) { 2402 mutex_enter(&dn->dn_mtx); 2403 if (dn->dn_free_ranges[txgoff] != NULL) { 2404 zfs_range_tree_clear(dn->dn_free_ranges[txgoff], 2405 db->db_blkid, 1); 2406 } 2407 mutex_exit(&dn->dn_mtx); 2408 db->db_freed_in_flight = FALSE; 2409 } 2410 2411 /* 2412 * This buffer is now part of this txg 2413 */ 2414 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2415 db->db_dirtycnt += 1; 2416 ASSERT3U(db->db_dirtycnt, <=, 3); 2417 2418 mutex_exit(&db->db_mtx); 2419 2420 if (db->db_blkid == DMU_BONUS_BLKID || 2421 db->db_blkid == DMU_SPILL_BLKID) { 2422 mutex_enter(&dn->dn_mtx); 2423 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2424 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2425 mutex_exit(&dn->dn_mtx); 2426 dnode_setdirty(dn, tx); 2427 DB_DNODE_EXIT(db); 2428 return (dr); 2429 } 2430 2431 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2432 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2433 drop_struct_rwlock = B_TRUE; 2434 } 2435 2436 /* 2437 * If we are overwriting a dedup BP, then unless it is snapshotted, 2438 * when we get to syncing context we will need to decrement its 2439 * refcount in the DDT. Prefetch the relevant DDT block so that 2440 * syncing context won't have to wait for the i/o. 2441 */ 2442 if (db->db_blkptr != NULL) { 2443 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2444 ddt_prefetch(os->os_spa, db->db_blkptr); 2445 dmu_buf_unlock_parent(db, dblt, FTAG); 2446 } 2447 2448 /* 2449 * We need to hold the dn_struct_rwlock to make this assertion, 2450 * because it protects dn_phys / dn_next_nlevels from changing. 2451 */ 2452 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2453 dn->dn_phys->dn_nlevels > db->db_level || 2454 dn->dn_next_nlevels[txgoff] > db->db_level || 2455 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2456 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2457 2458 2459 if (db->db_level == 0) { 2460 ASSERT(!db->db_objset->os_raw_receive || 2461 dn->dn_maxblkid >= db->db_blkid); 2462 dnode_new_blkid(dn, db->db_blkid, tx, 2463 drop_struct_rwlock, B_FALSE); 2464 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2465 } 2466 2467 if (db->db_level+1 < dn->dn_nlevels) { 2468 dmu_buf_impl_t *parent = db->db_parent; 2469 dbuf_dirty_record_t *di; 2470 int parent_held = FALSE; 2471 2472 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2473 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2474 parent = dbuf_hold_level(dn, db->db_level + 1, 2475 db->db_blkid >> epbs, FTAG); 2476 ASSERT(parent != NULL); 2477 parent_held = TRUE; 2478 } 2479 if (drop_struct_rwlock) 2480 rw_exit(&dn->dn_struct_rwlock); 2481 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2482 di = dbuf_dirty(parent, tx); 2483 if (parent_held) 2484 dbuf_rele(parent, FTAG); 2485 2486 mutex_enter(&db->db_mtx); 2487 /* 2488 * Since we've dropped the mutex, it's possible that 2489 * dbuf_undirty() might have changed this out from under us. 2490 */ 2491 if (list_head(&db->db_dirty_records) == dr || 2492 dn->dn_object == DMU_META_DNODE_OBJECT) { 2493 mutex_enter(&di->dt.di.dr_mtx); 2494 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2495 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2496 list_insert_tail(&di->dt.di.dr_children, dr); 2497 mutex_exit(&di->dt.di.dr_mtx); 2498 dr->dr_parent = di; 2499 } 2500 mutex_exit(&db->db_mtx); 2501 } else { 2502 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2503 ASSERT(db->db_blkid < dn->dn_nblkptr); 2504 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2505 mutex_enter(&dn->dn_mtx); 2506 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2507 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2508 mutex_exit(&dn->dn_mtx); 2509 if (drop_struct_rwlock) 2510 rw_exit(&dn->dn_struct_rwlock); 2511 } 2512 2513 dnode_setdirty(dn, tx); 2514 DB_DNODE_EXIT(db); 2515 return (dr); 2516 } 2517 2518 static void 2519 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2520 { 2521 dmu_buf_impl_t *db = dr->dr_dbuf; 2522 2523 if (dr->dt.dl.dr_data != db->db.db_data) { 2524 struct dnode *dn = dr->dr_dnode; 2525 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2526 2527 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2528 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2529 } 2530 db->db_data_pending = NULL; 2531 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2532 list_remove(&db->db_dirty_records, dr); 2533 if (dr->dr_dbuf->db_level != 0) { 2534 mutex_destroy(&dr->dt.di.dr_mtx); 2535 list_destroy(&dr->dt.di.dr_children); 2536 } 2537 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2538 ASSERT3U(db->db_dirtycnt, >, 0); 2539 db->db_dirtycnt -= 1; 2540 } 2541 2542 /* 2543 * Undirty a buffer in the transaction group referenced by the given 2544 * transaction. Return whether this evicted the dbuf. 2545 */ 2546 boolean_t 2547 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2548 { 2549 uint64_t txg = tx->tx_txg; 2550 boolean_t brtwrite; 2551 boolean_t diowrite; 2552 2553 ASSERT(txg != 0); 2554 2555 /* 2556 * Due to our use of dn_nlevels below, this can only be called 2557 * in open context, unless we are operating on the MOS. 2558 * From syncing context, dn_nlevels may be different from the 2559 * dn_nlevels used when dbuf was dirtied. 2560 */ 2561 ASSERT(db->db_objset == 2562 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2563 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2564 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2565 ASSERT0(db->db_level); 2566 ASSERT(MUTEX_HELD(&db->db_mtx)); 2567 2568 /* 2569 * If this buffer is not dirty, we're done. 2570 */ 2571 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2572 if (dr == NULL) 2573 return (B_FALSE); 2574 ASSERT(dr->dr_dbuf == db); 2575 2576 brtwrite = dr->dt.dl.dr_brtwrite; 2577 diowrite = dr->dt.dl.dr_diowrite; 2578 if (brtwrite) { 2579 ASSERT3B(diowrite, ==, B_FALSE); 2580 /* 2581 * We are freeing a block that we cloned in the same 2582 * transaction group. 2583 */ 2584 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 2585 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 2586 brt_pending_remove(dmu_objset_spa(db->db_objset), 2587 bp, tx); 2588 } 2589 } 2590 2591 dnode_t *dn = dr->dr_dnode; 2592 2593 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2594 2595 ASSERT(db->db.db_size != 0); 2596 2597 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2598 dr->dr_accounted, txg); 2599 2600 list_remove(&db->db_dirty_records, dr); 2601 2602 /* 2603 * Note that there are three places in dbuf_dirty() 2604 * where this dirty record may be put on a list. 2605 * Make sure to do a list_remove corresponding to 2606 * every one of those list_insert calls. 2607 */ 2608 if (dr->dr_parent) { 2609 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2610 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2611 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2612 } else if (db->db_blkid == DMU_SPILL_BLKID || 2613 db->db_level + 1 == dn->dn_nlevels) { 2614 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2615 mutex_enter(&dn->dn_mtx); 2616 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2617 mutex_exit(&dn->dn_mtx); 2618 } 2619 2620 if (db->db_state != DB_NOFILL && !brtwrite) { 2621 dbuf_unoverride(dr); 2622 2623 if (dr->dt.dl.dr_data != db->db_buf) { 2624 ASSERT(db->db_buf != NULL); 2625 ASSERT(dr->dt.dl.dr_data != NULL); 2626 arc_buf_destroy(dr->dt.dl.dr_data, db); 2627 } 2628 } 2629 2630 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2631 2632 ASSERT(db->db_dirtycnt > 0); 2633 db->db_dirtycnt -= 1; 2634 2635 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2636 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite || 2637 arc_released(db->db_buf)); 2638 dbuf_destroy(db); 2639 return (B_TRUE); 2640 } 2641 2642 return (B_FALSE); 2643 } 2644 2645 static void 2646 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2647 { 2648 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2649 boolean_t undirty = B_FALSE; 2650 2651 ASSERT(tx->tx_txg != 0); 2652 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2653 2654 /* 2655 * Quick check for dirtiness to improve performance for some workloads 2656 * (e.g. file deletion with indirect blocks cached). 2657 */ 2658 mutex_enter(&db->db_mtx); 2659 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2660 /* 2661 * It's possible that the dbuf is already dirty but not cached, 2662 * because there are some calls to dbuf_dirty() that don't 2663 * go through dmu_buf_will_dirty(). 2664 */ 2665 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2666 if (dr != NULL) { 2667 if (db->db_level == 0 && 2668 dr->dt.dl.dr_brtwrite) { 2669 /* 2670 * Block cloning: If we are dirtying a cloned 2671 * level 0 block, we cannot simply redirty it, 2672 * because this dr has no associated data. 2673 * We will go through a full undirtying below, 2674 * before dirtying it again. 2675 */ 2676 undirty = B_TRUE; 2677 } else { 2678 /* This dbuf is already dirty and cached. */ 2679 dbuf_redirty(dr); 2680 mutex_exit(&db->db_mtx); 2681 return; 2682 } 2683 } 2684 } 2685 mutex_exit(&db->db_mtx); 2686 2687 DB_DNODE_ENTER(db); 2688 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2689 flags |= DB_RF_HAVESTRUCT; 2690 DB_DNODE_EXIT(db); 2691 2692 /* 2693 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2694 * want to make sure dbuf_read() will read the pending cloned block and 2695 * not the uderlying block that is being replaced. dbuf_undirty() will 2696 * do brt_pending_remove() before removing the dirty record. 2697 */ 2698 (void) dbuf_read(db, NULL, flags); 2699 if (undirty) { 2700 mutex_enter(&db->db_mtx); 2701 VERIFY(!dbuf_undirty(db, tx)); 2702 mutex_exit(&db->db_mtx); 2703 } 2704 (void) dbuf_dirty(db, tx); 2705 } 2706 2707 void 2708 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2709 { 2710 dmu_buf_will_dirty_impl(db_fake, 2711 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2712 } 2713 2714 boolean_t 2715 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2716 { 2717 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2718 dbuf_dirty_record_t *dr; 2719 2720 mutex_enter(&db->db_mtx); 2721 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2722 mutex_exit(&db->db_mtx); 2723 return (dr != NULL); 2724 } 2725 2726 /* 2727 * Normally the db_blkptr points to the most recent on-disk content for the 2728 * dbuf (and anything newer will be cached in the dbuf). However, a pending 2729 * block clone or not yet synced Direct I/O write will have a dirty record BP 2730 * pointing to the most recent data. 2731 */ 2732 int 2733 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp) 2734 { 2735 ASSERT(MUTEX_HELD(&db->db_mtx)); 2736 int error = 0; 2737 2738 if (db->db_level != 0) { 2739 *bp = db->db_blkptr; 2740 return (0); 2741 } 2742 2743 *bp = db->db_blkptr; 2744 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2745 if (dr && db->db_state == DB_NOFILL) { 2746 /* Block clone */ 2747 if (!dr->dt.dl.dr_brtwrite) 2748 error = EIO; 2749 else 2750 *bp = &dr->dt.dl.dr_overridden_by; 2751 } else if (dr && db->db_state == DB_UNCACHED) { 2752 /* Direct I/O write */ 2753 if (dr->dt.dl.dr_diowrite) 2754 *bp = &dr->dt.dl.dr_overridden_by; 2755 } 2756 2757 return (error); 2758 } 2759 2760 /* 2761 * Direct I/O reads can read directly from the ARC, but the data has 2762 * to be untransformed in order to copy it over into user pages. 2763 */ 2764 int 2765 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa) 2766 { 2767 int err = 0; 2768 DB_DNODE_ENTER(db); 2769 dnode_t *dn = DB_DNODE(db); 2770 2771 ASSERT3S(db->db_state, ==, DB_CACHED); 2772 ASSERT(MUTEX_HELD(&db->db_mtx)); 2773 2774 /* 2775 * Ensure that this block's dnode has been decrypted if 2776 * the caller has requested decrypted data. 2777 */ 2778 err = dbuf_read_verify_dnode_crypt(db, dn, 0); 2779 2780 /* 2781 * If the arc buf is compressed or encrypted and the caller 2782 * requested uncompressed data, we need to untransform it 2783 * before returning. We also call arc_untransform() on any 2784 * unauthenticated blocks, which will verify their MAC if 2785 * the key is now available. 2786 */ 2787 if (err == 0 && db->db_buf != NULL && 2788 (arc_is_encrypted(db->db_buf) || 2789 arc_is_unauthenticated(db->db_buf) || 2790 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 2791 zbookmark_phys_t zb; 2792 2793 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 2794 db->db.db_object, db->db_level, db->db_blkid); 2795 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 2796 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 2797 dbuf_set_data(db, db->db_buf); 2798 } 2799 DB_DNODE_EXIT(db); 2800 DBUF_STAT_BUMP(hash_hits); 2801 2802 return (err); 2803 } 2804 2805 void 2806 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx) 2807 { 2808 /* 2809 * Block clones and Direct I/O writes always happen in open-context. 2810 */ 2811 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2812 ASSERT0(db->db_level); 2813 ASSERT(!dmu_tx_is_syncing(tx)); 2814 ASSERT0(db->db_level); 2815 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2816 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2817 2818 mutex_enter(&db->db_mtx); 2819 DBUF_VERIFY(db); 2820 2821 /* 2822 * We are going to clone or issue a Direct I/O write on this block, so 2823 * undirty modifications done to this block so far in this txg. This 2824 * includes writes and clones into this block. 2825 * 2826 * If there dirty record associated with this txg from a previous Direct 2827 * I/O write then space accounting cleanup takes place. It is important 2828 * to go ahead free up the space accounting through dbuf_undirty() -> 2829 * dbuf_unoverride() -> zio_free(). Space accountiung for determining 2830 * if a write can occur in zfs_write() happens through dmu_tx_assign(). 2831 * This can cause an issue with Direct I/O writes in the case of 2832 * overwriting the same block, because all DVA allocations are being 2833 * done in open-context. Constantly allowing Direct I/O overwrites to 2834 * the same block can exhaust the pools available space leading to 2835 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which 2836 * will eventually suspend the pool. By cleaning up sapce acccounting 2837 * now, the ENOSPC error can be avoided. 2838 * 2839 * Since we are undirtying the record in open-context, we must have a 2840 * hold on the db, so it should never be evicted after calling 2841 * dbuf_undirty(). 2842 */ 2843 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE); 2844 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2845 2846 if (db->db_buf != NULL) { 2847 /* 2848 * If there is an associated ARC buffer with this dbuf we can 2849 * only destroy it if the previous dirty record does not 2850 * reference it. 2851 */ 2852 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2853 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2854 arc_buf_destroy(db->db_buf, db); 2855 2856 /* 2857 * Setting the dbuf's data pointers to NULL will force all 2858 * future reads down to the devices to get the most up to date 2859 * version of the data after a Direct I/O write has completed. 2860 */ 2861 db->db_buf = NULL; 2862 dbuf_clear_data(db); 2863 } 2864 2865 ASSERT3P(db->db_buf, ==, NULL); 2866 ASSERT3P(db->db.db_data, ==, NULL); 2867 2868 db->db_state = DB_NOFILL; 2869 DTRACE_SET_STATE(db, 2870 "allocating NOFILL buffer for clone or direct I/O write"); 2871 2872 DBUF_VERIFY(db); 2873 mutex_exit(&db->db_mtx); 2874 2875 dbuf_noread(db); 2876 (void) dbuf_dirty(db, tx); 2877 } 2878 2879 void 2880 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2881 { 2882 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2883 2884 mutex_enter(&db->db_mtx); 2885 db->db_state = DB_NOFILL; 2886 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2887 mutex_exit(&db->db_mtx); 2888 2889 dbuf_noread(db); 2890 (void) dbuf_dirty(db, tx); 2891 } 2892 2893 void 2894 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2895 { 2896 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2897 2898 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2899 ASSERT(tx->tx_txg != 0); 2900 ASSERT(db->db_level == 0); 2901 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2902 2903 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2904 dmu_tx_private_ok(tx)); 2905 2906 mutex_enter(&db->db_mtx); 2907 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2908 if (db->db_state == DB_NOFILL || 2909 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) { 2910 /* 2911 * If the fill can fail we should have a way to return back to 2912 * the cloned or Direct I/O write data. 2913 */ 2914 if (canfail && dr) { 2915 mutex_exit(&db->db_mtx); 2916 dmu_buf_will_dirty(db_fake, tx); 2917 return; 2918 } 2919 /* 2920 * Block cloning: We will be completely overwriting a block 2921 * cloned in this transaction group, so let's undirty the 2922 * pending clone and mark the block as uncached. This will be 2923 * as if the clone was never done. 2924 */ 2925 if (db->db_state == DB_NOFILL) { 2926 VERIFY(!dbuf_undirty(db, tx)); 2927 db->db_state = DB_UNCACHED; 2928 } 2929 } 2930 mutex_exit(&db->db_mtx); 2931 2932 dbuf_noread(db); 2933 (void) dbuf_dirty(db, tx); 2934 } 2935 2936 /* 2937 * This function is effectively the same as dmu_buf_will_dirty(), but 2938 * indicates the caller expects raw encrypted data in the db, and provides 2939 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2940 * blkptr_t when this dbuf is written. This is only used for blocks of 2941 * dnodes, during raw receive. 2942 */ 2943 void 2944 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2945 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2946 { 2947 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2948 dbuf_dirty_record_t *dr; 2949 2950 /* 2951 * dr_has_raw_params is only processed for blocks of dnodes 2952 * (see dbuf_sync_dnode_leaf_crypt()). 2953 */ 2954 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2955 ASSERT0(db->db_level); 2956 ASSERT(db->db_objset->os_raw_receive); 2957 2958 dmu_buf_will_dirty_impl(db_fake, 2959 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2960 2961 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2962 2963 ASSERT3P(dr, !=, NULL); 2964 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN); 2965 2966 dr->dt.dl.dr_has_raw_params = B_TRUE; 2967 dr->dt.dl.dr_byteorder = byteorder; 2968 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2969 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2970 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2971 } 2972 2973 static void 2974 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2975 { 2976 struct dirty_leaf *dl; 2977 dbuf_dirty_record_t *dr; 2978 2979 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT); 2980 ASSERT0(db->db_level); 2981 2982 dr = list_head(&db->db_dirty_records); 2983 ASSERT3P(dr, !=, NULL); 2984 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2985 dl = &dr->dt.dl; 2986 ASSERT0(dl->dr_has_raw_params); 2987 dl->dr_overridden_by = *bp; 2988 dl->dr_override_state = DR_OVERRIDDEN; 2989 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2990 } 2991 2992 boolean_t 2993 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2994 { 2995 (void) tx; 2996 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2997 mutex_enter(&db->db_mtx); 2998 DBUF_VERIFY(db); 2999 3000 if (db->db_state == DB_FILL) { 3001 if (db->db_level == 0 && db->db_freed_in_flight) { 3002 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3003 /* we were freed while filling */ 3004 /* XXX dbuf_undirty? */ 3005 memset(db->db.db_data, 0, db->db.db_size); 3006 db->db_freed_in_flight = FALSE; 3007 db->db_state = DB_CACHED; 3008 DTRACE_SET_STATE(db, 3009 "fill done handling freed in flight"); 3010 failed = B_FALSE; 3011 } else if (failed) { 3012 VERIFY(!dbuf_undirty(db, tx)); 3013 arc_buf_destroy(db->db_buf, db); 3014 db->db_buf = NULL; 3015 dbuf_clear_data(db); 3016 DTRACE_SET_STATE(db, "fill failed"); 3017 } else { 3018 db->db_state = DB_CACHED; 3019 DTRACE_SET_STATE(db, "fill done"); 3020 } 3021 cv_broadcast(&db->db_changed); 3022 } else { 3023 db->db_state = DB_CACHED; 3024 failed = B_FALSE; 3025 } 3026 mutex_exit(&db->db_mtx); 3027 return (failed); 3028 } 3029 3030 void 3031 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 3032 bp_embedded_type_t etype, enum zio_compress comp, 3033 int uncompressed_size, int compressed_size, int byteorder, 3034 dmu_tx_t *tx) 3035 { 3036 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3037 struct dirty_leaf *dl; 3038 dmu_object_type_t type; 3039 dbuf_dirty_record_t *dr; 3040 3041 if (etype == BP_EMBEDDED_TYPE_DATA) { 3042 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 3043 SPA_FEATURE_EMBEDDED_DATA)); 3044 } 3045 3046 DB_DNODE_ENTER(db); 3047 type = DB_DNODE(db)->dn_type; 3048 DB_DNODE_EXIT(db); 3049 3050 ASSERT0(db->db_level); 3051 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3052 3053 dmu_buf_will_not_fill(dbuf, tx); 3054 3055 dr = list_head(&db->db_dirty_records); 3056 ASSERT3P(dr, !=, NULL); 3057 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3058 dl = &dr->dt.dl; 3059 ASSERT0(dl->dr_has_raw_params); 3060 encode_embedded_bp_compressed(&dl->dr_overridden_by, 3061 data, comp, uncompressed_size, compressed_size); 3062 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 3063 BP_SET_TYPE(&dl->dr_overridden_by, type); 3064 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 3065 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 3066 3067 dl->dr_override_state = DR_OVERRIDDEN; 3068 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3069 } 3070 3071 void 3072 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 3073 { 3074 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3075 dmu_object_type_t type; 3076 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 3077 SPA_FEATURE_REDACTED_DATASETS)); 3078 3079 DB_DNODE_ENTER(db); 3080 type = DB_DNODE(db)->dn_type; 3081 DB_DNODE_EXIT(db); 3082 3083 ASSERT0(db->db_level); 3084 dmu_buf_will_not_fill(dbuf, tx); 3085 3086 blkptr_t bp = { { { {0} } } }; 3087 BP_SET_TYPE(&bp, type); 3088 BP_SET_LEVEL(&bp, 0); 3089 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 3090 BP_SET_REDACTED(&bp); 3091 BPE_SET_LSIZE(&bp, dbuf->db_size); 3092 3093 dbuf_override_impl(db, &bp, tx); 3094 } 3095 3096 /* 3097 * Directly assign a provided arc buf to a given dbuf if it's not referenced 3098 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 3099 */ 3100 void 3101 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 3102 { 3103 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 3104 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3105 ASSERT(db->db_level == 0); 3106 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 3107 ASSERT(buf != NULL); 3108 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 3109 ASSERT(tx->tx_txg != 0); 3110 3111 arc_return_buf(buf, db); 3112 ASSERT(arc_released(buf)); 3113 3114 mutex_enter(&db->db_mtx); 3115 3116 while (db->db_state == DB_READ || db->db_state == DB_FILL) 3117 cv_wait(&db->db_changed, &db->db_mtx); 3118 3119 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 3120 db->db_state == DB_NOFILL); 3121 3122 if (db->db_state == DB_CACHED && 3123 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 3124 /* 3125 * In practice, we will never have a case where we have an 3126 * encrypted arc buffer while additional holds exist on the 3127 * dbuf. We don't handle this here so we simply assert that 3128 * fact instead. 3129 */ 3130 ASSERT(!arc_is_encrypted(buf)); 3131 mutex_exit(&db->db_mtx); 3132 (void) dbuf_dirty(db, tx); 3133 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 3134 arc_buf_destroy(buf, db); 3135 return; 3136 } 3137 3138 if (db->db_state == DB_CACHED) { 3139 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 3140 3141 ASSERT(db->db_buf != NULL); 3142 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 3143 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3144 3145 if (!arc_released(db->db_buf)) { 3146 ASSERT(dr->dt.dl.dr_override_state == 3147 DR_OVERRIDDEN); 3148 arc_release(db->db_buf, db); 3149 } 3150 dr->dt.dl.dr_data = buf; 3151 arc_buf_destroy(db->db_buf, db); 3152 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3153 arc_release(db->db_buf, db); 3154 arc_buf_destroy(db->db_buf, db); 3155 } 3156 db->db_buf = NULL; 3157 } else if (db->db_state == DB_NOFILL) { 3158 /* 3159 * We will be completely replacing the cloned block. In case 3160 * it was cloned in this transaction group, let's undirty the 3161 * pending clone and mark the block as uncached. This will be 3162 * as if the clone was never done. 3163 */ 3164 VERIFY(!dbuf_undirty(db, tx)); 3165 db->db_state = DB_UNCACHED; 3166 } 3167 ASSERT(db->db_buf == NULL); 3168 dbuf_set_data(db, buf); 3169 db->db_state = DB_FILL; 3170 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3171 mutex_exit(&db->db_mtx); 3172 (void) dbuf_dirty(db, tx); 3173 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3174 } 3175 3176 void 3177 dbuf_destroy(dmu_buf_impl_t *db) 3178 { 3179 dnode_t *dn; 3180 dmu_buf_impl_t *parent = db->db_parent; 3181 dmu_buf_impl_t *dndb; 3182 3183 ASSERT(MUTEX_HELD(&db->db_mtx)); 3184 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3185 3186 if (db->db_buf != NULL) { 3187 arc_buf_destroy(db->db_buf, db); 3188 db->db_buf = NULL; 3189 } 3190 3191 if (db->db_blkid == DMU_BONUS_BLKID) { 3192 int slots = DB_DNODE(db)->dn_num_slots; 3193 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3194 if (db->db.db_data != NULL) { 3195 kmem_free(db->db.db_data, bonuslen); 3196 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3197 db->db_state = DB_UNCACHED; 3198 DTRACE_SET_STATE(db, "buffer cleared"); 3199 } 3200 } 3201 3202 dbuf_clear_data(db); 3203 3204 if (multilist_link_active(&db->db_cache_link)) { 3205 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3206 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3207 3208 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3209 3210 ASSERT0(dmu_buf_user_size(&db->db)); 3211 (void) zfs_refcount_remove_many( 3212 &dbuf_caches[db->db_caching_status].size, 3213 db->db.db_size, db); 3214 3215 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3216 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3217 } else { 3218 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3219 DBUF_STAT_BUMPDOWN(cache_count); 3220 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3221 db->db.db_size); 3222 } 3223 db->db_caching_status = DB_NO_CACHE; 3224 } 3225 3226 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3227 ASSERT(db->db_data_pending == NULL); 3228 ASSERT(list_is_empty(&db->db_dirty_records)); 3229 3230 db->db_state = DB_EVICTING; 3231 DTRACE_SET_STATE(db, "buffer eviction started"); 3232 db->db_blkptr = NULL; 3233 3234 /* 3235 * Now that db_state is DB_EVICTING, nobody else can find this via 3236 * the hash table. We can now drop db_mtx, which allows us to 3237 * acquire the dn_dbufs_mtx. 3238 */ 3239 mutex_exit(&db->db_mtx); 3240 3241 DB_DNODE_ENTER(db); 3242 dn = DB_DNODE(db); 3243 dndb = dn->dn_dbuf; 3244 if (db->db_blkid != DMU_BONUS_BLKID) { 3245 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3246 if (needlock) 3247 mutex_enter_nested(&dn->dn_dbufs_mtx, 3248 NESTED_SINGLE); 3249 avl_remove(&dn->dn_dbufs, db); 3250 membar_producer(); 3251 DB_DNODE_EXIT(db); 3252 if (needlock) 3253 mutex_exit(&dn->dn_dbufs_mtx); 3254 /* 3255 * Decrementing the dbuf count means that the hold corresponding 3256 * to the removed dbuf is no longer discounted in dnode_move(), 3257 * so the dnode cannot be moved until after we release the hold. 3258 * The membar_producer() ensures visibility of the decremented 3259 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3260 * release any lock. 3261 */ 3262 mutex_enter(&dn->dn_mtx); 3263 dnode_rele_and_unlock(dn, db, B_TRUE); 3264 #ifdef USE_DNODE_HANDLE 3265 db->db_dnode_handle = NULL; 3266 #else 3267 db->db_dnode = NULL; 3268 #endif 3269 3270 dbuf_hash_remove(db); 3271 } else { 3272 DB_DNODE_EXIT(db); 3273 } 3274 3275 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3276 3277 db->db_parent = NULL; 3278 3279 ASSERT(db->db_buf == NULL); 3280 ASSERT(db->db.db_data == NULL); 3281 ASSERT(db->db_hash_next == NULL); 3282 ASSERT(db->db_blkptr == NULL); 3283 ASSERT(db->db_data_pending == NULL); 3284 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3285 ASSERT(!multilist_link_active(&db->db_cache_link)); 3286 3287 /* 3288 * If this dbuf is referenced from an indirect dbuf, 3289 * decrement the ref count on the indirect dbuf. 3290 */ 3291 if (parent && parent != dndb) { 3292 mutex_enter(&parent->db_mtx); 3293 dbuf_rele_and_unlock(parent, db, B_TRUE); 3294 } 3295 3296 kmem_cache_free(dbuf_kmem_cache, db); 3297 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3298 } 3299 3300 /* 3301 * Note: While bpp will always be updated if the function returns success, 3302 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3303 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3304 * object. 3305 */ 3306 __attribute__((always_inline)) 3307 static inline int 3308 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3309 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3310 { 3311 *parentp = NULL; 3312 *bpp = NULL; 3313 3314 ASSERT(blkid != DMU_BONUS_BLKID); 3315 3316 if (blkid == DMU_SPILL_BLKID) { 3317 mutex_enter(&dn->dn_mtx); 3318 if (dn->dn_have_spill && 3319 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3320 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3321 else 3322 *bpp = NULL; 3323 dbuf_add_ref(dn->dn_dbuf, NULL); 3324 *parentp = dn->dn_dbuf; 3325 mutex_exit(&dn->dn_mtx); 3326 return (0); 3327 } 3328 3329 int nlevels = 3330 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3331 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3332 3333 ASSERT3U(level * epbs, <, 64); 3334 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3335 /* 3336 * This assertion shouldn't trip as long as the max indirect block size 3337 * is less than 1M. The reason for this is that up to that point, 3338 * the number of levels required to address an entire object with blocks 3339 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3340 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3341 * (i.e. we can address the entire object), objects will all use at most 3342 * N-1 levels and the assertion won't overflow. However, once epbs is 3343 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3344 * enough to address an entire object, so objects will have 5 levels, 3345 * but then this assertion will overflow. 3346 * 3347 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3348 * need to redo this logic to handle overflows. 3349 */ 3350 ASSERT(level >= nlevels || 3351 ((nlevels - level - 1) * epbs) + 3352 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3353 if (level >= nlevels || 3354 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3355 ((nlevels - level - 1) * epbs)) || 3356 (fail_sparse && 3357 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3358 /* the buffer has no parent yet */ 3359 return (SET_ERROR(ENOENT)); 3360 } else if (level < nlevels-1) { 3361 /* this block is referenced from an indirect block */ 3362 int err; 3363 3364 err = dbuf_hold_impl(dn, level + 1, 3365 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3366 3367 if (err) 3368 return (err); 3369 err = dbuf_read(*parentp, NULL, 3370 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3371 if (err) { 3372 dbuf_rele(*parentp, NULL); 3373 *parentp = NULL; 3374 return (err); 3375 } 3376 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3377 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3378 (blkid & ((1ULL << epbs) - 1)); 3379 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3380 ASSERT(BP_IS_HOLE(*bpp)); 3381 rw_exit(&(*parentp)->db_rwlock); 3382 return (0); 3383 } else { 3384 /* the block is referenced from the dnode */ 3385 ASSERT3U(level, ==, nlevels-1); 3386 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3387 blkid < dn->dn_phys->dn_nblkptr); 3388 if (dn->dn_dbuf) { 3389 dbuf_add_ref(dn->dn_dbuf, NULL); 3390 *parentp = dn->dn_dbuf; 3391 } 3392 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3393 return (0); 3394 } 3395 } 3396 3397 static dmu_buf_impl_t * 3398 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3399 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3400 { 3401 objset_t *os = dn->dn_objset; 3402 dmu_buf_impl_t *db, *odb; 3403 3404 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3405 ASSERT(dn->dn_type != DMU_OT_NONE); 3406 3407 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3408 3409 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3410 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3411 3412 db->db_objset = os; 3413 db->db.db_object = dn->dn_object; 3414 db->db_level = level; 3415 db->db_blkid = blkid; 3416 db->db_dirtycnt = 0; 3417 #ifdef USE_DNODE_HANDLE 3418 db->db_dnode_handle = dn->dn_handle; 3419 #else 3420 db->db_dnode = dn; 3421 #endif 3422 db->db_parent = parent; 3423 db->db_blkptr = blkptr; 3424 db->db_hash = hash; 3425 3426 db->db_user = NULL; 3427 db->db_user_immediate_evict = FALSE; 3428 db->db_freed_in_flight = FALSE; 3429 db->db_pending_evict = FALSE; 3430 3431 if (blkid == DMU_BONUS_BLKID) { 3432 ASSERT3P(parent, ==, dn->dn_dbuf); 3433 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3434 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3435 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3436 db->db.db_offset = DMU_BONUS_BLKID; 3437 db->db_state = DB_UNCACHED; 3438 DTRACE_SET_STATE(db, "bonus buffer created"); 3439 db->db_caching_status = DB_NO_CACHE; 3440 /* the bonus dbuf is not placed in the hash table */ 3441 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3442 return (db); 3443 } else if (blkid == DMU_SPILL_BLKID) { 3444 db->db.db_size = (blkptr != NULL) ? 3445 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3446 db->db.db_offset = 0; 3447 } else { 3448 int blocksize = 3449 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3450 db->db.db_size = blocksize; 3451 db->db.db_offset = db->db_blkid * blocksize; 3452 } 3453 3454 /* 3455 * Hold the dn_dbufs_mtx while we get the new dbuf 3456 * in the hash table *and* added to the dbufs list. 3457 * This prevents a possible deadlock with someone 3458 * trying to look up this dbuf before it's added to the 3459 * dn_dbufs list. 3460 */ 3461 mutex_enter(&dn->dn_dbufs_mtx); 3462 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3463 if ((odb = dbuf_hash_insert(db)) != NULL) { 3464 /* someone else inserted it first */ 3465 mutex_exit(&dn->dn_dbufs_mtx); 3466 kmem_cache_free(dbuf_kmem_cache, db); 3467 DBUF_STAT_BUMP(hash_insert_race); 3468 return (odb); 3469 } 3470 avl_add(&dn->dn_dbufs, db); 3471 3472 db->db_state = DB_UNCACHED; 3473 DTRACE_SET_STATE(db, "regular buffer created"); 3474 db->db_caching_status = DB_NO_CACHE; 3475 mutex_exit(&dn->dn_dbufs_mtx); 3476 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3477 3478 if (parent && parent != dn->dn_dbuf) 3479 dbuf_add_ref(parent, db); 3480 3481 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3482 zfs_refcount_count(&dn->dn_holds) > 0); 3483 (void) zfs_refcount_add(&dn->dn_holds, db); 3484 3485 dprintf_dbuf(db, "db=%p\n", db); 3486 3487 return (db); 3488 } 3489 3490 /* 3491 * This function returns a block pointer and information about the object, 3492 * given a dnode and a block. This is a publicly accessible version of 3493 * dbuf_findbp that only returns some information, rather than the 3494 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3495 * should be locked as (at least) a reader. 3496 */ 3497 int 3498 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3499 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3500 { 3501 dmu_buf_impl_t *dbp = NULL; 3502 blkptr_t *bp2; 3503 int err = 0; 3504 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3505 3506 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3507 if (err == 0) { 3508 ASSERT3P(bp2, !=, NULL); 3509 *bp = *bp2; 3510 if (dbp != NULL) 3511 dbuf_rele(dbp, NULL); 3512 if (datablkszsec != NULL) 3513 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3514 if (indblkshift != NULL) 3515 *indblkshift = dn->dn_phys->dn_indblkshift; 3516 } 3517 3518 return (err); 3519 } 3520 3521 typedef struct dbuf_prefetch_arg { 3522 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3523 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3524 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3525 int dpa_curlevel; /* The current level that we're reading */ 3526 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3527 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3528 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3529 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3530 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3531 void *dpa_arg; /* prefetch completion arg */ 3532 } dbuf_prefetch_arg_t; 3533 3534 static void 3535 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3536 { 3537 if (dpa->dpa_cb != NULL) { 3538 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3539 dpa->dpa_zb.zb_blkid, io_done); 3540 } 3541 kmem_free(dpa, sizeof (*dpa)); 3542 } 3543 3544 static void 3545 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3546 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3547 { 3548 (void) zio, (void) zb, (void) iobp; 3549 dbuf_prefetch_arg_t *dpa = private; 3550 3551 if (abuf != NULL) 3552 arc_buf_destroy(abuf, private); 3553 3554 dbuf_prefetch_fini(dpa, B_TRUE); 3555 } 3556 3557 /* 3558 * Actually issue the prefetch read for the block given. 3559 */ 3560 static void 3561 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3562 { 3563 ASSERT(!BP_IS_HOLE(bp)); 3564 ASSERT(!BP_IS_REDACTED(bp)); 3565 if (BP_IS_EMBEDDED(bp)) 3566 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3567 3568 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3569 arc_flags_t aflags = 3570 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3571 ARC_FLAG_NO_BUF; 3572 3573 /* dnodes are always read as raw and then converted later */ 3574 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3575 dpa->dpa_curlevel == 0) 3576 zio_flags |= ZIO_FLAG_RAW; 3577 3578 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3579 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3580 ASSERT(dpa->dpa_zio != NULL); 3581 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3582 dbuf_issue_final_prefetch_done, dpa, 3583 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3584 } 3585 3586 /* 3587 * Called when an indirect block above our prefetch target is read in. This 3588 * will either read in the next indirect block down the tree or issue the actual 3589 * prefetch if the next block down is our target. 3590 */ 3591 static void 3592 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3593 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3594 { 3595 (void) zb, (void) iobp; 3596 dbuf_prefetch_arg_t *dpa = private; 3597 3598 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3599 ASSERT3S(dpa->dpa_curlevel, >, 0); 3600 3601 if (abuf == NULL) { 3602 ASSERT(zio == NULL || zio->io_error != 0); 3603 dbuf_prefetch_fini(dpa, B_TRUE); 3604 return; 3605 } 3606 ASSERT(zio == NULL || zio->io_error == 0); 3607 3608 /* 3609 * The dpa_dnode is only valid if we are called with a NULL 3610 * zio. This indicates that the arc_read() returned without 3611 * first calling zio_read() to issue a physical read. Once 3612 * a physical read is made the dpa_dnode must be invalidated 3613 * as the locks guarding it may have been dropped. If the 3614 * dpa_dnode is still valid, then we want to add it to the dbuf 3615 * cache. To do so, we must hold the dbuf associated with the block 3616 * we just prefetched, read its contents so that we associate it 3617 * with an arc_buf_t, and then release it. 3618 */ 3619 if (zio != NULL) { 3620 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3621 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3622 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3623 } else { 3624 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3625 } 3626 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3627 3628 dpa->dpa_dnode = NULL; 3629 } else if (dpa->dpa_dnode != NULL) { 3630 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3631 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3632 dpa->dpa_zb.zb_level)); 3633 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3634 dpa->dpa_curlevel, curblkid, FTAG); 3635 if (db == NULL) { 3636 arc_buf_destroy(abuf, private); 3637 dbuf_prefetch_fini(dpa, B_TRUE); 3638 return; 3639 } 3640 (void) dbuf_read(db, NULL, 3641 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3642 dbuf_rele(db, FTAG); 3643 } 3644 3645 dpa->dpa_curlevel--; 3646 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3647 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3648 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3649 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3650 3651 ASSERT(!BP_IS_REDACTED(bp) || dpa->dpa_dnode == NULL || 3652 dsl_dataset_feature_is_active( 3653 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3654 SPA_FEATURE_REDACTED_DATASETS)); 3655 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3656 arc_buf_destroy(abuf, private); 3657 dbuf_prefetch_fini(dpa, B_TRUE); 3658 return; 3659 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3660 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3661 dbuf_issue_final_prefetch(dpa, bp); 3662 } else { 3663 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3664 zbookmark_phys_t zb; 3665 3666 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3667 if (dpa->dpa_dnode) { 3668 if (dnode_level_is_l2cacheable(bp, dpa->dpa_dnode, 3669 dpa->dpa_curlevel)) 3670 iter_aflags |= ARC_FLAG_L2CACHE; 3671 } else { 3672 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3673 iter_aflags |= ARC_FLAG_L2CACHE; 3674 } 3675 3676 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3677 3678 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3679 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3680 3681 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3682 bp, dbuf_prefetch_indirect_done, dpa, 3683 ZIO_PRIORITY_SYNC_READ, 3684 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3685 &iter_aflags, &zb); 3686 } 3687 3688 arc_buf_destroy(abuf, private); 3689 } 3690 3691 /* 3692 * Issue prefetch reads for the given block on the given level. If the indirect 3693 * blocks above that block are not in memory, we will read them in 3694 * asynchronously. As a result, this call never blocks waiting for a read to 3695 * complete. Note that the prefetch might fail if the dataset is encrypted and 3696 * the encryption key is unmapped before the IO completes. 3697 */ 3698 int 3699 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3700 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3701 void *arg) 3702 { 3703 blkptr_t bp; 3704 int epbs, nlevels, curlevel; 3705 uint64_t curblkid; 3706 3707 ASSERT(blkid != DMU_BONUS_BLKID); 3708 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3709 3710 if (blkid > dn->dn_maxblkid) 3711 goto no_issue; 3712 3713 if (level == 0 && dnode_block_freed(dn, blkid)) 3714 goto no_issue; 3715 3716 /* 3717 * This dnode hasn't been written to disk yet, so there's nothing to 3718 * prefetch. 3719 */ 3720 nlevels = dn->dn_phys->dn_nlevels; 3721 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3722 goto no_issue; 3723 3724 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3725 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3726 goto no_issue; 3727 3728 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3729 level, blkid, NULL); 3730 if (db != NULL) { 3731 mutex_exit(&db->db_mtx); 3732 /* 3733 * This dbuf already exists. It is either CACHED, or 3734 * (we assume) about to be read or filled. 3735 */ 3736 goto no_issue; 3737 } 3738 3739 /* 3740 * Find the closest ancestor (indirect block) of the target block 3741 * that is present in the cache. In this indirect block, we will 3742 * find the bp that is at curlevel, curblkid. 3743 */ 3744 curlevel = level; 3745 curblkid = blkid; 3746 while (curlevel < nlevels - 1) { 3747 int parent_level = curlevel + 1; 3748 uint64_t parent_blkid = curblkid >> epbs; 3749 dmu_buf_impl_t *db; 3750 3751 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3752 FALSE, TRUE, FTAG, &db) == 0) { 3753 blkptr_t *bpp = db->db_buf->b_data; 3754 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3755 dbuf_rele(db, FTAG); 3756 break; 3757 } 3758 3759 curlevel = parent_level; 3760 curblkid = parent_blkid; 3761 } 3762 3763 if (curlevel == nlevels - 1) { 3764 /* No cached indirect blocks found. */ 3765 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3766 bp = dn->dn_phys->dn_blkptr[curblkid]; 3767 } 3768 ASSERT(!BP_IS_REDACTED(&bp) || 3769 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3770 SPA_FEATURE_REDACTED_DATASETS)); 3771 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3772 goto no_issue; 3773 3774 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3775 3776 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3777 ZIO_FLAG_CANFAIL); 3778 3779 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3780 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3781 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3782 dn->dn_object, level, blkid); 3783 dpa->dpa_curlevel = curlevel; 3784 dpa->dpa_prio = prio; 3785 dpa->dpa_aflags = aflags; 3786 dpa->dpa_spa = dn->dn_objset->os_spa; 3787 dpa->dpa_dnode = dn; 3788 dpa->dpa_epbs = epbs; 3789 dpa->dpa_zio = pio; 3790 dpa->dpa_cb = cb; 3791 dpa->dpa_arg = arg; 3792 3793 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3794 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3795 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3796 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3797 3798 /* 3799 * If we have the indirect just above us, no need to do the asynchronous 3800 * prefetch chain; we'll just run the last step ourselves. If we're at 3801 * a higher level, though, we want to issue the prefetches for all the 3802 * indirect blocks asynchronously, so we can go on with whatever we were 3803 * doing. 3804 */ 3805 if (curlevel == level) { 3806 ASSERT3U(curblkid, ==, blkid); 3807 dbuf_issue_final_prefetch(dpa, &bp); 3808 } else { 3809 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3810 zbookmark_phys_t zb; 3811 3812 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3813 if (dnode_level_is_l2cacheable(&bp, dn, curlevel)) 3814 iter_aflags |= ARC_FLAG_L2CACHE; 3815 3816 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3817 dn->dn_object, curlevel, curblkid); 3818 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3819 &bp, dbuf_prefetch_indirect_done, dpa, 3820 ZIO_PRIORITY_SYNC_READ, 3821 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3822 &iter_aflags, &zb); 3823 } 3824 /* 3825 * We use pio here instead of dpa_zio since it's possible that 3826 * dpa may have already been freed. 3827 */ 3828 zio_nowait(pio); 3829 return (1); 3830 no_issue: 3831 if (cb != NULL) 3832 cb(arg, level, blkid, B_FALSE); 3833 return (0); 3834 } 3835 3836 int 3837 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3838 arc_flags_t aflags) 3839 { 3840 3841 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3842 } 3843 3844 /* 3845 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3846 * the case of encrypted, compressed and uncompressed buffers by 3847 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3848 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3849 * 3850 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3851 */ 3852 noinline static void 3853 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3854 { 3855 dbuf_dirty_record_t *dr = db->db_data_pending; 3856 arc_buf_t *data = dr->dt.dl.dr_data; 3857 enum zio_compress compress_type = arc_get_compression(data); 3858 uint8_t complevel = arc_get_complevel(data); 3859 3860 if (arc_is_encrypted(data)) { 3861 boolean_t byteorder; 3862 uint8_t salt[ZIO_DATA_SALT_LEN]; 3863 uint8_t iv[ZIO_DATA_IV_LEN]; 3864 uint8_t mac[ZIO_DATA_MAC_LEN]; 3865 3866 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3867 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3868 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3869 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3870 compress_type, complevel)); 3871 } else if (compress_type != ZIO_COMPRESS_OFF) { 3872 dbuf_set_data(db, arc_alloc_compressed_buf( 3873 dn->dn_objset->os_spa, db, arc_buf_size(data), 3874 arc_buf_lsize(data), compress_type, complevel)); 3875 } else { 3876 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3877 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3878 } 3879 3880 rw_enter(&db->db_rwlock, RW_WRITER); 3881 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3882 rw_exit(&db->db_rwlock); 3883 } 3884 3885 /* 3886 * Returns with db_holds incremented, and db_mtx not held. 3887 * Note: dn_struct_rwlock must be held. 3888 */ 3889 int 3890 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3891 boolean_t fail_sparse, boolean_t fail_uncached, 3892 const void *tag, dmu_buf_impl_t **dbp) 3893 { 3894 dmu_buf_impl_t *db, *parent = NULL; 3895 uint64_t hv; 3896 3897 /* If the pool has been created, verify the tx_sync_lock is not held */ 3898 spa_t *spa = dn->dn_objset->os_spa; 3899 dsl_pool_t *dp = spa->spa_dsl_pool; 3900 if (dp != NULL) { 3901 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3902 } 3903 3904 ASSERT(blkid != DMU_BONUS_BLKID); 3905 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3906 ASSERT3U(dn->dn_nlevels, >, level); 3907 3908 *dbp = NULL; 3909 3910 /* dbuf_find() returns with db_mtx held */ 3911 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3912 3913 if (db == NULL) { 3914 blkptr_t *bp = NULL; 3915 int err; 3916 3917 if (fail_uncached) 3918 return (SET_ERROR(ENOENT)); 3919 3920 ASSERT3P(parent, ==, NULL); 3921 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3922 if (fail_sparse) { 3923 if (err == 0 && bp && BP_IS_HOLE(bp)) 3924 err = SET_ERROR(ENOENT); 3925 if (err) { 3926 if (parent) 3927 dbuf_rele(parent, NULL); 3928 return (err); 3929 } 3930 } 3931 if (err && err != ENOENT) 3932 return (err); 3933 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3934 } 3935 3936 if (fail_uncached && db->db_state != DB_CACHED) { 3937 mutex_exit(&db->db_mtx); 3938 return (SET_ERROR(ENOENT)); 3939 } 3940 3941 if (db->db_buf != NULL) { 3942 arc_buf_access(db->db_buf); 3943 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3944 } 3945 3946 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3947 3948 /* 3949 * If this buffer is currently syncing out, and we are 3950 * still referencing it from db_data, we need to make a copy 3951 * of it in case we decide we want to dirty it again in this txg. 3952 */ 3953 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3954 dn->dn_object != DMU_META_DNODE_OBJECT && 3955 db->db_state == DB_CACHED && db->db_data_pending) { 3956 dbuf_dirty_record_t *dr = db->db_data_pending; 3957 if (dr->dt.dl.dr_data == db->db_buf) { 3958 ASSERT3P(db->db_buf, !=, NULL); 3959 dbuf_hold_copy(dn, db); 3960 } 3961 } 3962 3963 if (multilist_link_active(&db->db_cache_link)) { 3964 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3965 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3966 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3967 3968 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3969 3970 uint64_t size = db->db.db_size; 3971 uint64_t usize = dmu_buf_user_size(&db->db); 3972 (void) zfs_refcount_remove_many( 3973 &dbuf_caches[db->db_caching_status].size, size, db); 3974 (void) zfs_refcount_remove_many( 3975 &dbuf_caches[db->db_caching_status].size, usize, 3976 db->db_user); 3977 3978 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3979 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3980 } else { 3981 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3982 DBUF_STAT_BUMPDOWN(cache_count); 3983 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3984 size + usize); 3985 } 3986 db->db_caching_status = DB_NO_CACHE; 3987 } 3988 (void) zfs_refcount_add(&db->db_holds, tag); 3989 DBUF_VERIFY(db); 3990 mutex_exit(&db->db_mtx); 3991 3992 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3993 if (parent) 3994 dbuf_rele(parent, NULL); 3995 3996 ASSERT3P(DB_DNODE(db), ==, dn); 3997 ASSERT3U(db->db_blkid, ==, blkid); 3998 ASSERT3U(db->db_level, ==, level); 3999 *dbp = db; 4000 4001 return (0); 4002 } 4003 4004 dmu_buf_impl_t * 4005 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 4006 { 4007 return (dbuf_hold_level(dn, 0, blkid, tag)); 4008 } 4009 4010 dmu_buf_impl_t * 4011 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 4012 { 4013 dmu_buf_impl_t *db; 4014 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 4015 return (err ? NULL : db); 4016 } 4017 4018 void 4019 dbuf_create_bonus(dnode_t *dn) 4020 { 4021 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 4022 4023 ASSERT(dn->dn_bonus == NULL); 4024 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 4025 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 4026 } 4027 4028 int 4029 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 4030 { 4031 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4032 4033 if (db->db_blkid != DMU_SPILL_BLKID) 4034 return (SET_ERROR(ENOTSUP)); 4035 if (blksz == 0) 4036 blksz = SPA_MINBLOCKSIZE; 4037 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 4038 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 4039 4040 dbuf_new_size(db, blksz, tx); 4041 4042 return (0); 4043 } 4044 4045 void 4046 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 4047 { 4048 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 4049 } 4050 4051 #pragma weak dmu_buf_add_ref = dbuf_add_ref 4052 void 4053 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 4054 { 4055 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 4056 VERIFY3S(holds, >, 1); 4057 } 4058 4059 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 4060 boolean_t 4061 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 4062 const void *tag) 4063 { 4064 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4065 dmu_buf_impl_t *found_db; 4066 boolean_t result = B_FALSE; 4067 4068 if (blkid == DMU_BONUS_BLKID) 4069 found_db = dbuf_find_bonus(os, obj); 4070 else 4071 found_db = dbuf_find(os, obj, 0, blkid, NULL); 4072 4073 if (found_db != NULL) { 4074 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 4075 (void) zfs_refcount_add(&db->db_holds, tag); 4076 result = B_TRUE; 4077 } 4078 mutex_exit(&found_db->db_mtx); 4079 } 4080 return (result); 4081 } 4082 4083 /* 4084 * If you call dbuf_rele() you had better not be referencing the dnode handle 4085 * unless you have some other direct or indirect hold on the dnode. (An indirect 4086 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 4087 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 4088 * dnode's parent dbuf evicting its dnode handles. 4089 */ 4090 void 4091 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 4092 { 4093 mutex_enter(&db->db_mtx); 4094 dbuf_rele_and_unlock(db, tag, B_FALSE); 4095 } 4096 4097 void 4098 dmu_buf_rele(dmu_buf_t *db, const void *tag) 4099 { 4100 dbuf_rele((dmu_buf_impl_t *)db, tag); 4101 } 4102 4103 /* 4104 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 4105 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 4106 * argument should be set if we are already in the dbuf-evicting code 4107 * path, in which case we don't want to recursively evict. This allows us to 4108 * avoid deeply nested stacks that would have a call flow similar to this: 4109 * 4110 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 4111 * ^ | 4112 * | | 4113 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 4114 * 4115 */ 4116 void 4117 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 4118 { 4119 int64_t holds; 4120 uint64_t size; 4121 4122 ASSERT(MUTEX_HELD(&db->db_mtx)); 4123 DBUF_VERIFY(db); 4124 4125 /* 4126 * Remove the reference to the dbuf before removing its hold on the 4127 * dnode so we can guarantee in dnode_move() that a referenced bonus 4128 * buffer has a corresponding dnode hold. 4129 */ 4130 holds = zfs_refcount_remove(&db->db_holds, tag); 4131 ASSERT(holds >= 0); 4132 4133 /* 4134 * We can't freeze indirects if there is a possibility that they 4135 * may be modified in the current syncing context. 4136 */ 4137 if (db->db_buf != NULL && 4138 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 4139 arc_buf_freeze(db->db_buf); 4140 } 4141 4142 if (holds == db->db_dirtycnt && 4143 db->db_level == 0 && db->db_user_immediate_evict) 4144 dbuf_evict_user(db); 4145 4146 if (holds == 0) { 4147 if (db->db_blkid == DMU_BONUS_BLKID) { 4148 dnode_t *dn; 4149 boolean_t evict_dbuf = db->db_pending_evict; 4150 4151 /* 4152 * If the dnode moves here, we cannot cross this 4153 * barrier until the move completes. 4154 */ 4155 DB_DNODE_ENTER(db); 4156 4157 dn = DB_DNODE(db); 4158 atomic_dec_32(&dn->dn_dbufs_count); 4159 4160 /* 4161 * Decrementing the dbuf count means that the bonus 4162 * buffer's dnode hold is no longer discounted in 4163 * dnode_move(). The dnode cannot move until after 4164 * the dnode_rele() below. 4165 */ 4166 DB_DNODE_EXIT(db); 4167 4168 /* 4169 * Do not reference db after its lock is dropped. 4170 * Another thread may evict it. 4171 */ 4172 mutex_exit(&db->db_mtx); 4173 4174 if (evict_dbuf) 4175 dnode_evict_bonus(dn); 4176 4177 dnode_rele(dn, db); 4178 } else if (db->db_buf == NULL) { 4179 /* 4180 * This is a special case: we never associated this 4181 * dbuf with any data allocated from the ARC. 4182 */ 4183 ASSERT(db->db_state == DB_UNCACHED || 4184 db->db_state == DB_NOFILL); 4185 dbuf_destroy(db); 4186 } else if (arc_released(db->db_buf)) { 4187 /* 4188 * This dbuf has anonymous data associated with it. 4189 */ 4190 dbuf_destroy(db); 4191 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4192 db->db_pending_evict) { 4193 dbuf_destroy(db); 4194 } else if (!multilist_link_active(&db->db_cache_link)) { 4195 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4196 4197 dbuf_cached_state_t dcs = 4198 dbuf_include_in_metadata_cache(db) ? 4199 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4200 db->db_caching_status = dcs; 4201 4202 multilist_insert(&dbuf_caches[dcs].cache, db); 4203 uint64_t db_size = db->db.db_size; 4204 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4205 (void) zfs_refcount_add_many( 4206 &dbuf_caches[dcs].size, db_size, db); 4207 size = zfs_refcount_add_many( 4208 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4209 uint8_t db_level = db->db_level; 4210 mutex_exit(&db->db_mtx); 4211 4212 if (dcs == DB_DBUF_METADATA_CACHE) { 4213 DBUF_STAT_BUMP(metadata_cache_count); 4214 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4215 size); 4216 } else { 4217 DBUF_STAT_BUMP(cache_count); 4218 DBUF_STAT_MAX(cache_size_bytes_max, size); 4219 DBUF_STAT_BUMP(cache_levels[db_level]); 4220 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4221 db_size + dbu_size); 4222 } 4223 4224 if (dcs == DB_DBUF_CACHE && !evicting) 4225 dbuf_evict_notify(size); 4226 } 4227 } else { 4228 mutex_exit(&db->db_mtx); 4229 } 4230 } 4231 4232 #pragma weak dmu_buf_refcount = dbuf_refcount 4233 uint64_t 4234 dbuf_refcount(dmu_buf_impl_t *db) 4235 { 4236 return (zfs_refcount_count(&db->db_holds)); 4237 } 4238 4239 uint64_t 4240 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4241 { 4242 uint64_t holds; 4243 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4244 4245 mutex_enter(&db->db_mtx); 4246 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4247 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4248 mutex_exit(&db->db_mtx); 4249 4250 return (holds); 4251 } 4252 4253 void * 4254 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4255 dmu_buf_user_t *new_user) 4256 { 4257 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4258 4259 mutex_enter(&db->db_mtx); 4260 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4261 if (db->db_user == old_user) 4262 db->db_user = new_user; 4263 else 4264 old_user = db->db_user; 4265 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4266 mutex_exit(&db->db_mtx); 4267 4268 return (old_user); 4269 } 4270 4271 void * 4272 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4273 { 4274 return (dmu_buf_replace_user(db_fake, NULL, user)); 4275 } 4276 4277 void * 4278 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4279 { 4280 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4281 4282 db->db_user_immediate_evict = TRUE; 4283 return (dmu_buf_set_user(db_fake, user)); 4284 } 4285 4286 void * 4287 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4288 { 4289 return (dmu_buf_replace_user(db_fake, user, NULL)); 4290 } 4291 4292 void * 4293 dmu_buf_get_user(dmu_buf_t *db_fake) 4294 { 4295 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4296 4297 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4298 return (db->db_user); 4299 } 4300 4301 uint64_t 4302 dmu_buf_user_size(dmu_buf_t *db_fake) 4303 { 4304 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4305 if (db->db_user == NULL) 4306 return (0); 4307 return (atomic_load_64(&db->db_user->dbu_size)); 4308 } 4309 4310 void 4311 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4312 { 4313 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4314 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4315 ASSERT3P(db->db_user, !=, NULL); 4316 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4317 atomic_add_64(&db->db_user->dbu_size, nadd); 4318 } 4319 4320 void 4321 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4322 { 4323 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4324 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4325 ASSERT3P(db->db_user, !=, NULL); 4326 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4327 atomic_sub_64(&db->db_user->dbu_size, nsub); 4328 } 4329 4330 void 4331 dmu_buf_user_evict_wait(void) 4332 { 4333 taskq_wait(dbu_evict_taskq); 4334 } 4335 4336 blkptr_t * 4337 dmu_buf_get_blkptr(dmu_buf_t *db) 4338 { 4339 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4340 return (dbi->db_blkptr); 4341 } 4342 4343 objset_t * 4344 dmu_buf_get_objset(dmu_buf_t *db) 4345 { 4346 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4347 return (dbi->db_objset); 4348 } 4349 4350 static void 4351 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4352 { 4353 /* ASSERT(dmu_tx_is_syncing(tx) */ 4354 ASSERT(MUTEX_HELD(&db->db_mtx)); 4355 4356 if (db->db_blkptr != NULL) 4357 return; 4358 4359 if (db->db_blkid == DMU_SPILL_BLKID) { 4360 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4361 BP_ZERO(db->db_blkptr); 4362 return; 4363 } 4364 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4365 /* 4366 * This buffer was allocated at a time when there was 4367 * no available blkptrs from the dnode, or it was 4368 * inappropriate to hook it in (i.e., nlevels mismatch). 4369 */ 4370 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4371 ASSERT(db->db_parent == NULL); 4372 db->db_parent = dn->dn_dbuf; 4373 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4374 DBUF_VERIFY(db); 4375 } else { 4376 dmu_buf_impl_t *parent = db->db_parent; 4377 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4378 4379 ASSERT(dn->dn_phys->dn_nlevels > 1); 4380 if (parent == NULL) { 4381 mutex_exit(&db->db_mtx); 4382 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4383 parent = dbuf_hold_level(dn, db->db_level + 1, 4384 db->db_blkid >> epbs, db); 4385 rw_exit(&dn->dn_struct_rwlock); 4386 mutex_enter(&db->db_mtx); 4387 db->db_parent = parent; 4388 } 4389 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4390 (db->db_blkid & ((1ULL << epbs) - 1)); 4391 DBUF_VERIFY(db); 4392 } 4393 } 4394 4395 static void 4396 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4397 { 4398 dmu_buf_impl_t *db = dr->dr_dbuf; 4399 void *data = dr->dt.dl.dr_data; 4400 4401 ASSERT0(db->db_level); 4402 ASSERT(MUTEX_HELD(&db->db_mtx)); 4403 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4404 ASSERT(data != NULL); 4405 4406 dnode_t *dn = dr->dr_dnode; 4407 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4408 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4409 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4410 4411 dbuf_sync_leaf_verify_bonus_dnode(dr); 4412 4413 dbuf_undirty_bonus(dr); 4414 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4415 } 4416 4417 /* 4418 * When syncing out a blocks of dnodes, adjust the block to deal with 4419 * encryption. Normally, we make sure the block is decrypted before writing 4420 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4421 * from a raw receive. In this case, set the ARC buf's crypt params so 4422 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4423 */ 4424 static void 4425 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4426 { 4427 int err; 4428 dmu_buf_impl_t *db = dr->dr_dbuf; 4429 4430 ASSERT(MUTEX_HELD(&db->db_mtx)); 4431 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4432 ASSERT3U(db->db_level, ==, 0); 4433 4434 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4435 zbookmark_phys_t zb; 4436 4437 /* 4438 * Unfortunately, there is currently no mechanism for 4439 * syncing context to handle decryption errors. An error 4440 * here is only possible if an attacker maliciously 4441 * changed a dnode block and updated the associated 4442 * checksums going up the block tree. 4443 */ 4444 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4445 db->db.db_object, db->db_level, db->db_blkid); 4446 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4447 &zb, B_TRUE); 4448 if (err) 4449 panic("Invalid dnode block MAC"); 4450 } else if (dr->dt.dl.dr_has_raw_params) { 4451 (void) arc_release(dr->dt.dl.dr_data, db); 4452 arc_convert_to_raw(dr->dt.dl.dr_data, 4453 dmu_objset_id(db->db_objset), 4454 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4455 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4456 } 4457 } 4458 4459 /* 4460 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4461 * is critical the we not allow the compiler to inline this function in to 4462 * dbuf_sync_list() thereby drastically bloating the stack usage. 4463 */ 4464 noinline static void 4465 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4466 { 4467 dmu_buf_impl_t *db = dr->dr_dbuf; 4468 dnode_t *dn = dr->dr_dnode; 4469 4470 ASSERT(dmu_tx_is_syncing(tx)); 4471 4472 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4473 4474 mutex_enter(&db->db_mtx); 4475 4476 ASSERT(db->db_level > 0); 4477 DBUF_VERIFY(db); 4478 4479 /* Read the block if it hasn't been read yet. */ 4480 if (db->db_buf == NULL) { 4481 mutex_exit(&db->db_mtx); 4482 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4483 mutex_enter(&db->db_mtx); 4484 } 4485 ASSERT3U(db->db_state, ==, DB_CACHED); 4486 ASSERT(db->db_buf != NULL); 4487 4488 /* Indirect block size must match what the dnode thinks it is. */ 4489 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4490 dbuf_check_blkptr(dn, db); 4491 4492 /* Provide the pending dirty record to child dbufs */ 4493 db->db_data_pending = dr; 4494 4495 mutex_exit(&db->db_mtx); 4496 4497 dbuf_write(dr, db->db_buf, tx); 4498 4499 zio_t *zio = dr->dr_zio; 4500 mutex_enter(&dr->dt.di.dr_mtx); 4501 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4502 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4503 mutex_exit(&dr->dt.di.dr_mtx); 4504 zio_nowait(zio); 4505 } 4506 4507 /* 4508 * Verify that the size of the data in our bonus buffer does not exceed 4509 * its recorded size. 4510 * 4511 * The purpose of this verification is to catch any cases in development 4512 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4513 * due to incorrect feature management, older pools expect to read more 4514 * data even though they didn't actually write it to begin with. 4515 * 4516 * For a example, this would catch an error in the feature logic where we 4517 * open an older pool and we expect to write the space map histogram of 4518 * a space map with size SPACE_MAP_SIZE_V0. 4519 */ 4520 static void 4521 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4522 { 4523 #ifdef ZFS_DEBUG 4524 dnode_t *dn = dr->dr_dnode; 4525 4526 /* 4527 * Encrypted bonus buffers can have data past their bonuslen. 4528 * Skip the verification of these blocks. 4529 */ 4530 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4531 return; 4532 4533 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4534 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4535 ASSERT3U(bonuslen, <=, maxbonuslen); 4536 4537 arc_buf_t *datap = dr->dt.dl.dr_data; 4538 char *datap_end = ((char *)datap) + bonuslen; 4539 char *datap_max = ((char *)datap) + maxbonuslen; 4540 4541 /* ensure that everything is zero after our data */ 4542 for (; datap_end < datap_max; datap_end++) 4543 ASSERT(*datap_end == 0); 4544 #endif 4545 } 4546 4547 static blkptr_t * 4548 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4549 { 4550 /* This must be a lightweight dirty record. */ 4551 ASSERT3P(dr->dr_dbuf, ==, NULL); 4552 dnode_t *dn = dr->dr_dnode; 4553 4554 if (dn->dn_phys->dn_nlevels == 1) { 4555 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4556 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4557 } else { 4558 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4559 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4560 VERIFY3U(parent_db->db_level, ==, 1); 4561 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4562 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4563 blkptr_t *bp = parent_db->db.db_data; 4564 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4565 } 4566 } 4567 4568 static void 4569 dbuf_lightweight_ready(zio_t *zio) 4570 { 4571 dbuf_dirty_record_t *dr = zio->io_private; 4572 blkptr_t *bp = zio->io_bp; 4573 4574 if (zio->io_error != 0) 4575 return; 4576 4577 dnode_t *dn = dr->dr_dnode; 4578 4579 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4580 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4581 int64_t delta = bp_get_dsize_sync(spa, bp) - 4582 bp_get_dsize_sync(spa, bp_orig); 4583 dnode_diduse_space(dn, delta); 4584 4585 uint64_t blkid = dr->dt.dll.dr_blkid; 4586 mutex_enter(&dn->dn_mtx); 4587 if (blkid > dn->dn_phys->dn_maxblkid) { 4588 ASSERT0(dn->dn_objset->os_raw_receive); 4589 dn->dn_phys->dn_maxblkid = blkid; 4590 } 4591 mutex_exit(&dn->dn_mtx); 4592 4593 if (!BP_IS_EMBEDDED(bp)) { 4594 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4595 BP_SET_FILL(bp, fill); 4596 } 4597 4598 dmu_buf_impl_t *parent_db; 4599 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4600 if (dr->dr_parent == NULL) { 4601 parent_db = dn->dn_dbuf; 4602 } else { 4603 parent_db = dr->dr_parent->dr_dbuf; 4604 } 4605 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4606 *bp_orig = *bp; 4607 rw_exit(&parent_db->db_rwlock); 4608 } 4609 4610 static void 4611 dbuf_lightweight_done(zio_t *zio) 4612 { 4613 dbuf_dirty_record_t *dr = zio->io_private; 4614 4615 VERIFY0(zio->io_error); 4616 4617 objset_t *os = dr->dr_dnode->dn_objset; 4618 dmu_tx_t *tx = os->os_synctx; 4619 4620 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4621 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4622 } else { 4623 dsl_dataset_t *ds = os->os_dsl_dataset; 4624 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4625 dsl_dataset_block_born(ds, zio->io_bp, tx); 4626 } 4627 4628 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4629 zio->io_txg); 4630 4631 abd_free(dr->dt.dll.dr_abd); 4632 kmem_free(dr, sizeof (*dr)); 4633 } 4634 4635 noinline static void 4636 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4637 { 4638 dnode_t *dn = dr->dr_dnode; 4639 zio_t *pio; 4640 if (dn->dn_phys->dn_nlevels == 1) { 4641 pio = dn->dn_zio; 4642 } else { 4643 pio = dr->dr_parent->dr_zio; 4644 } 4645 4646 zbookmark_phys_t zb = { 4647 .zb_objset = dmu_objset_id(dn->dn_objset), 4648 .zb_object = dn->dn_object, 4649 .zb_level = 0, 4650 .zb_blkid = dr->dt.dll.dr_blkid, 4651 }; 4652 4653 /* 4654 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4655 * will have the old BP in dbuf_lightweight_done(). 4656 */ 4657 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4658 4659 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4660 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4661 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4662 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4663 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4664 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4665 4666 zio_nowait(dr->dr_zio); 4667 } 4668 4669 /* 4670 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4671 * critical the we not allow the compiler to inline this function in to 4672 * dbuf_sync_list() thereby drastically bloating the stack usage. 4673 */ 4674 noinline static void 4675 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4676 { 4677 arc_buf_t **datap = &dr->dt.dl.dr_data; 4678 dmu_buf_impl_t *db = dr->dr_dbuf; 4679 dnode_t *dn = dr->dr_dnode; 4680 objset_t *os; 4681 uint64_t txg = tx->tx_txg; 4682 4683 ASSERT(dmu_tx_is_syncing(tx)); 4684 4685 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4686 4687 mutex_enter(&db->db_mtx); 4688 /* 4689 * To be synced, we must be dirtied. But we might have been freed 4690 * after the dirty. 4691 */ 4692 if (db->db_state == DB_UNCACHED) { 4693 /* This buffer has been freed since it was dirtied */ 4694 ASSERT3P(db->db.db_data, ==, NULL); 4695 } else if (db->db_state == DB_FILL) { 4696 /* This buffer was freed and is now being re-filled */ 4697 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4698 } else if (db->db_state == DB_READ) { 4699 /* 4700 * This buffer was either cloned or had a Direct I/O write 4701 * occur and has an in-flgiht read on the BP. It is safe to 4702 * issue the write here, because the read has already been 4703 * issued and the contents won't change. 4704 * 4705 * We can verify the case of both the clone and Direct I/O 4706 * write by making sure the first dirty record for the dbuf 4707 * has no ARC buffer associated with it. 4708 */ 4709 dbuf_dirty_record_t *dr_head = 4710 list_head(&db->db_dirty_records); 4711 ASSERT3P(db->db_buf, ==, NULL); 4712 ASSERT3P(db->db.db_data, ==, NULL); 4713 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL); 4714 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN); 4715 } else { 4716 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4717 } 4718 DBUF_VERIFY(db); 4719 4720 if (db->db_blkid == DMU_SPILL_BLKID) { 4721 mutex_enter(&dn->dn_mtx); 4722 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4723 /* 4724 * In the previous transaction group, the bonus buffer 4725 * was entirely used to store the attributes for the 4726 * dnode which overrode the dn_spill field. However, 4727 * when adding more attributes to the file a spill 4728 * block was required to hold the extra attributes. 4729 * 4730 * Make sure to clear the garbage left in the dn_spill 4731 * field from the previous attributes in the bonus 4732 * buffer. Otherwise, after writing out the spill 4733 * block to the new allocated dva, it will free 4734 * the old block pointed to by the invalid dn_spill. 4735 */ 4736 db->db_blkptr = NULL; 4737 } 4738 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4739 mutex_exit(&dn->dn_mtx); 4740 } 4741 4742 /* 4743 * If this is a bonus buffer, simply copy the bonus data into the 4744 * dnode. It will be written out when the dnode is synced (and it 4745 * will be synced, since it must have been dirty for dbuf_sync to 4746 * be called). 4747 */ 4748 if (db->db_blkid == DMU_BONUS_BLKID) { 4749 ASSERT(dr->dr_dbuf == db); 4750 dbuf_sync_bonus(dr, tx); 4751 return; 4752 } 4753 4754 os = dn->dn_objset; 4755 4756 /* 4757 * This function may have dropped the db_mtx lock allowing a dmu_sync 4758 * operation to sneak in. As a result, we need to ensure that we 4759 * don't check the dr_override_state until we have returned from 4760 * dbuf_check_blkptr. 4761 */ 4762 dbuf_check_blkptr(dn, db); 4763 4764 /* 4765 * If this buffer is in the middle of an immediate write, wait for the 4766 * synchronous IO to complete. 4767 * 4768 * This is also valid even with Direct I/O writes setting a dirty 4769 * records override state into DR_IN_DMU_SYNC, because all 4770 * Direct I/O writes happen in open-context. 4771 */ 4772 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4773 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4774 cv_wait(&db->db_changed, &db->db_mtx); 4775 } 4776 4777 /* 4778 * If this is a dnode block, ensure it is appropriately encrypted 4779 * or decrypted, depending on what we are writing to it this txg. 4780 */ 4781 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4782 dbuf_prepare_encrypted_dnode_leaf(dr); 4783 4784 if (*datap != NULL && *datap == db->db_buf && 4785 dn->dn_object != DMU_META_DNODE_OBJECT && 4786 zfs_refcount_count(&db->db_holds) > 1) { 4787 /* 4788 * If this buffer is currently "in use" (i.e., there 4789 * are active holds and db_data still references it), 4790 * then make a copy before we start the write so that 4791 * any modifications from the open txg will not leak 4792 * into this write. 4793 * 4794 * NOTE: this copy does not need to be made for 4795 * objects only modified in the syncing context (e.g. 4796 * DNONE_DNODE blocks). 4797 */ 4798 int psize = arc_buf_size(*datap); 4799 int lsize = arc_buf_lsize(*datap); 4800 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4801 enum zio_compress compress_type = arc_get_compression(*datap); 4802 uint8_t complevel = arc_get_complevel(*datap); 4803 4804 if (arc_is_encrypted(*datap)) { 4805 boolean_t byteorder; 4806 uint8_t salt[ZIO_DATA_SALT_LEN]; 4807 uint8_t iv[ZIO_DATA_IV_LEN]; 4808 uint8_t mac[ZIO_DATA_MAC_LEN]; 4809 4810 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4811 *datap = arc_alloc_raw_buf(os->os_spa, db, 4812 dmu_objset_id(os), byteorder, salt, iv, mac, 4813 dn->dn_type, psize, lsize, compress_type, 4814 complevel); 4815 } else if (compress_type != ZIO_COMPRESS_OFF) { 4816 ASSERT3U(type, ==, ARC_BUFC_DATA); 4817 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4818 psize, lsize, compress_type, complevel); 4819 } else { 4820 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4821 } 4822 memcpy((*datap)->b_data, db->db.db_data, psize); 4823 } 4824 db->db_data_pending = dr; 4825 4826 mutex_exit(&db->db_mtx); 4827 4828 dbuf_write(dr, *datap, tx); 4829 4830 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4831 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4832 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4833 } else { 4834 zio_nowait(dr->dr_zio); 4835 } 4836 } 4837 4838 /* 4839 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4840 * called recursively from dbuf_sync_indirect(). 4841 */ 4842 void 4843 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4844 { 4845 dbuf_dirty_record_t *dr; 4846 4847 while ((dr = list_head(list))) { 4848 if (dr->dr_zio != NULL) { 4849 /* 4850 * If we find an already initialized zio then we 4851 * are processing the meta-dnode, and we have finished. 4852 * The dbufs for all dnodes are put back on the list 4853 * during processing, so that we can zio_wait() 4854 * these IOs after initiating all child IOs. 4855 */ 4856 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4857 DMU_META_DNODE_OBJECT); 4858 break; 4859 } 4860 list_remove(list, dr); 4861 if (dr->dr_dbuf == NULL) { 4862 dbuf_sync_lightweight(dr, tx); 4863 } else { 4864 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4865 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4866 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4867 } 4868 if (dr->dr_dbuf->db_level > 0) 4869 dbuf_sync_indirect(dr, tx); 4870 else 4871 dbuf_sync_leaf(dr, tx); 4872 } 4873 } 4874 } 4875 4876 static void 4877 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4878 { 4879 (void) buf; 4880 dmu_buf_impl_t *db = vdb; 4881 dnode_t *dn; 4882 blkptr_t *bp = zio->io_bp; 4883 blkptr_t *bp_orig = &zio->io_bp_orig; 4884 spa_t *spa = zio->io_spa; 4885 int64_t delta; 4886 uint64_t fill = 0; 4887 int i; 4888 4889 ASSERT3P(db->db_blkptr, !=, NULL); 4890 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4891 4892 DB_DNODE_ENTER(db); 4893 dn = DB_DNODE(db); 4894 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4895 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4896 zio->io_prev_space_delta = delta; 4897 4898 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4899 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4900 BP_GET_TYPE(bp) == dn->dn_type) || 4901 (db->db_blkid == DMU_SPILL_BLKID && 4902 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4903 BP_IS_EMBEDDED(bp)); 4904 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4905 } 4906 4907 mutex_enter(&db->db_mtx); 4908 4909 #ifdef ZFS_DEBUG 4910 if (db->db_blkid == DMU_SPILL_BLKID) { 4911 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4912 ASSERT(!(BP_IS_HOLE(bp)) && 4913 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4914 } 4915 #endif 4916 4917 if (db->db_level == 0) { 4918 mutex_enter(&dn->dn_mtx); 4919 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4920 db->db_blkid != DMU_SPILL_BLKID) { 4921 ASSERT0(db->db_objset->os_raw_receive); 4922 dn->dn_phys->dn_maxblkid = db->db_blkid; 4923 } 4924 mutex_exit(&dn->dn_mtx); 4925 4926 if (dn->dn_type == DMU_OT_DNODE) { 4927 i = 0; 4928 while (i < db->db.db_size) { 4929 dnode_phys_t *dnp = 4930 (void *)(((char *)db->db.db_data) + i); 4931 4932 i += DNODE_MIN_SIZE; 4933 if (dnp->dn_type != DMU_OT_NONE) { 4934 fill++; 4935 for (int j = 0; j < dnp->dn_nblkptr; 4936 j++) { 4937 (void) zfs_blkptr_verify(spa, 4938 &dnp->dn_blkptr[j], 4939 BLK_CONFIG_SKIP, 4940 BLK_VERIFY_HALT); 4941 } 4942 if (dnp->dn_flags & 4943 DNODE_FLAG_SPILL_BLKPTR) { 4944 (void) zfs_blkptr_verify(spa, 4945 DN_SPILL_BLKPTR(dnp), 4946 BLK_CONFIG_SKIP, 4947 BLK_VERIFY_HALT); 4948 } 4949 i += dnp->dn_extra_slots * 4950 DNODE_MIN_SIZE; 4951 } 4952 } 4953 } else { 4954 if (BP_IS_HOLE(bp)) { 4955 fill = 0; 4956 } else { 4957 fill = 1; 4958 } 4959 } 4960 } else { 4961 blkptr_t *ibp = db->db.db_data; 4962 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4963 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4964 if (BP_IS_HOLE(ibp)) 4965 continue; 4966 (void) zfs_blkptr_verify(spa, ibp, 4967 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4968 fill += BP_GET_FILL(ibp); 4969 } 4970 } 4971 DB_DNODE_EXIT(db); 4972 4973 if (!BP_IS_EMBEDDED(bp)) 4974 BP_SET_FILL(bp, fill); 4975 4976 mutex_exit(&db->db_mtx); 4977 4978 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4979 *db->db_blkptr = *bp; 4980 dmu_buf_unlock_parent(db, dblt, FTAG); 4981 } 4982 4983 /* 4984 * This function gets called just prior to running through the compression 4985 * stage of the zio pipeline. If we're an indirect block comprised of only 4986 * holes, then we want this indirect to be compressed away to a hole. In 4987 * order to do that we must zero out any information about the holes that 4988 * this indirect points to prior to before we try to compress it. 4989 */ 4990 static void 4991 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4992 { 4993 (void) zio, (void) buf; 4994 dmu_buf_impl_t *db = vdb; 4995 blkptr_t *bp; 4996 unsigned int epbs, i; 4997 4998 ASSERT3U(db->db_level, >, 0); 4999 DB_DNODE_ENTER(db); 5000 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 5001 DB_DNODE_EXIT(db); 5002 ASSERT3U(epbs, <, 31); 5003 5004 /* Determine if all our children are holes */ 5005 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 5006 if (!BP_IS_HOLE(bp)) 5007 break; 5008 } 5009 5010 /* 5011 * If all the children are holes, then zero them all out so that 5012 * we may get compressed away. 5013 */ 5014 if (i == 1ULL << epbs) { 5015 /* 5016 * We only found holes. Grab the rwlock to prevent 5017 * anybody from reading the blocks we're about to 5018 * zero out. 5019 */ 5020 rw_enter(&db->db_rwlock, RW_WRITER); 5021 memset(db->db.db_data, 0, db->db.db_size); 5022 rw_exit(&db->db_rwlock); 5023 } 5024 } 5025 5026 static void 5027 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 5028 { 5029 (void) buf; 5030 dmu_buf_impl_t *db = vdb; 5031 blkptr_t *bp_orig = &zio->io_bp_orig; 5032 blkptr_t *bp = db->db_blkptr; 5033 objset_t *os = db->db_objset; 5034 dmu_tx_t *tx = os->os_synctx; 5035 5036 ASSERT0(zio->io_error); 5037 ASSERT(db->db_blkptr == bp); 5038 5039 /* 5040 * For nopwrites and rewrites we ensure that the bp matches our 5041 * original and bypass all the accounting. 5042 */ 5043 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 5044 ASSERT(BP_EQUAL(bp, bp_orig)); 5045 } else { 5046 dsl_dataset_t *ds = os->os_dsl_dataset; 5047 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 5048 dsl_dataset_block_born(ds, bp, tx); 5049 } 5050 5051 mutex_enter(&db->db_mtx); 5052 5053 DBUF_VERIFY(db); 5054 5055 dbuf_dirty_record_t *dr = db->db_data_pending; 5056 dnode_t *dn = dr->dr_dnode; 5057 ASSERT(!list_link_active(&dr->dr_dirty_node)); 5058 ASSERT(dr->dr_dbuf == db); 5059 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 5060 list_remove(&db->db_dirty_records, dr); 5061 5062 #ifdef ZFS_DEBUG 5063 if (db->db_blkid == DMU_SPILL_BLKID) { 5064 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 5065 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 5066 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 5067 } 5068 #endif 5069 5070 if (db->db_level == 0) { 5071 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 5072 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 5073 5074 /* no dr_data if this is a NO_FILL or Direct I/O */ 5075 if (dr->dt.dl.dr_data != NULL && 5076 dr->dt.dl.dr_data != db->db_buf) { 5077 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE); 5078 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE); 5079 arc_buf_destroy(dr->dt.dl.dr_data, db); 5080 } 5081 } else { 5082 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 5083 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 5084 if (!BP_IS_HOLE(db->db_blkptr)) { 5085 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 5086 SPA_BLKPTRSHIFT; 5087 ASSERT3U(db->db_blkid, <=, 5088 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 5089 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 5090 db->db.db_size); 5091 } 5092 mutex_destroy(&dr->dt.di.dr_mtx); 5093 list_destroy(&dr->dt.di.dr_children); 5094 } 5095 5096 cv_broadcast(&db->db_changed); 5097 ASSERT(db->db_dirtycnt > 0); 5098 db->db_dirtycnt -= 1; 5099 db->db_data_pending = NULL; 5100 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 5101 5102 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 5103 zio->io_txg); 5104 5105 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 5106 } 5107 5108 static void 5109 dbuf_write_nofill_ready(zio_t *zio) 5110 { 5111 dbuf_write_ready(zio, NULL, zio->io_private); 5112 } 5113 5114 static void 5115 dbuf_write_nofill_done(zio_t *zio) 5116 { 5117 dbuf_write_done(zio, NULL, zio->io_private); 5118 } 5119 5120 static void 5121 dbuf_write_override_ready(zio_t *zio) 5122 { 5123 dbuf_dirty_record_t *dr = zio->io_private; 5124 dmu_buf_impl_t *db = dr->dr_dbuf; 5125 5126 dbuf_write_ready(zio, NULL, db); 5127 } 5128 5129 static void 5130 dbuf_write_override_done(zio_t *zio) 5131 { 5132 dbuf_dirty_record_t *dr = zio->io_private; 5133 dmu_buf_impl_t *db = dr->dr_dbuf; 5134 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 5135 5136 mutex_enter(&db->db_mtx); 5137 if (!BP_EQUAL(zio->io_bp, obp)) { 5138 if (!BP_IS_HOLE(obp)) 5139 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 5140 arc_release(dr->dt.dl.dr_data, db); 5141 } 5142 mutex_exit(&db->db_mtx); 5143 5144 dbuf_write_done(zio, NULL, db); 5145 5146 if (zio->io_abd != NULL) 5147 abd_free(zio->io_abd); 5148 } 5149 5150 typedef struct dbuf_remap_impl_callback_arg { 5151 objset_t *drica_os; 5152 uint64_t drica_blk_birth; 5153 dmu_tx_t *drica_tx; 5154 } dbuf_remap_impl_callback_arg_t; 5155 5156 static void 5157 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 5158 void *arg) 5159 { 5160 dbuf_remap_impl_callback_arg_t *drica = arg; 5161 objset_t *os = drica->drica_os; 5162 spa_t *spa = dmu_objset_spa(os); 5163 dmu_tx_t *tx = drica->drica_tx; 5164 5165 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5166 5167 if (os == spa_meta_objset(spa)) { 5168 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5169 } else { 5170 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5171 size, drica->drica_blk_birth, tx); 5172 } 5173 } 5174 5175 static void 5176 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5177 { 5178 blkptr_t bp_copy = *bp; 5179 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5180 dbuf_remap_impl_callback_arg_t drica; 5181 5182 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5183 5184 drica.drica_os = dn->dn_objset; 5185 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5186 drica.drica_tx = tx; 5187 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5188 &drica)) { 5189 /* 5190 * If the blkptr being remapped is tracked by a livelist, 5191 * then we need to make sure the livelist reflects the update. 5192 * First, cancel out the old blkptr by appending a 'FREE' 5193 * entry. Next, add an 'ALLOC' to track the new version. This 5194 * way we avoid trying to free an inaccurate blkptr at delete. 5195 * Note that embedded blkptrs are not tracked in livelists. 5196 */ 5197 if (dn->dn_objset != spa_meta_objset(spa)) { 5198 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5199 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5200 BP_GET_LOGICAL_BIRTH(bp) > 5201 ds->ds_dir->dd_origin_txg) { 5202 ASSERT(!BP_IS_EMBEDDED(bp)); 5203 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5204 ASSERT(spa_feature_is_enabled(spa, 5205 SPA_FEATURE_LIVELIST)); 5206 bplist_append(&ds->ds_dir->dd_pending_frees, 5207 bp); 5208 bplist_append(&ds->ds_dir->dd_pending_allocs, 5209 &bp_copy); 5210 } 5211 } 5212 5213 /* 5214 * The db_rwlock prevents dbuf_read_impl() from 5215 * dereferencing the BP while we are changing it. To 5216 * avoid lock contention, only grab it when we are actually 5217 * changing the BP. 5218 */ 5219 if (rw != NULL) 5220 rw_enter(rw, RW_WRITER); 5221 *bp = bp_copy; 5222 if (rw != NULL) 5223 rw_exit(rw); 5224 } 5225 } 5226 5227 /* 5228 * Remap any existing BP's to concrete vdevs, if possible. 5229 */ 5230 static void 5231 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5232 { 5233 spa_t *spa = dmu_objset_spa(db->db_objset); 5234 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5235 5236 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5237 return; 5238 5239 if (db->db_level > 0) { 5240 blkptr_t *bp = db->db.db_data; 5241 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5242 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5243 } 5244 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5245 dnode_phys_t *dnp = db->db.db_data; 5246 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5247 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5248 i += dnp[i].dn_extra_slots + 1) { 5249 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5250 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5251 &dn->dn_dbuf->db_rwlock); 5252 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5253 tx); 5254 } 5255 } 5256 } 5257 } 5258 5259 5260 /* 5261 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5262 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5263 */ 5264 static void 5265 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5266 { 5267 dmu_buf_impl_t *db = dr->dr_dbuf; 5268 dnode_t *dn = dr->dr_dnode; 5269 objset_t *os; 5270 dmu_buf_impl_t *parent = db->db_parent; 5271 uint64_t txg = tx->tx_txg; 5272 zbookmark_phys_t zb; 5273 zio_prop_t zp; 5274 zio_t *pio; /* parent I/O */ 5275 int wp_flag = 0; 5276 5277 ASSERT(dmu_tx_is_syncing(tx)); 5278 5279 os = dn->dn_objset; 5280 5281 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5282 /* 5283 * Private object buffers are released here rather than in 5284 * dbuf_dirty() since they are only modified in the syncing 5285 * context and we don't want the overhead of making multiple 5286 * copies of the data. 5287 */ 5288 if (BP_IS_HOLE(db->db_blkptr)) 5289 arc_buf_thaw(data); 5290 else 5291 dbuf_release_bp(db); 5292 dbuf_remap(dn, db, tx); 5293 } 5294 5295 if (parent != dn->dn_dbuf) { 5296 /* Our parent is an indirect block. */ 5297 /* We have a dirty parent that has been scheduled for write. */ 5298 ASSERT(parent && parent->db_data_pending); 5299 /* Our parent's buffer is one level closer to the dnode. */ 5300 ASSERT(db->db_level == parent->db_level-1); 5301 /* 5302 * We're about to modify our parent's db_data by modifying 5303 * our block pointer, so the parent must be released. 5304 */ 5305 ASSERT(arc_released(parent->db_buf)); 5306 pio = parent->db_data_pending->dr_zio; 5307 } else { 5308 /* Our parent is the dnode itself. */ 5309 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5310 db->db_blkid != DMU_SPILL_BLKID) || 5311 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5312 if (db->db_blkid != DMU_SPILL_BLKID) 5313 ASSERT3P(db->db_blkptr, ==, 5314 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5315 pio = dn->dn_zio; 5316 } 5317 5318 ASSERT(db->db_level == 0 || data == db->db_buf); 5319 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5320 ASSERT(pio); 5321 5322 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5323 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5324 db->db.db_object, db->db_level, db->db_blkid); 5325 5326 if (db->db_blkid == DMU_SPILL_BLKID) 5327 wp_flag = WP_SPILL; 5328 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5329 5330 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5331 5332 /* 5333 * We copy the blkptr now (rather than when we instantiate the dirty 5334 * record), because its value can change between open context and 5335 * syncing context. We do not need to hold dn_struct_rwlock to read 5336 * db_blkptr because we are in syncing context. 5337 */ 5338 dr->dr_bp_copy = *db->db_blkptr; 5339 5340 if (db->db_level == 0 && 5341 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5342 /* 5343 * The BP for this block has been provided by open context 5344 * (by dmu_sync(), dmu_write_direct(), 5345 * or dmu_buf_write_embedded()). 5346 */ 5347 abd_t *contents = (data != NULL) ? 5348 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5349 5350 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5351 contents, db->db.db_size, db->db.db_size, &zp, 5352 dbuf_write_override_ready, NULL, 5353 dbuf_write_override_done, 5354 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5355 mutex_enter(&db->db_mtx); 5356 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5357 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5358 dr->dt.dl.dr_copies, dr->dt.dl.dr_gang_copies, 5359 dr->dt.dl.dr_nopwrite, dr->dt.dl.dr_brtwrite); 5360 mutex_exit(&db->db_mtx); 5361 } else if (data == NULL) { 5362 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5363 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5364 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5365 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5366 dbuf_write_nofill_ready, NULL, 5367 dbuf_write_nofill_done, db, 5368 ZIO_PRIORITY_ASYNC_WRITE, 5369 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5370 } else { 5371 ASSERT(arc_released(data)); 5372 5373 /* 5374 * For indirect blocks, we want to setup the children 5375 * ready callback so that we can properly handle an indirect 5376 * block that only contains holes. 5377 */ 5378 arc_write_done_func_t *children_ready_cb = NULL; 5379 if (db->db_level != 0) 5380 children_ready_cb = dbuf_write_children_ready; 5381 5382 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5383 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5384 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready, 5385 children_ready_cb, dbuf_write_done, db, 5386 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5387 } 5388 } 5389 5390 EXPORT_SYMBOL(dbuf_find); 5391 EXPORT_SYMBOL(dbuf_is_metadata); 5392 EXPORT_SYMBOL(dbuf_destroy); 5393 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5394 EXPORT_SYMBOL(dbuf_whichblock); 5395 EXPORT_SYMBOL(dbuf_read); 5396 EXPORT_SYMBOL(dbuf_unoverride); 5397 EXPORT_SYMBOL(dbuf_free_range); 5398 EXPORT_SYMBOL(dbuf_new_size); 5399 EXPORT_SYMBOL(dbuf_release_bp); 5400 EXPORT_SYMBOL(dbuf_dirty); 5401 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5402 EXPORT_SYMBOL(dmu_buf_will_dirty); 5403 EXPORT_SYMBOL(dmu_buf_is_dirty); 5404 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio); 5405 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5406 EXPORT_SYMBOL(dmu_buf_will_fill); 5407 EXPORT_SYMBOL(dmu_buf_fill_done); 5408 EXPORT_SYMBOL(dmu_buf_rele); 5409 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5410 EXPORT_SYMBOL(dbuf_prefetch); 5411 EXPORT_SYMBOL(dbuf_hold_impl); 5412 EXPORT_SYMBOL(dbuf_hold); 5413 EXPORT_SYMBOL(dbuf_hold_level); 5414 EXPORT_SYMBOL(dbuf_create_bonus); 5415 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5416 EXPORT_SYMBOL(dbuf_rm_spill); 5417 EXPORT_SYMBOL(dbuf_add_ref); 5418 EXPORT_SYMBOL(dbuf_rele); 5419 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5420 EXPORT_SYMBOL(dbuf_refcount); 5421 EXPORT_SYMBOL(dbuf_sync_list); 5422 EXPORT_SYMBOL(dmu_buf_set_user); 5423 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5424 EXPORT_SYMBOL(dmu_buf_get_user); 5425 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5426 5427 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5428 "Maximum size in bytes of the dbuf cache."); 5429 5430 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5431 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5432 5433 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5434 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5435 5436 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5437 "Maximum size in bytes of dbuf metadata cache."); 5438 5439 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5440 "Set size of dbuf cache to log2 fraction of arc size."); 5441 5442 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5443 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5444 5445 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5446 "Set size of dbuf cache mutex array as log2 shift."); 5447