1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 kmem_cache_t *dbuf_dirty_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 436 DBUF_STAT_MAX(hash_elements_max, he); 437 438 return (NULL); 439 } 440 441 /* 442 * This returns whether this dbuf should be stored in the metadata cache, which 443 * is based on whether it's from one of the dnode types that store data related 444 * to traversing dataset hierarchies. 445 */ 446 static boolean_t 447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 448 { 449 DB_DNODE_ENTER(db); 450 dmu_object_type_t type = DB_DNODE(db)->dn_type; 451 DB_DNODE_EXIT(db); 452 453 /* Check if this dbuf is one of the types we care about */ 454 if (DMU_OT_IS_METADATA_CACHED(type)) { 455 /* If we hit this, then we set something up wrong in dmu_ot */ 456 ASSERT(DMU_OT_IS_METADATA(type)); 457 458 /* 459 * Sanity check for small-memory systems: don't allocate too 460 * much memory for this purpose. 461 */ 462 if (zfs_refcount_count( 463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 464 dbuf_metadata_cache_target_bytes()) { 465 DBUF_STAT_BUMP(metadata_cache_overflow); 466 return (B_FALSE); 467 } 468 469 return (B_TRUE); 470 } 471 472 return (B_FALSE); 473 } 474 475 /* 476 * Remove an entry from the hash table. It must be in the EVICTING state. 477 */ 478 static void 479 dbuf_hash_remove(dmu_buf_impl_t *db) 480 { 481 dbuf_hash_table_t *h = &dbuf_hash_table; 482 uint64_t idx; 483 dmu_buf_impl_t *dbf, **dbp; 484 485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 486 db->db_blkid), ==, db->db_hash); 487 idx = db->db_hash & h->hash_table_mask; 488 489 /* 490 * We mustn't hold db_mtx to maintain lock ordering: 491 * DBUF_HASH_MUTEX > db_mtx. 492 */ 493 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 494 ASSERT(db->db_state == DB_EVICTING); 495 ASSERT(!MUTEX_HELD(&db->db_mtx)); 496 497 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 498 dbp = &h->hash_table[idx]; 499 while ((dbf = *dbp) != db) { 500 dbp = &dbf->db_hash_next; 501 ASSERT(dbf != NULL); 502 } 503 *dbp = db->db_hash_next; 504 db->db_hash_next = NULL; 505 if (h->hash_table[idx] && 506 h->hash_table[idx]->db_hash_next == NULL) 507 DBUF_STAT_BUMPDOWN(hash_chains); 508 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 510 } 511 512 typedef enum { 513 DBVU_EVICTING, 514 DBVU_NOT_EVICTING 515 } dbvu_verify_type_t; 516 517 static void 518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 519 { 520 #ifdef ZFS_DEBUG 521 int64_t holds; 522 523 if (db->db_user == NULL) 524 return; 525 526 /* Only data blocks support the attachment of user data. */ 527 ASSERT(db->db_level == 0); 528 529 /* Clients must resolve a dbuf before attaching user data. */ 530 ASSERT(db->db.db_data != NULL); 531 ASSERT3U(db->db_state, ==, DB_CACHED); 532 533 holds = zfs_refcount_count(&db->db_holds); 534 if (verify_type == DBVU_EVICTING) { 535 /* 536 * Immediate eviction occurs when holds == dirtycnt. 537 * For normal eviction buffers, holds is zero on 538 * eviction, except when dbuf_fix_old_data() calls 539 * dbuf_clear_data(). However, the hold count can grow 540 * during eviction even though db_mtx is held (see 541 * dmu_bonus_hold() for an example), so we can only 542 * test the generic invariant that holds >= dirtycnt. 543 */ 544 ASSERT3U(holds, >=, db->db_dirtycnt); 545 } else { 546 if (db->db_user_immediate_evict == TRUE) 547 ASSERT3U(holds, >=, db->db_dirtycnt); 548 else 549 ASSERT3U(holds, >, 0); 550 } 551 #endif 552 } 553 554 static void 555 dbuf_evict_user(dmu_buf_impl_t *db) 556 { 557 dmu_buf_user_t *dbu = db->db_user; 558 559 ASSERT(MUTEX_HELD(&db->db_mtx)); 560 561 if (dbu == NULL) 562 return; 563 564 dbuf_verify_user(db, DBVU_EVICTING); 565 db->db_user = NULL; 566 567 #ifdef ZFS_DEBUG 568 if (dbu->dbu_clear_on_evict_dbufp != NULL) 569 *dbu->dbu_clear_on_evict_dbufp = NULL; 570 #endif 571 572 if (db->db_caching_status != DB_NO_CACHE) { 573 /* 574 * This is a cached dbuf, so the size of the user data is 575 * included in its cached amount. We adjust it here because the 576 * user data has already been detached from the dbuf, and the 577 * sync functions are not supposed to touch it (the dbuf might 578 * not exist anymore by the time the sync functions run. 579 */ 580 uint64_t size = dbu->dbu_size; 581 (void) zfs_refcount_remove_many( 582 &dbuf_caches[db->db_caching_status].size, size, dbu); 583 if (db->db_caching_status == DB_DBUF_CACHE) 584 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 585 } 586 587 /* 588 * There are two eviction callbacks - one that we call synchronously 589 * and one that we invoke via a taskq. The async one is useful for 590 * avoiding lock order reversals and limiting stack depth. 591 * 592 * Note that if we have a sync callback but no async callback, 593 * it's likely that the sync callback will free the structure 594 * containing the dbu. In that case we need to take care to not 595 * dereference dbu after calling the sync evict func. 596 */ 597 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 598 599 if (dbu->dbu_evict_func_sync != NULL) 600 dbu->dbu_evict_func_sync(dbu); 601 602 if (has_async) { 603 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 604 dbu, 0, &dbu->dbu_tqent); 605 } 606 } 607 608 boolean_t 609 dbuf_is_metadata(dmu_buf_impl_t *db) 610 { 611 /* 612 * Consider indirect blocks and spill blocks to be meta data. 613 */ 614 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 615 return (B_TRUE); 616 } else { 617 boolean_t is_metadata; 618 619 DB_DNODE_ENTER(db); 620 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 621 DB_DNODE_EXIT(db); 622 623 return (is_metadata); 624 } 625 } 626 627 /* 628 * We want to exclude buffers that are on a special allocation class from 629 * L2ARC. 630 */ 631 boolean_t 632 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp) 633 { 634 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 635 (db->db_objset->os_secondary_cache == 636 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 637 if (l2arc_exclude_special == 0) 638 return (B_TRUE); 639 640 /* 641 * bp must be checked in the event it was passed from 642 * dbuf_read_impl() as the result of a the BP being set from 643 * a Direct I/O write in dbuf_read(). See comments in 644 * dbuf_read(). 645 */ 646 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp; 647 648 if (db_bp == NULL || BP_IS_HOLE(db_bp)) 649 return (B_FALSE); 650 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva); 651 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 652 vdev_t *vd = NULL; 653 654 if (vdev < rvd->vdev_children) 655 vd = rvd->vdev_child[vdev]; 656 657 if (vd == NULL) 658 return (B_TRUE); 659 660 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 661 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 662 return (B_TRUE); 663 } 664 return (B_FALSE); 665 } 666 667 static inline boolean_t 668 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 669 { 670 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 671 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 672 (level > 0 || 673 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 674 if (l2arc_exclude_special == 0) 675 return (B_TRUE); 676 677 if (bp == NULL || BP_IS_HOLE(bp)) 678 return (B_FALSE); 679 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 680 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 681 vdev_t *vd = NULL; 682 683 if (vdev < rvd->vdev_children) 684 vd = rvd->vdev_child[vdev]; 685 686 if (vd == NULL) 687 return (B_TRUE); 688 689 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 690 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 691 return (B_TRUE); 692 } 693 return (B_FALSE); 694 } 695 696 697 /* 698 * This function *must* return indices evenly distributed between all 699 * sublists of the multilist. This is needed due to how the dbuf eviction 700 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 701 * distributed between all sublists and uses this assumption when 702 * deciding which sublist to evict from and how much to evict from it. 703 */ 704 static unsigned int 705 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 706 { 707 dmu_buf_impl_t *db = obj; 708 709 /* 710 * The assumption here, is the hash value for a given 711 * dmu_buf_impl_t will remain constant throughout it's lifetime 712 * (i.e. it's objset, object, level and blkid fields don't change). 713 * Thus, we don't need to store the dbuf's sublist index 714 * on insertion, as this index can be recalculated on removal. 715 * 716 * Also, the low order bits of the hash value are thought to be 717 * distributed evenly. Otherwise, in the case that the multilist 718 * has a power of two number of sublists, each sublists' usage 719 * would not be evenly distributed. In this context full 64bit 720 * division would be a waste of time, so limit it to 32 bits. 721 */ 722 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 723 db->db_level, db->db_blkid) % 724 multilist_get_num_sublists(ml)); 725 } 726 727 /* 728 * The target size of the dbuf cache can grow with the ARC target, 729 * unless limited by the tunable dbuf_cache_max_bytes. 730 */ 731 static inline unsigned long 732 dbuf_cache_target_bytes(void) 733 { 734 return (MIN(dbuf_cache_max_bytes, 735 arc_target_bytes() >> dbuf_cache_shift)); 736 } 737 738 /* 739 * The target size of the dbuf metadata cache can grow with the ARC target, 740 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 741 */ 742 static inline unsigned long 743 dbuf_metadata_cache_target_bytes(void) 744 { 745 return (MIN(dbuf_metadata_cache_max_bytes, 746 arc_target_bytes() >> dbuf_metadata_cache_shift)); 747 } 748 749 static inline uint64_t 750 dbuf_cache_hiwater_bytes(void) 751 { 752 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 753 return (dbuf_cache_target + 754 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 755 } 756 757 static inline uint64_t 758 dbuf_cache_lowater_bytes(void) 759 { 760 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 761 return (dbuf_cache_target - 762 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 763 } 764 765 static inline boolean_t 766 dbuf_cache_above_lowater(void) 767 { 768 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 769 dbuf_cache_lowater_bytes()); 770 } 771 772 /* 773 * Evict the oldest eligible dbuf from the dbuf cache. 774 */ 775 static void 776 dbuf_evict_one(void) 777 { 778 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 779 multilist_sublist_t *mls = multilist_sublist_lock_idx( 780 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 781 782 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 783 784 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 785 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 786 db = multilist_sublist_prev(mls, db); 787 } 788 789 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 790 multilist_sublist_t *, mls); 791 792 if (db != NULL) { 793 multilist_sublist_remove(mls, db); 794 multilist_sublist_unlock(mls); 795 uint64_t size = db->db.db_size; 796 uint64_t usize = dmu_buf_user_size(&db->db); 797 (void) zfs_refcount_remove_many( 798 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 799 (void) zfs_refcount_remove_many( 800 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 801 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 802 DBUF_STAT_BUMPDOWN(cache_count); 803 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 804 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 805 db->db_caching_status = DB_NO_CACHE; 806 dbuf_destroy(db); 807 DBUF_STAT_BUMP(cache_total_evicts); 808 } else { 809 multilist_sublist_unlock(mls); 810 } 811 } 812 813 /* 814 * The dbuf evict thread is responsible for aging out dbufs from the 815 * cache. Once the cache has reached it's maximum size, dbufs are removed 816 * and destroyed. The eviction thread will continue running until the size 817 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 818 * out of the cache it is destroyed and becomes eligible for arc eviction. 819 */ 820 static __attribute__((noreturn)) void 821 dbuf_evict_thread(void *unused) 822 { 823 (void) unused; 824 callb_cpr_t cpr; 825 826 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 827 828 mutex_enter(&dbuf_evict_lock); 829 while (!dbuf_evict_thread_exit) { 830 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 831 CALLB_CPR_SAFE_BEGIN(&cpr); 832 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 833 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 834 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 835 } 836 mutex_exit(&dbuf_evict_lock); 837 838 /* 839 * Keep evicting as long as we're above the low water mark 840 * for the cache. We do this without holding the locks to 841 * minimize lock contention. 842 */ 843 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 844 dbuf_evict_one(); 845 } 846 847 mutex_enter(&dbuf_evict_lock); 848 } 849 850 dbuf_evict_thread_exit = B_FALSE; 851 cv_broadcast(&dbuf_evict_cv); 852 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 853 thread_exit(); 854 } 855 856 /* 857 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 858 * If the dbuf cache is at its high water mark, then evict a dbuf from the 859 * dbuf cache using the caller's context. 860 */ 861 static void 862 dbuf_evict_notify(uint64_t size) 863 { 864 /* 865 * We check if we should evict without holding the dbuf_evict_lock, 866 * because it's OK to occasionally make the wrong decision here, 867 * and grabbing the lock results in massive lock contention. 868 */ 869 if (size > dbuf_cache_target_bytes()) { 870 if (size > dbuf_cache_hiwater_bytes()) 871 dbuf_evict_one(); 872 cv_signal(&dbuf_evict_cv); 873 } 874 } 875 876 static int 877 dbuf_kstat_update(kstat_t *ksp, int rw) 878 { 879 dbuf_stats_t *ds = ksp->ks_data; 880 dbuf_hash_table_t *h = &dbuf_hash_table; 881 882 if (rw == KSTAT_WRITE) 883 return (SET_ERROR(EACCES)); 884 885 ds->cache_count.value.ui64 = 886 wmsum_value(&dbuf_sums.cache_count); 887 ds->cache_size_bytes.value.ui64 = 888 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 889 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 890 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 891 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 892 ds->cache_total_evicts.value.ui64 = 893 wmsum_value(&dbuf_sums.cache_total_evicts); 894 for (int i = 0; i < DN_MAX_LEVELS; i++) { 895 ds->cache_levels[i].value.ui64 = 896 wmsum_value(&dbuf_sums.cache_levels[i]); 897 ds->cache_levels_bytes[i].value.ui64 = 898 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 899 } 900 ds->hash_hits.value.ui64 = 901 wmsum_value(&dbuf_sums.hash_hits); 902 ds->hash_misses.value.ui64 = 903 wmsum_value(&dbuf_sums.hash_misses); 904 ds->hash_collisions.value.ui64 = 905 wmsum_value(&dbuf_sums.hash_collisions); 906 ds->hash_chains.value.ui64 = 907 wmsum_value(&dbuf_sums.hash_chains); 908 ds->hash_insert_race.value.ui64 = 909 wmsum_value(&dbuf_sums.hash_insert_race); 910 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 911 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 912 ds->metadata_cache_count.value.ui64 = 913 wmsum_value(&dbuf_sums.metadata_cache_count); 914 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 915 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 916 ds->metadata_cache_overflow.value.ui64 = 917 wmsum_value(&dbuf_sums.metadata_cache_overflow); 918 return (0); 919 } 920 921 void 922 dbuf_init(void) 923 { 924 uint64_t hmsize, hsize = 1ULL << 16; 925 dbuf_hash_table_t *h = &dbuf_hash_table; 926 927 /* 928 * The hash table is big enough to fill one eighth of physical memory 929 * with an average block size of zfs_arc_average_blocksize (default 8K). 930 * By default, the table will take up 931 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 932 */ 933 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 934 hsize <<= 1; 935 936 h->hash_table = NULL; 937 while (h->hash_table == NULL) { 938 h->hash_table_mask = hsize - 1; 939 940 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 941 if (h->hash_table == NULL) 942 hsize >>= 1; 943 944 ASSERT3U(hsize, >=, 1ULL << 10); 945 } 946 947 /* 948 * The hash table buckets are protected by an array of mutexes where 949 * each mutex is reponsible for protecting 128 buckets. A minimum 950 * array size of 8192 is targeted to avoid contention. 951 */ 952 if (dbuf_mutex_cache_shift == 0) 953 hmsize = MAX(hsize >> 7, 1ULL << 13); 954 else 955 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 956 957 h->hash_mutexes = NULL; 958 while (h->hash_mutexes == NULL) { 959 h->hash_mutex_mask = hmsize - 1; 960 961 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 962 KM_SLEEP); 963 if (h->hash_mutexes == NULL) 964 hmsize >>= 1; 965 } 966 967 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 968 sizeof (dmu_buf_impl_t), 969 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 970 dbuf_dirty_kmem_cache = kmem_cache_create("dbuf_dirty_record_t", 971 sizeof (dbuf_dirty_record_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 972 973 for (int i = 0; i < hmsize; i++) 974 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 975 976 dbuf_stats_init(h); 977 978 /* 979 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 980 * configuration is not required. 981 */ 982 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 983 984 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 985 multilist_create(&dbuf_caches[dcs].cache, 986 sizeof (dmu_buf_impl_t), 987 offsetof(dmu_buf_impl_t, db_cache_link), 988 dbuf_cache_multilist_index_func); 989 zfs_refcount_create(&dbuf_caches[dcs].size); 990 } 991 992 dbuf_evict_thread_exit = B_FALSE; 993 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 994 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 995 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 996 NULL, 0, &p0, TS_RUN, minclsyspri); 997 998 wmsum_init(&dbuf_sums.cache_count, 0); 999 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 1000 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1001 wmsum_init(&dbuf_sums.cache_levels[i], 0); 1002 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 1003 } 1004 wmsum_init(&dbuf_sums.hash_hits, 0); 1005 wmsum_init(&dbuf_sums.hash_misses, 0); 1006 wmsum_init(&dbuf_sums.hash_collisions, 0); 1007 wmsum_init(&dbuf_sums.hash_chains, 0); 1008 wmsum_init(&dbuf_sums.hash_insert_race, 0); 1009 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1010 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1011 1012 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1013 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1014 KSTAT_FLAG_VIRTUAL); 1015 if (dbuf_ksp != NULL) { 1016 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1017 snprintf(dbuf_stats.cache_levels[i].name, 1018 KSTAT_STRLEN, "cache_level_%d", i); 1019 dbuf_stats.cache_levels[i].data_type = 1020 KSTAT_DATA_UINT64; 1021 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1022 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1023 dbuf_stats.cache_levels_bytes[i].data_type = 1024 KSTAT_DATA_UINT64; 1025 } 1026 dbuf_ksp->ks_data = &dbuf_stats; 1027 dbuf_ksp->ks_update = dbuf_kstat_update; 1028 kstat_install(dbuf_ksp); 1029 } 1030 } 1031 1032 void 1033 dbuf_fini(void) 1034 { 1035 dbuf_hash_table_t *h = &dbuf_hash_table; 1036 1037 dbuf_stats_destroy(); 1038 1039 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1040 mutex_destroy(&h->hash_mutexes[i]); 1041 1042 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1043 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1044 sizeof (kmutex_t)); 1045 1046 kmem_cache_destroy(dbuf_kmem_cache); 1047 kmem_cache_destroy(dbuf_dirty_kmem_cache); 1048 taskq_destroy(dbu_evict_taskq); 1049 1050 mutex_enter(&dbuf_evict_lock); 1051 dbuf_evict_thread_exit = B_TRUE; 1052 while (dbuf_evict_thread_exit) { 1053 cv_signal(&dbuf_evict_cv); 1054 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1055 } 1056 mutex_exit(&dbuf_evict_lock); 1057 1058 mutex_destroy(&dbuf_evict_lock); 1059 cv_destroy(&dbuf_evict_cv); 1060 1061 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1062 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1063 multilist_destroy(&dbuf_caches[dcs].cache); 1064 } 1065 1066 if (dbuf_ksp != NULL) { 1067 kstat_delete(dbuf_ksp); 1068 dbuf_ksp = NULL; 1069 } 1070 1071 wmsum_fini(&dbuf_sums.cache_count); 1072 wmsum_fini(&dbuf_sums.cache_total_evicts); 1073 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1074 wmsum_fini(&dbuf_sums.cache_levels[i]); 1075 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1076 } 1077 wmsum_fini(&dbuf_sums.hash_hits); 1078 wmsum_fini(&dbuf_sums.hash_misses); 1079 wmsum_fini(&dbuf_sums.hash_collisions); 1080 wmsum_fini(&dbuf_sums.hash_chains); 1081 wmsum_fini(&dbuf_sums.hash_insert_race); 1082 wmsum_fini(&dbuf_sums.metadata_cache_count); 1083 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1084 } 1085 1086 /* 1087 * Other stuff. 1088 */ 1089 1090 #ifdef ZFS_DEBUG 1091 static void 1092 dbuf_verify(dmu_buf_impl_t *db) 1093 { 1094 dnode_t *dn; 1095 dbuf_dirty_record_t *dr; 1096 uint32_t txg_prev; 1097 1098 ASSERT(MUTEX_HELD(&db->db_mtx)); 1099 1100 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1101 return; 1102 1103 ASSERT(db->db_objset != NULL); 1104 DB_DNODE_ENTER(db); 1105 dn = DB_DNODE(db); 1106 if (dn == NULL) { 1107 ASSERT(db->db_parent == NULL); 1108 ASSERT(db->db_blkptr == NULL); 1109 } else { 1110 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1111 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1112 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1113 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1114 db->db_blkid == DMU_SPILL_BLKID || 1115 !avl_is_empty(&dn->dn_dbufs)); 1116 } 1117 if (db->db_blkid == DMU_BONUS_BLKID) { 1118 ASSERT(dn != NULL); 1119 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1120 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1121 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1122 ASSERT(dn != NULL); 1123 ASSERT0(db->db.db_offset); 1124 } else { 1125 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1126 } 1127 1128 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1129 ASSERT(dr->dr_dbuf == db); 1130 txg_prev = dr->dr_txg; 1131 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1132 dr = list_next(&db->db_dirty_records, dr)) { 1133 ASSERT(dr->dr_dbuf == db); 1134 ASSERT(txg_prev > dr->dr_txg); 1135 txg_prev = dr->dr_txg; 1136 } 1137 } 1138 1139 /* 1140 * We can't assert that db_size matches dn_datablksz because it 1141 * can be momentarily different when another thread is doing 1142 * dnode_set_blksz(). 1143 */ 1144 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1145 dr = db->db_data_pending; 1146 /* 1147 * It should only be modified in syncing context, so 1148 * make sure we only have one copy of the data. 1149 */ 1150 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1151 } 1152 1153 /* verify db->db_blkptr */ 1154 if (db->db_blkptr) { 1155 if (db->db_parent == dn->dn_dbuf) { 1156 /* db is pointed to by the dnode */ 1157 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1158 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1159 ASSERT(db->db_parent == NULL); 1160 else 1161 ASSERT(db->db_parent != NULL); 1162 if (db->db_blkid != DMU_SPILL_BLKID) 1163 ASSERT3P(db->db_blkptr, ==, 1164 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1165 } else { 1166 /* db is pointed to by an indirect block */ 1167 int epb __maybe_unused = db->db_parent->db.db_size >> 1168 SPA_BLKPTRSHIFT; 1169 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1170 ASSERT3U(db->db_parent->db.db_object, ==, 1171 db->db.db_object); 1172 /* 1173 * dnode_grow_indblksz() can make this fail if we don't 1174 * have the parent's rwlock. XXX indblksz no longer 1175 * grows. safe to do this now? 1176 */ 1177 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1178 ASSERT3P(db->db_blkptr, ==, 1179 ((blkptr_t *)db->db_parent->db.db_data + 1180 db->db_blkid % epb)); 1181 } 1182 } 1183 } 1184 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1185 (db->db_buf == NULL || db->db_buf->b_data) && 1186 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1187 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1188 /* 1189 * If the blkptr isn't set but they have nonzero data, 1190 * it had better be dirty, otherwise we'll lose that 1191 * data when we evict this buffer. 1192 * 1193 * There is an exception to this rule for indirect blocks; in 1194 * this case, if the indirect block is a hole, we fill in a few 1195 * fields on each of the child blocks (importantly, birth time) 1196 * to prevent hole birth times from being lost when you 1197 * partially fill in a hole. 1198 */ 1199 if (db->db_dirtycnt == 0) { 1200 if (db->db_level == 0) { 1201 uint64_t *buf = db->db.db_data; 1202 int i; 1203 1204 for (i = 0; i < db->db.db_size >> 3; i++) { 1205 ASSERT(buf[i] == 0); 1206 } 1207 } else { 1208 blkptr_t *bps = db->db.db_data; 1209 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1210 db->db.db_size); 1211 /* 1212 * We want to verify that all the blkptrs in the 1213 * indirect block are holes, but we may have 1214 * automatically set up a few fields for them. 1215 * We iterate through each blkptr and verify 1216 * they only have those fields set. 1217 */ 1218 for (int i = 0; 1219 i < db->db.db_size / sizeof (blkptr_t); 1220 i++) { 1221 blkptr_t *bp = &bps[i]; 1222 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1223 &bp->blk_cksum)); 1224 ASSERT( 1225 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1226 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1227 DVA_IS_EMPTY(&bp->blk_dva[2])); 1228 ASSERT0(bp->blk_fill); 1229 ASSERT0(bp->blk_pad[0]); 1230 ASSERT0(bp->blk_pad[1]); 1231 ASSERT(!BP_IS_EMBEDDED(bp)); 1232 ASSERT(BP_IS_HOLE(bp)); 1233 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1234 } 1235 } 1236 } 1237 } 1238 DB_DNODE_EXIT(db); 1239 } 1240 #endif 1241 1242 static void 1243 dbuf_clear_data(dmu_buf_impl_t *db) 1244 { 1245 ASSERT(MUTEX_HELD(&db->db_mtx)); 1246 dbuf_evict_user(db); 1247 ASSERT3P(db->db_buf, ==, NULL); 1248 db->db.db_data = NULL; 1249 if (db->db_state != DB_NOFILL) { 1250 db->db_state = DB_UNCACHED; 1251 DTRACE_SET_STATE(db, "clear data"); 1252 } 1253 } 1254 1255 static void 1256 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1257 { 1258 ASSERT(MUTEX_HELD(&db->db_mtx)); 1259 ASSERT(buf != NULL); 1260 1261 db->db_buf = buf; 1262 ASSERT(buf->b_data != NULL); 1263 db->db.db_data = buf->b_data; 1264 } 1265 1266 static arc_buf_t * 1267 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1268 { 1269 spa_t *spa = db->db_objset->os_spa; 1270 1271 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1272 } 1273 1274 /* 1275 * Loan out an arc_buf for read. Return the loaned arc_buf. 1276 */ 1277 arc_buf_t * 1278 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1279 { 1280 arc_buf_t *abuf; 1281 1282 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1283 mutex_enter(&db->db_mtx); 1284 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1285 int blksz = db->db.db_size; 1286 spa_t *spa = db->db_objset->os_spa; 1287 1288 mutex_exit(&db->db_mtx); 1289 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1290 memcpy(abuf->b_data, db->db.db_data, blksz); 1291 } else { 1292 abuf = db->db_buf; 1293 arc_loan_inuse_buf(abuf, db); 1294 db->db_buf = NULL; 1295 dbuf_clear_data(db); 1296 mutex_exit(&db->db_mtx); 1297 } 1298 return (abuf); 1299 } 1300 1301 /* 1302 * Calculate which level n block references the data at the level 0 offset 1303 * provided. 1304 */ 1305 uint64_t 1306 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1307 { 1308 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1309 /* 1310 * The level n blkid is equal to the level 0 blkid divided by 1311 * the number of level 0s in a level n block. 1312 * 1313 * The level 0 blkid is offset >> datablkshift = 1314 * offset / 2^datablkshift. 1315 * 1316 * The number of level 0s in a level n is the number of block 1317 * pointers in an indirect block, raised to the power of level. 1318 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1319 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1320 * 1321 * Thus, the level n blkid is: offset / 1322 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1323 * = offset / 2^(datablkshift + level * 1324 * (indblkshift - SPA_BLKPTRSHIFT)) 1325 * = offset >> (datablkshift + level * 1326 * (indblkshift - SPA_BLKPTRSHIFT)) 1327 */ 1328 1329 const unsigned exp = dn->dn_datablkshift + 1330 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1331 1332 if (exp >= 8 * sizeof (offset)) { 1333 /* This only happens on the highest indirection level */ 1334 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1335 return (0); 1336 } 1337 1338 ASSERT3U(exp, <, 8 * sizeof (offset)); 1339 1340 return (offset >> exp); 1341 } else { 1342 ASSERT3U(offset, <, dn->dn_datablksz); 1343 return (0); 1344 } 1345 } 1346 1347 /* 1348 * This function is used to lock the parent of the provided dbuf. This should be 1349 * used when modifying or reading db_blkptr. 1350 */ 1351 db_lock_type_t 1352 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1353 { 1354 enum db_lock_type ret = DLT_NONE; 1355 if (db->db_parent != NULL) { 1356 rw_enter(&db->db_parent->db_rwlock, rw); 1357 ret = DLT_PARENT; 1358 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1359 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1360 tag); 1361 ret = DLT_OBJSET; 1362 } 1363 /* 1364 * We only return a DLT_NONE lock when it's the top-most indirect block 1365 * of the meta-dnode of the MOS. 1366 */ 1367 return (ret); 1368 } 1369 1370 /* 1371 * We need to pass the lock type in because it's possible that the block will 1372 * move from being the topmost indirect block in a dnode (and thus, have no 1373 * parent) to not the top-most via an indirection increase. This would cause a 1374 * panic if we didn't pass the lock type in. 1375 */ 1376 void 1377 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1378 { 1379 if (type == DLT_PARENT) 1380 rw_exit(&db->db_parent->db_rwlock); 1381 else if (type == DLT_OBJSET) 1382 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1383 } 1384 1385 static void 1386 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1387 arc_buf_t *buf, void *vdb) 1388 { 1389 (void) zb, (void) bp; 1390 dmu_buf_impl_t *db = vdb; 1391 1392 mutex_enter(&db->db_mtx); 1393 ASSERT3U(db->db_state, ==, DB_READ); 1394 1395 /* 1396 * All reads are synchronous, so we must have a hold on the dbuf 1397 */ 1398 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1399 ASSERT(db->db_buf == NULL); 1400 ASSERT(db->db.db_data == NULL); 1401 if (buf == NULL) { 1402 /* i/o error */ 1403 ASSERT(zio == NULL || zio->io_error != 0); 1404 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1405 ASSERT3P(db->db_buf, ==, NULL); 1406 db->db_state = DB_UNCACHED; 1407 DTRACE_SET_STATE(db, "i/o error"); 1408 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1409 /* freed in flight */ 1410 ASSERT(zio == NULL || zio->io_error == 0); 1411 arc_release(buf, db); 1412 memset(buf->b_data, 0, db->db.db_size); 1413 arc_buf_freeze(buf); 1414 db->db_freed_in_flight = FALSE; 1415 dbuf_set_data(db, buf); 1416 db->db_state = DB_CACHED; 1417 DTRACE_SET_STATE(db, "freed in flight"); 1418 } else { 1419 /* success */ 1420 ASSERT(zio == NULL || zio->io_error == 0); 1421 dbuf_set_data(db, buf); 1422 db->db_state = DB_CACHED; 1423 DTRACE_SET_STATE(db, "successful read"); 1424 } 1425 cv_broadcast(&db->db_changed); 1426 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1427 } 1428 1429 /* 1430 * Shortcut for performing reads on bonus dbufs. Returns 1431 * an error if we fail to verify the dnode associated with 1432 * a decrypted block. Otherwise success. 1433 */ 1434 static int 1435 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1436 { 1437 int bonuslen, max_bonuslen; 1438 1439 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1440 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1441 ASSERT(MUTEX_HELD(&db->db_mtx)); 1442 ASSERT(DB_DNODE_HELD(db)); 1443 ASSERT3U(bonuslen, <=, db->db.db_size); 1444 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1445 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1446 if (bonuslen < max_bonuslen) 1447 memset(db->db.db_data, 0, max_bonuslen); 1448 if (bonuslen) 1449 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1450 db->db_state = DB_CACHED; 1451 DTRACE_SET_STATE(db, "bonus buffer filled"); 1452 return (0); 1453 } 1454 1455 static void 1456 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1457 { 1458 blkptr_t *bps = db->db.db_data; 1459 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1460 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1461 1462 for (int i = 0; i < n_bps; i++) { 1463 blkptr_t *bp = &bps[i]; 1464 1465 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1466 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1467 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1468 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1469 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1470 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1471 } 1472 } 1473 1474 /* 1475 * Handle reads on dbufs that are holes, if necessary. This function 1476 * requires that the dbuf's mutex is held. Returns success (0) if action 1477 * was taken, ENOENT if no action was taken. 1478 */ 1479 static int 1480 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1481 { 1482 ASSERT(MUTEX_HELD(&db->db_mtx)); 1483 1484 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1485 /* 1486 * For level 0 blocks only, if the above check fails: 1487 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1488 * processes the delete record and clears the bp while we are waiting 1489 * for the dn_mtx (resulting in a "no" from block_freed). 1490 */ 1491 if (!is_hole && db->db_level == 0) 1492 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1493 1494 if (is_hole) { 1495 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1496 memset(db->db.db_data, 0, db->db.db_size); 1497 1498 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1499 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1500 dbuf_handle_indirect_hole(db, dn, bp); 1501 } 1502 db->db_state = DB_CACHED; 1503 DTRACE_SET_STATE(db, "hole read satisfied"); 1504 return (0); 1505 } 1506 return (ENOENT); 1507 } 1508 1509 /* 1510 * This function ensures that, when doing a decrypting read of a block, 1511 * we make sure we have decrypted the dnode associated with it. We must do 1512 * this so that we ensure we are fully authenticating the checksum-of-MACs 1513 * tree from the root of the objset down to this block. Indirect blocks are 1514 * always verified against their secure checksum-of-MACs assuming that the 1515 * dnode containing them is correct. Now that we are doing a decrypting read, 1516 * we can be sure that the key is loaded and verify that assumption. This is 1517 * especially important considering that we always read encrypted dnode 1518 * blocks as raw data (without verifying their MACs) to start, and 1519 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1520 */ 1521 static int 1522 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1523 { 1524 objset_t *os = db->db_objset; 1525 dmu_buf_impl_t *dndb; 1526 arc_buf_t *dnbuf; 1527 zbookmark_phys_t zb; 1528 int err; 1529 1530 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1531 !os->os_encrypted || os->os_raw_receive || 1532 (dndb = dn->dn_dbuf) == NULL) 1533 return (0); 1534 1535 dnbuf = dndb->db_buf; 1536 if (!arc_is_encrypted(dnbuf)) 1537 return (0); 1538 1539 mutex_enter(&dndb->db_mtx); 1540 1541 /* 1542 * Since dnode buffer is modified by sync process, there can be only 1543 * one copy of it. It means we can not modify (decrypt) it while it 1544 * is being written. I don't see how this may happen now, since 1545 * encrypted dnode writes by receive should be completed before any 1546 * plain-text reads due to txg wait, but better be safe than sorry. 1547 */ 1548 while (1) { 1549 if (!arc_is_encrypted(dnbuf)) { 1550 mutex_exit(&dndb->db_mtx); 1551 return (0); 1552 } 1553 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1554 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1555 break; 1556 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1557 }; 1558 1559 SET_BOOKMARK(&zb, dmu_objset_id(os), 1560 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1561 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1562 1563 /* 1564 * An error code of EACCES tells us that the key is still not 1565 * available. This is ok if we are only reading authenticated 1566 * (and therefore non-encrypted) blocks. 1567 */ 1568 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1569 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1570 (db->db_blkid == DMU_BONUS_BLKID && 1571 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1572 err = 0; 1573 1574 mutex_exit(&dndb->db_mtx); 1575 1576 return (err); 1577 } 1578 1579 /* 1580 * Drops db_mtx and the parent lock specified by dblt and tag before 1581 * returning. 1582 */ 1583 static int 1584 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, 1585 db_lock_type_t dblt, blkptr_t *bp, const void *tag) 1586 { 1587 zbookmark_phys_t zb; 1588 uint32_t aflags = ARC_FLAG_NOWAIT; 1589 int err, zio_flags; 1590 1591 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1592 ASSERT(MUTEX_HELD(&db->db_mtx)); 1593 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1594 ASSERT(db->db_buf == NULL); 1595 ASSERT(db->db_parent == NULL || 1596 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1597 1598 if (db->db_blkid == DMU_BONUS_BLKID) { 1599 err = dbuf_read_bonus(db, dn); 1600 goto early_unlock; 1601 } 1602 1603 err = dbuf_read_hole(db, dn, bp); 1604 if (err == 0) 1605 goto early_unlock; 1606 1607 ASSERT(bp != NULL); 1608 1609 /* 1610 * Any attempt to read a redacted block should result in an error. This 1611 * will never happen under normal conditions, but can be useful for 1612 * debugging purposes. 1613 */ 1614 if (BP_IS_REDACTED(bp)) { 1615 ASSERT(dsl_dataset_feature_is_active( 1616 db->db_objset->os_dsl_dataset, 1617 SPA_FEATURE_REDACTED_DATASETS)); 1618 err = SET_ERROR(EIO); 1619 goto early_unlock; 1620 } 1621 1622 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1623 db->db.db_object, db->db_level, db->db_blkid); 1624 1625 /* 1626 * All bps of an encrypted os should have the encryption bit set. 1627 * If this is not true it indicates tampering and we report an error. 1628 */ 1629 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) { 1630 spa_log_error(db->db_objset->os_spa, &zb, 1631 BP_GET_LOGICAL_BIRTH(bp)); 1632 err = SET_ERROR(EIO); 1633 goto early_unlock; 1634 } 1635 1636 db->db_state = DB_READ; 1637 DTRACE_SET_STATE(db, "read issued"); 1638 mutex_exit(&db->db_mtx); 1639 1640 if (!DBUF_IS_CACHEABLE(db)) 1641 aflags |= ARC_FLAG_UNCACHED; 1642 else if (dbuf_is_l2cacheable(db, bp)) 1643 aflags |= ARC_FLAG_L2CACHE; 1644 1645 dbuf_add_ref(db, NULL); 1646 1647 zio_flags = (flags & DB_RF_CANFAIL) ? 1648 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1649 1650 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(bp)) 1651 zio_flags |= ZIO_FLAG_RAW; 1652 1653 /* 1654 * The zio layer will copy the provided blkptr later, but we need to 1655 * do this now so that we can release the parent's rwlock. We have to 1656 * do that now so that if dbuf_read_done is called synchronously (on 1657 * an l1 cache hit) we don't acquire the db_mtx while holding the 1658 * parent's rwlock, which would be a lock ordering violation. 1659 */ 1660 blkptr_t copy = *bp; 1661 dmu_buf_unlock_parent(db, dblt, tag); 1662 return (arc_read(zio, db->db_objset->os_spa, ©, 1663 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1664 &aflags, &zb)); 1665 1666 early_unlock: 1667 mutex_exit(&db->db_mtx); 1668 dmu_buf_unlock_parent(db, dblt, tag); 1669 return (err); 1670 } 1671 1672 /* 1673 * This is our just-in-time copy function. It makes a copy of buffers that 1674 * have been modified in a previous transaction group before we access them in 1675 * the current active group. 1676 * 1677 * This function is used in three places: when we are dirtying a buffer for the 1678 * first time in a txg, when we are freeing a range in a dnode that includes 1679 * this buffer, and when we are accessing a buffer which was received compressed 1680 * and later referenced in a WRITE_BYREF record. 1681 * 1682 * Note that when we are called from dbuf_free_range() we do not put a hold on 1683 * the buffer, we just traverse the active dbuf list for the dnode. 1684 */ 1685 static void 1686 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1687 { 1688 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1689 1690 ASSERT(MUTEX_HELD(&db->db_mtx)); 1691 ASSERT(db->db.db_data != NULL); 1692 ASSERT(db->db_level == 0); 1693 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1694 1695 if (dr == NULL || 1696 (dr->dt.dl.dr_data != 1697 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1698 return; 1699 1700 /* 1701 * If the last dirty record for this dbuf has not yet synced 1702 * and its referencing the dbuf data, either: 1703 * reset the reference to point to a new copy, 1704 * or (if there a no active holders) 1705 * just null out the current db_data pointer. 1706 */ 1707 ASSERT3U(dr->dr_txg, >=, txg - 2); 1708 if (db->db_blkid == DMU_BONUS_BLKID) { 1709 dnode_t *dn = DB_DNODE(db); 1710 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1711 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1712 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1713 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1714 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1715 dnode_t *dn = DB_DNODE(db); 1716 int size = arc_buf_size(db->db_buf); 1717 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1718 spa_t *spa = db->db_objset->os_spa; 1719 enum zio_compress compress_type = 1720 arc_get_compression(db->db_buf); 1721 uint8_t complevel = arc_get_complevel(db->db_buf); 1722 1723 if (arc_is_encrypted(db->db_buf)) { 1724 boolean_t byteorder; 1725 uint8_t salt[ZIO_DATA_SALT_LEN]; 1726 uint8_t iv[ZIO_DATA_IV_LEN]; 1727 uint8_t mac[ZIO_DATA_MAC_LEN]; 1728 1729 arc_get_raw_params(db->db_buf, &byteorder, salt, 1730 iv, mac); 1731 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1732 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1733 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1734 compress_type, complevel); 1735 } else if (compress_type != ZIO_COMPRESS_OFF) { 1736 ASSERT3U(type, ==, ARC_BUFC_DATA); 1737 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1738 size, arc_buf_lsize(db->db_buf), compress_type, 1739 complevel); 1740 } else { 1741 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1742 } 1743 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1744 } else { 1745 db->db_buf = NULL; 1746 dbuf_clear_data(db); 1747 } 1748 } 1749 1750 int 1751 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) 1752 { 1753 dnode_t *dn; 1754 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1755 int err; 1756 1757 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1758 1759 DB_DNODE_ENTER(db); 1760 dn = DB_DNODE(db); 1761 1762 /* 1763 * Ensure that this block's dnode has been decrypted if the caller 1764 * has requested decrypted data. 1765 */ 1766 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1767 if (err != 0) 1768 goto done; 1769 1770 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1771 (flags & DB_RF_NOPREFETCH) == 0; 1772 1773 mutex_enter(&db->db_mtx); 1774 if (flags & DB_RF_PARTIAL_FIRST) 1775 db->db_partial_read = B_TRUE; 1776 else if (!(flags & DB_RF_PARTIAL_MORE)) 1777 db->db_partial_read = B_FALSE; 1778 miss = (db->db_state != DB_CACHED); 1779 1780 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1781 /* 1782 * Another reader came in while the dbuf was in flight between 1783 * UNCACHED and CACHED. Either a writer will finish filling 1784 * the buffer, sending the dbuf to CACHED, or the first reader's 1785 * request will reach the read_done callback and send the dbuf 1786 * to CACHED. Otherwise, a failure occurred and the dbuf will 1787 * be sent to UNCACHED. 1788 */ 1789 if (flags & DB_RF_NEVERWAIT) { 1790 mutex_exit(&db->db_mtx); 1791 DB_DNODE_EXIT(db); 1792 goto done; 1793 } 1794 do { 1795 ASSERT(db->db_state == DB_READ || 1796 (flags & DB_RF_HAVESTRUCT) == 0); 1797 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1798 zio_t *, pio); 1799 cv_wait(&db->db_changed, &db->db_mtx); 1800 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1801 if (db->db_state == DB_UNCACHED) { 1802 err = SET_ERROR(EIO); 1803 mutex_exit(&db->db_mtx); 1804 DB_DNODE_EXIT(db); 1805 goto done; 1806 } 1807 } 1808 1809 if (db->db_state == DB_CACHED) { 1810 /* 1811 * If the arc buf is compressed or encrypted and the caller 1812 * requested uncompressed data, we need to untransform it 1813 * before returning. We also call arc_untransform() on any 1814 * unauthenticated blocks, which will verify their MAC if 1815 * the key is now available. 1816 */ 1817 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL && 1818 (arc_is_encrypted(db->db_buf) || 1819 arc_is_unauthenticated(db->db_buf) || 1820 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1821 spa_t *spa = dn->dn_objset->os_spa; 1822 zbookmark_phys_t zb; 1823 1824 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1825 db->db.db_object, db->db_level, db->db_blkid); 1826 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1827 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1828 dbuf_set_data(db, db->db_buf); 1829 } 1830 mutex_exit(&db->db_mtx); 1831 } else { 1832 ASSERT(db->db_state == DB_UNCACHED || 1833 db->db_state == DB_NOFILL); 1834 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1835 blkptr_t *bp; 1836 1837 /* 1838 * If a block clone or Direct I/O write has occurred we will 1839 * get the dirty records overridden BP so we get the most 1840 * recent data. 1841 */ 1842 err = dmu_buf_get_bp_from_dbuf(db, &bp); 1843 1844 if (!err) { 1845 if (pio == NULL && (db->db_state == DB_NOFILL || 1846 (bp != NULL && !BP_IS_HOLE(bp)))) { 1847 spa_t *spa = dn->dn_objset->os_spa; 1848 pio = 1849 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1850 need_wait = B_TRUE; 1851 } 1852 1853 err = 1854 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG); 1855 } else { 1856 mutex_exit(&db->db_mtx); 1857 dmu_buf_unlock_parent(db, dblt, FTAG); 1858 } 1859 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1860 miss = (db->db_state != DB_CACHED); 1861 } 1862 1863 if (err == 0 && prefetch) { 1864 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1865 flags & DB_RF_HAVESTRUCT); 1866 } 1867 DB_DNODE_EXIT(db); 1868 1869 /* 1870 * If we created a zio we must execute it to avoid leaking it, even if 1871 * it isn't attached to any work due to an error in dbuf_read_impl(). 1872 */ 1873 if (need_wait) { 1874 if (err == 0) 1875 err = zio_wait(pio); 1876 else 1877 (void) zio_wait(pio); 1878 pio = NULL; 1879 } 1880 1881 done: 1882 if (miss) 1883 DBUF_STAT_BUMP(hash_misses); 1884 else 1885 DBUF_STAT_BUMP(hash_hits); 1886 if (pio && err != 0) { 1887 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1888 ZIO_FLAG_CANFAIL); 1889 zio->io_error = err; 1890 zio_nowait(zio); 1891 } 1892 1893 return (err); 1894 } 1895 1896 static void 1897 dbuf_noread(dmu_buf_impl_t *db) 1898 { 1899 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1900 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1901 mutex_enter(&db->db_mtx); 1902 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1903 cv_wait(&db->db_changed, &db->db_mtx); 1904 if (db->db_state == DB_UNCACHED) { 1905 ASSERT(db->db_buf == NULL); 1906 ASSERT(db->db.db_data == NULL); 1907 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1908 db->db_state = DB_FILL; 1909 DTRACE_SET_STATE(db, "assigning filled buffer"); 1910 } else if (db->db_state == DB_NOFILL) { 1911 dbuf_clear_data(db); 1912 } else { 1913 ASSERT3U(db->db_state, ==, DB_CACHED); 1914 } 1915 mutex_exit(&db->db_mtx); 1916 } 1917 1918 void 1919 dbuf_unoverride(dbuf_dirty_record_t *dr) 1920 { 1921 dmu_buf_impl_t *db = dr->dr_dbuf; 1922 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1923 uint64_t txg = dr->dr_txg; 1924 1925 ASSERT(MUTEX_HELD(&db->db_mtx)); 1926 1927 /* 1928 * This assert is valid because dmu_sync() expects to be called by 1929 * a zilog's get_data while holding a range lock. This call only 1930 * comes from dbuf_dirty() callers who must also hold a range lock. 1931 */ 1932 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1933 ASSERT(db->db_level == 0); 1934 1935 if (db->db_blkid == DMU_BONUS_BLKID || 1936 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1937 return; 1938 1939 ASSERT(db->db_data_pending != dr); 1940 1941 /* free this block */ 1942 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1943 zio_free(db->db_objset->os_spa, txg, bp); 1944 1945 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) { 1946 ASSERT0P(dr->dt.dl.dr_data); 1947 dr->dt.dl.dr_data = db->db_buf; 1948 } 1949 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1950 dr->dt.dl.dr_nopwrite = B_FALSE; 1951 dr->dt.dl.dr_brtwrite = B_FALSE; 1952 dr->dt.dl.dr_diowrite = B_FALSE; 1953 dr->dt.dl.dr_has_raw_params = B_FALSE; 1954 1955 /* 1956 * In the event that Direct I/O was used, we do not 1957 * need to release the buffer from the ARC. 1958 * 1959 * Release the already-written buffer, so we leave it in 1960 * a consistent dirty state. Note that all callers are 1961 * modifying the buffer, so they will immediately do 1962 * another (redundant) arc_release(). Therefore, leave 1963 * the buf thawed to save the effort of freezing & 1964 * immediately re-thawing it. 1965 */ 1966 if (dr->dt.dl.dr_data) 1967 arc_release(dr->dt.dl.dr_data, db); 1968 } 1969 1970 /* 1971 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1972 * data blocks in the free range, so that any future readers will find 1973 * empty blocks. 1974 */ 1975 void 1976 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1977 dmu_tx_t *tx) 1978 { 1979 dmu_buf_impl_t *db_search; 1980 dmu_buf_impl_t *db, *db_next; 1981 uint64_t txg = tx->tx_txg; 1982 avl_index_t where; 1983 dbuf_dirty_record_t *dr; 1984 1985 if (end_blkid > dn->dn_maxblkid && 1986 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1987 end_blkid = dn->dn_maxblkid; 1988 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1989 (u_longlong_t)end_blkid); 1990 1991 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1992 db_search->db_level = 0; 1993 db_search->db_blkid = start_blkid; 1994 db_search->db_state = DB_SEARCH; 1995 1996 mutex_enter(&dn->dn_dbufs_mtx); 1997 db = avl_find(&dn->dn_dbufs, db_search, &where); 1998 ASSERT3P(db, ==, NULL); 1999 2000 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2001 2002 for (; db != NULL; db = db_next) { 2003 db_next = AVL_NEXT(&dn->dn_dbufs, db); 2004 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2005 2006 if (db->db_level != 0 || db->db_blkid > end_blkid) { 2007 break; 2008 } 2009 ASSERT3U(db->db_blkid, >=, start_blkid); 2010 2011 /* found a level 0 buffer in the range */ 2012 mutex_enter(&db->db_mtx); 2013 if (dbuf_undirty(db, tx)) { 2014 /* mutex has been dropped and dbuf destroyed */ 2015 continue; 2016 } 2017 2018 if (db->db_state == DB_UNCACHED || 2019 db->db_state == DB_NOFILL || 2020 db->db_state == DB_EVICTING) { 2021 ASSERT(db->db.db_data == NULL); 2022 mutex_exit(&db->db_mtx); 2023 continue; 2024 } 2025 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2026 /* will be handled in dbuf_read_done or dbuf_rele */ 2027 db->db_freed_in_flight = TRUE; 2028 mutex_exit(&db->db_mtx); 2029 continue; 2030 } 2031 if (zfs_refcount_count(&db->db_holds) == 0) { 2032 ASSERT(db->db_buf); 2033 dbuf_destroy(db); 2034 continue; 2035 } 2036 /* The dbuf is referenced */ 2037 2038 dr = list_head(&db->db_dirty_records); 2039 if (dr != NULL) { 2040 if (dr->dr_txg == txg) { 2041 /* 2042 * This buffer is "in-use", re-adjust the file 2043 * size to reflect that this buffer may 2044 * contain new data when we sync. 2045 */ 2046 if (db->db_blkid != DMU_SPILL_BLKID && 2047 db->db_blkid > dn->dn_maxblkid) 2048 dn->dn_maxblkid = db->db_blkid; 2049 dbuf_unoverride(dr); 2050 } else { 2051 /* 2052 * This dbuf is not dirty in the open context. 2053 * Either uncache it (if its not referenced in 2054 * the open context) or reset its contents to 2055 * empty. 2056 */ 2057 dbuf_fix_old_data(db, txg); 2058 } 2059 } 2060 /* clear the contents if its cached */ 2061 if (db->db_state == DB_CACHED) { 2062 ASSERT(db->db.db_data != NULL); 2063 arc_release(db->db_buf, db); 2064 rw_enter(&db->db_rwlock, RW_WRITER); 2065 memset(db->db.db_data, 0, db->db.db_size); 2066 rw_exit(&db->db_rwlock); 2067 arc_buf_freeze(db->db_buf); 2068 } 2069 2070 mutex_exit(&db->db_mtx); 2071 } 2072 2073 mutex_exit(&dn->dn_dbufs_mtx); 2074 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2075 } 2076 2077 void 2078 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2079 { 2080 arc_buf_t *buf, *old_buf; 2081 dbuf_dirty_record_t *dr; 2082 int osize = db->db.db_size; 2083 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2084 dnode_t *dn; 2085 2086 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2087 2088 DB_DNODE_ENTER(db); 2089 dn = DB_DNODE(db); 2090 2091 /* 2092 * XXX we should be doing a dbuf_read, checking the return 2093 * value and returning that up to our callers 2094 */ 2095 dmu_buf_will_dirty(&db->db, tx); 2096 2097 VERIFY3P(db->db_buf, !=, NULL); 2098 2099 /* create the data buffer for the new block */ 2100 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2101 2102 /* copy old block data to the new block */ 2103 old_buf = db->db_buf; 2104 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2105 /* zero the remainder */ 2106 if (size > osize) 2107 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2108 2109 mutex_enter(&db->db_mtx); 2110 dbuf_set_data(db, buf); 2111 arc_buf_destroy(old_buf, db); 2112 db->db.db_size = size; 2113 2114 dr = list_head(&db->db_dirty_records); 2115 /* dirty record added by dmu_buf_will_dirty() */ 2116 VERIFY(dr != NULL); 2117 if (db->db_level == 0) 2118 dr->dt.dl.dr_data = buf; 2119 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2120 ASSERT3U(dr->dr_accounted, ==, osize); 2121 dr->dr_accounted = size; 2122 mutex_exit(&db->db_mtx); 2123 2124 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2125 DB_DNODE_EXIT(db); 2126 } 2127 2128 void 2129 dbuf_release_bp(dmu_buf_impl_t *db) 2130 { 2131 objset_t *os __maybe_unused = db->db_objset; 2132 2133 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2134 ASSERT(arc_released(os->os_phys_buf) || 2135 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2136 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2137 2138 (void) arc_release(db->db_buf, db); 2139 } 2140 2141 /* 2142 * We already have a dirty record for this TXG, and we are being 2143 * dirtied again. 2144 */ 2145 static void 2146 dbuf_redirty(dbuf_dirty_record_t *dr) 2147 { 2148 dmu_buf_impl_t *db = dr->dr_dbuf; 2149 2150 ASSERT(MUTEX_HELD(&db->db_mtx)); 2151 2152 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2153 /* 2154 * If this buffer has already been written out, 2155 * we now need to reset its state. 2156 */ 2157 dbuf_unoverride(dr); 2158 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2159 db->db_state != DB_NOFILL) { 2160 /* Already released on initial dirty, so just thaw. */ 2161 ASSERT(arc_released(db->db_buf)); 2162 arc_buf_thaw(db->db_buf); 2163 } 2164 } 2165 } 2166 2167 dbuf_dirty_record_t * 2168 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2169 { 2170 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2171 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2172 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2173 ASSERT(dn->dn_maxblkid >= blkid); 2174 2175 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2176 list_link_init(&dr->dr_dirty_node); 2177 list_link_init(&dr->dr_dbuf_node); 2178 dr->dr_dnode = dn; 2179 dr->dr_txg = tx->tx_txg; 2180 dr->dt.dll.dr_blkid = blkid; 2181 dr->dr_accounted = dn->dn_datablksz; 2182 2183 /* 2184 * There should not be any dbuf for the block that we're dirtying. 2185 * Otherwise the buffer contents could be inconsistent between the 2186 * dbuf and the lightweight dirty record. 2187 */ 2188 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2189 NULL)); 2190 2191 mutex_enter(&dn->dn_mtx); 2192 int txgoff = tx->tx_txg & TXG_MASK; 2193 if (dn->dn_free_ranges[txgoff] != NULL) { 2194 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2195 } 2196 2197 if (dn->dn_nlevels == 1) { 2198 ASSERT3U(blkid, <, dn->dn_nblkptr); 2199 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2200 mutex_exit(&dn->dn_mtx); 2201 rw_exit(&dn->dn_struct_rwlock); 2202 dnode_setdirty(dn, tx); 2203 } else { 2204 mutex_exit(&dn->dn_mtx); 2205 2206 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2207 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2208 1, blkid >> epbs, FTAG); 2209 rw_exit(&dn->dn_struct_rwlock); 2210 if (parent_db == NULL) { 2211 kmem_free(dr, sizeof (*dr)); 2212 return (NULL); 2213 } 2214 int err = dbuf_read(parent_db, NULL, 2215 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2216 if (err != 0) { 2217 dbuf_rele(parent_db, FTAG); 2218 kmem_free(dr, sizeof (*dr)); 2219 return (NULL); 2220 } 2221 2222 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2223 dbuf_rele(parent_db, FTAG); 2224 mutex_enter(&parent_dr->dt.di.dr_mtx); 2225 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2226 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2227 mutex_exit(&parent_dr->dt.di.dr_mtx); 2228 dr->dr_parent = parent_dr; 2229 } 2230 2231 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2232 2233 return (dr); 2234 } 2235 2236 dbuf_dirty_record_t * 2237 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2238 { 2239 dnode_t *dn; 2240 objset_t *os; 2241 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2242 int txgoff = tx->tx_txg & TXG_MASK; 2243 boolean_t drop_struct_rwlock = B_FALSE; 2244 2245 ASSERT(tx->tx_txg != 0); 2246 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2247 DMU_TX_DIRTY_BUF(tx, db); 2248 2249 DB_DNODE_ENTER(db); 2250 dn = DB_DNODE(db); 2251 /* 2252 * Shouldn't dirty a regular buffer in syncing context. Private 2253 * objects may be dirtied in syncing context, but only if they 2254 * were already pre-dirtied in open context. 2255 */ 2256 #ifdef ZFS_DEBUG 2257 if (dn->dn_objset->os_dsl_dataset != NULL) { 2258 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2259 RW_READER, FTAG); 2260 } 2261 ASSERT(!dmu_tx_is_syncing(tx) || 2262 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2263 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2264 dn->dn_objset->os_dsl_dataset == NULL); 2265 if (dn->dn_objset->os_dsl_dataset != NULL) 2266 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2267 #endif 2268 /* 2269 * We make this assert for private objects as well, but after we 2270 * check if we're already dirty. They are allowed to re-dirty 2271 * in syncing context. 2272 */ 2273 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2274 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2275 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2276 2277 mutex_enter(&db->db_mtx); 2278 /* 2279 * XXX make this true for indirects too? The problem is that 2280 * transactions created with dmu_tx_create_assigned() from 2281 * syncing context don't bother holding ahead. 2282 */ 2283 ASSERT(db->db_level != 0 || 2284 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2285 db->db_state == DB_NOFILL); 2286 2287 mutex_enter(&dn->dn_mtx); 2288 dnode_set_dirtyctx(dn, tx, db); 2289 if (tx->tx_txg > dn->dn_dirty_txg) 2290 dn->dn_dirty_txg = tx->tx_txg; 2291 mutex_exit(&dn->dn_mtx); 2292 2293 if (db->db_blkid == DMU_SPILL_BLKID) 2294 dn->dn_have_spill = B_TRUE; 2295 2296 /* 2297 * If this buffer is already dirty, we're done. 2298 */ 2299 dr_head = list_head(&db->db_dirty_records); 2300 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2301 db->db.db_object == DMU_META_DNODE_OBJECT); 2302 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2303 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2304 DB_DNODE_EXIT(db); 2305 2306 dbuf_redirty(dr_next); 2307 mutex_exit(&db->db_mtx); 2308 return (dr_next); 2309 } 2310 2311 /* 2312 * Only valid if not already dirty. 2313 */ 2314 ASSERT(dn->dn_object == 0 || 2315 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2316 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2317 2318 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2319 2320 /* 2321 * We should only be dirtying in syncing context if it's the 2322 * mos or we're initializing the os or it's a special object. 2323 * However, we are allowed to dirty in syncing context provided 2324 * we already dirtied it in open context. Hence we must make 2325 * this assertion only if we're not already dirty. 2326 */ 2327 os = dn->dn_objset; 2328 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2329 #ifdef ZFS_DEBUG 2330 if (dn->dn_objset->os_dsl_dataset != NULL) 2331 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2332 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2333 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2334 if (dn->dn_objset->os_dsl_dataset != NULL) 2335 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2336 #endif 2337 ASSERT(db->db.db_size != 0); 2338 2339 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2340 2341 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2342 dmu_objset_willuse_space(os, db->db.db_size, tx); 2343 } 2344 2345 /* 2346 * If this buffer is dirty in an old transaction group we need 2347 * to make a copy of it so that the changes we make in this 2348 * transaction group won't leak out when we sync the older txg. 2349 */ 2350 dr = kmem_cache_alloc(dbuf_dirty_kmem_cache, KM_SLEEP); 2351 memset(dr, 0, sizeof (*dr)); 2352 list_link_init(&dr->dr_dirty_node); 2353 list_link_init(&dr->dr_dbuf_node); 2354 dr->dr_dnode = dn; 2355 if (db->db_level == 0) { 2356 void *data_old = db->db_buf; 2357 2358 if (db->db_state != DB_NOFILL) { 2359 if (db->db_blkid == DMU_BONUS_BLKID) { 2360 dbuf_fix_old_data(db, tx->tx_txg); 2361 data_old = db->db.db_data; 2362 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2363 /* 2364 * Release the data buffer from the cache so 2365 * that we can modify it without impacting 2366 * possible other users of this cached data 2367 * block. Note that indirect blocks and 2368 * private objects are not released until the 2369 * syncing state (since they are only modified 2370 * then). 2371 */ 2372 arc_release(db->db_buf, db); 2373 dbuf_fix_old_data(db, tx->tx_txg); 2374 data_old = db->db_buf; 2375 } 2376 ASSERT(data_old != NULL); 2377 } 2378 dr->dt.dl.dr_data = data_old; 2379 } else { 2380 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2381 list_create(&dr->dt.di.dr_children, 2382 sizeof (dbuf_dirty_record_t), 2383 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2384 } 2385 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2386 dr->dr_accounted = db->db.db_size; 2387 } 2388 dr->dr_dbuf = db; 2389 dr->dr_txg = tx->tx_txg; 2390 list_insert_before(&db->db_dirty_records, dr_next, dr); 2391 2392 /* 2393 * We could have been freed_in_flight between the dbuf_noread 2394 * and dbuf_dirty. We win, as though the dbuf_noread() had 2395 * happened after the free. 2396 */ 2397 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2398 db->db_blkid != DMU_SPILL_BLKID) { 2399 mutex_enter(&dn->dn_mtx); 2400 if (dn->dn_free_ranges[txgoff] != NULL) { 2401 range_tree_clear(dn->dn_free_ranges[txgoff], 2402 db->db_blkid, 1); 2403 } 2404 mutex_exit(&dn->dn_mtx); 2405 db->db_freed_in_flight = FALSE; 2406 } 2407 2408 /* 2409 * This buffer is now part of this txg 2410 */ 2411 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2412 db->db_dirtycnt += 1; 2413 ASSERT3U(db->db_dirtycnt, <=, 3); 2414 2415 mutex_exit(&db->db_mtx); 2416 2417 if (db->db_blkid == DMU_BONUS_BLKID || 2418 db->db_blkid == DMU_SPILL_BLKID) { 2419 mutex_enter(&dn->dn_mtx); 2420 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2421 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2422 mutex_exit(&dn->dn_mtx); 2423 dnode_setdirty(dn, tx); 2424 DB_DNODE_EXIT(db); 2425 return (dr); 2426 } 2427 2428 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2429 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2430 drop_struct_rwlock = B_TRUE; 2431 } 2432 2433 /* 2434 * If we are overwriting a dedup BP, then unless it is snapshotted, 2435 * when we get to syncing context we will need to decrement its 2436 * refcount in the DDT. Prefetch the relevant DDT block so that 2437 * syncing context won't have to wait for the i/o. 2438 */ 2439 if (db->db_blkptr != NULL) { 2440 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2441 ddt_prefetch(os->os_spa, db->db_blkptr); 2442 dmu_buf_unlock_parent(db, dblt, FTAG); 2443 } 2444 2445 /* 2446 * We need to hold the dn_struct_rwlock to make this assertion, 2447 * because it protects dn_phys / dn_next_nlevels from changing. 2448 */ 2449 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2450 dn->dn_phys->dn_nlevels > db->db_level || 2451 dn->dn_next_nlevels[txgoff] > db->db_level || 2452 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2453 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2454 2455 2456 if (db->db_level == 0) { 2457 ASSERT(!db->db_objset->os_raw_receive || 2458 dn->dn_maxblkid >= db->db_blkid); 2459 dnode_new_blkid(dn, db->db_blkid, tx, 2460 drop_struct_rwlock, B_FALSE); 2461 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2462 } 2463 2464 if (db->db_level+1 < dn->dn_nlevels) { 2465 dmu_buf_impl_t *parent = db->db_parent; 2466 dbuf_dirty_record_t *di; 2467 int parent_held = FALSE; 2468 2469 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2470 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2471 parent = dbuf_hold_level(dn, db->db_level + 1, 2472 db->db_blkid >> epbs, FTAG); 2473 ASSERT(parent != NULL); 2474 parent_held = TRUE; 2475 } 2476 if (drop_struct_rwlock) 2477 rw_exit(&dn->dn_struct_rwlock); 2478 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2479 di = dbuf_dirty(parent, tx); 2480 if (parent_held) 2481 dbuf_rele(parent, FTAG); 2482 2483 mutex_enter(&db->db_mtx); 2484 /* 2485 * Since we've dropped the mutex, it's possible that 2486 * dbuf_undirty() might have changed this out from under us. 2487 */ 2488 if (list_head(&db->db_dirty_records) == dr || 2489 dn->dn_object == DMU_META_DNODE_OBJECT) { 2490 mutex_enter(&di->dt.di.dr_mtx); 2491 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2492 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2493 list_insert_tail(&di->dt.di.dr_children, dr); 2494 mutex_exit(&di->dt.di.dr_mtx); 2495 dr->dr_parent = di; 2496 } 2497 mutex_exit(&db->db_mtx); 2498 } else { 2499 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2500 ASSERT(db->db_blkid < dn->dn_nblkptr); 2501 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2502 mutex_enter(&dn->dn_mtx); 2503 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2504 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2505 mutex_exit(&dn->dn_mtx); 2506 if (drop_struct_rwlock) 2507 rw_exit(&dn->dn_struct_rwlock); 2508 } 2509 2510 dnode_setdirty(dn, tx); 2511 DB_DNODE_EXIT(db); 2512 return (dr); 2513 } 2514 2515 static void 2516 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2517 { 2518 dmu_buf_impl_t *db = dr->dr_dbuf; 2519 2520 if (dr->dt.dl.dr_data != db->db.db_data) { 2521 struct dnode *dn = dr->dr_dnode; 2522 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2523 2524 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2525 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2526 } 2527 db->db_data_pending = NULL; 2528 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2529 list_remove(&db->db_dirty_records, dr); 2530 if (dr->dr_dbuf->db_level != 0) { 2531 mutex_destroy(&dr->dt.di.dr_mtx); 2532 list_destroy(&dr->dt.di.dr_children); 2533 } 2534 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2535 ASSERT3U(db->db_dirtycnt, >, 0); 2536 db->db_dirtycnt -= 1; 2537 } 2538 2539 /* 2540 * Undirty a buffer in the transaction group referenced by the given 2541 * transaction. Return whether this evicted the dbuf. 2542 */ 2543 boolean_t 2544 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2545 { 2546 uint64_t txg = tx->tx_txg; 2547 boolean_t brtwrite; 2548 boolean_t diowrite; 2549 2550 ASSERT(txg != 0); 2551 2552 /* 2553 * Due to our use of dn_nlevels below, this can only be called 2554 * in open context, unless we are operating on the MOS. 2555 * From syncing context, dn_nlevels may be different from the 2556 * dn_nlevels used when dbuf was dirtied. 2557 */ 2558 ASSERT(db->db_objset == 2559 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2560 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2561 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2562 ASSERT0(db->db_level); 2563 ASSERT(MUTEX_HELD(&db->db_mtx)); 2564 2565 /* 2566 * If this buffer is not dirty, we're done. 2567 */ 2568 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2569 if (dr == NULL) 2570 return (B_FALSE); 2571 ASSERT(dr->dr_dbuf == db); 2572 2573 brtwrite = dr->dt.dl.dr_brtwrite; 2574 diowrite = dr->dt.dl.dr_diowrite; 2575 if (brtwrite) { 2576 ASSERT3B(diowrite, ==, B_FALSE); 2577 /* 2578 * We are freeing a block that we cloned in the same 2579 * transaction group. 2580 */ 2581 brt_pending_remove(dmu_objset_spa(db->db_objset), 2582 &dr->dt.dl.dr_overridden_by, tx); 2583 } 2584 2585 dnode_t *dn = dr->dr_dnode; 2586 2587 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2588 2589 ASSERT(db->db.db_size != 0); 2590 2591 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2592 dr->dr_accounted, txg); 2593 2594 list_remove(&db->db_dirty_records, dr); 2595 2596 /* 2597 * Note that there are three places in dbuf_dirty() 2598 * where this dirty record may be put on a list. 2599 * Make sure to do a list_remove corresponding to 2600 * every one of those list_insert calls. 2601 */ 2602 if (dr->dr_parent) { 2603 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2604 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2605 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2606 } else if (db->db_blkid == DMU_SPILL_BLKID || 2607 db->db_level + 1 == dn->dn_nlevels) { 2608 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2609 mutex_enter(&dn->dn_mtx); 2610 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2611 mutex_exit(&dn->dn_mtx); 2612 } 2613 2614 if (db->db_state != DB_NOFILL && !brtwrite) { 2615 dbuf_unoverride(dr); 2616 2617 if (dr->dt.dl.dr_data != db->db_buf) { 2618 ASSERT(db->db_buf != NULL); 2619 ASSERT(dr->dt.dl.dr_data != NULL); 2620 arc_buf_destroy(dr->dt.dl.dr_data, db); 2621 } 2622 } 2623 2624 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 2625 2626 ASSERT(db->db_dirtycnt > 0); 2627 db->db_dirtycnt -= 1; 2628 2629 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2630 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite || 2631 arc_released(db->db_buf)); 2632 dbuf_destroy(db); 2633 return (B_TRUE); 2634 } 2635 2636 return (B_FALSE); 2637 } 2638 2639 static void 2640 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2641 { 2642 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2643 boolean_t undirty = B_FALSE; 2644 2645 ASSERT(tx->tx_txg != 0); 2646 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2647 2648 /* 2649 * Quick check for dirtiness to improve performance for some workloads 2650 * (e.g. file deletion with indirect blocks cached). 2651 */ 2652 mutex_enter(&db->db_mtx); 2653 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2654 /* 2655 * It's possible that the dbuf is already dirty but not cached, 2656 * because there are some calls to dbuf_dirty() that don't 2657 * go through dmu_buf_will_dirty(). 2658 */ 2659 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2660 if (dr != NULL) { 2661 if (db->db_level == 0 && 2662 dr->dt.dl.dr_brtwrite) { 2663 /* 2664 * Block cloning: If we are dirtying a cloned 2665 * level 0 block, we cannot simply redirty it, 2666 * because this dr has no associated data. 2667 * We will go through a full undirtying below, 2668 * before dirtying it again. 2669 */ 2670 undirty = B_TRUE; 2671 } else { 2672 /* This dbuf is already dirty and cached. */ 2673 dbuf_redirty(dr); 2674 mutex_exit(&db->db_mtx); 2675 return; 2676 } 2677 } 2678 } 2679 mutex_exit(&db->db_mtx); 2680 2681 DB_DNODE_ENTER(db); 2682 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2683 flags |= DB_RF_HAVESTRUCT; 2684 DB_DNODE_EXIT(db); 2685 2686 /* 2687 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2688 * want to make sure dbuf_read() will read the pending cloned block and 2689 * not the uderlying block that is being replaced. dbuf_undirty() will 2690 * do brt_pending_remove() before removing the dirty record. 2691 */ 2692 (void) dbuf_read(db, NULL, flags); 2693 if (undirty) { 2694 mutex_enter(&db->db_mtx); 2695 VERIFY(!dbuf_undirty(db, tx)); 2696 mutex_exit(&db->db_mtx); 2697 } 2698 (void) dbuf_dirty(db, tx); 2699 } 2700 2701 void 2702 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2703 { 2704 dmu_buf_will_dirty_impl(db_fake, 2705 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2706 } 2707 2708 boolean_t 2709 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2710 { 2711 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2712 dbuf_dirty_record_t *dr; 2713 2714 mutex_enter(&db->db_mtx); 2715 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2716 mutex_exit(&db->db_mtx); 2717 return (dr != NULL); 2718 } 2719 2720 /* 2721 * Normally the db_blkptr points to the most recent on-disk content for the 2722 * dbuf (and anything newer will be cached in the dbuf). However, a pending 2723 * block clone or not yet synced Direct I/O write will have a dirty record BP 2724 * pointing to the most recent data. 2725 */ 2726 int 2727 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp) 2728 { 2729 ASSERT(MUTEX_HELD(&db->db_mtx)); 2730 int error = 0; 2731 2732 if (db->db_level != 0) { 2733 *bp = db->db_blkptr; 2734 return (0); 2735 } 2736 2737 *bp = db->db_blkptr; 2738 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2739 if (dr && db->db_state == DB_NOFILL) { 2740 /* Block clone */ 2741 if (!dr->dt.dl.dr_brtwrite) 2742 error = EIO; 2743 else 2744 *bp = &dr->dt.dl.dr_overridden_by; 2745 } else if (dr && db->db_state == DB_UNCACHED) { 2746 /* Direct I/O write */ 2747 if (dr->dt.dl.dr_diowrite) 2748 *bp = &dr->dt.dl.dr_overridden_by; 2749 } 2750 2751 return (error); 2752 } 2753 2754 /* 2755 * Direct I/O reads can read directly from the ARC, but the data has 2756 * to be untransformed in order to copy it over into user pages. 2757 */ 2758 int 2759 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa) 2760 { 2761 int err = 0; 2762 DB_DNODE_ENTER(db); 2763 dnode_t *dn = DB_DNODE(db); 2764 2765 ASSERT3S(db->db_state, ==, DB_CACHED); 2766 ASSERT(MUTEX_HELD(&db->db_mtx)); 2767 2768 /* 2769 * Ensure that this block's dnode has been decrypted if 2770 * the caller has requested decrypted data. 2771 */ 2772 err = dbuf_read_verify_dnode_crypt(db, dn, 0); 2773 2774 /* 2775 * If the arc buf is compressed or encrypted and the caller 2776 * requested uncompressed data, we need to untransform it 2777 * before returning. We also call arc_untransform() on any 2778 * unauthenticated blocks, which will verify their MAC if 2779 * the key is now available. 2780 */ 2781 if (err == 0 && db->db_buf != NULL && 2782 (arc_is_encrypted(db->db_buf) || 2783 arc_is_unauthenticated(db->db_buf) || 2784 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 2785 zbookmark_phys_t zb; 2786 2787 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 2788 db->db.db_object, db->db_level, db->db_blkid); 2789 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 2790 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 2791 dbuf_set_data(db, db->db_buf); 2792 } 2793 DB_DNODE_EXIT(db); 2794 DBUF_STAT_BUMP(hash_hits); 2795 2796 return (err); 2797 } 2798 2799 void 2800 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx) 2801 { 2802 /* 2803 * Block clones and Direct I/O writes always happen in open-context. 2804 */ 2805 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2806 ASSERT0(db->db_level); 2807 ASSERT(!dmu_tx_is_syncing(tx)); 2808 ASSERT0(db->db_level); 2809 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2810 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2811 2812 mutex_enter(&db->db_mtx); 2813 DBUF_VERIFY(db); 2814 2815 /* 2816 * We are going to clone or issue a Direct I/O write on this block, so 2817 * undirty modifications done to this block so far in this txg. This 2818 * includes writes and clones into this block. 2819 * 2820 * If there dirty record associated with this txg from a previous Direct 2821 * I/O write then space accounting cleanup takes place. It is important 2822 * to go ahead free up the space accounting through dbuf_undirty() -> 2823 * dbuf_unoverride() -> zio_free(). Space accountiung for determining 2824 * if a write can occur in zfs_write() happens through dmu_tx_assign(). 2825 * This can cause an issue with Direct I/O writes in the case of 2826 * overwriting the same block, because all DVA allocations are being 2827 * done in open-context. Constantly allowing Direct I/O overwrites to 2828 * the same block can exhaust the pools available space leading to 2829 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which 2830 * will eventually suspend the pool. By cleaning up sapce acccounting 2831 * now, the ENOSPC error can be avoided. 2832 * 2833 * Since we are undirtying the record in open-context, we must have a 2834 * hold on the db, so it should never be evicted after calling 2835 * dbuf_undirty(). 2836 */ 2837 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE); 2838 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2839 2840 if (db->db_buf != NULL) { 2841 /* 2842 * If there is an associated ARC buffer with this dbuf we can 2843 * only destroy it if the previous dirty record does not 2844 * reference it. 2845 */ 2846 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2847 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2848 arc_buf_destroy(db->db_buf, db); 2849 2850 /* 2851 * Setting the dbuf's data pointers to NULL will force all 2852 * future reads down to the devices to get the most up to date 2853 * version of the data after a Direct I/O write has completed. 2854 */ 2855 db->db_buf = NULL; 2856 dbuf_clear_data(db); 2857 } 2858 2859 ASSERT3P(db->db_buf, ==, NULL); 2860 ASSERT3P(db->db.db_data, ==, NULL); 2861 2862 db->db_state = DB_NOFILL; 2863 DTRACE_SET_STATE(db, 2864 "allocating NOFILL buffer for clone or direct I/O write"); 2865 2866 DBUF_VERIFY(db); 2867 mutex_exit(&db->db_mtx); 2868 2869 dbuf_noread(db); 2870 (void) dbuf_dirty(db, tx); 2871 } 2872 2873 void 2874 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2875 { 2876 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2877 2878 mutex_enter(&db->db_mtx); 2879 db->db_state = DB_NOFILL; 2880 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2881 mutex_exit(&db->db_mtx); 2882 2883 dbuf_noread(db); 2884 (void) dbuf_dirty(db, tx); 2885 } 2886 2887 void 2888 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2889 { 2890 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2891 2892 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2893 ASSERT(tx->tx_txg != 0); 2894 ASSERT(db->db_level == 0); 2895 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2896 2897 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2898 dmu_tx_private_ok(tx)); 2899 2900 mutex_enter(&db->db_mtx); 2901 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2902 if (db->db_state == DB_NOFILL || 2903 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) { 2904 /* 2905 * If the fill can fail we should have a way to return back to 2906 * the cloned or Direct I/O write data. 2907 */ 2908 if (canfail && dr) { 2909 mutex_exit(&db->db_mtx); 2910 dmu_buf_will_dirty(db_fake, tx); 2911 return; 2912 } 2913 /* 2914 * Block cloning: We will be completely overwriting a block 2915 * cloned in this transaction group, so let's undirty the 2916 * pending clone and mark the block as uncached. This will be 2917 * as if the clone was never done. 2918 */ 2919 if (dr && dr->dt.dl.dr_brtwrite) { 2920 VERIFY(!dbuf_undirty(db, tx)); 2921 db->db_state = DB_UNCACHED; 2922 } 2923 } 2924 mutex_exit(&db->db_mtx); 2925 2926 dbuf_noread(db); 2927 (void) dbuf_dirty(db, tx); 2928 } 2929 2930 /* 2931 * This function is effectively the same as dmu_buf_will_dirty(), but 2932 * indicates the caller expects raw encrypted data in the db, and provides 2933 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2934 * blkptr_t when this dbuf is written. This is only used for blocks of 2935 * dnodes, during raw receive. 2936 */ 2937 void 2938 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2939 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2940 { 2941 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2942 dbuf_dirty_record_t *dr; 2943 2944 /* 2945 * dr_has_raw_params is only processed for blocks of dnodes 2946 * (see dbuf_sync_dnode_leaf_crypt()). 2947 */ 2948 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2949 ASSERT0(db->db_level); 2950 ASSERT(db->db_objset->os_raw_receive); 2951 2952 dmu_buf_will_dirty_impl(db_fake, 2953 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2954 2955 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2956 2957 ASSERT3P(dr, !=, NULL); 2958 ASSERT3U(dr->dt.dl.dr_override_state, ==, DR_NOT_OVERRIDDEN); 2959 2960 dr->dt.dl.dr_has_raw_params = B_TRUE; 2961 dr->dt.dl.dr_byteorder = byteorder; 2962 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2963 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2964 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2965 } 2966 2967 static void 2968 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2969 { 2970 struct dirty_leaf *dl; 2971 dbuf_dirty_record_t *dr; 2972 2973 ASSERT3U(db->db.db_object, !=, DMU_META_DNODE_OBJECT); 2974 ASSERT0(db->db_level); 2975 2976 dr = list_head(&db->db_dirty_records); 2977 ASSERT3P(dr, !=, NULL); 2978 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2979 dl = &dr->dt.dl; 2980 ASSERT0(dl->dr_has_raw_params); 2981 dl->dr_overridden_by = *bp; 2982 dl->dr_override_state = DR_OVERRIDDEN; 2983 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2984 } 2985 2986 boolean_t 2987 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2988 { 2989 (void) tx; 2990 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2991 mutex_enter(&db->db_mtx); 2992 DBUF_VERIFY(db); 2993 2994 if (db->db_state == DB_FILL) { 2995 if (db->db_level == 0 && db->db_freed_in_flight) { 2996 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2997 /* we were freed while filling */ 2998 /* XXX dbuf_undirty? */ 2999 memset(db->db.db_data, 0, db->db.db_size); 3000 db->db_freed_in_flight = FALSE; 3001 db->db_state = DB_CACHED; 3002 DTRACE_SET_STATE(db, 3003 "fill done handling freed in flight"); 3004 failed = B_FALSE; 3005 } else if (failed) { 3006 VERIFY(!dbuf_undirty(db, tx)); 3007 arc_buf_destroy(db->db_buf, db); 3008 db->db_buf = NULL; 3009 dbuf_clear_data(db); 3010 DTRACE_SET_STATE(db, "fill failed"); 3011 } else { 3012 db->db_state = DB_CACHED; 3013 DTRACE_SET_STATE(db, "fill done"); 3014 } 3015 cv_broadcast(&db->db_changed); 3016 } else { 3017 db->db_state = DB_CACHED; 3018 failed = B_FALSE; 3019 } 3020 mutex_exit(&db->db_mtx); 3021 return (failed); 3022 } 3023 3024 void 3025 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 3026 bp_embedded_type_t etype, enum zio_compress comp, 3027 int uncompressed_size, int compressed_size, int byteorder, 3028 dmu_tx_t *tx) 3029 { 3030 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3031 struct dirty_leaf *dl; 3032 dmu_object_type_t type; 3033 dbuf_dirty_record_t *dr; 3034 3035 if (etype == BP_EMBEDDED_TYPE_DATA) { 3036 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 3037 SPA_FEATURE_EMBEDDED_DATA)); 3038 } 3039 3040 DB_DNODE_ENTER(db); 3041 type = DB_DNODE(db)->dn_type; 3042 DB_DNODE_EXIT(db); 3043 3044 ASSERT0(db->db_level); 3045 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3046 3047 dmu_buf_will_not_fill(dbuf, tx); 3048 3049 dr = list_head(&db->db_dirty_records); 3050 ASSERT3P(dr, !=, NULL); 3051 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3052 dl = &dr->dt.dl; 3053 ASSERT0(dl->dr_has_raw_params); 3054 encode_embedded_bp_compressed(&dl->dr_overridden_by, 3055 data, comp, uncompressed_size, compressed_size); 3056 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 3057 BP_SET_TYPE(&dl->dr_overridden_by, type); 3058 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 3059 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 3060 3061 dl->dr_override_state = DR_OVERRIDDEN; 3062 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3063 } 3064 3065 void 3066 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 3067 { 3068 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3069 dmu_object_type_t type; 3070 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 3071 SPA_FEATURE_REDACTED_DATASETS)); 3072 3073 DB_DNODE_ENTER(db); 3074 type = DB_DNODE(db)->dn_type; 3075 DB_DNODE_EXIT(db); 3076 3077 ASSERT0(db->db_level); 3078 dmu_buf_will_not_fill(dbuf, tx); 3079 3080 blkptr_t bp = { { { {0} } } }; 3081 BP_SET_TYPE(&bp, type); 3082 BP_SET_LEVEL(&bp, 0); 3083 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 3084 BP_SET_REDACTED(&bp); 3085 BPE_SET_LSIZE(&bp, dbuf->db_size); 3086 3087 dbuf_override_impl(db, &bp, tx); 3088 } 3089 3090 /* 3091 * Directly assign a provided arc buf to a given dbuf if it's not referenced 3092 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 3093 */ 3094 void 3095 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 3096 { 3097 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 3098 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3099 ASSERT(db->db_level == 0); 3100 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 3101 ASSERT(buf != NULL); 3102 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 3103 ASSERT(tx->tx_txg != 0); 3104 3105 arc_return_buf(buf, db); 3106 ASSERT(arc_released(buf)); 3107 3108 mutex_enter(&db->db_mtx); 3109 3110 while (db->db_state == DB_READ || db->db_state == DB_FILL) 3111 cv_wait(&db->db_changed, &db->db_mtx); 3112 3113 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 3114 db->db_state == DB_NOFILL); 3115 3116 if (db->db_state == DB_CACHED && 3117 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 3118 /* 3119 * In practice, we will never have a case where we have an 3120 * encrypted arc buffer while additional holds exist on the 3121 * dbuf. We don't handle this here so we simply assert that 3122 * fact instead. 3123 */ 3124 ASSERT(!arc_is_encrypted(buf)); 3125 mutex_exit(&db->db_mtx); 3126 (void) dbuf_dirty(db, tx); 3127 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 3128 arc_buf_destroy(buf, db); 3129 return; 3130 } 3131 3132 if (db->db_state == DB_CACHED) { 3133 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 3134 3135 ASSERT(db->db_buf != NULL); 3136 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 3137 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3138 3139 if (!arc_released(db->db_buf)) { 3140 ASSERT(dr->dt.dl.dr_override_state == 3141 DR_OVERRIDDEN); 3142 arc_release(db->db_buf, db); 3143 } 3144 dr->dt.dl.dr_data = buf; 3145 arc_buf_destroy(db->db_buf, db); 3146 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3147 arc_release(db->db_buf, db); 3148 arc_buf_destroy(db->db_buf, db); 3149 } 3150 db->db_buf = NULL; 3151 } else if (db->db_state == DB_NOFILL) { 3152 /* 3153 * We will be completely replacing the cloned block. In case 3154 * it was cloned in this transaction group, let's undirty the 3155 * pending clone and mark the block as uncached. This will be 3156 * as if the clone was never done. 3157 */ 3158 VERIFY(!dbuf_undirty(db, tx)); 3159 db->db_state = DB_UNCACHED; 3160 } 3161 ASSERT(db->db_buf == NULL); 3162 dbuf_set_data(db, buf); 3163 db->db_state = DB_FILL; 3164 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3165 mutex_exit(&db->db_mtx); 3166 (void) dbuf_dirty(db, tx); 3167 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3168 } 3169 3170 void 3171 dbuf_destroy(dmu_buf_impl_t *db) 3172 { 3173 dnode_t *dn; 3174 dmu_buf_impl_t *parent = db->db_parent; 3175 dmu_buf_impl_t *dndb; 3176 3177 ASSERT(MUTEX_HELD(&db->db_mtx)); 3178 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3179 3180 if (db->db_buf != NULL) { 3181 arc_buf_destroy(db->db_buf, db); 3182 db->db_buf = NULL; 3183 } 3184 3185 if (db->db_blkid == DMU_BONUS_BLKID) { 3186 int slots = DB_DNODE(db)->dn_num_slots; 3187 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3188 if (db->db.db_data != NULL) { 3189 kmem_free(db->db.db_data, bonuslen); 3190 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3191 db->db_state = DB_UNCACHED; 3192 DTRACE_SET_STATE(db, "buffer cleared"); 3193 } 3194 } 3195 3196 dbuf_clear_data(db); 3197 3198 if (multilist_link_active(&db->db_cache_link)) { 3199 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3200 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3201 3202 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3203 3204 ASSERT0(dmu_buf_user_size(&db->db)); 3205 (void) zfs_refcount_remove_many( 3206 &dbuf_caches[db->db_caching_status].size, 3207 db->db.db_size, db); 3208 3209 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3210 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3211 } else { 3212 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3213 DBUF_STAT_BUMPDOWN(cache_count); 3214 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3215 db->db.db_size); 3216 } 3217 db->db_caching_status = DB_NO_CACHE; 3218 } 3219 3220 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3221 ASSERT(db->db_data_pending == NULL); 3222 ASSERT(list_is_empty(&db->db_dirty_records)); 3223 3224 db->db_state = DB_EVICTING; 3225 DTRACE_SET_STATE(db, "buffer eviction started"); 3226 db->db_blkptr = NULL; 3227 3228 /* 3229 * Now that db_state is DB_EVICTING, nobody else can find this via 3230 * the hash table. We can now drop db_mtx, which allows us to 3231 * acquire the dn_dbufs_mtx. 3232 */ 3233 mutex_exit(&db->db_mtx); 3234 3235 DB_DNODE_ENTER(db); 3236 dn = DB_DNODE(db); 3237 dndb = dn->dn_dbuf; 3238 if (db->db_blkid != DMU_BONUS_BLKID) { 3239 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3240 if (needlock) 3241 mutex_enter_nested(&dn->dn_dbufs_mtx, 3242 NESTED_SINGLE); 3243 avl_remove(&dn->dn_dbufs, db); 3244 membar_producer(); 3245 DB_DNODE_EXIT(db); 3246 if (needlock) 3247 mutex_exit(&dn->dn_dbufs_mtx); 3248 /* 3249 * Decrementing the dbuf count means that the hold corresponding 3250 * to the removed dbuf is no longer discounted in dnode_move(), 3251 * so the dnode cannot be moved until after we release the hold. 3252 * The membar_producer() ensures visibility of the decremented 3253 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3254 * release any lock. 3255 */ 3256 mutex_enter(&dn->dn_mtx); 3257 dnode_rele_and_unlock(dn, db, B_TRUE); 3258 #ifdef USE_DNODE_HANDLE 3259 db->db_dnode_handle = NULL; 3260 #else 3261 db->db_dnode = NULL; 3262 #endif 3263 3264 dbuf_hash_remove(db); 3265 } else { 3266 DB_DNODE_EXIT(db); 3267 } 3268 3269 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3270 3271 db->db_parent = NULL; 3272 3273 ASSERT(db->db_buf == NULL); 3274 ASSERT(db->db.db_data == NULL); 3275 ASSERT(db->db_hash_next == NULL); 3276 ASSERT(db->db_blkptr == NULL); 3277 ASSERT(db->db_data_pending == NULL); 3278 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3279 ASSERT(!multilist_link_active(&db->db_cache_link)); 3280 3281 /* 3282 * If this dbuf is referenced from an indirect dbuf, 3283 * decrement the ref count on the indirect dbuf. 3284 */ 3285 if (parent && parent != dndb) { 3286 mutex_enter(&parent->db_mtx); 3287 dbuf_rele_and_unlock(parent, db, B_TRUE); 3288 } 3289 3290 kmem_cache_free(dbuf_kmem_cache, db); 3291 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3292 } 3293 3294 /* 3295 * Note: While bpp will always be updated if the function returns success, 3296 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3297 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3298 * object. 3299 */ 3300 __attribute__((always_inline)) 3301 static inline int 3302 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3303 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3304 { 3305 *parentp = NULL; 3306 *bpp = NULL; 3307 3308 ASSERT(blkid != DMU_BONUS_BLKID); 3309 3310 if (blkid == DMU_SPILL_BLKID) { 3311 mutex_enter(&dn->dn_mtx); 3312 if (dn->dn_have_spill && 3313 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3314 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3315 else 3316 *bpp = NULL; 3317 dbuf_add_ref(dn->dn_dbuf, NULL); 3318 *parentp = dn->dn_dbuf; 3319 mutex_exit(&dn->dn_mtx); 3320 return (0); 3321 } 3322 3323 int nlevels = 3324 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3325 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3326 3327 ASSERT3U(level * epbs, <, 64); 3328 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3329 /* 3330 * This assertion shouldn't trip as long as the max indirect block size 3331 * is less than 1M. The reason for this is that up to that point, 3332 * the number of levels required to address an entire object with blocks 3333 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3334 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3335 * (i.e. we can address the entire object), objects will all use at most 3336 * N-1 levels and the assertion won't overflow. However, once epbs is 3337 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3338 * enough to address an entire object, so objects will have 5 levels, 3339 * but then this assertion will overflow. 3340 * 3341 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3342 * need to redo this logic to handle overflows. 3343 */ 3344 ASSERT(level >= nlevels || 3345 ((nlevels - level - 1) * epbs) + 3346 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3347 if (level >= nlevels || 3348 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3349 ((nlevels - level - 1) * epbs)) || 3350 (fail_sparse && 3351 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3352 /* the buffer has no parent yet */ 3353 return (SET_ERROR(ENOENT)); 3354 } else if (level < nlevels-1) { 3355 /* this block is referenced from an indirect block */ 3356 int err; 3357 3358 err = dbuf_hold_impl(dn, level + 1, 3359 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3360 3361 if (err) 3362 return (err); 3363 err = dbuf_read(*parentp, NULL, 3364 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3365 if (err) { 3366 dbuf_rele(*parentp, NULL); 3367 *parentp = NULL; 3368 return (err); 3369 } 3370 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3371 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3372 (blkid & ((1ULL << epbs) - 1)); 3373 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3374 ASSERT(BP_IS_HOLE(*bpp)); 3375 rw_exit(&(*parentp)->db_rwlock); 3376 return (0); 3377 } else { 3378 /* the block is referenced from the dnode */ 3379 ASSERT3U(level, ==, nlevels-1); 3380 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3381 blkid < dn->dn_phys->dn_nblkptr); 3382 if (dn->dn_dbuf) { 3383 dbuf_add_ref(dn->dn_dbuf, NULL); 3384 *parentp = dn->dn_dbuf; 3385 } 3386 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3387 return (0); 3388 } 3389 } 3390 3391 static dmu_buf_impl_t * 3392 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3393 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3394 { 3395 objset_t *os = dn->dn_objset; 3396 dmu_buf_impl_t *db, *odb; 3397 3398 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3399 ASSERT(dn->dn_type != DMU_OT_NONE); 3400 3401 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3402 3403 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3404 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3405 3406 db->db_objset = os; 3407 db->db.db_object = dn->dn_object; 3408 db->db_level = level; 3409 db->db_blkid = blkid; 3410 db->db_dirtycnt = 0; 3411 #ifdef USE_DNODE_HANDLE 3412 db->db_dnode_handle = dn->dn_handle; 3413 #else 3414 db->db_dnode = dn; 3415 #endif 3416 db->db_parent = parent; 3417 db->db_blkptr = blkptr; 3418 db->db_hash = hash; 3419 3420 db->db_user = NULL; 3421 db->db_user_immediate_evict = FALSE; 3422 db->db_freed_in_flight = FALSE; 3423 db->db_pending_evict = FALSE; 3424 3425 if (blkid == DMU_BONUS_BLKID) { 3426 ASSERT3P(parent, ==, dn->dn_dbuf); 3427 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3428 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3429 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3430 db->db.db_offset = DMU_BONUS_BLKID; 3431 db->db_state = DB_UNCACHED; 3432 DTRACE_SET_STATE(db, "bonus buffer created"); 3433 db->db_caching_status = DB_NO_CACHE; 3434 /* the bonus dbuf is not placed in the hash table */ 3435 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3436 return (db); 3437 } else if (blkid == DMU_SPILL_BLKID) { 3438 db->db.db_size = (blkptr != NULL) ? 3439 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3440 db->db.db_offset = 0; 3441 } else { 3442 int blocksize = 3443 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3444 db->db.db_size = blocksize; 3445 db->db.db_offset = db->db_blkid * blocksize; 3446 } 3447 3448 /* 3449 * Hold the dn_dbufs_mtx while we get the new dbuf 3450 * in the hash table *and* added to the dbufs list. 3451 * This prevents a possible deadlock with someone 3452 * trying to look up this dbuf before it's added to the 3453 * dn_dbufs list. 3454 */ 3455 mutex_enter(&dn->dn_dbufs_mtx); 3456 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3457 if ((odb = dbuf_hash_insert(db)) != NULL) { 3458 /* someone else inserted it first */ 3459 mutex_exit(&dn->dn_dbufs_mtx); 3460 kmem_cache_free(dbuf_kmem_cache, db); 3461 DBUF_STAT_BUMP(hash_insert_race); 3462 return (odb); 3463 } 3464 avl_add(&dn->dn_dbufs, db); 3465 3466 db->db_state = DB_UNCACHED; 3467 DTRACE_SET_STATE(db, "regular buffer created"); 3468 db->db_caching_status = DB_NO_CACHE; 3469 mutex_exit(&dn->dn_dbufs_mtx); 3470 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3471 3472 if (parent && parent != dn->dn_dbuf) 3473 dbuf_add_ref(parent, db); 3474 3475 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3476 zfs_refcount_count(&dn->dn_holds) > 0); 3477 (void) zfs_refcount_add(&dn->dn_holds, db); 3478 3479 dprintf_dbuf(db, "db=%p\n", db); 3480 3481 return (db); 3482 } 3483 3484 /* 3485 * This function returns a block pointer and information about the object, 3486 * given a dnode and a block. This is a publicly accessible version of 3487 * dbuf_findbp that only returns some information, rather than the 3488 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3489 * should be locked as (at least) a reader. 3490 */ 3491 int 3492 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3493 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3494 { 3495 dmu_buf_impl_t *dbp = NULL; 3496 blkptr_t *bp2; 3497 int err = 0; 3498 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3499 3500 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3501 if (err == 0) { 3502 ASSERT3P(bp2, !=, NULL); 3503 *bp = *bp2; 3504 if (dbp != NULL) 3505 dbuf_rele(dbp, NULL); 3506 if (datablkszsec != NULL) 3507 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3508 if (indblkshift != NULL) 3509 *indblkshift = dn->dn_phys->dn_indblkshift; 3510 } 3511 3512 return (err); 3513 } 3514 3515 typedef struct dbuf_prefetch_arg { 3516 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3517 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3518 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3519 int dpa_curlevel; /* The current level that we're reading */ 3520 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3521 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3522 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3523 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3524 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3525 void *dpa_arg; /* prefetch completion arg */ 3526 } dbuf_prefetch_arg_t; 3527 3528 static void 3529 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3530 { 3531 if (dpa->dpa_cb != NULL) { 3532 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3533 dpa->dpa_zb.zb_blkid, io_done); 3534 } 3535 kmem_free(dpa, sizeof (*dpa)); 3536 } 3537 3538 static void 3539 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3540 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3541 { 3542 (void) zio, (void) zb, (void) iobp; 3543 dbuf_prefetch_arg_t *dpa = private; 3544 3545 if (abuf != NULL) 3546 arc_buf_destroy(abuf, private); 3547 3548 dbuf_prefetch_fini(dpa, B_TRUE); 3549 } 3550 3551 /* 3552 * Actually issue the prefetch read for the block given. 3553 */ 3554 static void 3555 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3556 { 3557 ASSERT(!BP_IS_REDACTED(bp) || 3558 dsl_dataset_feature_is_active( 3559 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3560 SPA_FEATURE_REDACTED_DATASETS)); 3561 3562 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3563 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3564 3565 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3566 arc_flags_t aflags = 3567 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3568 ARC_FLAG_NO_BUF; 3569 3570 /* dnodes are always read as raw and then converted later */ 3571 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3572 dpa->dpa_curlevel == 0) 3573 zio_flags |= ZIO_FLAG_RAW; 3574 3575 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3576 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3577 ASSERT(dpa->dpa_zio != NULL); 3578 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3579 dbuf_issue_final_prefetch_done, dpa, 3580 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3581 } 3582 3583 /* 3584 * Called when an indirect block above our prefetch target is read in. This 3585 * will either read in the next indirect block down the tree or issue the actual 3586 * prefetch if the next block down is our target. 3587 */ 3588 static void 3589 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3590 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3591 { 3592 (void) zb, (void) iobp; 3593 dbuf_prefetch_arg_t *dpa = private; 3594 3595 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3596 ASSERT3S(dpa->dpa_curlevel, >, 0); 3597 3598 if (abuf == NULL) { 3599 ASSERT(zio == NULL || zio->io_error != 0); 3600 dbuf_prefetch_fini(dpa, B_TRUE); 3601 return; 3602 } 3603 ASSERT(zio == NULL || zio->io_error == 0); 3604 3605 /* 3606 * The dpa_dnode is only valid if we are called with a NULL 3607 * zio. This indicates that the arc_read() returned without 3608 * first calling zio_read() to issue a physical read. Once 3609 * a physical read is made the dpa_dnode must be invalidated 3610 * as the locks guarding it may have been dropped. If the 3611 * dpa_dnode is still valid, then we want to add it to the dbuf 3612 * cache. To do so, we must hold the dbuf associated with the block 3613 * we just prefetched, read its contents so that we associate it 3614 * with an arc_buf_t, and then release it. 3615 */ 3616 if (zio != NULL) { 3617 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3618 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3619 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3620 } else { 3621 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3622 } 3623 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3624 3625 dpa->dpa_dnode = NULL; 3626 } else if (dpa->dpa_dnode != NULL) { 3627 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3628 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3629 dpa->dpa_zb.zb_level)); 3630 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3631 dpa->dpa_curlevel, curblkid, FTAG); 3632 if (db == NULL) { 3633 arc_buf_destroy(abuf, private); 3634 dbuf_prefetch_fini(dpa, B_TRUE); 3635 return; 3636 } 3637 (void) dbuf_read(db, NULL, 3638 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3639 dbuf_rele(db, FTAG); 3640 } 3641 3642 dpa->dpa_curlevel--; 3643 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3644 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3645 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3646 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3647 3648 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3649 dsl_dataset_feature_is_active( 3650 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3651 SPA_FEATURE_REDACTED_DATASETS))); 3652 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3653 arc_buf_destroy(abuf, private); 3654 dbuf_prefetch_fini(dpa, B_TRUE); 3655 return; 3656 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3657 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3658 dbuf_issue_final_prefetch(dpa, bp); 3659 } else { 3660 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3661 zbookmark_phys_t zb; 3662 3663 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3664 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3665 iter_aflags |= ARC_FLAG_L2CACHE; 3666 3667 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3668 3669 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3670 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3671 3672 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3673 bp, dbuf_prefetch_indirect_done, dpa, 3674 ZIO_PRIORITY_SYNC_READ, 3675 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3676 &iter_aflags, &zb); 3677 } 3678 3679 arc_buf_destroy(abuf, private); 3680 } 3681 3682 /* 3683 * Issue prefetch reads for the given block on the given level. If the indirect 3684 * blocks above that block are not in memory, we will read them in 3685 * asynchronously. As a result, this call never blocks waiting for a read to 3686 * complete. Note that the prefetch might fail if the dataset is encrypted and 3687 * the encryption key is unmapped before the IO completes. 3688 */ 3689 int 3690 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3691 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3692 void *arg) 3693 { 3694 blkptr_t bp; 3695 int epbs, nlevels, curlevel; 3696 uint64_t curblkid; 3697 3698 ASSERT(blkid != DMU_BONUS_BLKID); 3699 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3700 3701 if (blkid > dn->dn_maxblkid) 3702 goto no_issue; 3703 3704 if (level == 0 && dnode_block_freed(dn, blkid)) 3705 goto no_issue; 3706 3707 /* 3708 * This dnode hasn't been written to disk yet, so there's nothing to 3709 * prefetch. 3710 */ 3711 nlevels = dn->dn_phys->dn_nlevels; 3712 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3713 goto no_issue; 3714 3715 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3716 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3717 goto no_issue; 3718 3719 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3720 level, blkid, NULL); 3721 if (db != NULL) { 3722 mutex_exit(&db->db_mtx); 3723 /* 3724 * This dbuf already exists. It is either CACHED, or 3725 * (we assume) about to be read or filled. 3726 */ 3727 goto no_issue; 3728 } 3729 3730 /* 3731 * Find the closest ancestor (indirect block) of the target block 3732 * that is present in the cache. In this indirect block, we will 3733 * find the bp that is at curlevel, curblkid. 3734 */ 3735 curlevel = level; 3736 curblkid = blkid; 3737 while (curlevel < nlevels - 1) { 3738 int parent_level = curlevel + 1; 3739 uint64_t parent_blkid = curblkid >> epbs; 3740 dmu_buf_impl_t *db; 3741 3742 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3743 FALSE, TRUE, FTAG, &db) == 0) { 3744 blkptr_t *bpp = db->db_buf->b_data; 3745 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3746 dbuf_rele(db, FTAG); 3747 break; 3748 } 3749 3750 curlevel = parent_level; 3751 curblkid = parent_blkid; 3752 } 3753 3754 if (curlevel == nlevels - 1) { 3755 /* No cached indirect blocks found. */ 3756 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3757 bp = dn->dn_phys->dn_blkptr[curblkid]; 3758 } 3759 ASSERT(!BP_IS_REDACTED(&bp) || 3760 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3761 SPA_FEATURE_REDACTED_DATASETS)); 3762 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3763 goto no_issue; 3764 3765 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3766 3767 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3768 ZIO_FLAG_CANFAIL); 3769 3770 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3771 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3772 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3773 dn->dn_object, level, blkid); 3774 dpa->dpa_curlevel = curlevel; 3775 dpa->dpa_prio = prio; 3776 dpa->dpa_aflags = aflags; 3777 dpa->dpa_spa = dn->dn_objset->os_spa; 3778 dpa->dpa_dnode = dn; 3779 dpa->dpa_epbs = epbs; 3780 dpa->dpa_zio = pio; 3781 dpa->dpa_cb = cb; 3782 dpa->dpa_arg = arg; 3783 3784 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3785 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3786 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3787 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3788 3789 /* 3790 * If we have the indirect just above us, no need to do the asynchronous 3791 * prefetch chain; we'll just run the last step ourselves. If we're at 3792 * a higher level, though, we want to issue the prefetches for all the 3793 * indirect blocks asynchronously, so we can go on with whatever we were 3794 * doing. 3795 */ 3796 if (curlevel == level) { 3797 ASSERT3U(curblkid, ==, blkid); 3798 dbuf_issue_final_prefetch(dpa, &bp); 3799 } else { 3800 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3801 zbookmark_phys_t zb; 3802 3803 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3804 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3805 iter_aflags |= ARC_FLAG_L2CACHE; 3806 3807 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3808 dn->dn_object, curlevel, curblkid); 3809 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3810 &bp, dbuf_prefetch_indirect_done, dpa, 3811 ZIO_PRIORITY_SYNC_READ, 3812 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3813 &iter_aflags, &zb); 3814 } 3815 /* 3816 * We use pio here instead of dpa_zio since it's possible that 3817 * dpa may have already been freed. 3818 */ 3819 zio_nowait(pio); 3820 return (1); 3821 no_issue: 3822 if (cb != NULL) 3823 cb(arg, level, blkid, B_FALSE); 3824 return (0); 3825 } 3826 3827 int 3828 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3829 arc_flags_t aflags) 3830 { 3831 3832 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3833 } 3834 3835 /* 3836 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3837 * the case of encrypted, compressed and uncompressed buffers by 3838 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3839 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3840 * 3841 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3842 */ 3843 noinline static void 3844 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3845 { 3846 dbuf_dirty_record_t *dr = db->db_data_pending; 3847 arc_buf_t *data = dr->dt.dl.dr_data; 3848 enum zio_compress compress_type = arc_get_compression(data); 3849 uint8_t complevel = arc_get_complevel(data); 3850 3851 if (arc_is_encrypted(data)) { 3852 boolean_t byteorder; 3853 uint8_t salt[ZIO_DATA_SALT_LEN]; 3854 uint8_t iv[ZIO_DATA_IV_LEN]; 3855 uint8_t mac[ZIO_DATA_MAC_LEN]; 3856 3857 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3858 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3859 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3860 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3861 compress_type, complevel)); 3862 } else if (compress_type != ZIO_COMPRESS_OFF) { 3863 dbuf_set_data(db, arc_alloc_compressed_buf( 3864 dn->dn_objset->os_spa, db, arc_buf_size(data), 3865 arc_buf_lsize(data), compress_type, complevel)); 3866 } else { 3867 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3868 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3869 } 3870 3871 rw_enter(&db->db_rwlock, RW_WRITER); 3872 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3873 rw_exit(&db->db_rwlock); 3874 } 3875 3876 /* 3877 * Returns with db_holds incremented, and db_mtx not held. 3878 * Note: dn_struct_rwlock must be held. 3879 */ 3880 int 3881 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3882 boolean_t fail_sparse, boolean_t fail_uncached, 3883 const void *tag, dmu_buf_impl_t **dbp) 3884 { 3885 dmu_buf_impl_t *db, *parent = NULL; 3886 uint64_t hv; 3887 3888 /* If the pool has been created, verify the tx_sync_lock is not held */ 3889 spa_t *spa = dn->dn_objset->os_spa; 3890 dsl_pool_t *dp = spa->spa_dsl_pool; 3891 if (dp != NULL) { 3892 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3893 } 3894 3895 ASSERT(blkid != DMU_BONUS_BLKID); 3896 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3897 ASSERT3U(dn->dn_nlevels, >, level); 3898 3899 *dbp = NULL; 3900 3901 /* dbuf_find() returns with db_mtx held */ 3902 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3903 3904 if (db == NULL) { 3905 blkptr_t *bp = NULL; 3906 int err; 3907 3908 if (fail_uncached) 3909 return (SET_ERROR(ENOENT)); 3910 3911 ASSERT3P(parent, ==, NULL); 3912 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3913 if (fail_sparse) { 3914 if (err == 0 && bp && BP_IS_HOLE(bp)) 3915 err = SET_ERROR(ENOENT); 3916 if (err) { 3917 if (parent) 3918 dbuf_rele(parent, NULL); 3919 return (err); 3920 } 3921 } 3922 if (err && err != ENOENT) 3923 return (err); 3924 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3925 } 3926 3927 if (fail_uncached && db->db_state != DB_CACHED) { 3928 mutex_exit(&db->db_mtx); 3929 return (SET_ERROR(ENOENT)); 3930 } 3931 3932 if (db->db_buf != NULL) { 3933 arc_buf_access(db->db_buf); 3934 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3935 } 3936 3937 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3938 3939 /* 3940 * If this buffer is currently syncing out, and we are 3941 * still referencing it from db_data, we need to make a copy 3942 * of it in case we decide we want to dirty it again in this txg. 3943 */ 3944 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3945 dn->dn_object != DMU_META_DNODE_OBJECT && 3946 db->db_state == DB_CACHED && db->db_data_pending) { 3947 dbuf_dirty_record_t *dr = db->db_data_pending; 3948 if (dr->dt.dl.dr_data == db->db_buf) { 3949 ASSERT3P(db->db_buf, !=, NULL); 3950 dbuf_hold_copy(dn, db); 3951 } 3952 } 3953 3954 if (multilist_link_active(&db->db_cache_link)) { 3955 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3956 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3957 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3958 3959 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3960 3961 uint64_t size = db->db.db_size; 3962 uint64_t usize = dmu_buf_user_size(&db->db); 3963 (void) zfs_refcount_remove_many( 3964 &dbuf_caches[db->db_caching_status].size, size, db); 3965 (void) zfs_refcount_remove_many( 3966 &dbuf_caches[db->db_caching_status].size, usize, 3967 db->db_user); 3968 3969 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3970 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3971 } else { 3972 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3973 DBUF_STAT_BUMPDOWN(cache_count); 3974 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3975 size + usize); 3976 } 3977 db->db_caching_status = DB_NO_CACHE; 3978 } 3979 (void) zfs_refcount_add(&db->db_holds, tag); 3980 DBUF_VERIFY(db); 3981 mutex_exit(&db->db_mtx); 3982 3983 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3984 if (parent) 3985 dbuf_rele(parent, NULL); 3986 3987 ASSERT3P(DB_DNODE(db), ==, dn); 3988 ASSERT3U(db->db_blkid, ==, blkid); 3989 ASSERT3U(db->db_level, ==, level); 3990 *dbp = db; 3991 3992 return (0); 3993 } 3994 3995 dmu_buf_impl_t * 3996 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3997 { 3998 return (dbuf_hold_level(dn, 0, blkid, tag)); 3999 } 4000 4001 dmu_buf_impl_t * 4002 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 4003 { 4004 dmu_buf_impl_t *db; 4005 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 4006 return (err ? NULL : db); 4007 } 4008 4009 void 4010 dbuf_create_bonus(dnode_t *dn) 4011 { 4012 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 4013 4014 ASSERT(dn->dn_bonus == NULL); 4015 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 4016 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 4017 } 4018 4019 int 4020 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 4021 { 4022 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4023 4024 if (db->db_blkid != DMU_SPILL_BLKID) 4025 return (SET_ERROR(ENOTSUP)); 4026 if (blksz == 0) 4027 blksz = SPA_MINBLOCKSIZE; 4028 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 4029 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 4030 4031 dbuf_new_size(db, blksz, tx); 4032 4033 return (0); 4034 } 4035 4036 void 4037 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 4038 { 4039 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 4040 } 4041 4042 #pragma weak dmu_buf_add_ref = dbuf_add_ref 4043 void 4044 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 4045 { 4046 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 4047 VERIFY3S(holds, >, 1); 4048 } 4049 4050 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 4051 boolean_t 4052 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 4053 const void *tag) 4054 { 4055 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4056 dmu_buf_impl_t *found_db; 4057 boolean_t result = B_FALSE; 4058 4059 if (blkid == DMU_BONUS_BLKID) 4060 found_db = dbuf_find_bonus(os, obj); 4061 else 4062 found_db = dbuf_find(os, obj, 0, blkid, NULL); 4063 4064 if (found_db != NULL) { 4065 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 4066 (void) zfs_refcount_add(&db->db_holds, tag); 4067 result = B_TRUE; 4068 } 4069 mutex_exit(&found_db->db_mtx); 4070 } 4071 return (result); 4072 } 4073 4074 /* 4075 * If you call dbuf_rele() you had better not be referencing the dnode handle 4076 * unless you have some other direct or indirect hold on the dnode. (An indirect 4077 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 4078 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 4079 * dnode's parent dbuf evicting its dnode handles. 4080 */ 4081 void 4082 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 4083 { 4084 mutex_enter(&db->db_mtx); 4085 dbuf_rele_and_unlock(db, tag, B_FALSE); 4086 } 4087 4088 void 4089 dmu_buf_rele(dmu_buf_t *db, const void *tag) 4090 { 4091 dbuf_rele((dmu_buf_impl_t *)db, tag); 4092 } 4093 4094 /* 4095 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 4096 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 4097 * argument should be set if we are already in the dbuf-evicting code 4098 * path, in which case we don't want to recursively evict. This allows us to 4099 * avoid deeply nested stacks that would have a call flow similar to this: 4100 * 4101 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 4102 * ^ | 4103 * | | 4104 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 4105 * 4106 */ 4107 void 4108 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 4109 { 4110 int64_t holds; 4111 uint64_t size; 4112 4113 ASSERT(MUTEX_HELD(&db->db_mtx)); 4114 DBUF_VERIFY(db); 4115 4116 /* 4117 * Remove the reference to the dbuf before removing its hold on the 4118 * dnode so we can guarantee in dnode_move() that a referenced bonus 4119 * buffer has a corresponding dnode hold. 4120 */ 4121 holds = zfs_refcount_remove(&db->db_holds, tag); 4122 ASSERT(holds >= 0); 4123 4124 /* 4125 * We can't freeze indirects if there is a possibility that they 4126 * may be modified in the current syncing context. 4127 */ 4128 if (db->db_buf != NULL && 4129 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 4130 arc_buf_freeze(db->db_buf); 4131 } 4132 4133 if (holds == db->db_dirtycnt && 4134 db->db_level == 0 && db->db_user_immediate_evict) 4135 dbuf_evict_user(db); 4136 4137 if (holds == 0) { 4138 if (db->db_blkid == DMU_BONUS_BLKID) { 4139 dnode_t *dn; 4140 boolean_t evict_dbuf = db->db_pending_evict; 4141 4142 /* 4143 * If the dnode moves here, we cannot cross this 4144 * barrier until the move completes. 4145 */ 4146 DB_DNODE_ENTER(db); 4147 4148 dn = DB_DNODE(db); 4149 atomic_dec_32(&dn->dn_dbufs_count); 4150 4151 /* 4152 * Decrementing the dbuf count means that the bonus 4153 * buffer's dnode hold is no longer discounted in 4154 * dnode_move(). The dnode cannot move until after 4155 * the dnode_rele() below. 4156 */ 4157 DB_DNODE_EXIT(db); 4158 4159 /* 4160 * Do not reference db after its lock is dropped. 4161 * Another thread may evict it. 4162 */ 4163 mutex_exit(&db->db_mtx); 4164 4165 if (evict_dbuf) 4166 dnode_evict_bonus(dn); 4167 4168 dnode_rele(dn, db); 4169 } else if (db->db_buf == NULL) { 4170 /* 4171 * This is a special case: we never associated this 4172 * dbuf with any data allocated from the ARC. 4173 */ 4174 ASSERT(db->db_state == DB_UNCACHED || 4175 db->db_state == DB_NOFILL); 4176 dbuf_destroy(db); 4177 } else if (arc_released(db->db_buf)) { 4178 /* 4179 * This dbuf has anonymous data associated with it. 4180 */ 4181 dbuf_destroy(db); 4182 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4183 db->db_pending_evict) { 4184 dbuf_destroy(db); 4185 } else if (!multilist_link_active(&db->db_cache_link)) { 4186 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4187 4188 dbuf_cached_state_t dcs = 4189 dbuf_include_in_metadata_cache(db) ? 4190 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4191 db->db_caching_status = dcs; 4192 4193 multilist_insert(&dbuf_caches[dcs].cache, db); 4194 uint64_t db_size = db->db.db_size; 4195 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4196 (void) zfs_refcount_add_many( 4197 &dbuf_caches[dcs].size, db_size, db); 4198 size = zfs_refcount_add_many( 4199 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4200 uint8_t db_level = db->db_level; 4201 mutex_exit(&db->db_mtx); 4202 4203 if (dcs == DB_DBUF_METADATA_CACHE) { 4204 DBUF_STAT_BUMP(metadata_cache_count); 4205 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4206 size); 4207 } else { 4208 DBUF_STAT_BUMP(cache_count); 4209 DBUF_STAT_MAX(cache_size_bytes_max, size); 4210 DBUF_STAT_BUMP(cache_levels[db_level]); 4211 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4212 db_size + dbu_size); 4213 } 4214 4215 if (dcs == DB_DBUF_CACHE && !evicting) 4216 dbuf_evict_notify(size); 4217 } 4218 } else { 4219 mutex_exit(&db->db_mtx); 4220 } 4221 } 4222 4223 #pragma weak dmu_buf_refcount = dbuf_refcount 4224 uint64_t 4225 dbuf_refcount(dmu_buf_impl_t *db) 4226 { 4227 return (zfs_refcount_count(&db->db_holds)); 4228 } 4229 4230 uint64_t 4231 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4232 { 4233 uint64_t holds; 4234 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4235 4236 mutex_enter(&db->db_mtx); 4237 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4238 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4239 mutex_exit(&db->db_mtx); 4240 4241 return (holds); 4242 } 4243 4244 void * 4245 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4246 dmu_buf_user_t *new_user) 4247 { 4248 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4249 4250 mutex_enter(&db->db_mtx); 4251 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4252 if (db->db_user == old_user) 4253 db->db_user = new_user; 4254 else 4255 old_user = db->db_user; 4256 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4257 mutex_exit(&db->db_mtx); 4258 4259 return (old_user); 4260 } 4261 4262 void * 4263 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4264 { 4265 return (dmu_buf_replace_user(db_fake, NULL, user)); 4266 } 4267 4268 void * 4269 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4270 { 4271 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4272 4273 db->db_user_immediate_evict = TRUE; 4274 return (dmu_buf_set_user(db_fake, user)); 4275 } 4276 4277 void * 4278 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4279 { 4280 return (dmu_buf_replace_user(db_fake, user, NULL)); 4281 } 4282 4283 void * 4284 dmu_buf_get_user(dmu_buf_t *db_fake) 4285 { 4286 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4287 4288 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4289 return (db->db_user); 4290 } 4291 4292 uint64_t 4293 dmu_buf_user_size(dmu_buf_t *db_fake) 4294 { 4295 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4296 if (db->db_user == NULL) 4297 return (0); 4298 return (atomic_load_64(&db->db_user->dbu_size)); 4299 } 4300 4301 void 4302 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4303 { 4304 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4305 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4306 ASSERT3P(db->db_user, !=, NULL); 4307 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4308 atomic_add_64(&db->db_user->dbu_size, nadd); 4309 } 4310 4311 void 4312 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4313 { 4314 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4315 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4316 ASSERT3P(db->db_user, !=, NULL); 4317 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4318 atomic_sub_64(&db->db_user->dbu_size, nsub); 4319 } 4320 4321 void 4322 dmu_buf_user_evict_wait(void) 4323 { 4324 taskq_wait(dbu_evict_taskq); 4325 } 4326 4327 blkptr_t * 4328 dmu_buf_get_blkptr(dmu_buf_t *db) 4329 { 4330 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4331 return (dbi->db_blkptr); 4332 } 4333 4334 objset_t * 4335 dmu_buf_get_objset(dmu_buf_t *db) 4336 { 4337 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4338 return (dbi->db_objset); 4339 } 4340 4341 static void 4342 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4343 { 4344 /* ASSERT(dmu_tx_is_syncing(tx) */ 4345 ASSERT(MUTEX_HELD(&db->db_mtx)); 4346 4347 if (db->db_blkptr != NULL) 4348 return; 4349 4350 if (db->db_blkid == DMU_SPILL_BLKID) { 4351 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4352 BP_ZERO(db->db_blkptr); 4353 return; 4354 } 4355 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4356 /* 4357 * This buffer was allocated at a time when there was 4358 * no available blkptrs from the dnode, or it was 4359 * inappropriate to hook it in (i.e., nlevels mismatch). 4360 */ 4361 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4362 ASSERT(db->db_parent == NULL); 4363 db->db_parent = dn->dn_dbuf; 4364 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4365 DBUF_VERIFY(db); 4366 } else { 4367 dmu_buf_impl_t *parent = db->db_parent; 4368 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4369 4370 ASSERT(dn->dn_phys->dn_nlevels > 1); 4371 if (parent == NULL) { 4372 mutex_exit(&db->db_mtx); 4373 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4374 parent = dbuf_hold_level(dn, db->db_level + 1, 4375 db->db_blkid >> epbs, db); 4376 rw_exit(&dn->dn_struct_rwlock); 4377 mutex_enter(&db->db_mtx); 4378 db->db_parent = parent; 4379 } 4380 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4381 (db->db_blkid & ((1ULL << epbs) - 1)); 4382 DBUF_VERIFY(db); 4383 } 4384 } 4385 4386 static void 4387 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4388 { 4389 dmu_buf_impl_t *db = dr->dr_dbuf; 4390 void *data = dr->dt.dl.dr_data; 4391 4392 ASSERT0(db->db_level); 4393 ASSERT(MUTEX_HELD(&db->db_mtx)); 4394 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4395 ASSERT(data != NULL); 4396 4397 dnode_t *dn = dr->dr_dnode; 4398 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4399 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4400 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4401 4402 dbuf_sync_leaf_verify_bonus_dnode(dr); 4403 4404 dbuf_undirty_bonus(dr); 4405 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4406 } 4407 4408 /* 4409 * When syncing out a blocks of dnodes, adjust the block to deal with 4410 * encryption. Normally, we make sure the block is decrypted before writing 4411 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4412 * from a raw receive. In this case, set the ARC buf's crypt params so 4413 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4414 */ 4415 static void 4416 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4417 { 4418 int err; 4419 dmu_buf_impl_t *db = dr->dr_dbuf; 4420 4421 ASSERT(MUTEX_HELD(&db->db_mtx)); 4422 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4423 ASSERT3U(db->db_level, ==, 0); 4424 4425 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4426 zbookmark_phys_t zb; 4427 4428 /* 4429 * Unfortunately, there is currently no mechanism for 4430 * syncing context to handle decryption errors. An error 4431 * here is only possible if an attacker maliciously 4432 * changed a dnode block and updated the associated 4433 * checksums going up the block tree. 4434 */ 4435 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4436 db->db.db_object, db->db_level, db->db_blkid); 4437 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4438 &zb, B_TRUE); 4439 if (err) 4440 panic("Invalid dnode block MAC"); 4441 } else if (dr->dt.dl.dr_has_raw_params) { 4442 (void) arc_release(dr->dt.dl.dr_data, db); 4443 arc_convert_to_raw(dr->dt.dl.dr_data, 4444 dmu_objset_id(db->db_objset), 4445 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4446 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4447 } 4448 } 4449 4450 /* 4451 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4452 * is critical the we not allow the compiler to inline this function in to 4453 * dbuf_sync_list() thereby drastically bloating the stack usage. 4454 */ 4455 noinline static void 4456 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4457 { 4458 dmu_buf_impl_t *db = dr->dr_dbuf; 4459 dnode_t *dn = dr->dr_dnode; 4460 4461 ASSERT(dmu_tx_is_syncing(tx)); 4462 4463 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4464 4465 mutex_enter(&db->db_mtx); 4466 4467 ASSERT(db->db_level > 0); 4468 DBUF_VERIFY(db); 4469 4470 /* Read the block if it hasn't been read yet. */ 4471 if (db->db_buf == NULL) { 4472 mutex_exit(&db->db_mtx); 4473 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4474 mutex_enter(&db->db_mtx); 4475 } 4476 ASSERT3U(db->db_state, ==, DB_CACHED); 4477 ASSERT(db->db_buf != NULL); 4478 4479 /* Indirect block size must match what the dnode thinks it is. */ 4480 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4481 dbuf_check_blkptr(dn, db); 4482 4483 /* Provide the pending dirty record to child dbufs */ 4484 db->db_data_pending = dr; 4485 4486 mutex_exit(&db->db_mtx); 4487 4488 dbuf_write(dr, db->db_buf, tx); 4489 4490 zio_t *zio = dr->dr_zio; 4491 mutex_enter(&dr->dt.di.dr_mtx); 4492 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4493 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4494 mutex_exit(&dr->dt.di.dr_mtx); 4495 zio_nowait(zio); 4496 } 4497 4498 /* 4499 * Verify that the size of the data in our bonus buffer does not exceed 4500 * its recorded size. 4501 * 4502 * The purpose of this verification is to catch any cases in development 4503 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4504 * due to incorrect feature management, older pools expect to read more 4505 * data even though they didn't actually write it to begin with. 4506 * 4507 * For a example, this would catch an error in the feature logic where we 4508 * open an older pool and we expect to write the space map histogram of 4509 * a space map with size SPACE_MAP_SIZE_V0. 4510 */ 4511 static void 4512 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4513 { 4514 #ifdef ZFS_DEBUG 4515 dnode_t *dn = dr->dr_dnode; 4516 4517 /* 4518 * Encrypted bonus buffers can have data past their bonuslen. 4519 * Skip the verification of these blocks. 4520 */ 4521 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4522 return; 4523 4524 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4525 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4526 ASSERT3U(bonuslen, <=, maxbonuslen); 4527 4528 arc_buf_t *datap = dr->dt.dl.dr_data; 4529 char *datap_end = ((char *)datap) + bonuslen; 4530 char *datap_max = ((char *)datap) + maxbonuslen; 4531 4532 /* ensure that everything is zero after our data */ 4533 for (; datap_end < datap_max; datap_end++) 4534 ASSERT(*datap_end == 0); 4535 #endif 4536 } 4537 4538 static blkptr_t * 4539 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4540 { 4541 /* This must be a lightweight dirty record. */ 4542 ASSERT3P(dr->dr_dbuf, ==, NULL); 4543 dnode_t *dn = dr->dr_dnode; 4544 4545 if (dn->dn_phys->dn_nlevels == 1) { 4546 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4547 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4548 } else { 4549 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4550 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4551 VERIFY3U(parent_db->db_level, ==, 1); 4552 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4553 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4554 blkptr_t *bp = parent_db->db.db_data; 4555 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4556 } 4557 } 4558 4559 static void 4560 dbuf_lightweight_ready(zio_t *zio) 4561 { 4562 dbuf_dirty_record_t *dr = zio->io_private; 4563 blkptr_t *bp = zio->io_bp; 4564 4565 if (zio->io_error != 0) 4566 return; 4567 4568 dnode_t *dn = dr->dr_dnode; 4569 4570 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4571 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4572 int64_t delta = bp_get_dsize_sync(spa, bp) - 4573 bp_get_dsize_sync(spa, bp_orig); 4574 dnode_diduse_space(dn, delta); 4575 4576 uint64_t blkid = dr->dt.dll.dr_blkid; 4577 mutex_enter(&dn->dn_mtx); 4578 if (blkid > dn->dn_phys->dn_maxblkid) { 4579 ASSERT0(dn->dn_objset->os_raw_receive); 4580 dn->dn_phys->dn_maxblkid = blkid; 4581 } 4582 mutex_exit(&dn->dn_mtx); 4583 4584 if (!BP_IS_EMBEDDED(bp)) { 4585 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4586 BP_SET_FILL(bp, fill); 4587 } 4588 4589 dmu_buf_impl_t *parent_db; 4590 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4591 if (dr->dr_parent == NULL) { 4592 parent_db = dn->dn_dbuf; 4593 } else { 4594 parent_db = dr->dr_parent->dr_dbuf; 4595 } 4596 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4597 *bp_orig = *bp; 4598 rw_exit(&parent_db->db_rwlock); 4599 } 4600 4601 static void 4602 dbuf_lightweight_done(zio_t *zio) 4603 { 4604 dbuf_dirty_record_t *dr = zio->io_private; 4605 4606 VERIFY0(zio->io_error); 4607 4608 objset_t *os = dr->dr_dnode->dn_objset; 4609 dmu_tx_t *tx = os->os_synctx; 4610 4611 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4612 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4613 } else { 4614 dsl_dataset_t *ds = os->os_dsl_dataset; 4615 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4616 dsl_dataset_block_born(ds, zio->io_bp, tx); 4617 } 4618 4619 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4620 zio->io_txg); 4621 4622 abd_free(dr->dt.dll.dr_abd); 4623 kmem_free(dr, sizeof (*dr)); 4624 } 4625 4626 noinline static void 4627 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4628 { 4629 dnode_t *dn = dr->dr_dnode; 4630 zio_t *pio; 4631 if (dn->dn_phys->dn_nlevels == 1) { 4632 pio = dn->dn_zio; 4633 } else { 4634 pio = dr->dr_parent->dr_zio; 4635 } 4636 4637 zbookmark_phys_t zb = { 4638 .zb_objset = dmu_objset_id(dn->dn_objset), 4639 .zb_object = dn->dn_object, 4640 .zb_level = 0, 4641 .zb_blkid = dr->dt.dll.dr_blkid, 4642 }; 4643 4644 /* 4645 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4646 * will have the old BP in dbuf_lightweight_done(). 4647 */ 4648 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4649 4650 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4651 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4652 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4653 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4654 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4655 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4656 4657 zio_nowait(dr->dr_zio); 4658 } 4659 4660 /* 4661 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4662 * critical the we not allow the compiler to inline this function in to 4663 * dbuf_sync_list() thereby drastically bloating the stack usage. 4664 */ 4665 noinline static void 4666 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4667 { 4668 arc_buf_t **datap = &dr->dt.dl.dr_data; 4669 dmu_buf_impl_t *db = dr->dr_dbuf; 4670 dnode_t *dn = dr->dr_dnode; 4671 objset_t *os; 4672 uint64_t txg = tx->tx_txg; 4673 4674 ASSERT(dmu_tx_is_syncing(tx)); 4675 4676 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4677 4678 mutex_enter(&db->db_mtx); 4679 /* 4680 * To be synced, we must be dirtied. But we might have been freed 4681 * after the dirty. 4682 */ 4683 if (db->db_state == DB_UNCACHED) { 4684 /* This buffer has been freed since it was dirtied */ 4685 ASSERT3P(db->db.db_data, ==, NULL); 4686 } else if (db->db_state == DB_FILL) { 4687 /* This buffer was freed and is now being re-filled */ 4688 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4689 } else if (db->db_state == DB_READ) { 4690 /* 4691 * This buffer was either cloned or had a Direct I/O write 4692 * occur and has an in-flgiht read on the BP. It is safe to 4693 * issue the write here, because the read has already been 4694 * issued and the contents won't change. 4695 * 4696 * We can verify the case of both the clone and Direct I/O 4697 * write by making sure the first dirty record for the dbuf 4698 * has no ARC buffer associated with it. 4699 */ 4700 dbuf_dirty_record_t *dr_head = 4701 list_head(&db->db_dirty_records); 4702 ASSERT3P(db->db_buf, ==, NULL); 4703 ASSERT3P(db->db.db_data, ==, NULL); 4704 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL); 4705 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN); 4706 } else { 4707 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4708 } 4709 DBUF_VERIFY(db); 4710 4711 if (db->db_blkid == DMU_SPILL_BLKID) { 4712 mutex_enter(&dn->dn_mtx); 4713 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4714 /* 4715 * In the previous transaction group, the bonus buffer 4716 * was entirely used to store the attributes for the 4717 * dnode which overrode the dn_spill field. However, 4718 * when adding more attributes to the file a spill 4719 * block was required to hold the extra attributes. 4720 * 4721 * Make sure to clear the garbage left in the dn_spill 4722 * field from the previous attributes in the bonus 4723 * buffer. Otherwise, after writing out the spill 4724 * block to the new allocated dva, it will free 4725 * the old block pointed to by the invalid dn_spill. 4726 */ 4727 db->db_blkptr = NULL; 4728 } 4729 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4730 mutex_exit(&dn->dn_mtx); 4731 } 4732 4733 /* 4734 * If this is a bonus buffer, simply copy the bonus data into the 4735 * dnode. It will be written out when the dnode is synced (and it 4736 * will be synced, since it must have been dirty for dbuf_sync to 4737 * be called). 4738 */ 4739 if (db->db_blkid == DMU_BONUS_BLKID) { 4740 ASSERT(dr->dr_dbuf == db); 4741 dbuf_sync_bonus(dr, tx); 4742 return; 4743 } 4744 4745 os = dn->dn_objset; 4746 4747 /* 4748 * This function may have dropped the db_mtx lock allowing a dmu_sync 4749 * operation to sneak in. As a result, we need to ensure that we 4750 * don't check the dr_override_state until we have returned from 4751 * dbuf_check_blkptr. 4752 */ 4753 dbuf_check_blkptr(dn, db); 4754 4755 /* 4756 * If this buffer is in the middle of an immediate write, wait for the 4757 * synchronous IO to complete. 4758 * 4759 * This is also valid even with Direct I/O writes setting a dirty 4760 * records override state into DR_IN_DMU_SYNC, because all 4761 * Direct I/O writes happen in open-context. 4762 */ 4763 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4764 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4765 cv_wait(&db->db_changed, &db->db_mtx); 4766 } 4767 4768 /* 4769 * If this is a dnode block, ensure it is appropriately encrypted 4770 * or decrypted, depending on what we are writing to it this txg. 4771 */ 4772 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4773 dbuf_prepare_encrypted_dnode_leaf(dr); 4774 4775 if (*datap != NULL && *datap == db->db_buf && 4776 dn->dn_object != DMU_META_DNODE_OBJECT && 4777 zfs_refcount_count(&db->db_holds) > 1 && 4778 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) { 4779 /* 4780 * If this buffer is currently "in use" (i.e., there 4781 * are active holds and db_data still references it), 4782 * then make a copy before we start the write so that 4783 * any modifications from the open txg will not leak 4784 * into this write. 4785 * 4786 * NOTE: this copy does not need to be made for 4787 * objects only modified in the syncing context (e.g. 4788 * DNONE_DNODE blocks). 4789 */ 4790 int psize = arc_buf_size(*datap); 4791 int lsize = arc_buf_lsize(*datap); 4792 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4793 enum zio_compress compress_type = arc_get_compression(*datap); 4794 uint8_t complevel = arc_get_complevel(*datap); 4795 4796 if (arc_is_encrypted(*datap)) { 4797 boolean_t byteorder; 4798 uint8_t salt[ZIO_DATA_SALT_LEN]; 4799 uint8_t iv[ZIO_DATA_IV_LEN]; 4800 uint8_t mac[ZIO_DATA_MAC_LEN]; 4801 4802 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4803 *datap = arc_alloc_raw_buf(os->os_spa, db, 4804 dmu_objset_id(os), byteorder, salt, iv, mac, 4805 dn->dn_type, psize, lsize, compress_type, 4806 complevel); 4807 } else if (compress_type != ZIO_COMPRESS_OFF) { 4808 ASSERT3U(type, ==, ARC_BUFC_DATA); 4809 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4810 psize, lsize, compress_type, complevel); 4811 } else { 4812 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4813 } 4814 memcpy((*datap)->b_data, db->db.db_data, psize); 4815 } 4816 db->db_data_pending = dr; 4817 4818 mutex_exit(&db->db_mtx); 4819 4820 dbuf_write(dr, *datap, tx); 4821 4822 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4823 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4824 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4825 } else { 4826 zio_nowait(dr->dr_zio); 4827 } 4828 } 4829 4830 /* 4831 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4832 * called recursively from dbuf_sync_indirect(). 4833 */ 4834 void 4835 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4836 { 4837 dbuf_dirty_record_t *dr; 4838 4839 while ((dr = list_head(list))) { 4840 if (dr->dr_zio != NULL) { 4841 /* 4842 * If we find an already initialized zio then we 4843 * are processing the meta-dnode, and we have finished. 4844 * The dbufs for all dnodes are put back on the list 4845 * during processing, so that we can zio_wait() 4846 * these IOs after initiating all child IOs. 4847 */ 4848 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4849 DMU_META_DNODE_OBJECT); 4850 break; 4851 } 4852 list_remove(list, dr); 4853 if (dr->dr_dbuf == NULL) { 4854 dbuf_sync_lightweight(dr, tx); 4855 } else { 4856 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4857 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4858 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4859 } 4860 if (dr->dr_dbuf->db_level > 0) 4861 dbuf_sync_indirect(dr, tx); 4862 else 4863 dbuf_sync_leaf(dr, tx); 4864 } 4865 } 4866 } 4867 4868 static void 4869 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4870 { 4871 (void) buf; 4872 dmu_buf_impl_t *db = vdb; 4873 dnode_t *dn; 4874 blkptr_t *bp = zio->io_bp; 4875 blkptr_t *bp_orig = &zio->io_bp_orig; 4876 spa_t *spa = zio->io_spa; 4877 int64_t delta; 4878 uint64_t fill = 0; 4879 int i; 4880 4881 ASSERT3P(db->db_blkptr, !=, NULL); 4882 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4883 4884 DB_DNODE_ENTER(db); 4885 dn = DB_DNODE(db); 4886 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4887 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4888 zio->io_prev_space_delta = delta; 4889 4890 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4891 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4892 BP_GET_TYPE(bp) == dn->dn_type) || 4893 (db->db_blkid == DMU_SPILL_BLKID && 4894 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4895 BP_IS_EMBEDDED(bp)); 4896 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4897 } 4898 4899 mutex_enter(&db->db_mtx); 4900 4901 #ifdef ZFS_DEBUG 4902 if (db->db_blkid == DMU_SPILL_BLKID) { 4903 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4904 ASSERT(!(BP_IS_HOLE(bp)) && 4905 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4906 } 4907 #endif 4908 4909 if (db->db_level == 0) { 4910 mutex_enter(&dn->dn_mtx); 4911 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4912 db->db_blkid != DMU_SPILL_BLKID) { 4913 ASSERT0(db->db_objset->os_raw_receive); 4914 dn->dn_phys->dn_maxblkid = db->db_blkid; 4915 } 4916 mutex_exit(&dn->dn_mtx); 4917 4918 if (dn->dn_type == DMU_OT_DNODE) { 4919 i = 0; 4920 while (i < db->db.db_size) { 4921 dnode_phys_t *dnp = 4922 (void *)(((char *)db->db.db_data) + i); 4923 4924 i += DNODE_MIN_SIZE; 4925 if (dnp->dn_type != DMU_OT_NONE) { 4926 fill++; 4927 for (int j = 0; j < dnp->dn_nblkptr; 4928 j++) { 4929 (void) zfs_blkptr_verify(spa, 4930 &dnp->dn_blkptr[j], 4931 BLK_CONFIG_SKIP, 4932 BLK_VERIFY_HALT); 4933 } 4934 if (dnp->dn_flags & 4935 DNODE_FLAG_SPILL_BLKPTR) { 4936 (void) zfs_blkptr_verify(spa, 4937 DN_SPILL_BLKPTR(dnp), 4938 BLK_CONFIG_SKIP, 4939 BLK_VERIFY_HALT); 4940 } 4941 i += dnp->dn_extra_slots * 4942 DNODE_MIN_SIZE; 4943 } 4944 } 4945 } else { 4946 if (BP_IS_HOLE(bp)) { 4947 fill = 0; 4948 } else { 4949 fill = 1; 4950 } 4951 } 4952 } else { 4953 blkptr_t *ibp = db->db.db_data; 4954 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4955 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4956 if (BP_IS_HOLE(ibp)) 4957 continue; 4958 (void) zfs_blkptr_verify(spa, ibp, 4959 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4960 fill += BP_GET_FILL(ibp); 4961 } 4962 } 4963 DB_DNODE_EXIT(db); 4964 4965 if (!BP_IS_EMBEDDED(bp)) 4966 BP_SET_FILL(bp, fill); 4967 4968 mutex_exit(&db->db_mtx); 4969 4970 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4971 *db->db_blkptr = *bp; 4972 dmu_buf_unlock_parent(db, dblt, FTAG); 4973 } 4974 4975 /* 4976 * This function gets called just prior to running through the compression 4977 * stage of the zio pipeline. If we're an indirect block comprised of only 4978 * holes, then we want this indirect to be compressed away to a hole. In 4979 * order to do that we must zero out any information about the holes that 4980 * this indirect points to prior to before we try to compress it. 4981 */ 4982 static void 4983 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4984 { 4985 (void) zio, (void) buf; 4986 dmu_buf_impl_t *db = vdb; 4987 blkptr_t *bp; 4988 unsigned int epbs, i; 4989 4990 ASSERT3U(db->db_level, >, 0); 4991 DB_DNODE_ENTER(db); 4992 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4993 DB_DNODE_EXIT(db); 4994 ASSERT3U(epbs, <, 31); 4995 4996 /* Determine if all our children are holes */ 4997 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4998 if (!BP_IS_HOLE(bp)) 4999 break; 5000 } 5001 5002 /* 5003 * If all the children are holes, then zero them all out so that 5004 * we may get compressed away. 5005 */ 5006 if (i == 1ULL << epbs) { 5007 /* 5008 * We only found holes. Grab the rwlock to prevent 5009 * anybody from reading the blocks we're about to 5010 * zero out. 5011 */ 5012 rw_enter(&db->db_rwlock, RW_WRITER); 5013 memset(db->db.db_data, 0, db->db.db_size); 5014 rw_exit(&db->db_rwlock); 5015 } 5016 } 5017 5018 static void 5019 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 5020 { 5021 (void) buf; 5022 dmu_buf_impl_t *db = vdb; 5023 blkptr_t *bp_orig = &zio->io_bp_orig; 5024 blkptr_t *bp = db->db_blkptr; 5025 objset_t *os = db->db_objset; 5026 dmu_tx_t *tx = os->os_synctx; 5027 5028 ASSERT0(zio->io_error); 5029 ASSERT(db->db_blkptr == bp); 5030 5031 /* 5032 * For nopwrites and rewrites we ensure that the bp matches our 5033 * original and bypass all the accounting. 5034 */ 5035 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 5036 ASSERT(BP_EQUAL(bp, bp_orig)); 5037 } else { 5038 dsl_dataset_t *ds = os->os_dsl_dataset; 5039 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 5040 dsl_dataset_block_born(ds, bp, tx); 5041 } 5042 5043 mutex_enter(&db->db_mtx); 5044 5045 DBUF_VERIFY(db); 5046 5047 dbuf_dirty_record_t *dr = db->db_data_pending; 5048 dnode_t *dn = dr->dr_dnode; 5049 ASSERT(!list_link_active(&dr->dr_dirty_node)); 5050 ASSERT(dr->dr_dbuf == db); 5051 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 5052 list_remove(&db->db_dirty_records, dr); 5053 5054 #ifdef ZFS_DEBUG 5055 if (db->db_blkid == DMU_SPILL_BLKID) { 5056 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 5057 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 5058 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 5059 } 5060 #endif 5061 5062 if (db->db_level == 0) { 5063 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 5064 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 5065 5066 /* no dr_data if this is a NO_FILL or Direct I/O */ 5067 if (dr->dt.dl.dr_data != NULL && 5068 dr->dt.dl.dr_data != db->db_buf) { 5069 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE); 5070 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE); 5071 arc_buf_destroy(dr->dt.dl.dr_data, db); 5072 } 5073 } else { 5074 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 5075 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 5076 if (!BP_IS_HOLE(db->db_blkptr)) { 5077 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 5078 SPA_BLKPTRSHIFT; 5079 ASSERT3U(db->db_blkid, <=, 5080 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 5081 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 5082 db->db.db_size); 5083 } 5084 mutex_destroy(&dr->dt.di.dr_mtx); 5085 list_destroy(&dr->dt.di.dr_children); 5086 } 5087 5088 cv_broadcast(&db->db_changed); 5089 ASSERT(db->db_dirtycnt > 0); 5090 db->db_dirtycnt -= 1; 5091 db->db_data_pending = NULL; 5092 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 5093 5094 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 5095 zio->io_txg); 5096 5097 kmem_cache_free(dbuf_dirty_kmem_cache, dr); 5098 } 5099 5100 static void 5101 dbuf_write_nofill_ready(zio_t *zio) 5102 { 5103 dbuf_write_ready(zio, NULL, zio->io_private); 5104 } 5105 5106 static void 5107 dbuf_write_nofill_done(zio_t *zio) 5108 { 5109 dbuf_write_done(zio, NULL, zio->io_private); 5110 } 5111 5112 static void 5113 dbuf_write_override_ready(zio_t *zio) 5114 { 5115 dbuf_dirty_record_t *dr = zio->io_private; 5116 dmu_buf_impl_t *db = dr->dr_dbuf; 5117 5118 dbuf_write_ready(zio, NULL, db); 5119 } 5120 5121 static void 5122 dbuf_write_override_done(zio_t *zio) 5123 { 5124 dbuf_dirty_record_t *dr = zio->io_private; 5125 dmu_buf_impl_t *db = dr->dr_dbuf; 5126 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 5127 5128 mutex_enter(&db->db_mtx); 5129 if (!BP_EQUAL(zio->io_bp, obp)) { 5130 if (!BP_IS_HOLE(obp)) 5131 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 5132 arc_release(dr->dt.dl.dr_data, db); 5133 } 5134 mutex_exit(&db->db_mtx); 5135 5136 dbuf_write_done(zio, NULL, db); 5137 5138 if (zio->io_abd != NULL) 5139 abd_free(zio->io_abd); 5140 } 5141 5142 typedef struct dbuf_remap_impl_callback_arg { 5143 objset_t *drica_os; 5144 uint64_t drica_blk_birth; 5145 dmu_tx_t *drica_tx; 5146 } dbuf_remap_impl_callback_arg_t; 5147 5148 static void 5149 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 5150 void *arg) 5151 { 5152 dbuf_remap_impl_callback_arg_t *drica = arg; 5153 objset_t *os = drica->drica_os; 5154 spa_t *spa = dmu_objset_spa(os); 5155 dmu_tx_t *tx = drica->drica_tx; 5156 5157 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5158 5159 if (os == spa_meta_objset(spa)) { 5160 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5161 } else { 5162 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5163 size, drica->drica_blk_birth, tx); 5164 } 5165 } 5166 5167 static void 5168 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5169 { 5170 blkptr_t bp_copy = *bp; 5171 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5172 dbuf_remap_impl_callback_arg_t drica; 5173 5174 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5175 5176 drica.drica_os = dn->dn_objset; 5177 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5178 drica.drica_tx = tx; 5179 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5180 &drica)) { 5181 /* 5182 * If the blkptr being remapped is tracked by a livelist, 5183 * then we need to make sure the livelist reflects the update. 5184 * First, cancel out the old blkptr by appending a 'FREE' 5185 * entry. Next, add an 'ALLOC' to track the new version. This 5186 * way we avoid trying to free an inaccurate blkptr at delete. 5187 * Note that embedded blkptrs are not tracked in livelists. 5188 */ 5189 if (dn->dn_objset != spa_meta_objset(spa)) { 5190 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5191 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5192 BP_GET_LOGICAL_BIRTH(bp) > 5193 ds->ds_dir->dd_origin_txg) { 5194 ASSERT(!BP_IS_EMBEDDED(bp)); 5195 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5196 ASSERT(spa_feature_is_enabled(spa, 5197 SPA_FEATURE_LIVELIST)); 5198 bplist_append(&ds->ds_dir->dd_pending_frees, 5199 bp); 5200 bplist_append(&ds->ds_dir->dd_pending_allocs, 5201 &bp_copy); 5202 } 5203 } 5204 5205 /* 5206 * The db_rwlock prevents dbuf_read_impl() from 5207 * dereferencing the BP while we are changing it. To 5208 * avoid lock contention, only grab it when we are actually 5209 * changing the BP. 5210 */ 5211 if (rw != NULL) 5212 rw_enter(rw, RW_WRITER); 5213 *bp = bp_copy; 5214 if (rw != NULL) 5215 rw_exit(rw); 5216 } 5217 } 5218 5219 /* 5220 * Remap any existing BP's to concrete vdevs, if possible. 5221 */ 5222 static void 5223 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5224 { 5225 spa_t *spa = dmu_objset_spa(db->db_objset); 5226 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5227 5228 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5229 return; 5230 5231 if (db->db_level > 0) { 5232 blkptr_t *bp = db->db.db_data; 5233 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5234 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5235 } 5236 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5237 dnode_phys_t *dnp = db->db.db_data; 5238 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5239 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5240 i += dnp[i].dn_extra_slots + 1) { 5241 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5242 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5243 &dn->dn_dbuf->db_rwlock); 5244 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5245 tx); 5246 } 5247 } 5248 } 5249 } 5250 5251 5252 /* 5253 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5254 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5255 */ 5256 static void 5257 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5258 { 5259 dmu_buf_impl_t *db = dr->dr_dbuf; 5260 dnode_t *dn = dr->dr_dnode; 5261 objset_t *os; 5262 dmu_buf_impl_t *parent = db->db_parent; 5263 uint64_t txg = tx->tx_txg; 5264 zbookmark_phys_t zb; 5265 zio_prop_t zp; 5266 zio_t *pio; /* parent I/O */ 5267 int wp_flag = 0; 5268 5269 ASSERT(dmu_tx_is_syncing(tx)); 5270 5271 os = dn->dn_objset; 5272 5273 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5274 /* 5275 * Private object buffers are released here rather than in 5276 * dbuf_dirty() since they are only modified in the syncing 5277 * context and we don't want the overhead of making multiple 5278 * copies of the data. 5279 */ 5280 if (BP_IS_HOLE(db->db_blkptr)) 5281 arc_buf_thaw(data); 5282 else 5283 dbuf_release_bp(db); 5284 dbuf_remap(dn, db, tx); 5285 } 5286 5287 if (parent != dn->dn_dbuf) { 5288 /* Our parent is an indirect block. */ 5289 /* We have a dirty parent that has been scheduled for write. */ 5290 ASSERT(parent && parent->db_data_pending); 5291 /* Our parent's buffer is one level closer to the dnode. */ 5292 ASSERT(db->db_level == parent->db_level-1); 5293 /* 5294 * We're about to modify our parent's db_data by modifying 5295 * our block pointer, so the parent must be released. 5296 */ 5297 ASSERT(arc_released(parent->db_buf)); 5298 pio = parent->db_data_pending->dr_zio; 5299 } else { 5300 /* Our parent is the dnode itself. */ 5301 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5302 db->db_blkid != DMU_SPILL_BLKID) || 5303 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5304 if (db->db_blkid != DMU_SPILL_BLKID) 5305 ASSERT3P(db->db_blkptr, ==, 5306 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5307 pio = dn->dn_zio; 5308 } 5309 5310 ASSERT(db->db_level == 0 || data == db->db_buf); 5311 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5312 ASSERT(pio); 5313 5314 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5315 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5316 db->db.db_object, db->db_level, db->db_blkid); 5317 5318 if (db->db_blkid == DMU_SPILL_BLKID) 5319 wp_flag = WP_SPILL; 5320 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5321 5322 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5323 5324 /* 5325 * We copy the blkptr now (rather than when we instantiate the dirty 5326 * record), because its value can change between open context and 5327 * syncing context. We do not need to hold dn_struct_rwlock to read 5328 * db_blkptr because we are in syncing context. 5329 */ 5330 dr->dr_bp_copy = *db->db_blkptr; 5331 5332 if (db->db_level == 0 && 5333 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5334 /* 5335 * The BP for this block has been provided by open context 5336 * (by dmu_sync(), dmu_write_direct(), 5337 * or dmu_buf_write_embedded()). 5338 */ 5339 abd_t *contents = (data != NULL) ? 5340 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5341 5342 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5343 contents, db->db.db_size, db->db.db_size, &zp, 5344 dbuf_write_override_ready, NULL, 5345 dbuf_write_override_done, 5346 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5347 mutex_enter(&db->db_mtx); 5348 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5349 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5350 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5351 dr->dt.dl.dr_brtwrite); 5352 mutex_exit(&db->db_mtx); 5353 } else if (data == NULL) { 5354 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5355 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5356 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5357 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5358 dbuf_write_nofill_ready, NULL, 5359 dbuf_write_nofill_done, db, 5360 ZIO_PRIORITY_ASYNC_WRITE, 5361 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5362 } else { 5363 ASSERT(arc_released(data)); 5364 5365 /* 5366 * For indirect blocks, we want to setup the children 5367 * ready callback so that we can properly handle an indirect 5368 * block that only contains holes. 5369 */ 5370 arc_write_done_func_t *children_ready_cb = NULL; 5371 if (db->db_level != 0) 5372 children_ready_cb = dbuf_write_children_ready; 5373 5374 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5375 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5376 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready, 5377 children_ready_cb, dbuf_write_done, db, 5378 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5379 } 5380 } 5381 5382 EXPORT_SYMBOL(dbuf_find); 5383 EXPORT_SYMBOL(dbuf_is_metadata); 5384 EXPORT_SYMBOL(dbuf_destroy); 5385 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5386 EXPORT_SYMBOL(dbuf_whichblock); 5387 EXPORT_SYMBOL(dbuf_read); 5388 EXPORT_SYMBOL(dbuf_unoverride); 5389 EXPORT_SYMBOL(dbuf_free_range); 5390 EXPORT_SYMBOL(dbuf_new_size); 5391 EXPORT_SYMBOL(dbuf_release_bp); 5392 EXPORT_SYMBOL(dbuf_dirty); 5393 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5394 EXPORT_SYMBOL(dmu_buf_will_dirty); 5395 EXPORT_SYMBOL(dmu_buf_is_dirty); 5396 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio); 5397 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5398 EXPORT_SYMBOL(dmu_buf_will_fill); 5399 EXPORT_SYMBOL(dmu_buf_fill_done); 5400 EXPORT_SYMBOL(dmu_buf_rele); 5401 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5402 EXPORT_SYMBOL(dbuf_prefetch); 5403 EXPORT_SYMBOL(dbuf_hold_impl); 5404 EXPORT_SYMBOL(dbuf_hold); 5405 EXPORT_SYMBOL(dbuf_hold_level); 5406 EXPORT_SYMBOL(dbuf_create_bonus); 5407 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5408 EXPORT_SYMBOL(dbuf_rm_spill); 5409 EXPORT_SYMBOL(dbuf_add_ref); 5410 EXPORT_SYMBOL(dbuf_rele); 5411 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5412 EXPORT_SYMBOL(dbuf_refcount); 5413 EXPORT_SYMBOL(dbuf_sync_list); 5414 EXPORT_SYMBOL(dmu_buf_set_user); 5415 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5416 EXPORT_SYMBOL(dmu_buf_get_user); 5417 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5418 5419 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5420 "Maximum size in bytes of the dbuf cache."); 5421 5422 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5423 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5424 5425 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5426 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5427 5428 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5429 "Maximum size in bytes of dbuf metadata cache."); 5430 5431 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5432 "Set size of dbuf cache to log2 fraction of arc size."); 5433 5434 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5435 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5436 5437 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5438 "Set size of dbuf cache mutex array as log2 shift."); 5439