1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 static taskq_t *dbu_evict_taskq; 186 187 static kthread_t *dbuf_cache_evict_thread; 188 static kmutex_t dbuf_evict_lock; 189 static kcondvar_t dbuf_evict_cv; 190 static boolean_t dbuf_evict_thread_exit; 191 192 /* 193 * There are two dbuf caches; each dbuf can only be in one of them at a time. 194 * 195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 197 * that represent the metadata that describes filesystems/snapshots/ 198 * bookmarks/properties/etc. We only evict from this cache when we export a 199 * pool, to short-circuit as much I/O as possible for all administrative 200 * commands that need the metadata. There is no eviction policy for this 201 * cache, because we try to only include types in it which would occupy a 202 * very small amount of space per object but create a large impact on the 203 * performance of these commands. Instead, after it reaches a maximum size 204 * (which should only happen on very small memory systems with a very large 205 * number of filesystem objects), we stop taking new dbufs into the 206 * metadata cache, instead putting them in the normal dbuf cache. 207 * 208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 209 * are not currently held but have been recently released. These dbufs 210 * are not eligible for arc eviction until they are aged out of the cache. 211 * Dbufs that are aged out of the cache will be immediately destroyed and 212 * become eligible for arc eviction. 213 * 214 * Dbufs are added to these caches once the last hold is released. If a dbuf is 215 * later accessed and still exists in the dbuf cache, then it will be removed 216 * from the cache and later re-added to the head of the cache. 217 * 218 * If a given dbuf meets the requirements for the metadata cache, it will go 219 * there, otherwise it will be considered for the generic LRU dbuf cache. The 220 * caches and the refcounts tracking their sizes are stored in an array indexed 221 * by those caches' matching enum values (from dbuf_cached_state_t). 222 */ 223 typedef struct dbuf_cache { 224 multilist_t cache; 225 zfs_refcount_t size ____cacheline_aligned; 226 } dbuf_cache_t; 227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 228 229 /* Size limits for the caches */ 230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 232 233 /* Set the default sizes of the caches to log2 fraction of arc size */ 234 static uint_t dbuf_cache_shift = 5; 235 static uint_t dbuf_metadata_cache_shift = 6; 236 237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 238 static uint_t dbuf_mutex_cache_shift = 0; 239 240 static unsigned long dbuf_cache_target_bytes(void); 241 static unsigned long dbuf_metadata_cache_target_bytes(void); 242 243 /* 244 * The LRU dbuf cache uses a three-stage eviction policy: 245 * - A low water marker designates when the dbuf eviction thread 246 * should stop evicting from the dbuf cache. 247 * - When we reach the maximum size (aka mid water mark), we 248 * signal the eviction thread to run. 249 * - The high water mark indicates when the eviction thread 250 * is unable to keep up with the incoming load and eviction must 251 * happen in the context of the calling thread. 252 * 253 * The dbuf cache: 254 * (max size) 255 * low water mid water hi water 256 * +----------------------------------------+----------+----------+ 257 * | | | | 258 * | | | | 259 * | | | | 260 * | | | | 261 * +----------------------------------------+----------+----------+ 262 * stop signal evict 263 * evicting eviction directly 264 * thread 265 * 266 * The high and low water marks indicate the operating range for the eviction 267 * thread. The low water mark is, by default, 90% of the total size of the 268 * cache and the high water mark is at 110% (both of these percentages can be 269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 270 * respectively). The eviction thread will try to ensure that the cache remains 271 * within this range by waking up every second and checking if the cache is 272 * above the low water mark. The thread can also be woken up by callers adding 273 * elements into the cache if the cache is larger than the mid water (i.e max 274 * cache size). Once the eviction thread is woken up and eviction is required, 275 * it will continue evicting buffers until it's able to reduce the cache size 276 * to the low water mark. If the cache size continues to grow and hits the high 277 * water mark, then callers adding elements to the cache will begin to evict 278 * directly from the cache until the cache is no longer above the high water 279 * mark. 280 */ 281 282 /* 283 * The percentage above and below the maximum cache size. 284 */ 285 static uint_t dbuf_cache_hiwater_pct = 10; 286 static uint_t dbuf_cache_lowater_pct = 10; 287 288 static int 289 dbuf_cons(void *vdb, void *unused, int kmflag) 290 { 291 (void) unused, (void) kmflag; 292 dmu_buf_impl_t *db = vdb; 293 memset(db, 0, sizeof (dmu_buf_impl_t)); 294 295 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 296 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 298 multilist_link_init(&db->db_cache_link); 299 zfs_refcount_create(&db->db_holds); 300 301 return (0); 302 } 303 304 static void 305 dbuf_dest(void *vdb, void *unused) 306 { 307 (void) unused; 308 dmu_buf_impl_t *db = vdb; 309 mutex_destroy(&db->db_mtx); 310 rw_destroy(&db->db_rwlock); 311 cv_destroy(&db->db_changed); 312 ASSERT(!multilist_link_active(&db->db_cache_link)); 313 zfs_refcount_destroy(&db->db_holds); 314 } 315 316 /* 317 * dbuf hash table routines 318 */ 319 static dbuf_hash_table_t dbuf_hash_table; 320 321 /* 322 * We use Cityhash for this. It's fast, and has good hash properties without 323 * requiring any large static buffers. 324 */ 325 static uint64_t 326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 327 { 328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 329 } 330 331 #define DTRACE_SET_STATE(db, why) \ 332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 333 const char *, why) 334 335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 336 ((dbuf)->db.db_object == (obj) && \ 337 (dbuf)->db_objset == (os) && \ 338 (dbuf)->db_level == (level) && \ 339 (dbuf)->db_blkid == (blkid)) 340 341 dmu_buf_impl_t * 342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 343 uint64_t *hash_out) 344 { 345 dbuf_hash_table_t *h = &dbuf_hash_table; 346 uint64_t hv; 347 uint64_t idx; 348 dmu_buf_impl_t *db; 349 350 hv = dbuf_hash(os, obj, level, blkid); 351 idx = hv & h->hash_table_mask; 352 353 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 355 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 356 mutex_enter(&db->db_mtx); 357 if (db->db_state != DB_EVICTING) { 358 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 359 return (db); 360 } 361 mutex_exit(&db->db_mtx); 362 } 363 } 364 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 365 if (hash_out != NULL) 366 *hash_out = hv; 367 return (NULL); 368 } 369 370 static dmu_buf_impl_t * 371 dbuf_find_bonus(objset_t *os, uint64_t object) 372 { 373 dnode_t *dn; 374 dmu_buf_impl_t *db = NULL; 375 376 if (dnode_hold(os, object, FTAG, &dn) == 0) { 377 rw_enter(&dn->dn_struct_rwlock, RW_READER); 378 if (dn->dn_bonus != NULL) { 379 db = dn->dn_bonus; 380 mutex_enter(&db->db_mtx); 381 } 382 rw_exit(&dn->dn_struct_rwlock); 383 dnode_rele(dn, FTAG); 384 } 385 return (db); 386 } 387 388 /* 389 * Insert an entry into the hash table. If there is already an element 390 * equal to elem in the hash table, then the already existing element 391 * will be returned and the new element will not be inserted. 392 * Otherwise returns NULL. 393 */ 394 static dmu_buf_impl_t * 395 dbuf_hash_insert(dmu_buf_impl_t *db) 396 { 397 dbuf_hash_table_t *h = &dbuf_hash_table; 398 objset_t *os = db->db_objset; 399 uint64_t obj = db->db.db_object; 400 int level = db->db_level; 401 uint64_t blkid, idx; 402 dmu_buf_impl_t *dbf; 403 uint32_t i; 404 405 blkid = db->db_blkid; 406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 407 idx = db->db_hash & h->hash_table_mask; 408 409 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 411 dbf = dbf->db_hash_next, i++) { 412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 413 mutex_enter(&dbf->db_mtx); 414 if (dbf->db_state != DB_EVICTING) { 415 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 416 return (dbf); 417 } 418 mutex_exit(&dbf->db_mtx); 419 } 420 } 421 422 if (i > 0) { 423 DBUF_STAT_BUMP(hash_collisions); 424 if (i == 1) 425 DBUF_STAT_BUMP(hash_chains); 426 427 DBUF_STAT_MAX(hash_chain_max, i); 428 } 429 430 mutex_enter(&db->db_mtx); 431 db->db_hash_next = h->hash_table[idx]; 432 h->hash_table[idx] = db; 433 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 435 DBUF_STAT_MAX(hash_elements_max, he); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT(db->db_level == 0); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, dbu); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 /* 640 * bp must be checked in the event it was passed from 641 * dbuf_read_impl() as the result of a the BP being set from 642 * a Direct I/O write in dbuf_read(). See comments in 643 * dbuf_read(). 644 */ 645 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp; 646 647 if (db_bp == NULL || BP_IS_HOLE(db_bp)) 648 return (B_FALSE); 649 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva); 650 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 651 vdev_t *vd = NULL; 652 653 if (vdev < rvd->vdev_children) 654 vd = rvd->vdev_child[vdev]; 655 656 if (vd == NULL) 657 return (B_TRUE); 658 659 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 660 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 661 return (B_TRUE); 662 } 663 return (B_FALSE); 664 } 665 666 static inline boolean_t 667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 668 { 669 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 670 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 671 (level > 0 || 672 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 673 if (l2arc_exclude_special == 0) 674 return (B_TRUE); 675 676 if (bp == NULL || BP_IS_HOLE(bp)) 677 return (B_FALSE); 678 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 679 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 680 vdev_t *vd = NULL; 681 682 if (vdev < rvd->vdev_children) 683 vd = rvd->vdev_child[vdev]; 684 685 if (vd == NULL) 686 return (B_TRUE); 687 688 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 689 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 690 return (B_TRUE); 691 } 692 return (B_FALSE); 693 } 694 695 696 /* 697 * This function *must* return indices evenly distributed between all 698 * sublists of the multilist. This is needed due to how the dbuf eviction 699 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 700 * distributed between all sublists and uses this assumption when 701 * deciding which sublist to evict from and how much to evict from it. 702 */ 703 static unsigned int 704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 705 { 706 dmu_buf_impl_t *db = obj; 707 708 /* 709 * The assumption here, is the hash value for a given 710 * dmu_buf_impl_t will remain constant throughout it's lifetime 711 * (i.e. it's objset, object, level and blkid fields don't change). 712 * Thus, we don't need to store the dbuf's sublist index 713 * on insertion, as this index can be recalculated on removal. 714 * 715 * Also, the low order bits of the hash value are thought to be 716 * distributed evenly. Otherwise, in the case that the multilist 717 * has a power of two number of sublists, each sublists' usage 718 * would not be evenly distributed. In this context full 64bit 719 * division would be a waste of time, so limit it to 32 bits. 720 */ 721 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 722 db->db_level, db->db_blkid) % 723 multilist_get_num_sublists(ml)); 724 } 725 726 /* 727 * The target size of the dbuf cache can grow with the ARC target, 728 * unless limited by the tunable dbuf_cache_max_bytes. 729 */ 730 static inline unsigned long 731 dbuf_cache_target_bytes(void) 732 { 733 return (MIN(dbuf_cache_max_bytes, 734 arc_target_bytes() >> dbuf_cache_shift)); 735 } 736 737 /* 738 * The target size of the dbuf metadata cache can grow with the ARC target, 739 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 740 */ 741 static inline unsigned long 742 dbuf_metadata_cache_target_bytes(void) 743 { 744 return (MIN(dbuf_metadata_cache_max_bytes, 745 arc_target_bytes() >> dbuf_metadata_cache_shift)); 746 } 747 748 static inline uint64_t 749 dbuf_cache_hiwater_bytes(void) 750 { 751 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 752 return (dbuf_cache_target + 753 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 754 } 755 756 static inline uint64_t 757 dbuf_cache_lowater_bytes(void) 758 { 759 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 760 return (dbuf_cache_target - 761 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 762 } 763 764 static inline boolean_t 765 dbuf_cache_above_lowater(void) 766 { 767 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 768 dbuf_cache_lowater_bytes()); 769 } 770 771 /* 772 * Evict the oldest eligible dbuf from the dbuf cache. 773 */ 774 static void 775 dbuf_evict_one(void) 776 { 777 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 778 multilist_sublist_t *mls = multilist_sublist_lock_idx( 779 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 780 781 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 782 783 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 784 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 785 db = multilist_sublist_prev(mls, db); 786 } 787 788 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 789 multilist_sublist_t *, mls); 790 791 if (db != NULL) { 792 multilist_sublist_remove(mls, db); 793 multilist_sublist_unlock(mls); 794 uint64_t size = db->db.db_size; 795 uint64_t usize = dmu_buf_user_size(&db->db); 796 (void) zfs_refcount_remove_many( 797 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 798 (void) zfs_refcount_remove_many( 799 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 800 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 801 DBUF_STAT_BUMPDOWN(cache_count); 802 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 803 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 804 db->db_caching_status = DB_NO_CACHE; 805 dbuf_destroy(db); 806 DBUF_STAT_BUMP(cache_total_evicts); 807 } else { 808 multilist_sublist_unlock(mls); 809 } 810 } 811 812 /* 813 * The dbuf evict thread is responsible for aging out dbufs from the 814 * cache. Once the cache has reached it's maximum size, dbufs are removed 815 * and destroyed. The eviction thread will continue running until the size 816 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 817 * out of the cache it is destroyed and becomes eligible for arc eviction. 818 */ 819 static __attribute__((noreturn)) void 820 dbuf_evict_thread(void *unused) 821 { 822 (void) unused; 823 callb_cpr_t cpr; 824 825 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 826 827 mutex_enter(&dbuf_evict_lock); 828 while (!dbuf_evict_thread_exit) { 829 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 830 CALLB_CPR_SAFE_BEGIN(&cpr); 831 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 832 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 833 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 834 } 835 mutex_exit(&dbuf_evict_lock); 836 837 /* 838 * Keep evicting as long as we're above the low water mark 839 * for the cache. We do this without holding the locks to 840 * minimize lock contention. 841 */ 842 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 843 dbuf_evict_one(); 844 } 845 846 mutex_enter(&dbuf_evict_lock); 847 } 848 849 dbuf_evict_thread_exit = B_FALSE; 850 cv_broadcast(&dbuf_evict_cv); 851 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 852 thread_exit(); 853 } 854 855 /* 856 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 857 * If the dbuf cache is at its high water mark, then evict a dbuf from the 858 * dbuf cache using the caller's context. 859 */ 860 static void 861 dbuf_evict_notify(uint64_t size) 862 { 863 /* 864 * We check if we should evict without holding the dbuf_evict_lock, 865 * because it's OK to occasionally make the wrong decision here, 866 * and grabbing the lock results in massive lock contention. 867 */ 868 if (size > dbuf_cache_target_bytes()) { 869 if (size > dbuf_cache_hiwater_bytes()) 870 dbuf_evict_one(); 871 cv_signal(&dbuf_evict_cv); 872 } 873 } 874 875 static int 876 dbuf_kstat_update(kstat_t *ksp, int rw) 877 { 878 dbuf_stats_t *ds = ksp->ks_data; 879 dbuf_hash_table_t *h = &dbuf_hash_table; 880 881 if (rw == KSTAT_WRITE) 882 return (SET_ERROR(EACCES)); 883 884 ds->cache_count.value.ui64 = 885 wmsum_value(&dbuf_sums.cache_count); 886 ds->cache_size_bytes.value.ui64 = 887 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 888 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 889 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 890 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 891 ds->cache_total_evicts.value.ui64 = 892 wmsum_value(&dbuf_sums.cache_total_evicts); 893 for (int i = 0; i < DN_MAX_LEVELS; i++) { 894 ds->cache_levels[i].value.ui64 = 895 wmsum_value(&dbuf_sums.cache_levels[i]); 896 ds->cache_levels_bytes[i].value.ui64 = 897 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 898 } 899 ds->hash_hits.value.ui64 = 900 wmsum_value(&dbuf_sums.hash_hits); 901 ds->hash_misses.value.ui64 = 902 wmsum_value(&dbuf_sums.hash_misses); 903 ds->hash_collisions.value.ui64 = 904 wmsum_value(&dbuf_sums.hash_collisions); 905 ds->hash_chains.value.ui64 = 906 wmsum_value(&dbuf_sums.hash_chains); 907 ds->hash_insert_race.value.ui64 = 908 wmsum_value(&dbuf_sums.hash_insert_race); 909 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 910 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 911 ds->metadata_cache_count.value.ui64 = 912 wmsum_value(&dbuf_sums.metadata_cache_count); 913 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 914 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 915 ds->metadata_cache_overflow.value.ui64 = 916 wmsum_value(&dbuf_sums.metadata_cache_overflow); 917 return (0); 918 } 919 920 void 921 dbuf_init(void) 922 { 923 uint64_t hmsize, hsize = 1ULL << 16; 924 dbuf_hash_table_t *h = &dbuf_hash_table; 925 926 /* 927 * The hash table is big enough to fill one eighth of physical memory 928 * with an average block size of zfs_arc_average_blocksize (default 8K). 929 * By default, the table will take up 930 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 931 */ 932 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 933 hsize <<= 1; 934 935 h->hash_table = NULL; 936 while (h->hash_table == NULL) { 937 h->hash_table_mask = hsize - 1; 938 939 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 940 if (h->hash_table == NULL) 941 hsize >>= 1; 942 943 ASSERT3U(hsize, >=, 1ULL << 10); 944 } 945 946 /* 947 * The hash table buckets are protected by an array of mutexes where 948 * each mutex is reponsible for protecting 128 buckets. A minimum 949 * array size of 8192 is targeted to avoid contention. 950 */ 951 if (dbuf_mutex_cache_shift == 0) 952 hmsize = MAX(hsize >> 7, 1ULL << 13); 953 else 954 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 955 956 h->hash_mutexes = NULL; 957 while (h->hash_mutexes == NULL) { 958 h->hash_mutex_mask = hmsize - 1; 959 960 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 961 KM_SLEEP); 962 if (h->hash_mutexes == NULL) 963 hmsize >>= 1; 964 } 965 966 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 967 sizeof (dmu_buf_impl_t), 968 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 969 970 for (int i = 0; i < hmsize; i++) 971 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 972 973 dbuf_stats_init(h); 974 975 /* 976 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 977 * configuration is not required. 978 */ 979 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 980 981 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 982 multilist_create(&dbuf_caches[dcs].cache, 983 sizeof (dmu_buf_impl_t), 984 offsetof(dmu_buf_impl_t, db_cache_link), 985 dbuf_cache_multilist_index_func); 986 zfs_refcount_create(&dbuf_caches[dcs].size); 987 } 988 989 dbuf_evict_thread_exit = B_FALSE; 990 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 991 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 992 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 993 NULL, 0, &p0, TS_RUN, minclsyspri); 994 995 wmsum_init(&dbuf_sums.cache_count, 0); 996 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 997 for (int i = 0; i < DN_MAX_LEVELS; i++) { 998 wmsum_init(&dbuf_sums.cache_levels[i], 0); 999 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 1000 } 1001 wmsum_init(&dbuf_sums.hash_hits, 0); 1002 wmsum_init(&dbuf_sums.hash_misses, 0); 1003 wmsum_init(&dbuf_sums.hash_collisions, 0); 1004 wmsum_init(&dbuf_sums.hash_chains, 0); 1005 wmsum_init(&dbuf_sums.hash_insert_race, 0); 1006 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1007 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1008 1009 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1010 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1011 KSTAT_FLAG_VIRTUAL); 1012 if (dbuf_ksp != NULL) { 1013 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1014 snprintf(dbuf_stats.cache_levels[i].name, 1015 KSTAT_STRLEN, "cache_level_%d", i); 1016 dbuf_stats.cache_levels[i].data_type = 1017 KSTAT_DATA_UINT64; 1018 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1019 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1020 dbuf_stats.cache_levels_bytes[i].data_type = 1021 KSTAT_DATA_UINT64; 1022 } 1023 dbuf_ksp->ks_data = &dbuf_stats; 1024 dbuf_ksp->ks_update = dbuf_kstat_update; 1025 kstat_install(dbuf_ksp); 1026 } 1027 } 1028 1029 void 1030 dbuf_fini(void) 1031 { 1032 dbuf_hash_table_t *h = &dbuf_hash_table; 1033 1034 dbuf_stats_destroy(); 1035 1036 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1037 mutex_destroy(&h->hash_mutexes[i]); 1038 1039 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1040 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1041 sizeof (kmutex_t)); 1042 1043 kmem_cache_destroy(dbuf_kmem_cache); 1044 taskq_destroy(dbu_evict_taskq); 1045 1046 mutex_enter(&dbuf_evict_lock); 1047 dbuf_evict_thread_exit = B_TRUE; 1048 while (dbuf_evict_thread_exit) { 1049 cv_signal(&dbuf_evict_cv); 1050 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1051 } 1052 mutex_exit(&dbuf_evict_lock); 1053 1054 mutex_destroy(&dbuf_evict_lock); 1055 cv_destroy(&dbuf_evict_cv); 1056 1057 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1058 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1059 multilist_destroy(&dbuf_caches[dcs].cache); 1060 } 1061 1062 if (dbuf_ksp != NULL) { 1063 kstat_delete(dbuf_ksp); 1064 dbuf_ksp = NULL; 1065 } 1066 1067 wmsum_fini(&dbuf_sums.cache_count); 1068 wmsum_fini(&dbuf_sums.cache_total_evicts); 1069 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1070 wmsum_fini(&dbuf_sums.cache_levels[i]); 1071 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1072 } 1073 wmsum_fini(&dbuf_sums.hash_hits); 1074 wmsum_fini(&dbuf_sums.hash_misses); 1075 wmsum_fini(&dbuf_sums.hash_collisions); 1076 wmsum_fini(&dbuf_sums.hash_chains); 1077 wmsum_fini(&dbuf_sums.hash_insert_race); 1078 wmsum_fini(&dbuf_sums.metadata_cache_count); 1079 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1080 } 1081 1082 /* 1083 * Other stuff. 1084 */ 1085 1086 #ifdef ZFS_DEBUG 1087 static void 1088 dbuf_verify(dmu_buf_impl_t *db) 1089 { 1090 dnode_t *dn; 1091 dbuf_dirty_record_t *dr; 1092 uint32_t txg_prev; 1093 1094 ASSERT(MUTEX_HELD(&db->db_mtx)); 1095 1096 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1097 return; 1098 1099 ASSERT(db->db_objset != NULL); 1100 DB_DNODE_ENTER(db); 1101 dn = DB_DNODE(db); 1102 if (dn == NULL) { 1103 ASSERT(db->db_parent == NULL); 1104 ASSERT(db->db_blkptr == NULL); 1105 } else { 1106 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1107 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1108 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1109 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1110 db->db_blkid == DMU_SPILL_BLKID || 1111 !avl_is_empty(&dn->dn_dbufs)); 1112 } 1113 if (db->db_blkid == DMU_BONUS_BLKID) { 1114 ASSERT(dn != NULL); 1115 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1116 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1117 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1118 ASSERT(dn != NULL); 1119 ASSERT0(db->db.db_offset); 1120 } else { 1121 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1122 } 1123 1124 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1125 ASSERT(dr->dr_dbuf == db); 1126 txg_prev = dr->dr_txg; 1127 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1128 dr = list_next(&db->db_dirty_records, dr)) { 1129 ASSERT(dr->dr_dbuf == db); 1130 ASSERT(txg_prev > dr->dr_txg); 1131 txg_prev = dr->dr_txg; 1132 } 1133 } 1134 1135 /* 1136 * We can't assert that db_size matches dn_datablksz because it 1137 * can be momentarily different when another thread is doing 1138 * dnode_set_blksz(). 1139 */ 1140 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1141 dr = db->db_data_pending; 1142 /* 1143 * It should only be modified in syncing context, so 1144 * make sure we only have one copy of the data. 1145 */ 1146 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1147 } 1148 1149 /* verify db->db_blkptr */ 1150 if (db->db_blkptr) { 1151 if (db->db_parent == dn->dn_dbuf) { 1152 /* db is pointed to by the dnode */ 1153 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1154 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1155 ASSERT(db->db_parent == NULL); 1156 else 1157 ASSERT(db->db_parent != NULL); 1158 if (db->db_blkid != DMU_SPILL_BLKID) 1159 ASSERT3P(db->db_blkptr, ==, 1160 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1161 } else { 1162 /* db is pointed to by an indirect block */ 1163 int epb __maybe_unused = db->db_parent->db.db_size >> 1164 SPA_BLKPTRSHIFT; 1165 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1166 ASSERT3U(db->db_parent->db.db_object, ==, 1167 db->db.db_object); 1168 /* 1169 * dnode_grow_indblksz() can make this fail if we don't 1170 * have the parent's rwlock. XXX indblksz no longer 1171 * grows. safe to do this now? 1172 */ 1173 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1174 ASSERT3P(db->db_blkptr, ==, 1175 ((blkptr_t *)db->db_parent->db.db_data + 1176 db->db_blkid % epb)); 1177 } 1178 } 1179 } 1180 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1181 (db->db_buf == NULL || db->db_buf->b_data) && 1182 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1183 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1184 /* 1185 * If the blkptr isn't set but they have nonzero data, 1186 * it had better be dirty, otherwise we'll lose that 1187 * data when we evict this buffer. 1188 * 1189 * There is an exception to this rule for indirect blocks; in 1190 * this case, if the indirect block is a hole, we fill in a few 1191 * fields on each of the child blocks (importantly, birth time) 1192 * to prevent hole birth times from being lost when you 1193 * partially fill in a hole. 1194 */ 1195 if (db->db_dirtycnt == 0) { 1196 if (db->db_level == 0) { 1197 uint64_t *buf = db->db.db_data; 1198 int i; 1199 1200 for (i = 0; i < db->db.db_size >> 3; i++) { 1201 ASSERT(buf[i] == 0); 1202 } 1203 } else { 1204 blkptr_t *bps = db->db.db_data; 1205 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1206 db->db.db_size); 1207 /* 1208 * We want to verify that all the blkptrs in the 1209 * indirect block are holes, but we may have 1210 * automatically set up a few fields for them. 1211 * We iterate through each blkptr and verify 1212 * they only have those fields set. 1213 */ 1214 for (int i = 0; 1215 i < db->db.db_size / sizeof (blkptr_t); 1216 i++) { 1217 blkptr_t *bp = &bps[i]; 1218 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1219 &bp->blk_cksum)); 1220 ASSERT( 1221 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1222 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1223 DVA_IS_EMPTY(&bp->blk_dva[2])); 1224 ASSERT0(bp->blk_fill); 1225 ASSERT0(bp->blk_pad[0]); 1226 ASSERT0(bp->blk_pad[1]); 1227 ASSERT(!BP_IS_EMBEDDED(bp)); 1228 ASSERT(BP_IS_HOLE(bp)); 1229 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1230 } 1231 } 1232 } 1233 } 1234 DB_DNODE_EXIT(db); 1235 } 1236 #endif 1237 1238 static void 1239 dbuf_clear_data(dmu_buf_impl_t *db) 1240 { 1241 ASSERT(MUTEX_HELD(&db->db_mtx)); 1242 dbuf_evict_user(db); 1243 ASSERT3P(db->db_buf, ==, NULL); 1244 db->db.db_data = NULL; 1245 if (db->db_state != DB_NOFILL) { 1246 db->db_state = DB_UNCACHED; 1247 DTRACE_SET_STATE(db, "clear data"); 1248 } 1249 } 1250 1251 static void 1252 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1253 { 1254 ASSERT(MUTEX_HELD(&db->db_mtx)); 1255 ASSERT(buf != NULL); 1256 1257 db->db_buf = buf; 1258 ASSERT(buf->b_data != NULL); 1259 db->db.db_data = buf->b_data; 1260 } 1261 1262 static arc_buf_t * 1263 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1264 { 1265 spa_t *spa = db->db_objset->os_spa; 1266 1267 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1268 } 1269 1270 /* 1271 * Loan out an arc_buf for read. Return the loaned arc_buf. 1272 */ 1273 arc_buf_t * 1274 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1275 { 1276 arc_buf_t *abuf; 1277 1278 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1279 mutex_enter(&db->db_mtx); 1280 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1281 int blksz = db->db.db_size; 1282 spa_t *spa = db->db_objset->os_spa; 1283 1284 mutex_exit(&db->db_mtx); 1285 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1286 memcpy(abuf->b_data, db->db.db_data, blksz); 1287 } else { 1288 abuf = db->db_buf; 1289 arc_loan_inuse_buf(abuf, db); 1290 db->db_buf = NULL; 1291 dbuf_clear_data(db); 1292 mutex_exit(&db->db_mtx); 1293 } 1294 return (abuf); 1295 } 1296 1297 /* 1298 * Calculate which level n block references the data at the level 0 offset 1299 * provided. 1300 */ 1301 uint64_t 1302 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1303 { 1304 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1305 /* 1306 * The level n blkid is equal to the level 0 blkid divided by 1307 * the number of level 0s in a level n block. 1308 * 1309 * The level 0 blkid is offset >> datablkshift = 1310 * offset / 2^datablkshift. 1311 * 1312 * The number of level 0s in a level n is the number of block 1313 * pointers in an indirect block, raised to the power of level. 1314 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1315 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1316 * 1317 * Thus, the level n blkid is: offset / 1318 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1319 * = offset / 2^(datablkshift + level * 1320 * (indblkshift - SPA_BLKPTRSHIFT)) 1321 * = offset >> (datablkshift + level * 1322 * (indblkshift - SPA_BLKPTRSHIFT)) 1323 */ 1324 1325 const unsigned exp = dn->dn_datablkshift + 1326 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1327 1328 if (exp >= 8 * sizeof (offset)) { 1329 /* This only happens on the highest indirection level */ 1330 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1331 return (0); 1332 } 1333 1334 ASSERT3U(exp, <, 8 * sizeof (offset)); 1335 1336 return (offset >> exp); 1337 } else { 1338 ASSERT3U(offset, <, dn->dn_datablksz); 1339 return (0); 1340 } 1341 } 1342 1343 /* 1344 * This function is used to lock the parent of the provided dbuf. This should be 1345 * used when modifying or reading db_blkptr. 1346 */ 1347 db_lock_type_t 1348 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1349 { 1350 enum db_lock_type ret = DLT_NONE; 1351 if (db->db_parent != NULL) { 1352 rw_enter(&db->db_parent->db_rwlock, rw); 1353 ret = DLT_PARENT; 1354 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1355 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1356 tag); 1357 ret = DLT_OBJSET; 1358 } 1359 /* 1360 * We only return a DLT_NONE lock when it's the top-most indirect block 1361 * of the meta-dnode of the MOS. 1362 */ 1363 return (ret); 1364 } 1365 1366 /* 1367 * We need to pass the lock type in because it's possible that the block will 1368 * move from being the topmost indirect block in a dnode (and thus, have no 1369 * parent) to not the top-most via an indirection increase. This would cause a 1370 * panic if we didn't pass the lock type in. 1371 */ 1372 void 1373 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1374 { 1375 if (type == DLT_PARENT) 1376 rw_exit(&db->db_parent->db_rwlock); 1377 else if (type == DLT_OBJSET) 1378 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1379 } 1380 1381 static void 1382 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1383 arc_buf_t *buf, void *vdb) 1384 { 1385 (void) zb, (void) bp; 1386 dmu_buf_impl_t *db = vdb; 1387 1388 mutex_enter(&db->db_mtx); 1389 ASSERT3U(db->db_state, ==, DB_READ); 1390 1391 /* 1392 * All reads are synchronous, so we must have a hold on the dbuf 1393 */ 1394 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1395 ASSERT(db->db_buf == NULL); 1396 ASSERT(db->db.db_data == NULL); 1397 if (buf == NULL) { 1398 /* i/o error */ 1399 ASSERT(zio == NULL || zio->io_error != 0); 1400 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1401 ASSERT3P(db->db_buf, ==, NULL); 1402 db->db_state = DB_UNCACHED; 1403 DTRACE_SET_STATE(db, "i/o error"); 1404 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1405 /* freed in flight */ 1406 ASSERT(zio == NULL || zio->io_error == 0); 1407 arc_release(buf, db); 1408 memset(buf->b_data, 0, db->db.db_size); 1409 arc_buf_freeze(buf); 1410 db->db_freed_in_flight = FALSE; 1411 dbuf_set_data(db, buf); 1412 db->db_state = DB_CACHED; 1413 DTRACE_SET_STATE(db, "freed in flight"); 1414 } else { 1415 /* success */ 1416 ASSERT(zio == NULL || zio->io_error == 0); 1417 dbuf_set_data(db, buf); 1418 db->db_state = DB_CACHED; 1419 DTRACE_SET_STATE(db, "successful read"); 1420 } 1421 cv_broadcast(&db->db_changed); 1422 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1423 } 1424 1425 /* 1426 * Shortcut for performing reads on bonus dbufs. Returns 1427 * an error if we fail to verify the dnode associated with 1428 * a decrypted block. Otherwise success. 1429 */ 1430 static int 1431 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1432 { 1433 int bonuslen, max_bonuslen; 1434 1435 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1436 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1437 ASSERT(MUTEX_HELD(&db->db_mtx)); 1438 ASSERT(DB_DNODE_HELD(db)); 1439 ASSERT3U(bonuslen, <=, db->db.db_size); 1440 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1441 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1442 if (bonuslen < max_bonuslen) 1443 memset(db->db.db_data, 0, max_bonuslen); 1444 if (bonuslen) 1445 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1446 db->db_state = DB_CACHED; 1447 DTRACE_SET_STATE(db, "bonus buffer filled"); 1448 return (0); 1449 } 1450 1451 static void 1452 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1453 { 1454 blkptr_t *bps = db->db.db_data; 1455 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1456 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1457 1458 for (int i = 0; i < n_bps; i++) { 1459 blkptr_t *bp = &bps[i]; 1460 1461 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1462 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1463 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1464 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1465 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1466 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1467 } 1468 } 1469 1470 /* 1471 * Handle reads on dbufs that are holes, if necessary. This function 1472 * requires that the dbuf's mutex is held. Returns success (0) if action 1473 * was taken, ENOENT if no action was taken. 1474 */ 1475 static int 1476 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1477 { 1478 ASSERT(MUTEX_HELD(&db->db_mtx)); 1479 1480 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1481 /* 1482 * For level 0 blocks only, if the above check fails: 1483 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1484 * processes the delete record and clears the bp while we are waiting 1485 * for the dn_mtx (resulting in a "no" from block_freed). 1486 */ 1487 if (!is_hole && db->db_level == 0) 1488 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1489 1490 if (is_hole) { 1491 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1492 memset(db->db.db_data, 0, db->db.db_size); 1493 1494 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1495 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1496 dbuf_handle_indirect_hole(db, dn, bp); 1497 } 1498 db->db_state = DB_CACHED; 1499 DTRACE_SET_STATE(db, "hole read satisfied"); 1500 return (0); 1501 } 1502 return (ENOENT); 1503 } 1504 1505 /* 1506 * This function ensures that, when doing a decrypting read of a block, 1507 * we make sure we have decrypted the dnode associated with it. We must do 1508 * this so that we ensure we are fully authenticating the checksum-of-MACs 1509 * tree from the root of the objset down to this block. Indirect blocks are 1510 * always verified against their secure checksum-of-MACs assuming that the 1511 * dnode containing them is correct. Now that we are doing a decrypting read, 1512 * we can be sure that the key is loaded and verify that assumption. This is 1513 * especially important considering that we always read encrypted dnode 1514 * blocks as raw data (without verifying their MACs) to start, and 1515 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1516 */ 1517 static int 1518 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1519 { 1520 objset_t *os = db->db_objset; 1521 dmu_buf_impl_t *dndb; 1522 arc_buf_t *dnbuf; 1523 zbookmark_phys_t zb; 1524 int err; 1525 1526 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1527 !os->os_encrypted || os->os_raw_receive || 1528 (dndb = dn->dn_dbuf) == NULL) 1529 return (0); 1530 1531 dnbuf = dndb->db_buf; 1532 if (!arc_is_encrypted(dnbuf)) 1533 return (0); 1534 1535 mutex_enter(&dndb->db_mtx); 1536 1537 /* 1538 * Since dnode buffer is modified by sync process, there can be only 1539 * one copy of it. It means we can not modify (decrypt) it while it 1540 * is being written. I don't see how this may happen now, since 1541 * encrypted dnode writes by receive should be completed before any 1542 * plain-text reads due to txg wait, but better be safe than sorry. 1543 */ 1544 while (1) { 1545 if (!arc_is_encrypted(dnbuf)) { 1546 mutex_exit(&dndb->db_mtx); 1547 return (0); 1548 } 1549 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1550 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1551 break; 1552 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1553 }; 1554 1555 SET_BOOKMARK(&zb, dmu_objset_id(os), 1556 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1557 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1558 1559 /* 1560 * An error code of EACCES tells us that the key is still not 1561 * available. This is ok if we are only reading authenticated 1562 * (and therefore non-encrypted) blocks. 1563 */ 1564 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1565 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1566 (db->db_blkid == DMU_BONUS_BLKID && 1567 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1568 err = 0; 1569 1570 mutex_exit(&dndb->db_mtx); 1571 1572 return (err); 1573 } 1574 1575 /* 1576 * Drops db_mtx and the parent lock specified by dblt and tag before 1577 * returning. 1578 */ 1579 static int 1580 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, 1581 db_lock_type_t dblt, blkptr_t *bp, const void *tag) 1582 { 1583 zbookmark_phys_t zb; 1584 uint32_t aflags = ARC_FLAG_NOWAIT; 1585 int err, zio_flags; 1586 1587 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1588 ASSERT(MUTEX_HELD(&db->db_mtx)); 1589 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1590 ASSERT(db->db_buf == NULL); 1591 ASSERT(db->db_parent == NULL || 1592 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1593 1594 if (db->db_blkid == DMU_BONUS_BLKID) { 1595 err = dbuf_read_bonus(db, dn); 1596 goto early_unlock; 1597 } 1598 1599 err = dbuf_read_hole(db, dn, bp); 1600 if (err == 0) 1601 goto early_unlock; 1602 1603 ASSERT(bp != NULL); 1604 1605 /* 1606 * Any attempt to read a redacted block should result in an error. This 1607 * will never happen under normal conditions, but can be useful for 1608 * debugging purposes. 1609 */ 1610 if (BP_IS_REDACTED(bp)) { 1611 ASSERT(dsl_dataset_feature_is_active( 1612 db->db_objset->os_dsl_dataset, 1613 SPA_FEATURE_REDACTED_DATASETS)); 1614 err = SET_ERROR(EIO); 1615 goto early_unlock; 1616 } 1617 1618 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1619 db->db.db_object, db->db_level, db->db_blkid); 1620 1621 /* 1622 * All bps of an encrypted os should have the encryption bit set. 1623 * If this is not true it indicates tampering and we report an error. 1624 */ 1625 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) { 1626 spa_log_error(db->db_objset->os_spa, &zb, 1627 BP_GET_LOGICAL_BIRTH(bp)); 1628 err = SET_ERROR(EIO); 1629 goto early_unlock; 1630 } 1631 1632 db->db_state = DB_READ; 1633 DTRACE_SET_STATE(db, "read issued"); 1634 mutex_exit(&db->db_mtx); 1635 1636 if (!DBUF_IS_CACHEABLE(db)) 1637 aflags |= ARC_FLAG_UNCACHED; 1638 else if (dbuf_is_l2cacheable(db, bp)) 1639 aflags |= ARC_FLAG_L2CACHE; 1640 1641 dbuf_add_ref(db, NULL); 1642 1643 zio_flags = (flags & DB_RF_CANFAIL) ? 1644 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1645 1646 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(bp)) 1647 zio_flags |= ZIO_FLAG_RAW; 1648 1649 /* 1650 * The zio layer will copy the provided blkptr later, but we need to 1651 * do this now so that we can release the parent's rwlock. We have to 1652 * do that now so that if dbuf_read_done is called synchronously (on 1653 * an l1 cache hit) we don't acquire the db_mtx while holding the 1654 * parent's rwlock, which would be a lock ordering violation. 1655 */ 1656 blkptr_t copy = *bp; 1657 dmu_buf_unlock_parent(db, dblt, tag); 1658 return (arc_read(zio, db->db_objset->os_spa, ©, 1659 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1660 &aflags, &zb)); 1661 1662 early_unlock: 1663 mutex_exit(&db->db_mtx); 1664 dmu_buf_unlock_parent(db, dblt, tag); 1665 return (err); 1666 } 1667 1668 /* 1669 * This is our just-in-time copy function. It makes a copy of buffers that 1670 * have been modified in a previous transaction group before we access them in 1671 * the current active group. 1672 * 1673 * This function is used in three places: when we are dirtying a buffer for the 1674 * first time in a txg, when we are freeing a range in a dnode that includes 1675 * this buffer, and when we are accessing a buffer which was received compressed 1676 * and later referenced in a WRITE_BYREF record. 1677 * 1678 * Note that when we are called from dbuf_free_range() we do not put a hold on 1679 * the buffer, we just traverse the active dbuf list for the dnode. 1680 */ 1681 static void 1682 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1683 { 1684 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1685 1686 ASSERT(MUTEX_HELD(&db->db_mtx)); 1687 ASSERT(db->db.db_data != NULL); 1688 ASSERT(db->db_level == 0); 1689 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1690 1691 if (dr == NULL || 1692 (dr->dt.dl.dr_data != 1693 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1694 return; 1695 1696 /* 1697 * If the last dirty record for this dbuf has not yet synced 1698 * and its referencing the dbuf data, either: 1699 * reset the reference to point to a new copy, 1700 * or (if there a no active holders) 1701 * just null out the current db_data pointer. 1702 */ 1703 ASSERT3U(dr->dr_txg, >=, txg - 2); 1704 if (db->db_blkid == DMU_BONUS_BLKID) { 1705 dnode_t *dn = DB_DNODE(db); 1706 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1707 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1708 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1709 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1710 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1711 dnode_t *dn = DB_DNODE(db); 1712 int size = arc_buf_size(db->db_buf); 1713 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1714 spa_t *spa = db->db_objset->os_spa; 1715 enum zio_compress compress_type = 1716 arc_get_compression(db->db_buf); 1717 uint8_t complevel = arc_get_complevel(db->db_buf); 1718 1719 if (arc_is_encrypted(db->db_buf)) { 1720 boolean_t byteorder; 1721 uint8_t salt[ZIO_DATA_SALT_LEN]; 1722 uint8_t iv[ZIO_DATA_IV_LEN]; 1723 uint8_t mac[ZIO_DATA_MAC_LEN]; 1724 1725 arc_get_raw_params(db->db_buf, &byteorder, salt, 1726 iv, mac); 1727 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1728 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1729 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1730 compress_type, complevel); 1731 } else if (compress_type != ZIO_COMPRESS_OFF) { 1732 ASSERT3U(type, ==, ARC_BUFC_DATA); 1733 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1734 size, arc_buf_lsize(db->db_buf), compress_type, 1735 complevel); 1736 } else { 1737 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1738 } 1739 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1740 } else { 1741 db->db_buf = NULL; 1742 dbuf_clear_data(db); 1743 } 1744 } 1745 1746 int 1747 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) 1748 { 1749 dnode_t *dn; 1750 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1751 int err; 1752 1753 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1754 1755 DB_DNODE_ENTER(db); 1756 dn = DB_DNODE(db); 1757 1758 /* 1759 * Ensure that this block's dnode has been decrypted if the caller 1760 * has requested decrypted data. 1761 */ 1762 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1763 if (err != 0) 1764 goto done; 1765 1766 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1767 (flags & DB_RF_NOPREFETCH) == 0; 1768 1769 mutex_enter(&db->db_mtx); 1770 if (flags & DB_RF_PARTIAL_FIRST) 1771 db->db_partial_read = B_TRUE; 1772 else if (!(flags & DB_RF_PARTIAL_MORE)) 1773 db->db_partial_read = B_FALSE; 1774 miss = (db->db_state != DB_CACHED); 1775 1776 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1777 /* 1778 * Another reader came in while the dbuf was in flight between 1779 * UNCACHED and CACHED. Either a writer will finish filling 1780 * the buffer, sending the dbuf to CACHED, or the first reader's 1781 * request will reach the read_done callback and send the dbuf 1782 * to CACHED. Otherwise, a failure occurred and the dbuf will 1783 * be sent to UNCACHED. 1784 */ 1785 if (flags & DB_RF_NEVERWAIT) { 1786 mutex_exit(&db->db_mtx); 1787 DB_DNODE_EXIT(db); 1788 goto done; 1789 } 1790 do { 1791 ASSERT(db->db_state == DB_READ || 1792 (flags & DB_RF_HAVESTRUCT) == 0); 1793 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1794 zio_t *, pio); 1795 cv_wait(&db->db_changed, &db->db_mtx); 1796 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1797 if (db->db_state == DB_UNCACHED) { 1798 err = SET_ERROR(EIO); 1799 mutex_exit(&db->db_mtx); 1800 DB_DNODE_EXIT(db); 1801 goto done; 1802 } 1803 } 1804 1805 if (db->db_state == DB_CACHED) { 1806 /* 1807 * If the arc buf is compressed or encrypted and the caller 1808 * requested uncompressed data, we need to untransform it 1809 * before returning. We also call arc_untransform() on any 1810 * unauthenticated blocks, which will verify their MAC if 1811 * the key is now available. 1812 */ 1813 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL && 1814 (arc_is_encrypted(db->db_buf) || 1815 arc_is_unauthenticated(db->db_buf) || 1816 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1817 spa_t *spa = dn->dn_objset->os_spa; 1818 zbookmark_phys_t zb; 1819 1820 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1821 db->db.db_object, db->db_level, db->db_blkid); 1822 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1823 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1824 dbuf_set_data(db, db->db_buf); 1825 } 1826 mutex_exit(&db->db_mtx); 1827 } else { 1828 ASSERT(db->db_state == DB_UNCACHED || 1829 db->db_state == DB_NOFILL); 1830 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1831 blkptr_t *bp; 1832 1833 /* 1834 * If a block clone or Direct I/O write has occurred we will 1835 * get the dirty records overridden BP so we get the most 1836 * recent data. 1837 */ 1838 err = dmu_buf_get_bp_from_dbuf(db, &bp); 1839 1840 if (!err) { 1841 if (pio == NULL && (db->db_state == DB_NOFILL || 1842 (bp != NULL && !BP_IS_HOLE(bp)))) { 1843 spa_t *spa = dn->dn_objset->os_spa; 1844 pio = 1845 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1846 need_wait = B_TRUE; 1847 } 1848 1849 err = 1850 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG); 1851 } else { 1852 mutex_exit(&db->db_mtx); 1853 dmu_buf_unlock_parent(db, dblt, FTAG); 1854 } 1855 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1856 miss = (db->db_state != DB_CACHED); 1857 } 1858 1859 if (err == 0 && prefetch) { 1860 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1861 flags & DB_RF_HAVESTRUCT); 1862 } 1863 DB_DNODE_EXIT(db); 1864 1865 /* 1866 * If we created a zio we must execute it to avoid leaking it, even if 1867 * it isn't attached to any work due to an error in dbuf_read_impl(). 1868 */ 1869 if (need_wait) { 1870 if (err == 0) 1871 err = zio_wait(pio); 1872 else 1873 (void) zio_wait(pio); 1874 pio = NULL; 1875 } 1876 1877 done: 1878 if (miss) 1879 DBUF_STAT_BUMP(hash_misses); 1880 else 1881 DBUF_STAT_BUMP(hash_hits); 1882 if (pio && err != 0) { 1883 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1884 ZIO_FLAG_CANFAIL); 1885 zio->io_error = err; 1886 zio_nowait(zio); 1887 } 1888 1889 return (err); 1890 } 1891 1892 static void 1893 dbuf_noread(dmu_buf_impl_t *db) 1894 { 1895 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1897 mutex_enter(&db->db_mtx); 1898 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1899 cv_wait(&db->db_changed, &db->db_mtx); 1900 if (db->db_state == DB_UNCACHED) { 1901 ASSERT(db->db_buf == NULL); 1902 ASSERT(db->db.db_data == NULL); 1903 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1904 db->db_state = DB_FILL; 1905 DTRACE_SET_STATE(db, "assigning filled buffer"); 1906 } else if (db->db_state == DB_NOFILL) { 1907 dbuf_clear_data(db); 1908 } else { 1909 ASSERT3U(db->db_state, ==, DB_CACHED); 1910 } 1911 mutex_exit(&db->db_mtx); 1912 } 1913 1914 void 1915 dbuf_unoverride(dbuf_dirty_record_t *dr) 1916 { 1917 dmu_buf_impl_t *db = dr->dr_dbuf; 1918 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1919 uint64_t txg = dr->dr_txg; 1920 1921 ASSERT(MUTEX_HELD(&db->db_mtx)); 1922 1923 /* 1924 * This assert is valid because dmu_sync() expects to be called by 1925 * a zilog's get_data while holding a range lock. This call only 1926 * comes from dbuf_dirty() callers who must also hold a range lock. 1927 */ 1928 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1929 ASSERT(db->db_level == 0); 1930 1931 if (db->db_blkid == DMU_BONUS_BLKID || 1932 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1933 return; 1934 1935 ASSERT(db->db_data_pending != dr); 1936 1937 /* free this block */ 1938 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1939 zio_free(db->db_objset->os_spa, txg, bp); 1940 1941 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) { 1942 ASSERT0P(dr->dt.dl.dr_data); 1943 dr->dt.dl.dr_data = db->db_buf; 1944 } 1945 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1946 dr->dt.dl.dr_nopwrite = B_FALSE; 1947 dr->dt.dl.dr_brtwrite = B_FALSE; 1948 dr->dt.dl.dr_diowrite = B_FALSE; 1949 dr->dt.dl.dr_has_raw_params = B_FALSE; 1950 1951 /* 1952 * In the event that Direct I/O was used, we do not 1953 * need to release the buffer from the ARC. 1954 * 1955 * Release the already-written buffer, so we leave it in 1956 * a consistent dirty state. Note that all callers are 1957 * modifying the buffer, so they will immediately do 1958 * another (redundant) arc_release(). Therefore, leave 1959 * the buf thawed to save the effort of freezing & 1960 * immediately re-thawing it. 1961 */ 1962 if (dr->dt.dl.dr_data) 1963 arc_release(dr->dt.dl.dr_data, db); 1964 } 1965 1966 /* 1967 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1968 * data blocks in the free range, so that any future readers will find 1969 * empty blocks. 1970 */ 1971 void 1972 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1973 dmu_tx_t *tx) 1974 { 1975 dmu_buf_impl_t *db_search; 1976 dmu_buf_impl_t *db, *db_next; 1977 uint64_t txg = tx->tx_txg; 1978 avl_index_t where; 1979 dbuf_dirty_record_t *dr; 1980 1981 if (end_blkid > dn->dn_maxblkid && 1982 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1983 end_blkid = dn->dn_maxblkid; 1984 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1985 (u_longlong_t)end_blkid); 1986 1987 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1988 db_search->db_level = 0; 1989 db_search->db_blkid = start_blkid; 1990 db_search->db_state = DB_SEARCH; 1991 1992 mutex_enter(&dn->dn_dbufs_mtx); 1993 db = avl_find(&dn->dn_dbufs, db_search, &where); 1994 ASSERT3P(db, ==, NULL); 1995 1996 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1997 1998 for (; db != NULL; db = db_next) { 1999 db_next = AVL_NEXT(&dn->dn_dbufs, db); 2000 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2001 2002 if (db->db_level != 0 || db->db_blkid > end_blkid) { 2003 break; 2004 } 2005 ASSERT3U(db->db_blkid, >=, start_blkid); 2006 2007 /* found a level 0 buffer in the range */ 2008 mutex_enter(&db->db_mtx); 2009 if (dbuf_undirty(db, tx)) { 2010 /* mutex has been dropped and dbuf destroyed */ 2011 continue; 2012 } 2013 2014 if (db->db_state == DB_UNCACHED || 2015 db->db_state == DB_NOFILL || 2016 db->db_state == DB_EVICTING) { 2017 ASSERT(db->db.db_data == NULL); 2018 mutex_exit(&db->db_mtx); 2019 continue; 2020 } 2021 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2022 /* will be handled in dbuf_read_done or dbuf_rele */ 2023 db->db_freed_in_flight = TRUE; 2024 mutex_exit(&db->db_mtx); 2025 continue; 2026 } 2027 if (zfs_refcount_count(&db->db_holds) == 0) { 2028 ASSERT(db->db_buf); 2029 dbuf_destroy(db); 2030 continue; 2031 } 2032 /* The dbuf is referenced */ 2033 2034 dr = list_head(&db->db_dirty_records); 2035 if (dr != NULL) { 2036 if (dr->dr_txg == txg) { 2037 /* 2038 * This buffer is "in-use", re-adjust the file 2039 * size to reflect that this buffer may 2040 * contain new data when we sync. 2041 */ 2042 if (db->db_blkid != DMU_SPILL_BLKID && 2043 db->db_blkid > dn->dn_maxblkid) 2044 dn->dn_maxblkid = db->db_blkid; 2045 dbuf_unoverride(dr); 2046 } else { 2047 /* 2048 * This dbuf is not dirty in the open context. 2049 * Either uncache it (if its not referenced in 2050 * the open context) or reset its contents to 2051 * empty. 2052 */ 2053 dbuf_fix_old_data(db, txg); 2054 } 2055 } 2056 /* clear the contents if its cached */ 2057 if (db->db_state == DB_CACHED) { 2058 ASSERT(db->db.db_data != NULL); 2059 arc_release(db->db_buf, db); 2060 rw_enter(&db->db_rwlock, RW_WRITER); 2061 memset(db->db.db_data, 0, db->db.db_size); 2062 rw_exit(&db->db_rwlock); 2063 arc_buf_freeze(db->db_buf); 2064 } 2065 2066 mutex_exit(&db->db_mtx); 2067 } 2068 2069 mutex_exit(&dn->dn_dbufs_mtx); 2070 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2071 } 2072 2073 void 2074 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2075 { 2076 arc_buf_t *buf, *old_buf; 2077 dbuf_dirty_record_t *dr; 2078 int osize = db->db.db_size; 2079 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2080 dnode_t *dn; 2081 2082 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2083 2084 DB_DNODE_ENTER(db); 2085 dn = DB_DNODE(db); 2086 2087 /* 2088 * XXX we should be doing a dbuf_read, checking the return 2089 * value and returning that up to our callers 2090 */ 2091 dmu_buf_will_dirty(&db->db, tx); 2092 2093 VERIFY3P(db->db_buf, !=, NULL); 2094 2095 /* create the data buffer for the new block */ 2096 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2097 2098 /* copy old block data to the new block */ 2099 old_buf = db->db_buf; 2100 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2101 /* zero the remainder */ 2102 if (size > osize) 2103 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2104 2105 mutex_enter(&db->db_mtx); 2106 dbuf_set_data(db, buf); 2107 arc_buf_destroy(old_buf, db); 2108 db->db.db_size = size; 2109 2110 dr = list_head(&db->db_dirty_records); 2111 /* dirty record added by dmu_buf_will_dirty() */ 2112 VERIFY(dr != NULL); 2113 if (db->db_level == 0) 2114 dr->dt.dl.dr_data = buf; 2115 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2116 ASSERT3U(dr->dr_accounted, ==, osize); 2117 dr->dr_accounted = size; 2118 mutex_exit(&db->db_mtx); 2119 2120 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2121 DB_DNODE_EXIT(db); 2122 } 2123 2124 void 2125 dbuf_release_bp(dmu_buf_impl_t *db) 2126 { 2127 objset_t *os __maybe_unused = db->db_objset; 2128 2129 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2130 ASSERT(arc_released(os->os_phys_buf) || 2131 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2132 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2133 2134 (void) arc_release(db->db_buf, db); 2135 } 2136 2137 /* 2138 * We already have a dirty record for this TXG, and we are being 2139 * dirtied again. 2140 */ 2141 static void 2142 dbuf_redirty(dbuf_dirty_record_t *dr) 2143 { 2144 dmu_buf_impl_t *db = dr->dr_dbuf; 2145 2146 ASSERT(MUTEX_HELD(&db->db_mtx)); 2147 2148 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2149 /* 2150 * If this buffer has already been written out, 2151 * we now need to reset its state. 2152 */ 2153 dbuf_unoverride(dr); 2154 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2155 db->db_state != DB_NOFILL) { 2156 /* Already released on initial dirty, so just thaw. */ 2157 ASSERT(arc_released(db->db_buf)); 2158 arc_buf_thaw(db->db_buf); 2159 } 2160 } 2161 } 2162 2163 dbuf_dirty_record_t * 2164 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2165 { 2166 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2167 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2168 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2169 ASSERT(dn->dn_maxblkid >= blkid); 2170 2171 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2172 list_link_init(&dr->dr_dirty_node); 2173 list_link_init(&dr->dr_dbuf_node); 2174 dr->dr_dnode = dn; 2175 dr->dr_txg = tx->tx_txg; 2176 dr->dt.dll.dr_blkid = blkid; 2177 dr->dr_accounted = dn->dn_datablksz; 2178 2179 /* 2180 * There should not be any dbuf for the block that we're dirtying. 2181 * Otherwise the buffer contents could be inconsistent between the 2182 * dbuf and the lightweight dirty record. 2183 */ 2184 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2185 NULL)); 2186 2187 mutex_enter(&dn->dn_mtx); 2188 int txgoff = tx->tx_txg & TXG_MASK; 2189 if (dn->dn_free_ranges[txgoff] != NULL) { 2190 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2191 } 2192 2193 if (dn->dn_nlevels == 1) { 2194 ASSERT3U(blkid, <, dn->dn_nblkptr); 2195 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2196 mutex_exit(&dn->dn_mtx); 2197 rw_exit(&dn->dn_struct_rwlock); 2198 dnode_setdirty(dn, tx); 2199 } else { 2200 mutex_exit(&dn->dn_mtx); 2201 2202 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2203 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2204 1, blkid >> epbs, FTAG); 2205 rw_exit(&dn->dn_struct_rwlock); 2206 if (parent_db == NULL) { 2207 kmem_free(dr, sizeof (*dr)); 2208 return (NULL); 2209 } 2210 int err = dbuf_read(parent_db, NULL, 2211 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2212 if (err != 0) { 2213 dbuf_rele(parent_db, FTAG); 2214 kmem_free(dr, sizeof (*dr)); 2215 return (NULL); 2216 } 2217 2218 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2219 dbuf_rele(parent_db, FTAG); 2220 mutex_enter(&parent_dr->dt.di.dr_mtx); 2221 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2222 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2223 mutex_exit(&parent_dr->dt.di.dr_mtx); 2224 dr->dr_parent = parent_dr; 2225 } 2226 2227 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2228 2229 return (dr); 2230 } 2231 2232 dbuf_dirty_record_t * 2233 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2234 { 2235 dnode_t *dn; 2236 objset_t *os; 2237 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2238 int txgoff = tx->tx_txg & TXG_MASK; 2239 boolean_t drop_struct_rwlock = B_FALSE; 2240 2241 ASSERT(tx->tx_txg != 0); 2242 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2243 DMU_TX_DIRTY_BUF(tx, db); 2244 2245 DB_DNODE_ENTER(db); 2246 dn = DB_DNODE(db); 2247 /* 2248 * Shouldn't dirty a regular buffer in syncing context. Private 2249 * objects may be dirtied in syncing context, but only if they 2250 * were already pre-dirtied in open context. 2251 */ 2252 #ifdef ZFS_DEBUG 2253 if (dn->dn_objset->os_dsl_dataset != NULL) { 2254 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2255 RW_READER, FTAG); 2256 } 2257 ASSERT(!dmu_tx_is_syncing(tx) || 2258 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2259 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2260 dn->dn_objset->os_dsl_dataset == NULL); 2261 if (dn->dn_objset->os_dsl_dataset != NULL) 2262 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2263 #endif 2264 /* 2265 * We make this assert for private objects as well, but after we 2266 * check if we're already dirty. They are allowed to re-dirty 2267 * in syncing context. 2268 */ 2269 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2270 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2271 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2272 2273 mutex_enter(&db->db_mtx); 2274 /* 2275 * XXX make this true for indirects too? The problem is that 2276 * transactions created with dmu_tx_create_assigned() from 2277 * syncing context don't bother holding ahead. 2278 */ 2279 ASSERT(db->db_level != 0 || 2280 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2281 db->db_state == DB_NOFILL); 2282 2283 mutex_enter(&dn->dn_mtx); 2284 dnode_set_dirtyctx(dn, tx, db); 2285 if (tx->tx_txg > dn->dn_dirty_txg) 2286 dn->dn_dirty_txg = tx->tx_txg; 2287 mutex_exit(&dn->dn_mtx); 2288 2289 if (db->db_blkid == DMU_SPILL_BLKID) 2290 dn->dn_have_spill = B_TRUE; 2291 2292 /* 2293 * If this buffer is already dirty, we're done. 2294 */ 2295 dr_head = list_head(&db->db_dirty_records); 2296 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2297 db->db.db_object == DMU_META_DNODE_OBJECT); 2298 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2299 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2300 DB_DNODE_EXIT(db); 2301 2302 dbuf_redirty(dr_next); 2303 mutex_exit(&db->db_mtx); 2304 return (dr_next); 2305 } 2306 2307 /* 2308 * Only valid if not already dirty. 2309 */ 2310 ASSERT(dn->dn_object == 0 || 2311 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2312 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2313 2314 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2315 2316 /* 2317 * We should only be dirtying in syncing context if it's the 2318 * mos or we're initializing the os or it's a special object. 2319 * However, we are allowed to dirty in syncing context provided 2320 * we already dirtied it in open context. Hence we must make 2321 * this assertion only if we're not already dirty. 2322 */ 2323 os = dn->dn_objset; 2324 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2325 #ifdef ZFS_DEBUG 2326 if (dn->dn_objset->os_dsl_dataset != NULL) 2327 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2328 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2329 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2330 if (dn->dn_objset->os_dsl_dataset != NULL) 2331 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2332 #endif 2333 ASSERT(db->db.db_size != 0); 2334 2335 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2336 2337 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2338 dmu_objset_willuse_space(os, db->db.db_size, tx); 2339 } 2340 2341 /* 2342 * If this buffer is dirty in an old transaction group we need 2343 * to make a copy of it so that the changes we make in this 2344 * transaction group won't leak out when we sync the older txg. 2345 */ 2346 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2347 list_link_init(&dr->dr_dirty_node); 2348 list_link_init(&dr->dr_dbuf_node); 2349 dr->dr_dnode = dn; 2350 if (db->db_level == 0) { 2351 void *data_old = db->db_buf; 2352 2353 if (db->db_state != DB_NOFILL) { 2354 if (db->db_blkid == DMU_BONUS_BLKID) { 2355 dbuf_fix_old_data(db, tx->tx_txg); 2356 data_old = db->db.db_data; 2357 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2358 /* 2359 * Release the data buffer from the cache so 2360 * that we can modify it without impacting 2361 * possible other users of this cached data 2362 * block. Note that indirect blocks and 2363 * private objects are not released until the 2364 * syncing state (since they are only modified 2365 * then). 2366 */ 2367 arc_release(db->db_buf, db); 2368 dbuf_fix_old_data(db, tx->tx_txg); 2369 data_old = db->db_buf; 2370 } 2371 ASSERT(data_old != NULL); 2372 } 2373 dr->dt.dl.dr_data = data_old; 2374 } else { 2375 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2376 list_create(&dr->dt.di.dr_children, 2377 sizeof (dbuf_dirty_record_t), 2378 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2379 } 2380 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2381 dr->dr_accounted = db->db.db_size; 2382 } 2383 dr->dr_dbuf = db; 2384 dr->dr_txg = tx->tx_txg; 2385 list_insert_before(&db->db_dirty_records, dr_next, dr); 2386 2387 /* 2388 * We could have been freed_in_flight between the dbuf_noread 2389 * and dbuf_dirty. We win, as though the dbuf_noread() had 2390 * happened after the free. 2391 */ 2392 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2393 db->db_blkid != DMU_SPILL_BLKID) { 2394 mutex_enter(&dn->dn_mtx); 2395 if (dn->dn_free_ranges[txgoff] != NULL) { 2396 range_tree_clear(dn->dn_free_ranges[txgoff], 2397 db->db_blkid, 1); 2398 } 2399 mutex_exit(&dn->dn_mtx); 2400 db->db_freed_in_flight = FALSE; 2401 } 2402 2403 /* 2404 * This buffer is now part of this txg 2405 */ 2406 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2407 db->db_dirtycnt += 1; 2408 ASSERT3U(db->db_dirtycnt, <=, 3); 2409 2410 mutex_exit(&db->db_mtx); 2411 2412 if (db->db_blkid == DMU_BONUS_BLKID || 2413 db->db_blkid == DMU_SPILL_BLKID) { 2414 mutex_enter(&dn->dn_mtx); 2415 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2416 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2417 mutex_exit(&dn->dn_mtx); 2418 dnode_setdirty(dn, tx); 2419 DB_DNODE_EXIT(db); 2420 return (dr); 2421 } 2422 2423 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2424 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2425 drop_struct_rwlock = B_TRUE; 2426 } 2427 2428 /* 2429 * If we are overwriting a dedup BP, then unless it is snapshotted, 2430 * when we get to syncing context we will need to decrement its 2431 * refcount in the DDT. Prefetch the relevant DDT block so that 2432 * syncing context won't have to wait for the i/o. 2433 */ 2434 if (db->db_blkptr != NULL) { 2435 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2436 ddt_prefetch(os->os_spa, db->db_blkptr); 2437 dmu_buf_unlock_parent(db, dblt, FTAG); 2438 } 2439 2440 /* 2441 * We need to hold the dn_struct_rwlock to make this assertion, 2442 * because it protects dn_phys / dn_next_nlevels from changing. 2443 */ 2444 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2445 dn->dn_phys->dn_nlevels > db->db_level || 2446 dn->dn_next_nlevels[txgoff] > db->db_level || 2447 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2448 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2449 2450 2451 if (db->db_level == 0) { 2452 ASSERT(!db->db_objset->os_raw_receive || 2453 dn->dn_maxblkid >= db->db_blkid); 2454 dnode_new_blkid(dn, db->db_blkid, tx, 2455 drop_struct_rwlock, B_FALSE); 2456 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2457 } 2458 2459 if (db->db_level+1 < dn->dn_nlevels) { 2460 dmu_buf_impl_t *parent = db->db_parent; 2461 dbuf_dirty_record_t *di; 2462 int parent_held = FALSE; 2463 2464 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2465 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2466 parent = dbuf_hold_level(dn, db->db_level + 1, 2467 db->db_blkid >> epbs, FTAG); 2468 ASSERT(parent != NULL); 2469 parent_held = TRUE; 2470 } 2471 if (drop_struct_rwlock) 2472 rw_exit(&dn->dn_struct_rwlock); 2473 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2474 di = dbuf_dirty(parent, tx); 2475 if (parent_held) 2476 dbuf_rele(parent, FTAG); 2477 2478 mutex_enter(&db->db_mtx); 2479 /* 2480 * Since we've dropped the mutex, it's possible that 2481 * dbuf_undirty() might have changed this out from under us. 2482 */ 2483 if (list_head(&db->db_dirty_records) == dr || 2484 dn->dn_object == DMU_META_DNODE_OBJECT) { 2485 mutex_enter(&di->dt.di.dr_mtx); 2486 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2487 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2488 list_insert_tail(&di->dt.di.dr_children, dr); 2489 mutex_exit(&di->dt.di.dr_mtx); 2490 dr->dr_parent = di; 2491 } 2492 mutex_exit(&db->db_mtx); 2493 } else { 2494 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2495 ASSERT(db->db_blkid < dn->dn_nblkptr); 2496 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2497 mutex_enter(&dn->dn_mtx); 2498 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2499 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2500 mutex_exit(&dn->dn_mtx); 2501 if (drop_struct_rwlock) 2502 rw_exit(&dn->dn_struct_rwlock); 2503 } 2504 2505 dnode_setdirty(dn, tx); 2506 DB_DNODE_EXIT(db); 2507 return (dr); 2508 } 2509 2510 static void 2511 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2512 { 2513 dmu_buf_impl_t *db = dr->dr_dbuf; 2514 2515 if (dr->dt.dl.dr_data != db->db.db_data) { 2516 struct dnode *dn = dr->dr_dnode; 2517 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2518 2519 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2520 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2521 } 2522 db->db_data_pending = NULL; 2523 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2524 list_remove(&db->db_dirty_records, dr); 2525 if (dr->dr_dbuf->db_level != 0) { 2526 mutex_destroy(&dr->dt.di.dr_mtx); 2527 list_destroy(&dr->dt.di.dr_children); 2528 } 2529 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2530 ASSERT3U(db->db_dirtycnt, >, 0); 2531 db->db_dirtycnt -= 1; 2532 } 2533 2534 /* 2535 * Undirty a buffer in the transaction group referenced by the given 2536 * transaction. Return whether this evicted the dbuf. 2537 */ 2538 boolean_t 2539 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2540 { 2541 uint64_t txg = tx->tx_txg; 2542 boolean_t brtwrite; 2543 boolean_t diowrite; 2544 2545 ASSERT(txg != 0); 2546 2547 /* 2548 * Due to our use of dn_nlevels below, this can only be called 2549 * in open context, unless we are operating on the MOS. 2550 * From syncing context, dn_nlevels may be different from the 2551 * dn_nlevels used when dbuf was dirtied. 2552 */ 2553 ASSERT(db->db_objset == 2554 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2555 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2556 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2557 ASSERT0(db->db_level); 2558 ASSERT(MUTEX_HELD(&db->db_mtx)); 2559 2560 /* 2561 * If this buffer is not dirty, we're done. 2562 */ 2563 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2564 if (dr == NULL) 2565 return (B_FALSE); 2566 ASSERT(dr->dr_dbuf == db); 2567 2568 brtwrite = dr->dt.dl.dr_brtwrite; 2569 diowrite = dr->dt.dl.dr_diowrite; 2570 if (brtwrite) { 2571 ASSERT3B(diowrite, ==, B_FALSE); 2572 /* 2573 * We are freeing a block that we cloned in the same 2574 * transaction group. 2575 */ 2576 brt_pending_remove(dmu_objset_spa(db->db_objset), 2577 &dr->dt.dl.dr_overridden_by, tx); 2578 } 2579 2580 dnode_t *dn = dr->dr_dnode; 2581 2582 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2583 2584 ASSERT(db->db.db_size != 0); 2585 2586 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2587 dr->dr_accounted, txg); 2588 2589 list_remove(&db->db_dirty_records, dr); 2590 2591 /* 2592 * Note that there are three places in dbuf_dirty() 2593 * where this dirty record may be put on a list. 2594 * Make sure to do a list_remove corresponding to 2595 * every one of those list_insert calls. 2596 */ 2597 if (dr->dr_parent) { 2598 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2599 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2600 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2601 } else if (db->db_blkid == DMU_SPILL_BLKID || 2602 db->db_level + 1 == dn->dn_nlevels) { 2603 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2604 mutex_enter(&dn->dn_mtx); 2605 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2606 mutex_exit(&dn->dn_mtx); 2607 } 2608 2609 if (db->db_state != DB_NOFILL && !brtwrite) { 2610 dbuf_unoverride(dr); 2611 2612 if (dr->dt.dl.dr_data != db->db_buf) { 2613 ASSERT(db->db_buf != NULL); 2614 ASSERT(dr->dt.dl.dr_data != NULL); 2615 arc_buf_destroy(dr->dt.dl.dr_data, db); 2616 } 2617 } 2618 2619 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2620 2621 ASSERT(db->db_dirtycnt > 0); 2622 db->db_dirtycnt -= 1; 2623 2624 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2625 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite || 2626 arc_released(db->db_buf)); 2627 dbuf_destroy(db); 2628 return (B_TRUE); 2629 } 2630 2631 return (B_FALSE); 2632 } 2633 2634 static void 2635 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2636 { 2637 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2638 boolean_t undirty = B_FALSE; 2639 2640 ASSERT(tx->tx_txg != 0); 2641 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2642 2643 /* 2644 * Quick check for dirtiness to improve performance for some workloads 2645 * (e.g. file deletion with indirect blocks cached). 2646 */ 2647 mutex_enter(&db->db_mtx); 2648 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2649 /* 2650 * It's possible that the dbuf is already dirty but not cached, 2651 * because there are some calls to dbuf_dirty() that don't 2652 * go through dmu_buf_will_dirty(). 2653 */ 2654 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2655 if (dr != NULL) { 2656 if (db->db_level == 0 && 2657 dr->dt.dl.dr_brtwrite) { 2658 /* 2659 * Block cloning: If we are dirtying a cloned 2660 * level 0 block, we cannot simply redirty it, 2661 * because this dr has no associated data. 2662 * We will go through a full undirtying below, 2663 * before dirtying it again. 2664 */ 2665 undirty = B_TRUE; 2666 } else { 2667 /* This dbuf is already dirty and cached. */ 2668 dbuf_redirty(dr); 2669 mutex_exit(&db->db_mtx); 2670 return; 2671 } 2672 } 2673 } 2674 mutex_exit(&db->db_mtx); 2675 2676 DB_DNODE_ENTER(db); 2677 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2678 flags |= DB_RF_HAVESTRUCT; 2679 DB_DNODE_EXIT(db); 2680 2681 /* 2682 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2683 * want to make sure dbuf_read() will read the pending cloned block and 2684 * not the uderlying block that is being replaced. dbuf_undirty() will 2685 * do brt_pending_remove() before removing the dirty record. 2686 */ 2687 (void) dbuf_read(db, NULL, flags); 2688 if (undirty) { 2689 mutex_enter(&db->db_mtx); 2690 VERIFY(!dbuf_undirty(db, tx)); 2691 mutex_exit(&db->db_mtx); 2692 } 2693 (void) dbuf_dirty(db, tx); 2694 } 2695 2696 void 2697 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2698 { 2699 dmu_buf_will_dirty_impl(db_fake, 2700 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2701 } 2702 2703 boolean_t 2704 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2705 { 2706 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2707 dbuf_dirty_record_t *dr; 2708 2709 mutex_enter(&db->db_mtx); 2710 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2711 mutex_exit(&db->db_mtx); 2712 return (dr != NULL); 2713 } 2714 2715 /* 2716 * Normally the db_blkptr points to the most recent on-disk content for the 2717 * dbuf (and anything newer will be cached in the dbuf). However, a pending 2718 * block clone or not yet synced Direct I/O write will have a dirty record BP 2719 * pointing to the most recent data. 2720 */ 2721 int 2722 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp) 2723 { 2724 ASSERT(MUTEX_HELD(&db->db_mtx)); 2725 int error = 0; 2726 2727 if (db->db_level != 0) { 2728 *bp = db->db_blkptr; 2729 return (0); 2730 } 2731 2732 *bp = db->db_blkptr; 2733 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2734 if (dr && db->db_state == DB_NOFILL) { 2735 /* Block clone */ 2736 if (!dr->dt.dl.dr_brtwrite) 2737 error = EIO; 2738 else 2739 *bp = &dr->dt.dl.dr_overridden_by; 2740 } else if (dr && db->db_state == DB_UNCACHED) { 2741 /* Direct I/O write */ 2742 if (dr->dt.dl.dr_diowrite) 2743 *bp = &dr->dt.dl.dr_overridden_by; 2744 } 2745 2746 return (error); 2747 } 2748 2749 /* 2750 * Direct I/O reads can read directly from the ARC, but the data has 2751 * to be untransformed in order to copy it over into user pages. 2752 */ 2753 int 2754 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa) 2755 { 2756 int err = 0; 2757 DB_DNODE_ENTER(db); 2758 dnode_t *dn = DB_DNODE(db); 2759 2760 ASSERT3S(db->db_state, ==, DB_CACHED); 2761 ASSERT(MUTEX_HELD(&db->db_mtx)); 2762 2763 /* 2764 * Ensure that this block's dnode has been decrypted if 2765 * the caller has requested decrypted data. 2766 */ 2767 err = dbuf_read_verify_dnode_crypt(db, dn, 0); 2768 2769 /* 2770 * If the arc buf is compressed or encrypted and the caller 2771 * requested uncompressed data, we need to untransform it 2772 * before returning. We also call arc_untransform() on any 2773 * unauthenticated blocks, which will verify their MAC if 2774 * the key is now available. 2775 */ 2776 if (err == 0 && db->db_buf != NULL && 2777 (arc_is_encrypted(db->db_buf) || 2778 arc_is_unauthenticated(db->db_buf) || 2779 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 2780 zbookmark_phys_t zb; 2781 2782 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 2783 db->db.db_object, db->db_level, db->db_blkid); 2784 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 2785 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 2786 dbuf_set_data(db, db->db_buf); 2787 } 2788 DB_DNODE_EXIT(db); 2789 DBUF_STAT_BUMP(hash_hits); 2790 2791 return (err); 2792 } 2793 2794 void 2795 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx) 2796 { 2797 /* 2798 * Block clones and Direct I/O writes always happen in open-context. 2799 */ 2800 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2801 ASSERT0(db->db_level); 2802 ASSERT(!dmu_tx_is_syncing(tx)); 2803 ASSERT0(db->db_level); 2804 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2805 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 2806 2807 mutex_enter(&db->db_mtx); 2808 DBUF_VERIFY(db); 2809 2810 /* 2811 * We are going to clone or issue a Direct I/O write on this block, so 2812 * undirty modifications done to this block so far in this txg. This 2813 * includes writes and clones into this block. 2814 * 2815 * If there dirty record associated with this txg from a previous Direct 2816 * I/O write then space accounting cleanup takes place. It is important 2817 * to go ahead free up the space accounting through dbuf_undirty() -> 2818 * dbuf_unoverride() -> zio_free(). Space accountiung for determining 2819 * if a write can occur in zfs_write() happens through dmu_tx_assign(). 2820 * This can cause an issue with Direct I/O writes in the case of 2821 * overwriting the same block, because all DVA allocations are being 2822 * done in open-context. Constantly allowing Direct I/O overwrites to 2823 * the same block can exhaust the pools available space leading to 2824 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which 2825 * will eventually suspend the pool. By cleaning up sapce acccounting 2826 * now, the ENOSPC error can be avoided. 2827 * 2828 * Since we are undirtying the record in open-context, we must have a 2829 * hold on the db, so it should never be evicted after calling 2830 * dbuf_undirty(). 2831 */ 2832 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE); 2833 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2834 2835 if (db->db_buf != NULL) { 2836 /* 2837 * If there is an associated ARC buffer with this dbuf we can 2838 * only destroy it if the previous dirty record does not 2839 * reference it. 2840 */ 2841 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2842 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) 2843 arc_buf_destroy(db->db_buf, db); 2844 2845 /* 2846 * Setting the dbuf's data pointers to NULL will force all 2847 * future reads down to the devices to get the most up to date 2848 * version of the data after a Direct I/O write has completed. 2849 */ 2850 db->db_buf = NULL; 2851 dbuf_clear_data(db); 2852 } 2853 2854 ASSERT3P(db->db_buf, ==, NULL); 2855 ASSERT3P(db->db.db_data, ==, NULL); 2856 2857 db->db_state = DB_NOFILL; 2858 DTRACE_SET_STATE(db, 2859 "allocating NOFILL buffer for clone or direct I/O write"); 2860 2861 DBUF_VERIFY(db); 2862 mutex_exit(&db->db_mtx); 2863 2864 dbuf_noread(db); 2865 (void) dbuf_dirty(db, tx); 2866 } 2867 2868 void 2869 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2870 { 2871 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2872 2873 mutex_enter(&db->db_mtx); 2874 db->db_state = DB_NOFILL; 2875 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2876 mutex_exit(&db->db_mtx); 2877 2878 dbuf_noread(db); 2879 (void) dbuf_dirty(db, tx); 2880 } 2881 2882 void 2883 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2884 { 2885 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2886 2887 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2888 ASSERT(tx->tx_txg != 0); 2889 ASSERT(db->db_level == 0); 2890 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2891 2892 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2893 dmu_tx_private_ok(tx)); 2894 2895 mutex_enter(&db->db_mtx); 2896 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2897 if (db->db_state == DB_NOFILL || 2898 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) { 2899 /* 2900 * If the fill can fail we should have a way to return back to 2901 * the cloned or Direct I/O write data. 2902 */ 2903 if (canfail && dr) { 2904 mutex_exit(&db->db_mtx); 2905 dmu_buf_will_dirty(db_fake, tx); 2906 return; 2907 } 2908 /* 2909 * Block cloning: We will be completely overwriting a block 2910 * cloned in this transaction group, so let's undirty the 2911 * pending clone and mark the block as uncached. This will be 2912 * as if the clone was never done. 2913 */ 2914 if (dr && dr->dt.dl.dr_brtwrite) { 2915 VERIFY(!dbuf_undirty(db, tx)); 2916 db->db_state = DB_UNCACHED; 2917 } 2918 } 2919 mutex_exit(&db->db_mtx); 2920 2921 dbuf_noread(db); 2922 (void) dbuf_dirty(db, tx); 2923 } 2924 2925 /* 2926 * This function is effectively the same as dmu_buf_will_dirty(), but 2927 * indicates the caller expects raw encrypted data in the db, and provides 2928 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2929 * blkptr_t when this dbuf is written. This is only used for blocks of 2930 * dnodes, during raw receive. 2931 */ 2932 void 2933 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2934 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2935 { 2936 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2937 dbuf_dirty_record_t *dr; 2938 2939 /* 2940 * dr_has_raw_params is only processed for blocks of dnodes 2941 * (see dbuf_sync_dnode_leaf_crypt()). 2942 */ 2943 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2944 ASSERT3U(db->db_level, ==, 0); 2945 ASSERT(db->db_objset->os_raw_receive); 2946 2947 dmu_buf_will_dirty_impl(db_fake, 2948 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2949 2950 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2951 2952 ASSERT3P(dr, !=, NULL); 2953 2954 dr->dt.dl.dr_has_raw_params = B_TRUE; 2955 dr->dt.dl.dr_byteorder = byteorder; 2956 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2957 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2958 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2959 } 2960 2961 static void 2962 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2963 { 2964 struct dirty_leaf *dl; 2965 dbuf_dirty_record_t *dr; 2966 2967 dr = list_head(&db->db_dirty_records); 2968 ASSERT3P(dr, !=, NULL); 2969 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2970 dl = &dr->dt.dl; 2971 dl->dr_overridden_by = *bp; 2972 dl->dr_override_state = DR_OVERRIDDEN; 2973 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2974 } 2975 2976 boolean_t 2977 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2978 { 2979 (void) tx; 2980 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2981 mutex_enter(&db->db_mtx); 2982 DBUF_VERIFY(db); 2983 2984 if (db->db_state == DB_FILL) { 2985 if (db->db_level == 0 && db->db_freed_in_flight) { 2986 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2987 /* we were freed while filling */ 2988 /* XXX dbuf_undirty? */ 2989 memset(db->db.db_data, 0, db->db.db_size); 2990 db->db_freed_in_flight = FALSE; 2991 db->db_state = DB_CACHED; 2992 DTRACE_SET_STATE(db, 2993 "fill done handling freed in flight"); 2994 failed = B_FALSE; 2995 } else if (failed) { 2996 VERIFY(!dbuf_undirty(db, tx)); 2997 arc_buf_destroy(db->db_buf, db); 2998 db->db_buf = NULL; 2999 dbuf_clear_data(db); 3000 DTRACE_SET_STATE(db, "fill failed"); 3001 } else { 3002 db->db_state = DB_CACHED; 3003 DTRACE_SET_STATE(db, "fill done"); 3004 } 3005 cv_broadcast(&db->db_changed); 3006 } else { 3007 db->db_state = DB_CACHED; 3008 failed = B_FALSE; 3009 } 3010 mutex_exit(&db->db_mtx); 3011 return (failed); 3012 } 3013 3014 void 3015 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 3016 bp_embedded_type_t etype, enum zio_compress comp, 3017 int uncompressed_size, int compressed_size, int byteorder, 3018 dmu_tx_t *tx) 3019 { 3020 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3021 struct dirty_leaf *dl; 3022 dmu_object_type_t type; 3023 dbuf_dirty_record_t *dr; 3024 3025 if (etype == BP_EMBEDDED_TYPE_DATA) { 3026 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 3027 SPA_FEATURE_EMBEDDED_DATA)); 3028 } 3029 3030 DB_DNODE_ENTER(db); 3031 type = DB_DNODE(db)->dn_type; 3032 DB_DNODE_EXIT(db); 3033 3034 ASSERT0(db->db_level); 3035 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3036 3037 dmu_buf_will_not_fill(dbuf, tx); 3038 3039 dr = list_head(&db->db_dirty_records); 3040 ASSERT3P(dr, !=, NULL); 3041 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 3042 dl = &dr->dt.dl; 3043 encode_embedded_bp_compressed(&dl->dr_overridden_by, 3044 data, comp, uncompressed_size, compressed_size); 3045 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 3046 BP_SET_TYPE(&dl->dr_overridden_by, type); 3047 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 3048 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 3049 3050 dl->dr_override_state = DR_OVERRIDDEN; 3051 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 3052 } 3053 3054 void 3055 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 3056 { 3057 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 3058 dmu_object_type_t type; 3059 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 3060 SPA_FEATURE_REDACTED_DATASETS)); 3061 3062 DB_DNODE_ENTER(db); 3063 type = DB_DNODE(db)->dn_type; 3064 DB_DNODE_EXIT(db); 3065 3066 ASSERT0(db->db_level); 3067 dmu_buf_will_not_fill(dbuf, tx); 3068 3069 blkptr_t bp = { { { {0} } } }; 3070 BP_SET_TYPE(&bp, type); 3071 BP_SET_LEVEL(&bp, 0); 3072 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 3073 BP_SET_REDACTED(&bp); 3074 BPE_SET_LSIZE(&bp, dbuf->db_size); 3075 3076 dbuf_override_impl(db, &bp, tx); 3077 } 3078 3079 /* 3080 * Directly assign a provided arc buf to a given dbuf if it's not referenced 3081 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 3082 */ 3083 void 3084 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 3085 { 3086 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 3087 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 3088 ASSERT(db->db_level == 0); 3089 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 3090 ASSERT(buf != NULL); 3091 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 3092 ASSERT(tx->tx_txg != 0); 3093 3094 arc_return_buf(buf, db); 3095 ASSERT(arc_released(buf)); 3096 3097 mutex_enter(&db->db_mtx); 3098 3099 while (db->db_state == DB_READ || db->db_state == DB_FILL) 3100 cv_wait(&db->db_changed, &db->db_mtx); 3101 3102 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 3103 db->db_state == DB_NOFILL); 3104 3105 if (db->db_state == DB_CACHED && 3106 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 3107 /* 3108 * In practice, we will never have a case where we have an 3109 * encrypted arc buffer while additional holds exist on the 3110 * dbuf. We don't handle this here so we simply assert that 3111 * fact instead. 3112 */ 3113 ASSERT(!arc_is_encrypted(buf)); 3114 mutex_exit(&db->db_mtx); 3115 (void) dbuf_dirty(db, tx); 3116 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 3117 arc_buf_destroy(buf, db); 3118 return; 3119 } 3120 3121 if (db->db_state == DB_CACHED) { 3122 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 3123 3124 ASSERT(db->db_buf != NULL); 3125 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 3126 ASSERT(dr->dt.dl.dr_data == db->db_buf); 3127 3128 if (!arc_released(db->db_buf)) { 3129 ASSERT(dr->dt.dl.dr_override_state == 3130 DR_OVERRIDDEN); 3131 arc_release(db->db_buf, db); 3132 } 3133 dr->dt.dl.dr_data = buf; 3134 arc_buf_destroy(db->db_buf, db); 3135 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 3136 arc_release(db->db_buf, db); 3137 arc_buf_destroy(db->db_buf, db); 3138 } 3139 db->db_buf = NULL; 3140 } else if (db->db_state == DB_NOFILL) { 3141 /* 3142 * We will be completely replacing the cloned block. In case 3143 * it was cloned in this transaction group, let's undirty the 3144 * pending clone and mark the block as uncached. This will be 3145 * as if the clone was never done. 3146 */ 3147 VERIFY(!dbuf_undirty(db, tx)); 3148 db->db_state = DB_UNCACHED; 3149 } 3150 ASSERT(db->db_buf == NULL); 3151 dbuf_set_data(db, buf); 3152 db->db_state = DB_FILL; 3153 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3154 mutex_exit(&db->db_mtx); 3155 (void) dbuf_dirty(db, tx); 3156 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3157 } 3158 3159 void 3160 dbuf_destroy(dmu_buf_impl_t *db) 3161 { 3162 dnode_t *dn; 3163 dmu_buf_impl_t *parent = db->db_parent; 3164 dmu_buf_impl_t *dndb; 3165 3166 ASSERT(MUTEX_HELD(&db->db_mtx)); 3167 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3168 3169 if (db->db_buf != NULL) { 3170 arc_buf_destroy(db->db_buf, db); 3171 db->db_buf = NULL; 3172 } 3173 3174 if (db->db_blkid == DMU_BONUS_BLKID) { 3175 int slots = DB_DNODE(db)->dn_num_slots; 3176 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3177 if (db->db.db_data != NULL) { 3178 kmem_free(db->db.db_data, bonuslen); 3179 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3180 db->db_state = DB_UNCACHED; 3181 DTRACE_SET_STATE(db, "buffer cleared"); 3182 } 3183 } 3184 3185 dbuf_clear_data(db); 3186 3187 if (multilist_link_active(&db->db_cache_link)) { 3188 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3189 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3190 3191 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3192 3193 ASSERT0(dmu_buf_user_size(&db->db)); 3194 (void) zfs_refcount_remove_many( 3195 &dbuf_caches[db->db_caching_status].size, 3196 db->db.db_size, db); 3197 3198 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3199 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3200 } else { 3201 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3202 DBUF_STAT_BUMPDOWN(cache_count); 3203 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3204 db->db.db_size); 3205 } 3206 db->db_caching_status = DB_NO_CACHE; 3207 } 3208 3209 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3210 ASSERT(db->db_data_pending == NULL); 3211 ASSERT(list_is_empty(&db->db_dirty_records)); 3212 3213 db->db_state = DB_EVICTING; 3214 DTRACE_SET_STATE(db, "buffer eviction started"); 3215 db->db_blkptr = NULL; 3216 3217 /* 3218 * Now that db_state is DB_EVICTING, nobody else can find this via 3219 * the hash table. We can now drop db_mtx, which allows us to 3220 * acquire the dn_dbufs_mtx. 3221 */ 3222 mutex_exit(&db->db_mtx); 3223 3224 DB_DNODE_ENTER(db); 3225 dn = DB_DNODE(db); 3226 dndb = dn->dn_dbuf; 3227 if (db->db_blkid != DMU_BONUS_BLKID) { 3228 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3229 if (needlock) 3230 mutex_enter_nested(&dn->dn_dbufs_mtx, 3231 NESTED_SINGLE); 3232 avl_remove(&dn->dn_dbufs, db); 3233 membar_producer(); 3234 DB_DNODE_EXIT(db); 3235 if (needlock) 3236 mutex_exit(&dn->dn_dbufs_mtx); 3237 /* 3238 * Decrementing the dbuf count means that the hold corresponding 3239 * to the removed dbuf is no longer discounted in dnode_move(), 3240 * so the dnode cannot be moved until after we release the hold. 3241 * The membar_producer() ensures visibility of the decremented 3242 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3243 * release any lock. 3244 */ 3245 mutex_enter(&dn->dn_mtx); 3246 dnode_rele_and_unlock(dn, db, B_TRUE); 3247 #ifdef USE_DNODE_HANDLE 3248 db->db_dnode_handle = NULL; 3249 #else 3250 db->db_dnode = NULL; 3251 #endif 3252 3253 dbuf_hash_remove(db); 3254 } else { 3255 DB_DNODE_EXIT(db); 3256 } 3257 3258 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3259 3260 db->db_parent = NULL; 3261 3262 ASSERT(db->db_buf == NULL); 3263 ASSERT(db->db.db_data == NULL); 3264 ASSERT(db->db_hash_next == NULL); 3265 ASSERT(db->db_blkptr == NULL); 3266 ASSERT(db->db_data_pending == NULL); 3267 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3268 ASSERT(!multilist_link_active(&db->db_cache_link)); 3269 3270 /* 3271 * If this dbuf is referenced from an indirect dbuf, 3272 * decrement the ref count on the indirect dbuf. 3273 */ 3274 if (parent && parent != dndb) { 3275 mutex_enter(&parent->db_mtx); 3276 dbuf_rele_and_unlock(parent, db, B_TRUE); 3277 } 3278 3279 kmem_cache_free(dbuf_kmem_cache, db); 3280 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3281 } 3282 3283 /* 3284 * Note: While bpp will always be updated if the function returns success, 3285 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3286 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3287 * object. 3288 */ 3289 __attribute__((always_inline)) 3290 static inline int 3291 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3292 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3293 { 3294 *parentp = NULL; 3295 *bpp = NULL; 3296 3297 ASSERT(blkid != DMU_BONUS_BLKID); 3298 3299 if (blkid == DMU_SPILL_BLKID) { 3300 mutex_enter(&dn->dn_mtx); 3301 if (dn->dn_have_spill && 3302 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3303 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3304 else 3305 *bpp = NULL; 3306 dbuf_add_ref(dn->dn_dbuf, NULL); 3307 *parentp = dn->dn_dbuf; 3308 mutex_exit(&dn->dn_mtx); 3309 return (0); 3310 } 3311 3312 int nlevels = 3313 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3314 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3315 3316 ASSERT3U(level * epbs, <, 64); 3317 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3318 /* 3319 * This assertion shouldn't trip as long as the max indirect block size 3320 * is less than 1M. The reason for this is that up to that point, 3321 * the number of levels required to address an entire object with blocks 3322 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3323 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3324 * (i.e. we can address the entire object), objects will all use at most 3325 * N-1 levels and the assertion won't overflow. However, once epbs is 3326 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3327 * enough to address an entire object, so objects will have 5 levels, 3328 * but then this assertion will overflow. 3329 * 3330 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3331 * need to redo this logic to handle overflows. 3332 */ 3333 ASSERT(level >= nlevels || 3334 ((nlevels - level - 1) * epbs) + 3335 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3336 if (level >= nlevels || 3337 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3338 ((nlevels - level - 1) * epbs)) || 3339 (fail_sparse && 3340 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3341 /* the buffer has no parent yet */ 3342 return (SET_ERROR(ENOENT)); 3343 } else if (level < nlevels-1) { 3344 /* this block is referenced from an indirect block */ 3345 int err; 3346 3347 err = dbuf_hold_impl(dn, level + 1, 3348 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3349 3350 if (err) 3351 return (err); 3352 err = dbuf_read(*parentp, NULL, 3353 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3354 if (err) { 3355 dbuf_rele(*parentp, NULL); 3356 *parentp = NULL; 3357 return (err); 3358 } 3359 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3360 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3361 (blkid & ((1ULL << epbs) - 1)); 3362 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3363 ASSERT(BP_IS_HOLE(*bpp)); 3364 rw_exit(&(*parentp)->db_rwlock); 3365 return (0); 3366 } else { 3367 /* the block is referenced from the dnode */ 3368 ASSERT3U(level, ==, nlevels-1); 3369 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3370 blkid < dn->dn_phys->dn_nblkptr); 3371 if (dn->dn_dbuf) { 3372 dbuf_add_ref(dn->dn_dbuf, NULL); 3373 *parentp = dn->dn_dbuf; 3374 } 3375 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3376 return (0); 3377 } 3378 } 3379 3380 static dmu_buf_impl_t * 3381 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3382 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3383 { 3384 objset_t *os = dn->dn_objset; 3385 dmu_buf_impl_t *db, *odb; 3386 3387 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3388 ASSERT(dn->dn_type != DMU_OT_NONE); 3389 3390 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3391 3392 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3393 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3394 3395 db->db_objset = os; 3396 db->db.db_object = dn->dn_object; 3397 db->db_level = level; 3398 db->db_blkid = blkid; 3399 db->db_dirtycnt = 0; 3400 #ifdef USE_DNODE_HANDLE 3401 db->db_dnode_handle = dn->dn_handle; 3402 #else 3403 db->db_dnode = dn; 3404 #endif 3405 db->db_parent = parent; 3406 db->db_blkptr = blkptr; 3407 db->db_hash = hash; 3408 3409 db->db_user = NULL; 3410 db->db_user_immediate_evict = FALSE; 3411 db->db_freed_in_flight = FALSE; 3412 db->db_pending_evict = FALSE; 3413 3414 if (blkid == DMU_BONUS_BLKID) { 3415 ASSERT3P(parent, ==, dn->dn_dbuf); 3416 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3417 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3418 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3419 db->db.db_offset = DMU_BONUS_BLKID; 3420 db->db_state = DB_UNCACHED; 3421 DTRACE_SET_STATE(db, "bonus buffer created"); 3422 db->db_caching_status = DB_NO_CACHE; 3423 /* the bonus dbuf is not placed in the hash table */ 3424 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3425 return (db); 3426 } else if (blkid == DMU_SPILL_BLKID) { 3427 db->db.db_size = (blkptr != NULL) ? 3428 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3429 db->db.db_offset = 0; 3430 } else { 3431 int blocksize = 3432 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3433 db->db.db_size = blocksize; 3434 db->db.db_offset = db->db_blkid * blocksize; 3435 } 3436 3437 /* 3438 * Hold the dn_dbufs_mtx while we get the new dbuf 3439 * in the hash table *and* added to the dbufs list. 3440 * This prevents a possible deadlock with someone 3441 * trying to look up this dbuf before it's added to the 3442 * dn_dbufs list. 3443 */ 3444 mutex_enter(&dn->dn_dbufs_mtx); 3445 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3446 if ((odb = dbuf_hash_insert(db)) != NULL) { 3447 /* someone else inserted it first */ 3448 mutex_exit(&dn->dn_dbufs_mtx); 3449 kmem_cache_free(dbuf_kmem_cache, db); 3450 DBUF_STAT_BUMP(hash_insert_race); 3451 return (odb); 3452 } 3453 avl_add(&dn->dn_dbufs, db); 3454 3455 db->db_state = DB_UNCACHED; 3456 DTRACE_SET_STATE(db, "regular buffer created"); 3457 db->db_caching_status = DB_NO_CACHE; 3458 mutex_exit(&dn->dn_dbufs_mtx); 3459 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3460 3461 if (parent && parent != dn->dn_dbuf) 3462 dbuf_add_ref(parent, db); 3463 3464 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3465 zfs_refcount_count(&dn->dn_holds) > 0); 3466 (void) zfs_refcount_add(&dn->dn_holds, db); 3467 3468 dprintf_dbuf(db, "db=%p\n", db); 3469 3470 return (db); 3471 } 3472 3473 /* 3474 * This function returns a block pointer and information about the object, 3475 * given a dnode and a block. This is a publicly accessible version of 3476 * dbuf_findbp that only returns some information, rather than the 3477 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3478 * should be locked as (at least) a reader. 3479 */ 3480 int 3481 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3482 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3483 { 3484 dmu_buf_impl_t *dbp = NULL; 3485 blkptr_t *bp2; 3486 int err = 0; 3487 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3488 3489 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3490 if (err == 0) { 3491 ASSERT3P(bp2, !=, NULL); 3492 *bp = *bp2; 3493 if (dbp != NULL) 3494 dbuf_rele(dbp, NULL); 3495 if (datablkszsec != NULL) 3496 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3497 if (indblkshift != NULL) 3498 *indblkshift = dn->dn_phys->dn_indblkshift; 3499 } 3500 3501 return (err); 3502 } 3503 3504 typedef struct dbuf_prefetch_arg { 3505 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3506 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3507 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3508 int dpa_curlevel; /* The current level that we're reading */ 3509 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3510 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3511 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3512 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3513 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3514 void *dpa_arg; /* prefetch completion arg */ 3515 } dbuf_prefetch_arg_t; 3516 3517 static void 3518 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3519 { 3520 if (dpa->dpa_cb != NULL) { 3521 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3522 dpa->dpa_zb.zb_blkid, io_done); 3523 } 3524 kmem_free(dpa, sizeof (*dpa)); 3525 } 3526 3527 static void 3528 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3529 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3530 { 3531 (void) zio, (void) zb, (void) iobp; 3532 dbuf_prefetch_arg_t *dpa = private; 3533 3534 if (abuf != NULL) 3535 arc_buf_destroy(abuf, private); 3536 3537 dbuf_prefetch_fini(dpa, B_TRUE); 3538 } 3539 3540 /* 3541 * Actually issue the prefetch read for the block given. 3542 */ 3543 static void 3544 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3545 { 3546 ASSERT(!BP_IS_REDACTED(bp) || 3547 dsl_dataset_feature_is_active( 3548 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3549 SPA_FEATURE_REDACTED_DATASETS)); 3550 3551 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3552 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3553 3554 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3555 arc_flags_t aflags = 3556 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3557 ARC_FLAG_NO_BUF; 3558 3559 /* dnodes are always read as raw and then converted later */ 3560 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3561 dpa->dpa_curlevel == 0) 3562 zio_flags |= ZIO_FLAG_RAW; 3563 3564 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3565 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3566 ASSERT(dpa->dpa_zio != NULL); 3567 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3568 dbuf_issue_final_prefetch_done, dpa, 3569 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3570 } 3571 3572 /* 3573 * Called when an indirect block above our prefetch target is read in. This 3574 * will either read in the next indirect block down the tree or issue the actual 3575 * prefetch if the next block down is our target. 3576 */ 3577 static void 3578 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3579 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3580 { 3581 (void) zb, (void) iobp; 3582 dbuf_prefetch_arg_t *dpa = private; 3583 3584 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3585 ASSERT3S(dpa->dpa_curlevel, >, 0); 3586 3587 if (abuf == NULL) { 3588 ASSERT(zio == NULL || zio->io_error != 0); 3589 dbuf_prefetch_fini(dpa, B_TRUE); 3590 return; 3591 } 3592 ASSERT(zio == NULL || zio->io_error == 0); 3593 3594 /* 3595 * The dpa_dnode is only valid if we are called with a NULL 3596 * zio. This indicates that the arc_read() returned without 3597 * first calling zio_read() to issue a physical read. Once 3598 * a physical read is made the dpa_dnode must be invalidated 3599 * as the locks guarding it may have been dropped. If the 3600 * dpa_dnode is still valid, then we want to add it to the dbuf 3601 * cache. To do so, we must hold the dbuf associated with the block 3602 * we just prefetched, read its contents so that we associate it 3603 * with an arc_buf_t, and then release it. 3604 */ 3605 if (zio != NULL) { 3606 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3607 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3608 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3609 } else { 3610 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3611 } 3612 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3613 3614 dpa->dpa_dnode = NULL; 3615 } else if (dpa->dpa_dnode != NULL) { 3616 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3617 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3618 dpa->dpa_zb.zb_level)); 3619 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3620 dpa->dpa_curlevel, curblkid, FTAG); 3621 if (db == NULL) { 3622 arc_buf_destroy(abuf, private); 3623 dbuf_prefetch_fini(dpa, B_TRUE); 3624 return; 3625 } 3626 (void) dbuf_read(db, NULL, 3627 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3628 dbuf_rele(db, FTAG); 3629 } 3630 3631 dpa->dpa_curlevel--; 3632 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3633 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3634 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3635 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3636 3637 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3638 dsl_dataset_feature_is_active( 3639 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3640 SPA_FEATURE_REDACTED_DATASETS))); 3641 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3642 arc_buf_destroy(abuf, private); 3643 dbuf_prefetch_fini(dpa, B_TRUE); 3644 return; 3645 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3646 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3647 dbuf_issue_final_prefetch(dpa, bp); 3648 } else { 3649 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3650 zbookmark_phys_t zb; 3651 3652 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3653 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3654 iter_aflags |= ARC_FLAG_L2CACHE; 3655 3656 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3657 3658 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3659 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3660 3661 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3662 bp, dbuf_prefetch_indirect_done, dpa, 3663 ZIO_PRIORITY_SYNC_READ, 3664 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3665 &iter_aflags, &zb); 3666 } 3667 3668 arc_buf_destroy(abuf, private); 3669 } 3670 3671 /* 3672 * Issue prefetch reads for the given block on the given level. If the indirect 3673 * blocks above that block are not in memory, we will read them in 3674 * asynchronously. As a result, this call never blocks waiting for a read to 3675 * complete. Note that the prefetch might fail if the dataset is encrypted and 3676 * the encryption key is unmapped before the IO completes. 3677 */ 3678 int 3679 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3680 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3681 void *arg) 3682 { 3683 blkptr_t bp; 3684 int epbs, nlevels, curlevel; 3685 uint64_t curblkid; 3686 3687 ASSERT(blkid != DMU_BONUS_BLKID); 3688 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3689 3690 if (blkid > dn->dn_maxblkid) 3691 goto no_issue; 3692 3693 if (level == 0 && dnode_block_freed(dn, blkid)) 3694 goto no_issue; 3695 3696 /* 3697 * This dnode hasn't been written to disk yet, so there's nothing to 3698 * prefetch. 3699 */ 3700 nlevels = dn->dn_phys->dn_nlevels; 3701 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3702 goto no_issue; 3703 3704 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3705 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3706 goto no_issue; 3707 3708 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3709 level, blkid, NULL); 3710 if (db != NULL) { 3711 mutex_exit(&db->db_mtx); 3712 /* 3713 * This dbuf already exists. It is either CACHED, or 3714 * (we assume) about to be read or filled. 3715 */ 3716 goto no_issue; 3717 } 3718 3719 /* 3720 * Find the closest ancestor (indirect block) of the target block 3721 * that is present in the cache. In this indirect block, we will 3722 * find the bp that is at curlevel, curblkid. 3723 */ 3724 curlevel = level; 3725 curblkid = blkid; 3726 while (curlevel < nlevels - 1) { 3727 int parent_level = curlevel + 1; 3728 uint64_t parent_blkid = curblkid >> epbs; 3729 dmu_buf_impl_t *db; 3730 3731 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3732 FALSE, TRUE, FTAG, &db) == 0) { 3733 blkptr_t *bpp = db->db_buf->b_data; 3734 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3735 dbuf_rele(db, FTAG); 3736 break; 3737 } 3738 3739 curlevel = parent_level; 3740 curblkid = parent_blkid; 3741 } 3742 3743 if (curlevel == nlevels - 1) { 3744 /* No cached indirect blocks found. */ 3745 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3746 bp = dn->dn_phys->dn_blkptr[curblkid]; 3747 } 3748 ASSERT(!BP_IS_REDACTED(&bp) || 3749 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3750 SPA_FEATURE_REDACTED_DATASETS)); 3751 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3752 goto no_issue; 3753 3754 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3755 3756 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3757 ZIO_FLAG_CANFAIL); 3758 3759 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3760 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3761 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3762 dn->dn_object, level, blkid); 3763 dpa->dpa_curlevel = curlevel; 3764 dpa->dpa_prio = prio; 3765 dpa->dpa_aflags = aflags; 3766 dpa->dpa_spa = dn->dn_objset->os_spa; 3767 dpa->dpa_dnode = dn; 3768 dpa->dpa_epbs = epbs; 3769 dpa->dpa_zio = pio; 3770 dpa->dpa_cb = cb; 3771 dpa->dpa_arg = arg; 3772 3773 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3774 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3775 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3776 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3777 3778 /* 3779 * If we have the indirect just above us, no need to do the asynchronous 3780 * prefetch chain; we'll just run the last step ourselves. If we're at 3781 * a higher level, though, we want to issue the prefetches for all the 3782 * indirect blocks asynchronously, so we can go on with whatever we were 3783 * doing. 3784 */ 3785 if (curlevel == level) { 3786 ASSERT3U(curblkid, ==, blkid); 3787 dbuf_issue_final_prefetch(dpa, &bp); 3788 } else { 3789 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3790 zbookmark_phys_t zb; 3791 3792 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3793 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3794 iter_aflags |= ARC_FLAG_L2CACHE; 3795 3796 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3797 dn->dn_object, curlevel, curblkid); 3798 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3799 &bp, dbuf_prefetch_indirect_done, dpa, 3800 ZIO_PRIORITY_SYNC_READ, 3801 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3802 &iter_aflags, &zb); 3803 } 3804 /* 3805 * We use pio here instead of dpa_zio since it's possible that 3806 * dpa may have already been freed. 3807 */ 3808 zio_nowait(pio); 3809 return (1); 3810 no_issue: 3811 if (cb != NULL) 3812 cb(arg, level, blkid, B_FALSE); 3813 return (0); 3814 } 3815 3816 int 3817 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3818 arc_flags_t aflags) 3819 { 3820 3821 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3822 } 3823 3824 /* 3825 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3826 * the case of encrypted, compressed and uncompressed buffers by 3827 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3828 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3829 * 3830 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3831 */ 3832 noinline static void 3833 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3834 { 3835 dbuf_dirty_record_t *dr = db->db_data_pending; 3836 arc_buf_t *data = dr->dt.dl.dr_data; 3837 enum zio_compress compress_type = arc_get_compression(data); 3838 uint8_t complevel = arc_get_complevel(data); 3839 3840 if (arc_is_encrypted(data)) { 3841 boolean_t byteorder; 3842 uint8_t salt[ZIO_DATA_SALT_LEN]; 3843 uint8_t iv[ZIO_DATA_IV_LEN]; 3844 uint8_t mac[ZIO_DATA_MAC_LEN]; 3845 3846 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3847 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3848 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3849 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3850 compress_type, complevel)); 3851 } else if (compress_type != ZIO_COMPRESS_OFF) { 3852 dbuf_set_data(db, arc_alloc_compressed_buf( 3853 dn->dn_objset->os_spa, db, arc_buf_size(data), 3854 arc_buf_lsize(data), compress_type, complevel)); 3855 } else { 3856 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3857 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3858 } 3859 3860 rw_enter(&db->db_rwlock, RW_WRITER); 3861 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3862 rw_exit(&db->db_rwlock); 3863 } 3864 3865 /* 3866 * Returns with db_holds incremented, and db_mtx not held. 3867 * Note: dn_struct_rwlock must be held. 3868 */ 3869 int 3870 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3871 boolean_t fail_sparse, boolean_t fail_uncached, 3872 const void *tag, dmu_buf_impl_t **dbp) 3873 { 3874 dmu_buf_impl_t *db, *parent = NULL; 3875 uint64_t hv; 3876 3877 /* If the pool has been created, verify the tx_sync_lock is not held */ 3878 spa_t *spa = dn->dn_objset->os_spa; 3879 dsl_pool_t *dp = spa->spa_dsl_pool; 3880 if (dp != NULL) { 3881 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3882 } 3883 3884 ASSERT(blkid != DMU_BONUS_BLKID); 3885 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3886 ASSERT3U(dn->dn_nlevels, >, level); 3887 3888 *dbp = NULL; 3889 3890 /* dbuf_find() returns with db_mtx held */ 3891 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3892 3893 if (db == NULL) { 3894 blkptr_t *bp = NULL; 3895 int err; 3896 3897 if (fail_uncached) 3898 return (SET_ERROR(ENOENT)); 3899 3900 ASSERT3P(parent, ==, NULL); 3901 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3902 if (fail_sparse) { 3903 if (err == 0 && bp && BP_IS_HOLE(bp)) 3904 err = SET_ERROR(ENOENT); 3905 if (err) { 3906 if (parent) 3907 dbuf_rele(parent, NULL); 3908 return (err); 3909 } 3910 } 3911 if (err && err != ENOENT) 3912 return (err); 3913 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3914 } 3915 3916 if (fail_uncached && db->db_state != DB_CACHED) { 3917 mutex_exit(&db->db_mtx); 3918 return (SET_ERROR(ENOENT)); 3919 } 3920 3921 if (db->db_buf != NULL) { 3922 arc_buf_access(db->db_buf); 3923 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3924 } 3925 3926 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3927 3928 /* 3929 * If this buffer is currently syncing out, and we are 3930 * still referencing it from db_data, we need to make a copy 3931 * of it in case we decide we want to dirty it again in this txg. 3932 */ 3933 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3934 dn->dn_object != DMU_META_DNODE_OBJECT && 3935 db->db_state == DB_CACHED && db->db_data_pending) { 3936 dbuf_dirty_record_t *dr = db->db_data_pending; 3937 if (dr->dt.dl.dr_data == db->db_buf) { 3938 ASSERT3P(db->db_buf, !=, NULL); 3939 dbuf_hold_copy(dn, db); 3940 } 3941 } 3942 3943 if (multilist_link_active(&db->db_cache_link)) { 3944 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3945 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3946 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3947 3948 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3949 3950 uint64_t size = db->db.db_size; 3951 uint64_t usize = dmu_buf_user_size(&db->db); 3952 (void) zfs_refcount_remove_many( 3953 &dbuf_caches[db->db_caching_status].size, size, db); 3954 (void) zfs_refcount_remove_many( 3955 &dbuf_caches[db->db_caching_status].size, usize, 3956 db->db_user); 3957 3958 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3959 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3960 } else { 3961 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3962 DBUF_STAT_BUMPDOWN(cache_count); 3963 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3964 size + usize); 3965 } 3966 db->db_caching_status = DB_NO_CACHE; 3967 } 3968 (void) zfs_refcount_add(&db->db_holds, tag); 3969 DBUF_VERIFY(db); 3970 mutex_exit(&db->db_mtx); 3971 3972 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3973 if (parent) 3974 dbuf_rele(parent, NULL); 3975 3976 ASSERT3P(DB_DNODE(db), ==, dn); 3977 ASSERT3U(db->db_blkid, ==, blkid); 3978 ASSERT3U(db->db_level, ==, level); 3979 *dbp = db; 3980 3981 return (0); 3982 } 3983 3984 dmu_buf_impl_t * 3985 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3986 { 3987 return (dbuf_hold_level(dn, 0, blkid, tag)); 3988 } 3989 3990 dmu_buf_impl_t * 3991 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3992 { 3993 dmu_buf_impl_t *db; 3994 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3995 return (err ? NULL : db); 3996 } 3997 3998 void 3999 dbuf_create_bonus(dnode_t *dn) 4000 { 4001 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 4002 4003 ASSERT(dn->dn_bonus == NULL); 4004 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 4005 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 4006 } 4007 4008 int 4009 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 4010 { 4011 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4012 4013 if (db->db_blkid != DMU_SPILL_BLKID) 4014 return (SET_ERROR(ENOTSUP)); 4015 if (blksz == 0) 4016 blksz = SPA_MINBLOCKSIZE; 4017 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 4018 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 4019 4020 dbuf_new_size(db, blksz, tx); 4021 4022 return (0); 4023 } 4024 4025 void 4026 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 4027 { 4028 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 4029 } 4030 4031 #pragma weak dmu_buf_add_ref = dbuf_add_ref 4032 void 4033 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 4034 { 4035 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 4036 VERIFY3S(holds, >, 1); 4037 } 4038 4039 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 4040 boolean_t 4041 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 4042 const void *tag) 4043 { 4044 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4045 dmu_buf_impl_t *found_db; 4046 boolean_t result = B_FALSE; 4047 4048 if (blkid == DMU_BONUS_BLKID) 4049 found_db = dbuf_find_bonus(os, obj); 4050 else 4051 found_db = dbuf_find(os, obj, 0, blkid, NULL); 4052 4053 if (found_db != NULL) { 4054 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 4055 (void) zfs_refcount_add(&db->db_holds, tag); 4056 result = B_TRUE; 4057 } 4058 mutex_exit(&found_db->db_mtx); 4059 } 4060 return (result); 4061 } 4062 4063 /* 4064 * If you call dbuf_rele() you had better not be referencing the dnode handle 4065 * unless you have some other direct or indirect hold on the dnode. (An indirect 4066 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 4067 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 4068 * dnode's parent dbuf evicting its dnode handles. 4069 */ 4070 void 4071 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 4072 { 4073 mutex_enter(&db->db_mtx); 4074 dbuf_rele_and_unlock(db, tag, B_FALSE); 4075 } 4076 4077 void 4078 dmu_buf_rele(dmu_buf_t *db, const void *tag) 4079 { 4080 dbuf_rele((dmu_buf_impl_t *)db, tag); 4081 } 4082 4083 /* 4084 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 4085 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 4086 * argument should be set if we are already in the dbuf-evicting code 4087 * path, in which case we don't want to recursively evict. This allows us to 4088 * avoid deeply nested stacks that would have a call flow similar to this: 4089 * 4090 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 4091 * ^ | 4092 * | | 4093 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 4094 * 4095 */ 4096 void 4097 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 4098 { 4099 int64_t holds; 4100 uint64_t size; 4101 4102 ASSERT(MUTEX_HELD(&db->db_mtx)); 4103 DBUF_VERIFY(db); 4104 4105 /* 4106 * Remove the reference to the dbuf before removing its hold on the 4107 * dnode so we can guarantee in dnode_move() that a referenced bonus 4108 * buffer has a corresponding dnode hold. 4109 */ 4110 holds = zfs_refcount_remove(&db->db_holds, tag); 4111 ASSERT(holds >= 0); 4112 4113 /* 4114 * We can't freeze indirects if there is a possibility that they 4115 * may be modified in the current syncing context. 4116 */ 4117 if (db->db_buf != NULL && 4118 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 4119 arc_buf_freeze(db->db_buf); 4120 } 4121 4122 if (holds == db->db_dirtycnt && 4123 db->db_level == 0 && db->db_user_immediate_evict) 4124 dbuf_evict_user(db); 4125 4126 if (holds == 0) { 4127 if (db->db_blkid == DMU_BONUS_BLKID) { 4128 dnode_t *dn; 4129 boolean_t evict_dbuf = db->db_pending_evict; 4130 4131 /* 4132 * If the dnode moves here, we cannot cross this 4133 * barrier until the move completes. 4134 */ 4135 DB_DNODE_ENTER(db); 4136 4137 dn = DB_DNODE(db); 4138 atomic_dec_32(&dn->dn_dbufs_count); 4139 4140 /* 4141 * Decrementing the dbuf count means that the bonus 4142 * buffer's dnode hold is no longer discounted in 4143 * dnode_move(). The dnode cannot move until after 4144 * the dnode_rele() below. 4145 */ 4146 DB_DNODE_EXIT(db); 4147 4148 /* 4149 * Do not reference db after its lock is dropped. 4150 * Another thread may evict it. 4151 */ 4152 mutex_exit(&db->db_mtx); 4153 4154 if (evict_dbuf) 4155 dnode_evict_bonus(dn); 4156 4157 dnode_rele(dn, db); 4158 } else if (db->db_buf == NULL) { 4159 /* 4160 * This is a special case: we never associated this 4161 * dbuf with any data allocated from the ARC. 4162 */ 4163 ASSERT(db->db_state == DB_UNCACHED || 4164 db->db_state == DB_NOFILL); 4165 dbuf_destroy(db); 4166 } else if (arc_released(db->db_buf)) { 4167 /* 4168 * This dbuf has anonymous data associated with it. 4169 */ 4170 dbuf_destroy(db); 4171 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4172 db->db_pending_evict) { 4173 dbuf_destroy(db); 4174 } else if (!multilist_link_active(&db->db_cache_link)) { 4175 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4176 4177 dbuf_cached_state_t dcs = 4178 dbuf_include_in_metadata_cache(db) ? 4179 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4180 db->db_caching_status = dcs; 4181 4182 multilist_insert(&dbuf_caches[dcs].cache, db); 4183 uint64_t db_size = db->db.db_size; 4184 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4185 (void) zfs_refcount_add_many( 4186 &dbuf_caches[dcs].size, db_size, db); 4187 size = zfs_refcount_add_many( 4188 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4189 uint8_t db_level = db->db_level; 4190 mutex_exit(&db->db_mtx); 4191 4192 if (dcs == DB_DBUF_METADATA_CACHE) { 4193 DBUF_STAT_BUMP(metadata_cache_count); 4194 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4195 size); 4196 } else { 4197 DBUF_STAT_BUMP(cache_count); 4198 DBUF_STAT_MAX(cache_size_bytes_max, size); 4199 DBUF_STAT_BUMP(cache_levels[db_level]); 4200 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4201 db_size + dbu_size); 4202 } 4203 4204 if (dcs == DB_DBUF_CACHE && !evicting) 4205 dbuf_evict_notify(size); 4206 } 4207 } else { 4208 mutex_exit(&db->db_mtx); 4209 } 4210 } 4211 4212 #pragma weak dmu_buf_refcount = dbuf_refcount 4213 uint64_t 4214 dbuf_refcount(dmu_buf_impl_t *db) 4215 { 4216 return (zfs_refcount_count(&db->db_holds)); 4217 } 4218 4219 uint64_t 4220 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4221 { 4222 uint64_t holds; 4223 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4224 4225 mutex_enter(&db->db_mtx); 4226 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4227 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4228 mutex_exit(&db->db_mtx); 4229 4230 return (holds); 4231 } 4232 4233 void * 4234 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4235 dmu_buf_user_t *new_user) 4236 { 4237 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4238 4239 mutex_enter(&db->db_mtx); 4240 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4241 if (db->db_user == old_user) 4242 db->db_user = new_user; 4243 else 4244 old_user = db->db_user; 4245 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4246 mutex_exit(&db->db_mtx); 4247 4248 return (old_user); 4249 } 4250 4251 void * 4252 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4253 { 4254 return (dmu_buf_replace_user(db_fake, NULL, user)); 4255 } 4256 4257 void * 4258 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4259 { 4260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4261 4262 db->db_user_immediate_evict = TRUE; 4263 return (dmu_buf_set_user(db_fake, user)); 4264 } 4265 4266 void * 4267 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4268 { 4269 return (dmu_buf_replace_user(db_fake, user, NULL)); 4270 } 4271 4272 void * 4273 dmu_buf_get_user(dmu_buf_t *db_fake) 4274 { 4275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4276 4277 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4278 return (db->db_user); 4279 } 4280 4281 uint64_t 4282 dmu_buf_user_size(dmu_buf_t *db_fake) 4283 { 4284 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4285 if (db->db_user == NULL) 4286 return (0); 4287 return (atomic_load_64(&db->db_user->dbu_size)); 4288 } 4289 4290 void 4291 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4292 { 4293 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4294 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4295 ASSERT3P(db->db_user, !=, NULL); 4296 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4297 atomic_add_64(&db->db_user->dbu_size, nadd); 4298 } 4299 4300 void 4301 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4302 { 4303 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4304 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4305 ASSERT3P(db->db_user, !=, NULL); 4306 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4307 atomic_sub_64(&db->db_user->dbu_size, nsub); 4308 } 4309 4310 void 4311 dmu_buf_user_evict_wait(void) 4312 { 4313 taskq_wait(dbu_evict_taskq); 4314 } 4315 4316 blkptr_t * 4317 dmu_buf_get_blkptr(dmu_buf_t *db) 4318 { 4319 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4320 return (dbi->db_blkptr); 4321 } 4322 4323 objset_t * 4324 dmu_buf_get_objset(dmu_buf_t *db) 4325 { 4326 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4327 return (dbi->db_objset); 4328 } 4329 4330 static void 4331 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4332 { 4333 /* ASSERT(dmu_tx_is_syncing(tx) */ 4334 ASSERT(MUTEX_HELD(&db->db_mtx)); 4335 4336 if (db->db_blkptr != NULL) 4337 return; 4338 4339 if (db->db_blkid == DMU_SPILL_BLKID) { 4340 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4341 BP_ZERO(db->db_blkptr); 4342 return; 4343 } 4344 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4345 /* 4346 * This buffer was allocated at a time when there was 4347 * no available blkptrs from the dnode, or it was 4348 * inappropriate to hook it in (i.e., nlevels mismatch). 4349 */ 4350 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4351 ASSERT(db->db_parent == NULL); 4352 db->db_parent = dn->dn_dbuf; 4353 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4354 DBUF_VERIFY(db); 4355 } else { 4356 dmu_buf_impl_t *parent = db->db_parent; 4357 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4358 4359 ASSERT(dn->dn_phys->dn_nlevels > 1); 4360 if (parent == NULL) { 4361 mutex_exit(&db->db_mtx); 4362 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4363 parent = dbuf_hold_level(dn, db->db_level + 1, 4364 db->db_blkid >> epbs, db); 4365 rw_exit(&dn->dn_struct_rwlock); 4366 mutex_enter(&db->db_mtx); 4367 db->db_parent = parent; 4368 } 4369 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4370 (db->db_blkid & ((1ULL << epbs) - 1)); 4371 DBUF_VERIFY(db); 4372 } 4373 } 4374 4375 static void 4376 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4377 { 4378 dmu_buf_impl_t *db = dr->dr_dbuf; 4379 void *data = dr->dt.dl.dr_data; 4380 4381 ASSERT0(db->db_level); 4382 ASSERT(MUTEX_HELD(&db->db_mtx)); 4383 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4384 ASSERT(data != NULL); 4385 4386 dnode_t *dn = dr->dr_dnode; 4387 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4388 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4389 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4390 4391 dbuf_sync_leaf_verify_bonus_dnode(dr); 4392 4393 dbuf_undirty_bonus(dr); 4394 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4395 } 4396 4397 /* 4398 * When syncing out a blocks of dnodes, adjust the block to deal with 4399 * encryption. Normally, we make sure the block is decrypted before writing 4400 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4401 * from a raw receive. In this case, set the ARC buf's crypt params so 4402 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4403 */ 4404 static void 4405 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4406 { 4407 int err; 4408 dmu_buf_impl_t *db = dr->dr_dbuf; 4409 4410 ASSERT(MUTEX_HELD(&db->db_mtx)); 4411 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4412 ASSERT3U(db->db_level, ==, 0); 4413 4414 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4415 zbookmark_phys_t zb; 4416 4417 /* 4418 * Unfortunately, there is currently no mechanism for 4419 * syncing context to handle decryption errors. An error 4420 * here is only possible if an attacker maliciously 4421 * changed a dnode block and updated the associated 4422 * checksums going up the block tree. 4423 */ 4424 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4425 db->db.db_object, db->db_level, db->db_blkid); 4426 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4427 &zb, B_TRUE); 4428 if (err) 4429 panic("Invalid dnode block MAC"); 4430 } else if (dr->dt.dl.dr_has_raw_params) { 4431 (void) arc_release(dr->dt.dl.dr_data, db); 4432 arc_convert_to_raw(dr->dt.dl.dr_data, 4433 dmu_objset_id(db->db_objset), 4434 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4435 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4436 } 4437 } 4438 4439 /* 4440 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4441 * is critical the we not allow the compiler to inline this function in to 4442 * dbuf_sync_list() thereby drastically bloating the stack usage. 4443 */ 4444 noinline static void 4445 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4446 { 4447 dmu_buf_impl_t *db = dr->dr_dbuf; 4448 dnode_t *dn = dr->dr_dnode; 4449 4450 ASSERT(dmu_tx_is_syncing(tx)); 4451 4452 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4453 4454 mutex_enter(&db->db_mtx); 4455 4456 ASSERT(db->db_level > 0); 4457 DBUF_VERIFY(db); 4458 4459 /* Read the block if it hasn't been read yet. */ 4460 if (db->db_buf == NULL) { 4461 mutex_exit(&db->db_mtx); 4462 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4463 mutex_enter(&db->db_mtx); 4464 } 4465 ASSERT3U(db->db_state, ==, DB_CACHED); 4466 ASSERT(db->db_buf != NULL); 4467 4468 /* Indirect block size must match what the dnode thinks it is. */ 4469 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4470 dbuf_check_blkptr(dn, db); 4471 4472 /* Provide the pending dirty record to child dbufs */ 4473 db->db_data_pending = dr; 4474 4475 mutex_exit(&db->db_mtx); 4476 4477 dbuf_write(dr, db->db_buf, tx); 4478 4479 zio_t *zio = dr->dr_zio; 4480 mutex_enter(&dr->dt.di.dr_mtx); 4481 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4482 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4483 mutex_exit(&dr->dt.di.dr_mtx); 4484 zio_nowait(zio); 4485 } 4486 4487 /* 4488 * Verify that the size of the data in our bonus buffer does not exceed 4489 * its recorded size. 4490 * 4491 * The purpose of this verification is to catch any cases in development 4492 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4493 * due to incorrect feature management, older pools expect to read more 4494 * data even though they didn't actually write it to begin with. 4495 * 4496 * For a example, this would catch an error in the feature logic where we 4497 * open an older pool and we expect to write the space map histogram of 4498 * a space map with size SPACE_MAP_SIZE_V0. 4499 */ 4500 static void 4501 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4502 { 4503 #ifdef ZFS_DEBUG 4504 dnode_t *dn = dr->dr_dnode; 4505 4506 /* 4507 * Encrypted bonus buffers can have data past their bonuslen. 4508 * Skip the verification of these blocks. 4509 */ 4510 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4511 return; 4512 4513 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4514 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4515 ASSERT3U(bonuslen, <=, maxbonuslen); 4516 4517 arc_buf_t *datap = dr->dt.dl.dr_data; 4518 char *datap_end = ((char *)datap) + bonuslen; 4519 char *datap_max = ((char *)datap) + maxbonuslen; 4520 4521 /* ensure that everything is zero after our data */ 4522 for (; datap_end < datap_max; datap_end++) 4523 ASSERT(*datap_end == 0); 4524 #endif 4525 } 4526 4527 static blkptr_t * 4528 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4529 { 4530 /* This must be a lightweight dirty record. */ 4531 ASSERT3P(dr->dr_dbuf, ==, NULL); 4532 dnode_t *dn = dr->dr_dnode; 4533 4534 if (dn->dn_phys->dn_nlevels == 1) { 4535 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4536 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4537 } else { 4538 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4539 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4540 VERIFY3U(parent_db->db_level, ==, 1); 4541 VERIFY3P(DB_DNODE(parent_db), ==, dn); 4542 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4543 blkptr_t *bp = parent_db->db.db_data; 4544 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4545 } 4546 } 4547 4548 static void 4549 dbuf_lightweight_ready(zio_t *zio) 4550 { 4551 dbuf_dirty_record_t *dr = zio->io_private; 4552 blkptr_t *bp = zio->io_bp; 4553 4554 if (zio->io_error != 0) 4555 return; 4556 4557 dnode_t *dn = dr->dr_dnode; 4558 4559 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4560 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4561 int64_t delta = bp_get_dsize_sync(spa, bp) - 4562 bp_get_dsize_sync(spa, bp_orig); 4563 dnode_diduse_space(dn, delta); 4564 4565 uint64_t blkid = dr->dt.dll.dr_blkid; 4566 mutex_enter(&dn->dn_mtx); 4567 if (blkid > dn->dn_phys->dn_maxblkid) { 4568 ASSERT0(dn->dn_objset->os_raw_receive); 4569 dn->dn_phys->dn_maxblkid = blkid; 4570 } 4571 mutex_exit(&dn->dn_mtx); 4572 4573 if (!BP_IS_EMBEDDED(bp)) { 4574 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4575 BP_SET_FILL(bp, fill); 4576 } 4577 4578 dmu_buf_impl_t *parent_db; 4579 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4580 if (dr->dr_parent == NULL) { 4581 parent_db = dn->dn_dbuf; 4582 } else { 4583 parent_db = dr->dr_parent->dr_dbuf; 4584 } 4585 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4586 *bp_orig = *bp; 4587 rw_exit(&parent_db->db_rwlock); 4588 } 4589 4590 static void 4591 dbuf_lightweight_done(zio_t *zio) 4592 { 4593 dbuf_dirty_record_t *dr = zio->io_private; 4594 4595 VERIFY0(zio->io_error); 4596 4597 objset_t *os = dr->dr_dnode->dn_objset; 4598 dmu_tx_t *tx = os->os_synctx; 4599 4600 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4601 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4602 } else { 4603 dsl_dataset_t *ds = os->os_dsl_dataset; 4604 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4605 dsl_dataset_block_born(ds, zio->io_bp, tx); 4606 } 4607 4608 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4609 zio->io_txg); 4610 4611 abd_free(dr->dt.dll.dr_abd); 4612 kmem_free(dr, sizeof (*dr)); 4613 } 4614 4615 noinline static void 4616 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4617 { 4618 dnode_t *dn = dr->dr_dnode; 4619 zio_t *pio; 4620 if (dn->dn_phys->dn_nlevels == 1) { 4621 pio = dn->dn_zio; 4622 } else { 4623 pio = dr->dr_parent->dr_zio; 4624 } 4625 4626 zbookmark_phys_t zb = { 4627 .zb_objset = dmu_objset_id(dn->dn_objset), 4628 .zb_object = dn->dn_object, 4629 .zb_level = 0, 4630 .zb_blkid = dr->dt.dll.dr_blkid, 4631 }; 4632 4633 /* 4634 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4635 * will have the old BP in dbuf_lightweight_done(). 4636 */ 4637 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4638 4639 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4640 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4641 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4642 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4643 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4644 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4645 4646 zio_nowait(dr->dr_zio); 4647 } 4648 4649 /* 4650 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4651 * critical the we not allow the compiler to inline this function in to 4652 * dbuf_sync_list() thereby drastically bloating the stack usage. 4653 */ 4654 noinline static void 4655 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4656 { 4657 arc_buf_t **datap = &dr->dt.dl.dr_data; 4658 dmu_buf_impl_t *db = dr->dr_dbuf; 4659 dnode_t *dn = dr->dr_dnode; 4660 objset_t *os; 4661 uint64_t txg = tx->tx_txg; 4662 4663 ASSERT(dmu_tx_is_syncing(tx)); 4664 4665 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4666 4667 mutex_enter(&db->db_mtx); 4668 /* 4669 * To be synced, we must be dirtied. But we might have been freed 4670 * after the dirty. 4671 */ 4672 if (db->db_state == DB_UNCACHED) { 4673 /* This buffer has been freed since it was dirtied */ 4674 ASSERT3P(db->db.db_data, ==, NULL); 4675 } else if (db->db_state == DB_FILL) { 4676 /* This buffer was freed and is now being re-filled */ 4677 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4678 } else if (db->db_state == DB_READ) { 4679 /* 4680 * This buffer was either cloned or had a Direct I/O write 4681 * occur and has an in-flgiht read on the BP. It is safe to 4682 * issue the write here, because the read has already been 4683 * issued and the contents won't change. 4684 * 4685 * We can verify the case of both the clone and Direct I/O 4686 * write by making sure the first dirty record for the dbuf 4687 * has no ARC buffer associated with it. 4688 */ 4689 dbuf_dirty_record_t *dr_head = 4690 list_head(&db->db_dirty_records); 4691 ASSERT3P(db->db_buf, ==, NULL); 4692 ASSERT3P(db->db.db_data, ==, NULL); 4693 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL); 4694 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN); 4695 } else { 4696 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4697 } 4698 DBUF_VERIFY(db); 4699 4700 if (db->db_blkid == DMU_SPILL_BLKID) { 4701 mutex_enter(&dn->dn_mtx); 4702 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4703 /* 4704 * In the previous transaction group, the bonus buffer 4705 * was entirely used to store the attributes for the 4706 * dnode which overrode the dn_spill field. However, 4707 * when adding more attributes to the file a spill 4708 * block was required to hold the extra attributes. 4709 * 4710 * Make sure to clear the garbage left in the dn_spill 4711 * field from the previous attributes in the bonus 4712 * buffer. Otherwise, after writing out the spill 4713 * block to the new allocated dva, it will free 4714 * the old block pointed to by the invalid dn_spill. 4715 */ 4716 db->db_blkptr = NULL; 4717 } 4718 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4719 mutex_exit(&dn->dn_mtx); 4720 } 4721 4722 /* 4723 * If this is a bonus buffer, simply copy the bonus data into the 4724 * dnode. It will be written out when the dnode is synced (and it 4725 * will be synced, since it must have been dirty for dbuf_sync to 4726 * be called). 4727 */ 4728 if (db->db_blkid == DMU_BONUS_BLKID) { 4729 ASSERT(dr->dr_dbuf == db); 4730 dbuf_sync_bonus(dr, tx); 4731 return; 4732 } 4733 4734 os = dn->dn_objset; 4735 4736 /* 4737 * This function may have dropped the db_mtx lock allowing a dmu_sync 4738 * operation to sneak in. As a result, we need to ensure that we 4739 * don't check the dr_override_state until we have returned from 4740 * dbuf_check_blkptr. 4741 */ 4742 dbuf_check_blkptr(dn, db); 4743 4744 /* 4745 * If this buffer is in the middle of an immediate write, wait for the 4746 * synchronous IO to complete. 4747 * 4748 * This is also valid even with Direct I/O writes setting a dirty 4749 * records override state into DR_IN_DMU_SYNC, because all 4750 * Direct I/O writes happen in open-context. 4751 */ 4752 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4753 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4754 cv_wait(&db->db_changed, &db->db_mtx); 4755 } 4756 4757 /* 4758 * If this is a dnode block, ensure it is appropriately encrypted 4759 * or decrypted, depending on what we are writing to it this txg. 4760 */ 4761 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4762 dbuf_prepare_encrypted_dnode_leaf(dr); 4763 4764 if (*datap != NULL && *datap == db->db_buf && 4765 dn->dn_object != DMU_META_DNODE_OBJECT && 4766 zfs_refcount_count(&db->db_holds) > 1 && 4767 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) { 4768 /* 4769 * If this buffer is currently "in use" (i.e., there 4770 * are active holds and db_data still references it), 4771 * then make a copy before we start the write so that 4772 * any modifications from the open txg will not leak 4773 * into this write. 4774 * 4775 * NOTE: this copy does not need to be made for 4776 * objects only modified in the syncing context (e.g. 4777 * DNONE_DNODE blocks). 4778 */ 4779 int psize = arc_buf_size(*datap); 4780 int lsize = arc_buf_lsize(*datap); 4781 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4782 enum zio_compress compress_type = arc_get_compression(*datap); 4783 uint8_t complevel = arc_get_complevel(*datap); 4784 4785 if (arc_is_encrypted(*datap)) { 4786 boolean_t byteorder; 4787 uint8_t salt[ZIO_DATA_SALT_LEN]; 4788 uint8_t iv[ZIO_DATA_IV_LEN]; 4789 uint8_t mac[ZIO_DATA_MAC_LEN]; 4790 4791 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4792 *datap = arc_alloc_raw_buf(os->os_spa, db, 4793 dmu_objset_id(os), byteorder, salt, iv, mac, 4794 dn->dn_type, psize, lsize, compress_type, 4795 complevel); 4796 } else if (compress_type != ZIO_COMPRESS_OFF) { 4797 ASSERT3U(type, ==, ARC_BUFC_DATA); 4798 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4799 psize, lsize, compress_type, complevel); 4800 } else { 4801 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4802 } 4803 memcpy((*datap)->b_data, db->db.db_data, psize); 4804 } 4805 db->db_data_pending = dr; 4806 4807 mutex_exit(&db->db_mtx); 4808 4809 dbuf_write(dr, *datap, tx); 4810 4811 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4812 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4813 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4814 } else { 4815 zio_nowait(dr->dr_zio); 4816 } 4817 } 4818 4819 /* 4820 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4821 * called recursively from dbuf_sync_indirect(). 4822 */ 4823 void 4824 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4825 { 4826 dbuf_dirty_record_t *dr; 4827 4828 while ((dr = list_head(list))) { 4829 if (dr->dr_zio != NULL) { 4830 /* 4831 * If we find an already initialized zio then we 4832 * are processing the meta-dnode, and we have finished. 4833 * The dbufs for all dnodes are put back on the list 4834 * during processing, so that we can zio_wait() 4835 * these IOs after initiating all child IOs. 4836 */ 4837 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4838 DMU_META_DNODE_OBJECT); 4839 break; 4840 } 4841 list_remove(list, dr); 4842 if (dr->dr_dbuf == NULL) { 4843 dbuf_sync_lightweight(dr, tx); 4844 } else { 4845 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4846 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4847 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4848 } 4849 if (dr->dr_dbuf->db_level > 0) 4850 dbuf_sync_indirect(dr, tx); 4851 else 4852 dbuf_sync_leaf(dr, tx); 4853 } 4854 } 4855 } 4856 4857 static void 4858 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4859 { 4860 (void) buf; 4861 dmu_buf_impl_t *db = vdb; 4862 dnode_t *dn; 4863 blkptr_t *bp = zio->io_bp; 4864 blkptr_t *bp_orig = &zio->io_bp_orig; 4865 spa_t *spa = zio->io_spa; 4866 int64_t delta; 4867 uint64_t fill = 0; 4868 int i; 4869 4870 ASSERT3P(db->db_blkptr, !=, NULL); 4871 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4872 4873 DB_DNODE_ENTER(db); 4874 dn = DB_DNODE(db); 4875 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4876 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4877 zio->io_prev_space_delta = delta; 4878 4879 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4880 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4881 BP_GET_TYPE(bp) == dn->dn_type) || 4882 (db->db_blkid == DMU_SPILL_BLKID && 4883 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4884 BP_IS_EMBEDDED(bp)); 4885 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4886 } 4887 4888 mutex_enter(&db->db_mtx); 4889 4890 #ifdef ZFS_DEBUG 4891 if (db->db_blkid == DMU_SPILL_BLKID) { 4892 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4893 ASSERT(!(BP_IS_HOLE(bp)) && 4894 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4895 } 4896 #endif 4897 4898 if (db->db_level == 0) { 4899 mutex_enter(&dn->dn_mtx); 4900 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4901 db->db_blkid != DMU_SPILL_BLKID) { 4902 ASSERT0(db->db_objset->os_raw_receive); 4903 dn->dn_phys->dn_maxblkid = db->db_blkid; 4904 } 4905 mutex_exit(&dn->dn_mtx); 4906 4907 if (dn->dn_type == DMU_OT_DNODE) { 4908 i = 0; 4909 while (i < db->db.db_size) { 4910 dnode_phys_t *dnp = 4911 (void *)(((char *)db->db.db_data) + i); 4912 4913 i += DNODE_MIN_SIZE; 4914 if (dnp->dn_type != DMU_OT_NONE) { 4915 fill++; 4916 for (int j = 0; j < dnp->dn_nblkptr; 4917 j++) { 4918 (void) zfs_blkptr_verify(spa, 4919 &dnp->dn_blkptr[j], 4920 BLK_CONFIG_SKIP, 4921 BLK_VERIFY_HALT); 4922 } 4923 if (dnp->dn_flags & 4924 DNODE_FLAG_SPILL_BLKPTR) { 4925 (void) zfs_blkptr_verify(spa, 4926 DN_SPILL_BLKPTR(dnp), 4927 BLK_CONFIG_SKIP, 4928 BLK_VERIFY_HALT); 4929 } 4930 i += dnp->dn_extra_slots * 4931 DNODE_MIN_SIZE; 4932 } 4933 } 4934 } else { 4935 if (BP_IS_HOLE(bp)) { 4936 fill = 0; 4937 } else { 4938 fill = 1; 4939 } 4940 } 4941 } else { 4942 blkptr_t *ibp = db->db.db_data; 4943 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4944 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4945 if (BP_IS_HOLE(ibp)) 4946 continue; 4947 (void) zfs_blkptr_verify(spa, ibp, 4948 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4949 fill += BP_GET_FILL(ibp); 4950 } 4951 } 4952 DB_DNODE_EXIT(db); 4953 4954 if (!BP_IS_EMBEDDED(bp)) 4955 BP_SET_FILL(bp, fill); 4956 4957 mutex_exit(&db->db_mtx); 4958 4959 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4960 *db->db_blkptr = *bp; 4961 dmu_buf_unlock_parent(db, dblt, FTAG); 4962 } 4963 4964 /* 4965 * This function gets called just prior to running through the compression 4966 * stage of the zio pipeline. If we're an indirect block comprised of only 4967 * holes, then we want this indirect to be compressed away to a hole. In 4968 * order to do that we must zero out any information about the holes that 4969 * this indirect points to prior to before we try to compress it. 4970 */ 4971 static void 4972 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4973 { 4974 (void) zio, (void) buf; 4975 dmu_buf_impl_t *db = vdb; 4976 blkptr_t *bp; 4977 unsigned int epbs, i; 4978 4979 ASSERT3U(db->db_level, >, 0); 4980 DB_DNODE_ENTER(db); 4981 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4982 DB_DNODE_EXIT(db); 4983 ASSERT3U(epbs, <, 31); 4984 4985 /* Determine if all our children are holes */ 4986 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4987 if (!BP_IS_HOLE(bp)) 4988 break; 4989 } 4990 4991 /* 4992 * If all the children are holes, then zero them all out so that 4993 * we may get compressed away. 4994 */ 4995 if (i == 1ULL << epbs) { 4996 /* 4997 * We only found holes. Grab the rwlock to prevent 4998 * anybody from reading the blocks we're about to 4999 * zero out. 5000 */ 5001 rw_enter(&db->db_rwlock, RW_WRITER); 5002 memset(db->db.db_data, 0, db->db.db_size); 5003 rw_exit(&db->db_rwlock); 5004 } 5005 } 5006 5007 static void 5008 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 5009 { 5010 (void) buf; 5011 dmu_buf_impl_t *db = vdb; 5012 blkptr_t *bp_orig = &zio->io_bp_orig; 5013 blkptr_t *bp = db->db_blkptr; 5014 objset_t *os = db->db_objset; 5015 dmu_tx_t *tx = os->os_synctx; 5016 5017 ASSERT0(zio->io_error); 5018 ASSERT(db->db_blkptr == bp); 5019 5020 /* 5021 * For nopwrites and rewrites we ensure that the bp matches our 5022 * original and bypass all the accounting. 5023 */ 5024 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 5025 ASSERT(BP_EQUAL(bp, bp_orig)); 5026 } else { 5027 dsl_dataset_t *ds = os->os_dsl_dataset; 5028 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 5029 dsl_dataset_block_born(ds, bp, tx); 5030 } 5031 5032 mutex_enter(&db->db_mtx); 5033 5034 DBUF_VERIFY(db); 5035 5036 dbuf_dirty_record_t *dr = db->db_data_pending; 5037 dnode_t *dn = dr->dr_dnode; 5038 ASSERT(!list_link_active(&dr->dr_dirty_node)); 5039 ASSERT(dr->dr_dbuf == db); 5040 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 5041 list_remove(&db->db_dirty_records, dr); 5042 5043 #ifdef ZFS_DEBUG 5044 if (db->db_blkid == DMU_SPILL_BLKID) { 5045 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 5046 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 5047 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 5048 } 5049 #endif 5050 5051 if (db->db_level == 0) { 5052 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 5053 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 5054 5055 /* no dr_data if this is a NO_FILL or Direct I/O */ 5056 if (dr->dt.dl.dr_data != NULL && 5057 dr->dt.dl.dr_data != db->db_buf) { 5058 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE); 5059 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE); 5060 arc_buf_destroy(dr->dt.dl.dr_data, db); 5061 } 5062 } else { 5063 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 5064 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 5065 if (!BP_IS_HOLE(db->db_blkptr)) { 5066 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 5067 SPA_BLKPTRSHIFT; 5068 ASSERT3U(db->db_blkid, <=, 5069 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 5070 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 5071 db->db.db_size); 5072 } 5073 mutex_destroy(&dr->dt.di.dr_mtx); 5074 list_destroy(&dr->dt.di.dr_children); 5075 } 5076 5077 cv_broadcast(&db->db_changed); 5078 ASSERT(db->db_dirtycnt > 0); 5079 db->db_dirtycnt -= 1; 5080 db->db_data_pending = NULL; 5081 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 5082 5083 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 5084 zio->io_txg); 5085 5086 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 5087 } 5088 5089 static void 5090 dbuf_write_nofill_ready(zio_t *zio) 5091 { 5092 dbuf_write_ready(zio, NULL, zio->io_private); 5093 } 5094 5095 static void 5096 dbuf_write_nofill_done(zio_t *zio) 5097 { 5098 dbuf_write_done(zio, NULL, zio->io_private); 5099 } 5100 5101 static void 5102 dbuf_write_override_ready(zio_t *zio) 5103 { 5104 dbuf_dirty_record_t *dr = zio->io_private; 5105 dmu_buf_impl_t *db = dr->dr_dbuf; 5106 5107 dbuf_write_ready(zio, NULL, db); 5108 } 5109 5110 static void 5111 dbuf_write_override_done(zio_t *zio) 5112 { 5113 dbuf_dirty_record_t *dr = zio->io_private; 5114 dmu_buf_impl_t *db = dr->dr_dbuf; 5115 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 5116 5117 mutex_enter(&db->db_mtx); 5118 if (!BP_EQUAL(zio->io_bp, obp)) { 5119 if (!BP_IS_HOLE(obp)) 5120 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 5121 arc_release(dr->dt.dl.dr_data, db); 5122 } 5123 mutex_exit(&db->db_mtx); 5124 5125 dbuf_write_done(zio, NULL, db); 5126 5127 if (zio->io_abd != NULL) 5128 abd_free(zio->io_abd); 5129 } 5130 5131 typedef struct dbuf_remap_impl_callback_arg { 5132 objset_t *drica_os; 5133 uint64_t drica_blk_birth; 5134 dmu_tx_t *drica_tx; 5135 } dbuf_remap_impl_callback_arg_t; 5136 5137 static void 5138 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 5139 void *arg) 5140 { 5141 dbuf_remap_impl_callback_arg_t *drica = arg; 5142 objset_t *os = drica->drica_os; 5143 spa_t *spa = dmu_objset_spa(os); 5144 dmu_tx_t *tx = drica->drica_tx; 5145 5146 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5147 5148 if (os == spa_meta_objset(spa)) { 5149 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 5150 } else { 5151 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 5152 size, drica->drica_blk_birth, tx); 5153 } 5154 } 5155 5156 static void 5157 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 5158 { 5159 blkptr_t bp_copy = *bp; 5160 spa_t *spa = dmu_objset_spa(dn->dn_objset); 5161 dbuf_remap_impl_callback_arg_t drica; 5162 5163 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5164 5165 drica.drica_os = dn->dn_objset; 5166 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5167 drica.drica_tx = tx; 5168 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5169 &drica)) { 5170 /* 5171 * If the blkptr being remapped is tracked by a livelist, 5172 * then we need to make sure the livelist reflects the update. 5173 * First, cancel out the old blkptr by appending a 'FREE' 5174 * entry. Next, add an 'ALLOC' to track the new version. This 5175 * way we avoid trying to free an inaccurate blkptr at delete. 5176 * Note that embedded blkptrs are not tracked in livelists. 5177 */ 5178 if (dn->dn_objset != spa_meta_objset(spa)) { 5179 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5180 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5181 BP_GET_LOGICAL_BIRTH(bp) > 5182 ds->ds_dir->dd_origin_txg) { 5183 ASSERT(!BP_IS_EMBEDDED(bp)); 5184 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5185 ASSERT(spa_feature_is_enabled(spa, 5186 SPA_FEATURE_LIVELIST)); 5187 bplist_append(&ds->ds_dir->dd_pending_frees, 5188 bp); 5189 bplist_append(&ds->ds_dir->dd_pending_allocs, 5190 &bp_copy); 5191 } 5192 } 5193 5194 /* 5195 * The db_rwlock prevents dbuf_read_impl() from 5196 * dereferencing the BP while we are changing it. To 5197 * avoid lock contention, only grab it when we are actually 5198 * changing the BP. 5199 */ 5200 if (rw != NULL) 5201 rw_enter(rw, RW_WRITER); 5202 *bp = bp_copy; 5203 if (rw != NULL) 5204 rw_exit(rw); 5205 } 5206 } 5207 5208 /* 5209 * Remap any existing BP's to concrete vdevs, if possible. 5210 */ 5211 static void 5212 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5213 { 5214 spa_t *spa = dmu_objset_spa(db->db_objset); 5215 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5216 5217 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5218 return; 5219 5220 if (db->db_level > 0) { 5221 blkptr_t *bp = db->db.db_data; 5222 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5223 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5224 } 5225 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5226 dnode_phys_t *dnp = db->db.db_data; 5227 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE); 5228 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5229 i += dnp[i].dn_extra_slots + 1) { 5230 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5231 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5232 &dn->dn_dbuf->db_rwlock); 5233 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5234 tx); 5235 } 5236 } 5237 } 5238 } 5239 5240 5241 /* 5242 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5243 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5244 */ 5245 static void 5246 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5247 { 5248 dmu_buf_impl_t *db = dr->dr_dbuf; 5249 dnode_t *dn = dr->dr_dnode; 5250 objset_t *os; 5251 dmu_buf_impl_t *parent = db->db_parent; 5252 uint64_t txg = tx->tx_txg; 5253 zbookmark_phys_t zb; 5254 zio_prop_t zp; 5255 zio_t *pio; /* parent I/O */ 5256 int wp_flag = 0; 5257 5258 ASSERT(dmu_tx_is_syncing(tx)); 5259 5260 os = dn->dn_objset; 5261 5262 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5263 /* 5264 * Private object buffers are released here rather than in 5265 * dbuf_dirty() since they are only modified in the syncing 5266 * context and we don't want the overhead of making multiple 5267 * copies of the data. 5268 */ 5269 if (BP_IS_HOLE(db->db_blkptr)) 5270 arc_buf_thaw(data); 5271 else 5272 dbuf_release_bp(db); 5273 dbuf_remap(dn, db, tx); 5274 } 5275 5276 if (parent != dn->dn_dbuf) { 5277 /* Our parent is an indirect block. */ 5278 /* We have a dirty parent that has been scheduled for write. */ 5279 ASSERT(parent && parent->db_data_pending); 5280 /* Our parent's buffer is one level closer to the dnode. */ 5281 ASSERT(db->db_level == parent->db_level-1); 5282 /* 5283 * We're about to modify our parent's db_data by modifying 5284 * our block pointer, so the parent must be released. 5285 */ 5286 ASSERT(arc_released(parent->db_buf)); 5287 pio = parent->db_data_pending->dr_zio; 5288 } else { 5289 /* Our parent is the dnode itself. */ 5290 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5291 db->db_blkid != DMU_SPILL_BLKID) || 5292 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5293 if (db->db_blkid != DMU_SPILL_BLKID) 5294 ASSERT3P(db->db_blkptr, ==, 5295 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5296 pio = dn->dn_zio; 5297 } 5298 5299 ASSERT(db->db_level == 0 || data == db->db_buf); 5300 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5301 ASSERT(pio); 5302 5303 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5304 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5305 db->db.db_object, db->db_level, db->db_blkid); 5306 5307 if (db->db_blkid == DMU_SPILL_BLKID) 5308 wp_flag = WP_SPILL; 5309 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5310 5311 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5312 5313 /* 5314 * We copy the blkptr now (rather than when we instantiate the dirty 5315 * record), because its value can change between open context and 5316 * syncing context. We do not need to hold dn_struct_rwlock to read 5317 * db_blkptr because we are in syncing context. 5318 */ 5319 dr->dr_bp_copy = *db->db_blkptr; 5320 5321 if (db->db_level == 0 && 5322 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5323 /* 5324 * The BP for this block has been provided by open context 5325 * (by dmu_sync(), dmu_write_direct(), 5326 * or dmu_buf_write_embedded()). 5327 */ 5328 abd_t *contents = (data != NULL) ? 5329 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5330 5331 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5332 contents, db->db.db_size, db->db.db_size, &zp, 5333 dbuf_write_override_ready, NULL, 5334 dbuf_write_override_done, 5335 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5336 mutex_enter(&db->db_mtx); 5337 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5338 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5339 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5340 dr->dt.dl.dr_brtwrite); 5341 mutex_exit(&db->db_mtx); 5342 } else if (data == NULL) { 5343 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5344 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5345 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5346 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5347 dbuf_write_nofill_ready, NULL, 5348 dbuf_write_nofill_done, db, 5349 ZIO_PRIORITY_ASYNC_WRITE, 5350 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5351 } else { 5352 ASSERT(arc_released(data)); 5353 5354 /* 5355 * For indirect blocks, we want to setup the children 5356 * ready callback so that we can properly handle an indirect 5357 * block that only contains holes. 5358 */ 5359 arc_write_done_func_t *children_ready_cb = NULL; 5360 if (db->db_level != 0) 5361 children_ready_cb = dbuf_write_children_ready; 5362 5363 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5364 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5365 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready, 5366 children_ready_cb, dbuf_write_done, db, 5367 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5368 } 5369 } 5370 5371 EXPORT_SYMBOL(dbuf_find); 5372 EXPORT_SYMBOL(dbuf_is_metadata); 5373 EXPORT_SYMBOL(dbuf_destroy); 5374 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5375 EXPORT_SYMBOL(dbuf_whichblock); 5376 EXPORT_SYMBOL(dbuf_read); 5377 EXPORT_SYMBOL(dbuf_unoverride); 5378 EXPORT_SYMBOL(dbuf_free_range); 5379 EXPORT_SYMBOL(dbuf_new_size); 5380 EXPORT_SYMBOL(dbuf_release_bp); 5381 EXPORT_SYMBOL(dbuf_dirty); 5382 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5383 EXPORT_SYMBOL(dmu_buf_will_dirty); 5384 EXPORT_SYMBOL(dmu_buf_is_dirty); 5385 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio); 5386 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5387 EXPORT_SYMBOL(dmu_buf_will_fill); 5388 EXPORT_SYMBOL(dmu_buf_fill_done); 5389 EXPORT_SYMBOL(dmu_buf_rele); 5390 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5391 EXPORT_SYMBOL(dbuf_prefetch); 5392 EXPORT_SYMBOL(dbuf_hold_impl); 5393 EXPORT_SYMBOL(dbuf_hold); 5394 EXPORT_SYMBOL(dbuf_hold_level); 5395 EXPORT_SYMBOL(dbuf_create_bonus); 5396 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5397 EXPORT_SYMBOL(dbuf_rm_spill); 5398 EXPORT_SYMBOL(dbuf_add_ref); 5399 EXPORT_SYMBOL(dbuf_rele); 5400 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5401 EXPORT_SYMBOL(dbuf_refcount); 5402 EXPORT_SYMBOL(dbuf_sync_list); 5403 EXPORT_SYMBOL(dmu_buf_set_user); 5404 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5405 EXPORT_SYMBOL(dmu_buf_get_user); 5406 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5407 5408 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5409 "Maximum size in bytes of the dbuf cache."); 5410 5411 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5412 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5413 5414 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5415 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5416 5417 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5418 "Maximum size in bytes of dbuf metadata cache."); 5419 5420 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5421 "Set size of dbuf cache to log2 fraction of arc size."); 5422 5423 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5424 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5425 5426 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5427 "Set size of dbuf cache mutex array as log2 shift."); 5428