xref: /freebsd/sys/contrib/openzfs/module/zfs/dbuf.c (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright (c) 2019, Klara Inc.
28  * Copyright (c) 2019, Allan Jude
29  * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
59 
60 static kstat_t *dbuf_ksp;
61 
62 typedef struct dbuf_stats {
63 	/*
64 	 * Various statistics about the size of the dbuf cache.
65 	 */
66 	kstat_named_t cache_count;
67 	kstat_named_t cache_size_bytes;
68 	kstat_named_t cache_size_bytes_max;
69 	/*
70 	 * Statistics regarding the bounds on the dbuf cache size.
71 	 */
72 	kstat_named_t cache_target_bytes;
73 	kstat_named_t cache_lowater_bytes;
74 	kstat_named_t cache_hiwater_bytes;
75 	/*
76 	 * Total number of dbuf cache evictions that have occurred.
77 	 */
78 	kstat_named_t cache_total_evicts;
79 	/*
80 	 * The distribution of dbuf levels in the dbuf cache and
81 	 * the total size of all dbufs at each level.
82 	 */
83 	kstat_named_t cache_levels[DN_MAX_LEVELS];
84 	kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
85 	/*
86 	 * Statistics about the dbuf hash table.
87 	 */
88 	kstat_named_t hash_hits;
89 	kstat_named_t hash_misses;
90 	kstat_named_t hash_collisions;
91 	kstat_named_t hash_elements;
92 	kstat_named_t hash_elements_max;
93 	/*
94 	 * Number of sublists containing more than one dbuf in the dbuf
95 	 * hash table. Keep track of the longest hash chain.
96 	 */
97 	kstat_named_t hash_chains;
98 	kstat_named_t hash_chain_max;
99 	/*
100 	 * Number of times a dbuf_create() discovers that a dbuf was
101 	 * already created and in the dbuf hash table.
102 	 */
103 	kstat_named_t hash_insert_race;
104 	/*
105 	 * Number of entries in the hash table dbuf and mutex arrays.
106 	 */
107 	kstat_named_t hash_table_count;
108 	kstat_named_t hash_mutex_count;
109 	/*
110 	 * Statistics about the size of the metadata dbuf cache.
111 	 */
112 	kstat_named_t metadata_cache_count;
113 	kstat_named_t metadata_cache_size_bytes;
114 	kstat_named_t metadata_cache_size_bytes_max;
115 	/*
116 	 * For diagnostic purposes, this is incremented whenever we can't add
117 	 * something to the metadata cache because it's full, and instead put
118 	 * the data in the regular dbuf cache.
119 	 */
120 	kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
122 
123 dbuf_stats_t dbuf_stats = {
124 	{ "cache_count",			KSTAT_DATA_UINT64 },
125 	{ "cache_size_bytes",			KSTAT_DATA_UINT64 },
126 	{ "cache_size_bytes_max",		KSTAT_DATA_UINT64 },
127 	{ "cache_target_bytes",			KSTAT_DATA_UINT64 },
128 	{ "cache_lowater_bytes",		KSTAT_DATA_UINT64 },
129 	{ "cache_hiwater_bytes",		KSTAT_DATA_UINT64 },
130 	{ "cache_total_evicts",			KSTAT_DATA_UINT64 },
131 	{ { "cache_levels_N",			KSTAT_DATA_UINT64 } },
132 	{ { "cache_levels_bytes_N",		KSTAT_DATA_UINT64 } },
133 	{ "hash_hits",				KSTAT_DATA_UINT64 },
134 	{ "hash_misses",			KSTAT_DATA_UINT64 },
135 	{ "hash_collisions",			KSTAT_DATA_UINT64 },
136 	{ "hash_elements",			KSTAT_DATA_UINT64 },
137 	{ "hash_elements_max",			KSTAT_DATA_UINT64 },
138 	{ "hash_chains",			KSTAT_DATA_UINT64 },
139 	{ "hash_chain_max",			KSTAT_DATA_UINT64 },
140 	{ "hash_insert_race",			KSTAT_DATA_UINT64 },
141 	{ "hash_table_count",			KSTAT_DATA_UINT64 },
142 	{ "hash_mutex_count",			KSTAT_DATA_UINT64 },
143 	{ "metadata_cache_count",		KSTAT_DATA_UINT64 },
144 	{ "metadata_cache_size_bytes",		KSTAT_DATA_UINT64 },
145 	{ "metadata_cache_size_bytes_max",	KSTAT_DATA_UINT64 },
146 	{ "metadata_cache_overflow",		KSTAT_DATA_UINT64 }
147 };
148 
149 struct {
150 	wmsum_t cache_count;
151 	wmsum_t cache_total_evicts;
152 	wmsum_t cache_levels[DN_MAX_LEVELS];
153 	wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 	wmsum_t hash_hits;
155 	wmsum_t hash_misses;
156 	wmsum_t hash_collisions;
157 	wmsum_t hash_chains;
158 	wmsum_t hash_insert_race;
159 	wmsum_t metadata_cache_count;
160 	wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
162 
163 #define	DBUF_STAT_INCR(stat, val)	\
164 	wmsum_add(&dbuf_sums.stat, val);
165 #define	DBUF_STAT_DECR(stat, val)	\
166 	DBUF_STAT_INCR(stat, -(val));
167 #define	DBUF_STAT_BUMP(stat)		\
168 	DBUF_STAT_INCR(stat, 1);
169 #define	DBUF_STAT_BUMPDOWN(stat)	\
170 	DBUF_STAT_INCR(stat, -1);
171 #define	DBUF_STAT_MAX(stat, v) {					\
172 	uint64_t _m;							\
173 	while ((v) > (_m = dbuf_stats.stat.value.ui64) &&		\
174 	    (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 		continue;						\
176 }
177 
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
181 
182 /*
183  * Global data structures and functions for the dbuf cache.
184  */
185 static kmem_cache_t *dbuf_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187 
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192 
193 /*
194  * There are two dbuf caches; each dbuf can only be in one of them at a time.
195  *
196  * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197  *    from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198  *    that represent the metadata that describes filesystems/snapshots/
199  *    bookmarks/properties/etc. We only evict from this cache when we export a
200  *    pool, to short-circuit as much I/O as possible for all administrative
201  *    commands that need the metadata. There is no eviction policy for this
202  *    cache, because we try to only include types in it which would occupy a
203  *    very small amount of space per object but create a large impact on the
204  *    performance of these commands. Instead, after it reaches a maximum size
205  *    (which should only happen on very small memory systems with a very large
206  *    number of filesystem objects), we stop taking new dbufs into the
207  *    metadata cache, instead putting them in the normal dbuf cache.
208  *
209  * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210  *    are not currently held but have been recently released. These dbufs
211  *    are not eligible for arc eviction until they are aged out of the cache.
212  *    Dbufs that are aged out of the cache will be immediately destroyed and
213  *    become eligible for arc eviction.
214  *
215  * Dbufs are added to these caches once the last hold is released. If a dbuf is
216  * later accessed and still exists in the dbuf cache, then it will be removed
217  * from the cache and later re-added to the head of the cache.
218  *
219  * If a given dbuf meets the requirements for the metadata cache, it will go
220  * there, otherwise it will be considered for the generic LRU dbuf cache. The
221  * caches and the refcounts tracking their sizes are stored in an array indexed
222  * by those caches' matching enum values (from dbuf_cached_state_t).
223  */
224 typedef struct dbuf_cache {
225 	multilist_t cache;
226 	zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229 
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233 
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
237 
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
240 
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
243 
244 /*
245  * The LRU dbuf cache uses a three-stage eviction policy:
246  *	- A low water marker designates when the dbuf eviction thread
247  *	should stop evicting from the dbuf cache.
248  *	- When we reach the maximum size (aka mid water mark), we
249  *	signal the eviction thread to run.
250  *	- The high water mark indicates when the eviction thread
251  *	is unable to keep up with the incoming load and eviction must
252  *	happen in the context of the calling thread.
253  *
254  * The dbuf cache:
255  *                                                 (max size)
256  *                                      low water   mid water   hi water
257  * +----------------------------------------+----------+----------+
258  * |                                        |          |          |
259  * |                                        |          |          |
260  * |                                        |          |          |
261  * |                                        |          |          |
262  * +----------------------------------------+----------+----------+
263  *                                        stop        signal     evict
264  *                                      evicting     eviction   directly
265  *                                                    thread
266  *
267  * The high and low water marks indicate the operating range for the eviction
268  * thread. The low water mark is, by default, 90% of the total size of the
269  * cache and the high water mark is at 110% (both of these percentages can be
270  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271  * respectively). The eviction thread will try to ensure that the cache remains
272  * within this range by waking up every second and checking if the cache is
273  * above the low water mark. The thread can also be woken up by callers adding
274  * elements into the cache if the cache is larger than the mid water (i.e max
275  * cache size). Once the eviction thread is woken up and eviction is required,
276  * it will continue evicting buffers until it's able to reduce the cache size
277  * to the low water mark. If the cache size continues to grow and hits the high
278  * water mark, then callers adding elements to the cache will begin to evict
279  * directly from the cache until the cache is no longer above the high water
280  * mark.
281  */
282 
283 /*
284  * The percentage above and below the maximum cache size.
285  */
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
288 
289 static int
290 dbuf_cons(void *vdb, void *unused, int kmflag)
291 {
292 	(void) unused, (void) kmflag;
293 	dmu_buf_impl_t *db = vdb;
294 	memset(db, 0, sizeof (dmu_buf_impl_t));
295 
296 	mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
297 	rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
298 	cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 	multilist_link_init(&db->db_cache_link);
300 	zfs_refcount_create(&db->db_holds);
301 
302 	return (0);
303 }
304 
305 static void
306 dbuf_dest(void *vdb, void *unused)
307 {
308 	(void) unused;
309 	dmu_buf_impl_t *db = vdb;
310 	mutex_destroy(&db->db_mtx);
311 	rw_destroy(&db->db_rwlock);
312 	cv_destroy(&db->db_changed);
313 	ASSERT(!multilist_link_active(&db->db_cache_link));
314 	zfs_refcount_destroy(&db->db_holds);
315 }
316 
317 /*
318  * dbuf hash table routines
319  */
320 static dbuf_hash_table_t dbuf_hash_table;
321 
322 /*
323  * We use Cityhash for this. It's fast, and has good hash properties without
324  * requiring any large static buffers.
325  */
326 static uint64_t
327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 {
329 	return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
330 }
331 
332 #define	DTRACE_SET_STATE(db, why) \
333 	DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db,	\
334 	    const char *, why)
335 
336 #define	DBUF_EQUAL(dbuf, os, obj, level, blkid)		\
337 	((dbuf)->db.db_object == (obj) &&		\
338 	(dbuf)->db_objset == (os) &&			\
339 	(dbuf)->db_level == (level) &&			\
340 	(dbuf)->db_blkid == (blkid))
341 
342 dmu_buf_impl_t *
343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344     uint64_t *hash_out)
345 {
346 	dbuf_hash_table_t *h = &dbuf_hash_table;
347 	uint64_t hv;
348 	uint64_t idx;
349 	dmu_buf_impl_t *db;
350 
351 	hv = dbuf_hash(os, obj, level, blkid);
352 	idx = hv & h->hash_table_mask;
353 
354 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 	for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 		if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 			mutex_enter(&db->db_mtx);
358 			if (db->db_state != DB_EVICTING) {
359 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 				return (db);
361 			}
362 			mutex_exit(&db->db_mtx);
363 		}
364 	}
365 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 	if (hash_out != NULL)
367 		*hash_out = hv;
368 	return (NULL);
369 }
370 
371 static dmu_buf_impl_t *
372 dbuf_find_bonus(objset_t *os, uint64_t object)
373 {
374 	dnode_t *dn;
375 	dmu_buf_impl_t *db = NULL;
376 
377 	if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 		if (dn->dn_bonus != NULL) {
380 			db = dn->dn_bonus;
381 			mutex_enter(&db->db_mtx);
382 		}
383 		rw_exit(&dn->dn_struct_rwlock);
384 		dnode_rele(dn, FTAG);
385 	}
386 	return (db);
387 }
388 
389 /*
390  * Insert an entry into the hash table.  If there is already an element
391  * equal to elem in the hash table, then the already existing element
392  * will be returned and the new element will not be inserted.
393  * Otherwise returns NULL.
394  */
395 static dmu_buf_impl_t *
396 dbuf_hash_insert(dmu_buf_impl_t *db)
397 {
398 	dbuf_hash_table_t *h = &dbuf_hash_table;
399 	objset_t *os = db->db_objset;
400 	uint64_t obj = db->db.db_object;
401 	int level = db->db_level;
402 	uint64_t blkid, idx;
403 	dmu_buf_impl_t *dbf;
404 	uint32_t i;
405 
406 	blkid = db->db_blkid;
407 	ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 	idx = db->db_hash & h->hash_table_mask;
409 
410 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 	for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 	    dbf = dbf->db_hash_next, i++) {
413 		if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 			mutex_enter(&dbf->db_mtx);
415 			if (dbf->db_state != DB_EVICTING) {
416 				mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 				return (dbf);
418 			}
419 			mutex_exit(&dbf->db_mtx);
420 		}
421 	}
422 
423 	if (i > 0) {
424 		DBUF_STAT_BUMP(hash_collisions);
425 		if (i == 1)
426 			DBUF_STAT_BUMP(hash_chains);
427 
428 		DBUF_STAT_MAX(hash_chain_max, i);
429 	}
430 
431 	mutex_enter(&db->db_mtx);
432 	db->db_hash_next = h->hash_table[idx];
433 	h->hash_table[idx] = db;
434 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 	uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
436 	DBUF_STAT_MAX(hash_elements_max, he);
437 
438 	return (NULL);
439 }
440 
441 /*
442  * This returns whether this dbuf should be stored in the metadata cache, which
443  * is based on whether it's from one of the dnode types that store data related
444  * to traversing dataset hierarchies.
445  */
446 static boolean_t
447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
448 {
449 	DB_DNODE_ENTER(db);
450 	dmu_object_type_t type = DB_DNODE(db)->dn_type;
451 	DB_DNODE_EXIT(db);
452 
453 	/* Check if this dbuf is one of the types we care about */
454 	if (DMU_OT_IS_METADATA_CACHED(type)) {
455 		/* If we hit this, then we set something up wrong in dmu_ot */
456 		ASSERT(DMU_OT_IS_METADATA(type));
457 
458 		/*
459 		 * Sanity check for small-memory systems: don't allocate too
460 		 * much memory for this purpose.
461 		 */
462 		if (zfs_refcount_count(
463 		    &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
464 		    dbuf_metadata_cache_target_bytes()) {
465 			DBUF_STAT_BUMP(metadata_cache_overflow);
466 			return (B_FALSE);
467 		}
468 
469 		return (B_TRUE);
470 	}
471 
472 	return (B_FALSE);
473 }
474 
475 /*
476  * Remove an entry from the hash table.  It must be in the EVICTING state.
477  */
478 static void
479 dbuf_hash_remove(dmu_buf_impl_t *db)
480 {
481 	dbuf_hash_table_t *h = &dbuf_hash_table;
482 	uint64_t idx;
483 	dmu_buf_impl_t *dbf, **dbp;
484 
485 	ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
486 	    db->db_blkid), ==, db->db_hash);
487 	idx = db->db_hash & h->hash_table_mask;
488 
489 	/*
490 	 * We mustn't hold db_mtx to maintain lock ordering:
491 	 * DBUF_HASH_MUTEX > db_mtx.
492 	 */
493 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
494 	ASSERT(db->db_state == DB_EVICTING);
495 	ASSERT(!MUTEX_HELD(&db->db_mtx));
496 
497 	mutex_enter(DBUF_HASH_MUTEX(h, idx));
498 	dbp = &h->hash_table[idx];
499 	while ((dbf = *dbp) != db) {
500 		dbp = &dbf->db_hash_next;
501 		ASSERT(dbf != NULL);
502 	}
503 	*dbp = db->db_hash_next;
504 	db->db_hash_next = NULL;
505 	if (h->hash_table[idx] &&
506 	    h->hash_table[idx]->db_hash_next == NULL)
507 		DBUF_STAT_BUMPDOWN(hash_chains);
508 	mutex_exit(DBUF_HASH_MUTEX(h, idx));
509 	atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
510 }
511 
512 typedef enum {
513 	DBVU_EVICTING,
514 	DBVU_NOT_EVICTING
515 } dbvu_verify_type_t;
516 
517 static void
518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
519 {
520 #ifdef ZFS_DEBUG
521 	int64_t holds;
522 
523 	if (db->db_user == NULL)
524 		return;
525 
526 	/* Only data blocks support the attachment of user data. */
527 	ASSERT(db->db_level == 0);
528 
529 	/* Clients must resolve a dbuf before attaching user data. */
530 	ASSERT(db->db.db_data != NULL);
531 	ASSERT3U(db->db_state, ==, DB_CACHED);
532 
533 	holds = zfs_refcount_count(&db->db_holds);
534 	if (verify_type == DBVU_EVICTING) {
535 		/*
536 		 * Immediate eviction occurs when holds == dirtycnt.
537 		 * For normal eviction buffers, holds is zero on
538 		 * eviction, except when dbuf_fix_old_data() calls
539 		 * dbuf_clear_data().  However, the hold count can grow
540 		 * during eviction even though db_mtx is held (see
541 		 * dmu_bonus_hold() for an example), so we can only
542 		 * test the generic invariant that holds >= dirtycnt.
543 		 */
544 		ASSERT3U(holds, >=, db->db_dirtycnt);
545 	} else {
546 		if (db->db_user_immediate_evict == TRUE)
547 			ASSERT3U(holds, >=, db->db_dirtycnt);
548 		else
549 			ASSERT3U(holds, >, 0);
550 	}
551 #endif
552 }
553 
554 static void
555 dbuf_evict_user(dmu_buf_impl_t *db)
556 {
557 	dmu_buf_user_t *dbu = db->db_user;
558 
559 	ASSERT(MUTEX_HELD(&db->db_mtx));
560 
561 	if (dbu == NULL)
562 		return;
563 
564 	dbuf_verify_user(db, DBVU_EVICTING);
565 	db->db_user = NULL;
566 
567 #ifdef ZFS_DEBUG
568 	if (dbu->dbu_clear_on_evict_dbufp != NULL)
569 		*dbu->dbu_clear_on_evict_dbufp = NULL;
570 #endif
571 
572 	if (db->db_caching_status != DB_NO_CACHE) {
573 		/*
574 		 * This is a cached dbuf, so the size of the user data is
575 		 * included in its cached amount. We adjust it here because the
576 		 * user data has already been detached from the dbuf, and the
577 		 * sync functions are not supposed to touch it (the dbuf might
578 		 * not exist anymore by the time the sync functions run.
579 		 */
580 		uint64_t size = dbu->dbu_size;
581 		(void) zfs_refcount_remove_many(
582 		    &dbuf_caches[db->db_caching_status].size, size, db);
583 		if (db->db_caching_status == DB_DBUF_CACHE)
584 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
585 	}
586 
587 	/*
588 	 * There are two eviction callbacks - one that we call synchronously
589 	 * and one that we invoke via a taskq.  The async one is useful for
590 	 * avoiding lock order reversals and limiting stack depth.
591 	 *
592 	 * Note that if we have a sync callback but no async callback,
593 	 * it's likely that the sync callback will free the structure
594 	 * containing the dbu.  In that case we need to take care to not
595 	 * dereference dbu after calling the sync evict func.
596 	 */
597 	boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
598 
599 	if (dbu->dbu_evict_func_sync != NULL)
600 		dbu->dbu_evict_func_sync(dbu);
601 
602 	if (has_async) {
603 		taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
604 		    dbu, 0, &dbu->dbu_tqent);
605 	}
606 }
607 
608 boolean_t
609 dbuf_is_metadata(dmu_buf_impl_t *db)
610 {
611 	/*
612 	 * Consider indirect blocks and spill blocks to be meta data.
613 	 */
614 	if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
615 		return (B_TRUE);
616 	} else {
617 		boolean_t is_metadata;
618 
619 		DB_DNODE_ENTER(db);
620 		is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
621 		DB_DNODE_EXIT(db);
622 
623 		return (is_metadata);
624 	}
625 }
626 
627 /*
628  * We want to exclude buffers that are on a special allocation class from
629  * L2ARC.
630  */
631 boolean_t
632 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
633 {
634 	if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
635 	    (db->db_objset->os_secondary_cache ==
636 	    ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
637 		if (l2arc_exclude_special == 0)
638 			return (B_TRUE);
639 
640 		blkptr_t *bp = db->db_blkptr;
641 		if (bp == NULL || BP_IS_HOLE(bp))
642 			return (B_FALSE);
643 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
644 		vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
645 		vdev_t *vd = NULL;
646 
647 		if (vdev < rvd->vdev_children)
648 			vd = rvd->vdev_child[vdev];
649 
650 		if (vd == NULL)
651 			return (B_TRUE);
652 
653 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
654 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
655 			return (B_TRUE);
656 	}
657 	return (B_FALSE);
658 }
659 
660 static inline boolean_t
661 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
662 {
663 	if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
664 	    (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
665 	    (level > 0 ||
666 	    DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
667 		if (l2arc_exclude_special == 0)
668 			return (B_TRUE);
669 
670 		if (bp == NULL || BP_IS_HOLE(bp))
671 			return (B_FALSE);
672 		uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
673 		vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
674 		vdev_t *vd = NULL;
675 
676 		if (vdev < rvd->vdev_children)
677 			vd = rvd->vdev_child[vdev];
678 
679 		if (vd == NULL)
680 			return (B_TRUE);
681 
682 		if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
683 		    vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
684 			return (B_TRUE);
685 	}
686 	return (B_FALSE);
687 }
688 
689 
690 /*
691  * This function *must* return indices evenly distributed between all
692  * sublists of the multilist. This is needed due to how the dbuf eviction
693  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
694  * distributed between all sublists and uses this assumption when
695  * deciding which sublist to evict from and how much to evict from it.
696  */
697 static unsigned int
698 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
699 {
700 	dmu_buf_impl_t *db = obj;
701 
702 	/*
703 	 * The assumption here, is the hash value for a given
704 	 * dmu_buf_impl_t will remain constant throughout it's lifetime
705 	 * (i.e. it's objset, object, level and blkid fields don't change).
706 	 * Thus, we don't need to store the dbuf's sublist index
707 	 * on insertion, as this index can be recalculated on removal.
708 	 *
709 	 * Also, the low order bits of the hash value are thought to be
710 	 * distributed evenly. Otherwise, in the case that the multilist
711 	 * has a power of two number of sublists, each sublists' usage
712 	 * would not be evenly distributed. In this context full 64bit
713 	 * division would be a waste of time, so limit it to 32 bits.
714 	 */
715 	return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
716 	    db->db_level, db->db_blkid) %
717 	    multilist_get_num_sublists(ml));
718 }
719 
720 /*
721  * The target size of the dbuf cache can grow with the ARC target,
722  * unless limited by the tunable dbuf_cache_max_bytes.
723  */
724 static inline unsigned long
725 dbuf_cache_target_bytes(void)
726 {
727 	return (MIN(dbuf_cache_max_bytes,
728 	    arc_target_bytes() >> dbuf_cache_shift));
729 }
730 
731 /*
732  * The target size of the dbuf metadata cache can grow with the ARC target,
733  * unless limited by the tunable dbuf_metadata_cache_max_bytes.
734  */
735 static inline unsigned long
736 dbuf_metadata_cache_target_bytes(void)
737 {
738 	return (MIN(dbuf_metadata_cache_max_bytes,
739 	    arc_target_bytes() >> dbuf_metadata_cache_shift));
740 }
741 
742 static inline uint64_t
743 dbuf_cache_hiwater_bytes(void)
744 {
745 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
746 	return (dbuf_cache_target +
747 	    (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
748 }
749 
750 static inline uint64_t
751 dbuf_cache_lowater_bytes(void)
752 {
753 	uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
754 	return (dbuf_cache_target -
755 	    (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
756 }
757 
758 static inline boolean_t
759 dbuf_cache_above_lowater(void)
760 {
761 	return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 	    dbuf_cache_lowater_bytes());
763 }
764 
765 /*
766  * Evict the oldest eligible dbuf from the dbuf cache.
767  */
768 static void
769 dbuf_evict_one(void)
770 {
771 	int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
772 	multilist_sublist_t *mls = multilist_sublist_lock(
773 	    &dbuf_caches[DB_DBUF_CACHE].cache, idx);
774 
775 	ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
776 
777 	dmu_buf_impl_t *db = multilist_sublist_tail(mls);
778 	while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
779 		db = multilist_sublist_prev(mls, db);
780 	}
781 
782 	DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
783 	    multilist_sublist_t *, mls);
784 
785 	if (db != NULL) {
786 		multilist_sublist_remove(mls, db);
787 		multilist_sublist_unlock(mls);
788 		uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
789 		(void) zfs_refcount_remove_many(
790 		    &dbuf_caches[DB_DBUF_CACHE].size, size, db);
791 		DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
792 		DBUF_STAT_BUMPDOWN(cache_count);
793 		DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
794 		ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
795 		db->db_caching_status = DB_NO_CACHE;
796 		dbuf_destroy(db);
797 		DBUF_STAT_BUMP(cache_total_evicts);
798 	} else {
799 		multilist_sublist_unlock(mls);
800 	}
801 }
802 
803 /*
804  * The dbuf evict thread is responsible for aging out dbufs from the
805  * cache. Once the cache has reached it's maximum size, dbufs are removed
806  * and destroyed. The eviction thread will continue running until the size
807  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
808  * out of the cache it is destroyed and becomes eligible for arc eviction.
809  */
810 static __attribute__((noreturn)) void
811 dbuf_evict_thread(void *unused)
812 {
813 	(void) unused;
814 	callb_cpr_t cpr;
815 
816 	CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
817 
818 	mutex_enter(&dbuf_evict_lock);
819 	while (!dbuf_evict_thread_exit) {
820 		while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
821 			CALLB_CPR_SAFE_BEGIN(&cpr);
822 			(void) cv_timedwait_idle_hires(&dbuf_evict_cv,
823 			    &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
824 			CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
825 		}
826 		mutex_exit(&dbuf_evict_lock);
827 
828 		/*
829 		 * Keep evicting as long as we're above the low water mark
830 		 * for the cache. We do this without holding the locks to
831 		 * minimize lock contention.
832 		 */
833 		while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
834 			dbuf_evict_one();
835 		}
836 
837 		mutex_enter(&dbuf_evict_lock);
838 	}
839 
840 	dbuf_evict_thread_exit = B_FALSE;
841 	cv_broadcast(&dbuf_evict_cv);
842 	CALLB_CPR_EXIT(&cpr);	/* drops dbuf_evict_lock */
843 	thread_exit();
844 }
845 
846 /*
847  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
848  * If the dbuf cache is at its high water mark, then evict a dbuf from the
849  * dbuf cache using the caller's context.
850  */
851 static void
852 dbuf_evict_notify(uint64_t size)
853 {
854 	/*
855 	 * We check if we should evict without holding the dbuf_evict_lock,
856 	 * because it's OK to occasionally make the wrong decision here,
857 	 * and grabbing the lock results in massive lock contention.
858 	 */
859 	if (size > dbuf_cache_target_bytes()) {
860 		if (size > dbuf_cache_hiwater_bytes())
861 			dbuf_evict_one();
862 		cv_signal(&dbuf_evict_cv);
863 	}
864 }
865 
866 static int
867 dbuf_kstat_update(kstat_t *ksp, int rw)
868 {
869 	dbuf_stats_t *ds = ksp->ks_data;
870 	dbuf_hash_table_t *h = &dbuf_hash_table;
871 
872 	if (rw == KSTAT_WRITE)
873 		return (SET_ERROR(EACCES));
874 
875 	ds->cache_count.value.ui64 =
876 	    wmsum_value(&dbuf_sums.cache_count);
877 	ds->cache_size_bytes.value.ui64 =
878 	    zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
879 	ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
880 	ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
881 	ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
882 	ds->cache_total_evicts.value.ui64 =
883 	    wmsum_value(&dbuf_sums.cache_total_evicts);
884 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
885 		ds->cache_levels[i].value.ui64 =
886 		    wmsum_value(&dbuf_sums.cache_levels[i]);
887 		ds->cache_levels_bytes[i].value.ui64 =
888 		    wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
889 	}
890 	ds->hash_hits.value.ui64 =
891 	    wmsum_value(&dbuf_sums.hash_hits);
892 	ds->hash_misses.value.ui64 =
893 	    wmsum_value(&dbuf_sums.hash_misses);
894 	ds->hash_collisions.value.ui64 =
895 	    wmsum_value(&dbuf_sums.hash_collisions);
896 	ds->hash_chains.value.ui64 =
897 	    wmsum_value(&dbuf_sums.hash_chains);
898 	ds->hash_insert_race.value.ui64 =
899 	    wmsum_value(&dbuf_sums.hash_insert_race);
900 	ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
901 	ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
902 	ds->metadata_cache_count.value.ui64 =
903 	    wmsum_value(&dbuf_sums.metadata_cache_count);
904 	ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
905 	    &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
906 	ds->metadata_cache_overflow.value.ui64 =
907 	    wmsum_value(&dbuf_sums.metadata_cache_overflow);
908 	return (0);
909 }
910 
911 void
912 dbuf_init(void)
913 {
914 	uint64_t hmsize, hsize = 1ULL << 16;
915 	dbuf_hash_table_t *h = &dbuf_hash_table;
916 
917 	/*
918 	 * The hash table is big enough to fill one eighth of physical memory
919 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
920 	 * By default, the table will take up
921 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
922 	 */
923 	while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
924 		hsize <<= 1;
925 
926 	h->hash_table = NULL;
927 	while (h->hash_table == NULL) {
928 		h->hash_table_mask = hsize - 1;
929 
930 		h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
931 		if (h->hash_table == NULL)
932 			hsize >>= 1;
933 
934 		ASSERT3U(hsize, >=, 1ULL << 10);
935 	}
936 
937 	/*
938 	 * The hash table buckets are protected by an array of mutexes where
939 	 * each mutex is reponsible for protecting 128 buckets.  A minimum
940 	 * array size of 8192 is targeted to avoid contention.
941 	 */
942 	if (dbuf_mutex_cache_shift == 0)
943 		hmsize = MAX(hsize >> 7, 1ULL << 13);
944 	else
945 		hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
946 
947 	h->hash_mutexes = NULL;
948 	while (h->hash_mutexes == NULL) {
949 		h->hash_mutex_mask = hmsize - 1;
950 
951 		h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
952 		    KM_SLEEP);
953 		if (h->hash_mutexes == NULL)
954 			hmsize >>= 1;
955 	}
956 
957 	dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
958 	    sizeof (dmu_buf_impl_t),
959 	    0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
960 
961 	for (int i = 0; i < hmsize; i++)
962 		mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
963 
964 	dbuf_stats_init(h);
965 
966 	/*
967 	 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
968 	 * configuration is not required.
969 	 */
970 	dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
971 
972 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
973 		multilist_create(&dbuf_caches[dcs].cache,
974 		    sizeof (dmu_buf_impl_t),
975 		    offsetof(dmu_buf_impl_t, db_cache_link),
976 		    dbuf_cache_multilist_index_func);
977 		zfs_refcount_create(&dbuf_caches[dcs].size);
978 	}
979 
980 	dbuf_evict_thread_exit = B_FALSE;
981 	mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
982 	cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
983 	dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
984 	    NULL, 0, &p0, TS_RUN, minclsyspri);
985 
986 	wmsum_init(&dbuf_sums.cache_count, 0);
987 	wmsum_init(&dbuf_sums.cache_total_evicts, 0);
988 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
989 		wmsum_init(&dbuf_sums.cache_levels[i], 0);
990 		wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
991 	}
992 	wmsum_init(&dbuf_sums.hash_hits, 0);
993 	wmsum_init(&dbuf_sums.hash_misses, 0);
994 	wmsum_init(&dbuf_sums.hash_collisions, 0);
995 	wmsum_init(&dbuf_sums.hash_chains, 0);
996 	wmsum_init(&dbuf_sums.hash_insert_race, 0);
997 	wmsum_init(&dbuf_sums.metadata_cache_count, 0);
998 	wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
999 
1000 	dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1001 	    KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1002 	    KSTAT_FLAG_VIRTUAL);
1003 	if (dbuf_ksp != NULL) {
1004 		for (int i = 0; i < DN_MAX_LEVELS; i++) {
1005 			snprintf(dbuf_stats.cache_levels[i].name,
1006 			    KSTAT_STRLEN, "cache_level_%d", i);
1007 			dbuf_stats.cache_levels[i].data_type =
1008 			    KSTAT_DATA_UINT64;
1009 			snprintf(dbuf_stats.cache_levels_bytes[i].name,
1010 			    KSTAT_STRLEN, "cache_level_%d_bytes", i);
1011 			dbuf_stats.cache_levels_bytes[i].data_type =
1012 			    KSTAT_DATA_UINT64;
1013 		}
1014 		dbuf_ksp->ks_data = &dbuf_stats;
1015 		dbuf_ksp->ks_update = dbuf_kstat_update;
1016 		kstat_install(dbuf_ksp);
1017 	}
1018 }
1019 
1020 void
1021 dbuf_fini(void)
1022 {
1023 	dbuf_hash_table_t *h = &dbuf_hash_table;
1024 
1025 	dbuf_stats_destroy();
1026 
1027 	for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1028 		mutex_destroy(&h->hash_mutexes[i]);
1029 
1030 	vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1031 	vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1032 	    sizeof (kmutex_t));
1033 
1034 	kmem_cache_destroy(dbuf_kmem_cache);
1035 	taskq_destroy(dbu_evict_taskq);
1036 
1037 	mutex_enter(&dbuf_evict_lock);
1038 	dbuf_evict_thread_exit = B_TRUE;
1039 	while (dbuf_evict_thread_exit) {
1040 		cv_signal(&dbuf_evict_cv);
1041 		cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1042 	}
1043 	mutex_exit(&dbuf_evict_lock);
1044 
1045 	mutex_destroy(&dbuf_evict_lock);
1046 	cv_destroy(&dbuf_evict_cv);
1047 
1048 	for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1049 		zfs_refcount_destroy(&dbuf_caches[dcs].size);
1050 		multilist_destroy(&dbuf_caches[dcs].cache);
1051 	}
1052 
1053 	if (dbuf_ksp != NULL) {
1054 		kstat_delete(dbuf_ksp);
1055 		dbuf_ksp = NULL;
1056 	}
1057 
1058 	wmsum_fini(&dbuf_sums.cache_count);
1059 	wmsum_fini(&dbuf_sums.cache_total_evicts);
1060 	for (int i = 0; i < DN_MAX_LEVELS; i++) {
1061 		wmsum_fini(&dbuf_sums.cache_levels[i]);
1062 		wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1063 	}
1064 	wmsum_fini(&dbuf_sums.hash_hits);
1065 	wmsum_fini(&dbuf_sums.hash_misses);
1066 	wmsum_fini(&dbuf_sums.hash_collisions);
1067 	wmsum_fini(&dbuf_sums.hash_chains);
1068 	wmsum_fini(&dbuf_sums.hash_insert_race);
1069 	wmsum_fini(&dbuf_sums.metadata_cache_count);
1070 	wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1071 }
1072 
1073 /*
1074  * Other stuff.
1075  */
1076 
1077 #ifdef ZFS_DEBUG
1078 static void
1079 dbuf_verify(dmu_buf_impl_t *db)
1080 {
1081 	dnode_t *dn;
1082 	dbuf_dirty_record_t *dr;
1083 	uint32_t txg_prev;
1084 
1085 	ASSERT(MUTEX_HELD(&db->db_mtx));
1086 
1087 	if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1088 		return;
1089 
1090 	ASSERT(db->db_objset != NULL);
1091 	DB_DNODE_ENTER(db);
1092 	dn = DB_DNODE(db);
1093 	if (dn == NULL) {
1094 		ASSERT(db->db_parent == NULL);
1095 		ASSERT(db->db_blkptr == NULL);
1096 	} else {
1097 		ASSERT3U(db->db.db_object, ==, dn->dn_object);
1098 		ASSERT3P(db->db_objset, ==, dn->dn_objset);
1099 		ASSERT3U(db->db_level, <, dn->dn_nlevels);
1100 		ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1101 		    db->db_blkid == DMU_SPILL_BLKID ||
1102 		    !avl_is_empty(&dn->dn_dbufs));
1103 	}
1104 	if (db->db_blkid == DMU_BONUS_BLKID) {
1105 		ASSERT(dn != NULL);
1106 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1107 		ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1108 	} else if (db->db_blkid == DMU_SPILL_BLKID) {
1109 		ASSERT(dn != NULL);
1110 		ASSERT0(db->db.db_offset);
1111 	} else {
1112 		ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1113 	}
1114 
1115 	if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1116 		ASSERT(dr->dr_dbuf == db);
1117 		txg_prev = dr->dr_txg;
1118 		for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1119 		    dr = list_next(&db->db_dirty_records, dr)) {
1120 			ASSERT(dr->dr_dbuf == db);
1121 			ASSERT(txg_prev > dr->dr_txg);
1122 			txg_prev = dr->dr_txg;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * We can't assert that db_size matches dn_datablksz because it
1128 	 * can be momentarily different when another thread is doing
1129 	 * dnode_set_blksz().
1130 	 */
1131 	if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1132 		dr = db->db_data_pending;
1133 		/*
1134 		 * It should only be modified in syncing context, so
1135 		 * make sure we only have one copy of the data.
1136 		 */
1137 		ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1138 	}
1139 
1140 	/* verify db->db_blkptr */
1141 	if (db->db_blkptr) {
1142 		if (db->db_parent == dn->dn_dbuf) {
1143 			/* db is pointed to by the dnode */
1144 			/* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1145 			if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1146 				ASSERT(db->db_parent == NULL);
1147 			else
1148 				ASSERT(db->db_parent != NULL);
1149 			if (db->db_blkid != DMU_SPILL_BLKID)
1150 				ASSERT3P(db->db_blkptr, ==,
1151 				    &dn->dn_phys->dn_blkptr[db->db_blkid]);
1152 		} else {
1153 			/* db is pointed to by an indirect block */
1154 			int epb __maybe_unused = db->db_parent->db.db_size >>
1155 			    SPA_BLKPTRSHIFT;
1156 			ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1157 			ASSERT3U(db->db_parent->db.db_object, ==,
1158 			    db->db.db_object);
1159 			/*
1160 			 * dnode_grow_indblksz() can make this fail if we don't
1161 			 * have the parent's rwlock.  XXX indblksz no longer
1162 			 * grows.  safe to do this now?
1163 			 */
1164 			if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1165 				ASSERT3P(db->db_blkptr, ==,
1166 				    ((blkptr_t *)db->db_parent->db.db_data +
1167 				    db->db_blkid % epb));
1168 			}
1169 		}
1170 	}
1171 	if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1172 	    (db->db_buf == NULL || db->db_buf->b_data) &&
1173 	    db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1174 	    db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1175 		/*
1176 		 * If the blkptr isn't set but they have nonzero data,
1177 		 * it had better be dirty, otherwise we'll lose that
1178 		 * data when we evict this buffer.
1179 		 *
1180 		 * There is an exception to this rule for indirect blocks; in
1181 		 * this case, if the indirect block is a hole, we fill in a few
1182 		 * fields on each of the child blocks (importantly, birth time)
1183 		 * to prevent hole birth times from being lost when you
1184 		 * partially fill in a hole.
1185 		 */
1186 		if (db->db_dirtycnt == 0) {
1187 			if (db->db_level == 0) {
1188 				uint64_t *buf = db->db.db_data;
1189 				int i;
1190 
1191 				for (i = 0; i < db->db.db_size >> 3; i++) {
1192 					ASSERT(buf[i] == 0);
1193 				}
1194 			} else {
1195 				blkptr_t *bps = db->db.db_data;
1196 				ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1197 				    db->db.db_size);
1198 				/*
1199 				 * We want to verify that all the blkptrs in the
1200 				 * indirect block are holes, but we may have
1201 				 * automatically set up a few fields for them.
1202 				 * We iterate through each blkptr and verify
1203 				 * they only have those fields set.
1204 				 */
1205 				for (int i = 0;
1206 				    i < db->db.db_size / sizeof (blkptr_t);
1207 				    i++) {
1208 					blkptr_t *bp = &bps[i];
1209 					ASSERT(ZIO_CHECKSUM_IS_ZERO(
1210 					    &bp->blk_cksum));
1211 					ASSERT(
1212 					    DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1213 					    DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1214 					    DVA_IS_EMPTY(&bp->blk_dva[2]));
1215 					ASSERT0(bp->blk_fill);
1216 					ASSERT0(bp->blk_pad[0]);
1217 					ASSERT0(bp->blk_pad[1]);
1218 					ASSERT(!BP_IS_EMBEDDED(bp));
1219 					ASSERT(BP_IS_HOLE(bp));
1220 					ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
1221 				}
1222 			}
1223 		}
1224 	}
1225 	DB_DNODE_EXIT(db);
1226 }
1227 #endif
1228 
1229 static void
1230 dbuf_clear_data(dmu_buf_impl_t *db)
1231 {
1232 	ASSERT(MUTEX_HELD(&db->db_mtx));
1233 	dbuf_evict_user(db);
1234 	ASSERT3P(db->db_buf, ==, NULL);
1235 	db->db.db_data = NULL;
1236 	if (db->db_state != DB_NOFILL) {
1237 		db->db_state = DB_UNCACHED;
1238 		DTRACE_SET_STATE(db, "clear data");
1239 	}
1240 }
1241 
1242 static void
1243 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1244 {
1245 	ASSERT(MUTEX_HELD(&db->db_mtx));
1246 	ASSERT(buf != NULL);
1247 
1248 	db->db_buf = buf;
1249 	ASSERT(buf->b_data != NULL);
1250 	db->db.db_data = buf->b_data;
1251 }
1252 
1253 static arc_buf_t *
1254 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1255 {
1256 	spa_t *spa = db->db_objset->os_spa;
1257 
1258 	return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1259 }
1260 
1261 /*
1262  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1263  */
1264 arc_buf_t *
1265 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1266 {
1267 	arc_buf_t *abuf;
1268 
1269 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1270 	mutex_enter(&db->db_mtx);
1271 	if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1272 		int blksz = db->db.db_size;
1273 		spa_t *spa = db->db_objset->os_spa;
1274 
1275 		mutex_exit(&db->db_mtx);
1276 		abuf = arc_loan_buf(spa, B_FALSE, blksz);
1277 		memcpy(abuf->b_data, db->db.db_data, blksz);
1278 	} else {
1279 		abuf = db->db_buf;
1280 		arc_loan_inuse_buf(abuf, db);
1281 		db->db_buf = NULL;
1282 		dbuf_clear_data(db);
1283 		mutex_exit(&db->db_mtx);
1284 	}
1285 	return (abuf);
1286 }
1287 
1288 /*
1289  * Calculate which level n block references the data at the level 0 offset
1290  * provided.
1291  */
1292 uint64_t
1293 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1294 {
1295 	if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1296 		/*
1297 		 * The level n blkid is equal to the level 0 blkid divided by
1298 		 * the number of level 0s in a level n block.
1299 		 *
1300 		 * The level 0 blkid is offset >> datablkshift =
1301 		 * offset / 2^datablkshift.
1302 		 *
1303 		 * The number of level 0s in a level n is the number of block
1304 		 * pointers in an indirect block, raised to the power of level.
1305 		 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1306 		 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1307 		 *
1308 		 * Thus, the level n blkid is: offset /
1309 		 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1310 		 * = offset / 2^(datablkshift + level *
1311 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1312 		 * = offset >> (datablkshift + level *
1313 		 *   (indblkshift - SPA_BLKPTRSHIFT))
1314 		 */
1315 
1316 		const unsigned exp = dn->dn_datablkshift +
1317 		    level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1318 
1319 		if (exp >= 8 * sizeof (offset)) {
1320 			/* This only happens on the highest indirection level */
1321 			ASSERT3U(level, ==, dn->dn_nlevels - 1);
1322 			return (0);
1323 		}
1324 
1325 		ASSERT3U(exp, <, 8 * sizeof (offset));
1326 
1327 		return (offset >> exp);
1328 	} else {
1329 		ASSERT3U(offset, <, dn->dn_datablksz);
1330 		return (0);
1331 	}
1332 }
1333 
1334 /*
1335  * This function is used to lock the parent of the provided dbuf. This should be
1336  * used when modifying or reading db_blkptr.
1337  */
1338 db_lock_type_t
1339 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1340 {
1341 	enum db_lock_type ret = DLT_NONE;
1342 	if (db->db_parent != NULL) {
1343 		rw_enter(&db->db_parent->db_rwlock, rw);
1344 		ret = DLT_PARENT;
1345 	} else if (dmu_objset_ds(db->db_objset) != NULL) {
1346 		rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1347 		    tag);
1348 		ret = DLT_OBJSET;
1349 	}
1350 	/*
1351 	 * We only return a DLT_NONE lock when it's the top-most indirect block
1352 	 * of the meta-dnode of the MOS.
1353 	 */
1354 	return (ret);
1355 }
1356 
1357 /*
1358  * We need to pass the lock type in because it's possible that the block will
1359  * move from being the topmost indirect block in a dnode (and thus, have no
1360  * parent) to not the top-most via an indirection increase. This would cause a
1361  * panic if we didn't pass the lock type in.
1362  */
1363 void
1364 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1365 {
1366 	if (type == DLT_PARENT)
1367 		rw_exit(&db->db_parent->db_rwlock);
1368 	else if (type == DLT_OBJSET)
1369 		rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1370 }
1371 
1372 static void
1373 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1374     arc_buf_t *buf, void *vdb)
1375 {
1376 	(void) zb, (void) bp;
1377 	dmu_buf_impl_t *db = vdb;
1378 
1379 	mutex_enter(&db->db_mtx);
1380 	ASSERT3U(db->db_state, ==, DB_READ);
1381 	/*
1382 	 * All reads are synchronous, so we must have a hold on the dbuf
1383 	 */
1384 	ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1385 	ASSERT(db->db_buf == NULL);
1386 	ASSERT(db->db.db_data == NULL);
1387 	if (buf == NULL) {
1388 		/* i/o error */
1389 		ASSERT(zio == NULL || zio->io_error != 0);
1390 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1391 		ASSERT3P(db->db_buf, ==, NULL);
1392 		db->db_state = DB_UNCACHED;
1393 		DTRACE_SET_STATE(db, "i/o error");
1394 	} else if (db->db_level == 0 && db->db_freed_in_flight) {
1395 		/* freed in flight */
1396 		ASSERT(zio == NULL || zio->io_error == 0);
1397 		arc_release(buf, db);
1398 		memset(buf->b_data, 0, db->db.db_size);
1399 		arc_buf_freeze(buf);
1400 		db->db_freed_in_flight = FALSE;
1401 		dbuf_set_data(db, buf);
1402 		db->db_state = DB_CACHED;
1403 		DTRACE_SET_STATE(db, "freed in flight");
1404 	} else {
1405 		/* success */
1406 		ASSERT(zio == NULL || zio->io_error == 0);
1407 		dbuf_set_data(db, buf);
1408 		db->db_state = DB_CACHED;
1409 		DTRACE_SET_STATE(db, "successful read");
1410 	}
1411 	cv_broadcast(&db->db_changed);
1412 	dbuf_rele_and_unlock(db, NULL, B_FALSE);
1413 }
1414 
1415 /*
1416  * Shortcut for performing reads on bonus dbufs.  Returns
1417  * an error if we fail to verify the dnode associated with
1418  * a decrypted block. Otherwise success.
1419  */
1420 static int
1421 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1422 {
1423 	int bonuslen, max_bonuslen, err;
1424 
1425 	err = dbuf_read_verify_dnode_crypt(db, flags);
1426 	if (err)
1427 		return (err);
1428 
1429 	bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1430 	max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1431 	ASSERT(MUTEX_HELD(&db->db_mtx));
1432 	ASSERT(DB_DNODE_HELD(db));
1433 	ASSERT3U(bonuslen, <=, db->db.db_size);
1434 	db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1435 	arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1436 	if (bonuslen < max_bonuslen)
1437 		memset(db->db.db_data, 0, max_bonuslen);
1438 	if (bonuslen)
1439 		memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1440 	db->db_state = DB_CACHED;
1441 	DTRACE_SET_STATE(db, "bonus buffer filled");
1442 	return (0);
1443 }
1444 
1445 static void
1446 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1447 {
1448 	blkptr_t *bps = db->db.db_data;
1449 	uint32_t indbs = 1ULL << dn->dn_indblkshift;
1450 	int n_bps = indbs >> SPA_BLKPTRSHIFT;
1451 
1452 	for (int i = 0; i < n_bps; i++) {
1453 		blkptr_t *bp = &bps[i];
1454 
1455 		ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1456 		BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1457 		    dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1458 		BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1459 		BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1460 		BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1461 	}
1462 }
1463 
1464 /*
1465  * Handle reads on dbufs that are holes, if necessary.  This function
1466  * requires that the dbuf's mutex is held. Returns success (0) if action
1467  * was taken, ENOENT if no action was taken.
1468  */
1469 static int
1470 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1471 {
1472 	ASSERT(MUTEX_HELD(&db->db_mtx));
1473 
1474 	int is_hole = bp == NULL || BP_IS_HOLE(bp);
1475 	/*
1476 	 * For level 0 blocks only, if the above check fails:
1477 	 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1478 	 * processes the delete record and clears the bp while we are waiting
1479 	 * for the dn_mtx (resulting in a "no" from block_freed).
1480 	 */
1481 	if (!is_hole && db->db_level == 0)
1482 		is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1483 
1484 	if (is_hole) {
1485 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1486 		memset(db->db.db_data, 0, db->db.db_size);
1487 
1488 		if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1489 		    BP_GET_LOGICAL_BIRTH(bp) != 0) {
1490 			dbuf_handle_indirect_hole(db, dn, bp);
1491 		}
1492 		db->db_state = DB_CACHED;
1493 		DTRACE_SET_STATE(db, "hole read satisfied");
1494 		return (0);
1495 	}
1496 	return (ENOENT);
1497 }
1498 
1499 /*
1500  * This function ensures that, when doing a decrypting read of a block,
1501  * we make sure we have decrypted the dnode associated with it. We must do
1502  * this so that we ensure we are fully authenticating the checksum-of-MACs
1503  * tree from the root of the objset down to this block. Indirect blocks are
1504  * always verified against their secure checksum-of-MACs assuming that the
1505  * dnode containing them is correct. Now that we are doing a decrypting read,
1506  * we can be sure that the key is loaded and verify that assumption. This is
1507  * especially important considering that we always read encrypted dnode
1508  * blocks as raw data (without verifying their MACs) to start, and
1509  * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1510  */
1511 static int
1512 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1513 {
1514 	int err = 0;
1515 	objset_t *os = db->db_objset;
1516 	arc_buf_t *dnode_abuf;
1517 	dnode_t *dn;
1518 	zbookmark_phys_t zb;
1519 
1520 	ASSERT(MUTEX_HELD(&db->db_mtx));
1521 
1522 	if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1523 	    !os->os_encrypted || os->os_raw_receive)
1524 		return (0);
1525 
1526 	DB_DNODE_ENTER(db);
1527 	dn = DB_DNODE(db);
1528 	dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1529 
1530 	if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1531 		DB_DNODE_EXIT(db);
1532 		return (0);
1533 	}
1534 
1535 	SET_BOOKMARK(&zb, dmu_objset_id(os),
1536 	    DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1537 	err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1538 
1539 	/*
1540 	 * An error code of EACCES tells us that the key is still not
1541 	 * available. This is ok if we are only reading authenticated
1542 	 * (and therefore non-encrypted) blocks.
1543 	 */
1544 	if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1545 	    !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1546 	    (db->db_blkid == DMU_BONUS_BLKID &&
1547 	    !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1548 		err = 0;
1549 
1550 	DB_DNODE_EXIT(db);
1551 
1552 	return (err);
1553 }
1554 
1555 /*
1556  * Drops db_mtx and the parent lock specified by dblt and tag before
1557  * returning.
1558  */
1559 static int
1560 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1561     db_lock_type_t dblt, const void *tag)
1562 {
1563 	dnode_t *dn;
1564 	zbookmark_phys_t zb;
1565 	uint32_t aflags = ARC_FLAG_NOWAIT;
1566 	int err, zio_flags;
1567 	blkptr_t bp, *bpp;
1568 
1569 	DB_DNODE_ENTER(db);
1570 	dn = DB_DNODE(db);
1571 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1572 	ASSERT(MUTEX_HELD(&db->db_mtx));
1573 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1574 	ASSERT(db->db_buf == NULL);
1575 	ASSERT(db->db_parent == NULL ||
1576 	    RW_LOCK_HELD(&db->db_parent->db_rwlock));
1577 
1578 	if (db->db_blkid == DMU_BONUS_BLKID) {
1579 		err = dbuf_read_bonus(db, dn, flags);
1580 		goto early_unlock;
1581 	}
1582 
1583 	if (db->db_state == DB_UNCACHED) {
1584 		if (db->db_blkptr == NULL) {
1585 			bpp = NULL;
1586 		} else {
1587 			bp = *db->db_blkptr;
1588 			bpp = &bp;
1589 		}
1590 	} else {
1591 		dbuf_dirty_record_t *dr;
1592 
1593 		ASSERT3S(db->db_state, ==, DB_NOFILL);
1594 
1595 		/*
1596 		 * Block cloning: If we have a pending block clone,
1597 		 * we don't want to read the underlying block, but the content
1598 		 * of the block being cloned, so we have the most recent data.
1599 		 */
1600 		dr = list_head(&db->db_dirty_records);
1601 		if (dr == NULL || !dr->dt.dl.dr_brtwrite) {
1602 			err = EIO;
1603 			goto early_unlock;
1604 		}
1605 		bp = dr->dt.dl.dr_overridden_by;
1606 		bpp = &bp;
1607 	}
1608 
1609 	err = dbuf_read_hole(db, dn, bpp);
1610 	if (err == 0)
1611 		goto early_unlock;
1612 
1613 	ASSERT(bpp != NULL);
1614 
1615 	/*
1616 	 * Any attempt to read a redacted block should result in an error. This
1617 	 * will never happen under normal conditions, but can be useful for
1618 	 * debugging purposes.
1619 	 */
1620 	if (BP_IS_REDACTED(bpp)) {
1621 		ASSERT(dsl_dataset_feature_is_active(
1622 		    db->db_objset->os_dsl_dataset,
1623 		    SPA_FEATURE_REDACTED_DATASETS));
1624 		err = SET_ERROR(EIO);
1625 		goto early_unlock;
1626 	}
1627 
1628 	SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1629 	    db->db.db_object, db->db_level, db->db_blkid);
1630 
1631 	/*
1632 	 * All bps of an encrypted os should have the encryption bit set.
1633 	 * If this is not true it indicates tampering and we report an error.
1634 	 */
1635 	if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) {
1636 		spa_log_error(db->db_objset->os_spa, &zb,
1637 		    BP_GET_LOGICAL_BIRTH(bpp));
1638 		err = SET_ERROR(EIO);
1639 		goto early_unlock;
1640 	}
1641 
1642 	err = dbuf_read_verify_dnode_crypt(db, flags);
1643 	if (err != 0)
1644 		goto early_unlock;
1645 
1646 	DB_DNODE_EXIT(db);
1647 
1648 	db->db_state = DB_READ;
1649 	DTRACE_SET_STATE(db, "read issued");
1650 	mutex_exit(&db->db_mtx);
1651 
1652 	if (!DBUF_IS_CACHEABLE(db))
1653 		aflags |= ARC_FLAG_UNCACHED;
1654 	else if (dbuf_is_l2cacheable(db))
1655 		aflags |= ARC_FLAG_L2CACHE;
1656 
1657 	dbuf_add_ref(db, NULL);
1658 
1659 	zio_flags = (flags & DB_RF_CANFAIL) ?
1660 	    ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1661 
1662 	if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1663 		zio_flags |= ZIO_FLAG_RAW;
1664 	/*
1665 	 * The zio layer will copy the provided blkptr later, but we have our
1666 	 * own copy so that we can release the parent's rwlock. We have to
1667 	 * do that so that if dbuf_read_done is called synchronously (on
1668 	 * an l1 cache hit) we don't acquire the db_mtx while holding the
1669 	 * parent's rwlock, which would be a lock ordering violation.
1670 	 */
1671 	dmu_buf_unlock_parent(db, dblt, tag);
1672 	(void) arc_read(zio, db->db_objset->os_spa, bpp,
1673 	    dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1674 	    &aflags, &zb);
1675 	return (err);
1676 early_unlock:
1677 	DB_DNODE_EXIT(db);
1678 	mutex_exit(&db->db_mtx);
1679 	dmu_buf_unlock_parent(db, dblt, tag);
1680 	return (err);
1681 }
1682 
1683 /*
1684  * This is our just-in-time copy function.  It makes a copy of buffers that
1685  * have been modified in a previous transaction group before we access them in
1686  * the current active group.
1687  *
1688  * This function is used in three places: when we are dirtying a buffer for the
1689  * first time in a txg, when we are freeing a range in a dnode that includes
1690  * this buffer, and when we are accessing a buffer which was received compressed
1691  * and later referenced in a WRITE_BYREF record.
1692  *
1693  * Note that when we are called from dbuf_free_range() we do not put a hold on
1694  * the buffer, we just traverse the active dbuf list for the dnode.
1695  */
1696 static void
1697 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1698 {
1699 	dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1700 
1701 	ASSERT(MUTEX_HELD(&db->db_mtx));
1702 	ASSERT(db->db.db_data != NULL);
1703 	ASSERT(db->db_level == 0);
1704 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1705 
1706 	if (dr == NULL ||
1707 	    (dr->dt.dl.dr_data !=
1708 	    ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1709 		return;
1710 
1711 	/*
1712 	 * If the last dirty record for this dbuf has not yet synced
1713 	 * and its referencing the dbuf data, either:
1714 	 *	reset the reference to point to a new copy,
1715 	 * or (if there a no active holders)
1716 	 *	just null out the current db_data pointer.
1717 	 */
1718 	ASSERT3U(dr->dr_txg, >=, txg - 2);
1719 	if (db->db_blkid == DMU_BONUS_BLKID) {
1720 		dnode_t *dn = DB_DNODE(db);
1721 		int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1722 		dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1723 		arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1724 		memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1725 	} else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1726 		dnode_t *dn = DB_DNODE(db);
1727 		int size = arc_buf_size(db->db_buf);
1728 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1729 		spa_t *spa = db->db_objset->os_spa;
1730 		enum zio_compress compress_type =
1731 		    arc_get_compression(db->db_buf);
1732 		uint8_t complevel = arc_get_complevel(db->db_buf);
1733 
1734 		if (arc_is_encrypted(db->db_buf)) {
1735 			boolean_t byteorder;
1736 			uint8_t salt[ZIO_DATA_SALT_LEN];
1737 			uint8_t iv[ZIO_DATA_IV_LEN];
1738 			uint8_t mac[ZIO_DATA_MAC_LEN];
1739 
1740 			arc_get_raw_params(db->db_buf, &byteorder, salt,
1741 			    iv, mac);
1742 			dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1743 			    dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1744 			    mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1745 			    compress_type, complevel);
1746 		} else if (compress_type != ZIO_COMPRESS_OFF) {
1747 			ASSERT3U(type, ==, ARC_BUFC_DATA);
1748 			dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1749 			    size, arc_buf_lsize(db->db_buf), compress_type,
1750 			    complevel);
1751 		} else {
1752 			dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1753 		}
1754 		memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1755 	} else {
1756 		db->db_buf = NULL;
1757 		dbuf_clear_data(db);
1758 	}
1759 }
1760 
1761 int
1762 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1763 {
1764 	int err = 0;
1765 	boolean_t prefetch;
1766 	dnode_t *dn;
1767 
1768 	/*
1769 	 * We don't have to hold the mutex to check db_state because it
1770 	 * can't be freed while we have a hold on the buffer.
1771 	 */
1772 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1773 
1774 	DB_DNODE_ENTER(db);
1775 	dn = DB_DNODE(db);
1776 
1777 	prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1778 	    (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;
1779 
1780 	mutex_enter(&db->db_mtx);
1781 	if (flags & DB_RF_PARTIAL_FIRST)
1782 		db->db_partial_read = B_TRUE;
1783 	else if (!(flags & DB_RF_PARTIAL_MORE))
1784 		db->db_partial_read = B_FALSE;
1785 	if (db->db_state == DB_CACHED) {
1786 		/*
1787 		 * Ensure that this block's dnode has been decrypted if
1788 		 * the caller has requested decrypted data.
1789 		 */
1790 		err = dbuf_read_verify_dnode_crypt(db, flags);
1791 
1792 		/*
1793 		 * If the arc buf is compressed or encrypted and the caller
1794 		 * requested uncompressed data, we need to untransform it
1795 		 * before returning. We also call arc_untransform() on any
1796 		 * unauthenticated blocks, which will verify their MAC if
1797 		 * the key is now available.
1798 		 */
1799 		if (err == 0 && db->db_buf != NULL &&
1800 		    (flags & DB_RF_NO_DECRYPT) == 0 &&
1801 		    (arc_is_encrypted(db->db_buf) ||
1802 		    arc_is_unauthenticated(db->db_buf) ||
1803 		    arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1804 			spa_t *spa = dn->dn_objset->os_spa;
1805 			zbookmark_phys_t zb;
1806 
1807 			SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1808 			    db->db.db_object, db->db_level, db->db_blkid);
1809 			dbuf_fix_old_data(db, spa_syncing_txg(spa));
1810 			err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1811 			dbuf_set_data(db, db->db_buf);
1812 		}
1813 		mutex_exit(&db->db_mtx);
1814 		if (err == 0 && prefetch) {
1815 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1816 			    B_FALSE, flags & DB_RF_HAVESTRUCT);
1817 		}
1818 		DB_DNODE_EXIT(db);
1819 		DBUF_STAT_BUMP(hash_hits);
1820 	} else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) {
1821 		boolean_t need_wait = B_FALSE;
1822 
1823 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1824 
1825 		if (zio == NULL && (db->db_state == DB_NOFILL ||
1826 		    (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) {
1827 			spa_t *spa = dn->dn_objset->os_spa;
1828 			zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1829 			need_wait = B_TRUE;
1830 		}
1831 		err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1832 		/*
1833 		 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1834 		 * for us
1835 		 */
1836 		if (!err && prefetch) {
1837 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1838 			    db->db_state != DB_CACHED,
1839 			    flags & DB_RF_HAVESTRUCT);
1840 		}
1841 
1842 		DB_DNODE_EXIT(db);
1843 		DBUF_STAT_BUMP(hash_misses);
1844 
1845 		/*
1846 		 * If we created a zio_root we must execute it to avoid
1847 		 * leaking it, even if it isn't attached to any work due
1848 		 * to an error in dbuf_read_impl().
1849 		 */
1850 		if (need_wait) {
1851 			if (err == 0)
1852 				err = zio_wait(zio);
1853 			else
1854 				VERIFY0(zio_wait(zio));
1855 		}
1856 	} else {
1857 		/*
1858 		 * Another reader came in while the dbuf was in flight
1859 		 * between UNCACHED and CACHED.  Either a writer will finish
1860 		 * writing the buffer (sending the dbuf to CACHED) or the
1861 		 * first reader's request will reach the read_done callback
1862 		 * and send the dbuf to CACHED.  Otherwise, a failure
1863 		 * occurred and the dbuf went to UNCACHED.
1864 		 */
1865 		mutex_exit(&db->db_mtx);
1866 		if (prefetch) {
1867 			dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1868 			    B_TRUE, flags & DB_RF_HAVESTRUCT);
1869 		}
1870 		DB_DNODE_EXIT(db);
1871 		DBUF_STAT_BUMP(hash_misses);
1872 
1873 		/* Skip the wait per the caller's request. */
1874 		if ((flags & DB_RF_NEVERWAIT) == 0) {
1875 			mutex_enter(&db->db_mtx);
1876 			while (db->db_state == DB_READ ||
1877 			    db->db_state == DB_FILL) {
1878 				ASSERT(db->db_state == DB_READ ||
1879 				    (flags & DB_RF_HAVESTRUCT) == 0);
1880 				DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1881 				    db, zio_t *, zio);
1882 				cv_wait(&db->db_changed, &db->db_mtx);
1883 			}
1884 			if (db->db_state == DB_UNCACHED)
1885 				err = SET_ERROR(EIO);
1886 			mutex_exit(&db->db_mtx);
1887 		}
1888 	}
1889 
1890 	return (err);
1891 }
1892 
1893 static void
1894 dbuf_noread(dmu_buf_impl_t *db)
1895 {
1896 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1897 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1898 	mutex_enter(&db->db_mtx);
1899 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
1900 		cv_wait(&db->db_changed, &db->db_mtx);
1901 	if (db->db_state == DB_UNCACHED) {
1902 		ASSERT(db->db_buf == NULL);
1903 		ASSERT(db->db.db_data == NULL);
1904 		dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1905 		db->db_state = DB_FILL;
1906 		DTRACE_SET_STATE(db, "assigning filled buffer");
1907 	} else if (db->db_state == DB_NOFILL) {
1908 		dbuf_clear_data(db);
1909 	} else {
1910 		ASSERT3U(db->db_state, ==, DB_CACHED);
1911 	}
1912 	mutex_exit(&db->db_mtx);
1913 }
1914 
1915 void
1916 dbuf_unoverride(dbuf_dirty_record_t *dr)
1917 {
1918 	dmu_buf_impl_t *db = dr->dr_dbuf;
1919 	blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1920 	uint64_t txg = dr->dr_txg;
1921 
1922 	ASSERT(MUTEX_HELD(&db->db_mtx));
1923 	/*
1924 	 * This assert is valid because dmu_sync() expects to be called by
1925 	 * a zilog's get_data while holding a range lock.  This call only
1926 	 * comes from dbuf_dirty() callers who must also hold a range lock.
1927 	 */
1928 	ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1929 	ASSERT(db->db_level == 0);
1930 
1931 	if (db->db_blkid == DMU_BONUS_BLKID ||
1932 	    dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1933 		return;
1934 
1935 	ASSERT(db->db_data_pending != dr);
1936 
1937 	/* free this block */
1938 	if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1939 		zio_free(db->db_objset->os_spa, txg, bp);
1940 
1941 	if (dr->dt.dl.dr_brtwrite) {
1942 		ASSERT0P(dr->dt.dl.dr_data);
1943 		dr->dt.dl.dr_data = db->db_buf;
1944 	}
1945 	dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1946 	dr->dt.dl.dr_nopwrite = B_FALSE;
1947 	dr->dt.dl.dr_brtwrite = B_FALSE;
1948 	dr->dt.dl.dr_has_raw_params = B_FALSE;
1949 
1950 	/*
1951 	 * Release the already-written buffer, so we leave it in
1952 	 * a consistent dirty state.  Note that all callers are
1953 	 * modifying the buffer, so they will immediately do
1954 	 * another (redundant) arc_release().  Therefore, leave
1955 	 * the buf thawed to save the effort of freezing &
1956 	 * immediately re-thawing it.
1957 	 */
1958 	if (dr->dt.dl.dr_data)
1959 		arc_release(dr->dt.dl.dr_data, db);
1960 }
1961 
1962 /*
1963  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1964  * data blocks in the free range, so that any future readers will find
1965  * empty blocks.
1966  */
1967 void
1968 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1969     dmu_tx_t *tx)
1970 {
1971 	dmu_buf_impl_t *db_search;
1972 	dmu_buf_impl_t *db, *db_next;
1973 	uint64_t txg = tx->tx_txg;
1974 	avl_index_t where;
1975 	dbuf_dirty_record_t *dr;
1976 
1977 	if (end_blkid > dn->dn_maxblkid &&
1978 	    !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1979 		end_blkid = dn->dn_maxblkid;
1980 	dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1981 	    (u_longlong_t)end_blkid);
1982 
1983 	db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1984 	db_search->db_level = 0;
1985 	db_search->db_blkid = start_blkid;
1986 	db_search->db_state = DB_SEARCH;
1987 
1988 	mutex_enter(&dn->dn_dbufs_mtx);
1989 	db = avl_find(&dn->dn_dbufs, db_search, &where);
1990 	ASSERT3P(db, ==, NULL);
1991 
1992 	db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1993 
1994 	for (; db != NULL; db = db_next) {
1995 		db_next = AVL_NEXT(&dn->dn_dbufs, db);
1996 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1997 
1998 		if (db->db_level != 0 || db->db_blkid > end_blkid) {
1999 			break;
2000 		}
2001 		ASSERT3U(db->db_blkid, >=, start_blkid);
2002 
2003 		/* found a level 0 buffer in the range */
2004 		mutex_enter(&db->db_mtx);
2005 		if (dbuf_undirty(db, tx)) {
2006 			/* mutex has been dropped and dbuf destroyed */
2007 			continue;
2008 		}
2009 
2010 		if (db->db_state == DB_UNCACHED ||
2011 		    db->db_state == DB_NOFILL ||
2012 		    db->db_state == DB_EVICTING) {
2013 			ASSERT(db->db.db_data == NULL);
2014 			mutex_exit(&db->db_mtx);
2015 			continue;
2016 		}
2017 		if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2018 			/* will be handled in dbuf_read_done or dbuf_rele */
2019 			db->db_freed_in_flight = TRUE;
2020 			mutex_exit(&db->db_mtx);
2021 			continue;
2022 		}
2023 		if (zfs_refcount_count(&db->db_holds) == 0) {
2024 			ASSERT(db->db_buf);
2025 			dbuf_destroy(db);
2026 			continue;
2027 		}
2028 		/* The dbuf is referenced */
2029 
2030 		dr = list_head(&db->db_dirty_records);
2031 		if (dr != NULL) {
2032 			if (dr->dr_txg == txg) {
2033 				/*
2034 				 * This buffer is "in-use", re-adjust the file
2035 				 * size to reflect that this buffer may
2036 				 * contain new data when we sync.
2037 				 */
2038 				if (db->db_blkid != DMU_SPILL_BLKID &&
2039 				    db->db_blkid > dn->dn_maxblkid)
2040 					dn->dn_maxblkid = db->db_blkid;
2041 				dbuf_unoverride(dr);
2042 			} else {
2043 				/*
2044 				 * This dbuf is not dirty in the open context.
2045 				 * Either uncache it (if its not referenced in
2046 				 * the open context) or reset its contents to
2047 				 * empty.
2048 				 */
2049 				dbuf_fix_old_data(db, txg);
2050 			}
2051 		}
2052 		/* clear the contents if its cached */
2053 		if (db->db_state == DB_CACHED) {
2054 			ASSERT(db->db.db_data != NULL);
2055 			arc_release(db->db_buf, db);
2056 			rw_enter(&db->db_rwlock, RW_WRITER);
2057 			memset(db->db.db_data, 0, db->db.db_size);
2058 			rw_exit(&db->db_rwlock);
2059 			arc_buf_freeze(db->db_buf);
2060 		}
2061 
2062 		mutex_exit(&db->db_mtx);
2063 	}
2064 
2065 	mutex_exit(&dn->dn_dbufs_mtx);
2066 	kmem_free(db_search, sizeof (dmu_buf_impl_t));
2067 }
2068 
2069 void
2070 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2071 {
2072 	arc_buf_t *buf, *old_buf;
2073 	dbuf_dirty_record_t *dr;
2074 	int osize = db->db.db_size;
2075 	arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2076 	dnode_t *dn;
2077 
2078 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2079 
2080 	DB_DNODE_ENTER(db);
2081 	dn = DB_DNODE(db);
2082 
2083 	/*
2084 	 * XXX we should be doing a dbuf_read, checking the return
2085 	 * value and returning that up to our callers
2086 	 */
2087 	dmu_buf_will_dirty(&db->db, tx);
2088 
2089 	/* create the data buffer for the new block */
2090 	buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2091 
2092 	/* copy old block data to the new block */
2093 	old_buf = db->db_buf;
2094 	memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2095 	/* zero the remainder */
2096 	if (size > osize)
2097 		memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2098 
2099 	mutex_enter(&db->db_mtx);
2100 	dbuf_set_data(db, buf);
2101 	arc_buf_destroy(old_buf, db);
2102 	db->db.db_size = size;
2103 
2104 	dr = list_head(&db->db_dirty_records);
2105 	/* dirty record added by dmu_buf_will_dirty() */
2106 	VERIFY(dr != NULL);
2107 	if (db->db_level == 0)
2108 		dr->dt.dl.dr_data = buf;
2109 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2110 	ASSERT3U(dr->dr_accounted, ==, osize);
2111 	dr->dr_accounted = size;
2112 	mutex_exit(&db->db_mtx);
2113 
2114 	dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2115 	DB_DNODE_EXIT(db);
2116 }
2117 
2118 void
2119 dbuf_release_bp(dmu_buf_impl_t *db)
2120 {
2121 	objset_t *os __maybe_unused = db->db_objset;
2122 
2123 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2124 	ASSERT(arc_released(os->os_phys_buf) ||
2125 	    list_link_active(&os->os_dsl_dataset->ds_synced_link));
2126 	ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2127 
2128 	(void) arc_release(db->db_buf, db);
2129 }
2130 
2131 /*
2132  * We already have a dirty record for this TXG, and we are being
2133  * dirtied again.
2134  */
2135 static void
2136 dbuf_redirty(dbuf_dirty_record_t *dr)
2137 {
2138 	dmu_buf_impl_t *db = dr->dr_dbuf;
2139 
2140 	ASSERT(MUTEX_HELD(&db->db_mtx));
2141 
2142 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2143 		/*
2144 		 * If this buffer has already been written out,
2145 		 * we now need to reset its state.
2146 		 */
2147 		dbuf_unoverride(dr);
2148 		if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2149 		    db->db_state != DB_NOFILL) {
2150 			/* Already released on initial dirty, so just thaw. */
2151 			ASSERT(arc_released(db->db_buf));
2152 			arc_buf_thaw(db->db_buf);
2153 		}
2154 	}
2155 }
2156 
2157 dbuf_dirty_record_t *
2158 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2159 {
2160 	rw_enter(&dn->dn_struct_rwlock, RW_READER);
2161 	IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2162 	dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2163 	ASSERT(dn->dn_maxblkid >= blkid);
2164 
2165 	dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2166 	list_link_init(&dr->dr_dirty_node);
2167 	list_link_init(&dr->dr_dbuf_node);
2168 	dr->dr_dnode = dn;
2169 	dr->dr_txg = tx->tx_txg;
2170 	dr->dt.dll.dr_blkid = blkid;
2171 	dr->dr_accounted = dn->dn_datablksz;
2172 
2173 	/*
2174 	 * There should not be any dbuf for the block that we're dirtying.
2175 	 * Otherwise the buffer contents could be inconsistent between the
2176 	 * dbuf and the lightweight dirty record.
2177 	 */
2178 	ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2179 	    NULL));
2180 
2181 	mutex_enter(&dn->dn_mtx);
2182 	int txgoff = tx->tx_txg & TXG_MASK;
2183 	if (dn->dn_free_ranges[txgoff] != NULL) {
2184 		range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2185 	}
2186 
2187 	if (dn->dn_nlevels == 1) {
2188 		ASSERT3U(blkid, <, dn->dn_nblkptr);
2189 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2190 		mutex_exit(&dn->dn_mtx);
2191 		rw_exit(&dn->dn_struct_rwlock);
2192 		dnode_setdirty(dn, tx);
2193 	} else {
2194 		mutex_exit(&dn->dn_mtx);
2195 
2196 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2197 		dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2198 		    1, blkid >> epbs, FTAG);
2199 		rw_exit(&dn->dn_struct_rwlock);
2200 		if (parent_db == NULL) {
2201 			kmem_free(dr, sizeof (*dr));
2202 			return (NULL);
2203 		}
2204 		int err = dbuf_read(parent_db, NULL,
2205 		    (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2206 		if (err != 0) {
2207 			dbuf_rele(parent_db, FTAG);
2208 			kmem_free(dr, sizeof (*dr));
2209 			return (NULL);
2210 		}
2211 
2212 		dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2213 		dbuf_rele(parent_db, FTAG);
2214 		mutex_enter(&parent_dr->dt.di.dr_mtx);
2215 		ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2216 		list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2217 		mutex_exit(&parent_dr->dt.di.dr_mtx);
2218 		dr->dr_parent = parent_dr;
2219 	}
2220 
2221 	dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2222 
2223 	return (dr);
2224 }
2225 
2226 dbuf_dirty_record_t *
2227 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2228 {
2229 	dnode_t *dn;
2230 	objset_t *os;
2231 	dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2232 	int txgoff = tx->tx_txg & TXG_MASK;
2233 	boolean_t drop_struct_rwlock = B_FALSE;
2234 
2235 	ASSERT(tx->tx_txg != 0);
2236 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2237 	DMU_TX_DIRTY_BUF(tx, db);
2238 
2239 	DB_DNODE_ENTER(db);
2240 	dn = DB_DNODE(db);
2241 	/*
2242 	 * Shouldn't dirty a regular buffer in syncing context.  Private
2243 	 * objects may be dirtied in syncing context, but only if they
2244 	 * were already pre-dirtied in open context.
2245 	 */
2246 #ifdef ZFS_DEBUG
2247 	if (dn->dn_objset->os_dsl_dataset != NULL) {
2248 		rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2249 		    RW_READER, FTAG);
2250 	}
2251 	ASSERT(!dmu_tx_is_syncing(tx) ||
2252 	    BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2253 	    DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2254 	    dn->dn_objset->os_dsl_dataset == NULL);
2255 	if (dn->dn_objset->os_dsl_dataset != NULL)
2256 		rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2257 #endif
2258 	/*
2259 	 * We make this assert for private objects as well, but after we
2260 	 * check if we're already dirty.  They are allowed to re-dirty
2261 	 * in syncing context.
2262 	 */
2263 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2264 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2265 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2266 
2267 	mutex_enter(&db->db_mtx);
2268 	/*
2269 	 * XXX make this true for indirects too?  The problem is that
2270 	 * transactions created with dmu_tx_create_assigned() from
2271 	 * syncing context don't bother holding ahead.
2272 	 */
2273 	ASSERT(db->db_level != 0 ||
2274 	    db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2275 	    db->db_state == DB_NOFILL);
2276 
2277 	mutex_enter(&dn->dn_mtx);
2278 	dnode_set_dirtyctx(dn, tx, db);
2279 	if (tx->tx_txg > dn->dn_dirty_txg)
2280 		dn->dn_dirty_txg = tx->tx_txg;
2281 	mutex_exit(&dn->dn_mtx);
2282 
2283 	if (db->db_blkid == DMU_SPILL_BLKID)
2284 		dn->dn_have_spill = B_TRUE;
2285 
2286 	/*
2287 	 * If this buffer is already dirty, we're done.
2288 	 */
2289 	dr_head = list_head(&db->db_dirty_records);
2290 	ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2291 	    db->db.db_object == DMU_META_DNODE_OBJECT);
2292 	dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2293 	if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2294 		DB_DNODE_EXIT(db);
2295 
2296 		dbuf_redirty(dr_next);
2297 		mutex_exit(&db->db_mtx);
2298 		return (dr_next);
2299 	}
2300 
2301 	/*
2302 	 * Only valid if not already dirty.
2303 	 */
2304 	ASSERT(dn->dn_object == 0 ||
2305 	    dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2306 	    (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2307 
2308 	ASSERT3U(dn->dn_nlevels, >, db->db_level);
2309 
2310 	/*
2311 	 * We should only be dirtying in syncing context if it's the
2312 	 * mos or we're initializing the os or it's a special object.
2313 	 * However, we are allowed to dirty in syncing context provided
2314 	 * we already dirtied it in open context.  Hence we must make
2315 	 * this assertion only if we're not already dirty.
2316 	 */
2317 	os = dn->dn_objset;
2318 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2319 #ifdef ZFS_DEBUG
2320 	if (dn->dn_objset->os_dsl_dataset != NULL)
2321 		rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2322 	ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2323 	    os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2324 	if (dn->dn_objset->os_dsl_dataset != NULL)
2325 		rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2326 #endif
2327 	ASSERT(db->db.db_size != 0);
2328 
2329 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2330 
2331 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2332 		dmu_objset_willuse_space(os, db->db.db_size, tx);
2333 	}
2334 
2335 	/*
2336 	 * If this buffer is dirty in an old transaction group we need
2337 	 * to make a copy of it so that the changes we make in this
2338 	 * transaction group won't leak out when we sync the older txg.
2339 	 */
2340 	dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2341 	list_link_init(&dr->dr_dirty_node);
2342 	list_link_init(&dr->dr_dbuf_node);
2343 	dr->dr_dnode = dn;
2344 	if (db->db_level == 0) {
2345 		void *data_old = db->db_buf;
2346 
2347 		if (db->db_state != DB_NOFILL) {
2348 			if (db->db_blkid == DMU_BONUS_BLKID) {
2349 				dbuf_fix_old_data(db, tx->tx_txg);
2350 				data_old = db->db.db_data;
2351 			} else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2352 				/*
2353 				 * Release the data buffer from the cache so
2354 				 * that we can modify it without impacting
2355 				 * possible other users of this cached data
2356 				 * block.  Note that indirect blocks and
2357 				 * private objects are not released until the
2358 				 * syncing state (since they are only modified
2359 				 * then).
2360 				 */
2361 				arc_release(db->db_buf, db);
2362 				dbuf_fix_old_data(db, tx->tx_txg);
2363 				data_old = db->db_buf;
2364 			}
2365 			ASSERT(data_old != NULL);
2366 		}
2367 		dr->dt.dl.dr_data = data_old;
2368 	} else {
2369 		mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2370 		list_create(&dr->dt.di.dr_children,
2371 		    sizeof (dbuf_dirty_record_t),
2372 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
2373 	}
2374 	if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2375 		dr->dr_accounted = db->db.db_size;
2376 	}
2377 	dr->dr_dbuf = db;
2378 	dr->dr_txg = tx->tx_txg;
2379 	list_insert_before(&db->db_dirty_records, dr_next, dr);
2380 
2381 	/*
2382 	 * We could have been freed_in_flight between the dbuf_noread
2383 	 * and dbuf_dirty.  We win, as though the dbuf_noread() had
2384 	 * happened after the free.
2385 	 */
2386 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2387 	    db->db_blkid != DMU_SPILL_BLKID) {
2388 		mutex_enter(&dn->dn_mtx);
2389 		if (dn->dn_free_ranges[txgoff] != NULL) {
2390 			range_tree_clear(dn->dn_free_ranges[txgoff],
2391 			    db->db_blkid, 1);
2392 		}
2393 		mutex_exit(&dn->dn_mtx);
2394 		db->db_freed_in_flight = FALSE;
2395 	}
2396 
2397 	/*
2398 	 * This buffer is now part of this txg
2399 	 */
2400 	dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2401 	db->db_dirtycnt += 1;
2402 	ASSERT3U(db->db_dirtycnt, <=, 3);
2403 
2404 	mutex_exit(&db->db_mtx);
2405 
2406 	if (db->db_blkid == DMU_BONUS_BLKID ||
2407 	    db->db_blkid == DMU_SPILL_BLKID) {
2408 		mutex_enter(&dn->dn_mtx);
2409 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2410 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2411 		mutex_exit(&dn->dn_mtx);
2412 		dnode_setdirty(dn, tx);
2413 		DB_DNODE_EXIT(db);
2414 		return (dr);
2415 	}
2416 
2417 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2418 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
2419 		drop_struct_rwlock = B_TRUE;
2420 	}
2421 
2422 	/*
2423 	 * If we are overwriting a dedup BP, then unless it is snapshotted,
2424 	 * when we get to syncing context we will need to decrement its
2425 	 * refcount in the DDT.  Prefetch the relevant DDT block so that
2426 	 * syncing context won't have to wait for the i/o.
2427 	 */
2428 	if (db->db_blkptr != NULL) {
2429 		db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2430 		ddt_prefetch(os->os_spa, db->db_blkptr);
2431 		dmu_buf_unlock_parent(db, dblt, FTAG);
2432 	}
2433 
2434 	/*
2435 	 * We need to hold the dn_struct_rwlock to make this assertion,
2436 	 * because it protects dn_phys / dn_next_nlevels from changing.
2437 	 */
2438 	ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2439 	    dn->dn_phys->dn_nlevels > db->db_level ||
2440 	    dn->dn_next_nlevels[txgoff] > db->db_level ||
2441 	    dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2442 	    dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2443 
2444 
2445 	if (db->db_level == 0) {
2446 		ASSERT(!db->db_objset->os_raw_receive ||
2447 		    dn->dn_maxblkid >= db->db_blkid);
2448 		dnode_new_blkid(dn, db->db_blkid, tx,
2449 		    drop_struct_rwlock, B_FALSE);
2450 		ASSERT(dn->dn_maxblkid >= db->db_blkid);
2451 	}
2452 
2453 	if (db->db_level+1 < dn->dn_nlevels) {
2454 		dmu_buf_impl_t *parent = db->db_parent;
2455 		dbuf_dirty_record_t *di;
2456 		int parent_held = FALSE;
2457 
2458 		if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2459 			int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2460 			parent = dbuf_hold_level(dn, db->db_level + 1,
2461 			    db->db_blkid >> epbs, FTAG);
2462 			ASSERT(parent != NULL);
2463 			parent_held = TRUE;
2464 		}
2465 		if (drop_struct_rwlock)
2466 			rw_exit(&dn->dn_struct_rwlock);
2467 		ASSERT3U(db->db_level + 1, ==, parent->db_level);
2468 		di = dbuf_dirty(parent, tx);
2469 		if (parent_held)
2470 			dbuf_rele(parent, FTAG);
2471 
2472 		mutex_enter(&db->db_mtx);
2473 		/*
2474 		 * Since we've dropped the mutex, it's possible that
2475 		 * dbuf_undirty() might have changed this out from under us.
2476 		 */
2477 		if (list_head(&db->db_dirty_records) == dr ||
2478 		    dn->dn_object == DMU_META_DNODE_OBJECT) {
2479 			mutex_enter(&di->dt.di.dr_mtx);
2480 			ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2481 			ASSERT(!list_link_active(&dr->dr_dirty_node));
2482 			list_insert_tail(&di->dt.di.dr_children, dr);
2483 			mutex_exit(&di->dt.di.dr_mtx);
2484 			dr->dr_parent = di;
2485 		}
2486 		mutex_exit(&db->db_mtx);
2487 	} else {
2488 		ASSERT(db->db_level + 1 == dn->dn_nlevels);
2489 		ASSERT(db->db_blkid < dn->dn_nblkptr);
2490 		ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2491 		mutex_enter(&dn->dn_mtx);
2492 		ASSERT(!list_link_active(&dr->dr_dirty_node));
2493 		list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2494 		mutex_exit(&dn->dn_mtx);
2495 		if (drop_struct_rwlock)
2496 			rw_exit(&dn->dn_struct_rwlock);
2497 	}
2498 
2499 	dnode_setdirty(dn, tx);
2500 	DB_DNODE_EXIT(db);
2501 	return (dr);
2502 }
2503 
2504 static void
2505 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2506 {
2507 	dmu_buf_impl_t *db = dr->dr_dbuf;
2508 
2509 	if (dr->dt.dl.dr_data != db->db.db_data) {
2510 		struct dnode *dn = dr->dr_dnode;
2511 		int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2512 
2513 		kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2514 		arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2515 	}
2516 	db->db_data_pending = NULL;
2517 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2518 	list_remove(&db->db_dirty_records, dr);
2519 	if (dr->dr_dbuf->db_level != 0) {
2520 		mutex_destroy(&dr->dt.di.dr_mtx);
2521 		list_destroy(&dr->dt.di.dr_children);
2522 	}
2523 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2524 	ASSERT3U(db->db_dirtycnt, >, 0);
2525 	db->db_dirtycnt -= 1;
2526 }
2527 
2528 /*
2529  * Undirty a buffer in the transaction group referenced by the given
2530  * transaction.  Return whether this evicted the dbuf.
2531  */
2532 boolean_t
2533 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2534 {
2535 	uint64_t txg = tx->tx_txg;
2536 	boolean_t brtwrite;
2537 
2538 	ASSERT(txg != 0);
2539 
2540 	/*
2541 	 * Due to our use of dn_nlevels below, this can only be called
2542 	 * in open context, unless we are operating on the MOS.
2543 	 * From syncing context, dn_nlevels may be different from the
2544 	 * dn_nlevels used when dbuf was dirtied.
2545 	 */
2546 	ASSERT(db->db_objset ==
2547 	    dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2548 	    txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2549 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2550 	ASSERT0(db->db_level);
2551 	ASSERT(MUTEX_HELD(&db->db_mtx));
2552 
2553 	/*
2554 	 * If this buffer is not dirty, we're done.
2555 	 */
2556 	dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2557 	if (dr == NULL)
2558 		return (B_FALSE);
2559 	ASSERT(dr->dr_dbuf == db);
2560 
2561 	brtwrite = dr->dt.dl.dr_brtwrite;
2562 	if (brtwrite) {
2563 		/*
2564 		 * We are freeing a block that we cloned in the same
2565 		 * transaction group.
2566 		 */
2567 		brt_pending_remove(dmu_objset_spa(db->db_objset),
2568 		    &dr->dt.dl.dr_overridden_by, tx);
2569 	}
2570 
2571 	dnode_t *dn = dr->dr_dnode;
2572 
2573 	dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2574 
2575 	ASSERT(db->db.db_size != 0);
2576 
2577 	dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2578 	    dr->dr_accounted, txg);
2579 
2580 	list_remove(&db->db_dirty_records, dr);
2581 
2582 	/*
2583 	 * Note that there are three places in dbuf_dirty()
2584 	 * where this dirty record may be put on a list.
2585 	 * Make sure to do a list_remove corresponding to
2586 	 * every one of those list_insert calls.
2587 	 */
2588 	if (dr->dr_parent) {
2589 		mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2590 		list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2591 		mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2592 	} else if (db->db_blkid == DMU_SPILL_BLKID ||
2593 	    db->db_level + 1 == dn->dn_nlevels) {
2594 		ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2595 		mutex_enter(&dn->dn_mtx);
2596 		list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2597 		mutex_exit(&dn->dn_mtx);
2598 	}
2599 
2600 	if (db->db_state != DB_NOFILL && !brtwrite) {
2601 		dbuf_unoverride(dr);
2602 
2603 		ASSERT(db->db_buf != NULL);
2604 		ASSERT(dr->dt.dl.dr_data != NULL);
2605 		if (dr->dt.dl.dr_data != db->db_buf)
2606 			arc_buf_destroy(dr->dt.dl.dr_data, db);
2607 	}
2608 
2609 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
2610 
2611 	ASSERT(db->db_dirtycnt > 0);
2612 	db->db_dirtycnt -= 1;
2613 
2614 	if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2615 		ASSERT(db->db_state == DB_NOFILL || brtwrite ||
2616 		    arc_released(db->db_buf));
2617 		dbuf_destroy(db);
2618 		return (B_TRUE);
2619 	}
2620 
2621 	return (B_FALSE);
2622 }
2623 
2624 static void
2625 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2626 {
2627 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2628 	boolean_t undirty = B_FALSE;
2629 
2630 	ASSERT(tx->tx_txg != 0);
2631 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2632 
2633 	/*
2634 	 * Quick check for dirtiness.  For already dirty blocks, this
2635 	 * reduces runtime of this function by >90%, and overall performance
2636 	 * by 50% for some workloads (e.g. file deletion with indirect blocks
2637 	 * cached).
2638 	 */
2639 	mutex_enter(&db->db_mtx);
2640 
2641 	if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2642 		dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2643 		/*
2644 		 * It's possible that it is already dirty but not cached,
2645 		 * because there are some calls to dbuf_dirty() that don't
2646 		 * go through dmu_buf_will_dirty().
2647 		 */
2648 		if (dr != NULL) {
2649 			if (dr->dt.dl.dr_brtwrite) {
2650 				/*
2651 				 * Block cloning: If we are dirtying a cloned
2652 				 * block, we cannot simply redirty it, because
2653 				 * this dr has no data associated with it.
2654 				 * We will go through a full undirtying below,
2655 				 * before dirtying it again.
2656 				 */
2657 				undirty = B_TRUE;
2658 			} else {
2659 				/* This dbuf is already dirty and cached. */
2660 				dbuf_redirty(dr);
2661 				mutex_exit(&db->db_mtx);
2662 				return;
2663 			}
2664 		}
2665 	}
2666 	mutex_exit(&db->db_mtx);
2667 
2668 	DB_DNODE_ENTER(db);
2669 	if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2670 		flags |= DB_RF_HAVESTRUCT;
2671 	DB_DNODE_EXIT(db);
2672 
2673 	/*
2674 	 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2675 	 * want to make sure dbuf_read() will read the pending cloned block and
2676 	 * not the uderlying block that is being replaced. dbuf_undirty() will
2677 	 * do dbuf_unoverride(), so we will end up with cloned block content,
2678 	 * without overridden BP.
2679 	 */
2680 	(void) dbuf_read(db, NULL, flags);
2681 	if (undirty) {
2682 		mutex_enter(&db->db_mtx);
2683 		VERIFY(!dbuf_undirty(db, tx));
2684 		mutex_exit(&db->db_mtx);
2685 	}
2686 	(void) dbuf_dirty(db, tx);
2687 }
2688 
2689 void
2690 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2691 {
2692 	dmu_buf_will_dirty_impl(db_fake,
2693 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2694 }
2695 
2696 boolean_t
2697 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2698 {
2699 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2700 	dbuf_dirty_record_t *dr;
2701 
2702 	mutex_enter(&db->db_mtx);
2703 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2704 	mutex_exit(&db->db_mtx);
2705 	return (dr != NULL);
2706 }
2707 
2708 void
2709 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx)
2710 {
2711 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2712 
2713 	/*
2714 	 * Block cloning: We are going to clone into this block, so undirty
2715 	 * modifications done to this block so far in this txg. This includes
2716 	 * writes and clones into this block.
2717 	 */
2718 	mutex_enter(&db->db_mtx);
2719 	DBUF_VERIFY(db);
2720 	VERIFY(!dbuf_undirty(db, tx));
2721 	ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2722 	if (db->db_buf != NULL) {
2723 		arc_buf_destroy(db->db_buf, db);
2724 		db->db_buf = NULL;
2725 		dbuf_clear_data(db);
2726 	}
2727 
2728 	db->db_state = DB_NOFILL;
2729 	DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone");
2730 
2731 	DBUF_VERIFY(db);
2732 	mutex_exit(&db->db_mtx);
2733 
2734 	dbuf_noread(db);
2735 	(void) dbuf_dirty(db, tx);
2736 }
2737 
2738 void
2739 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2740 {
2741 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2742 
2743 	mutex_enter(&db->db_mtx);
2744 	db->db_state = DB_NOFILL;
2745 	DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2746 	mutex_exit(&db->db_mtx);
2747 
2748 	dbuf_noread(db);
2749 	(void) dbuf_dirty(db, tx);
2750 }
2751 
2752 void
2753 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2754 {
2755 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2756 
2757 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2758 	ASSERT(tx->tx_txg != 0);
2759 	ASSERT(db->db_level == 0);
2760 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2761 
2762 	ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2763 	    dmu_tx_private_ok(tx));
2764 
2765 	mutex_enter(&db->db_mtx);
2766 	if (db->db_state == DB_NOFILL) {
2767 		/*
2768 		 * Block cloning: We will be completely overwriting a block
2769 		 * cloned in this transaction group, so let's undirty the
2770 		 * pending clone and mark the block as uncached. This will be
2771 		 * as if the clone was never done.  But if the fill can fail
2772 		 * we should have a way to return back to the cloned data.
2773 		 */
2774 		if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) {
2775 			mutex_exit(&db->db_mtx);
2776 			dmu_buf_will_dirty(db_fake, tx);
2777 			return;
2778 		}
2779 		VERIFY(!dbuf_undirty(db, tx));
2780 		db->db_state = DB_UNCACHED;
2781 	}
2782 	mutex_exit(&db->db_mtx);
2783 
2784 	dbuf_noread(db);
2785 	(void) dbuf_dirty(db, tx);
2786 }
2787 
2788 /*
2789  * This function is effectively the same as dmu_buf_will_dirty(), but
2790  * indicates the caller expects raw encrypted data in the db, and provides
2791  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2792  * blkptr_t when this dbuf is written.  This is only used for blocks of
2793  * dnodes, during raw receive.
2794  */
2795 void
2796 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2797     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2798 {
2799 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2800 	dbuf_dirty_record_t *dr;
2801 
2802 	/*
2803 	 * dr_has_raw_params is only processed for blocks of dnodes
2804 	 * (see dbuf_sync_dnode_leaf_crypt()).
2805 	 */
2806 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2807 	ASSERT3U(db->db_level, ==, 0);
2808 	ASSERT(db->db_objset->os_raw_receive);
2809 
2810 	dmu_buf_will_dirty_impl(db_fake,
2811 	    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2812 
2813 	dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2814 
2815 	ASSERT3P(dr, !=, NULL);
2816 
2817 	dr->dt.dl.dr_has_raw_params = B_TRUE;
2818 	dr->dt.dl.dr_byteorder = byteorder;
2819 	memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2820 	memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2821 	memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2822 }
2823 
2824 static void
2825 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2826 {
2827 	struct dirty_leaf *dl;
2828 	dbuf_dirty_record_t *dr;
2829 
2830 	dr = list_head(&db->db_dirty_records);
2831 	ASSERT3P(dr, !=, NULL);
2832 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2833 	dl = &dr->dt.dl;
2834 	dl->dr_overridden_by = *bp;
2835 	dl->dr_override_state = DR_OVERRIDDEN;
2836 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2837 }
2838 
2839 boolean_t
2840 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2841 {
2842 	(void) tx;
2843 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2844 	mutex_enter(&db->db_mtx);
2845 	DBUF_VERIFY(db);
2846 
2847 	if (db->db_state == DB_FILL) {
2848 		if (db->db_level == 0 && db->db_freed_in_flight) {
2849 			ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2850 			/* we were freed while filling */
2851 			/* XXX dbuf_undirty? */
2852 			memset(db->db.db_data, 0, db->db.db_size);
2853 			db->db_freed_in_flight = FALSE;
2854 			db->db_state = DB_CACHED;
2855 			DTRACE_SET_STATE(db,
2856 			    "fill done handling freed in flight");
2857 			failed = B_FALSE;
2858 		} else if (failed) {
2859 			VERIFY(!dbuf_undirty(db, tx));
2860 			db->db_buf = NULL;
2861 			dbuf_clear_data(db);
2862 			DTRACE_SET_STATE(db, "fill failed");
2863 		} else {
2864 			db->db_state = DB_CACHED;
2865 			DTRACE_SET_STATE(db, "fill done");
2866 		}
2867 		cv_broadcast(&db->db_changed);
2868 	} else {
2869 		db->db_state = DB_CACHED;
2870 		failed = B_FALSE;
2871 	}
2872 	mutex_exit(&db->db_mtx);
2873 	return (failed);
2874 }
2875 
2876 void
2877 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2878     bp_embedded_type_t etype, enum zio_compress comp,
2879     int uncompressed_size, int compressed_size, int byteorder,
2880     dmu_tx_t *tx)
2881 {
2882 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2883 	struct dirty_leaf *dl;
2884 	dmu_object_type_t type;
2885 	dbuf_dirty_record_t *dr;
2886 
2887 	if (etype == BP_EMBEDDED_TYPE_DATA) {
2888 		ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2889 		    SPA_FEATURE_EMBEDDED_DATA));
2890 	}
2891 
2892 	DB_DNODE_ENTER(db);
2893 	type = DB_DNODE(db)->dn_type;
2894 	DB_DNODE_EXIT(db);
2895 
2896 	ASSERT0(db->db_level);
2897 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2898 
2899 	dmu_buf_will_not_fill(dbuf, tx);
2900 
2901 	dr = list_head(&db->db_dirty_records);
2902 	ASSERT3P(dr, !=, NULL);
2903 	ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2904 	dl = &dr->dt.dl;
2905 	encode_embedded_bp_compressed(&dl->dr_overridden_by,
2906 	    data, comp, uncompressed_size, compressed_size);
2907 	BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2908 	BP_SET_TYPE(&dl->dr_overridden_by, type);
2909 	BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2910 	BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2911 
2912 	dl->dr_override_state = DR_OVERRIDDEN;
2913 	BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2914 }
2915 
2916 void
2917 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2918 {
2919 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2920 	dmu_object_type_t type;
2921 	ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2922 	    SPA_FEATURE_REDACTED_DATASETS));
2923 
2924 	DB_DNODE_ENTER(db);
2925 	type = DB_DNODE(db)->dn_type;
2926 	DB_DNODE_EXIT(db);
2927 
2928 	ASSERT0(db->db_level);
2929 	dmu_buf_will_not_fill(dbuf, tx);
2930 
2931 	blkptr_t bp = { { { {0} } } };
2932 	BP_SET_TYPE(&bp, type);
2933 	BP_SET_LEVEL(&bp, 0);
2934 	BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2935 	BP_SET_REDACTED(&bp);
2936 	BPE_SET_LSIZE(&bp, dbuf->db_size);
2937 
2938 	dbuf_override_impl(db, &bp, tx);
2939 }
2940 
2941 /*
2942  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2943  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2944  */
2945 void
2946 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2947 {
2948 	ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2949 	ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2950 	ASSERT(db->db_level == 0);
2951 	ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2952 	ASSERT(buf != NULL);
2953 	ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2954 	ASSERT(tx->tx_txg != 0);
2955 
2956 	arc_return_buf(buf, db);
2957 	ASSERT(arc_released(buf));
2958 
2959 	mutex_enter(&db->db_mtx);
2960 
2961 	while (db->db_state == DB_READ || db->db_state == DB_FILL)
2962 		cv_wait(&db->db_changed, &db->db_mtx);
2963 
2964 	ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
2965 	    db->db_state == DB_NOFILL);
2966 
2967 	if (db->db_state == DB_CACHED &&
2968 	    zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2969 		/*
2970 		 * In practice, we will never have a case where we have an
2971 		 * encrypted arc buffer while additional holds exist on the
2972 		 * dbuf. We don't handle this here so we simply assert that
2973 		 * fact instead.
2974 		 */
2975 		ASSERT(!arc_is_encrypted(buf));
2976 		mutex_exit(&db->db_mtx);
2977 		(void) dbuf_dirty(db, tx);
2978 		memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2979 		arc_buf_destroy(buf, db);
2980 		return;
2981 	}
2982 
2983 	if (db->db_state == DB_CACHED) {
2984 		dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2985 
2986 		ASSERT(db->db_buf != NULL);
2987 		if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2988 			ASSERT(dr->dt.dl.dr_data == db->db_buf);
2989 
2990 			if (!arc_released(db->db_buf)) {
2991 				ASSERT(dr->dt.dl.dr_override_state ==
2992 				    DR_OVERRIDDEN);
2993 				arc_release(db->db_buf, db);
2994 			}
2995 			dr->dt.dl.dr_data = buf;
2996 			arc_buf_destroy(db->db_buf, db);
2997 		} else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2998 			arc_release(db->db_buf, db);
2999 			arc_buf_destroy(db->db_buf, db);
3000 		}
3001 		db->db_buf = NULL;
3002 	} else if (db->db_state == DB_NOFILL) {
3003 		/*
3004 		 * We will be completely replacing the cloned block.  In case
3005 		 * it was cloned in this transaction group, let's undirty the
3006 		 * pending clone and mark the block as uncached. This will be
3007 		 * as if the clone was never done.
3008 		 */
3009 		VERIFY(!dbuf_undirty(db, tx));
3010 		db->db_state = DB_UNCACHED;
3011 	}
3012 	ASSERT(db->db_buf == NULL);
3013 	dbuf_set_data(db, buf);
3014 	db->db_state = DB_FILL;
3015 	DTRACE_SET_STATE(db, "filling assigned arcbuf");
3016 	mutex_exit(&db->db_mtx);
3017 	(void) dbuf_dirty(db, tx);
3018 	dmu_buf_fill_done(&db->db, tx, B_FALSE);
3019 }
3020 
3021 void
3022 dbuf_destroy(dmu_buf_impl_t *db)
3023 {
3024 	dnode_t *dn;
3025 	dmu_buf_impl_t *parent = db->db_parent;
3026 	dmu_buf_impl_t *dndb;
3027 
3028 	ASSERT(MUTEX_HELD(&db->db_mtx));
3029 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3030 
3031 	if (db->db_buf != NULL) {
3032 		arc_buf_destroy(db->db_buf, db);
3033 		db->db_buf = NULL;
3034 	}
3035 
3036 	if (db->db_blkid == DMU_BONUS_BLKID) {
3037 		int slots = DB_DNODE(db)->dn_num_slots;
3038 		int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3039 		if (db->db.db_data != NULL) {
3040 			kmem_free(db->db.db_data, bonuslen);
3041 			arc_space_return(bonuslen, ARC_SPACE_BONUS);
3042 			db->db_state = DB_UNCACHED;
3043 			DTRACE_SET_STATE(db, "buffer cleared");
3044 		}
3045 	}
3046 
3047 	dbuf_clear_data(db);
3048 
3049 	if (multilist_link_active(&db->db_cache_link)) {
3050 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3051 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3052 
3053 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3054 
3055 		ASSERT0(dmu_buf_user_size(&db->db));
3056 		(void) zfs_refcount_remove_many(
3057 		    &dbuf_caches[db->db_caching_status].size,
3058 		    db->db.db_size, db);
3059 
3060 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3061 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3062 		} else {
3063 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3064 			DBUF_STAT_BUMPDOWN(cache_count);
3065 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3066 			    db->db.db_size);
3067 		}
3068 		db->db_caching_status = DB_NO_CACHE;
3069 	}
3070 
3071 	ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3072 	ASSERT(db->db_data_pending == NULL);
3073 	ASSERT(list_is_empty(&db->db_dirty_records));
3074 
3075 	db->db_state = DB_EVICTING;
3076 	DTRACE_SET_STATE(db, "buffer eviction started");
3077 	db->db_blkptr = NULL;
3078 
3079 	/*
3080 	 * Now that db_state is DB_EVICTING, nobody else can find this via
3081 	 * the hash table.  We can now drop db_mtx, which allows us to
3082 	 * acquire the dn_dbufs_mtx.
3083 	 */
3084 	mutex_exit(&db->db_mtx);
3085 
3086 	DB_DNODE_ENTER(db);
3087 	dn = DB_DNODE(db);
3088 	dndb = dn->dn_dbuf;
3089 	if (db->db_blkid != DMU_BONUS_BLKID) {
3090 		boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3091 		if (needlock)
3092 			mutex_enter_nested(&dn->dn_dbufs_mtx,
3093 			    NESTED_SINGLE);
3094 		avl_remove(&dn->dn_dbufs, db);
3095 		membar_producer();
3096 		DB_DNODE_EXIT(db);
3097 		if (needlock)
3098 			mutex_exit(&dn->dn_dbufs_mtx);
3099 		/*
3100 		 * Decrementing the dbuf count means that the hold corresponding
3101 		 * to the removed dbuf is no longer discounted in dnode_move(),
3102 		 * so the dnode cannot be moved until after we release the hold.
3103 		 * The membar_producer() ensures visibility of the decremented
3104 		 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3105 		 * release any lock.
3106 		 */
3107 		mutex_enter(&dn->dn_mtx);
3108 		dnode_rele_and_unlock(dn, db, B_TRUE);
3109 		db->db_dnode_handle = NULL;
3110 
3111 		dbuf_hash_remove(db);
3112 	} else {
3113 		DB_DNODE_EXIT(db);
3114 	}
3115 
3116 	ASSERT(zfs_refcount_is_zero(&db->db_holds));
3117 
3118 	db->db_parent = NULL;
3119 
3120 	ASSERT(db->db_buf == NULL);
3121 	ASSERT(db->db.db_data == NULL);
3122 	ASSERT(db->db_hash_next == NULL);
3123 	ASSERT(db->db_blkptr == NULL);
3124 	ASSERT(db->db_data_pending == NULL);
3125 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3126 	ASSERT(!multilist_link_active(&db->db_cache_link));
3127 
3128 	/*
3129 	 * If this dbuf is referenced from an indirect dbuf,
3130 	 * decrement the ref count on the indirect dbuf.
3131 	 */
3132 	if (parent && parent != dndb) {
3133 		mutex_enter(&parent->db_mtx);
3134 		dbuf_rele_and_unlock(parent, db, B_TRUE);
3135 	}
3136 
3137 	kmem_cache_free(dbuf_kmem_cache, db);
3138 	arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3139 }
3140 
3141 /*
3142  * Note: While bpp will always be updated if the function returns success,
3143  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3144  * this happens when the dnode is the meta-dnode, or {user|group|project}used
3145  * object.
3146  */
3147 __attribute__((always_inline))
3148 static inline int
3149 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3150     dmu_buf_impl_t **parentp, blkptr_t **bpp)
3151 {
3152 	*parentp = NULL;
3153 	*bpp = NULL;
3154 
3155 	ASSERT(blkid != DMU_BONUS_BLKID);
3156 
3157 	if (blkid == DMU_SPILL_BLKID) {
3158 		mutex_enter(&dn->dn_mtx);
3159 		if (dn->dn_have_spill &&
3160 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3161 			*bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3162 		else
3163 			*bpp = NULL;
3164 		dbuf_add_ref(dn->dn_dbuf, NULL);
3165 		*parentp = dn->dn_dbuf;
3166 		mutex_exit(&dn->dn_mtx);
3167 		return (0);
3168 	}
3169 
3170 	int nlevels =
3171 	    (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3172 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3173 
3174 	ASSERT3U(level * epbs, <, 64);
3175 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3176 	/*
3177 	 * This assertion shouldn't trip as long as the max indirect block size
3178 	 * is less than 1M.  The reason for this is that up to that point,
3179 	 * the number of levels required to address an entire object with blocks
3180 	 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.	 In
3181 	 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3182 	 * (i.e. we can address the entire object), objects will all use at most
3183 	 * N-1 levels and the assertion won't overflow.	 However, once epbs is
3184 	 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
3185 	 * enough to address an entire object, so objects will have 5 levels,
3186 	 * but then this assertion will overflow.
3187 	 *
3188 	 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3189 	 * need to redo this logic to handle overflows.
3190 	 */
3191 	ASSERT(level >= nlevels ||
3192 	    ((nlevels - level - 1) * epbs) +
3193 	    highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3194 	if (level >= nlevels ||
3195 	    blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3196 	    ((nlevels - level - 1) * epbs)) ||
3197 	    (fail_sparse &&
3198 	    blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3199 		/* the buffer has no parent yet */
3200 		return (SET_ERROR(ENOENT));
3201 	} else if (level < nlevels-1) {
3202 		/* this block is referenced from an indirect block */
3203 		int err;
3204 
3205 		err = dbuf_hold_impl(dn, level + 1,
3206 		    blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3207 
3208 		if (err)
3209 			return (err);
3210 		err = dbuf_read(*parentp, NULL,
3211 		    (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3212 		if (err) {
3213 			dbuf_rele(*parentp, NULL);
3214 			*parentp = NULL;
3215 			return (err);
3216 		}
3217 		rw_enter(&(*parentp)->db_rwlock, RW_READER);
3218 		*bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3219 		    (blkid & ((1ULL << epbs) - 1));
3220 		if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3221 			ASSERT(BP_IS_HOLE(*bpp));
3222 		rw_exit(&(*parentp)->db_rwlock);
3223 		return (0);
3224 	} else {
3225 		/* the block is referenced from the dnode */
3226 		ASSERT3U(level, ==, nlevels-1);
3227 		ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3228 		    blkid < dn->dn_phys->dn_nblkptr);
3229 		if (dn->dn_dbuf) {
3230 			dbuf_add_ref(dn->dn_dbuf, NULL);
3231 			*parentp = dn->dn_dbuf;
3232 		}
3233 		*bpp = &dn->dn_phys->dn_blkptr[blkid];
3234 		return (0);
3235 	}
3236 }
3237 
3238 static dmu_buf_impl_t *
3239 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3240     dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3241 {
3242 	objset_t *os = dn->dn_objset;
3243 	dmu_buf_impl_t *db, *odb;
3244 
3245 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3246 	ASSERT(dn->dn_type != DMU_OT_NONE);
3247 
3248 	db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3249 
3250 	list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3251 	    offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3252 
3253 	db->db_objset = os;
3254 	db->db.db_object = dn->dn_object;
3255 	db->db_level = level;
3256 	db->db_blkid = blkid;
3257 	db->db_dirtycnt = 0;
3258 	db->db_dnode_handle = dn->dn_handle;
3259 	db->db_parent = parent;
3260 	db->db_blkptr = blkptr;
3261 	db->db_hash = hash;
3262 
3263 	db->db_user = NULL;
3264 	db->db_user_immediate_evict = FALSE;
3265 	db->db_freed_in_flight = FALSE;
3266 	db->db_pending_evict = FALSE;
3267 
3268 	if (blkid == DMU_BONUS_BLKID) {
3269 		ASSERT3P(parent, ==, dn->dn_dbuf);
3270 		db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3271 		    (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3272 		ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3273 		db->db.db_offset = DMU_BONUS_BLKID;
3274 		db->db_state = DB_UNCACHED;
3275 		DTRACE_SET_STATE(db, "bonus buffer created");
3276 		db->db_caching_status = DB_NO_CACHE;
3277 		/* the bonus dbuf is not placed in the hash table */
3278 		arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3279 		return (db);
3280 	} else if (blkid == DMU_SPILL_BLKID) {
3281 		db->db.db_size = (blkptr != NULL) ?
3282 		    BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3283 		db->db.db_offset = 0;
3284 	} else {
3285 		int blocksize =
3286 		    db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3287 		db->db.db_size = blocksize;
3288 		db->db.db_offset = db->db_blkid * blocksize;
3289 	}
3290 
3291 	/*
3292 	 * Hold the dn_dbufs_mtx while we get the new dbuf
3293 	 * in the hash table *and* added to the dbufs list.
3294 	 * This prevents a possible deadlock with someone
3295 	 * trying to look up this dbuf before it's added to the
3296 	 * dn_dbufs list.
3297 	 */
3298 	mutex_enter(&dn->dn_dbufs_mtx);
3299 	db->db_state = DB_EVICTING; /* not worth logging this state change */
3300 	if ((odb = dbuf_hash_insert(db)) != NULL) {
3301 		/* someone else inserted it first */
3302 		mutex_exit(&dn->dn_dbufs_mtx);
3303 		kmem_cache_free(dbuf_kmem_cache, db);
3304 		DBUF_STAT_BUMP(hash_insert_race);
3305 		return (odb);
3306 	}
3307 	avl_add(&dn->dn_dbufs, db);
3308 
3309 	db->db_state = DB_UNCACHED;
3310 	DTRACE_SET_STATE(db, "regular buffer created");
3311 	db->db_caching_status = DB_NO_CACHE;
3312 	mutex_exit(&dn->dn_dbufs_mtx);
3313 	arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3314 
3315 	if (parent && parent != dn->dn_dbuf)
3316 		dbuf_add_ref(parent, db);
3317 
3318 	ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3319 	    zfs_refcount_count(&dn->dn_holds) > 0);
3320 	(void) zfs_refcount_add(&dn->dn_holds, db);
3321 
3322 	dprintf_dbuf(db, "db=%p\n", db);
3323 
3324 	return (db);
3325 }
3326 
3327 /*
3328  * This function returns a block pointer and information about the object,
3329  * given a dnode and a block.  This is a publicly accessible version of
3330  * dbuf_findbp that only returns some information, rather than the
3331  * dbuf.  Note that the dnode passed in must be held, and the dn_struct_rwlock
3332  * should be locked as (at least) a reader.
3333  */
3334 int
3335 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3336     blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3337 {
3338 	dmu_buf_impl_t *dbp = NULL;
3339 	blkptr_t *bp2;
3340 	int err = 0;
3341 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3342 
3343 	err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3344 	if (err == 0) {
3345 		ASSERT3P(bp2, !=, NULL);
3346 		*bp = *bp2;
3347 		if (dbp != NULL)
3348 			dbuf_rele(dbp, NULL);
3349 		if (datablkszsec != NULL)
3350 			*datablkszsec = dn->dn_phys->dn_datablkszsec;
3351 		if (indblkshift != NULL)
3352 			*indblkshift = dn->dn_phys->dn_indblkshift;
3353 	}
3354 
3355 	return (err);
3356 }
3357 
3358 typedef struct dbuf_prefetch_arg {
3359 	spa_t *dpa_spa;	/* The spa to issue the prefetch in. */
3360 	zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3361 	int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3362 	int dpa_curlevel; /* The current level that we're reading */
3363 	dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3364 	zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3365 	zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3366 	arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3367 	dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3368 	void *dpa_arg; /* prefetch completion arg */
3369 } dbuf_prefetch_arg_t;
3370 
3371 static void
3372 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3373 {
3374 	if (dpa->dpa_cb != NULL) {
3375 		dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3376 		    dpa->dpa_zb.zb_blkid, io_done);
3377 	}
3378 	kmem_free(dpa, sizeof (*dpa));
3379 }
3380 
3381 static void
3382 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3383     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3384 {
3385 	(void) zio, (void) zb, (void) iobp;
3386 	dbuf_prefetch_arg_t *dpa = private;
3387 
3388 	if (abuf != NULL)
3389 		arc_buf_destroy(abuf, private);
3390 
3391 	dbuf_prefetch_fini(dpa, B_TRUE);
3392 }
3393 
3394 /*
3395  * Actually issue the prefetch read for the block given.
3396  */
3397 static void
3398 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3399 {
3400 	ASSERT(!BP_IS_REDACTED(bp) ||
3401 	    dsl_dataset_feature_is_active(
3402 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3403 	    SPA_FEATURE_REDACTED_DATASETS));
3404 
3405 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3406 		return (dbuf_prefetch_fini(dpa, B_FALSE));
3407 
3408 	int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3409 	arc_flags_t aflags =
3410 	    dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3411 	    ARC_FLAG_NO_BUF;
3412 
3413 	/* dnodes are always read as raw and then converted later */
3414 	if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3415 	    dpa->dpa_curlevel == 0)
3416 		zio_flags |= ZIO_FLAG_RAW;
3417 
3418 	ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3419 	ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3420 	ASSERT(dpa->dpa_zio != NULL);
3421 	(void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3422 	    dbuf_issue_final_prefetch_done, dpa,
3423 	    dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3424 }
3425 
3426 /*
3427  * Called when an indirect block above our prefetch target is read in.  This
3428  * will either read in the next indirect block down the tree or issue the actual
3429  * prefetch if the next block down is our target.
3430  */
3431 static void
3432 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3433     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3434 {
3435 	(void) zb, (void) iobp;
3436 	dbuf_prefetch_arg_t *dpa = private;
3437 
3438 	ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3439 	ASSERT3S(dpa->dpa_curlevel, >, 0);
3440 
3441 	if (abuf == NULL) {
3442 		ASSERT(zio == NULL || zio->io_error != 0);
3443 		dbuf_prefetch_fini(dpa, B_TRUE);
3444 		return;
3445 	}
3446 	ASSERT(zio == NULL || zio->io_error == 0);
3447 
3448 	/*
3449 	 * The dpa_dnode is only valid if we are called with a NULL
3450 	 * zio. This indicates that the arc_read() returned without
3451 	 * first calling zio_read() to issue a physical read. Once
3452 	 * a physical read is made the dpa_dnode must be invalidated
3453 	 * as the locks guarding it may have been dropped. If the
3454 	 * dpa_dnode is still valid, then we want to add it to the dbuf
3455 	 * cache. To do so, we must hold the dbuf associated with the block
3456 	 * we just prefetched, read its contents so that we associate it
3457 	 * with an arc_buf_t, and then release it.
3458 	 */
3459 	if (zio != NULL) {
3460 		ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3461 		if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3462 			ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3463 		} else {
3464 			ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3465 		}
3466 		ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3467 
3468 		dpa->dpa_dnode = NULL;
3469 	} else if (dpa->dpa_dnode != NULL) {
3470 		uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3471 		    (dpa->dpa_epbs * (dpa->dpa_curlevel -
3472 		    dpa->dpa_zb.zb_level));
3473 		dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3474 		    dpa->dpa_curlevel, curblkid, FTAG);
3475 		if (db == NULL) {
3476 			arc_buf_destroy(abuf, private);
3477 			dbuf_prefetch_fini(dpa, B_TRUE);
3478 			return;
3479 		}
3480 		(void) dbuf_read(db, NULL,
3481 		    DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3482 		dbuf_rele(db, FTAG);
3483 	}
3484 
3485 	dpa->dpa_curlevel--;
3486 	uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3487 	    (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3488 	blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3489 	    P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3490 
3491 	ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3492 	    dsl_dataset_feature_is_active(
3493 	    dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3494 	    SPA_FEATURE_REDACTED_DATASETS)));
3495 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3496 		arc_buf_destroy(abuf, private);
3497 		dbuf_prefetch_fini(dpa, B_TRUE);
3498 		return;
3499 	} else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3500 		ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3501 		dbuf_issue_final_prefetch(dpa, bp);
3502 	} else {
3503 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3504 		zbookmark_phys_t zb;
3505 
3506 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3507 		if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3508 			iter_aflags |= ARC_FLAG_L2CACHE;
3509 
3510 		ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3511 
3512 		SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3513 		    dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3514 
3515 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3516 		    bp, dbuf_prefetch_indirect_done, dpa,
3517 		    ZIO_PRIORITY_SYNC_READ,
3518 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3519 		    &iter_aflags, &zb);
3520 	}
3521 
3522 	arc_buf_destroy(abuf, private);
3523 }
3524 
3525 /*
3526  * Issue prefetch reads for the given block on the given level.  If the indirect
3527  * blocks above that block are not in memory, we will read them in
3528  * asynchronously.  As a result, this call never blocks waiting for a read to
3529  * complete. Note that the prefetch might fail if the dataset is encrypted and
3530  * the encryption key is unmapped before the IO completes.
3531  */
3532 int
3533 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3534     zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3535     void *arg)
3536 {
3537 	blkptr_t bp;
3538 	int epbs, nlevels, curlevel;
3539 	uint64_t curblkid;
3540 
3541 	ASSERT(blkid != DMU_BONUS_BLKID);
3542 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3543 
3544 	if (blkid > dn->dn_maxblkid)
3545 		goto no_issue;
3546 
3547 	if (level == 0 && dnode_block_freed(dn, blkid))
3548 		goto no_issue;
3549 
3550 	/*
3551 	 * This dnode hasn't been written to disk yet, so there's nothing to
3552 	 * prefetch.
3553 	 */
3554 	nlevels = dn->dn_phys->dn_nlevels;
3555 	if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3556 		goto no_issue;
3557 
3558 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3559 	if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3560 		goto no_issue;
3561 
3562 	dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3563 	    level, blkid, NULL);
3564 	if (db != NULL) {
3565 		mutex_exit(&db->db_mtx);
3566 		/*
3567 		 * This dbuf already exists.  It is either CACHED, or
3568 		 * (we assume) about to be read or filled.
3569 		 */
3570 		goto no_issue;
3571 	}
3572 
3573 	/*
3574 	 * Find the closest ancestor (indirect block) of the target block
3575 	 * that is present in the cache.  In this indirect block, we will
3576 	 * find the bp that is at curlevel, curblkid.
3577 	 */
3578 	curlevel = level;
3579 	curblkid = blkid;
3580 	while (curlevel < nlevels - 1) {
3581 		int parent_level = curlevel + 1;
3582 		uint64_t parent_blkid = curblkid >> epbs;
3583 		dmu_buf_impl_t *db;
3584 
3585 		if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3586 		    FALSE, TRUE, FTAG, &db) == 0) {
3587 			blkptr_t *bpp = db->db_buf->b_data;
3588 			bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3589 			dbuf_rele(db, FTAG);
3590 			break;
3591 		}
3592 
3593 		curlevel = parent_level;
3594 		curblkid = parent_blkid;
3595 	}
3596 
3597 	if (curlevel == nlevels - 1) {
3598 		/* No cached indirect blocks found. */
3599 		ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3600 		bp = dn->dn_phys->dn_blkptr[curblkid];
3601 	}
3602 	ASSERT(!BP_IS_REDACTED(&bp) ||
3603 	    dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3604 	    SPA_FEATURE_REDACTED_DATASETS));
3605 	if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3606 		goto no_issue;
3607 
3608 	ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3609 
3610 	zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3611 	    ZIO_FLAG_CANFAIL);
3612 
3613 	dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3614 	dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3615 	SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3616 	    dn->dn_object, level, blkid);
3617 	dpa->dpa_curlevel = curlevel;
3618 	dpa->dpa_prio = prio;
3619 	dpa->dpa_aflags = aflags;
3620 	dpa->dpa_spa = dn->dn_objset->os_spa;
3621 	dpa->dpa_dnode = dn;
3622 	dpa->dpa_epbs = epbs;
3623 	dpa->dpa_zio = pio;
3624 	dpa->dpa_cb = cb;
3625 	dpa->dpa_arg = arg;
3626 
3627 	if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3628 		dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3629 	else if (dnode_level_is_l2cacheable(&bp, dn, level))
3630 		dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3631 
3632 	/*
3633 	 * If we have the indirect just above us, no need to do the asynchronous
3634 	 * prefetch chain; we'll just run the last step ourselves.  If we're at
3635 	 * a higher level, though, we want to issue the prefetches for all the
3636 	 * indirect blocks asynchronously, so we can go on with whatever we were
3637 	 * doing.
3638 	 */
3639 	if (curlevel == level) {
3640 		ASSERT3U(curblkid, ==, blkid);
3641 		dbuf_issue_final_prefetch(dpa, &bp);
3642 	} else {
3643 		arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3644 		zbookmark_phys_t zb;
3645 
3646 		/* flag if L2ARC eligible, l2arc_noprefetch then decides */
3647 		if (dnode_level_is_l2cacheable(&bp, dn, level))
3648 			iter_aflags |= ARC_FLAG_L2CACHE;
3649 
3650 		SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3651 		    dn->dn_object, curlevel, curblkid);
3652 		(void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3653 		    &bp, dbuf_prefetch_indirect_done, dpa,
3654 		    ZIO_PRIORITY_SYNC_READ,
3655 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3656 		    &iter_aflags, &zb);
3657 	}
3658 	/*
3659 	 * We use pio here instead of dpa_zio since it's possible that
3660 	 * dpa may have already been freed.
3661 	 */
3662 	zio_nowait(pio);
3663 	return (1);
3664 no_issue:
3665 	if (cb != NULL)
3666 		cb(arg, level, blkid, B_FALSE);
3667 	return (0);
3668 }
3669 
3670 int
3671 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3672     arc_flags_t aflags)
3673 {
3674 
3675 	return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3676 }
3677 
3678 /*
3679  * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3680  * the case of encrypted, compressed and uncompressed buffers by
3681  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3682  * arc_alloc_compressed_buf() or arc_alloc_buf().*
3683  *
3684  * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3685  */
3686 noinline static void
3687 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3688 {
3689 	dbuf_dirty_record_t *dr = db->db_data_pending;
3690 	arc_buf_t *data = dr->dt.dl.dr_data;
3691 	enum zio_compress compress_type = arc_get_compression(data);
3692 	uint8_t complevel = arc_get_complevel(data);
3693 
3694 	if (arc_is_encrypted(data)) {
3695 		boolean_t byteorder;
3696 		uint8_t salt[ZIO_DATA_SALT_LEN];
3697 		uint8_t iv[ZIO_DATA_IV_LEN];
3698 		uint8_t mac[ZIO_DATA_MAC_LEN];
3699 
3700 		arc_get_raw_params(data, &byteorder, salt, iv, mac);
3701 		dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3702 		    dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3703 		    dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3704 		    compress_type, complevel));
3705 	} else if (compress_type != ZIO_COMPRESS_OFF) {
3706 		dbuf_set_data(db, arc_alloc_compressed_buf(
3707 		    dn->dn_objset->os_spa, db, arc_buf_size(data),
3708 		    arc_buf_lsize(data), compress_type, complevel));
3709 	} else {
3710 		dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3711 		    DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3712 	}
3713 
3714 	rw_enter(&db->db_rwlock, RW_WRITER);
3715 	memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3716 	rw_exit(&db->db_rwlock);
3717 }
3718 
3719 /*
3720  * Returns with db_holds incremented, and db_mtx not held.
3721  * Note: dn_struct_rwlock must be held.
3722  */
3723 int
3724 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3725     boolean_t fail_sparse, boolean_t fail_uncached,
3726     const void *tag, dmu_buf_impl_t **dbp)
3727 {
3728 	dmu_buf_impl_t *db, *parent = NULL;
3729 	uint64_t hv;
3730 
3731 	/* If the pool has been created, verify the tx_sync_lock is not held */
3732 	spa_t *spa = dn->dn_objset->os_spa;
3733 	dsl_pool_t *dp = spa->spa_dsl_pool;
3734 	if (dp != NULL) {
3735 		ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3736 	}
3737 
3738 	ASSERT(blkid != DMU_BONUS_BLKID);
3739 	ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3740 	ASSERT3U(dn->dn_nlevels, >, level);
3741 
3742 	*dbp = NULL;
3743 
3744 	/* dbuf_find() returns with db_mtx held */
3745 	db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3746 
3747 	if (db == NULL) {
3748 		blkptr_t *bp = NULL;
3749 		int err;
3750 
3751 		if (fail_uncached)
3752 			return (SET_ERROR(ENOENT));
3753 
3754 		ASSERT3P(parent, ==, NULL);
3755 		err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3756 		if (fail_sparse) {
3757 			if (err == 0 && bp && BP_IS_HOLE(bp))
3758 				err = SET_ERROR(ENOENT);
3759 			if (err) {
3760 				if (parent)
3761 					dbuf_rele(parent, NULL);
3762 				return (err);
3763 			}
3764 		}
3765 		if (err && err != ENOENT)
3766 			return (err);
3767 		db = dbuf_create(dn, level, blkid, parent, bp, hv);
3768 	}
3769 
3770 	if (fail_uncached && db->db_state != DB_CACHED) {
3771 		mutex_exit(&db->db_mtx);
3772 		return (SET_ERROR(ENOENT));
3773 	}
3774 
3775 	if (db->db_buf != NULL) {
3776 		arc_buf_access(db->db_buf);
3777 		ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3778 	}
3779 
3780 	ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3781 
3782 	/*
3783 	 * If this buffer is currently syncing out, and we are
3784 	 * still referencing it from db_data, we need to make a copy
3785 	 * of it in case we decide we want to dirty it again in this txg.
3786 	 */
3787 	if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3788 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
3789 	    db->db_state == DB_CACHED && db->db_data_pending) {
3790 		dbuf_dirty_record_t *dr = db->db_data_pending;
3791 		if (dr->dt.dl.dr_data == db->db_buf) {
3792 			ASSERT3P(db->db_buf, !=, NULL);
3793 			dbuf_hold_copy(dn, db);
3794 		}
3795 	}
3796 
3797 	if (multilist_link_active(&db->db_cache_link)) {
3798 		ASSERT(zfs_refcount_is_zero(&db->db_holds));
3799 		ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3800 		    db->db_caching_status == DB_DBUF_METADATA_CACHE);
3801 
3802 		multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3803 
3804 		uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db);
3805 		(void) zfs_refcount_remove_many(
3806 		    &dbuf_caches[db->db_caching_status].size, size, db);
3807 
3808 		if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3809 			DBUF_STAT_BUMPDOWN(metadata_cache_count);
3810 		} else {
3811 			DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3812 			DBUF_STAT_BUMPDOWN(cache_count);
3813 			DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
3814 		}
3815 		db->db_caching_status = DB_NO_CACHE;
3816 	}
3817 	(void) zfs_refcount_add(&db->db_holds, tag);
3818 	DBUF_VERIFY(db);
3819 	mutex_exit(&db->db_mtx);
3820 
3821 	/* NOTE: we can't rele the parent until after we drop the db_mtx */
3822 	if (parent)
3823 		dbuf_rele(parent, NULL);
3824 
3825 	ASSERT3P(DB_DNODE(db), ==, dn);
3826 	ASSERT3U(db->db_blkid, ==, blkid);
3827 	ASSERT3U(db->db_level, ==, level);
3828 	*dbp = db;
3829 
3830 	return (0);
3831 }
3832 
3833 dmu_buf_impl_t *
3834 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3835 {
3836 	return (dbuf_hold_level(dn, 0, blkid, tag));
3837 }
3838 
3839 dmu_buf_impl_t *
3840 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3841 {
3842 	dmu_buf_impl_t *db;
3843 	int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3844 	return (err ? NULL : db);
3845 }
3846 
3847 void
3848 dbuf_create_bonus(dnode_t *dn)
3849 {
3850 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3851 
3852 	ASSERT(dn->dn_bonus == NULL);
3853 	dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3854 	    dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3855 }
3856 
3857 int
3858 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3859 {
3860 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3861 
3862 	if (db->db_blkid != DMU_SPILL_BLKID)
3863 		return (SET_ERROR(ENOTSUP));
3864 	if (blksz == 0)
3865 		blksz = SPA_MINBLOCKSIZE;
3866 	ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3867 	blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3868 
3869 	dbuf_new_size(db, blksz, tx);
3870 
3871 	return (0);
3872 }
3873 
3874 void
3875 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3876 {
3877 	dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3878 }
3879 
3880 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3881 void
3882 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3883 {
3884 	int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3885 	VERIFY3S(holds, >, 1);
3886 }
3887 
3888 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3889 boolean_t
3890 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3891     const void *tag)
3892 {
3893 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3894 	dmu_buf_impl_t *found_db;
3895 	boolean_t result = B_FALSE;
3896 
3897 	if (blkid == DMU_BONUS_BLKID)
3898 		found_db = dbuf_find_bonus(os, obj);
3899 	else
3900 		found_db = dbuf_find(os, obj, 0, blkid, NULL);
3901 
3902 	if (found_db != NULL) {
3903 		if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3904 			(void) zfs_refcount_add(&db->db_holds, tag);
3905 			result = B_TRUE;
3906 		}
3907 		mutex_exit(&found_db->db_mtx);
3908 	}
3909 	return (result);
3910 }
3911 
3912 /*
3913  * If you call dbuf_rele() you had better not be referencing the dnode handle
3914  * unless you have some other direct or indirect hold on the dnode. (An indirect
3915  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3916  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3917  * dnode's parent dbuf evicting its dnode handles.
3918  */
3919 void
3920 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3921 {
3922 	mutex_enter(&db->db_mtx);
3923 	dbuf_rele_and_unlock(db, tag, B_FALSE);
3924 }
3925 
3926 void
3927 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3928 {
3929 	dbuf_rele((dmu_buf_impl_t *)db, tag);
3930 }
3931 
3932 /*
3933  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3934  * db_dirtycnt and db_holds to be updated atomically.  The 'evicting'
3935  * argument should be set if we are already in the dbuf-evicting code
3936  * path, in which case we don't want to recursively evict.  This allows us to
3937  * avoid deeply nested stacks that would have a call flow similar to this:
3938  *
3939  * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3940  *	^						|
3941  *	|						|
3942  *	+-----dbuf_destroy()<--dbuf_evict_one()<--------+
3943  *
3944  */
3945 void
3946 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3947 {
3948 	int64_t holds;
3949 	uint64_t size;
3950 
3951 	ASSERT(MUTEX_HELD(&db->db_mtx));
3952 	DBUF_VERIFY(db);
3953 
3954 	/*
3955 	 * Remove the reference to the dbuf before removing its hold on the
3956 	 * dnode so we can guarantee in dnode_move() that a referenced bonus
3957 	 * buffer has a corresponding dnode hold.
3958 	 */
3959 	holds = zfs_refcount_remove(&db->db_holds, tag);
3960 	ASSERT(holds >= 0);
3961 
3962 	/*
3963 	 * We can't freeze indirects if there is a possibility that they
3964 	 * may be modified in the current syncing context.
3965 	 */
3966 	if (db->db_buf != NULL &&
3967 	    holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3968 		arc_buf_freeze(db->db_buf);
3969 	}
3970 
3971 	if (holds == db->db_dirtycnt &&
3972 	    db->db_level == 0 && db->db_user_immediate_evict)
3973 		dbuf_evict_user(db);
3974 
3975 	if (holds == 0) {
3976 		if (db->db_blkid == DMU_BONUS_BLKID) {
3977 			dnode_t *dn;
3978 			boolean_t evict_dbuf = db->db_pending_evict;
3979 
3980 			/*
3981 			 * If the dnode moves here, we cannot cross this
3982 			 * barrier until the move completes.
3983 			 */
3984 			DB_DNODE_ENTER(db);
3985 
3986 			dn = DB_DNODE(db);
3987 			atomic_dec_32(&dn->dn_dbufs_count);
3988 
3989 			/*
3990 			 * Decrementing the dbuf count means that the bonus
3991 			 * buffer's dnode hold is no longer discounted in
3992 			 * dnode_move(). The dnode cannot move until after
3993 			 * the dnode_rele() below.
3994 			 */
3995 			DB_DNODE_EXIT(db);
3996 
3997 			/*
3998 			 * Do not reference db after its lock is dropped.
3999 			 * Another thread may evict it.
4000 			 */
4001 			mutex_exit(&db->db_mtx);
4002 
4003 			if (evict_dbuf)
4004 				dnode_evict_bonus(dn);
4005 
4006 			dnode_rele(dn, db);
4007 		} else if (db->db_buf == NULL) {
4008 			/*
4009 			 * This is a special case: we never associated this
4010 			 * dbuf with any data allocated from the ARC.
4011 			 */
4012 			ASSERT(db->db_state == DB_UNCACHED ||
4013 			    db->db_state == DB_NOFILL);
4014 			dbuf_destroy(db);
4015 		} else if (arc_released(db->db_buf)) {
4016 			/*
4017 			 * This dbuf has anonymous data associated with it.
4018 			 */
4019 			dbuf_destroy(db);
4020 		} else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4021 		    db->db_pending_evict) {
4022 			dbuf_destroy(db);
4023 		} else if (!multilist_link_active(&db->db_cache_link)) {
4024 			ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4025 
4026 			dbuf_cached_state_t dcs =
4027 			    dbuf_include_in_metadata_cache(db) ?
4028 			    DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4029 			db->db_caching_status = dcs;
4030 
4031 			multilist_insert(&dbuf_caches[dcs].cache, db);
4032 			uint64_t db_size = db->db.db_size +
4033 			    dmu_buf_user_size(&db->db);
4034 			size = zfs_refcount_add_many(
4035 			    &dbuf_caches[dcs].size, db_size, db);
4036 			uint8_t db_level = db->db_level;
4037 			mutex_exit(&db->db_mtx);
4038 
4039 			if (dcs == DB_DBUF_METADATA_CACHE) {
4040 				DBUF_STAT_BUMP(metadata_cache_count);
4041 				DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4042 				    size);
4043 			} else {
4044 				DBUF_STAT_BUMP(cache_count);
4045 				DBUF_STAT_MAX(cache_size_bytes_max, size);
4046 				DBUF_STAT_BUMP(cache_levels[db_level]);
4047 				DBUF_STAT_INCR(cache_levels_bytes[db_level],
4048 				    db_size);
4049 			}
4050 
4051 			if (dcs == DB_DBUF_CACHE && !evicting)
4052 				dbuf_evict_notify(size);
4053 		}
4054 	} else {
4055 		mutex_exit(&db->db_mtx);
4056 	}
4057 
4058 }
4059 
4060 #pragma weak dmu_buf_refcount = dbuf_refcount
4061 uint64_t
4062 dbuf_refcount(dmu_buf_impl_t *db)
4063 {
4064 	return (zfs_refcount_count(&db->db_holds));
4065 }
4066 
4067 uint64_t
4068 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4069 {
4070 	uint64_t holds;
4071 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4072 
4073 	mutex_enter(&db->db_mtx);
4074 	ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4075 	holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4076 	mutex_exit(&db->db_mtx);
4077 
4078 	return (holds);
4079 }
4080 
4081 void *
4082 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4083     dmu_buf_user_t *new_user)
4084 {
4085 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4086 
4087 	mutex_enter(&db->db_mtx);
4088 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4089 	if (db->db_user == old_user)
4090 		db->db_user = new_user;
4091 	else
4092 		old_user = db->db_user;
4093 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4094 	mutex_exit(&db->db_mtx);
4095 
4096 	return (old_user);
4097 }
4098 
4099 void *
4100 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4101 {
4102 	return (dmu_buf_replace_user(db_fake, NULL, user));
4103 }
4104 
4105 void *
4106 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4107 {
4108 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4109 
4110 	db->db_user_immediate_evict = TRUE;
4111 	return (dmu_buf_set_user(db_fake, user));
4112 }
4113 
4114 void *
4115 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4116 {
4117 	return (dmu_buf_replace_user(db_fake, user, NULL));
4118 }
4119 
4120 void *
4121 dmu_buf_get_user(dmu_buf_t *db_fake)
4122 {
4123 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4124 
4125 	dbuf_verify_user(db, DBVU_NOT_EVICTING);
4126 	return (db->db_user);
4127 }
4128 
4129 uint64_t
4130 dmu_buf_user_size(dmu_buf_t *db_fake)
4131 {
4132 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4133 	if (db->db_user == NULL)
4134 		return (0);
4135 	return (atomic_load_64(&db->db_user->dbu_size));
4136 }
4137 
4138 void
4139 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4140 {
4141 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4142 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4143 	ASSERT3P(db->db_user, !=, NULL);
4144 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4145 	atomic_add_64(&db->db_user->dbu_size, nadd);
4146 }
4147 
4148 void
4149 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4150 {
4151 	dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4152 	ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4153 	ASSERT3P(db->db_user, !=, NULL);
4154 	ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4155 	atomic_sub_64(&db->db_user->dbu_size, nsub);
4156 }
4157 
4158 void
4159 dmu_buf_user_evict_wait(void)
4160 {
4161 	taskq_wait(dbu_evict_taskq);
4162 }
4163 
4164 blkptr_t *
4165 dmu_buf_get_blkptr(dmu_buf_t *db)
4166 {
4167 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4168 	return (dbi->db_blkptr);
4169 }
4170 
4171 objset_t *
4172 dmu_buf_get_objset(dmu_buf_t *db)
4173 {
4174 	dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4175 	return (dbi->db_objset);
4176 }
4177 
4178 static void
4179 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4180 {
4181 	/* ASSERT(dmu_tx_is_syncing(tx) */
4182 	ASSERT(MUTEX_HELD(&db->db_mtx));
4183 
4184 	if (db->db_blkptr != NULL)
4185 		return;
4186 
4187 	if (db->db_blkid == DMU_SPILL_BLKID) {
4188 		db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4189 		BP_ZERO(db->db_blkptr);
4190 		return;
4191 	}
4192 	if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4193 		/*
4194 		 * This buffer was allocated at a time when there was
4195 		 * no available blkptrs from the dnode, or it was
4196 		 * inappropriate to hook it in (i.e., nlevels mismatch).
4197 		 */
4198 		ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4199 		ASSERT(db->db_parent == NULL);
4200 		db->db_parent = dn->dn_dbuf;
4201 		db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4202 		DBUF_VERIFY(db);
4203 	} else {
4204 		dmu_buf_impl_t *parent = db->db_parent;
4205 		int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4206 
4207 		ASSERT(dn->dn_phys->dn_nlevels > 1);
4208 		if (parent == NULL) {
4209 			mutex_exit(&db->db_mtx);
4210 			rw_enter(&dn->dn_struct_rwlock, RW_READER);
4211 			parent = dbuf_hold_level(dn, db->db_level + 1,
4212 			    db->db_blkid >> epbs, db);
4213 			rw_exit(&dn->dn_struct_rwlock);
4214 			mutex_enter(&db->db_mtx);
4215 			db->db_parent = parent;
4216 		}
4217 		db->db_blkptr = (blkptr_t *)parent->db.db_data +
4218 		    (db->db_blkid & ((1ULL << epbs) - 1));
4219 		DBUF_VERIFY(db);
4220 	}
4221 }
4222 
4223 static void
4224 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4225 {
4226 	dmu_buf_impl_t *db = dr->dr_dbuf;
4227 	void *data = dr->dt.dl.dr_data;
4228 
4229 	ASSERT0(db->db_level);
4230 	ASSERT(MUTEX_HELD(&db->db_mtx));
4231 	ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4232 	ASSERT(data != NULL);
4233 
4234 	dnode_t *dn = dr->dr_dnode;
4235 	ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4236 	    DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4237 	memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4238 
4239 	dbuf_sync_leaf_verify_bonus_dnode(dr);
4240 
4241 	dbuf_undirty_bonus(dr);
4242 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4243 }
4244 
4245 /*
4246  * When syncing out a blocks of dnodes, adjust the block to deal with
4247  * encryption.  Normally, we make sure the block is decrypted before writing
4248  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
4249  * from a raw receive.  In this case, set the ARC buf's crypt params so
4250  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4251  */
4252 static void
4253 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4254 {
4255 	int err;
4256 	dmu_buf_impl_t *db = dr->dr_dbuf;
4257 
4258 	ASSERT(MUTEX_HELD(&db->db_mtx));
4259 	ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4260 	ASSERT3U(db->db_level, ==, 0);
4261 
4262 	if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4263 		zbookmark_phys_t zb;
4264 
4265 		/*
4266 		 * Unfortunately, there is currently no mechanism for
4267 		 * syncing context to handle decryption errors. An error
4268 		 * here is only possible if an attacker maliciously
4269 		 * changed a dnode block and updated the associated
4270 		 * checksums going up the block tree.
4271 		 */
4272 		SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4273 		    db->db.db_object, db->db_level, db->db_blkid);
4274 		err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4275 		    &zb, B_TRUE);
4276 		if (err)
4277 			panic("Invalid dnode block MAC");
4278 	} else if (dr->dt.dl.dr_has_raw_params) {
4279 		(void) arc_release(dr->dt.dl.dr_data, db);
4280 		arc_convert_to_raw(dr->dt.dl.dr_data,
4281 		    dmu_objset_id(db->db_objset),
4282 		    dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4283 		    dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4284 	}
4285 }
4286 
4287 /*
4288  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4289  * is critical the we not allow the compiler to inline this function in to
4290  * dbuf_sync_list() thereby drastically bloating the stack usage.
4291  */
4292 noinline static void
4293 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4294 {
4295 	dmu_buf_impl_t *db = dr->dr_dbuf;
4296 	dnode_t *dn = dr->dr_dnode;
4297 
4298 	ASSERT(dmu_tx_is_syncing(tx));
4299 
4300 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4301 
4302 	mutex_enter(&db->db_mtx);
4303 
4304 	ASSERT(db->db_level > 0);
4305 	DBUF_VERIFY(db);
4306 
4307 	/* Read the block if it hasn't been read yet. */
4308 	if (db->db_buf == NULL) {
4309 		mutex_exit(&db->db_mtx);
4310 		(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4311 		mutex_enter(&db->db_mtx);
4312 	}
4313 	ASSERT3U(db->db_state, ==, DB_CACHED);
4314 	ASSERT(db->db_buf != NULL);
4315 
4316 	/* Indirect block size must match what the dnode thinks it is. */
4317 	ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4318 	dbuf_check_blkptr(dn, db);
4319 
4320 	/* Provide the pending dirty record to child dbufs */
4321 	db->db_data_pending = dr;
4322 
4323 	mutex_exit(&db->db_mtx);
4324 
4325 	dbuf_write(dr, db->db_buf, tx);
4326 
4327 	zio_t *zio = dr->dr_zio;
4328 	mutex_enter(&dr->dt.di.dr_mtx);
4329 	dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4330 	ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4331 	mutex_exit(&dr->dt.di.dr_mtx);
4332 	zio_nowait(zio);
4333 }
4334 
4335 /*
4336  * Verify that the size of the data in our bonus buffer does not exceed
4337  * its recorded size.
4338  *
4339  * The purpose of this verification is to catch any cases in development
4340  * where the size of a phys structure (i.e space_map_phys_t) grows and,
4341  * due to incorrect feature management, older pools expect to read more
4342  * data even though they didn't actually write it to begin with.
4343  *
4344  * For a example, this would catch an error in the feature logic where we
4345  * open an older pool and we expect to write the space map histogram of
4346  * a space map with size SPACE_MAP_SIZE_V0.
4347  */
4348 static void
4349 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4350 {
4351 #ifdef ZFS_DEBUG
4352 	dnode_t *dn = dr->dr_dnode;
4353 
4354 	/*
4355 	 * Encrypted bonus buffers can have data past their bonuslen.
4356 	 * Skip the verification of these blocks.
4357 	 */
4358 	if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4359 		return;
4360 
4361 	uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4362 	uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4363 	ASSERT3U(bonuslen, <=, maxbonuslen);
4364 
4365 	arc_buf_t *datap = dr->dt.dl.dr_data;
4366 	char *datap_end = ((char *)datap) + bonuslen;
4367 	char *datap_max = ((char *)datap) + maxbonuslen;
4368 
4369 	/* ensure that everything is zero after our data */
4370 	for (; datap_end < datap_max; datap_end++)
4371 		ASSERT(*datap_end == 0);
4372 #endif
4373 }
4374 
4375 static blkptr_t *
4376 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4377 {
4378 	/* This must be a lightweight dirty record. */
4379 	ASSERT3P(dr->dr_dbuf, ==, NULL);
4380 	dnode_t *dn = dr->dr_dnode;
4381 
4382 	if (dn->dn_phys->dn_nlevels == 1) {
4383 		VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4384 		return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4385 	} else {
4386 		dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4387 		int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4388 		VERIFY3U(parent_db->db_level, ==, 1);
4389 		VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4390 		VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4391 		blkptr_t *bp = parent_db->db.db_data;
4392 		return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4393 	}
4394 }
4395 
4396 static void
4397 dbuf_lightweight_ready(zio_t *zio)
4398 {
4399 	dbuf_dirty_record_t *dr = zio->io_private;
4400 	blkptr_t *bp = zio->io_bp;
4401 
4402 	if (zio->io_error != 0)
4403 		return;
4404 
4405 	dnode_t *dn = dr->dr_dnode;
4406 
4407 	blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4408 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4409 	int64_t delta = bp_get_dsize_sync(spa, bp) -
4410 	    bp_get_dsize_sync(spa, bp_orig);
4411 	dnode_diduse_space(dn, delta);
4412 
4413 	uint64_t blkid = dr->dt.dll.dr_blkid;
4414 	mutex_enter(&dn->dn_mtx);
4415 	if (blkid > dn->dn_phys->dn_maxblkid) {
4416 		ASSERT0(dn->dn_objset->os_raw_receive);
4417 		dn->dn_phys->dn_maxblkid = blkid;
4418 	}
4419 	mutex_exit(&dn->dn_mtx);
4420 
4421 	if (!BP_IS_EMBEDDED(bp)) {
4422 		uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4423 		BP_SET_FILL(bp, fill);
4424 	}
4425 
4426 	dmu_buf_impl_t *parent_db;
4427 	EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4428 	if (dr->dr_parent == NULL) {
4429 		parent_db = dn->dn_dbuf;
4430 	} else {
4431 		parent_db = dr->dr_parent->dr_dbuf;
4432 	}
4433 	rw_enter(&parent_db->db_rwlock, RW_WRITER);
4434 	*bp_orig = *bp;
4435 	rw_exit(&parent_db->db_rwlock);
4436 }
4437 
4438 static void
4439 dbuf_lightweight_done(zio_t *zio)
4440 {
4441 	dbuf_dirty_record_t *dr = zio->io_private;
4442 
4443 	VERIFY0(zio->io_error);
4444 
4445 	objset_t *os = dr->dr_dnode->dn_objset;
4446 	dmu_tx_t *tx = os->os_synctx;
4447 
4448 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4449 		ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4450 	} else {
4451 		dsl_dataset_t *ds = os->os_dsl_dataset;
4452 		(void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4453 		dsl_dataset_block_born(ds, zio->io_bp, tx);
4454 	}
4455 
4456 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4457 	    zio->io_txg);
4458 
4459 	abd_free(dr->dt.dll.dr_abd);
4460 	kmem_free(dr, sizeof (*dr));
4461 }
4462 
4463 noinline static void
4464 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4465 {
4466 	dnode_t *dn = dr->dr_dnode;
4467 	zio_t *pio;
4468 	if (dn->dn_phys->dn_nlevels == 1) {
4469 		pio = dn->dn_zio;
4470 	} else {
4471 		pio = dr->dr_parent->dr_zio;
4472 	}
4473 
4474 	zbookmark_phys_t zb = {
4475 		.zb_objset = dmu_objset_id(dn->dn_objset),
4476 		.zb_object = dn->dn_object,
4477 		.zb_level = 0,
4478 		.zb_blkid = dr->dt.dll.dr_blkid,
4479 	};
4480 
4481 	/*
4482 	 * See comment in dbuf_write().  This is so that zio->io_bp_orig
4483 	 * will have the old BP in dbuf_lightweight_done().
4484 	 */
4485 	dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4486 
4487 	dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4488 	    dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4489 	    dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4490 	    &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4491 	    dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4492 	    ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4493 
4494 	zio_nowait(dr->dr_zio);
4495 }
4496 
4497 /*
4498  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4499  * critical the we not allow the compiler to inline this function in to
4500  * dbuf_sync_list() thereby drastically bloating the stack usage.
4501  */
4502 noinline static void
4503 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4504 {
4505 	arc_buf_t **datap = &dr->dt.dl.dr_data;
4506 	dmu_buf_impl_t *db = dr->dr_dbuf;
4507 	dnode_t *dn = dr->dr_dnode;
4508 	objset_t *os;
4509 	uint64_t txg = tx->tx_txg;
4510 
4511 	ASSERT(dmu_tx_is_syncing(tx));
4512 
4513 	dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4514 
4515 	mutex_enter(&db->db_mtx);
4516 	/*
4517 	 * To be synced, we must be dirtied.  But we
4518 	 * might have been freed after the dirty.
4519 	 */
4520 	if (db->db_state == DB_UNCACHED) {
4521 		/* This buffer has been freed since it was dirtied */
4522 		ASSERT(db->db.db_data == NULL);
4523 	} else if (db->db_state == DB_FILL) {
4524 		/* This buffer was freed and is now being re-filled */
4525 		ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4526 	} else if (db->db_state == DB_READ) {
4527 		/*
4528 		 * This buffer has a clone we need to write, and an in-flight
4529 		 * read on the BP we're about to clone. Its safe to issue the
4530 		 * write here because the read has already been issued and the
4531 		 * contents won't change.
4532 		 */
4533 		ASSERT(dr->dt.dl.dr_brtwrite &&
4534 		    dr->dt.dl.dr_override_state == DR_OVERRIDDEN);
4535 	} else {
4536 		ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4537 	}
4538 	DBUF_VERIFY(db);
4539 
4540 	if (db->db_blkid == DMU_SPILL_BLKID) {
4541 		mutex_enter(&dn->dn_mtx);
4542 		if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4543 			/*
4544 			 * In the previous transaction group, the bonus buffer
4545 			 * was entirely used to store the attributes for the
4546 			 * dnode which overrode the dn_spill field.  However,
4547 			 * when adding more attributes to the file a spill
4548 			 * block was required to hold the extra attributes.
4549 			 *
4550 			 * Make sure to clear the garbage left in the dn_spill
4551 			 * field from the previous attributes in the bonus
4552 			 * buffer.  Otherwise, after writing out the spill
4553 			 * block to the new allocated dva, it will free
4554 			 * the old block pointed to by the invalid dn_spill.
4555 			 */
4556 			db->db_blkptr = NULL;
4557 		}
4558 		dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4559 		mutex_exit(&dn->dn_mtx);
4560 	}
4561 
4562 	/*
4563 	 * If this is a bonus buffer, simply copy the bonus data into the
4564 	 * dnode.  It will be written out when the dnode is synced (and it
4565 	 * will be synced, since it must have been dirty for dbuf_sync to
4566 	 * be called).
4567 	 */
4568 	if (db->db_blkid == DMU_BONUS_BLKID) {
4569 		ASSERT(dr->dr_dbuf == db);
4570 		dbuf_sync_bonus(dr, tx);
4571 		return;
4572 	}
4573 
4574 	os = dn->dn_objset;
4575 
4576 	/*
4577 	 * This function may have dropped the db_mtx lock allowing a dmu_sync
4578 	 * operation to sneak in. As a result, we need to ensure that we
4579 	 * don't check the dr_override_state until we have returned from
4580 	 * dbuf_check_blkptr.
4581 	 */
4582 	dbuf_check_blkptr(dn, db);
4583 
4584 	/*
4585 	 * If this buffer is in the middle of an immediate write,
4586 	 * wait for the synchronous IO to complete.
4587 	 */
4588 	while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4589 		ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4590 		cv_wait(&db->db_changed, &db->db_mtx);
4591 	}
4592 
4593 	/*
4594 	 * If this is a dnode block, ensure it is appropriately encrypted
4595 	 * or decrypted, depending on what we are writing to it this txg.
4596 	 */
4597 	if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4598 		dbuf_prepare_encrypted_dnode_leaf(dr);
4599 
4600 	if (db->db_state != DB_NOFILL &&
4601 	    dn->dn_object != DMU_META_DNODE_OBJECT &&
4602 	    zfs_refcount_count(&db->db_holds) > 1 &&
4603 	    dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4604 	    *datap == db->db_buf) {
4605 		/*
4606 		 * If this buffer is currently "in use" (i.e., there
4607 		 * are active holds and db_data still references it),
4608 		 * then make a copy before we start the write so that
4609 		 * any modifications from the open txg will not leak
4610 		 * into this write.
4611 		 *
4612 		 * NOTE: this copy does not need to be made for
4613 		 * objects only modified in the syncing context (e.g.
4614 		 * DNONE_DNODE blocks).
4615 		 */
4616 		int psize = arc_buf_size(*datap);
4617 		int lsize = arc_buf_lsize(*datap);
4618 		arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4619 		enum zio_compress compress_type = arc_get_compression(*datap);
4620 		uint8_t complevel = arc_get_complevel(*datap);
4621 
4622 		if (arc_is_encrypted(*datap)) {
4623 			boolean_t byteorder;
4624 			uint8_t salt[ZIO_DATA_SALT_LEN];
4625 			uint8_t iv[ZIO_DATA_IV_LEN];
4626 			uint8_t mac[ZIO_DATA_MAC_LEN];
4627 
4628 			arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4629 			*datap = arc_alloc_raw_buf(os->os_spa, db,
4630 			    dmu_objset_id(os), byteorder, salt, iv, mac,
4631 			    dn->dn_type, psize, lsize, compress_type,
4632 			    complevel);
4633 		} else if (compress_type != ZIO_COMPRESS_OFF) {
4634 			ASSERT3U(type, ==, ARC_BUFC_DATA);
4635 			*datap = arc_alloc_compressed_buf(os->os_spa, db,
4636 			    psize, lsize, compress_type, complevel);
4637 		} else {
4638 			*datap = arc_alloc_buf(os->os_spa, db, type, psize);
4639 		}
4640 		memcpy((*datap)->b_data, db->db.db_data, psize);
4641 	}
4642 	db->db_data_pending = dr;
4643 
4644 	mutex_exit(&db->db_mtx);
4645 
4646 	dbuf_write(dr, *datap, tx);
4647 
4648 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4649 	if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4650 		list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4651 	} else {
4652 		zio_nowait(dr->dr_zio);
4653 	}
4654 }
4655 
4656 /*
4657  * Syncs out a range of dirty records for indirect or leaf dbufs.  May be
4658  * called recursively from dbuf_sync_indirect().
4659  */
4660 void
4661 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4662 {
4663 	dbuf_dirty_record_t *dr;
4664 
4665 	while ((dr = list_head(list))) {
4666 		if (dr->dr_zio != NULL) {
4667 			/*
4668 			 * If we find an already initialized zio then we
4669 			 * are processing the meta-dnode, and we have finished.
4670 			 * The dbufs for all dnodes are put back on the list
4671 			 * during processing, so that we can zio_wait()
4672 			 * these IOs after initiating all child IOs.
4673 			 */
4674 			ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4675 			    DMU_META_DNODE_OBJECT);
4676 			break;
4677 		}
4678 		list_remove(list, dr);
4679 		if (dr->dr_dbuf == NULL) {
4680 			dbuf_sync_lightweight(dr, tx);
4681 		} else {
4682 			if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4683 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4684 				VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4685 			}
4686 			if (dr->dr_dbuf->db_level > 0)
4687 				dbuf_sync_indirect(dr, tx);
4688 			else
4689 				dbuf_sync_leaf(dr, tx);
4690 		}
4691 	}
4692 }
4693 
4694 static void
4695 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4696 {
4697 	(void) buf;
4698 	dmu_buf_impl_t *db = vdb;
4699 	dnode_t *dn;
4700 	blkptr_t *bp = zio->io_bp;
4701 	blkptr_t *bp_orig = &zio->io_bp_orig;
4702 	spa_t *spa = zio->io_spa;
4703 	int64_t delta;
4704 	uint64_t fill = 0;
4705 	int i;
4706 
4707 	ASSERT3P(db->db_blkptr, !=, NULL);
4708 	ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4709 
4710 	DB_DNODE_ENTER(db);
4711 	dn = DB_DNODE(db);
4712 	delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4713 	dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4714 	zio->io_prev_space_delta = delta;
4715 
4716 	if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
4717 		ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4718 		    BP_GET_TYPE(bp) == dn->dn_type) ||
4719 		    (db->db_blkid == DMU_SPILL_BLKID &&
4720 		    BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4721 		    BP_IS_EMBEDDED(bp));
4722 		ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4723 	}
4724 
4725 	mutex_enter(&db->db_mtx);
4726 
4727 #ifdef ZFS_DEBUG
4728 	if (db->db_blkid == DMU_SPILL_BLKID) {
4729 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4730 		ASSERT(!(BP_IS_HOLE(bp)) &&
4731 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4732 	}
4733 #endif
4734 
4735 	if (db->db_level == 0) {
4736 		mutex_enter(&dn->dn_mtx);
4737 		if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4738 		    db->db_blkid != DMU_SPILL_BLKID) {
4739 			ASSERT0(db->db_objset->os_raw_receive);
4740 			dn->dn_phys->dn_maxblkid = db->db_blkid;
4741 		}
4742 		mutex_exit(&dn->dn_mtx);
4743 
4744 		if (dn->dn_type == DMU_OT_DNODE) {
4745 			i = 0;
4746 			while (i < db->db.db_size) {
4747 				dnode_phys_t *dnp =
4748 				    (void *)(((char *)db->db.db_data) + i);
4749 
4750 				i += DNODE_MIN_SIZE;
4751 				if (dnp->dn_type != DMU_OT_NONE) {
4752 					fill++;
4753 					for (int j = 0; j < dnp->dn_nblkptr;
4754 					    j++) {
4755 						(void) zfs_blkptr_verify(spa,
4756 						    &dnp->dn_blkptr[j],
4757 						    BLK_CONFIG_SKIP,
4758 						    BLK_VERIFY_HALT);
4759 					}
4760 					if (dnp->dn_flags &
4761 					    DNODE_FLAG_SPILL_BLKPTR) {
4762 						(void) zfs_blkptr_verify(spa,
4763 						    DN_SPILL_BLKPTR(dnp),
4764 						    BLK_CONFIG_SKIP,
4765 						    BLK_VERIFY_HALT);
4766 					}
4767 					i += dnp->dn_extra_slots *
4768 					    DNODE_MIN_SIZE;
4769 				}
4770 			}
4771 		} else {
4772 			if (BP_IS_HOLE(bp)) {
4773 				fill = 0;
4774 			} else {
4775 				fill = 1;
4776 			}
4777 		}
4778 	} else {
4779 		blkptr_t *ibp = db->db.db_data;
4780 		ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4781 		for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4782 			if (BP_IS_HOLE(ibp))
4783 				continue;
4784 			(void) zfs_blkptr_verify(spa, ibp,
4785 			    BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4786 			fill += BP_GET_FILL(ibp);
4787 		}
4788 	}
4789 	DB_DNODE_EXIT(db);
4790 
4791 	if (!BP_IS_EMBEDDED(bp))
4792 		BP_SET_FILL(bp, fill);
4793 
4794 	mutex_exit(&db->db_mtx);
4795 
4796 	db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4797 	*db->db_blkptr = *bp;
4798 	dmu_buf_unlock_parent(db, dblt, FTAG);
4799 }
4800 
4801 /*
4802  * This function gets called just prior to running through the compression
4803  * stage of the zio pipeline. If we're an indirect block comprised of only
4804  * holes, then we want this indirect to be compressed away to a hole. In
4805  * order to do that we must zero out any information about the holes that
4806  * this indirect points to prior to before we try to compress it.
4807  */
4808 static void
4809 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4810 {
4811 	(void) zio, (void) buf;
4812 	dmu_buf_impl_t *db = vdb;
4813 	dnode_t *dn;
4814 	blkptr_t *bp;
4815 	unsigned int epbs, i;
4816 
4817 	ASSERT3U(db->db_level, >, 0);
4818 	DB_DNODE_ENTER(db);
4819 	dn = DB_DNODE(db);
4820 	epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4821 	ASSERT3U(epbs, <, 31);
4822 
4823 	/* Determine if all our children are holes */
4824 	for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4825 		if (!BP_IS_HOLE(bp))
4826 			break;
4827 	}
4828 
4829 	/*
4830 	 * If all the children are holes, then zero them all out so that
4831 	 * we may get compressed away.
4832 	 */
4833 	if (i == 1ULL << epbs) {
4834 		/*
4835 		 * We only found holes. Grab the rwlock to prevent
4836 		 * anybody from reading the blocks we're about to
4837 		 * zero out.
4838 		 */
4839 		rw_enter(&db->db_rwlock, RW_WRITER);
4840 		memset(db->db.db_data, 0, db->db.db_size);
4841 		rw_exit(&db->db_rwlock);
4842 	}
4843 	DB_DNODE_EXIT(db);
4844 }
4845 
4846 static void
4847 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4848 {
4849 	(void) buf;
4850 	dmu_buf_impl_t *db = vdb;
4851 	blkptr_t *bp_orig = &zio->io_bp_orig;
4852 	blkptr_t *bp = db->db_blkptr;
4853 	objset_t *os = db->db_objset;
4854 	dmu_tx_t *tx = os->os_synctx;
4855 
4856 	ASSERT0(zio->io_error);
4857 	ASSERT(db->db_blkptr == bp);
4858 
4859 	/*
4860 	 * For nopwrites and rewrites we ensure that the bp matches our
4861 	 * original and bypass all the accounting.
4862 	 */
4863 	if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4864 		ASSERT(BP_EQUAL(bp, bp_orig));
4865 	} else {
4866 		dsl_dataset_t *ds = os->os_dsl_dataset;
4867 		(void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4868 		dsl_dataset_block_born(ds, bp, tx);
4869 	}
4870 
4871 	mutex_enter(&db->db_mtx);
4872 
4873 	DBUF_VERIFY(db);
4874 
4875 	dbuf_dirty_record_t *dr = db->db_data_pending;
4876 	dnode_t *dn = dr->dr_dnode;
4877 	ASSERT(!list_link_active(&dr->dr_dirty_node));
4878 	ASSERT(dr->dr_dbuf == db);
4879 	ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4880 	list_remove(&db->db_dirty_records, dr);
4881 
4882 #ifdef ZFS_DEBUG
4883 	if (db->db_blkid == DMU_SPILL_BLKID) {
4884 		ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4885 		ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4886 		    db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4887 	}
4888 #endif
4889 
4890 	if (db->db_level == 0) {
4891 		ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4892 		ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4893 		if (db->db_state != DB_NOFILL) {
4894 			if (dr->dt.dl.dr_data != NULL &&
4895 			    dr->dt.dl.dr_data != db->db_buf) {
4896 				arc_buf_destroy(dr->dt.dl.dr_data, db);
4897 			}
4898 		}
4899 	} else {
4900 		ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4901 		ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4902 		if (!BP_IS_HOLE(db->db_blkptr)) {
4903 			int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4904 			    SPA_BLKPTRSHIFT;
4905 			ASSERT3U(db->db_blkid, <=,
4906 			    dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4907 			ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4908 			    db->db.db_size);
4909 		}
4910 		mutex_destroy(&dr->dt.di.dr_mtx);
4911 		list_destroy(&dr->dt.di.dr_children);
4912 	}
4913 
4914 	cv_broadcast(&db->db_changed);
4915 	ASSERT(db->db_dirtycnt > 0);
4916 	db->db_dirtycnt -= 1;
4917 	db->db_data_pending = NULL;
4918 	dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4919 
4920 	dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4921 	    zio->io_txg);
4922 
4923 	kmem_free(dr, sizeof (dbuf_dirty_record_t));
4924 }
4925 
4926 static void
4927 dbuf_write_nofill_ready(zio_t *zio)
4928 {
4929 	dbuf_write_ready(zio, NULL, zio->io_private);
4930 }
4931 
4932 static void
4933 dbuf_write_nofill_done(zio_t *zio)
4934 {
4935 	dbuf_write_done(zio, NULL, zio->io_private);
4936 }
4937 
4938 static void
4939 dbuf_write_override_ready(zio_t *zio)
4940 {
4941 	dbuf_dirty_record_t *dr = zio->io_private;
4942 	dmu_buf_impl_t *db = dr->dr_dbuf;
4943 
4944 	dbuf_write_ready(zio, NULL, db);
4945 }
4946 
4947 static void
4948 dbuf_write_override_done(zio_t *zio)
4949 {
4950 	dbuf_dirty_record_t *dr = zio->io_private;
4951 	dmu_buf_impl_t *db = dr->dr_dbuf;
4952 	blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4953 
4954 	mutex_enter(&db->db_mtx);
4955 	if (!BP_EQUAL(zio->io_bp, obp)) {
4956 		if (!BP_IS_HOLE(obp))
4957 			dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4958 		arc_release(dr->dt.dl.dr_data, db);
4959 	}
4960 	mutex_exit(&db->db_mtx);
4961 
4962 	dbuf_write_done(zio, NULL, db);
4963 
4964 	if (zio->io_abd != NULL)
4965 		abd_free(zio->io_abd);
4966 }
4967 
4968 typedef struct dbuf_remap_impl_callback_arg {
4969 	objset_t	*drica_os;
4970 	uint64_t	drica_blk_birth;
4971 	dmu_tx_t	*drica_tx;
4972 } dbuf_remap_impl_callback_arg_t;
4973 
4974 static void
4975 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4976     void *arg)
4977 {
4978 	dbuf_remap_impl_callback_arg_t *drica = arg;
4979 	objset_t *os = drica->drica_os;
4980 	spa_t *spa = dmu_objset_spa(os);
4981 	dmu_tx_t *tx = drica->drica_tx;
4982 
4983 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4984 
4985 	if (os == spa_meta_objset(spa)) {
4986 		spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4987 	} else {
4988 		dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4989 		    size, drica->drica_blk_birth, tx);
4990 	}
4991 }
4992 
4993 static void
4994 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4995 {
4996 	blkptr_t bp_copy = *bp;
4997 	spa_t *spa = dmu_objset_spa(dn->dn_objset);
4998 	dbuf_remap_impl_callback_arg_t drica;
4999 
5000 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5001 
5002 	drica.drica_os = dn->dn_objset;
5003 	drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp);
5004 	drica.drica_tx = tx;
5005 	if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5006 	    &drica)) {
5007 		/*
5008 		 * If the blkptr being remapped is tracked by a livelist,
5009 		 * then we need to make sure the livelist reflects the update.
5010 		 * First, cancel out the old blkptr by appending a 'FREE'
5011 		 * entry. Next, add an 'ALLOC' to track the new version. This
5012 		 * way we avoid trying to free an inaccurate blkptr at delete.
5013 		 * Note that embedded blkptrs are not tracked in livelists.
5014 		 */
5015 		if (dn->dn_objset != spa_meta_objset(spa)) {
5016 			dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5017 			if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5018 			    BP_GET_LOGICAL_BIRTH(bp) >
5019 			    ds->ds_dir->dd_origin_txg) {
5020 				ASSERT(!BP_IS_EMBEDDED(bp));
5021 				ASSERT(dsl_dir_is_clone(ds->ds_dir));
5022 				ASSERT(spa_feature_is_enabled(spa,
5023 				    SPA_FEATURE_LIVELIST));
5024 				bplist_append(&ds->ds_dir->dd_pending_frees,
5025 				    bp);
5026 				bplist_append(&ds->ds_dir->dd_pending_allocs,
5027 				    &bp_copy);
5028 			}
5029 		}
5030 
5031 		/*
5032 		 * The db_rwlock prevents dbuf_read_impl() from
5033 		 * dereferencing the BP while we are changing it.  To
5034 		 * avoid lock contention, only grab it when we are actually
5035 		 * changing the BP.
5036 		 */
5037 		if (rw != NULL)
5038 			rw_enter(rw, RW_WRITER);
5039 		*bp = bp_copy;
5040 		if (rw != NULL)
5041 			rw_exit(rw);
5042 	}
5043 }
5044 
5045 /*
5046  * Remap any existing BP's to concrete vdevs, if possible.
5047  */
5048 static void
5049 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5050 {
5051 	spa_t *spa = dmu_objset_spa(db->db_objset);
5052 	ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5053 
5054 	if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5055 		return;
5056 
5057 	if (db->db_level > 0) {
5058 		blkptr_t *bp = db->db.db_data;
5059 		for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5060 			dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5061 		}
5062 	} else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5063 		dnode_phys_t *dnp = db->db.db_data;
5064 		ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
5065 		    DMU_OT_DNODE);
5066 		for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5067 		    i += dnp[i].dn_extra_slots + 1) {
5068 			for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5069 				krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5070 				    &dn->dn_dbuf->db_rwlock);
5071 				dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5072 				    tx);
5073 			}
5074 		}
5075 	}
5076 }
5077 
5078 
5079 /*
5080  * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5081  * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5082  */
5083 static void
5084 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5085 {
5086 	dmu_buf_impl_t *db = dr->dr_dbuf;
5087 	dnode_t *dn = dr->dr_dnode;
5088 	objset_t *os;
5089 	dmu_buf_impl_t *parent = db->db_parent;
5090 	uint64_t txg = tx->tx_txg;
5091 	zbookmark_phys_t zb;
5092 	zio_prop_t zp;
5093 	zio_t *pio; /* parent I/O */
5094 	int wp_flag = 0;
5095 
5096 	ASSERT(dmu_tx_is_syncing(tx));
5097 
5098 	os = dn->dn_objset;
5099 
5100 	if (db->db_state != DB_NOFILL) {
5101 		if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5102 			/*
5103 			 * Private object buffers are released here rather
5104 			 * than in dbuf_dirty() since they are only modified
5105 			 * in the syncing context and we don't want the
5106 			 * overhead of making multiple copies of the data.
5107 			 */
5108 			if (BP_IS_HOLE(db->db_blkptr)) {
5109 				arc_buf_thaw(data);
5110 			} else {
5111 				dbuf_release_bp(db);
5112 			}
5113 			dbuf_remap(dn, db, tx);
5114 		}
5115 	}
5116 
5117 	if (parent != dn->dn_dbuf) {
5118 		/* Our parent is an indirect block. */
5119 		/* We have a dirty parent that has been scheduled for write. */
5120 		ASSERT(parent && parent->db_data_pending);
5121 		/* Our parent's buffer is one level closer to the dnode. */
5122 		ASSERT(db->db_level == parent->db_level-1);
5123 		/*
5124 		 * We're about to modify our parent's db_data by modifying
5125 		 * our block pointer, so the parent must be released.
5126 		 */
5127 		ASSERT(arc_released(parent->db_buf));
5128 		pio = parent->db_data_pending->dr_zio;
5129 	} else {
5130 		/* Our parent is the dnode itself. */
5131 		ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5132 		    db->db_blkid != DMU_SPILL_BLKID) ||
5133 		    (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5134 		if (db->db_blkid != DMU_SPILL_BLKID)
5135 			ASSERT3P(db->db_blkptr, ==,
5136 			    &dn->dn_phys->dn_blkptr[db->db_blkid]);
5137 		pio = dn->dn_zio;
5138 	}
5139 
5140 	ASSERT(db->db_level == 0 || data == db->db_buf);
5141 	ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg);
5142 	ASSERT(pio);
5143 
5144 	SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5145 	    os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5146 	    db->db.db_object, db->db_level, db->db_blkid);
5147 
5148 	if (db->db_blkid == DMU_SPILL_BLKID)
5149 		wp_flag = WP_SPILL;
5150 	wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5151 
5152 	dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5153 
5154 	/*
5155 	 * We copy the blkptr now (rather than when we instantiate the dirty
5156 	 * record), because its value can change between open context and
5157 	 * syncing context. We do not need to hold dn_struct_rwlock to read
5158 	 * db_blkptr because we are in syncing context.
5159 	 */
5160 	dr->dr_bp_copy = *db->db_blkptr;
5161 
5162 	if (db->db_level == 0 &&
5163 	    dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5164 		/*
5165 		 * The BP for this block has been provided by open context
5166 		 * (by dmu_sync() or dmu_buf_write_embedded()).
5167 		 */
5168 		abd_t *contents = (data != NULL) ?
5169 		    abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5170 
5171 		dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5172 		    contents, db->db.db_size, db->db.db_size, &zp,
5173 		    dbuf_write_override_ready, NULL,
5174 		    dbuf_write_override_done,
5175 		    dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5176 		mutex_enter(&db->db_mtx);
5177 		dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5178 		zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5179 		    dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5180 		    dr->dt.dl.dr_brtwrite);
5181 		mutex_exit(&db->db_mtx);
5182 	} else if (db->db_state == DB_NOFILL) {
5183 		ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5184 		    zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5185 		dr->dr_zio = zio_write(pio, os->os_spa, txg,
5186 		    &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5187 		    dbuf_write_nofill_ready, NULL,
5188 		    dbuf_write_nofill_done, db,
5189 		    ZIO_PRIORITY_ASYNC_WRITE,
5190 		    ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5191 	} else {
5192 		ASSERT(arc_released(data));
5193 
5194 		/*
5195 		 * For indirect blocks, we want to setup the children
5196 		 * ready callback so that we can properly handle an indirect
5197 		 * block that only contains holes.
5198 		 */
5199 		arc_write_done_func_t *children_ready_cb = NULL;
5200 		if (db->db_level != 0)
5201 			children_ready_cb = dbuf_write_children_ready;
5202 
5203 		dr->dr_zio = arc_write(pio, os->os_spa, txg,
5204 		    &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5205 		    dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5206 		    children_ready_cb, dbuf_write_done, db,
5207 		    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5208 	}
5209 }
5210 
5211 EXPORT_SYMBOL(dbuf_find);
5212 EXPORT_SYMBOL(dbuf_is_metadata);
5213 EXPORT_SYMBOL(dbuf_destroy);
5214 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5215 EXPORT_SYMBOL(dbuf_whichblock);
5216 EXPORT_SYMBOL(dbuf_read);
5217 EXPORT_SYMBOL(dbuf_unoverride);
5218 EXPORT_SYMBOL(dbuf_free_range);
5219 EXPORT_SYMBOL(dbuf_new_size);
5220 EXPORT_SYMBOL(dbuf_release_bp);
5221 EXPORT_SYMBOL(dbuf_dirty);
5222 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5223 EXPORT_SYMBOL(dmu_buf_will_dirty);
5224 EXPORT_SYMBOL(dmu_buf_is_dirty);
5225 EXPORT_SYMBOL(dmu_buf_will_clone);
5226 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5227 EXPORT_SYMBOL(dmu_buf_will_fill);
5228 EXPORT_SYMBOL(dmu_buf_fill_done);
5229 EXPORT_SYMBOL(dmu_buf_rele);
5230 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5231 EXPORT_SYMBOL(dbuf_prefetch);
5232 EXPORT_SYMBOL(dbuf_hold_impl);
5233 EXPORT_SYMBOL(dbuf_hold);
5234 EXPORT_SYMBOL(dbuf_hold_level);
5235 EXPORT_SYMBOL(dbuf_create_bonus);
5236 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5237 EXPORT_SYMBOL(dbuf_rm_spill);
5238 EXPORT_SYMBOL(dbuf_add_ref);
5239 EXPORT_SYMBOL(dbuf_rele);
5240 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5241 EXPORT_SYMBOL(dbuf_refcount);
5242 EXPORT_SYMBOL(dbuf_sync_list);
5243 EXPORT_SYMBOL(dmu_buf_set_user);
5244 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5245 EXPORT_SYMBOL(dmu_buf_get_user);
5246 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5247 
5248 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5249 	"Maximum size in bytes of the dbuf cache.");
5250 
5251 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5252 	"Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5253 
5254 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5255 	"Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5256 
5257 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5258 	"Maximum size in bytes of dbuf metadata cache.");
5259 
5260 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5261 	"Set size of dbuf cache to log2 fraction of arc size.");
5262 
5263 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5264 	"Set size of dbuf metadata cache to log2 fraction of arc size.");
5265 
5266 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5267 	"Set size of dbuf cache mutex array as log2 shift.");
5268