1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val); 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)); 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1); 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1); 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 181 182 /* 183 * Global data structures and functions for the dbuf cache. 184 */ 185 static kmem_cache_t *dbuf_kmem_cache; 186 static taskq_t *dbu_evict_taskq; 187 188 static kthread_t *dbuf_cache_evict_thread; 189 static kmutex_t dbuf_evict_lock; 190 static kcondvar_t dbuf_evict_cv; 191 static boolean_t dbuf_evict_thread_exit; 192 193 /* 194 * There are two dbuf caches; each dbuf can only be in one of them at a time. 195 * 196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 198 * that represent the metadata that describes filesystems/snapshots/ 199 * bookmarks/properties/etc. We only evict from this cache when we export a 200 * pool, to short-circuit as much I/O as possible for all administrative 201 * commands that need the metadata. There is no eviction policy for this 202 * cache, because we try to only include types in it which would occupy a 203 * very small amount of space per object but create a large impact on the 204 * performance of these commands. Instead, after it reaches a maximum size 205 * (which should only happen on very small memory systems with a very large 206 * number of filesystem objects), we stop taking new dbufs into the 207 * metadata cache, instead putting them in the normal dbuf cache. 208 * 209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 210 * are not currently held but have been recently released. These dbufs 211 * are not eligible for arc eviction until they are aged out of the cache. 212 * Dbufs that are aged out of the cache will be immediately destroyed and 213 * become eligible for arc eviction. 214 * 215 * Dbufs are added to these caches once the last hold is released. If a dbuf is 216 * later accessed and still exists in the dbuf cache, then it will be removed 217 * from the cache and later re-added to the head of the cache. 218 * 219 * If a given dbuf meets the requirements for the metadata cache, it will go 220 * there, otherwise it will be considered for the generic LRU dbuf cache. The 221 * caches and the refcounts tracking their sizes are stored in an array indexed 222 * by those caches' matching enum values (from dbuf_cached_state_t). 223 */ 224 typedef struct dbuf_cache { 225 multilist_t cache; 226 zfs_refcount_t size ____cacheline_aligned; 227 } dbuf_cache_t; 228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 229 230 /* Size limits for the caches */ 231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 233 234 /* Set the default sizes of the caches to log2 fraction of arc size */ 235 static uint_t dbuf_cache_shift = 5; 236 static uint_t dbuf_metadata_cache_shift = 6; 237 238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 239 static uint_t dbuf_mutex_cache_shift = 0; 240 241 static unsigned long dbuf_cache_target_bytes(void); 242 static unsigned long dbuf_metadata_cache_target_bytes(void); 243 244 /* 245 * The LRU dbuf cache uses a three-stage eviction policy: 246 * - A low water marker designates when the dbuf eviction thread 247 * should stop evicting from the dbuf cache. 248 * - When we reach the maximum size (aka mid water mark), we 249 * signal the eviction thread to run. 250 * - The high water mark indicates when the eviction thread 251 * is unable to keep up with the incoming load and eviction must 252 * happen in the context of the calling thread. 253 * 254 * The dbuf cache: 255 * (max size) 256 * low water mid water hi water 257 * +----------------------------------------+----------+----------+ 258 * | | | | 259 * | | | | 260 * | | | | 261 * | | | | 262 * +----------------------------------------+----------+----------+ 263 * stop signal evict 264 * evicting eviction directly 265 * thread 266 * 267 * The high and low water marks indicate the operating range for the eviction 268 * thread. The low water mark is, by default, 90% of the total size of the 269 * cache and the high water mark is at 110% (both of these percentages can be 270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 271 * respectively). The eviction thread will try to ensure that the cache remains 272 * within this range by waking up every second and checking if the cache is 273 * above the low water mark. The thread can also be woken up by callers adding 274 * elements into the cache if the cache is larger than the mid water (i.e max 275 * cache size). Once the eviction thread is woken up and eviction is required, 276 * it will continue evicting buffers until it's able to reduce the cache size 277 * to the low water mark. If the cache size continues to grow and hits the high 278 * water mark, then callers adding elements to the cache will begin to evict 279 * directly from the cache until the cache is no longer above the high water 280 * mark. 281 */ 282 283 /* 284 * The percentage above and below the maximum cache size. 285 */ 286 static uint_t dbuf_cache_hiwater_pct = 10; 287 static uint_t dbuf_cache_lowater_pct = 10; 288 289 static int 290 dbuf_cons(void *vdb, void *unused, int kmflag) 291 { 292 (void) unused, (void) kmflag; 293 dmu_buf_impl_t *db = vdb; 294 memset(db, 0, sizeof (dmu_buf_impl_t)); 295 296 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 297 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 299 multilist_link_init(&db->db_cache_link); 300 zfs_refcount_create(&db->db_holds); 301 302 return (0); 303 } 304 305 static void 306 dbuf_dest(void *vdb, void *unused) 307 { 308 (void) unused; 309 dmu_buf_impl_t *db = vdb; 310 mutex_destroy(&db->db_mtx); 311 rw_destroy(&db->db_rwlock); 312 cv_destroy(&db->db_changed); 313 ASSERT(!multilist_link_active(&db->db_cache_link)); 314 zfs_refcount_destroy(&db->db_holds); 315 } 316 317 /* 318 * dbuf hash table routines 319 */ 320 static dbuf_hash_table_t dbuf_hash_table; 321 322 /* 323 * We use Cityhash for this. It's fast, and has good hash properties without 324 * requiring any large static buffers. 325 */ 326 static uint64_t 327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 328 { 329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 330 } 331 332 #define DTRACE_SET_STATE(db, why) \ 333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 334 const char *, why) 335 336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 337 ((dbuf)->db.db_object == (obj) && \ 338 (dbuf)->db_objset == (os) && \ 339 (dbuf)->db_level == (level) && \ 340 (dbuf)->db_blkid == (blkid)) 341 342 dmu_buf_impl_t * 343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 344 uint64_t *hash_out) 345 { 346 dbuf_hash_table_t *h = &dbuf_hash_table; 347 uint64_t hv; 348 uint64_t idx; 349 dmu_buf_impl_t *db; 350 351 hv = dbuf_hash(os, obj, level, blkid); 352 idx = hv & h->hash_table_mask; 353 354 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 356 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 357 mutex_enter(&db->db_mtx); 358 if (db->db_state != DB_EVICTING) { 359 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 360 return (db); 361 } 362 mutex_exit(&db->db_mtx); 363 } 364 } 365 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 366 if (hash_out != NULL) 367 *hash_out = hv; 368 return (NULL); 369 } 370 371 static dmu_buf_impl_t * 372 dbuf_find_bonus(objset_t *os, uint64_t object) 373 { 374 dnode_t *dn; 375 dmu_buf_impl_t *db = NULL; 376 377 if (dnode_hold(os, object, FTAG, &dn) == 0) { 378 rw_enter(&dn->dn_struct_rwlock, RW_READER); 379 if (dn->dn_bonus != NULL) { 380 db = dn->dn_bonus; 381 mutex_enter(&db->db_mtx); 382 } 383 rw_exit(&dn->dn_struct_rwlock); 384 dnode_rele(dn, FTAG); 385 } 386 return (db); 387 } 388 389 /* 390 * Insert an entry into the hash table. If there is already an element 391 * equal to elem in the hash table, then the already existing element 392 * will be returned and the new element will not be inserted. 393 * Otherwise returns NULL. 394 */ 395 static dmu_buf_impl_t * 396 dbuf_hash_insert(dmu_buf_impl_t *db) 397 { 398 dbuf_hash_table_t *h = &dbuf_hash_table; 399 objset_t *os = db->db_objset; 400 uint64_t obj = db->db.db_object; 401 int level = db->db_level; 402 uint64_t blkid, idx; 403 dmu_buf_impl_t *dbf; 404 uint32_t i; 405 406 blkid = db->db_blkid; 407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 408 idx = db->db_hash & h->hash_table_mask; 409 410 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 412 dbf = dbf->db_hash_next, i++) { 413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 414 mutex_enter(&dbf->db_mtx); 415 if (dbf->db_state != DB_EVICTING) { 416 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 417 return (dbf); 418 } 419 mutex_exit(&dbf->db_mtx); 420 } 421 } 422 423 if (i > 0) { 424 DBUF_STAT_BUMP(hash_collisions); 425 if (i == 1) 426 DBUF_STAT_BUMP(hash_chains); 427 428 DBUF_STAT_MAX(hash_chain_max, i); 429 } 430 431 mutex_enter(&db->db_mtx); 432 db->db_hash_next = h->hash_table[idx]; 433 h->hash_table[idx] = db; 434 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 436 DBUF_STAT_MAX(hash_elements_max, he); 437 438 return (NULL); 439 } 440 441 /* 442 * This returns whether this dbuf should be stored in the metadata cache, which 443 * is based on whether it's from one of the dnode types that store data related 444 * to traversing dataset hierarchies. 445 */ 446 static boolean_t 447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 448 { 449 DB_DNODE_ENTER(db); 450 dmu_object_type_t type = DB_DNODE(db)->dn_type; 451 DB_DNODE_EXIT(db); 452 453 /* Check if this dbuf is one of the types we care about */ 454 if (DMU_OT_IS_METADATA_CACHED(type)) { 455 /* If we hit this, then we set something up wrong in dmu_ot */ 456 ASSERT(DMU_OT_IS_METADATA(type)); 457 458 /* 459 * Sanity check for small-memory systems: don't allocate too 460 * much memory for this purpose. 461 */ 462 if (zfs_refcount_count( 463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 464 dbuf_metadata_cache_target_bytes()) { 465 DBUF_STAT_BUMP(metadata_cache_overflow); 466 return (B_FALSE); 467 } 468 469 return (B_TRUE); 470 } 471 472 return (B_FALSE); 473 } 474 475 /* 476 * Remove an entry from the hash table. It must be in the EVICTING state. 477 */ 478 static void 479 dbuf_hash_remove(dmu_buf_impl_t *db) 480 { 481 dbuf_hash_table_t *h = &dbuf_hash_table; 482 uint64_t idx; 483 dmu_buf_impl_t *dbf, **dbp; 484 485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 486 db->db_blkid), ==, db->db_hash); 487 idx = db->db_hash & h->hash_table_mask; 488 489 /* 490 * We mustn't hold db_mtx to maintain lock ordering: 491 * DBUF_HASH_MUTEX > db_mtx. 492 */ 493 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 494 ASSERT(db->db_state == DB_EVICTING); 495 ASSERT(!MUTEX_HELD(&db->db_mtx)); 496 497 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 498 dbp = &h->hash_table[idx]; 499 while ((dbf = *dbp) != db) { 500 dbp = &dbf->db_hash_next; 501 ASSERT(dbf != NULL); 502 } 503 *dbp = db->db_hash_next; 504 db->db_hash_next = NULL; 505 if (h->hash_table[idx] && 506 h->hash_table[idx]->db_hash_next == NULL) 507 DBUF_STAT_BUMPDOWN(hash_chains); 508 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 510 } 511 512 typedef enum { 513 DBVU_EVICTING, 514 DBVU_NOT_EVICTING 515 } dbvu_verify_type_t; 516 517 static void 518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 519 { 520 #ifdef ZFS_DEBUG 521 int64_t holds; 522 523 if (db->db_user == NULL) 524 return; 525 526 /* Only data blocks support the attachment of user data. */ 527 ASSERT(db->db_level == 0); 528 529 /* Clients must resolve a dbuf before attaching user data. */ 530 ASSERT(db->db.db_data != NULL); 531 ASSERT3U(db->db_state, ==, DB_CACHED); 532 533 holds = zfs_refcount_count(&db->db_holds); 534 if (verify_type == DBVU_EVICTING) { 535 /* 536 * Immediate eviction occurs when holds == dirtycnt. 537 * For normal eviction buffers, holds is zero on 538 * eviction, except when dbuf_fix_old_data() calls 539 * dbuf_clear_data(). However, the hold count can grow 540 * during eviction even though db_mtx is held (see 541 * dmu_bonus_hold() for an example), so we can only 542 * test the generic invariant that holds >= dirtycnt. 543 */ 544 ASSERT3U(holds, >=, db->db_dirtycnt); 545 } else { 546 if (db->db_user_immediate_evict == TRUE) 547 ASSERT3U(holds, >=, db->db_dirtycnt); 548 else 549 ASSERT3U(holds, >, 0); 550 } 551 #endif 552 } 553 554 static void 555 dbuf_evict_user(dmu_buf_impl_t *db) 556 { 557 dmu_buf_user_t *dbu = db->db_user; 558 559 ASSERT(MUTEX_HELD(&db->db_mtx)); 560 561 if (dbu == NULL) 562 return; 563 564 dbuf_verify_user(db, DBVU_EVICTING); 565 db->db_user = NULL; 566 567 #ifdef ZFS_DEBUG 568 if (dbu->dbu_clear_on_evict_dbufp != NULL) 569 *dbu->dbu_clear_on_evict_dbufp = NULL; 570 #endif 571 572 if (db->db_caching_status != DB_NO_CACHE) { 573 /* 574 * This is a cached dbuf, so the size of the user data is 575 * included in its cached amount. We adjust it here because the 576 * user data has already been detached from the dbuf, and the 577 * sync functions are not supposed to touch it (the dbuf might 578 * not exist anymore by the time the sync functions run. 579 */ 580 uint64_t size = dbu->dbu_size; 581 (void) zfs_refcount_remove_many( 582 &dbuf_caches[db->db_caching_status].size, size, db); 583 if (db->db_caching_status == DB_DBUF_CACHE) 584 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 585 } 586 587 /* 588 * There are two eviction callbacks - one that we call synchronously 589 * and one that we invoke via a taskq. The async one is useful for 590 * avoiding lock order reversals and limiting stack depth. 591 * 592 * Note that if we have a sync callback but no async callback, 593 * it's likely that the sync callback will free the structure 594 * containing the dbu. In that case we need to take care to not 595 * dereference dbu after calling the sync evict func. 596 */ 597 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 598 599 if (dbu->dbu_evict_func_sync != NULL) 600 dbu->dbu_evict_func_sync(dbu); 601 602 if (has_async) { 603 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 604 dbu, 0, &dbu->dbu_tqent); 605 } 606 } 607 608 boolean_t 609 dbuf_is_metadata(dmu_buf_impl_t *db) 610 { 611 /* 612 * Consider indirect blocks and spill blocks to be meta data. 613 */ 614 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 615 return (B_TRUE); 616 } else { 617 boolean_t is_metadata; 618 619 DB_DNODE_ENTER(db); 620 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 621 DB_DNODE_EXIT(db); 622 623 return (is_metadata); 624 } 625 } 626 627 /* 628 * We want to exclude buffers that are on a special allocation class from 629 * L2ARC. 630 */ 631 boolean_t 632 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 633 { 634 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 635 (db->db_objset->os_secondary_cache == 636 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 637 if (l2arc_exclude_special == 0) 638 return (B_TRUE); 639 640 blkptr_t *bp = db->db_blkptr; 641 if (bp == NULL || BP_IS_HOLE(bp)) 642 return (B_FALSE); 643 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 644 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 645 vdev_t *vd = NULL; 646 647 if (vdev < rvd->vdev_children) 648 vd = rvd->vdev_child[vdev]; 649 650 if (vd == NULL) 651 return (B_TRUE); 652 653 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 654 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 655 return (B_TRUE); 656 } 657 return (B_FALSE); 658 } 659 660 static inline boolean_t 661 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 662 { 663 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 664 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 665 (level > 0 || 666 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 667 if (l2arc_exclude_special == 0) 668 return (B_TRUE); 669 670 if (bp == NULL || BP_IS_HOLE(bp)) 671 return (B_FALSE); 672 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 673 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 674 vdev_t *vd = NULL; 675 676 if (vdev < rvd->vdev_children) 677 vd = rvd->vdev_child[vdev]; 678 679 if (vd == NULL) 680 return (B_TRUE); 681 682 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 683 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 684 return (B_TRUE); 685 } 686 return (B_FALSE); 687 } 688 689 690 /* 691 * This function *must* return indices evenly distributed between all 692 * sublists of the multilist. This is needed due to how the dbuf eviction 693 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 694 * distributed between all sublists and uses this assumption when 695 * deciding which sublist to evict from and how much to evict from it. 696 */ 697 static unsigned int 698 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 699 { 700 dmu_buf_impl_t *db = obj; 701 702 /* 703 * The assumption here, is the hash value for a given 704 * dmu_buf_impl_t will remain constant throughout it's lifetime 705 * (i.e. it's objset, object, level and blkid fields don't change). 706 * Thus, we don't need to store the dbuf's sublist index 707 * on insertion, as this index can be recalculated on removal. 708 * 709 * Also, the low order bits of the hash value are thought to be 710 * distributed evenly. Otherwise, in the case that the multilist 711 * has a power of two number of sublists, each sublists' usage 712 * would not be evenly distributed. In this context full 64bit 713 * division would be a waste of time, so limit it to 32 bits. 714 */ 715 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 716 db->db_level, db->db_blkid) % 717 multilist_get_num_sublists(ml)); 718 } 719 720 /* 721 * The target size of the dbuf cache can grow with the ARC target, 722 * unless limited by the tunable dbuf_cache_max_bytes. 723 */ 724 static inline unsigned long 725 dbuf_cache_target_bytes(void) 726 { 727 return (MIN(dbuf_cache_max_bytes, 728 arc_target_bytes() >> dbuf_cache_shift)); 729 } 730 731 /* 732 * The target size of the dbuf metadata cache can grow with the ARC target, 733 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 734 */ 735 static inline unsigned long 736 dbuf_metadata_cache_target_bytes(void) 737 { 738 return (MIN(dbuf_metadata_cache_max_bytes, 739 arc_target_bytes() >> dbuf_metadata_cache_shift)); 740 } 741 742 static inline uint64_t 743 dbuf_cache_hiwater_bytes(void) 744 { 745 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 746 return (dbuf_cache_target + 747 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 748 } 749 750 static inline uint64_t 751 dbuf_cache_lowater_bytes(void) 752 { 753 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 754 return (dbuf_cache_target - 755 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 756 } 757 758 static inline boolean_t 759 dbuf_cache_above_lowater(void) 760 { 761 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 762 dbuf_cache_lowater_bytes()); 763 } 764 765 /* 766 * Evict the oldest eligible dbuf from the dbuf cache. 767 */ 768 static void 769 dbuf_evict_one(void) 770 { 771 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 772 multilist_sublist_t *mls = multilist_sublist_lock( 773 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 774 775 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 776 777 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 778 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 779 db = multilist_sublist_prev(mls, db); 780 } 781 782 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 783 multilist_sublist_t *, mls); 784 785 if (db != NULL) { 786 multilist_sublist_remove(mls, db); 787 multilist_sublist_unlock(mls); 788 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db); 789 (void) zfs_refcount_remove_many( 790 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 791 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 792 DBUF_STAT_BUMPDOWN(cache_count); 793 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 794 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 795 db->db_caching_status = DB_NO_CACHE; 796 dbuf_destroy(db); 797 DBUF_STAT_BUMP(cache_total_evicts); 798 } else { 799 multilist_sublist_unlock(mls); 800 } 801 } 802 803 /* 804 * The dbuf evict thread is responsible for aging out dbufs from the 805 * cache. Once the cache has reached it's maximum size, dbufs are removed 806 * and destroyed. The eviction thread will continue running until the size 807 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 808 * out of the cache it is destroyed and becomes eligible for arc eviction. 809 */ 810 static __attribute__((noreturn)) void 811 dbuf_evict_thread(void *unused) 812 { 813 (void) unused; 814 callb_cpr_t cpr; 815 816 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 817 818 mutex_enter(&dbuf_evict_lock); 819 while (!dbuf_evict_thread_exit) { 820 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 821 CALLB_CPR_SAFE_BEGIN(&cpr); 822 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 823 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 824 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 825 } 826 mutex_exit(&dbuf_evict_lock); 827 828 /* 829 * Keep evicting as long as we're above the low water mark 830 * for the cache. We do this without holding the locks to 831 * minimize lock contention. 832 */ 833 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 834 dbuf_evict_one(); 835 } 836 837 mutex_enter(&dbuf_evict_lock); 838 } 839 840 dbuf_evict_thread_exit = B_FALSE; 841 cv_broadcast(&dbuf_evict_cv); 842 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 843 thread_exit(); 844 } 845 846 /* 847 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 848 * If the dbuf cache is at its high water mark, then evict a dbuf from the 849 * dbuf cache using the caller's context. 850 */ 851 static void 852 dbuf_evict_notify(uint64_t size) 853 { 854 /* 855 * We check if we should evict without holding the dbuf_evict_lock, 856 * because it's OK to occasionally make the wrong decision here, 857 * and grabbing the lock results in massive lock contention. 858 */ 859 if (size > dbuf_cache_target_bytes()) { 860 if (size > dbuf_cache_hiwater_bytes()) 861 dbuf_evict_one(); 862 cv_signal(&dbuf_evict_cv); 863 } 864 } 865 866 static int 867 dbuf_kstat_update(kstat_t *ksp, int rw) 868 { 869 dbuf_stats_t *ds = ksp->ks_data; 870 dbuf_hash_table_t *h = &dbuf_hash_table; 871 872 if (rw == KSTAT_WRITE) 873 return (SET_ERROR(EACCES)); 874 875 ds->cache_count.value.ui64 = 876 wmsum_value(&dbuf_sums.cache_count); 877 ds->cache_size_bytes.value.ui64 = 878 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 879 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 880 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 881 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 882 ds->cache_total_evicts.value.ui64 = 883 wmsum_value(&dbuf_sums.cache_total_evicts); 884 for (int i = 0; i < DN_MAX_LEVELS; i++) { 885 ds->cache_levels[i].value.ui64 = 886 wmsum_value(&dbuf_sums.cache_levels[i]); 887 ds->cache_levels_bytes[i].value.ui64 = 888 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 889 } 890 ds->hash_hits.value.ui64 = 891 wmsum_value(&dbuf_sums.hash_hits); 892 ds->hash_misses.value.ui64 = 893 wmsum_value(&dbuf_sums.hash_misses); 894 ds->hash_collisions.value.ui64 = 895 wmsum_value(&dbuf_sums.hash_collisions); 896 ds->hash_chains.value.ui64 = 897 wmsum_value(&dbuf_sums.hash_chains); 898 ds->hash_insert_race.value.ui64 = 899 wmsum_value(&dbuf_sums.hash_insert_race); 900 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 901 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 902 ds->metadata_cache_count.value.ui64 = 903 wmsum_value(&dbuf_sums.metadata_cache_count); 904 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 905 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 906 ds->metadata_cache_overflow.value.ui64 = 907 wmsum_value(&dbuf_sums.metadata_cache_overflow); 908 return (0); 909 } 910 911 void 912 dbuf_init(void) 913 { 914 uint64_t hmsize, hsize = 1ULL << 16; 915 dbuf_hash_table_t *h = &dbuf_hash_table; 916 917 /* 918 * The hash table is big enough to fill one eighth of physical memory 919 * with an average block size of zfs_arc_average_blocksize (default 8K). 920 * By default, the table will take up 921 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 922 */ 923 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 924 hsize <<= 1; 925 926 h->hash_table = NULL; 927 while (h->hash_table == NULL) { 928 h->hash_table_mask = hsize - 1; 929 930 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 931 if (h->hash_table == NULL) 932 hsize >>= 1; 933 934 ASSERT3U(hsize, >=, 1ULL << 10); 935 } 936 937 /* 938 * The hash table buckets are protected by an array of mutexes where 939 * each mutex is reponsible for protecting 128 buckets. A minimum 940 * array size of 8192 is targeted to avoid contention. 941 */ 942 if (dbuf_mutex_cache_shift == 0) 943 hmsize = MAX(hsize >> 7, 1ULL << 13); 944 else 945 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 946 947 h->hash_mutexes = NULL; 948 while (h->hash_mutexes == NULL) { 949 h->hash_mutex_mask = hmsize - 1; 950 951 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 952 KM_SLEEP); 953 if (h->hash_mutexes == NULL) 954 hmsize >>= 1; 955 } 956 957 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 958 sizeof (dmu_buf_impl_t), 959 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 960 961 for (int i = 0; i < hmsize; i++) 962 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 963 964 dbuf_stats_init(h); 965 966 /* 967 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 968 * configuration is not required. 969 */ 970 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 971 972 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 973 multilist_create(&dbuf_caches[dcs].cache, 974 sizeof (dmu_buf_impl_t), 975 offsetof(dmu_buf_impl_t, db_cache_link), 976 dbuf_cache_multilist_index_func); 977 zfs_refcount_create(&dbuf_caches[dcs].size); 978 } 979 980 dbuf_evict_thread_exit = B_FALSE; 981 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 982 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 983 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 984 NULL, 0, &p0, TS_RUN, minclsyspri); 985 986 wmsum_init(&dbuf_sums.cache_count, 0); 987 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 988 for (int i = 0; i < DN_MAX_LEVELS; i++) { 989 wmsum_init(&dbuf_sums.cache_levels[i], 0); 990 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 991 } 992 wmsum_init(&dbuf_sums.hash_hits, 0); 993 wmsum_init(&dbuf_sums.hash_misses, 0); 994 wmsum_init(&dbuf_sums.hash_collisions, 0); 995 wmsum_init(&dbuf_sums.hash_chains, 0); 996 wmsum_init(&dbuf_sums.hash_insert_race, 0); 997 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 998 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 999 1000 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1001 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1002 KSTAT_FLAG_VIRTUAL); 1003 if (dbuf_ksp != NULL) { 1004 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1005 snprintf(dbuf_stats.cache_levels[i].name, 1006 KSTAT_STRLEN, "cache_level_%d", i); 1007 dbuf_stats.cache_levels[i].data_type = 1008 KSTAT_DATA_UINT64; 1009 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1010 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1011 dbuf_stats.cache_levels_bytes[i].data_type = 1012 KSTAT_DATA_UINT64; 1013 } 1014 dbuf_ksp->ks_data = &dbuf_stats; 1015 dbuf_ksp->ks_update = dbuf_kstat_update; 1016 kstat_install(dbuf_ksp); 1017 } 1018 } 1019 1020 void 1021 dbuf_fini(void) 1022 { 1023 dbuf_hash_table_t *h = &dbuf_hash_table; 1024 1025 dbuf_stats_destroy(); 1026 1027 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1028 mutex_destroy(&h->hash_mutexes[i]); 1029 1030 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1031 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1032 sizeof (kmutex_t)); 1033 1034 kmem_cache_destroy(dbuf_kmem_cache); 1035 taskq_destroy(dbu_evict_taskq); 1036 1037 mutex_enter(&dbuf_evict_lock); 1038 dbuf_evict_thread_exit = B_TRUE; 1039 while (dbuf_evict_thread_exit) { 1040 cv_signal(&dbuf_evict_cv); 1041 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1042 } 1043 mutex_exit(&dbuf_evict_lock); 1044 1045 mutex_destroy(&dbuf_evict_lock); 1046 cv_destroy(&dbuf_evict_cv); 1047 1048 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1049 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1050 multilist_destroy(&dbuf_caches[dcs].cache); 1051 } 1052 1053 if (dbuf_ksp != NULL) { 1054 kstat_delete(dbuf_ksp); 1055 dbuf_ksp = NULL; 1056 } 1057 1058 wmsum_fini(&dbuf_sums.cache_count); 1059 wmsum_fini(&dbuf_sums.cache_total_evicts); 1060 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1061 wmsum_fini(&dbuf_sums.cache_levels[i]); 1062 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1063 } 1064 wmsum_fini(&dbuf_sums.hash_hits); 1065 wmsum_fini(&dbuf_sums.hash_misses); 1066 wmsum_fini(&dbuf_sums.hash_collisions); 1067 wmsum_fini(&dbuf_sums.hash_chains); 1068 wmsum_fini(&dbuf_sums.hash_insert_race); 1069 wmsum_fini(&dbuf_sums.metadata_cache_count); 1070 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1071 } 1072 1073 /* 1074 * Other stuff. 1075 */ 1076 1077 #ifdef ZFS_DEBUG 1078 static void 1079 dbuf_verify(dmu_buf_impl_t *db) 1080 { 1081 dnode_t *dn; 1082 dbuf_dirty_record_t *dr; 1083 uint32_t txg_prev; 1084 1085 ASSERT(MUTEX_HELD(&db->db_mtx)); 1086 1087 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1088 return; 1089 1090 ASSERT(db->db_objset != NULL); 1091 DB_DNODE_ENTER(db); 1092 dn = DB_DNODE(db); 1093 if (dn == NULL) { 1094 ASSERT(db->db_parent == NULL); 1095 ASSERT(db->db_blkptr == NULL); 1096 } else { 1097 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1098 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1099 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1100 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1101 db->db_blkid == DMU_SPILL_BLKID || 1102 !avl_is_empty(&dn->dn_dbufs)); 1103 } 1104 if (db->db_blkid == DMU_BONUS_BLKID) { 1105 ASSERT(dn != NULL); 1106 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1107 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1108 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1109 ASSERT(dn != NULL); 1110 ASSERT0(db->db.db_offset); 1111 } else { 1112 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1113 } 1114 1115 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1116 ASSERT(dr->dr_dbuf == db); 1117 txg_prev = dr->dr_txg; 1118 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1119 dr = list_next(&db->db_dirty_records, dr)) { 1120 ASSERT(dr->dr_dbuf == db); 1121 ASSERT(txg_prev > dr->dr_txg); 1122 txg_prev = dr->dr_txg; 1123 } 1124 } 1125 1126 /* 1127 * We can't assert that db_size matches dn_datablksz because it 1128 * can be momentarily different when another thread is doing 1129 * dnode_set_blksz(). 1130 */ 1131 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1132 dr = db->db_data_pending; 1133 /* 1134 * It should only be modified in syncing context, so 1135 * make sure we only have one copy of the data. 1136 */ 1137 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1138 } 1139 1140 /* verify db->db_blkptr */ 1141 if (db->db_blkptr) { 1142 if (db->db_parent == dn->dn_dbuf) { 1143 /* db is pointed to by the dnode */ 1144 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1145 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1146 ASSERT(db->db_parent == NULL); 1147 else 1148 ASSERT(db->db_parent != NULL); 1149 if (db->db_blkid != DMU_SPILL_BLKID) 1150 ASSERT3P(db->db_blkptr, ==, 1151 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1152 } else { 1153 /* db is pointed to by an indirect block */ 1154 int epb __maybe_unused = db->db_parent->db.db_size >> 1155 SPA_BLKPTRSHIFT; 1156 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1157 ASSERT3U(db->db_parent->db.db_object, ==, 1158 db->db.db_object); 1159 /* 1160 * dnode_grow_indblksz() can make this fail if we don't 1161 * have the parent's rwlock. XXX indblksz no longer 1162 * grows. safe to do this now? 1163 */ 1164 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1165 ASSERT3P(db->db_blkptr, ==, 1166 ((blkptr_t *)db->db_parent->db.db_data + 1167 db->db_blkid % epb)); 1168 } 1169 } 1170 } 1171 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1172 (db->db_buf == NULL || db->db_buf->b_data) && 1173 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1174 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1175 /* 1176 * If the blkptr isn't set but they have nonzero data, 1177 * it had better be dirty, otherwise we'll lose that 1178 * data when we evict this buffer. 1179 * 1180 * There is an exception to this rule for indirect blocks; in 1181 * this case, if the indirect block is a hole, we fill in a few 1182 * fields on each of the child blocks (importantly, birth time) 1183 * to prevent hole birth times from being lost when you 1184 * partially fill in a hole. 1185 */ 1186 if (db->db_dirtycnt == 0) { 1187 if (db->db_level == 0) { 1188 uint64_t *buf = db->db.db_data; 1189 int i; 1190 1191 for (i = 0; i < db->db.db_size >> 3; i++) { 1192 ASSERT(buf[i] == 0); 1193 } 1194 } else { 1195 blkptr_t *bps = db->db.db_data; 1196 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1197 db->db.db_size); 1198 /* 1199 * We want to verify that all the blkptrs in the 1200 * indirect block are holes, but we may have 1201 * automatically set up a few fields for them. 1202 * We iterate through each blkptr and verify 1203 * they only have those fields set. 1204 */ 1205 for (int i = 0; 1206 i < db->db.db_size / sizeof (blkptr_t); 1207 i++) { 1208 blkptr_t *bp = &bps[i]; 1209 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1210 &bp->blk_cksum)); 1211 ASSERT( 1212 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1213 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1214 DVA_IS_EMPTY(&bp->blk_dva[2])); 1215 ASSERT0(bp->blk_fill); 1216 ASSERT0(bp->blk_pad[0]); 1217 ASSERT0(bp->blk_pad[1]); 1218 ASSERT(!BP_IS_EMBEDDED(bp)); 1219 ASSERT(BP_IS_HOLE(bp)); 1220 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1221 } 1222 } 1223 } 1224 } 1225 DB_DNODE_EXIT(db); 1226 } 1227 #endif 1228 1229 static void 1230 dbuf_clear_data(dmu_buf_impl_t *db) 1231 { 1232 ASSERT(MUTEX_HELD(&db->db_mtx)); 1233 dbuf_evict_user(db); 1234 ASSERT3P(db->db_buf, ==, NULL); 1235 db->db.db_data = NULL; 1236 if (db->db_state != DB_NOFILL) { 1237 db->db_state = DB_UNCACHED; 1238 DTRACE_SET_STATE(db, "clear data"); 1239 } 1240 } 1241 1242 static void 1243 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1244 { 1245 ASSERT(MUTEX_HELD(&db->db_mtx)); 1246 ASSERT(buf != NULL); 1247 1248 db->db_buf = buf; 1249 ASSERT(buf->b_data != NULL); 1250 db->db.db_data = buf->b_data; 1251 } 1252 1253 static arc_buf_t * 1254 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1255 { 1256 spa_t *spa = db->db_objset->os_spa; 1257 1258 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1259 } 1260 1261 /* 1262 * Loan out an arc_buf for read. Return the loaned arc_buf. 1263 */ 1264 arc_buf_t * 1265 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1266 { 1267 arc_buf_t *abuf; 1268 1269 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1270 mutex_enter(&db->db_mtx); 1271 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1272 int blksz = db->db.db_size; 1273 spa_t *spa = db->db_objset->os_spa; 1274 1275 mutex_exit(&db->db_mtx); 1276 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1277 memcpy(abuf->b_data, db->db.db_data, blksz); 1278 } else { 1279 abuf = db->db_buf; 1280 arc_loan_inuse_buf(abuf, db); 1281 db->db_buf = NULL; 1282 dbuf_clear_data(db); 1283 mutex_exit(&db->db_mtx); 1284 } 1285 return (abuf); 1286 } 1287 1288 /* 1289 * Calculate which level n block references the data at the level 0 offset 1290 * provided. 1291 */ 1292 uint64_t 1293 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1294 { 1295 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1296 /* 1297 * The level n blkid is equal to the level 0 blkid divided by 1298 * the number of level 0s in a level n block. 1299 * 1300 * The level 0 blkid is offset >> datablkshift = 1301 * offset / 2^datablkshift. 1302 * 1303 * The number of level 0s in a level n is the number of block 1304 * pointers in an indirect block, raised to the power of level. 1305 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1306 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1307 * 1308 * Thus, the level n blkid is: offset / 1309 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1310 * = offset / 2^(datablkshift + level * 1311 * (indblkshift - SPA_BLKPTRSHIFT)) 1312 * = offset >> (datablkshift + level * 1313 * (indblkshift - SPA_BLKPTRSHIFT)) 1314 */ 1315 1316 const unsigned exp = dn->dn_datablkshift + 1317 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1318 1319 if (exp >= 8 * sizeof (offset)) { 1320 /* This only happens on the highest indirection level */ 1321 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1322 return (0); 1323 } 1324 1325 ASSERT3U(exp, <, 8 * sizeof (offset)); 1326 1327 return (offset >> exp); 1328 } else { 1329 ASSERT3U(offset, <, dn->dn_datablksz); 1330 return (0); 1331 } 1332 } 1333 1334 /* 1335 * This function is used to lock the parent of the provided dbuf. This should be 1336 * used when modifying or reading db_blkptr. 1337 */ 1338 db_lock_type_t 1339 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1340 { 1341 enum db_lock_type ret = DLT_NONE; 1342 if (db->db_parent != NULL) { 1343 rw_enter(&db->db_parent->db_rwlock, rw); 1344 ret = DLT_PARENT; 1345 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1346 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1347 tag); 1348 ret = DLT_OBJSET; 1349 } 1350 /* 1351 * We only return a DLT_NONE lock when it's the top-most indirect block 1352 * of the meta-dnode of the MOS. 1353 */ 1354 return (ret); 1355 } 1356 1357 /* 1358 * We need to pass the lock type in because it's possible that the block will 1359 * move from being the topmost indirect block in a dnode (and thus, have no 1360 * parent) to not the top-most via an indirection increase. This would cause a 1361 * panic if we didn't pass the lock type in. 1362 */ 1363 void 1364 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1365 { 1366 if (type == DLT_PARENT) 1367 rw_exit(&db->db_parent->db_rwlock); 1368 else if (type == DLT_OBJSET) 1369 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1370 } 1371 1372 static void 1373 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1374 arc_buf_t *buf, void *vdb) 1375 { 1376 (void) zb, (void) bp; 1377 dmu_buf_impl_t *db = vdb; 1378 1379 mutex_enter(&db->db_mtx); 1380 ASSERT3U(db->db_state, ==, DB_READ); 1381 /* 1382 * All reads are synchronous, so we must have a hold on the dbuf 1383 */ 1384 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1385 ASSERT(db->db_buf == NULL); 1386 ASSERT(db->db.db_data == NULL); 1387 if (buf == NULL) { 1388 /* i/o error */ 1389 ASSERT(zio == NULL || zio->io_error != 0); 1390 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1391 ASSERT3P(db->db_buf, ==, NULL); 1392 db->db_state = DB_UNCACHED; 1393 DTRACE_SET_STATE(db, "i/o error"); 1394 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1395 /* freed in flight */ 1396 ASSERT(zio == NULL || zio->io_error == 0); 1397 arc_release(buf, db); 1398 memset(buf->b_data, 0, db->db.db_size); 1399 arc_buf_freeze(buf); 1400 db->db_freed_in_flight = FALSE; 1401 dbuf_set_data(db, buf); 1402 db->db_state = DB_CACHED; 1403 DTRACE_SET_STATE(db, "freed in flight"); 1404 } else { 1405 /* success */ 1406 ASSERT(zio == NULL || zio->io_error == 0); 1407 dbuf_set_data(db, buf); 1408 db->db_state = DB_CACHED; 1409 DTRACE_SET_STATE(db, "successful read"); 1410 } 1411 cv_broadcast(&db->db_changed); 1412 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1413 } 1414 1415 /* 1416 * Shortcut for performing reads on bonus dbufs. Returns 1417 * an error if we fail to verify the dnode associated with 1418 * a decrypted block. Otherwise success. 1419 */ 1420 static int 1421 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1422 { 1423 int bonuslen, max_bonuslen, err; 1424 1425 err = dbuf_read_verify_dnode_crypt(db, flags); 1426 if (err) 1427 return (err); 1428 1429 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1430 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1431 ASSERT(MUTEX_HELD(&db->db_mtx)); 1432 ASSERT(DB_DNODE_HELD(db)); 1433 ASSERT3U(bonuslen, <=, db->db.db_size); 1434 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1435 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1436 if (bonuslen < max_bonuslen) 1437 memset(db->db.db_data, 0, max_bonuslen); 1438 if (bonuslen) 1439 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1440 db->db_state = DB_CACHED; 1441 DTRACE_SET_STATE(db, "bonus buffer filled"); 1442 return (0); 1443 } 1444 1445 static void 1446 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1447 { 1448 blkptr_t *bps = db->db.db_data; 1449 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1450 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1451 1452 for (int i = 0; i < n_bps; i++) { 1453 blkptr_t *bp = &bps[i]; 1454 1455 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1456 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1457 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1458 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1459 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1460 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1461 } 1462 } 1463 1464 /* 1465 * Handle reads on dbufs that are holes, if necessary. This function 1466 * requires that the dbuf's mutex is held. Returns success (0) if action 1467 * was taken, ENOENT if no action was taken. 1468 */ 1469 static int 1470 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1471 { 1472 ASSERT(MUTEX_HELD(&db->db_mtx)); 1473 1474 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1475 /* 1476 * For level 0 blocks only, if the above check fails: 1477 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1478 * processes the delete record and clears the bp while we are waiting 1479 * for the dn_mtx (resulting in a "no" from block_freed). 1480 */ 1481 if (!is_hole && db->db_level == 0) 1482 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1483 1484 if (is_hole) { 1485 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1486 memset(db->db.db_data, 0, db->db.db_size); 1487 1488 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1489 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1490 dbuf_handle_indirect_hole(db, dn, bp); 1491 } 1492 db->db_state = DB_CACHED; 1493 DTRACE_SET_STATE(db, "hole read satisfied"); 1494 return (0); 1495 } 1496 return (ENOENT); 1497 } 1498 1499 /* 1500 * This function ensures that, when doing a decrypting read of a block, 1501 * we make sure we have decrypted the dnode associated with it. We must do 1502 * this so that we ensure we are fully authenticating the checksum-of-MACs 1503 * tree from the root of the objset down to this block. Indirect blocks are 1504 * always verified against their secure checksum-of-MACs assuming that the 1505 * dnode containing them is correct. Now that we are doing a decrypting read, 1506 * we can be sure that the key is loaded and verify that assumption. This is 1507 * especially important considering that we always read encrypted dnode 1508 * blocks as raw data (without verifying their MACs) to start, and 1509 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1510 */ 1511 static int 1512 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1513 { 1514 int err = 0; 1515 objset_t *os = db->db_objset; 1516 arc_buf_t *dnode_abuf; 1517 dnode_t *dn; 1518 zbookmark_phys_t zb; 1519 1520 ASSERT(MUTEX_HELD(&db->db_mtx)); 1521 1522 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1523 !os->os_encrypted || os->os_raw_receive) 1524 return (0); 1525 1526 DB_DNODE_ENTER(db); 1527 dn = DB_DNODE(db); 1528 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1529 1530 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1531 DB_DNODE_EXIT(db); 1532 return (0); 1533 } 1534 1535 SET_BOOKMARK(&zb, dmu_objset_id(os), 1536 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1537 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1538 1539 /* 1540 * An error code of EACCES tells us that the key is still not 1541 * available. This is ok if we are only reading authenticated 1542 * (and therefore non-encrypted) blocks. 1543 */ 1544 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1545 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1546 (db->db_blkid == DMU_BONUS_BLKID && 1547 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1548 err = 0; 1549 1550 DB_DNODE_EXIT(db); 1551 1552 return (err); 1553 } 1554 1555 /* 1556 * Drops db_mtx and the parent lock specified by dblt and tag before 1557 * returning. 1558 */ 1559 static int 1560 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1561 db_lock_type_t dblt, const void *tag) 1562 { 1563 dnode_t *dn; 1564 zbookmark_phys_t zb; 1565 uint32_t aflags = ARC_FLAG_NOWAIT; 1566 int err, zio_flags; 1567 blkptr_t bp, *bpp; 1568 1569 DB_DNODE_ENTER(db); 1570 dn = DB_DNODE(db); 1571 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1572 ASSERT(MUTEX_HELD(&db->db_mtx)); 1573 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1574 ASSERT(db->db_buf == NULL); 1575 ASSERT(db->db_parent == NULL || 1576 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1577 1578 if (db->db_blkid == DMU_BONUS_BLKID) { 1579 err = dbuf_read_bonus(db, dn, flags); 1580 goto early_unlock; 1581 } 1582 1583 if (db->db_state == DB_UNCACHED) { 1584 if (db->db_blkptr == NULL) { 1585 bpp = NULL; 1586 } else { 1587 bp = *db->db_blkptr; 1588 bpp = &bp; 1589 } 1590 } else { 1591 dbuf_dirty_record_t *dr; 1592 1593 ASSERT3S(db->db_state, ==, DB_NOFILL); 1594 1595 /* 1596 * Block cloning: If we have a pending block clone, 1597 * we don't want to read the underlying block, but the content 1598 * of the block being cloned, so we have the most recent data. 1599 */ 1600 dr = list_head(&db->db_dirty_records); 1601 if (dr == NULL || !dr->dt.dl.dr_brtwrite) { 1602 err = EIO; 1603 goto early_unlock; 1604 } 1605 bp = dr->dt.dl.dr_overridden_by; 1606 bpp = &bp; 1607 } 1608 1609 err = dbuf_read_hole(db, dn, bpp); 1610 if (err == 0) 1611 goto early_unlock; 1612 1613 ASSERT(bpp != NULL); 1614 1615 /* 1616 * Any attempt to read a redacted block should result in an error. This 1617 * will never happen under normal conditions, but can be useful for 1618 * debugging purposes. 1619 */ 1620 if (BP_IS_REDACTED(bpp)) { 1621 ASSERT(dsl_dataset_feature_is_active( 1622 db->db_objset->os_dsl_dataset, 1623 SPA_FEATURE_REDACTED_DATASETS)); 1624 err = SET_ERROR(EIO); 1625 goto early_unlock; 1626 } 1627 1628 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1629 db->db.db_object, db->db_level, db->db_blkid); 1630 1631 /* 1632 * All bps of an encrypted os should have the encryption bit set. 1633 * If this is not true it indicates tampering and we report an error. 1634 */ 1635 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { 1636 spa_log_error(db->db_objset->os_spa, &zb, 1637 BP_GET_LOGICAL_BIRTH(bpp)); 1638 err = SET_ERROR(EIO); 1639 goto early_unlock; 1640 } 1641 1642 err = dbuf_read_verify_dnode_crypt(db, flags); 1643 if (err != 0) 1644 goto early_unlock; 1645 1646 DB_DNODE_EXIT(db); 1647 1648 db->db_state = DB_READ; 1649 DTRACE_SET_STATE(db, "read issued"); 1650 mutex_exit(&db->db_mtx); 1651 1652 if (!DBUF_IS_CACHEABLE(db)) 1653 aflags |= ARC_FLAG_UNCACHED; 1654 else if (dbuf_is_l2cacheable(db)) 1655 aflags |= ARC_FLAG_L2CACHE; 1656 1657 dbuf_add_ref(db, NULL); 1658 1659 zio_flags = (flags & DB_RF_CANFAIL) ? 1660 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1661 1662 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1663 zio_flags |= ZIO_FLAG_RAW; 1664 /* 1665 * The zio layer will copy the provided blkptr later, but we have our 1666 * own copy so that we can release the parent's rwlock. We have to 1667 * do that so that if dbuf_read_done is called synchronously (on 1668 * an l1 cache hit) we don't acquire the db_mtx while holding the 1669 * parent's rwlock, which would be a lock ordering violation. 1670 */ 1671 dmu_buf_unlock_parent(db, dblt, tag); 1672 (void) arc_read(zio, db->db_objset->os_spa, bpp, 1673 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1674 &aflags, &zb); 1675 return (err); 1676 early_unlock: 1677 DB_DNODE_EXIT(db); 1678 mutex_exit(&db->db_mtx); 1679 dmu_buf_unlock_parent(db, dblt, tag); 1680 return (err); 1681 } 1682 1683 /* 1684 * This is our just-in-time copy function. It makes a copy of buffers that 1685 * have been modified in a previous transaction group before we access them in 1686 * the current active group. 1687 * 1688 * This function is used in three places: when we are dirtying a buffer for the 1689 * first time in a txg, when we are freeing a range in a dnode that includes 1690 * this buffer, and when we are accessing a buffer which was received compressed 1691 * and later referenced in a WRITE_BYREF record. 1692 * 1693 * Note that when we are called from dbuf_free_range() we do not put a hold on 1694 * the buffer, we just traverse the active dbuf list for the dnode. 1695 */ 1696 static void 1697 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1698 { 1699 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1700 1701 ASSERT(MUTEX_HELD(&db->db_mtx)); 1702 ASSERT(db->db.db_data != NULL); 1703 ASSERT(db->db_level == 0); 1704 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1705 1706 if (dr == NULL || 1707 (dr->dt.dl.dr_data != 1708 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1709 return; 1710 1711 /* 1712 * If the last dirty record for this dbuf has not yet synced 1713 * and its referencing the dbuf data, either: 1714 * reset the reference to point to a new copy, 1715 * or (if there a no active holders) 1716 * just null out the current db_data pointer. 1717 */ 1718 ASSERT3U(dr->dr_txg, >=, txg - 2); 1719 if (db->db_blkid == DMU_BONUS_BLKID) { 1720 dnode_t *dn = DB_DNODE(db); 1721 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1722 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1723 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1724 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1725 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1726 dnode_t *dn = DB_DNODE(db); 1727 int size = arc_buf_size(db->db_buf); 1728 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1729 spa_t *spa = db->db_objset->os_spa; 1730 enum zio_compress compress_type = 1731 arc_get_compression(db->db_buf); 1732 uint8_t complevel = arc_get_complevel(db->db_buf); 1733 1734 if (arc_is_encrypted(db->db_buf)) { 1735 boolean_t byteorder; 1736 uint8_t salt[ZIO_DATA_SALT_LEN]; 1737 uint8_t iv[ZIO_DATA_IV_LEN]; 1738 uint8_t mac[ZIO_DATA_MAC_LEN]; 1739 1740 arc_get_raw_params(db->db_buf, &byteorder, salt, 1741 iv, mac); 1742 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1743 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1744 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1745 compress_type, complevel); 1746 } else if (compress_type != ZIO_COMPRESS_OFF) { 1747 ASSERT3U(type, ==, ARC_BUFC_DATA); 1748 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1749 size, arc_buf_lsize(db->db_buf), compress_type, 1750 complevel); 1751 } else { 1752 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1753 } 1754 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1755 } else { 1756 db->db_buf = NULL; 1757 dbuf_clear_data(db); 1758 } 1759 } 1760 1761 int 1762 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1763 { 1764 int err = 0; 1765 boolean_t prefetch; 1766 dnode_t *dn; 1767 1768 /* 1769 * We don't have to hold the mutex to check db_state because it 1770 * can't be freed while we have a hold on the buffer. 1771 */ 1772 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1773 1774 DB_DNODE_ENTER(db); 1775 dn = DB_DNODE(db); 1776 1777 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1778 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL; 1779 1780 mutex_enter(&db->db_mtx); 1781 if (flags & DB_RF_PARTIAL_FIRST) 1782 db->db_partial_read = B_TRUE; 1783 else if (!(flags & DB_RF_PARTIAL_MORE)) 1784 db->db_partial_read = B_FALSE; 1785 if (db->db_state == DB_CACHED) { 1786 /* 1787 * Ensure that this block's dnode has been decrypted if 1788 * the caller has requested decrypted data. 1789 */ 1790 err = dbuf_read_verify_dnode_crypt(db, flags); 1791 1792 /* 1793 * If the arc buf is compressed or encrypted and the caller 1794 * requested uncompressed data, we need to untransform it 1795 * before returning. We also call arc_untransform() on any 1796 * unauthenticated blocks, which will verify their MAC if 1797 * the key is now available. 1798 */ 1799 if (err == 0 && db->db_buf != NULL && 1800 (flags & DB_RF_NO_DECRYPT) == 0 && 1801 (arc_is_encrypted(db->db_buf) || 1802 arc_is_unauthenticated(db->db_buf) || 1803 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1804 spa_t *spa = dn->dn_objset->os_spa; 1805 zbookmark_phys_t zb; 1806 1807 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1808 db->db.db_object, db->db_level, db->db_blkid); 1809 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1810 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1811 dbuf_set_data(db, db->db_buf); 1812 } 1813 mutex_exit(&db->db_mtx); 1814 if (err == 0 && prefetch) { 1815 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1816 B_FALSE, flags & DB_RF_HAVESTRUCT); 1817 } 1818 DB_DNODE_EXIT(db); 1819 DBUF_STAT_BUMP(hash_hits); 1820 } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) { 1821 boolean_t need_wait = B_FALSE; 1822 1823 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1824 1825 if (zio == NULL && (db->db_state == DB_NOFILL || 1826 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { 1827 spa_t *spa = dn->dn_objset->os_spa; 1828 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1829 need_wait = B_TRUE; 1830 } 1831 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1832 /* 1833 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1834 * for us 1835 */ 1836 if (!err && prefetch) { 1837 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1838 db->db_state != DB_CACHED, 1839 flags & DB_RF_HAVESTRUCT); 1840 } 1841 1842 DB_DNODE_EXIT(db); 1843 DBUF_STAT_BUMP(hash_misses); 1844 1845 /* 1846 * If we created a zio_root we must execute it to avoid 1847 * leaking it, even if it isn't attached to any work due 1848 * to an error in dbuf_read_impl(). 1849 */ 1850 if (need_wait) { 1851 if (err == 0) 1852 err = zio_wait(zio); 1853 else 1854 VERIFY0(zio_wait(zio)); 1855 } 1856 } else { 1857 /* 1858 * Another reader came in while the dbuf was in flight 1859 * between UNCACHED and CACHED. Either a writer will finish 1860 * writing the buffer (sending the dbuf to CACHED) or the 1861 * first reader's request will reach the read_done callback 1862 * and send the dbuf to CACHED. Otherwise, a failure 1863 * occurred and the dbuf went to UNCACHED. 1864 */ 1865 mutex_exit(&db->db_mtx); 1866 if (prefetch) { 1867 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1868 B_TRUE, flags & DB_RF_HAVESTRUCT); 1869 } 1870 DB_DNODE_EXIT(db); 1871 DBUF_STAT_BUMP(hash_misses); 1872 1873 /* Skip the wait per the caller's request. */ 1874 if ((flags & DB_RF_NEVERWAIT) == 0) { 1875 mutex_enter(&db->db_mtx); 1876 while (db->db_state == DB_READ || 1877 db->db_state == DB_FILL) { 1878 ASSERT(db->db_state == DB_READ || 1879 (flags & DB_RF_HAVESTRUCT) == 0); 1880 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1881 db, zio_t *, zio); 1882 cv_wait(&db->db_changed, &db->db_mtx); 1883 } 1884 if (db->db_state == DB_UNCACHED) 1885 err = SET_ERROR(EIO); 1886 mutex_exit(&db->db_mtx); 1887 } 1888 } 1889 1890 return (err); 1891 } 1892 1893 static void 1894 dbuf_noread(dmu_buf_impl_t *db) 1895 { 1896 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1897 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1898 mutex_enter(&db->db_mtx); 1899 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1900 cv_wait(&db->db_changed, &db->db_mtx); 1901 if (db->db_state == DB_UNCACHED) { 1902 ASSERT(db->db_buf == NULL); 1903 ASSERT(db->db.db_data == NULL); 1904 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1905 db->db_state = DB_FILL; 1906 DTRACE_SET_STATE(db, "assigning filled buffer"); 1907 } else if (db->db_state == DB_NOFILL) { 1908 dbuf_clear_data(db); 1909 } else { 1910 ASSERT3U(db->db_state, ==, DB_CACHED); 1911 } 1912 mutex_exit(&db->db_mtx); 1913 } 1914 1915 void 1916 dbuf_unoverride(dbuf_dirty_record_t *dr) 1917 { 1918 dmu_buf_impl_t *db = dr->dr_dbuf; 1919 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1920 uint64_t txg = dr->dr_txg; 1921 1922 ASSERT(MUTEX_HELD(&db->db_mtx)); 1923 /* 1924 * This assert is valid because dmu_sync() expects to be called by 1925 * a zilog's get_data while holding a range lock. This call only 1926 * comes from dbuf_dirty() callers who must also hold a range lock. 1927 */ 1928 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1929 ASSERT(db->db_level == 0); 1930 1931 if (db->db_blkid == DMU_BONUS_BLKID || 1932 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1933 return; 1934 1935 ASSERT(db->db_data_pending != dr); 1936 1937 /* free this block */ 1938 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1939 zio_free(db->db_objset->os_spa, txg, bp); 1940 1941 if (dr->dt.dl.dr_brtwrite) { 1942 ASSERT0P(dr->dt.dl.dr_data); 1943 dr->dt.dl.dr_data = db->db_buf; 1944 } 1945 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1946 dr->dt.dl.dr_nopwrite = B_FALSE; 1947 dr->dt.dl.dr_brtwrite = B_FALSE; 1948 dr->dt.dl.dr_has_raw_params = B_FALSE; 1949 1950 /* 1951 * Release the already-written buffer, so we leave it in 1952 * a consistent dirty state. Note that all callers are 1953 * modifying the buffer, so they will immediately do 1954 * another (redundant) arc_release(). Therefore, leave 1955 * the buf thawed to save the effort of freezing & 1956 * immediately re-thawing it. 1957 */ 1958 if (dr->dt.dl.dr_data) 1959 arc_release(dr->dt.dl.dr_data, db); 1960 } 1961 1962 /* 1963 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1964 * data blocks in the free range, so that any future readers will find 1965 * empty blocks. 1966 */ 1967 void 1968 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1969 dmu_tx_t *tx) 1970 { 1971 dmu_buf_impl_t *db_search; 1972 dmu_buf_impl_t *db, *db_next; 1973 uint64_t txg = tx->tx_txg; 1974 avl_index_t where; 1975 dbuf_dirty_record_t *dr; 1976 1977 if (end_blkid > dn->dn_maxblkid && 1978 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1979 end_blkid = dn->dn_maxblkid; 1980 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1981 (u_longlong_t)end_blkid); 1982 1983 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1984 db_search->db_level = 0; 1985 db_search->db_blkid = start_blkid; 1986 db_search->db_state = DB_SEARCH; 1987 1988 mutex_enter(&dn->dn_dbufs_mtx); 1989 db = avl_find(&dn->dn_dbufs, db_search, &where); 1990 ASSERT3P(db, ==, NULL); 1991 1992 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1993 1994 for (; db != NULL; db = db_next) { 1995 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1996 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1997 1998 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1999 break; 2000 } 2001 ASSERT3U(db->db_blkid, >=, start_blkid); 2002 2003 /* found a level 0 buffer in the range */ 2004 mutex_enter(&db->db_mtx); 2005 if (dbuf_undirty(db, tx)) { 2006 /* mutex has been dropped and dbuf destroyed */ 2007 continue; 2008 } 2009 2010 if (db->db_state == DB_UNCACHED || 2011 db->db_state == DB_NOFILL || 2012 db->db_state == DB_EVICTING) { 2013 ASSERT(db->db.db_data == NULL); 2014 mutex_exit(&db->db_mtx); 2015 continue; 2016 } 2017 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2018 /* will be handled in dbuf_read_done or dbuf_rele */ 2019 db->db_freed_in_flight = TRUE; 2020 mutex_exit(&db->db_mtx); 2021 continue; 2022 } 2023 if (zfs_refcount_count(&db->db_holds) == 0) { 2024 ASSERT(db->db_buf); 2025 dbuf_destroy(db); 2026 continue; 2027 } 2028 /* The dbuf is referenced */ 2029 2030 dr = list_head(&db->db_dirty_records); 2031 if (dr != NULL) { 2032 if (dr->dr_txg == txg) { 2033 /* 2034 * This buffer is "in-use", re-adjust the file 2035 * size to reflect that this buffer may 2036 * contain new data when we sync. 2037 */ 2038 if (db->db_blkid != DMU_SPILL_BLKID && 2039 db->db_blkid > dn->dn_maxblkid) 2040 dn->dn_maxblkid = db->db_blkid; 2041 dbuf_unoverride(dr); 2042 } else { 2043 /* 2044 * This dbuf is not dirty in the open context. 2045 * Either uncache it (if its not referenced in 2046 * the open context) or reset its contents to 2047 * empty. 2048 */ 2049 dbuf_fix_old_data(db, txg); 2050 } 2051 } 2052 /* clear the contents if its cached */ 2053 if (db->db_state == DB_CACHED) { 2054 ASSERT(db->db.db_data != NULL); 2055 arc_release(db->db_buf, db); 2056 rw_enter(&db->db_rwlock, RW_WRITER); 2057 memset(db->db.db_data, 0, db->db.db_size); 2058 rw_exit(&db->db_rwlock); 2059 arc_buf_freeze(db->db_buf); 2060 } 2061 2062 mutex_exit(&db->db_mtx); 2063 } 2064 2065 mutex_exit(&dn->dn_dbufs_mtx); 2066 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2067 } 2068 2069 void 2070 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2071 { 2072 arc_buf_t *buf, *old_buf; 2073 dbuf_dirty_record_t *dr; 2074 int osize = db->db.db_size; 2075 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2076 dnode_t *dn; 2077 2078 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2079 2080 DB_DNODE_ENTER(db); 2081 dn = DB_DNODE(db); 2082 2083 /* 2084 * XXX we should be doing a dbuf_read, checking the return 2085 * value and returning that up to our callers 2086 */ 2087 dmu_buf_will_dirty(&db->db, tx); 2088 2089 /* create the data buffer for the new block */ 2090 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2091 2092 /* copy old block data to the new block */ 2093 old_buf = db->db_buf; 2094 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2095 /* zero the remainder */ 2096 if (size > osize) 2097 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2098 2099 mutex_enter(&db->db_mtx); 2100 dbuf_set_data(db, buf); 2101 arc_buf_destroy(old_buf, db); 2102 db->db.db_size = size; 2103 2104 dr = list_head(&db->db_dirty_records); 2105 /* dirty record added by dmu_buf_will_dirty() */ 2106 VERIFY(dr != NULL); 2107 if (db->db_level == 0) 2108 dr->dt.dl.dr_data = buf; 2109 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2110 ASSERT3U(dr->dr_accounted, ==, osize); 2111 dr->dr_accounted = size; 2112 mutex_exit(&db->db_mtx); 2113 2114 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2115 DB_DNODE_EXIT(db); 2116 } 2117 2118 void 2119 dbuf_release_bp(dmu_buf_impl_t *db) 2120 { 2121 objset_t *os __maybe_unused = db->db_objset; 2122 2123 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2124 ASSERT(arc_released(os->os_phys_buf) || 2125 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2126 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2127 2128 (void) arc_release(db->db_buf, db); 2129 } 2130 2131 /* 2132 * We already have a dirty record for this TXG, and we are being 2133 * dirtied again. 2134 */ 2135 static void 2136 dbuf_redirty(dbuf_dirty_record_t *dr) 2137 { 2138 dmu_buf_impl_t *db = dr->dr_dbuf; 2139 2140 ASSERT(MUTEX_HELD(&db->db_mtx)); 2141 2142 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2143 /* 2144 * If this buffer has already been written out, 2145 * we now need to reset its state. 2146 */ 2147 dbuf_unoverride(dr); 2148 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2149 db->db_state != DB_NOFILL) { 2150 /* Already released on initial dirty, so just thaw. */ 2151 ASSERT(arc_released(db->db_buf)); 2152 arc_buf_thaw(db->db_buf); 2153 } 2154 } 2155 } 2156 2157 dbuf_dirty_record_t * 2158 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2159 { 2160 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2161 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2162 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2163 ASSERT(dn->dn_maxblkid >= blkid); 2164 2165 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2166 list_link_init(&dr->dr_dirty_node); 2167 list_link_init(&dr->dr_dbuf_node); 2168 dr->dr_dnode = dn; 2169 dr->dr_txg = tx->tx_txg; 2170 dr->dt.dll.dr_blkid = blkid; 2171 dr->dr_accounted = dn->dn_datablksz; 2172 2173 /* 2174 * There should not be any dbuf for the block that we're dirtying. 2175 * Otherwise the buffer contents could be inconsistent between the 2176 * dbuf and the lightweight dirty record. 2177 */ 2178 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2179 NULL)); 2180 2181 mutex_enter(&dn->dn_mtx); 2182 int txgoff = tx->tx_txg & TXG_MASK; 2183 if (dn->dn_free_ranges[txgoff] != NULL) { 2184 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2185 } 2186 2187 if (dn->dn_nlevels == 1) { 2188 ASSERT3U(blkid, <, dn->dn_nblkptr); 2189 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2190 mutex_exit(&dn->dn_mtx); 2191 rw_exit(&dn->dn_struct_rwlock); 2192 dnode_setdirty(dn, tx); 2193 } else { 2194 mutex_exit(&dn->dn_mtx); 2195 2196 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2197 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2198 1, blkid >> epbs, FTAG); 2199 rw_exit(&dn->dn_struct_rwlock); 2200 if (parent_db == NULL) { 2201 kmem_free(dr, sizeof (*dr)); 2202 return (NULL); 2203 } 2204 int err = dbuf_read(parent_db, NULL, 2205 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2206 if (err != 0) { 2207 dbuf_rele(parent_db, FTAG); 2208 kmem_free(dr, sizeof (*dr)); 2209 return (NULL); 2210 } 2211 2212 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2213 dbuf_rele(parent_db, FTAG); 2214 mutex_enter(&parent_dr->dt.di.dr_mtx); 2215 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2216 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2217 mutex_exit(&parent_dr->dt.di.dr_mtx); 2218 dr->dr_parent = parent_dr; 2219 } 2220 2221 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2222 2223 return (dr); 2224 } 2225 2226 dbuf_dirty_record_t * 2227 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2228 { 2229 dnode_t *dn; 2230 objset_t *os; 2231 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2232 int txgoff = tx->tx_txg & TXG_MASK; 2233 boolean_t drop_struct_rwlock = B_FALSE; 2234 2235 ASSERT(tx->tx_txg != 0); 2236 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2237 DMU_TX_DIRTY_BUF(tx, db); 2238 2239 DB_DNODE_ENTER(db); 2240 dn = DB_DNODE(db); 2241 /* 2242 * Shouldn't dirty a regular buffer in syncing context. Private 2243 * objects may be dirtied in syncing context, but only if they 2244 * were already pre-dirtied in open context. 2245 */ 2246 #ifdef ZFS_DEBUG 2247 if (dn->dn_objset->os_dsl_dataset != NULL) { 2248 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2249 RW_READER, FTAG); 2250 } 2251 ASSERT(!dmu_tx_is_syncing(tx) || 2252 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2253 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2254 dn->dn_objset->os_dsl_dataset == NULL); 2255 if (dn->dn_objset->os_dsl_dataset != NULL) 2256 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2257 #endif 2258 /* 2259 * We make this assert for private objects as well, but after we 2260 * check if we're already dirty. They are allowed to re-dirty 2261 * in syncing context. 2262 */ 2263 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2264 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2265 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2266 2267 mutex_enter(&db->db_mtx); 2268 /* 2269 * XXX make this true for indirects too? The problem is that 2270 * transactions created with dmu_tx_create_assigned() from 2271 * syncing context don't bother holding ahead. 2272 */ 2273 ASSERT(db->db_level != 0 || 2274 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2275 db->db_state == DB_NOFILL); 2276 2277 mutex_enter(&dn->dn_mtx); 2278 dnode_set_dirtyctx(dn, tx, db); 2279 if (tx->tx_txg > dn->dn_dirty_txg) 2280 dn->dn_dirty_txg = tx->tx_txg; 2281 mutex_exit(&dn->dn_mtx); 2282 2283 if (db->db_blkid == DMU_SPILL_BLKID) 2284 dn->dn_have_spill = B_TRUE; 2285 2286 /* 2287 * If this buffer is already dirty, we're done. 2288 */ 2289 dr_head = list_head(&db->db_dirty_records); 2290 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2291 db->db.db_object == DMU_META_DNODE_OBJECT); 2292 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2293 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2294 DB_DNODE_EXIT(db); 2295 2296 dbuf_redirty(dr_next); 2297 mutex_exit(&db->db_mtx); 2298 return (dr_next); 2299 } 2300 2301 /* 2302 * Only valid if not already dirty. 2303 */ 2304 ASSERT(dn->dn_object == 0 || 2305 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2306 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2307 2308 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2309 2310 /* 2311 * We should only be dirtying in syncing context if it's the 2312 * mos or we're initializing the os or it's a special object. 2313 * However, we are allowed to dirty in syncing context provided 2314 * we already dirtied it in open context. Hence we must make 2315 * this assertion only if we're not already dirty. 2316 */ 2317 os = dn->dn_objset; 2318 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2319 #ifdef ZFS_DEBUG 2320 if (dn->dn_objset->os_dsl_dataset != NULL) 2321 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2322 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2323 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2324 if (dn->dn_objset->os_dsl_dataset != NULL) 2325 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2326 #endif 2327 ASSERT(db->db.db_size != 0); 2328 2329 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2330 2331 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2332 dmu_objset_willuse_space(os, db->db.db_size, tx); 2333 } 2334 2335 /* 2336 * If this buffer is dirty in an old transaction group we need 2337 * to make a copy of it so that the changes we make in this 2338 * transaction group won't leak out when we sync the older txg. 2339 */ 2340 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2341 list_link_init(&dr->dr_dirty_node); 2342 list_link_init(&dr->dr_dbuf_node); 2343 dr->dr_dnode = dn; 2344 if (db->db_level == 0) { 2345 void *data_old = db->db_buf; 2346 2347 if (db->db_state != DB_NOFILL) { 2348 if (db->db_blkid == DMU_BONUS_BLKID) { 2349 dbuf_fix_old_data(db, tx->tx_txg); 2350 data_old = db->db.db_data; 2351 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2352 /* 2353 * Release the data buffer from the cache so 2354 * that we can modify it without impacting 2355 * possible other users of this cached data 2356 * block. Note that indirect blocks and 2357 * private objects are not released until the 2358 * syncing state (since they are only modified 2359 * then). 2360 */ 2361 arc_release(db->db_buf, db); 2362 dbuf_fix_old_data(db, tx->tx_txg); 2363 data_old = db->db_buf; 2364 } 2365 ASSERT(data_old != NULL); 2366 } 2367 dr->dt.dl.dr_data = data_old; 2368 } else { 2369 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2370 list_create(&dr->dt.di.dr_children, 2371 sizeof (dbuf_dirty_record_t), 2372 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2373 } 2374 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2375 dr->dr_accounted = db->db.db_size; 2376 } 2377 dr->dr_dbuf = db; 2378 dr->dr_txg = tx->tx_txg; 2379 list_insert_before(&db->db_dirty_records, dr_next, dr); 2380 2381 /* 2382 * We could have been freed_in_flight between the dbuf_noread 2383 * and dbuf_dirty. We win, as though the dbuf_noread() had 2384 * happened after the free. 2385 */ 2386 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2387 db->db_blkid != DMU_SPILL_BLKID) { 2388 mutex_enter(&dn->dn_mtx); 2389 if (dn->dn_free_ranges[txgoff] != NULL) { 2390 range_tree_clear(dn->dn_free_ranges[txgoff], 2391 db->db_blkid, 1); 2392 } 2393 mutex_exit(&dn->dn_mtx); 2394 db->db_freed_in_flight = FALSE; 2395 } 2396 2397 /* 2398 * This buffer is now part of this txg 2399 */ 2400 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2401 db->db_dirtycnt += 1; 2402 ASSERT3U(db->db_dirtycnt, <=, 3); 2403 2404 mutex_exit(&db->db_mtx); 2405 2406 if (db->db_blkid == DMU_BONUS_BLKID || 2407 db->db_blkid == DMU_SPILL_BLKID) { 2408 mutex_enter(&dn->dn_mtx); 2409 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2410 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2411 mutex_exit(&dn->dn_mtx); 2412 dnode_setdirty(dn, tx); 2413 DB_DNODE_EXIT(db); 2414 return (dr); 2415 } 2416 2417 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2418 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2419 drop_struct_rwlock = B_TRUE; 2420 } 2421 2422 /* 2423 * If we are overwriting a dedup BP, then unless it is snapshotted, 2424 * when we get to syncing context we will need to decrement its 2425 * refcount in the DDT. Prefetch the relevant DDT block so that 2426 * syncing context won't have to wait for the i/o. 2427 */ 2428 if (db->db_blkptr != NULL) { 2429 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2430 ddt_prefetch(os->os_spa, db->db_blkptr); 2431 dmu_buf_unlock_parent(db, dblt, FTAG); 2432 } 2433 2434 /* 2435 * We need to hold the dn_struct_rwlock to make this assertion, 2436 * because it protects dn_phys / dn_next_nlevels from changing. 2437 */ 2438 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2439 dn->dn_phys->dn_nlevels > db->db_level || 2440 dn->dn_next_nlevels[txgoff] > db->db_level || 2441 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2442 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2443 2444 2445 if (db->db_level == 0) { 2446 ASSERT(!db->db_objset->os_raw_receive || 2447 dn->dn_maxblkid >= db->db_blkid); 2448 dnode_new_blkid(dn, db->db_blkid, tx, 2449 drop_struct_rwlock, B_FALSE); 2450 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2451 } 2452 2453 if (db->db_level+1 < dn->dn_nlevels) { 2454 dmu_buf_impl_t *parent = db->db_parent; 2455 dbuf_dirty_record_t *di; 2456 int parent_held = FALSE; 2457 2458 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2459 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2460 parent = dbuf_hold_level(dn, db->db_level + 1, 2461 db->db_blkid >> epbs, FTAG); 2462 ASSERT(parent != NULL); 2463 parent_held = TRUE; 2464 } 2465 if (drop_struct_rwlock) 2466 rw_exit(&dn->dn_struct_rwlock); 2467 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2468 di = dbuf_dirty(parent, tx); 2469 if (parent_held) 2470 dbuf_rele(parent, FTAG); 2471 2472 mutex_enter(&db->db_mtx); 2473 /* 2474 * Since we've dropped the mutex, it's possible that 2475 * dbuf_undirty() might have changed this out from under us. 2476 */ 2477 if (list_head(&db->db_dirty_records) == dr || 2478 dn->dn_object == DMU_META_DNODE_OBJECT) { 2479 mutex_enter(&di->dt.di.dr_mtx); 2480 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2481 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2482 list_insert_tail(&di->dt.di.dr_children, dr); 2483 mutex_exit(&di->dt.di.dr_mtx); 2484 dr->dr_parent = di; 2485 } 2486 mutex_exit(&db->db_mtx); 2487 } else { 2488 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2489 ASSERT(db->db_blkid < dn->dn_nblkptr); 2490 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2491 mutex_enter(&dn->dn_mtx); 2492 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2493 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2494 mutex_exit(&dn->dn_mtx); 2495 if (drop_struct_rwlock) 2496 rw_exit(&dn->dn_struct_rwlock); 2497 } 2498 2499 dnode_setdirty(dn, tx); 2500 DB_DNODE_EXIT(db); 2501 return (dr); 2502 } 2503 2504 static void 2505 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2506 { 2507 dmu_buf_impl_t *db = dr->dr_dbuf; 2508 2509 if (dr->dt.dl.dr_data != db->db.db_data) { 2510 struct dnode *dn = dr->dr_dnode; 2511 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2512 2513 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2514 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2515 } 2516 db->db_data_pending = NULL; 2517 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2518 list_remove(&db->db_dirty_records, dr); 2519 if (dr->dr_dbuf->db_level != 0) { 2520 mutex_destroy(&dr->dt.di.dr_mtx); 2521 list_destroy(&dr->dt.di.dr_children); 2522 } 2523 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2524 ASSERT3U(db->db_dirtycnt, >, 0); 2525 db->db_dirtycnt -= 1; 2526 } 2527 2528 /* 2529 * Undirty a buffer in the transaction group referenced by the given 2530 * transaction. Return whether this evicted the dbuf. 2531 */ 2532 boolean_t 2533 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2534 { 2535 uint64_t txg = tx->tx_txg; 2536 boolean_t brtwrite; 2537 2538 ASSERT(txg != 0); 2539 2540 /* 2541 * Due to our use of dn_nlevels below, this can only be called 2542 * in open context, unless we are operating on the MOS. 2543 * From syncing context, dn_nlevels may be different from the 2544 * dn_nlevels used when dbuf was dirtied. 2545 */ 2546 ASSERT(db->db_objset == 2547 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2548 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2549 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2550 ASSERT0(db->db_level); 2551 ASSERT(MUTEX_HELD(&db->db_mtx)); 2552 2553 /* 2554 * If this buffer is not dirty, we're done. 2555 */ 2556 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2557 if (dr == NULL) 2558 return (B_FALSE); 2559 ASSERT(dr->dr_dbuf == db); 2560 2561 brtwrite = dr->dt.dl.dr_brtwrite; 2562 if (brtwrite) { 2563 /* 2564 * We are freeing a block that we cloned in the same 2565 * transaction group. 2566 */ 2567 brt_pending_remove(dmu_objset_spa(db->db_objset), 2568 &dr->dt.dl.dr_overridden_by, tx); 2569 } 2570 2571 dnode_t *dn = dr->dr_dnode; 2572 2573 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2574 2575 ASSERT(db->db.db_size != 0); 2576 2577 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2578 dr->dr_accounted, txg); 2579 2580 list_remove(&db->db_dirty_records, dr); 2581 2582 /* 2583 * Note that there are three places in dbuf_dirty() 2584 * where this dirty record may be put on a list. 2585 * Make sure to do a list_remove corresponding to 2586 * every one of those list_insert calls. 2587 */ 2588 if (dr->dr_parent) { 2589 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2590 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2591 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2592 } else if (db->db_blkid == DMU_SPILL_BLKID || 2593 db->db_level + 1 == dn->dn_nlevels) { 2594 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2595 mutex_enter(&dn->dn_mtx); 2596 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2597 mutex_exit(&dn->dn_mtx); 2598 } 2599 2600 if (db->db_state != DB_NOFILL && !brtwrite) { 2601 dbuf_unoverride(dr); 2602 2603 ASSERT(db->db_buf != NULL); 2604 ASSERT(dr->dt.dl.dr_data != NULL); 2605 if (dr->dt.dl.dr_data != db->db_buf) 2606 arc_buf_destroy(dr->dt.dl.dr_data, db); 2607 } 2608 2609 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2610 2611 ASSERT(db->db_dirtycnt > 0); 2612 db->db_dirtycnt -= 1; 2613 2614 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2615 ASSERT(db->db_state == DB_NOFILL || brtwrite || 2616 arc_released(db->db_buf)); 2617 dbuf_destroy(db); 2618 return (B_TRUE); 2619 } 2620 2621 return (B_FALSE); 2622 } 2623 2624 static void 2625 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2626 { 2627 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2628 boolean_t undirty = B_FALSE; 2629 2630 ASSERT(tx->tx_txg != 0); 2631 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2632 2633 /* 2634 * Quick check for dirtiness. For already dirty blocks, this 2635 * reduces runtime of this function by >90%, and overall performance 2636 * by 50% for some workloads (e.g. file deletion with indirect blocks 2637 * cached). 2638 */ 2639 mutex_enter(&db->db_mtx); 2640 2641 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2642 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2643 /* 2644 * It's possible that it is already dirty but not cached, 2645 * because there are some calls to dbuf_dirty() that don't 2646 * go through dmu_buf_will_dirty(). 2647 */ 2648 if (dr != NULL) { 2649 if (dr->dt.dl.dr_brtwrite) { 2650 /* 2651 * Block cloning: If we are dirtying a cloned 2652 * block, we cannot simply redirty it, because 2653 * this dr has no data associated with it. 2654 * We will go through a full undirtying below, 2655 * before dirtying it again. 2656 */ 2657 undirty = B_TRUE; 2658 } else { 2659 /* This dbuf is already dirty and cached. */ 2660 dbuf_redirty(dr); 2661 mutex_exit(&db->db_mtx); 2662 return; 2663 } 2664 } 2665 } 2666 mutex_exit(&db->db_mtx); 2667 2668 DB_DNODE_ENTER(db); 2669 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2670 flags |= DB_RF_HAVESTRUCT; 2671 DB_DNODE_EXIT(db); 2672 2673 /* 2674 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2675 * want to make sure dbuf_read() will read the pending cloned block and 2676 * not the uderlying block that is being replaced. dbuf_undirty() will 2677 * do dbuf_unoverride(), so we will end up with cloned block content, 2678 * without overridden BP. 2679 */ 2680 (void) dbuf_read(db, NULL, flags); 2681 if (undirty) { 2682 mutex_enter(&db->db_mtx); 2683 VERIFY(!dbuf_undirty(db, tx)); 2684 mutex_exit(&db->db_mtx); 2685 } 2686 (void) dbuf_dirty(db, tx); 2687 } 2688 2689 void 2690 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2691 { 2692 dmu_buf_will_dirty_impl(db_fake, 2693 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2694 } 2695 2696 boolean_t 2697 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2698 { 2699 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2700 dbuf_dirty_record_t *dr; 2701 2702 mutex_enter(&db->db_mtx); 2703 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2704 mutex_exit(&db->db_mtx); 2705 return (dr != NULL); 2706 } 2707 2708 void 2709 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx) 2710 { 2711 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2712 2713 /* 2714 * Block cloning: We are going to clone into this block, so undirty 2715 * modifications done to this block so far in this txg. This includes 2716 * writes and clones into this block. 2717 */ 2718 mutex_enter(&db->db_mtx); 2719 DBUF_VERIFY(db); 2720 VERIFY(!dbuf_undirty(db, tx)); 2721 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2722 if (db->db_buf != NULL) { 2723 arc_buf_destroy(db->db_buf, db); 2724 db->db_buf = NULL; 2725 dbuf_clear_data(db); 2726 } 2727 2728 db->db_state = DB_NOFILL; 2729 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone"); 2730 2731 DBUF_VERIFY(db); 2732 mutex_exit(&db->db_mtx); 2733 2734 dbuf_noread(db); 2735 (void) dbuf_dirty(db, tx); 2736 } 2737 2738 void 2739 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2740 { 2741 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2742 2743 mutex_enter(&db->db_mtx); 2744 db->db_state = DB_NOFILL; 2745 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2746 mutex_exit(&db->db_mtx); 2747 2748 dbuf_noread(db); 2749 (void) dbuf_dirty(db, tx); 2750 } 2751 2752 void 2753 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2754 { 2755 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2756 2757 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2758 ASSERT(tx->tx_txg != 0); 2759 ASSERT(db->db_level == 0); 2760 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2761 2762 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2763 dmu_tx_private_ok(tx)); 2764 2765 mutex_enter(&db->db_mtx); 2766 if (db->db_state == DB_NOFILL) { 2767 /* 2768 * Block cloning: We will be completely overwriting a block 2769 * cloned in this transaction group, so let's undirty the 2770 * pending clone and mark the block as uncached. This will be 2771 * as if the clone was never done. But if the fill can fail 2772 * we should have a way to return back to the cloned data. 2773 */ 2774 if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) { 2775 mutex_exit(&db->db_mtx); 2776 dmu_buf_will_dirty(db_fake, tx); 2777 return; 2778 } 2779 VERIFY(!dbuf_undirty(db, tx)); 2780 db->db_state = DB_UNCACHED; 2781 } 2782 mutex_exit(&db->db_mtx); 2783 2784 dbuf_noread(db); 2785 (void) dbuf_dirty(db, tx); 2786 } 2787 2788 /* 2789 * This function is effectively the same as dmu_buf_will_dirty(), but 2790 * indicates the caller expects raw encrypted data in the db, and provides 2791 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2792 * blkptr_t when this dbuf is written. This is only used for blocks of 2793 * dnodes, during raw receive. 2794 */ 2795 void 2796 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2797 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2798 { 2799 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2800 dbuf_dirty_record_t *dr; 2801 2802 /* 2803 * dr_has_raw_params is only processed for blocks of dnodes 2804 * (see dbuf_sync_dnode_leaf_crypt()). 2805 */ 2806 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2807 ASSERT3U(db->db_level, ==, 0); 2808 ASSERT(db->db_objset->os_raw_receive); 2809 2810 dmu_buf_will_dirty_impl(db_fake, 2811 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2812 2813 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2814 2815 ASSERT3P(dr, !=, NULL); 2816 2817 dr->dt.dl.dr_has_raw_params = B_TRUE; 2818 dr->dt.dl.dr_byteorder = byteorder; 2819 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2820 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2821 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2822 } 2823 2824 static void 2825 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2826 { 2827 struct dirty_leaf *dl; 2828 dbuf_dirty_record_t *dr; 2829 2830 dr = list_head(&db->db_dirty_records); 2831 ASSERT3P(dr, !=, NULL); 2832 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2833 dl = &dr->dt.dl; 2834 dl->dr_overridden_by = *bp; 2835 dl->dr_override_state = DR_OVERRIDDEN; 2836 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2837 } 2838 2839 boolean_t 2840 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2841 { 2842 (void) tx; 2843 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2844 mutex_enter(&db->db_mtx); 2845 DBUF_VERIFY(db); 2846 2847 if (db->db_state == DB_FILL) { 2848 if (db->db_level == 0 && db->db_freed_in_flight) { 2849 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2850 /* we were freed while filling */ 2851 /* XXX dbuf_undirty? */ 2852 memset(db->db.db_data, 0, db->db.db_size); 2853 db->db_freed_in_flight = FALSE; 2854 db->db_state = DB_CACHED; 2855 DTRACE_SET_STATE(db, 2856 "fill done handling freed in flight"); 2857 failed = B_FALSE; 2858 } else if (failed) { 2859 VERIFY(!dbuf_undirty(db, tx)); 2860 db->db_buf = NULL; 2861 dbuf_clear_data(db); 2862 DTRACE_SET_STATE(db, "fill failed"); 2863 } else { 2864 db->db_state = DB_CACHED; 2865 DTRACE_SET_STATE(db, "fill done"); 2866 } 2867 cv_broadcast(&db->db_changed); 2868 } else { 2869 db->db_state = DB_CACHED; 2870 failed = B_FALSE; 2871 } 2872 mutex_exit(&db->db_mtx); 2873 return (failed); 2874 } 2875 2876 void 2877 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2878 bp_embedded_type_t etype, enum zio_compress comp, 2879 int uncompressed_size, int compressed_size, int byteorder, 2880 dmu_tx_t *tx) 2881 { 2882 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2883 struct dirty_leaf *dl; 2884 dmu_object_type_t type; 2885 dbuf_dirty_record_t *dr; 2886 2887 if (etype == BP_EMBEDDED_TYPE_DATA) { 2888 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2889 SPA_FEATURE_EMBEDDED_DATA)); 2890 } 2891 2892 DB_DNODE_ENTER(db); 2893 type = DB_DNODE(db)->dn_type; 2894 DB_DNODE_EXIT(db); 2895 2896 ASSERT0(db->db_level); 2897 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2898 2899 dmu_buf_will_not_fill(dbuf, tx); 2900 2901 dr = list_head(&db->db_dirty_records); 2902 ASSERT3P(dr, !=, NULL); 2903 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2904 dl = &dr->dt.dl; 2905 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2906 data, comp, uncompressed_size, compressed_size); 2907 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2908 BP_SET_TYPE(&dl->dr_overridden_by, type); 2909 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2910 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2911 2912 dl->dr_override_state = DR_OVERRIDDEN; 2913 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2914 } 2915 2916 void 2917 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2918 { 2919 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2920 dmu_object_type_t type; 2921 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2922 SPA_FEATURE_REDACTED_DATASETS)); 2923 2924 DB_DNODE_ENTER(db); 2925 type = DB_DNODE(db)->dn_type; 2926 DB_DNODE_EXIT(db); 2927 2928 ASSERT0(db->db_level); 2929 dmu_buf_will_not_fill(dbuf, tx); 2930 2931 blkptr_t bp = { { { {0} } } }; 2932 BP_SET_TYPE(&bp, type); 2933 BP_SET_LEVEL(&bp, 0); 2934 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2935 BP_SET_REDACTED(&bp); 2936 BPE_SET_LSIZE(&bp, dbuf->db_size); 2937 2938 dbuf_override_impl(db, &bp, tx); 2939 } 2940 2941 /* 2942 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2943 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2944 */ 2945 void 2946 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2947 { 2948 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2949 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2950 ASSERT(db->db_level == 0); 2951 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2952 ASSERT(buf != NULL); 2953 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2954 ASSERT(tx->tx_txg != 0); 2955 2956 arc_return_buf(buf, db); 2957 ASSERT(arc_released(buf)); 2958 2959 mutex_enter(&db->db_mtx); 2960 2961 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2962 cv_wait(&db->db_changed, &db->db_mtx); 2963 2964 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 2965 db->db_state == DB_NOFILL); 2966 2967 if (db->db_state == DB_CACHED && 2968 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2969 /* 2970 * In practice, we will never have a case where we have an 2971 * encrypted arc buffer while additional holds exist on the 2972 * dbuf. We don't handle this here so we simply assert that 2973 * fact instead. 2974 */ 2975 ASSERT(!arc_is_encrypted(buf)); 2976 mutex_exit(&db->db_mtx); 2977 (void) dbuf_dirty(db, tx); 2978 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2979 arc_buf_destroy(buf, db); 2980 return; 2981 } 2982 2983 if (db->db_state == DB_CACHED) { 2984 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2985 2986 ASSERT(db->db_buf != NULL); 2987 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2988 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2989 2990 if (!arc_released(db->db_buf)) { 2991 ASSERT(dr->dt.dl.dr_override_state == 2992 DR_OVERRIDDEN); 2993 arc_release(db->db_buf, db); 2994 } 2995 dr->dt.dl.dr_data = buf; 2996 arc_buf_destroy(db->db_buf, db); 2997 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2998 arc_release(db->db_buf, db); 2999 arc_buf_destroy(db->db_buf, db); 3000 } 3001 db->db_buf = NULL; 3002 } else if (db->db_state == DB_NOFILL) { 3003 /* 3004 * We will be completely replacing the cloned block. In case 3005 * it was cloned in this transaction group, let's undirty the 3006 * pending clone and mark the block as uncached. This will be 3007 * as if the clone was never done. 3008 */ 3009 VERIFY(!dbuf_undirty(db, tx)); 3010 db->db_state = DB_UNCACHED; 3011 } 3012 ASSERT(db->db_buf == NULL); 3013 dbuf_set_data(db, buf); 3014 db->db_state = DB_FILL; 3015 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3016 mutex_exit(&db->db_mtx); 3017 (void) dbuf_dirty(db, tx); 3018 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3019 } 3020 3021 void 3022 dbuf_destroy(dmu_buf_impl_t *db) 3023 { 3024 dnode_t *dn; 3025 dmu_buf_impl_t *parent = db->db_parent; 3026 dmu_buf_impl_t *dndb; 3027 3028 ASSERT(MUTEX_HELD(&db->db_mtx)); 3029 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3030 3031 if (db->db_buf != NULL) { 3032 arc_buf_destroy(db->db_buf, db); 3033 db->db_buf = NULL; 3034 } 3035 3036 if (db->db_blkid == DMU_BONUS_BLKID) { 3037 int slots = DB_DNODE(db)->dn_num_slots; 3038 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3039 if (db->db.db_data != NULL) { 3040 kmem_free(db->db.db_data, bonuslen); 3041 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3042 db->db_state = DB_UNCACHED; 3043 DTRACE_SET_STATE(db, "buffer cleared"); 3044 } 3045 } 3046 3047 dbuf_clear_data(db); 3048 3049 if (multilist_link_active(&db->db_cache_link)) { 3050 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3051 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3052 3053 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3054 3055 ASSERT0(dmu_buf_user_size(&db->db)); 3056 (void) zfs_refcount_remove_many( 3057 &dbuf_caches[db->db_caching_status].size, 3058 db->db.db_size, db); 3059 3060 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3061 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3062 } else { 3063 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3064 DBUF_STAT_BUMPDOWN(cache_count); 3065 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3066 db->db.db_size); 3067 } 3068 db->db_caching_status = DB_NO_CACHE; 3069 } 3070 3071 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3072 ASSERT(db->db_data_pending == NULL); 3073 ASSERT(list_is_empty(&db->db_dirty_records)); 3074 3075 db->db_state = DB_EVICTING; 3076 DTRACE_SET_STATE(db, "buffer eviction started"); 3077 db->db_blkptr = NULL; 3078 3079 /* 3080 * Now that db_state is DB_EVICTING, nobody else can find this via 3081 * the hash table. We can now drop db_mtx, which allows us to 3082 * acquire the dn_dbufs_mtx. 3083 */ 3084 mutex_exit(&db->db_mtx); 3085 3086 DB_DNODE_ENTER(db); 3087 dn = DB_DNODE(db); 3088 dndb = dn->dn_dbuf; 3089 if (db->db_blkid != DMU_BONUS_BLKID) { 3090 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3091 if (needlock) 3092 mutex_enter_nested(&dn->dn_dbufs_mtx, 3093 NESTED_SINGLE); 3094 avl_remove(&dn->dn_dbufs, db); 3095 membar_producer(); 3096 DB_DNODE_EXIT(db); 3097 if (needlock) 3098 mutex_exit(&dn->dn_dbufs_mtx); 3099 /* 3100 * Decrementing the dbuf count means that the hold corresponding 3101 * to the removed dbuf is no longer discounted in dnode_move(), 3102 * so the dnode cannot be moved until after we release the hold. 3103 * The membar_producer() ensures visibility of the decremented 3104 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3105 * release any lock. 3106 */ 3107 mutex_enter(&dn->dn_mtx); 3108 dnode_rele_and_unlock(dn, db, B_TRUE); 3109 db->db_dnode_handle = NULL; 3110 3111 dbuf_hash_remove(db); 3112 } else { 3113 DB_DNODE_EXIT(db); 3114 } 3115 3116 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3117 3118 db->db_parent = NULL; 3119 3120 ASSERT(db->db_buf == NULL); 3121 ASSERT(db->db.db_data == NULL); 3122 ASSERT(db->db_hash_next == NULL); 3123 ASSERT(db->db_blkptr == NULL); 3124 ASSERT(db->db_data_pending == NULL); 3125 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3126 ASSERT(!multilist_link_active(&db->db_cache_link)); 3127 3128 /* 3129 * If this dbuf is referenced from an indirect dbuf, 3130 * decrement the ref count on the indirect dbuf. 3131 */ 3132 if (parent && parent != dndb) { 3133 mutex_enter(&parent->db_mtx); 3134 dbuf_rele_and_unlock(parent, db, B_TRUE); 3135 } 3136 3137 kmem_cache_free(dbuf_kmem_cache, db); 3138 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3139 } 3140 3141 /* 3142 * Note: While bpp will always be updated if the function returns success, 3143 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3144 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3145 * object. 3146 */ 3147 __attribute__((always_inline)) 3148 static inline int 3149 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3150 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3151 { 3152 *parentp = NULL; 3153 *bpp = NULL; 3154 3155 ASSERT(blkid != DMU_BONUS_BLKID); 3156 3157 if (blkid == DMU_SPILL_BLKID) { 3158 mutex_enter(&dn->dn_mtx); 3159 if (dn->dn_have_spill && 3160 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3161 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3162 else 3163 *bpp = NULL; 3164 dbuf_add_ref(dn->dn_dbuf, NULL); 3165 *parentp = dn->dn_dbuf; 3166 mutex_exit(&dn->dn_mtx); 3167 return (0); 3168 } 3169 3170 int nlevels = 3171 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3172 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3173 3174 ASSERT3U(level * epbs, <, 64); 3175 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3176 /* 3177 * This assertion shouldn't trip as long as the max indirect block size 3178 * is less than 1M. The reason for this is that up to that point, 3179 * the number of levels required to address an entire object with blocks 3180 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3181 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3182 * (i.e. we can address the entire object), objects will all use at most 3183 * N-1 levels and the assertion won't overflow. However, once epbs is 3184 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3185 * enough to address an entire object, so objects will have 5 levels, 3186 * but then this assertion will overflow. 3187 * 3188 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3189 * need to redo this logic to handle overflows. 3190 */ 3191 ASSERT(level >= nlevels || 3192 ((nlevels - level - 1) * epbs) + 3193 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3194 if (level >= nlevels || 3195 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3196 ((nlevels - level - 1) * epbs)) || 3197 (fail_sparse && 3198 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3199 /* the buffer has no parent yet */ 3200 return (SET_ERROR(ENOENT)); 3201 } else if (level < nlevels-1) { 3202 /* this block is referenced from an indirect block */ 3203 int err; 3204 3205 err = dbuf_hold_impl(dn, level + 1, 3206 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3207 3208 if (err) 3209 return (err); 3210 err = dbuf_read(*parentp, NULL, 3211 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3212 if (err) { 3213 dbuf_rele(*parentp, NULL); 3214 *parentp = NULL; 3215 return (err); 3216 } 3217 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3218 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3219 (blkid & ((1ULL << epbs) - 1)); 3220 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3221 ASSERT(BP_IS_HOLE(*bpp)); 3222 rw_exit(&(*parentp)->db_rwlock); 3223 return (0); 3224 } else { 3225 /* the block is referenced from the dnode */ 3226 ASSERT3U(level, ==, nlevels-1); 3227 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3228 blkid < dn->dn_phys->dn_nblkptr); 3229 if (dn->dn_dbuf) { 3230 dbuf_add_ref(dn->dn_dbuf, NULL); 3231 *parentp = dn->dn_dbuf; 3232 } 3233 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3234 return (0); 3235 } 3236 } 3237 3238 static dmu_buf_impl_t * 3239 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3240 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3241 { 3242 objset_t *os = dn->dn_objset; 3243 dmu_buf_impl_t *db, *odb; 3244 3245 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3246 ASSERT(dn->dn_type != DMU_OT_NONE); 3247 3248 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3249 3250 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3251 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3252 3253 db->db_objset = os; 3254 db->db.db_object = dn->dn_object; 3255 db->db_level = level; 3256 db->db_blkid = blkid; 3257 db->db_dirtycnt = 0; 3258 db->db_dnode_handle = dn->dn_handle; 3259 db->db_parent = parent; 3260 db->db_blkptr = blkptr; 3261 db->db_hash = hash; 3262 3263 db->db_user = NULL; 3264 db->db_user_immediate_evict = FALSE; 3265 db->db_freed_in_flight = FALSE; 3266 db->db_pending_evict = FALSE; 3267 3268 if (blkid == DMU_BONUS_BLKID) { 3269 ASSERT3P(parent, ==, dn->dn_dbuf); 3270 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3271 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3272 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3273 db->db.db_offset = DMU_BONUS_BLKID; 3274 db->db_state = DB_UNCACHED; 3275 DTRACE_SET_STATE(db, "bonus buffer created"); 3276 db->db_caching_status = DB_NO_CACHE; 3277 /* the bonus dbuf is not placed in the hash table */ 3278 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3279 return (db); 3280 } else if (blkid == DMU_SPILL_BLKID) { 3281 db->db.db_size = (blkptr != NULL) ? 3282 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3283 db->db.db_offset = 0; 3284 } else { 3285 int blocksize = 3286 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3287 db->db.db_size = blocksize; 3288 db->db.db_offset = db->db_blkid * blocksize; 3289 } 3290 3291 /* 3292 * Hold the dn_dbufs_mtx while we get the new dbuf 3293 * in the hash table *and* added to the dbufs list. 3294 * This prevents a possible deadlock with someone 3295 * trying to look up this dbuf before it's added to the 3296 * dn_dbufs list. 3297 */ 3298 mutex_enter(&dn->dn_dbufs_mtx); 3299 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3300 if ((odb = dbuf_hash_insert(db)) != NULL) { 3301 /* someone else inserted it first */ 3302 mutex_exit(&dn->dn_dbufs_mtx); 3303 kmem_cache_free(dbuf_kmem_cache, db); 3304 DBUF_STAT_BUMP(hash_insert_race); 3305 return (odb); 3306 } 3307 avl_add(&dn->dn_dbufs, db); 3308 3309 db->db_state = DB_UNCACHED; 3310 DTRACE_SET_STATE(db, "regular buffer created"); 3311 db->db_caching_status = DB_NO_CACHE; 3312 mutex_exit(&dn->dn_dbufs_mtx); 3313 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3314 3315 if (parent && parent != dn->dn_dbuf) 3316 dbuf_add_ref(parent, db); 3317 3318 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3319 zfs_refcount_count(&dn->dn_holds) > 0); 3320 (void) zfs_refcount_add(&dn->dn_holds, db); 3321 3322 dprintf_dbuf(db, "db=%p\n", db); 3323 3324 return (db); 3325 } 3326 3327 /* 3328 * This function returns a block pointer and information about the object, 3329 * given a dnode and a block. This is a publicly accessible version of 3330 * dbuf_findbp that only returns some information, rather than the 3331 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3332 * should be locked as (at least) a reader. 3333 */ 3334 int 3335 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3336 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3337 { 3338 dmu_buf_impl_t *dbp = NULL; 3339 blkptr_t *bp2; 3340 int err = 0; 3341 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3342 3343 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3344 if (err == 0) { 3345 ASSERT3P(bp2, !=, NULL); 3346 *bp = *bp2; 3347 if (dbp != NULL) 3348 dbuf_rele(dbp, NULL); 3349 if (datablkszsec != NULL) 3350 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3351 if (indblkshift != NULL) 3352 *indblkshift = dn->dn_phys->dn_indblkshift; 3353 } 3354 3355 return (err); 3356 } 3357 3358 typedef struct dbuf_prefetch_arg { 3359 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3360 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3361 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3362 int dpa_curlevel; /* The current level that we're reading */ 3363 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3364 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3365 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3366 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3367 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3368 void *dpa_arg; /* prefetch completion arg */ 3369 } dbuf_prefetch_arg_t; 3370 3371 static void 3372 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3373 { 3374 if (dpa->dpa_cb != NULL) { 3375 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3376 dpa->dpa_zb.zb_blkid, io_done); 3377 } 3378 kmem_free(dpa, sizeof (*dpa)); 3379 } 3380 3381 static void 3382 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3383 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3384 { 3385 (void) zio, (void) zb, (void) iobp; 3386 dbuf_prefetch_arg_t *dpa = private; 3387 3388 if (abuf != NULL) 3389 arc_buf_destroy(abuf, private); 3390 3391 dbuf_prefetch_fini(dpa, B_TRUE); 3392 } 3393 3394 /* 3395 * Actually issue the prefetch read for the block given. 3396 */ 3397 static void 3398 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3399 { 3400 ASSERT(!BP_IS_REDACTED(bp) || 3401 dsl_dataset_feature_is_active( 3402 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3403 SPA_FEATURE_REDACTED_DATASETS)); 3404 3405 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3406 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3407 3408 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3409 arc_flags_t aflags = 3410 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3411 ARC_FLAG_NO_BUF; 3412 3413 /* dnodes are always read as raw and then converted later */ 3414 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3415 dpa->dpa_curlevel == 0) 3416 zio_flags |= ZIO_FLAG_RAW; 3417 3418 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3419 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3420 ASSERT(dpa->dpa_zio != NULL); 3421 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3422 dbuf_issue_final_prefetch_done, dpa, 3423 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3424 } 3425 3426 /* 3427 * Called when an indirect block above our prefetch target is read in. This 3428 * will either read in the next indirect block down the tree or issue the actual 3429 * prefetch if the next block down is our target. 3430 */ 3431 static void 3432 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3433 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3434 { 3435 (void) zb, (void) iobp; 3436 dbuf_prefetch_arg_t *dpa = private; 3437 3438 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3439 ASSERT3S(dpa->dpa_curlevel, >, 0); 3440 3441 if (abuf == NULL) { 3442 ASSERT(zio == NULL || zio->io_error != 0); 3443 dbuf_prefetch_fini(dpa, B_TRUE); 3444 return; 3445 } 3446 ASSERT(zio == NULL || zio->io_error == 0); 3447 3448 /* 3449 * The dpa_dnode is only valid if we are called with a NULL 3450 * zio. This indicates that the arc_read() returned without 3451 * first calling zio_read() to issue a physical read. Once 3452 * a physical read is made the dpa_dnode must be invalidated 3453 * as the locks guarding it may have been dropped. If the 3454 * dpa_dnode is still valid, then we want to add it to the dbuf 3455 * cache. To do so, we must hold the dbuf associated with the block 3456 * we just prefetched, read its contents so that we associate it 3457 * with an arc_buf_t, and then release it. 3458 */ 3459 if (zio != NULL) { 3460 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3461 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3462 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3463 } else { 3464 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3465 } 3466 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3467 3468 dpa->dpa_dnode = NULL; 3469 } else if (dpa->dpa_dnode != NULL) { 3470 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3471 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3472 dpa->dpa_zb.zb_level)); 3473 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3474 dpa->dpa_curlevel, curblkid, FTAG); 3475 if (db == NULL) { 3476 arc_buf_destroy(abuf, private); 3477 dbuf_prefetch_fini(dpa, B_TRUE); 3478 return; 3479 } 3480 (void) dbuf_read(db, NULL, 3481 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3482 dbuf_rele(db, FTAG); 3483 } 3484 3485 dpa->dpa_curlevel--; 3486 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3487 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3488 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3489 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3490 3491 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3492 dsl_dataset_feature_is_active( 3493 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3494 SPA_FEATURE_REDACTED_DATASETS))); 3495 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3496 arc_buf_destroy(abuf, private); 3497 dbuf_prefetch_fini(dpa, B_TRUE); 3498 return; 3499 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3500 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3501 dbuf_issue_final_prefetch(dpa, bp); 3502 } else { 3503 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3504 zbookmark_phys_t zb; 3505 3506 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3507 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3508 iter_aflags |= ARC_FLAG_L2CACHE; 3509 3510 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3511 3512 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3513 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3514 3515 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3516 bp, dbuf_prefetch_indirect_done, dpa, 3517 ZIO_PRIORITY_SYNC_READ, 3518 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3519 &iter_aflags, &zb); 3520 } 3521 3522 arc_buf_destroy(abuf, private); 3523 } 3524 3525 /* 3526 * Issue prefetch reads for the given block on the given level. If the indirect 3527 * blocks above that block are not in memory, we will read them in 3528 * asynchronously. As a result, this call never blocks waiting for a read to 3529 * complete. Note that the prefetch might fail if the dataset is encrypted and 3530 * the encryption key is unmapped before the IO completes. 3531 */ 3532 int 3533 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3534 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3535 void *arg) 3536 { 3537 blkptr_t bp; 3538 int epbs, nlevels, curlevel; 3539 uint64_t curblkid; 3540 3541 ASSERT(blkid != DMU_BONUS_BLKID); 3542 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3543 3544 if (blkid > dn->dn_maxblkid) 3545 goto no_issue; 3546 3547 if (level == 0 && dnode_block_freed(dn, blkid)) 3548 goto no_issue; 3549 3550 /* 3551 * This dnode hasn't been written to disk yet, so there's nothing to 3552 * prefetch. 3553 */ 3554 nlevels = dn->dn_phys->dn_nlevels; 3555 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3556 goto no_issue; 3557 3558 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3559 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3560 goto no_issue; 3561 3562 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3563 level, blkid, NULL); 3564 if (db != NULL) { 3565 mutex_exit(&db->db_mtx); 3566 /* 3567 * This dbuf already exists. It is either CACHED, or 3568 * (we assume) about to be read or filled. 3569 */ 3570 goto no_issue; 3571 } 3572 3573 /* 3574 * Find the closest ancestor (indirect block) of the target block 3575 * that is present in the cache. In this indirect block, we will 3576 * find the bp that is at curlevel, curblkid. 3577 */ 3578 curlevel = level; 3579 curblkid = blkid; 3580 while (curlevel < nlevels - 1) { 3581 int parent_level = curlevel + 1; 3582 uint64_t parent_blkid = curblkid >> epbs; 3583 dmu_buf_impl_t *db; 3584 3585 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3586 FALSE, TRUE, FTAG, &db) == 0) { 3587 blkptr_t *bpp = db->db_buf->b_data; 3588 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3589 dbuf_rele(db, FTAG); 3590 break; 3591 } 3592 3593 curlevel = parent_level; 3594 curblkid = parent_blkid; 3595 } 3596 3597 if (curlevel == nlevels - 1) { 3598 /* No cached indirect blocks found. */ 3599 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3600 bp = dn->dn_phys->dn_blkptr[curblkid]; 3601 } 3602 ASSERT(!BP_IS_REDACTED(&bp) || 3603 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3604 SPA_FEATURE_REDACTED_DATASETS)); 3605 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3606 goto no_issue; 3607 3608 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3609 3610 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3611 ZIO_FLAG_CANFAIL); 3612 3613 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3614 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3615 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3616 dn->dn_object, level, blkid); 3617 dpa->dpa_curlevel = curlevel; 3618 dpa->dpa_prio = prio; 3619 dpa->dpa_aflags = aflags; 3620 dpa->dpa_spa = dn->dn_objset->os_spa; 3621 dpa->dpa_dnode = dn; 3622 dpa->dpa_epbs = epbs; 3623 dpa->dpa_zio = pio; 3624 dpa->dpa_cb = cb; 3625 dpa->dpa_arg = arg; 3626 3627 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3628 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3629 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3630 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3631 3632 /* 3633 * If we have the indirect just above us, no need to do the asynchronous 3634 * prefetch chain; we'll just run the last step ourselves. If we're at 3635 * a higher level, though, we want to issue the prefetches for all the 3636 * indirect blocks asynchronously, so we can go on with whatever we were 3637 * doing. 3638 */ 3639 if (curlevel == level) { 3640 ASSERT3U(curblkid, ==, blkid); 3641 dbuf_issue_final_prefetch(dpa, &bp); 3642 } else { 3643 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3644 zbookmark_phys_t zb; 3645 3646 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3647 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3648 iter_aflags |= ARC_FLAG_L2CACHE; 3649 3650 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3651 dn->dn_object, curlevel, curblkid); 3652 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3653 &bp, dbuf_prefetch_indirect_done, dpa, 3654 ZIO_PRIORITY_SYNC_READ, 3655 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3656 &iter_aflags, &zb); 3657 } 3658 /* 3659 * We use pio here instead of dpa_zio since it's possible that 3660 * dpa may have already been freed. 3661 */ 3662 zio_nowait(pio); 3663 return (1); 3664 no_issue: 3665 if (cb != NULL) 3666 cb(arg, level, blkid, B_FALSE); 3667 return (0); 3668 } 3669 3670 int 3671 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3672 arc_flags_t aflags) 3673 { 3674 3675 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3676 } 3677 3678 /* 3679 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3680 * the case of encrypted, compressed and uncompressed buffers by 3681 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3682 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3683 * 3684 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3685 */ 3686 noinline static void 3687 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3688 { 3689 dbuf_dirty_record_t *dr = db->db_data_pending; 3690 arc_buf_t *data = dr->dt.dl.dr_data; 3691 enum zio_compress compress_type = arc_get_compression(data); 3692 uint8_t complevel = arc_get_complevel(data); 3693 3694 if (arc_is_encrypted(data)) { 3695 boolean_t byteorder; 3696 uint8_t salt[ZIO_DATA_SALT_LEN]; 3697 uint8_t iv[ZIO_DATA_IV_LEN]; 3698 uint8_t mac[ZIO_DATA_MAC_LEN]; 3699 3700 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3701 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3702 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3703 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3704 compress_type, complevel)); 3705 } else if (compress_type != ZIO_COMPRESS_OFF) { 3706 dbuf_set_data(db, arc_alloc_compressed_buf( 3707 dn->dn_objset->os_spa, db, arc_buf_size(data), 3708 arc_buf_lsize(data), compress_type, complevel)); 3709 } else { 3710 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3711 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3712 } 3713 3714 rw_enter(&db->db_rwlock, RW_WRITER); 3715 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3716 rw_exit(&db->db_rwlock); 3717 } 3718 3719 /* 3720 * Returns with db_holds incremented, and db_mtx not held. 3721 * Note: dn_struct_rwlock must be held. 3722 */ 3723 int 3724 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3725 boolean_t fail_sparse, boolean_t fail_uncached, 3726 const void *tag, dmu_buf_impl_t **dbp) 3727 { 3728 dmu_buf_impl_t *db, *parent = NULL; 3729 uint64_t hv; 3730 3731 /* If the pool has been created, verify the tx_sync_lock is not held */ 3732 spa_t *spa = dn->dn_objset->os_spa; 3733 dsl_pool_t *dp = spa->spa_dsl_pool; 3734 if (dp != NULL) { 3735 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3736 } 3737 3738 ASSERT(blkid != DMU_BONUS_BLKID); 3739 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3740 ASSERT3U(dn->dn_nlevels, >, level); 3741 3742 *dbp = NULL; 3743 3744 /* dbuf_find() returns with db_mtx held */ 3745 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3746 3747 if (db == NULL) { 3748 blkptr_t *bp = NULL; 3749 int err; 3750 3751 if (fail_uncached) 3752 return (SET_ERROR(ENOENT)); 3753 3754 ASSERT3P(parent, ==, NULL); 3755 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3756 if (fail_sparse) { 3757 if (err == 0 && bp && BP_IS_HOLE(bp)) 3758 err = SET_ERROR(ENOENT); 3759 if (err) { 3760 if (parent) 3761 dbuf_rele(parent, NULL); 3762 return (err); 3763 } 3764 } 3765 if (err && err != ENOENT) 3766 return (err); 3767 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3768 } 3769 3770 if (fail_uncached && db->db_state != DB_CACHED) { 3771 mutex_exit(&db->db_mtx); 3772 return (SET_ERROR(ENOENT)); 3773 } 3774 3775 if (db->db_buf != NULL) { 3776 arc_buf_access(db->db_buf); 3777 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3778 } 3779 3780 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3781 3782 /* 3783 * If this buffer is currently syncing out, and we are 3784 * still referencing it from db_data, we need to make a copy 3785 * of it in case we decide we want to dirty it again in this txg. 3786 */ 3787 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3788 dn->dn_object != DMU_META_DNODE_OBJECT && 3789 db->db_state == DB_CACHED && db->db_data_pending) { 3790 dbuf_dirty_record_t *dr = db->db_data_pending; 3791 if (dr->dt.dl.dr_data == db->db_buf) { 3792 ASSERT3P(db->db_buf, !=, NULL); 3793 dbuf_hold_copy(dn, db); 3794 } 3795 } 3796 3797 if (multilist_link_active(&db->db_cache_link)) { 3798 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3799 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3800 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3801 3802 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3803 3804 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db); 3805 (void) zfs_refcount_remove_many( 3806 &dbuf_caches[db->db_caching_status].size, size, db); 3807 3808 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3809 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3810 } else { 3811 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3812 DBUF_STAT_BUMPDOWN(cache_count); 3813 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 3814 } 3815 db->db_caching_status = DB_NO_CACHE; 3816 } 3817 (void) zfs_refcount_add(&db->db_holds, tag); 3818 DBUF_VERIFY(db); 3819 mutex_exit(&db->db_mtx); 3820 3821 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3822 if (parent) 3823 dbuf_rele(parent, NULL); 3824 3825 ASSERT3P(DB_DNODE(db), ==, dn); 3826 ASSERT3U(db->db_blkid, ==, blkid); 3827 ASSERT3U(db->db_level, ==, level); 3828 *dbp = db; 3829 3830 return (0); 3831 } 3832 3833 dmu_buf_impl_t * 3834 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3835 { 3836 return (dbuf_hold_level(dn, 0, blkid, tag)); 3837 } 3838 3839 dmu_buf_impl_t * 3840 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3841 { 3842 dmu_buf_impl_t *db; 3843 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3844 return (err ? NULL : db); 3845 } 3846 3847 void 3848 dbuf_create_bonus(dnode_t *dn) 3849 { 3850 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3851 3852 ASSERT(dn->dn_bonus == NULL); 3853 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 3854 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 3855 } 3856 3857 int 3858 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3859 { 3860 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3861 3862 if (db->db_blkid != DMU_SPILL_BLKID) 3863 return (SET_ERROR(ENOTSUP)); 3864 if (blksz == 0) 3865 blksz = SPA_MINBLOCKSIZE; 3866 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3867 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3868 3869 dbuf_new_size(db, blksz, tx); 3870 3871 return (0); 3872 } 3873 3874 void 3875 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3876 { 3877 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3878 } 3879 3880 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3881 void 3882 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3883 { 3884 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3885 VERIFY3S(holds, >, 1); 3886 } 3887 3888 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3889 boolean_t 3890 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3891 const void *tag) 3892 { 3893 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3894 dmu_buf_impl_t *found_db; 3895 boolean_t result = B_FALSE; 3896 3897 if (blkid == DMU_BONUS_BLKID) 3898 found_db = dbuf_find_bonus(os, obj); 3899 else 3900 found_db = dbuf_find(os, obj, 0, blkid, NULL); 3901 3902 if (found_db != NULL) { 3903 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3904 (void) zfs_refcount_add(&db->db_holds, tag); 3905 result = B_TRUE; 3906 } 3907 mutex_exit(&found_db->db_mtx); 3908 } 3909 return (result); 3910 } 3911 3912 /* 3913 * If you call dbuf_rele() you had better not be referencing the dnode handle 3914 * unless you have some other direct or indirect hold on the dnode. (An indirect 3915 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3916 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3917 * dnode's parent dbuf evicting its dnode handles. 3918 */ 3919 void 3920 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3921 { 3922 mutex_enter(&db->db_mtx); 3923 dbuf_rele_and_unlock(db, tag, B_FALSE); 3924 } 3925 3926 void 3927 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3928 { 3929 dbuf_rele((dmu_buf_impl_t *)db, tag); 3930 } 3931 3932 /* 3933 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3934 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3935 * argument should be set if we are already in the dbuf-evicting code 3936 * path, in which case we don't want to recursively evict. This allows us to 3937 * avoid deeply nested stacks that would have a call flow similar to this: 3938 * 3939 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3940 * ^ | 3941 * | | 3942 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3943 * 3944 */ 3945 void 3946 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3947 { 3948 int64_t holds; 3949 uint64_t size; 3950 3951 ASSERT(MUTEX_HELD(&db->db_mtx)); 3952 DBUF_VERIFY(db); 3953 3954 /* 3955 * Remove the reference to the dbuf before removing its hold on the 3956 * dnode so we can guarantee in dnode_move() that a referenced bonus 3957 * buffer has a corresponding dnode hold. 3958 */ 3959 holds = zfs_refcount_remove(&db->db_holds, tag); 3960 ASSERT(holds >= 0); 3961 3962 /* 3963 * We can't freeze indirects if there is a possibility that they 3964 * may be modified in the current syncing context. 3965 */ 3966 if (db->db_buf != NULL && 3967 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3968 arc_buf_freeze(db->db_buf); 3969 } 3970 3971 if (holds == db->db_dirtycnt && 3972 db->db_level == 0 && db->db_user_immediate_evict) 3973 dbuf_evict_user(db); 3974 3975 if (holds == 0) { 3976 if (db->db_blkid == DMU_BONUS_BLKID) { 3977 dnode_t *dn; 3978 boolean_t evict_dbuf = db->db_pending_evict; 3979 3980 /* 3981 * If the dnode moves here, we cannot cross this 3982 * barrier until the move completes. 3983 */ 3984 DB_DNODE_ENTER(db); 3985 3986 dn = DB_DNODE(db); 3987 atomic_dec_32(&dn->dn_dbufs_count); 3988 3989 /* 3990 * Decrementing the dbuf count means that the bonus 3991 * buffer's dnode hold is no longer discounted in 3992 * dnode_move(). The dnode cannot move until after 3993 * the dnode_rele() below. 3994 */ 3995 DB_DNODE_EXIT(db); 3996 3997 /* 3998 * Do not reference db after its lock is dropped. 3999 * Another thread may evict it. 4000 */ 4001 mutex_exit(&db->db_mtx); 4002 4003 if (evict_dbuf) 4004 dnode_evict_bonus(dn); 4005 4006 dnode_rele(dn, db); 4007 } else if (db->db_buf == NULL) { 4008 /* 4009 * This is a special case: we never associated this 4010 * dbuf with any data allocated from the ARC. 4011 */ 4012 ASSERT(db->db_state == DB_UNCACHED || 4013 db->db_state == DB_NOFILL); 4014 dbuf_destroy(db); 4015 } else if (arc_released(db->db_buf)) { 4016 /* 4017 * This dbuf has anonymous data associated with it. 4018 */ 4019 dbuf_destroy(db); 4020 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4021 db->db_pending_evict) { 4022 dbuf_destroy(db); 4023 } else if (!multilist_link_active(&db->db_cache_link)) { 4024 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4025 4026 dbuf_cached_state_t dcs = 4027 dbuf_include_in_metadata_cache(db) ? 4028 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4029 db->db_caching_status = dcs; 4030 4031 multilist_insert(&dbuf_caches[dcs].cache, db); 4032 uint64_t db_size = db->db.db_size + 4033 dmu_buf_user_size(&db->db); 4034 size = zfs_refcount_add_many( 4035 &dbuf_caches[dcs].size, db_size, db); 4036 uint8_t db_level = db->db_level; 4037 mutex_exit(&db->db_mtx); 4038 4039 if (dcs == DB_DBUF_METADATA_CACHE) { 4040 DBUF_STAT_BUMP(metadata_cache_count); 4041 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4042 size); 4043 } else { 4044 DBUF_STAT_BUMP(cache_count); 4045 DBUF_STAT_MAX(cache_size_bytes_max, size); 4046 DBUF_STAT_BUMP(cache_levels[db_level]); 4047 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4048 db_size); 4049 } 4050 4051 if (dcs == DB_DBUF_CACHE && !evicting) 4052 dbuf_evict_notify(size); 4053 } 4054 } else { 4055 mutex_exit(&db->db_mtx); 4056 } 4057 4058 } 4059 4060 #pragma weak dmu_buf_refcount = dbuf_refcount 4061 uint64_t 4062 dbuf_refcount(dmu_buf_impl_t *db) 4063 { 4064 return (zfs_refcount_count(&db->db_holds)); 4065 } 4066 4067 uint64_t 4068 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4069 { 4070 uint64_t holds; 4071 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4072 4073 mutex_enter(&db->db_mtx); 4074 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4075 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4076 mutex_exit(&db->db_mtx); 4077 4078 return (holds); 4079 } 4080 4081 void * 4082 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4083 dmu_buf_user_t *new_user) 4084 { 4085 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4086 4087 mutex_enter(&db->db_mtx); 4088 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4089 if (db->db_user == old_user) 4090 db->db_user = new_user; 4091 else 4092 old_user = db->db_user; 4093 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4094 mutex_exit(&db->db_mtx); 4095 4096 return (old_user); 4097 } 4098 4099 void * 4100 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4101 { 4102 return (dmu_buf_replace_user(db_fake, NULL, user)); 4103 } 4104 4105 void * 4106 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4107 { 4108 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4109 4110 db->db_user_immediate_evict = TRUE; 4111 return (dmu_buf_set_user(db_fake, user)); 4112 } 4113 4114 void * 4115 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4116 { 4117 return (dmu_buf_replace_user(db_fake, user, NULL)); 4118 } 4119 4120 void * 4121 dmu_buf_get_user(dmu_buf_t *db_fake) 4122 { 4123 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4124 4125 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4126 return (db->db_user); 4127 } 4128 4129 uint64_t 4130 dmu_buf_user_size(dmu_buf_t *db_fake) 4131 { 4132 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4133 if (db->db_user == NULL) 4134 return (0); 4135 return (atomic_load_64(&db->db_user->dbu_size)); 4136 } 4137 4138 void 4139 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4140 { 4141 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4142 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4143 ASSERT3P(db->db_user, !=, NULL); 4144 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4145 atomic_add_64(&db->db_user->dbu_size, nadd); 4146 } 4147 4148 void 4149 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4150 { 4151 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4152 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4153 ASSERT3P(db->db_user, !=, NULL); 4154 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4155 atomic_sub_64(&db->db_user->dbu_size, nsub); 4156 } 4157 4158 void 4159 dmu_buf_user_evict_wait(void) 4160 { 4161 taskq_wait(dbu_evict_taskq); 4162 } 4163 4164 blkptr_t * 4165 dmu_buf_get_blkptr(dmu_buf_t *db) 4166 { 4167 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4168 return (dbi->db_blkptr); 4169 } 4170 4171 objset_t * 4172 dmu_buf_get_objset(dmu_buf_t *db) 4173 { 4174 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4175 return (dbi->db_objset); 4176 } 4177 4178 static void 4179 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4180 { 4181 /* ASSERT(dmu_tx_is_syncing(tx) */ 4182 ASSERT(MUTEX_HELD(&db->db_mtx)); 4183 4184 if (db->db_blkptr != NULL) 4185 return; 4186 4187 if (db->db_blkid == DMU_SPILL_BLKID) { 4188 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4189 BP_ZERO(db->db_blkptr); 4190 return; 4191 } 4192 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4193 /* 4194 * This buffer was allocated at a time when there was 4195 * no available blkptrs from the dnode, or it was 4196 * inappropriate to hook it in (i.e., nlevels mismatch). 4197 */ 4198 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4199 ASSERT(db->db_parent == NULL); 4200 db->db_parent = dn->dn_dbuf; 4201 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4202 DBUF_VERIFY(db); 4203 } else { 4204 dmu_buf_impl_t *parent = db->db_parent; 4205 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4206 4207 ASSERT(dn->dn_phys->dn_nlevels > 1); 4208 if (parent == NULL) { 4209 mutex_exit(&db->db_mtx); 4210 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4211 parent = dbuf_hold_level(dn, db->db_level + 1, 4212 db->db_blkid >> epbs, db); 4213 rw_exit(&dn->dn_struct_rwlock); 4214 mutex_enter(&db->db_mtx); 4215 db->db_parent = parent; 4216 } 4217 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4218 (db->db_blkid & ((1ULL << epbs) - 1)); 4219 DBUF_VERIFY(db); 4220 } 4221 } 4222 4223 static void 4224 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4225 { 4226 dmu_buf_impl_t *db = dr->dr_dbuf; 4227 void *data = dr->dt.dl.dr_data; 4228 4229 ASSERT0(db->db_level); 4230 ASSERT(MUTEX_HELD(&db->db_mtx)); 4231 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4232 ASSERT(data != NULL); 4233 4234 dnode_t *dn = dr->dr_dnode; 4235 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4236 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4237 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4238 4239 dbuf_sync_leaf_verify_bonus_dnode(dr); 4240 4241 dbuf_undirty_bonus(dr); 4242 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4243 } 4244 4245 /* 4246 * When syncing out a blocks of dnodes, adjust the block to deal with 4247 * encryption. Normally, we make sure the block is decrypted before writing 4248 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4249 * from a raw receive. In this case, set the ARC buf's crypt params so 4250 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4251 */ 4252 static void 4253 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4254 { 4255 int err; 4256 dmu_buf_impl_t *db = dr->dr_dbuf; 4257 4258 ASSERT(MUTEX_HELD(&db->db_mtx)); 4259 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4260 ASSERT3U(db->db_level, ==, 0); 4261 4262 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4263 zbookmark_phys_t zb; 4264 4265 /* 4266 * Unfortunately, there is currently no mechanism for 4267 * syncing context to handle decryption errors. An error 4268 * here is only possible if an attacker maliciously 4269 * changed a dnode block and updated the associated 4270 * checksums going up the block tree. 4271 */ 4272 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4273 db->db.db_object, db->db_level, db->db_blkid); 4274 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4275 &zb, B_TRUE); 4276 if (err) 4277 panic("Invalid dnode block MAC"); 4278 } else if (dr->dt.dl.dr_has_raw_params) { 4279 (void) arc_release(dr->dt.dl.dr_data, db); 4280 arc_convert_to_raw(dr->dt.dl.dr_data, 4281 dmu_objset_id(db->db_objset), 4282 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4283 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4284 } 4285 } 4286 4287 /* 4288 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4289 * is critical the we not allow the compiler to inline this function in to 4290 * dbuf_sync_list() thereby drastically bloating the stack usage. 4291 */ 4292 noinline static void 4293 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4294 { 4295 dmu_buf_impl_t *db = dr->dr_dbuf; 4296 dnode_t *dn = dr->dr_dnode; 4297 4298 ASSERT(dmu_tx_is_syncing(tx)); 4299 4300 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4301 4302 mutex_enter(&db->db_mtx); 4303 4304 ASSERT(db->db_level > 0); 4305 DBUF_VERIFY(db); 4306 4307 /* Read the block if it hasn't been read yet. */ 4308 if (db->db_buf == NULL) { 4309 mutex_exit(&db->db_mtx); 4310 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4311 mutex_enter(&db->db_mtx); 4312 } 4313 ASSERT3U(db->db_state, ==, DB_CACHED); 4314 ASSERT(db->db_buf != NULL); 4315 4316 /* Indirect block size must match what the dnode thinks it is. */ 4317 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4318 dbuf_check_blkptr(dn, db); 4319 4320 /* Provide the pending dirty record to child dbufs */ 4321 db->db_data_pending = dr; 4322 4323 mutex_exit(&db->db_mtx); 4324 4325 dbuf_write(dr, db->db_buf, tx); 4326 4327 zio_t *zio = dr->dr_zio; 4328 mutex_enter(&dr->dt.di.dr_mtx); 4329 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4330 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4331 mutex_exit(&dr->dt.di.dr_mtx); 4332 zio_nowait(zio); 4333 } 4334 4335 /* 4336 * Verify that the size of the data in our bonus buffer does not exceed 4337 * its recorded size. 4338 * 4339 * The purpose of this verification is to catch any cases in development 4340 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4341 * due to incorrect feature management, older pools expect to read more 4342 * data even though they didn't actually write it to begin with. 4343 * 4344 * For a example, this would catch an error in the feature logic where we 4345 * open an older pool and we expect to write the space map histogram of 4346 * a space map with size SPACE_MAP_SIZE_V0. 4347 */ 4348 static void 4349 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4350 { 4351 #ifdef ZFS_DEBUG 4352 dnode_t *dn = dr->dr_dnode; 4353 4354 /* 4355 * Encrypted bonus buffers can have data past their bonuslen. 4356 * Skip the verification of these blocks. 4357 */ 4358 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4359 return; 4360 4361 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4362 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4363 ASSERT3U(bonuslen, <=, maxbonuslen); 4364 4365 arc_buf_t *datap = dr->dt.dl.dr_data; 4366 char *datap_end = ((char *)datap) + bonuslen; 4367 char *datap_max = ((char *)datap) + maxbonuslen; 4368 4369 /* ensure that everything is zero after our data */ 4370 for (; datap_end < datap_max; datap_end++) 4371 ASSERT(*datap_end == 0); 4372 #endif 4373 } 4374 4375 static blkptr_t * 4376 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4377 { 4378 /* This must be a lightweight dirty record. */ 4379 ASSERT3P(dr->dr_dbuf, ==, NULL); 4380 dnode_t *dn = dr->dr_dnode; 4381 4382 if (dn->dn_phys->dn_nlevels == 1) { 4383 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4384 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4385 } else { 4386 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4387 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4388 VERIFY3U(parent_db->db_level, ==, 1); 4389 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4390 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4391 blkptr_t *bp = parent_db->db.db_data; 4392 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4393 } 4394 } 4395 4396 static void 4397 dbuf_lightweight_ready(zio_t *zio) 4398 { 4399 dbuf_dirty_record_t *dr = zio->io_private; 4400 blkptr_t *bp = zio->io_bp; 4401 4402 if (zio->io_error != 0) 4403 return; 4404 4405 dnode_t *dn = dr->dr_dnode; 4406 4407 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4408 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4409 int64_t delta = bp_get_dsize_sync(spa, bp) - 4410 bp_get_dsize_sync(spa, bp_orig); 4411 dnode_diduse_space(dn, delta); 4412 4413 uint64_t blkid = dr->dt.dll.dr_blkid; 4414 mutex_enter(&dn->dn_mtx); 4415 if (blkid > dn->dn_phys->dn_maxblkid) { 4416 ASSERT0(dn->dn_objset->os_raw_receive); 4417 dn->dn_phys->dn_maxblkid = blkid; 4418 } 4419 mutex_exit(&dn->dn_mtx); 4420 4421 if (!BP_IS_EMBEDDED(bp)) { 4422 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4423 BP_SET_FILL(bp, fill); 4424 } 4425 4426 dmu_buf_impl_t *parent_db; 4427 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4428 if (dr->dr_parent == NULL) { 4429 parent_db = dn->dn_dbuf; 4430 } else { 4431 parent_db = dr->dr_parent->dr_dbuf; 4432 } 4433 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4434 *bp_orig = *bp; 4435 rw_exit(&parent_db->db_rwlock); 4436 } 4437 4438 static void 4439 dbuf_lightweight_done(zio_t *zio) 4440 { 4441 dbuf_dirty_record_t *dr = zio->io_private; 4442 4443 VERIFY0(zio->io_error); 4444 4445 objset_t *os = dr->dr_dnode->dn_objset; 4446 dmu_tx_t *tx = os->os_synctx; 4447 4448 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4449 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4450 } else { 4451 dsl_dataset_t *ds = os->os_dsl_dataset; 4452 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4453 dsl_dataset_block_born(ds, zio->io_bp, tx); 4454 } 4455 4456 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4457 zio->io_txg); 4458 4459 abd_free(dr->dt.dll.dr_abd); 4460 kmem_free(dr, sizeof (*dr)); 4461 } 4462 4463 noinline static void 4464 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4465 { 4466 dnode_t *dn = dr->dr_dnode; 4467 zio_t *pio; 4468 if (dn->dn_phys->dn_nlevels == 1) { 4469 pio = dn->dn_zio; 4470 } else { 4471 pio = dr->dr_parent->dr_zio; 4472 } 4473 4474 zbookmark_phys_t zb = { 4475 .zb_objset = dmu_objset_id(dn->dn_objset), 4476 .zb_object = dn->dn_object, 4477 .zb_level = 0, 4478 .zb_blkid = dr->dt.dll.dr_blkid, 4479 }; 4480 4481 /* 4482 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4483 * will have the old BP in dbuf_lightweight_done(). 4484 */ 4485 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4486 4487 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4488 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4489 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4490 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4491 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4492 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4493 4494 zio_nowait(dr->dr_zio); 4495 } 4496 4497 /* 4498 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4499 * critical the we not allow the compiler to inline this function in to 4500 * dbuf_sync_list() thereby drastically bloating the stack usage. 4501 */ 4502 noinline static void 4503 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4504 { 4505 arc_buf_t **datap = &dr->dt.dl.dr_data; 4506 dmu_buf_impl_t *db = dr->dr_dbuf; 4507 dnode_t *dn = dr->dr_dnode; 4508 objset_t *os; 4509 uint64_t txg = tx->tx_txg; 4510 4511 ASSERT(dmu_tx_is_syncing(tx)); 4512 4513 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4514 4515 mutex_enter(&db->db_mtx); 4516 /* 4517 * To be synced, we must be dirtied. But we 4518 * might have been freed after the dirty. 4519 */ 4520 if (db->db_state == DB_UNCACHED) { 4521 /* This buffer has been freed since it was dirtied */ 4522 ASSERT(db->db.db_data == NULL); 4523 } else if (db->db_state == DB_FILL) { 4524 /* This buffer was freed and is now being re-filled */ 4525 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4526 } else if (db->db_state == DB_READ) { 4527 /* 4528 * This buffer has a clone we need to write, and an in-flight 4529 * read on the BP we're about to clone. Its safe to issue the 4530 * write here because the read has already been issued and the 4531 * contents won't change. 4532 */ 4533 ASSERT(dr->dt.dl.dr_brtwrite && 4534 dr->dt.dl.dr_override_state == DR_OVERRIDDEN); 4535 } else { 4536 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4537 } 4538 DBUF_VERIFY(db); 4539 4540 if (db->db_blkid == DMU_SPILL_BLKID) { 4541 mutex_enter(&dn->dn_mtx); 4542 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4543 /* 4544 * In the previous transaction group, the bonus buffer 4545 * was entirely used to store the attributes for the 4546 * dnode which overrode the dn_spill field. However, 4547 * when adding more attributes to the file a spill 4548 * block was required to hold the extra attributes. 4549 * 4550 * Make sure to clear the garbage left in the dn_spill 4551 * field from the previous attributes in the bonus 4552 * buffer. Otherwise, after writing out the spill 4553 * block to the new allocated dva, it will free 4554 * the old block pointed to by the invalid dn_spill. 4555 */ 4556 db->db_blkptr = NULL; 4557 } 4558 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4559 mutex_exit(&dn->dn_mtx); 4560 } 4561 4562 /* 4563 * If this is a bonus buffer, simply copy the bonus data into the 4564 * dnode. It will be written out when the dnode is synced (and it 4565 * will be synced, since it must have been dirty for dbuf_sync to 4566 * be called). 4567 */ 4568 if (db->db_blkid == DMU_BONUS_BLKID) { 4569 ASSERT(dr->dr_dbuf == db); 4570 dbuf_sync_bonus(dr, tx); 4571 return; 4572 } 4573 4574 os = dn->dn_objset; 4575 4576 /* 4577 * This function may have dropped the db_mtx lock allowing a dmu_sync 4578 * operation to sneak in. As a result, we need to ensure that we 4579 * don't check the dr_override_state until we have returned from 4580 * dbuf_check_blkptr. 4581 */ 4582 dbuf_check_blkptr(dn, db); 4583 4584 /* 4585 * If this buffer is in the middle of an immediate write, 4586 * wait for the synchronous IO to complete. 4587 */ 4588 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4589 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4590 cv_wait(&db->db_changed, &db->db_mtx); 4591 } 4592 4593 /* 4594 * If this is a dnode block, ensure it is appropriately encrypted 4595 * or decrypted, depending on what we are writing to it this txg. 4596 */ 4597 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4598 dbuf_prepare_encrypted_dnode_leaf(dr); 4599 4600 if (db->db_state != DB_NOFILL && 4601 dn->dn_object != DMU_META_DNODE_OBJECT && 4602 zfs_refcount_count(&db->db_holds) > 1 && 4603 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4604 *datap == db->db_buf) { 4605 /* 4606 * If this buffer is currently "in use" (i.e., there 4607 * are active holds and db_data still references it), 4608 * then make a copy before we start the write so that 4609 * any modifications from the open txg will not leak 4610 * into this write. 4611 * 4612 * NOTE: this copy does not need to be made for 4613 * objects only modified in the syncing context (e.g. 4614 * DNONE_DNODE blocks). 4615 */ 4616 int psize = arc_buf_size(*datap); 4617 int lsize = arc_buf_lsize(*datap); 4618 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4619 enum zio_compress compress_type = arc_get_compression(*datap); 4620 uint8_t complevel = arc_get_complevel(*datap); 4621 4622 if (arc_is_encrypted(*datap)) { 4623 boolean_t byteorder; 4624 uint8_t salt[ZIO_DATA_SALT_LEN]; 4625 uint8_t iv[ZIO_DATA_IV_LEN]; 4626 uint8_t mac[ZIO_DATA_MAC_LEN]; 4627 4628 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4629 *datap = arc_alloc_raw_buf(os->os_spa, db, 4630 dmu_objset_id(os), byteorder, salt, iv, mac, 4631 dn->dn_type, psize, lsize, compress_type, 4632 complevel); 4633 } else if (compress_type != ZIO_COMPRESS_OFF) { 4634 ASSERT3U(type, ==, ARC_BUFC_DATA); 4635 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4636 psize, lsize, compress_type, complevel); 4637 } else { 4638 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4639 } 4640 memcpy((*datap)->b_data, db->db.db_data, psize); 4641 } 4642 db->db_data_pending = dr; 4643 4644 mutex_exit(&db->db_mtx); 4645 4646 dbuf_write(dr, *datap, tx); 4647 4648 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4649 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4650 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4651 } else { 4652 zio_nowait(dr->dr_zio); 4653 } 4654 } 4655 4656 /* 4657 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4658 * called recursively from dbuf_sync_indirect(). 4659 */ 4660 void 4661 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4662 { 4663 dbuf_dirty_record_t *dr; 4664 4665 while ((dr = list_head(list))) { 4666 if (dr->dr_zio != NULL) { 4667 /* 4668 * If we find an already initialized zio then we 4669 * are processing the meta-dnode, and we have finished. 4670 * The dbufs for all dnodes are put back on the list 4671 * during processing, so that we can zio_wait() 4672 * these IOs after initiating all child IOs. 4673 */ 4674 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4675 DMU_META_DNODE_OBJECT); 4676 break; 4677 } 4678 list_remove(list, dr); 4679 if (dr->dr_dbuf == NULL) { 4680 dbuf_sync_lightweight(dr, tx); 4681 } else { 4682 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4683 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4684 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4685 } 4686 if (dr->dr_dbuf->db_level > 0) 4687 dbuf_sync_indirect(dr, tx); 4688 else 4689 dbuf_sync_leaf(dr, tx); 4690 } 4691 } 4692 } 4693 4694 static void 4695 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4696 { 4697 (void) buf; 4698 dmu_buf_impl_t *db = vdb; 4699 dnode_t *dn; 4700 blkptr_t *bp = zio->io_bp; 4701 blkptr_t *bp_orig = &zio->io_bp_orig; 4702 spa_t *spa = zio->io_spa; 4703 int64_t delta; 4704 uint64_t fill = 0; 4705 int i; 4706 4707 ASSERT3P(db->db_blkptr, !=, NULL); 4708 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4709 4710 DB_DNODE_ENTER(db); 4711 dn = DB_DNODE(db); 4712 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4713 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4714 zio->io_prev_space_delta = delta; 4715 4716 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4717 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4718 BP_GET_TYPE(bp) == dn->dn_type) || 4719 (db->db_blkid == DMU_SPILL_BLKID && 4720 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4721 BP_IS_EMBEDDED(bp)); 4722 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4723 } 4724 4725 mutex_enter(&db->db_mtx); 4726 4727 #ifdef ZFS_DEBUG 4728 if (db->db_blkid == DMU_SPILL_BLKID) { 4729 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4730 ASSERT(!(BP_IS_HOLE(bp)) && 4731 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4732 } 4733 #endif 4734 4735 if (db->db_level == 0) { 4736 mutex_enter(&dn->dn_mtx); 4737 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4738 db->db_blkid != DMU_SPILL_BLKID) { 4739 ASSERT0(db->db_objset->os_raw_receive); 4740 dn->dn_phys->dn_maxblkid = db->db_blkid; 4741 } 4742 mutex_exit(&dn->dn_mtx); 4743 4744 if (dn->dn_type == DMU_OT_DNODE) { 4745 i = 0; 4746 while (i < db->db.db_size) { 4747 dnode_phys_t *dnp = 4748 (void *)(((char *)db->db.db_data) + i); 4749 4750 i += DNODE_MIN_SIZE; 4751 if (dnp->dn_type != DMU_OT_NONE) { 4752 fill++; 4753 for (int j = 0; j < dnp->dn_nblkptr; 4754 j++) { 4755 (void) zfs_blkptr_verify(spa, 4756 &dnp->dn_blkptr[j], 4757 BLK_CONFIG_SKIP, 4758 BLK_VERIFY_HALT); 4759 } 4760 if (dnp->dn_flags & 4761 DNODE_FLAG_SPILL_BLKPTR) { 4762 (void) zfs_blkptr_verify(spa, 4763 DN_SPILL_BLKPTR(dnp), 4764 BLK_CONFIG_SKIP, 4765 BLK_VERIFY_HALT); 4766 } 4767 i += dnp->dn_extra_slots * 4768 DNODE_MIN_SIZE; 4769 } 4770 } 4771 } else { 4772 if (BP_IS_HOLE(bp)) { 4773 fill = 0; 4774 } else { 4775 fill = 1; 4776 } 4777 } 4778 } else { 4779 blkptr_t *ibp = db->db.db_data; 4780 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4781 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4782 if (BP_IS_HOLE(ibp)) 4783 continue; 4784 (void) zfs_blkptr_verify(spa, ibp, 4785 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4786 fill += BP_GET_FILL(ibp); 4787 } 4788 } 4789 DB_DNODE_EXIT(db); 4790 4791 if (!BP_IS_EMBEDDED(bp)) 4792 BP_SET_FILL(bp, fill); 4793 4794 mutex_exit(&db->db_mtx); 4795 4796 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4797 *db->db_blkptr = *bp; 4798 dmu_buf_unlock_parent(db, dblt, FTAG); 4799 } 4800 4801 /* 4802 * This function gets called just prior to running through the compression 4803 * stage of the zio pipeline. If we're an indirect block comprised of only 4804 * holes, then we want this indirect to be compressed away to a hole. In 4805 * order to do that we must zero out any information about the holes that 4806 * this indirect points to prior to before we try to compress it. 4807 */ 4808 static void 4809 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4810 { 4811 (void) zio, (void) buf; 4812 dmu_buf_impl_t *db = vdb; 4813 dnode_t *dn; 4814 blkptr_t *bp; 4815 unsigned int epbs, i; 4816 4817 ASSERT3U(db->db_level, >, 0); 4818 DB_DNODE_ENTER(db); 4819 dn = DB_DNODE(db); 4820 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4821 ASSERT3U(epbs, <, 31); 4822 4823 /* Determine if all our children are holes */ 4824 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4825 if (!BP_IS_HOLE(bp)) 4826 break; 4827 } 4828 4829 /* 4830 * If all the children are holes, then zero them all out so that 4831 * we may get compressed away. 4832 */ 4833 if (i == 1ULL << epbs) { 4834 /* 4835 * We only found holes. Grab the rwlock to prevent 4836 * anybody from reading the blocks we're about to 4837 * zero out. 4838 */ 4839 rw_enter(&db->db_rwlock, RW_WRITER); 4840 memset(db->db.db_data, 0, db->db.db_size); 4841 rw_exit(&db->db_rwlock); 4842 } 4843 DB_DNODE_EXIT(db); 4844 } 4845 4846 static void 4847 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4848 { 4849 (void) buf; 4850 dmu_buf_impl_t *db = vdb; 4851 blkptr_t *bp_orig = &zio->io_bp_orig; 4852 blkptr_t *bp = db->db_blkptr; 4853 objset_t *os = db->db_objset; 4854 dmu_tx_t *tx = os->os_synctx; 4855 4856 ASSERT0(zio->io_error); 4857 ASSERT(db->db_blkptr == bp); 4858 4859 /* 4860 * For nopwrites and rewrites we ensure that the bp matches our 4861 * original and bypass all the accounting. 4862 */ 4863 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4864 ASSERT(BP_EQUAL(bp, bp_orig)); 4865 } else { 4866 dsl_dataset_t *ds = os->os_dsl_dataset; 4867 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4868 dsl_dataset_block_born(ds, bp, tx); 4869 } 4870 4871 mutex_enter(&db->db_mtx); 4872 4873 DBUF_VERIFY(db); 4874 4875 dbuf_dirty_record_t *dr = db->db_data_pending; 4876 dnode_t *dn = dr->dr_dnode; 4877 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4878 ASSERT(dr->dr_dbuf == db); 4879 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4880 list_remove(&db->db_dirty_records, dr); 4881 4882 #ifdef ZFS_DEBUG 4883 if (db->db_blkid == DMU_SPILL_BLKID) { 4884 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4885 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4886 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4887 } 4888 #endif 4889 4890 if (db->db_level == 0) { 4891 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4892 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4893 if (db->db_state != DB_NOFILL) { 4894 if (dr->dt.dl.dr_data != NULL && 4895 dr->dt.dl.dr_data != db->db_buf) { 4896 arc_buf_destroy(dr->dt.dl.dr_data, db); 4897 } 4898 } 4899 } else { 4900 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4901 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4902 if (!BP_IS_HOLE(db->db_blkptr)) { 4903 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4904 SPA_BLKPTRSHIFT; 4905 ASSERT3U(db->db_blkid, <=, 4906 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4907 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4908 db->db.db_size); 4909 } 4910 mutex_destroy(&dr->dt.di.dr_mtx); 4911 list_destroy(&dr->dt.di.dr_children); 4912 } 4913 4914 cv_broadcast(&db->db_changed); 4915 ASSERT(db->db_dirtycnt > 0); 4916 db->db_dirtycnt -= 1; 4917 db->db_data_pending = NULL; 4918 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4919 4920 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4921 zio->io_txg); 4922 4923 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4924 } 4925 4926 static void 4927 dbuf_write_nofill_ready(zio_t *zio) 4928 { 4929 dbuf_write_ready(zio, NULL, zio->io_private); 4930 } 4931 4932 static void 4933 dbuf_write_nofill_done(zio_t *zio) 4934 { 4935 dbuf_write_done(zio, NULL, zio->io_private); 4936 } 4937 4938 static void 4939 dbuf_write_override_ready(zio_t *zio) 4940 { 4941 dbuf_dirty_record_t *dr = zio->io_private; 4942 dmu_buf_impl_t *db = dr->dr_dbuf; 4943 4944 dbuf_write_ready(zio, NULL, db); 4945 } 4946 4947 static void 4948 dbuf_write_override_done(zio_t *zio) 4949 { 4950 dbuf_dirty_record_t *dr = zio->io_private; 4951 dmu_buf_impl_t *db = dr->dr_dbuf; 4952 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4953 4954 mutex_enter(&db->db_mtx); 4955 if (!BP_EQUAL(zio->io_bp, obp)) { 4956 if (!BP_IS_HOLE(obp)) 4957 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4958 arc_release(dr->dt.dl.dr_data, db); 4959 } 4960 mutex_exit(&db->db_mtx); 4961 4962 dbuf_write_done(zio, NULL, db); 4963 4964 if (zio->io_abd != NULL) 4965 abd_free(zio->io_abd); 4966 } 4967 4968 typedef struct dbuf_remap_impl_callback_arg { 4969 objset_t *drica_os; 4970 uint64_t drica_blk_birth; 4971 dmu_tx_t *drica_tx; 4972 } dbuf_remap_impl_callback_arg_t; 4973 4974 static void 4975 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4976 void *arg) 4977 { 4978 dbuf_remap_impl_callback_arg_t *drica = arg; 4979 objset_t *os = drica->drica_os; 4980 spa_t *spa = dmu_objset_spa(os); 4981 dmu_tx_t *tx = drica->drica_tx; 4982 4983 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4984 4985 if (os == spa_meta_objset(spa)) { 4986 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4987 } else { 4988 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4989 size, drica->drica_blk_birth, tx); 4990 } 4991 } 4992 4993 static void 4994 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4995 { 4996 blkptr_t bp_copy = *bp; 4997 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4998 dbuf_remap_impl_callback_arg_t drica; 4999 5000 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5001 5002 drica.drica_os = dn->dn_objset; 5003 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5004 drica.drica_tx = tx; 5005 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5006 &drica)) { 5007 /* 5008 * If the blkptr being remapped is tracked by a livelist, 5009 * then we need to make sure the livelist reflects the update. 5010 * First, cancel out the old blkptr by appending a 'FREE' 5011 * entry. Next, add an 'ALLOC' to track the new version. This 5012 * way we avoid trying to free an inaccurate blkptr at delete. 5013 * Note that embedded blkptrs are not tracked in livelists. 5014 */ 5015 if (dn->dn_objset != spa_meta_objset(spa)) { 5016 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5017 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5018 BP_GET_LOGICAL_BIRTH(bp) > 5019 ds->ds_dir->dd_origin_txg) { 5020 ASSERT(!BP_IS_EMBEDDED(bp)); 5021 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5022 ASSERT(spa_feature_is_enabled(spa, 5023 SPA_FEATURE_LIVELIST)); 5024 bplist_append(&ds->ds_dir->dd_pending_frees, 5025 bp); 5026 bplist_append(&ds->ds_dir->dd_pending_allocs, 5027 &bp_copy); 5028 } 5029 } 5030 5031 /* 5032 * The db_rwlock prevents dbuf_read_impl() from 5033 * dereferencing the BP while we are changing it. To 5034 * avoid lock contention, only grab it when we are actually 5035 * changing the BP. 5036 */ 5037 if (rw != NULL) 5038 rw_enter(rw, RW_WRITER); 5039 *bp = bp_copy; 5040 if (rw != NULL) 5041 rw_exit(rw); 5042 } 5043 } 5044 5045 /* 5046 * Remap any existing BP's to concrete vdevs, if possible. 5047 */ 5048 static void 5049 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5050 { 5051 spa_t *spa = dmu_objset_spa(db->db_objset); 5052 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5053 5054 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5055 return; 5056 5057 if (db->db_level > 0) { 5058 blkptr_t *bp = db->db.db_data; 5059 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5060 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5061 } 5062 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5063 dnode_phys_t *dnp = db->db.db_data; 5064 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 5065 DMU_OT_DNODE); 5066 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5067 i += dnp[i].dn_extra_slots + 1) { 5068 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5069 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5070 &dn->dn_dbuf->db_rwlock); 5071 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5072 tx); 5073 } 5074 } 5075 } 5076 } 5077 5078 5079 /* 5080 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5081 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5082 */ 5083 static void 5084 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5085 { 5086 dmu_buf_impl_t *db = dr->dr_dbuf; 5087 dnode_t *dn = dr->dr_dnode; 5088 objset_t *os; 5089 dmu_buf_impl_t *parent = db->db_parent; 5090 uint64_t txg = tx->tx_txg; 5091 zbookmark_phys_t zb; 5092 zio_prop_t zp; 5093 zio_t *pio; /* parent I/O */ 5094 int wp_flag = 0; 5095 5096 ASSERT(dmu_tx_is_syncing(tx)); 5097 5098 os = dn->dn_objset; 5099 5100 if (db->db_state != DB_NOFILL) { 5101 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5102 /* 5103 * Private object buffers are released here rather 5104 * than in dbuf_dirty() since they are only modified 5105 * in the syncing context and we don't want the 5106 * overhead of making multiple copies of the data. 5107 */ 5108 if (BP_IS_HOLE(db->db_blkptr)) { 5109 arc_buf_thaw(data); 5110 } else { 5111 dbuf_release_bp(db); 5112 } 5113 dbuf_remap(dn, db, tx); 5114 } 5115 } 5116 5117 if (parent != dn->dn_dbuf) { 5118 /* Our parent is an indirect block. */ 5119 /* We have a dirty parent that has been scheduled for write. */ 5120 ASSERT(parent && parent->db_data_pending); 5121 /* Our parent's buffer is one level closer to the dnode. */ 5122 ASSERT(db->db_level == parent->db_level-1); 5123 /* 5124 * We're about to modify our parent's db_data by modifying 5125 * our block pointer, so the parent must be released. 5126 */ 5127 ASSERT(arc_released(parent->db_buf)); 5128 pio = parent->db_data_pending->dr_zio; 5129 } else { 5130 /* Our parent is the dnode itself. */ 5131 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5132 db->db_blkid != DMU_SPILL_BLKID) || 5133 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5134 if (db->db_blkid != DMU_SPILL_BLKID) 5135 ASSERT3P(db->db_blkptr, ==, 5136 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5137 pio = dn->dn_zio; 5138 } 5139 5140 ASSERT(db->db_level == 0 || data == db->db_buf); 5141 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5142 ASSERT(pio); 5143 5144 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5145 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5146 db->db.db_object, db->db_level, db->db_blkid); 5147 5148 if (db->db_blkid == DMU_SPILL_BLKID) 5149 wp_flag = WP_SPILL; 5150 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 5151 5152 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5153 5154 /* 5155 * We copy the blkptr now (rather than when we instantiate the dirty 5156 * record), because its value can change between open context and 5157 * syncing context. We do not need to hold dn_struct_rwlock to read 5158 * db_blkptr because we are in syncing context. 5159 */ 5160 dr->dr_bp_copy = *db->db_blkptr; 5161 5162 if (db->db_level == 0 && 5163 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5164 /* 5165 * The BP for this block has been provided by open context 5166 * (by dmu_sync() or dmu_buf_write_embedded()). 5167 */ 5168 abd_t *contents = (data != NULL) ? 5169 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5170 5171 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5172 contents, db->db.db_size, db->db.db_size, &zp, 5173 dbuf_write_override_ready, NULL, 5174 dbuf_write_override_done, 5175 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5176 mutex_enter(&db->db_mtx); 5177 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5178 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5179 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5180 dr->dt.dl.dr_brtwrite); 5181 mutex_exit(&db->db_mtx); 5182 } else if (db->db_state == DB_NOFILL) { 5183 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5184 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5185 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5186 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5187 dbuf_write_nofill_ready, NULL, 5188 dbuf_write_nofill_done, db, 5189 ZIO_PRIORITY_ASYNC_WRITE, 5190 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5191 } else { 5192 ASSERT(arc_released(data)); 5193 5194 /* 5195 * For indirect blocks, we want to setup the children 5196 * ready callback so that we can properly handle an indirect 5197 * block that only contains holes. 5198 */ 5199 arc_write_done_func_t *children_ready_cb = NULL; 5200 if (db->db_level != 0) 5201 children_ready_cb = dbuf_write_children_ready; 5202 5203 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5204 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5205 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, 5206 children_ready_cb, dbuf_write_done, db, 5207 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5208 } 5209 } 5210 5211 EXPORT_SYMBOL(dbuf_find); 5212 EXPORT_SYMBOL(dbuf_is_metadata); 5213 EXPORT_SYMBOL(dbuf_destroy); 5214 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5215 EXPORT_SYMBOL(dbuf_whichblock); 5216 EXPORT_SYMBOL(dbuf_read); 5217 EXPORT_SYMBOL(dbuf_unoverride); 5218 EXPORT_SYMBOL(dbuf_free_range); 5219 EXPORT_SYMBOL(dbuf_new_size); 5220 EXPORT_SYMBOL(dbuf_release_bp); 5221 EXPORT_SYMBOL(dbuf_dirty); 5222 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5223 EXPORT_SYMBOL(dmu_buf_will_dirty); 5224 EXPORT_SYMBOL(dmu_buf_is_dirty); 5225 EXPORT_SYMBOL(dmu_buf_will_clone); 5226 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5227 EXPORT_SYMBOL(dmu_buf_will_fill); 5228 EXPORT_SYMBOL(dmu_buf_fill_done); 5229 EXPORT_SYMBOL(dmu_buf_rele); 5230 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5231 EXPORT_SYMBOL(dbuf_prefetch); 5232 EXPORT_SYMBOL(dbuf_hold_impl); 5233 EXPORT_SYMBOL(dbuf_hold); 5234 EXPORT_SYMBOL(dbuf_hold_level); 5235 EXPORT_SYMBOL(dbuf_create_bonus); 5236 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5237 EXPORT_SYMBOL(dbuf_rm_spill); 5238 EXPORT_SYMBOL(dbuf_add_ref); 5239 EXPORT_SYMBOL(dbuf_rele); 5240 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5241 EXPORT_SYMBOL(dbuf_refcount); 5242 EXPORT_SYMBOL(dbuf_sync_list); 5243 EXPORT_SYMBOL(dmu_buf_set_user); 5244 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5245 EXPORT_SYMBOL(dmu_buf_get_user); 5246 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5247 5248 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5249 "Maximum size in bytes of the dbuf cache."); 5250 5251 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5252 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5253 5254 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5255 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5256 5257 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5258 "Maximum size in bytes of dbuf metadata cache."); 5259 5260 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5261 "Set size of dbuf cache to log2 fraction of arc size."); 5262 5263 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5264 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5265 5266 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5267 "Set size of dbuf cache mutex array as log2 shift."); 5268