1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 56 kstat_t *dbuf_ksp; 57 58 typedef struct dbuf_stats { 59 /* 60 * Various statistics about the size of the dbuf cache. 61 */ 62 kstat_named_t cache_count; 63 kstat_named_t cache_size_bytes; 64 kstat_named_t cache_size_bytes_max; 65 /* 66 * Statistics regarding the bounds on the dbuf cache size. 67 */ 68 kstat_named_t cache_target_bytes; 69 kstat_named_t cache_lowater_bytes; 70 kstat_named_t cache_hiwater_bytes; 71 /* 72 * Total number of dbuf cache evictions that have occurred. 73 */ 74 kstat_named_t cache_total_evicts; 75 /* 76 * The distribution of dbuf levels in the dbuf cache and 77 * the total size of all dbufs at each level. 78 */ 79 kstat_named_t cache_levels[DN_MAX_LEVELS]; 80 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 81 /* 82 * Statistics about the dbuf hash table. 83 */ 84 kstat_named_t hash_hits; 85 kstat_named_t hash_misses; 86 kstat_named_t hash_collisions; 87 kstat_named_t hash_elements; 88 kstat_named_t hash_elements_max; 89 /* 90 * Number of sublists containing more than one dbuf in the dbuf 91 * hash table. Keep track of the longest hash chain. 92 */ 93 kstat_named_t hash_chains; 94 kstat_named_t hash_chain_max; 95 /* 96 * Number of times a dbuf_create() discovers that a dbuf was 97 * already created and in the dbuf hash table. 98 */ 99 kstat_named_t hash_insert_race; 100 /* 101 * Statistics about the size of the metadata dbuf cache. 102 */ 103 kstat_named_t metadata_cache_count; 104 kstat_named_t metadata_cache_size_bytes; 105 kstat_named_t metadata_cache_size_bytes_max; 106 /* 107 * For diagnostic purposes, this is incremented whenever we can't add 108 * something to the metadata cache because it's full, and instead put 109 * the data in the regular dbuf cache. 110 */ 111 kstat_named_t metadata_cache_overflow; 112 } dbuf_stats_t; 113 114 dbuf_stats_t dbuf_stats = { 115 { "cache_count", KSTAT_DATA_UINT64 }, 116 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 117 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 118 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 119 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 120 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 121 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 122 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 123 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 124 { "hash_hits", KSTAT_DATA_UINT64 }, 125 { "hash_misses", KSTAT_DATA_UINT64 }, 126 { "hash_collisions", KSTAT_DATA_UINT64 }, 127 { "hash_elements", KSTAT_DATA_UINT64 }, 128 { "hash_elements_max", KSTAT_DATA_UINT64 }, 129 { "hash_chains", KSTAT_DATA_UINT64 }, 130 { "hash_chain_max", KSTAT_DATA_UINT64 }, 131 { "hash_insert_race", KSTAT_DATA_UINT64 }, 132 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 133 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 134 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 135 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 136 }; 137 138 #define DBUF_STAT_INCR(stat, val) \ 139 atomic_add_64(&dbuf_stats.stat.value.ui64, (val)); 140 #define DBUF_STAT_DECR(stat, val) \ 141 DBUF_STAT_INCR(stat, -(val)); 142 #define DBUF_STAT_BUMP(stat) \ 143 DBUF_STAT_INCR(stat, 1); 144 #define DBUF_STAT_BUMPDOWN(stat) \ 145 DBUF_STAT_INCR(stat, -1); 146 #define DBUF_STAT_MAX(stat, v) { \ 147 uint64_t _m; \ 148 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 149 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 150 continue; \ 151 } 152 153 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 154 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 155 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 156 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 157 158 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu, 159 dmu_buf_evict_func_t *evict_func_sync, 160 dmu_buf_evict_func_t *evict_func_async, 161 dmu_buf_t **clear_on_evict_dbufp); 162 163 /* 164 * Global data structures and functions for the dbuf cache. 165 */ 166 static kmem_cache_t *dbuf_kmem_cache; 167 static taskq_t *dbu_evict_taskq; 168 169 static kthread_t *dbuf_cache_evict_thread; 170 static kmutex_t dbuf_evict_lock; 171 static kcondvar_t dbuf_evict_cv; 172 static boolean_t dbuf_evict_thread_exit; 173 174 /* 175 * There are two dbuf caches; each dbuf can only be in one of them at a time. 176 * 177 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 178 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 179 * that represent the metadata that describes filesystems/snapshots/ 180 * bookmarks/properties/etc. We only evict from this cache when we export a 181 * pool, to short-circuit as much I/O as possible for all administrative 182 * commands that need the metadata. There is no eviction policy for this 183 * cache, because we try to only include types in it which would occupy a 184 * very small amount of space per object but create a large impact on the 185 * performance of these commands. Instead, after it reaches a maximum size 186 * (which should only happen on very small memory systems with a very large 187 * number of filesystem objects), we stop taking new dbufs into the 188 * metadata cache, instead putting them in the normal dbuf cache. 189 * 190 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 191 * are not currently held but have been recently released. These dbufs 192 * are not eligible for arc eviction until they are aged out of the cache. 193 * Dbufs that are aged out of the cache will be immediately destroyed and 194 * become eligible for arc eviction. 195 * 196 * Dbufs are added to these caches once the last hold is released. If a dbuf is 197 * later accessed and still exists in the dbuf cache, then it will be removed 198 * from the cache and later re-added to the head of the cache. 199 * 200 * If a given dbuf meets the requirements for the metadata cache, it will go 201 * there, otherwise it will be considered for the generic LRU dbuf cache. The 202 * caches and the refcounts tracking their sizes are stored in an array indexed 203 * by those caches' matching enum values (from dbuf_cached_state_t). 204 */ 205 typedef struct dbuf_cache { 206 multilist_t cache; 207 zfs_refcount_t size ____cacheline_aligned; 208 } dbuf_cache_t; 209 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 210 211 /* Size limits for the caches */ 212 unsigned long dbuf_cache_max_bytes = ULONG_MAX; 213 unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX; 214 215 /* Set the default sizes of the caches to log2 fraction of arc size */ 216 int dbuf_cache_shift = 5; 217 int dbuf_metadata_cache_shift = 6; 218 219 static unsigned long dbuf_cache_target_bytes(void); 220 static unsigned long dbuf_metadata_cache_target_bytes(void); 221 222 /* 223 * The LRU dbuf cache uses a three-stage eviction policy: 224 * - A low water marker designates when the dbuf eviction thread 225 * should stop evicting from the dbuf cache. 226 * - When we reach the maximum size (aka mid water mark), we 227 * signal the eviction thread to run. 228 * - The high water mark indicates when the eviction thread 229 * is unable to keep up with the incoming load and eviction must 230 * happen in the context of the calling thread. 231 * 232 * The dbuf cache: 233 * (max size) 234 * low water mid water hi water 235 * +----------------------------------------+----------+----------+ 236 * | | | | 237 * | | | | 238 * | | | | 239 * | | | | 240 * +----------------------------------------+----------+----------+ 241 * stop signal evict 242 * evicting eviction directly 243 * thread 244 * 245 * The high and low water marks indicate the operating range for the eviction 246 * thread. The low water mark is, by default, 90% of the total size of the 247 * cache and the high water mark is at 110% (both of these percentages can be 248 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 249 * respectively). The eviction thread will try to ensure that the cache remains 250 * within this range by waking up every second and checking if the cache is 251 * above the low water mark. The thread can also be woken up by callers adding 252 * elements into the cache if the cache is larger than the mid water (i.e max 253 * cache size). Once the eviction thread is woken up and eviction is required, 254 * it will continue evicting buffers until it's able to reduce the cache size 255 * to the low water mark. If the cache size continues to grow and hits the high 256 * water mark, then callers adding elements to the cache will begin to evict 257 * directly from the cache until the cache is no longer above the high water 258 * mark. 259 */ 260 261 /* 262 * The percentage above and below the maximum cache size. 263 */ 264 uint_t dbuf_cache_hiwater_pct = 10; 265 uint_t dbuf_cache_lowater_pct = 10; 266 267 /* ARGSUSED */ 268 static int 269 dbuf_cons(void *vdb, void *unused, int kmflag) 270 { 271 dmu_buf_impl_t *db = vdb; 272 bzero(db, sizeof (dmu_buf_impl_t)); 273 274 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 275 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 276 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 277 multilist_link_init(&db->db_cache_link); 278 zfs_refcount_create(&db->db_holds); 279 280 return (0); 281 } 282 283 /* ARGSUSED */ 284 static void 285 dbuf_dest(void *vdb, void *unused) 286 { 287 dmu_buf_impl_t *db = vdb; 288 mutex_destroy(&db->db_mtx); 289 rw_destroy(&db->db_rwlock); 290 cv_destroy(&db->db_changed); 291 ASSERT(!multilist_link_active(&db->db_cache_link)); 292 zfs_refcount_destroy(&db->db_holds); 293 } 294 295 /* 296 * dbuf hash table routines 297 */ 298 static dbuf_hash_table_t dbuf_hash_table; 299 300 static uint64_t dbuf_hash_count; 301 302 /* 303 * We use Cityhash for this. It's fast, and has good hash properties without 304 * requiring any large static buffers. 305 */ 306 static uint64_t 307 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 308 { 309 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 310 } 311 312 #define DTRACE_SET_STATE(db, why) \ 313 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 314 const char *, why) 315 316 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 317 ((dbuf)->db.db_object == (obj) && \ 318 (dbuf)->db_objset == (os) && \ 319 (dbuf)->db_level == (level) && \ 320 (dbuf)->db_blkid == (blkid)) 321 322 dmu_buf_impl_t * 323 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 324 { 325 dbuf_hash_table_t *h = &dbuf_hash_table; 326 uint64_t hv; 327 uint64_t idx; 328 dmu_buf_impl_t *db; 329 330 hv = dbuf_hash(os, obj, level, blkid); 331 idx = hv & h->hash_table_mask; 332 333 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 334 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 335 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 336 mutex_enter(&db->db_mtx); 337 if (db->db_state != DB_EVICTING) { 338 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 339 return (db); 340 } 341 mutex_exit(&db->db_mtx); 342 } 343 } 344 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 345 return (NULL); 346 } 347 348 static dmu_buf_impl_t * 349 dbuf_find_bonus(objset_t *os, uint64_t object) 350 { 351 dnode_t *dn; 352 dmu_buf_impl_t *db = NULL; 353 354 if (dnode_hold(os, object, FTAG, &dn) == 0) { 355 rw_enter(&dn->dn_struct_rwlock, RW_READER); 356 if (dn->dn_bonus != NULL) { 357 db = dn->dn_bonus; 358 mutex_enter(&db->db_mtx); 359 } 360 rw_exit(&dn->dn_struct_rwlock); 361 dnode_rele(dn, FTAG); 362 } 363 return (db); 364 } 365 366 /* 367 * Insert an entry into the hash table. If there is already an element 368 * equal to elem in the hash table, then the already existing element 369 * will be returned and the new element will not be inserted. 370 * Otherwise returns NULL. 371 */ 372 static dmu_buf_impl_t * 373 dbuf_hash_insert(dmu_buf_impl_t *db) 374 { 375 dbuf_hash_table_t *h = &dbuf_hash_table; 376 objset_t *os = db->db_objset; 377 uint64_t obj = db->db.db_object; 378 int level = db->db_level; 379 uint64_t blkid, hv, idx; 380 dmu_buf_impl_t *dbf; 381 uint32_t i; 382 383 blkid = db->db_blkid; 384 hv = dbuf_hash(os, obj, level, blkid); 385 idx = hv & h->hash_table_mask; 386 387 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 388 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 389 dbf = dbf->db_hash_next, i++) { 390 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 391 mutex_enter(&dbf->db_mtx); 392 if (dbf->db_state != DB_EVICTING) { 393 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 394 return (dbf); 395 } 396 mutex_exit(&dbf->db_mtx); 397 } 398 } 399 400 if (i > 0) { 401 DBUF_STAT_BUMP(hash_collisions); 402 if (i == 1) 403 DBUF_STAT_BUMP(hash_chains); 404 405 DBUF_STAT_MAX(hash_chain_max, i); 406 } 407 408 mutex_enter(&db->db_mtx); 409 db->db_hash_next = h->hash_table[idx]; 410 h->hash_table[idx] = db; 411 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 412 atomic_inc_64(&dbuf_hash_count); 413 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count); 414 415 return (NULL); 416 } 417 418 /* 419 * This returns whether this dbuf should be stored in the metadata cache, which 420 * is based on whether it's from one of the dnode types that store data related 421 * to traversing dataset hierarchies. 422 */ 423 static boolean_t 424 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 425 { 426 DB_DNODE_ENTER(db); 427 dmu_object_type_t type = DB_DNODE(db)->dn_type; 428 DB_DNODE_EXIT(db); 429 430 /* Check if this dbuf is one of the types we care about */ 431 if (DMU_OT_IS_METADATA_CACHED(type)) { 432 /* If we hit this, then we set something up wrong in dmu_ot */ 433 ASSERT(DMU_OT_IS_METADATA(type)); 434 435 /* 436 * Sanity check for small-memory systems: don't allocate too 437 * much memory for this purpose. 438 */ 439 if (zfs_refcount_count( 440 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 441 dbuf_metadata_cache_target_bytes()) { 442 DBUF_STAT_BUMP(metadata_cache_overflow); 443 return (B_FALSE); 444 } 445 446 return (B_TRUE); 447 } 448 449 return (B_FALSE); 450 } 451 452 /* 453 * Remove an entry from the hash table. It must be in the EVICTING state. 454 */ 455 static void 456 dbuf_hash_remove(dmu_buf_impl_t *db) 457 { 458 dbuf_hash_table_t *h = &dbuf_hash_table; 459 uint64_t hv, idx; 460 dmu_buf_impl_t *dbf, **dbp; 461 462 hv = dbuf_hash(db->db_objset, db->db.db_object, 463 db->db_level, db->db_blkid); 464 idx = hv & h->hash_table_mask; 465 466 /* 467 * We mustn't hold db_mtx to maintain lock ordering: 468 * DBUF_HASH_MUTEX > db_mtx. 469 */ 470 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 471 ASSERT(db->db_state == DB_EVICTING); 472 ASSERT(!MUTEX_HELD(&db->db_mtx)); 473 474 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 475 dbp = &h->hash_table[idx]; 476 while ((dbf = *dbp) != db) { 477 dbp = &dbf->db_hash_next; 478 ASSERT(dbf != NULL); 479 } 480 *dbp = db->db_hash_next; 481 db->db_hash_next = NULL; 482 if (h->hash_table[idx] && 483 h->hash_table[idx]->db_hash_next == NULL) 484 DBUF_STAT_BUMPDOWN(hash_chains); 485 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 486 atomic_dec_64(&dbuf_hash_count); 487 } 488 489 typedef enum { 490 DBVU_EVICTING, 491 DBVU_NOT_EVICTING 492 } dbvu_verify_type_t; 493 494 static void 495 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 496 { 497 #ifdef ZFS_DEBUG 498 int64_t holds; 499 500 if (db->db_user == NULL) 501 return; 502 503 /* Only data blocks support the attachment of user data. */ 504 ASSERT(db->db_level == 0); 505 506 /* Clients must resolve a dbuf before attaching user data. */ 507 ASSERT(db->db.db_data != NULL); 508 ASSERT3U(db->db_state, ==, DB_CACHED); 509 510 holds = zfs_refcount_count(&db->db_holds); 511 if (verify_type == DBVU_EVICTING) { 512 /* 513 * Immediate eviction occurs when holds == dirtycnt. 514 * For normal eviction buffers, holds is zero on 515 * eviction, except when dbuf_fix_old_data() calls 516 * dbuf_clear_data(). However, the hold count can grow 517 * during eviction even though db_mtx is held (see 518 * dmu_bonus_hold() for an example), so we can only 519 * test the generic invariant that holds >= dirtycnt. 520 */ 521 ASSERT3U(holds, >=, db->db_dirtycnt); 522 } else { 523 if (db->db_user_immediate_evict == TRUE) 524 ASSERT3U(holds, >=, db->db_dirtycnt); 525 else 526 ASSERT3U(holds, >, 0); 527 } 528 #endif 529 } 530 531 static void 532 dbuf_evict_user(dmu_buf_impl_t *db) 533 { 534 dmu_buf_user_t *dbu = db->db_user; 535 536 ASSERT(MUTEX_HELD(&db->db_mtx)); 537 538 if (dbu == NULL) 539 return; 540 541 dbuf_verify_user(db, DBVU_EVICTING); 542 db->db_user = NULL; 543 544 #ifdef ZFS_DEBUG 545 if (dbu->dbu_clear_on_evict_dbufp != NULL) 546 *dbu->dbu_clear_on_evict_dbufp = NULL; 547 #endif 548 549 /* 550 * There are two eviction callbacks - one that we call synchronously 551 * and one that we invoke via a taskq. The async one is useful for 552 * avoiding lock order reversals and limiting stack depth. 553 * 554 * Note that if we have a sync callback but no async callback, 555 * it's likely that the sync callback will free the structure 556 * containing the dbu. In that case we need to take care to not 557 * dereference dbu after calling the sync evict func. 558 */ 559 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 560 561 if (dbu->dbu_evict_func_sync != NULL) 562 dbu->dbu_evict_func_sync(dbu); 563 564 if (has_async) { 565 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 566 dbu, 0, &dbu->dbu_tqent); 567 } 568 } 569 570 boolean_t 571 dbuf_is_metadata(dmu_buf_impl_t *db) 572 { 573 /* 574 * Consider indirect blocks and spill blocks to be meta data. 575 */ 576 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 577 return (B_TRUE); 578 } else { 579 boolean_t is_metadata; 580 581 DB_DNODE_ENTER(db); 582 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 583 DB_DNODE_EXIT(db); 584 585 return (is_metadata); 586 } 587 } 588 589 590 /* 591 * This function *must* return indices evenly distributed between all 592 * sublists of the multilist. This is needed due to how the dbuf eviction 593 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 594 * distributed between all sublists and uses this assumption when 595 * deciding which sublist to evict from and how much to evict from it. 596 */ 597 static unsigned int 598 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 599 { 600 dmu_buf_impl_t *db = obj; 601 602 /* 603 * The assumption here, is the hash value for a given 604 * dmu_buf_impl_t will remain constant throughout it's lifetime 605 * (i.e. it's objset, object, level and blkid fields don't change). 606 * Thus, we don't need to store the dbuf's sublist index 607 * on insertion, as this index can be recalculated on removal. 608 * 609 * Also, the low order bits of the hash value are thought to be 610 * distributed evenly. Otherwise, in the case that the multilist 611 * has a power of two number of sublists, each sublists' usage 612 * would not be evenly distributed. 613 */ 614 return (dbuf_hash(db->db_objset, db->db.db_object, 615 db->db_level, db->db_blkid) % 616 multilist_get_num_sublists(ml)); 617 } 618 619 /* 620 * The target size of the dbuf cache can grow with the ARC target, 621 * unless limited by the tunable dbuf_cache_max_bytes. 622 */ 623 static inline unsigned long 624 dbuf_cache_target_bytes(void) 625 { 626 return (MIN(dbuf_cache_max_bytes, 627 arc_target_bytes() >> dbuf_cache_shift)); 628 } 629 630 /* 631 * The target size of the dbuf metadata cache can grow with the ARC target, 632 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 633 */ 634 static inline unsigned long 635 dbuf_metadata_cache_target_bytes(void) 636 { 637 return (MIN(dbuf_metadata_cache_max_bytes, 638 arc_target_bytes() >> dbuf_metadata_cache_shift)); 639 } 640 641 static inline uint64_t 642 dbuf_cache_hiwater_bytes(void) 643 { 644 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 645 return (dbuf_cache_target + 646 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 647 } 648 649 static inline uint64_t 650 dbuf_cache_lowater_bytes(void) 651 { 652 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 653 return (dbuf_cache_target - 654 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 655 } 656 657 static inline boolean_t 658 dbuf_cache_above_lowater(void) 659 { 660 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 661 dbuf_cache_lowater_bytes()); 662 } 663 664 /* 665 * Evict the oldest eligible dbuf from the dbuf cache. 666 */ 667 static void 668 dbuf_evict_one(void) 669 { 670 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 671 multilist_sublist_t *mls = multilist_sublist_lock( 672 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 673 674 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 675 676 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 677 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 678 db = multilist_sublist_prev(mls, db); 679 } 680 681 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 682 multilist_sublist_t *, mls); 683 684 if (db != NULL) { 685 multilist_sublist_remove(mls, db); 686 multilist_sublist_unlock(mls); 687 (void) zfs_refcount_remove_many( 688 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 689 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 690 DBUF_STAT_BUMPDOWN(cache_count); 691 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 692 db->db.db_size); 693 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 694 db->db_caching_status = DB_NO_CACHE; 695 dbuf_destroy(db); 696 DBUF_STAT_BUMP(cache_total_evicts); 697 } else { 698 multilist_sublist_unlock(mls); 699 } 700 } 701 702 /* 703 * The dbuf evict thread is responsible for aging out dbufs from the 704 * cache. Once the cache has reached it's maximum size, dbufs are removed 705 * and destroyed. The eviction thread will continue running until the size 706 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 707 * out of the cache it is destroyed and becomes eligible for arc eviction. 708 */ 709 /* ARGSUSED */ 710 static void 711 dbuf_evict_thread(void *unused) 712 { 713 callb_cpr_t cpr; 714 715 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 716 717 mutex_enter(&dbuf_evict_lock); 718 while (!dbuf_evict_thread_exit) { 719 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 720 CALLB_CPR_SAFE_BEGIN(&cpr); 721 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 722 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 723 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 724 } 725 mutex_exit(&dbuf_evict_lock); 726 727 /* 728 * Keep evicting as long as we're above the low water mark 729 * for the cache. We do this without holding the locks to 730 * minimize lock contention. 731 */ 732 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 733 dbuf_evict_one(); 734 } 735 736 mutex_enter(&dbuf_evict_lock); 737 } 738 739 dbuf_evict_thread_exit = B_FALSE; 740 cv_broadcast(&dbuf_evict_cv); 741 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 742 thread_exit(); 743 } 744 745 /* 746 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 747 * If the dbuf cache is at its high water mark, then evict a dbuf from the 748 * dbuf cache using the callers context. 749 */ 750 static void 751 dbuf_evict_notify(uint64_t size) 752 { 753 /* 754 * We check if we should evict without holding the dbuf_evict_lock, 755 * because it's OK to occasionally make the wrong decision here, 756 * and grabbing the lock results in massive lock contention. 757 */ 758 if (size > dbuf_cache_target_bytes()) { 759 if (size > dbuf_cache_hiwater_bytes()) 760 dbuf_evict_one(); 761 cv_signal(&dbuf_evict_cv); 762 } 763 } 764 765 static int 766 dbuf_kstat_update(kstat_t *ksp, int rw) 767 { 768 dbuf_stats_t *ds = ksp->ks_data; 769 770 if (rw == KSTAT_WRITE) { 771 return (SET_ERROR(EACCES)); 772 } else { 773 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 774 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 775 ds->cache_size_bytes.value.ui64 = 776 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 777 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 778 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 779 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 780 ds->hash_elements.value.ui64 = dbuf_hash_count; 781 } 782 783 return (0); 784 } 785 786 void 787 dbuf_init(void) 788 { 789 uint64_t hsize = 1ULL << 16; 790 dbuf_hash_table_t *h = &dbuf_hash_table; 791 int i; 792 793 /* 794 * The hash table is big enough to fill all of physical memory 795 * with an average block size of zfs_arc_average_blocksize (default 8K). 796 * By default, the table will take up 797 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 798 */ 799 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 800 hsize <<= 1; 801 802 retry: 803 h->hash_table_mask = hsize - 1; 804 #if defined(_KERNEL) 805 /* 806 * Large allocations which do not require contiguous pages 807 * should be using vmem_alloc() in the linux kernel 808 */ 809 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 810 #else 811 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP); 812 #endif 813 if (h->hash_table == NULL) { 814 /* XXX - we should really return an error instead of assert */ 815 ASSERT(hsize > (1ULL << 10)); 816 hsize >>= 1; 817 goto retry; 818 } 819 820 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 821 sizeof (dmu_buf_impl_t), 822 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 823 824 for (i = 0; i < DBUF_MUTEXES; i++) 825 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 826 827 dbuf_stats_init(h); 828 829 /* 830 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 831 * configuration is not required. 832 */ 833 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 834 835 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 836 multilist_create(&dbuf_caches[dcs].cache, 837 sizeof (dmu_buf_impl_t), 838 offsetof(dmu_buf_impl_t, db_cache_link), 839 dbuf_cache_multilist_index_func); 840 zfs_refcount_create(&dbuf_caches[dcs].size); 841 } 842 843 dbuf_evict_thread_exit = B_FALSE; 844 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 845 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 846 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 847 NULL, 0, &p0, TS_RUN, minclsyspri); 848 849 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 850 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 851 KSTAT_FLAG_VIRTUAL); 852 if (dbuf_ksp != NULL) { 853 for (i = 0; i < DN_MAX_LEVELS; i++) { 854 snprintf(dbuf_stats.cache_levels[i].name, 855 KSTAT_STRLEN, "cache_level_%d", i); 856 dbuf_stats.cache_levels[i].data_type = 857 KSTAT_DATA_UINT64; 858 snprintf(dbuf_stats.cache_levels_bytes[i].name, 859 KSTAT_STRLEN, "cache_level_%d_bytes", i); 860 dbuf_stats.cache_levels_bytes[i].data_type = 861 KSTAT_DATA_UINT64; 862 } 863 dbuf_ksp->ks_data = &dbuf_stats; 864 dbuf_ksp->ks_update = dbuf_kstat_update; 865 kstat_install(dbuf_ksp); 866 } 867 } 868 869 void 870 dbuf_fini(void) 871 { 872 dbuf_hash_table_t *h = &dbuf_hash_table; 873 int i; 874 875 dbuf_stats_destroy(); 876 877 for (i = 0; i < DBUF_MUTEXES; i++) 878 mutex_destroy(&h->hash_mutexes[i]); 879 #if defined(_KERNEL) 880 /* 881 * Large allocations which do not require contiguous pages 882 * should be using vmem_free() in the linux kernel 883 */ 884 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 885 #else 886 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 887 #endif 888 kmem_cache_destroy(dbuf_kmem_cache); 889 taskq_destroy(dbu_evict_taskq); 890 891 mutex_enter(&dbuf_evict_lock); 892 dbuf_evict_thread_exit = B_TRUE; 893 while (dbuf_evict_thread_exit) { 894 cv_signal(&dbuf_evict_cv); 895 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 896 } 897 mutex_exit(&dbuf_evict_lock); 898 899 mutex_destroy(&dbuf_evict_lock); 900 cv_destroy(&dbuf_evict_cv); 901 902 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 903 zfs_refcount_destroy(&dbuf_caches[dcs].size); 904 multilist_destroy(&dbuf_caches[dcs].cache); 905 } 906 907 if (dbuf_ksp != NULL) { 908 kstat_delete(dbuf_ksp); 909 dbuf_ksp = NULL; 910 } 911 } 912 913 /* 914 * Other stuff. 915 */ 916 917 #ifdef ZFS_DEBUG 918 static void 919 dbuf_verify(dmu_buf_impl_t *db) 920 { 921 dnode_t *dn; 922 dbuf_dirty_record_t *dr; 923 uint32_t txg_prev; 924 925 ASSERT(MUTEX_HELD(&db->db_mtx)); 926 927 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 928 return; 929 930 ASSERT(db->db_objset != NULL); 931 DB_DNODE_ENTER(db); 932 dn = DB_DNODE(db); 933 if (dn == NULL) { 934 ASSERT(db->db_parent == NULL); 935 ASSERT(db->db_blkptr == NULL); 936 } else { 937 ASSERT3U(db->db.db_object, ==, dn->dn_object); 938 ASSERT3P(db->db_objset, ==, dn->dn_objset); 939 ASSERT3U(db->db_level, <, dn->dn_nlevels); 940 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 941 db->db_blkid == DMU_SPILL_BLKID || 942 !avl_is_empty(&dn->dn_dbufs)); 943 } 944 if (db->db_blkid == DMU_BONUS_BLKID) { 945 ASSERT(dn != NULL); 946 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 947 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 948 } else if (db->db_blkid == DMU_SPILL_BLKID) { 949 ASSERT(dn != NULL); 950 ASSERT0(db->db.db_offset); 951 } else { 952 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 953 } 954 955 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 956 ASSERT(dr->dr_dbuf == db); 957 txg_prev = dr->dr_txg; 958 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 959 dr = list_next(&db->db_dirty_records, dr)) { 960 ASSERT(dr->dr_dbuf == db); 961 ASSERT(txg_prev > dr->dr_txg); 962 txg_prev = dr->dr_txg; 963 } 964 } 965 966 /* 967 * We can't assert that db_size matches dn_datablksz because it 968 * can be momentarily different when another thread is doing 969 * dnode_set_blksz(). 970 */ 971 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 972 dr = db->db_data_pending; 973 /* 974 * It should only be modified in syncing context, so 975 * make sure we only have one copy of the data. 976 */ 977 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 978 } 979 980 /* verify db->db_blkptr */ 981 if (db->db_blkptr) { 982 if (db->db_parent == dn->dn_dbuf) { 983 /* db is pointed to by the dnode */ 984 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 985 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 986 ASSERT(db->db_parent == NULL); 987 else 988 ASSERT(db->db_parent != NULL); 989 if (db->db_blkid != DMU_SPILL_BLKID) 990 ASSERT3P(db->db_blkptr, ==, 991 &dn->dn_phys->dn_blkptr[db->db_blkid]); 992 } else { 993 /* db is pointed to by an indirect block */ 994 int epb __maybe_unused = db->db_parent->db.db_size >> 995 SPA_BLKPTRSHIFT; 996 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 997 ASSERT3U(db->db_parent->db.db_object, ==, 998 db->db.db_object); 999 /* 1000 * dnode_grow_indblksz() can make this fail if we don't 1001 * have the parent's rwlock. XXX indblksz no longer 1002 * grows. safe to do this now? 1003 */ 1004 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1005 ASSERT3P(db->db_blkptr, ==, 1006 ((blkptr_t *)db->db_parent->db.db_data + 1007 db->db_blkid % epb)); 1008 } 1009 } 1010 } 1011 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1012 (db->db_buf == NULL || db->db_buf->b_data) && 1013 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1014 db->db_state != DB_FILL && !dn->dn_free_txg) { 1015 /* 1016 * If the blkptr isn't set but they have nonzero data, 1017 * it had better be dirty, otherwise we'll lose that 1018 * data when we evict this buffer. 1019 * 1020 * There is an exception to this rule for indirect blocks; in 1021 * this case, if the indirect block is a hole, we fill in a few 1022 * fields on each of the child blocks (importantly, birth time) 1023 * to prevent hole birth times from being lost when you 1024 * partially fill in a hole. 1025 */ 1026 if (db->db_dirtycnt == 0) { 1027 if (db->db_level == 0) { 1028 uint64_t *buf = db->db.db_data; 1029 int i; 1030 1031 for (i = 0; i < db->db.db_size >> 3; i++) { 1032 ASSERT(buf[i] == 0); 1033 } 1034 } else { 1035 blkptr_t *bps = db->db.db_data; 1036 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1037 db->db.db_size); 1038 /* 1039 * We want to verify that all the blkptrs in the 1040 * indirect block are holes, but we may have 1041 * automatically set up a few fields for them. 1042 * We iterate through each blkptr and verify 1043 * they only have those fields set. 1044 */ 1045 for (int i = 0; 1046 i < db->db.db_size / sizeof (blkptr_t); 1047 i++) { 1048 blkptr_t *bp = &bps[i]; 1049 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1050 &bp->blk_cksum)); 1051 ASSERT( 1052 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1053 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1054 DVA_IS_EMPTY(&bp->blk_dva[2])); 1055 ASSERT0(bp->blk_fill); 1056 ASSERT0(bp->blk_pad[0]); 1057 ASSERT0(bp->blk_pad[1]); 1058 ASSERT(!BP_IS_EMBEDDED(bp)); 1059 ASSERT(BP_IS_HOLE(bp)); 1060 ASSERT0(bp->blk_phys_birth); 1061 } 1062 } 1063 } 1064 } 1065 DB_DNODE_EXIT(db); 1066 } 1067 #endif 1068 1069 static void 1070 dbuf_clear_data(dmu_buf_impl_t *db) 1071 { 1072 ASSERT(MUTEX_HELD(&db->db_mtx)); 1073 dbuf_evict_user(db); 1074 ASSERT3P(db->db_buf, ==, NULL); 1075 db->db.db_data = NULL; 1076 if (db->db_state != DB_NOFILL) { 1077 db->db_state = DB_UNCACHED; 1078 DTRACE_SET_STATE(db, "clear data"); 1079 } 1080 } 1081 1082 static void 1083 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1084 { 1085 ASSERT(MUTEX_HELD(&db->db_mtx)); 1086 ASSERT(buf != NULL); 1087 1088 db->db_buf = buf; 1089 ASSERT(buf->b_data != NULL); 1090 db->db.db_data = buf->b_data; 1091 } 1092 1093 static arc_buf_t * 1094 dbuf_alloc_arcbuf_from_arcbuf(dmu_buf_impl_t *db, arc_buf_t *data) 1095 { 1096 objset_t *os = db->db_objset; 1097 spa_t *spa = os->os_spa; 1098 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1099 enum zio_compress compress_type; 1100 uint8_t complevel; 1101 int psize, lsize; 1102 1103 psize = arc_buf_size(data); 1104 lsize = arc_buf_lsize(data); 1105 compress_type = arc_get_compression(data); 1106 complevel = arc_get_complevel(data); 1107 1108 if (arc_is_encrypted(data)) { 1109 boolean_t byteorder; 1110 uint8_t salt[ZIO_DATA_SALT_LEN]; 1111 uint8_t iv[ZIO_DATA_IV_LEN]; 1112 uint8_t mac[ZIO_DATA_MAC_LEN]; 1113 dnode_t *dn = DB_DNODE(db); 1114 1115 arc_get_raw_params(data, &byteorder, salt, iv, mac); 1116 data = arc_alloc_raw_buf(spa, db, dmu_objset_id(os), 1117 byteorder, salt, iv, mac, dn->dn_type, psize, lsize, 1118 compress_type, complevel); 1119 } else if (compress_type != ZIO_COMPRESS_OFF) { 1120 ASSERT3U(type, ==, ARC_BUFC_DATA); 1121 data = arc_alloc_compressed_buf(spa, db, 1122 psize, lsize, compress_type, complevel); 1123 } else { 1124 data = arc_alloc_buf(spa, db, type, psize); 1125 } 1126 return (data); 1127 } 1128 1129 static arc_buf_t * 1130 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1131 { 1132 spa_t *spa = db->db_objset->os_spa; 1133 1134 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1135 } 1136 1137 /* 1138 * Loan out an arc_buf for read. Return the loaned arc_buf. 1139 */ 1140 arc_buf_t * 1141 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1142 { 1143 arc_buf_t *abuf; 1144 1145 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1146 mutex_enter(&db->db_mtx); 1147 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1148 int blksz = db->db.db_size; 1149 spa_t *spa = db->db_objset->os_spa; 1150 1151 mutex_exit(&db->db_mtx); 1152 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1153 bcopy(db->db.db_data, abuf->b_data, blksz); 1154 } else { 1155 abuf = db->db_buf; 1156 arc_loan_inuse_buf(abuf, db); 1157 db->db_buf = NULL; 1158 dbuf_clear_data(db); 1159 mutex_exit(&db->db_mtx); 1160 } 1161 return (abuf); 1162 } 1163 1164 /* 1165 * Calculate which level n block references the data at the level 0 offset 1166 * provided. 1167 */ 1168 uint64_t 1169 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1170 { 1171 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1172 /* 1173 * The level n blkid is equal to the level 0 blkid divided by 1174 * the number of level 0s in a level n block. 1175 * 1176 * The level 0 blkid is offset >> datablkshift = 1177 * offset / 2^datablkshift. 1178 * 1179 * The number of level 0s in a level n is the number of block 1180 * pointers in an indirect block, raised to the power of level. 1181 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1182 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1183 * 1184 * Thus, the level n blkid is: offset / 1185 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1186 * = offset / 2^(datablkshift + level * 1187 * (indblkshift - SPA_BLKPTRSHIFT)) 1188 * = offset >> (datablkshift + level * 1189 * (indblkshift - SPA_BLKPTRSHIFT)) 1190 */ 1191 1192 const unsigned exp = dn->dn_datablkshift + 1193 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1194 1195 if (exp >= 8 * sizeof (offset)) { 1196 /* This only happens on the highest indirection level */ 1197 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1198 return (0); 1199 } 1200 1201 ASSERT3U(exp, <, 8 * sizeof (offset)); 1202 1203 return (offset >> exp); 1204 } else { 1205 ASSERT3U(offset, <, dn->dn_datablksz); 1206 return (0); 1207 } 1208 } 1209 1210 /* 1211 * This function is used to lock the parent of the provided dbuf. This should be 1212 * used when modifying or reading db_blkptr. 1213 */ 1214 db_lock_type_t 1215 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag) 1216 { 1217 enum db_lock_type ret = DLT_NONE; 1218 if (db->db_parent != NULL) { 1219 rw_enter(&db->db_parent->db_rwlock, rw); 1220 ret = DLT_PARENT; 1221 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1222 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1223 tag); 1224 ret = DLT_OBJSET; 1225 } 1226 /* 1227 * We only return a DLT_NONE lock when it's the top-most indirect block 1228 * of the meta-dnode of the MOS. 1229 */ 1230 return (ret); 1231 } 1232 1233 /* 1234 * We need to pass the lock type in because it's possible that the block will 1235 * move from being the topmost indirect block in a dnode (and thus, have no 1236 * parent) to not the top-most via an indirection increase. This would cause a 1237 * panic if we didn't pass the lock type in. 1238 */ 1239 void 1240 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag) 1241 { 1242 if (type == DLT_PARENT) 1243 rw_exit(&db->db_parent->db_rwlock); 1244 else if (type == DLT_OBJSET) 1245 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1246 } 1247 1248 static void 1249 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1250 arc_buf_t *buf, void *vdb) 1251 { 1252 dmu_buf_impl_t *db = vdb; 1253 1254 mutex_enter(&db->db_mtx); 1255 ASSERT3U(db->db_state, ==, DB_READ); 1256 /* 1257 * All reads are synchronous, so we must have a hold on the dbuf 1258 */ 1259 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1260 ASSERT(db->db_buf == NULL); 1261 ASSERT(db->db.db_data == NULL); 1262 if (buf == NULL) { 1263 /* i/o error */ 1264 ASSERT(zio == NULL || zio->io_error != 0); 1265 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1266 ASSERT3P(db->db_buf, ==, NULL); 1267 db->db_state = DB_UNCACHED; 1268 DTRACE_SET_STATE(db, "i/o error"); 1269 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1270 /* freed in flight */ 1271 ASSERT(zio == NULL || zio->io_error == 0); 1272 arc_release(buf, db); 1273 bzero(buf->b_data, db->db.db_size); 1274 arc_buf_freeze(buf); 1275 db->db_freed_in_flight = FALSE; 1276 dbuf_set_data(db, buf); 1277 db->db_state = DB_CACHED; 1278 DTRACE_SET_STATE(db, "freed in flight"); 1279 } else { 1280 /* success */ 1281 ASSERT(zio == NULL || zio->io_error == 0); 1282 dbuf_set_data(db, buf); 1283 db->db_state = DB_CACHED; 1284 DTRACE_SET_STATE(db, "successful read"); 1285 } 1286 cv_broadcast(&db->db_changed); 1287 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1288 } 1289 1290 /* 1291 * Shortcut for performing reads on bonus dbufs. Returns 1292 * an error if we fail to verify the dnode associated with 1293 * a decrypted block. Otherwise success. 1294 */ 1295 static int 1296 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1297 { 1298 int bonuslen, max_bonuslen, err; 1299 1300 err = dbuf_read_verify_dnode_crypt(db, flags); 1301 if (err) 1302 return (err); 1303 1304 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1305 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1306 ASSERT(MUTEX_HELD(&db->db_mtx)); 1307 ASSERT(DB_DNODE_HELD(db)); 1308 ASSERT3U(bonuslen, <=, db->db.db_size); 1309 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1310 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1311 if (bonuslen < max_bonuslen) 1312 bzero(db->db.db_data, max_bonuslen); 1313 if (bonuslen) 1314 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen); 1315 db->db_state = DB_CACHED; 1316 DTRACE_SET_STATE(db, "bonus buffer filled"); 1317 return (0); 1318 } 1319 1320 static void 1321 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1322 { 1323 blkptr_t *bps = db->db.db_data; 1324 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1325 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1326 1327 for (int i = 0; i < n_bps; i++) { 1328 blkptr_t *bp = &bps[i]; 1329 1330 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1331 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1332 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1333 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1334 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1335 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1336 } 1337 } 1338 1339 /* 1340 * Handle reads on dbufs that are holes, if necessary. This function 1341 * requires that the dbuf's mutex is held. Returns success (0) if action 1342 * was taken, ENOENT if no action was taken. 1343 */ 1344 static int 1345 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1346 { 1347 ASSERT(MUTEX_HELD(&db->db_mtx)); 1348 1349 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1350 /* 1351 * For level 0 blocks only, if the above check fails: 1352 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1353 * processes the delete record and clears the bp while we are waiting 1354 * for the dn_mtx (resulting in a "no" from block_freed). 1355 */ 1356 if (!is_hole && db->db_level == 0) { 1357 is_hole = dnode_block_freed(dn, db->db_blkid) || 1358 BP_IS_HOLE(db->db_blkptr); 1359 } 1360 1361 if (is_hole) { 1362 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1363 bzero(db->db.db_data, db->db.db_size); 1364 1365 if (db->db_blkptr != NULL && db->db_level > 0 && 1366 BP_IS_HOLE(db->db_blkptr) && 1367 db->db_blkptr->blk_birth != 0) { 1368 dbuf_handle_indirect_hole(db, dn); 1369 } 1370 db->db_state = DB_CACHED; 1371 DTRACE_SET_STATE(db, "hole read satisfied"); 1372 return (0); 1373 } 1374 return (ENOENT); 1375 } 1376 1377 /* 1378 * This function ensures that, when doing a decrypting read of a block, 1379 * we make sure we have decrypted the dnode associated with it. We must do 1380 * this so that we ensure we are fully authenticating the checksum-of-MACs 1381 * tree from the root of the objset down to this block. Indirect blocks are 1382 * always verified against their secure checksum-of-MACs assuming that the 1383 * dnode containing them is correct. Now that we are doing a decrypting read, 1384 * we can be sure that the key is loaded and verify that assumption. This is 1385 * especially important considering that we always read encrypted dnode 1386 * blocks as raw data (without verifying their MACs) to start, and 1387 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1388 */ 1389 static int 1390 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1391 { 1392 int err = 0; 1393 objset_t *os = db->db_objset; 1394 arc_buf_t *dnode_abuf; 1395 dnode_t *dn; 1396 zbookmark_phys_t zb; 1397 1398 ASSERT(MUTEX_HELD(&db->db_mtx)); 1399 1400 if (!os->os_encrypted || os->os_raw_receive || 1401 (flags & DB_RF_NO_DECRYPT) != 0) 1402 return (0); 1403 1404 DB_DNODE_ENTER(db); 1405 dn = DB_DNODE(db); 1406 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1407 1408 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1409 DB_DNODE_EXIT(db); 1410 return (0); 1411 } 1412 1413 SET_BOOKMARK(&zb, dmu_objset_id(os), 1414 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1415 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1416 1417 /* 1418 * An error code of EACCES tells us that the key is still not 1419 * available. This is ok if we are only reading authenticated 1420 * (and therefore non-encrypted) blocks. 1421 */ 1422 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1423 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1424 (db->db_blkid == DMU_BONUS_BLKID && 1425 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1426 err = 0; 1427 1428 DB_DNODE_EXIT(db); 1429 1430 return (err); 1431 } 1432 1433 /* 1434 * Drops db_mtx and the parent lock specified by dblt and tag before 1435 * returning. 1436 */ 1437 static int 1438 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1439 db_lock_type_t dblt, void *tag) 1440 { 1441 dnode_t *dn; 1442 zbookmark_phys_t zb; 1443 uint32_t aflags = ARC_FLAG_NOWAIT; 1444 int err, zio_flags; 1445 1446 err = zio_flags = 0; 1447 DB_DNODE_ENTER(db); 1448 dn = DB_DNODE(db); 1449 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1450 ASSERT(MUTEX_HELD(&db->db_mtx)); 1451 ASSERT(db->db_state == DB_UNCACHED); 1452 ASSERT(db->db_buf == NULL); 1453 ASSERT(db->db_parent == NULL || 1454 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1455 1456 if (db->db_blkid == DMU_BONUS_BLKID) { 1457 err = dbuf_read_bonus(db, dn, flags); 1458 goto early_unlock; 1459 } 1460 1461 err = dbuf_read_hole(db, dn, flags); 1462 if (err == 0) 1463 goto early_unlock; 1464 1465 /* 1466 * Any attempt to read a redacted block should result in an error. This 1467 * will never happen under normal conditions, but can be useful for 1468 * debugging purposes. 1469 */ 1470 if (BP_IS_REDACTED(db->db_blkptr)) { 1471 ASSERT(dsl_dataset_feature_is_active( 1472 db->db_objset->os_dsl_dataset, 1473 SPA_FEATURE_REDACTED_DATASETS)); 1474 err = SET_ERROR(EIO); 1475 goto early_unlock; 1476 } 1477 1478 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1479 db->db.db_object, db->db_level, db->db_blkid); 1480 1481 /* 1482 * All bps of an encrypted os should have the encryption bit set. 1483 * If this is not true it indicates tampering and we report an error. 1484 */ 1485 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1486 spa_log_error(db->db_objset->os_spa, &zb); 1487 zfs_panic_recover("unencrypted block in encrypted " 1488 "object set %llu", dmu_objset_id(db->db_objset)); 1489 err = SET_ERROR(EIO); 1490 goto early_unlock; 1491 } 1492 1493 err = dbuf_read_verify_dnode_crypt(db, flags); 1494 if (err != 0) 1495 goto early_unlock; 1496 1497 DB_DNODE_EXIT(db); 1498 1499 db->db_state = DB_READ; 1500 DTRACE_SET_STATE(db, "read issued"); 1501 mutex_exit(&db->db_mtx); 1502 1503 if (DBUF_IS_L2CACHEABLE(db)) 1504 aflags |= ARC_FLAG_L2CACHE; 1505 1506 dbuf_add_ref(db, NULL); 1507 1508 zio_flags = (flags & DB_RF_CANFAIL) ? 1509 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1510 1511 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1512 zio_flags |= ZIO_FLAG_RAW; 1513 /* 1514 * The zio layer will copy the provided blkptr later, but we need to 1515 * do this now so that we can release the parent's rwlock. We have to 1516 * do that now so that if dbuf_read_done is called synchronously (on 1517 * an l1 cache hit) we don't acquire the db_mtx while holding the 1518 * parent's rwlock, which would be a lock ordering violation. 1519 */ 1520 blkptr_t bp = *db->db_blkptr; 1521 dmu_buf_unlock_parent(db, dblt, tag); 1522 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1523 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1524 &aflags, &zb); 1525 return (err); 1526 early_unlock: 1527 DB_DNODE_EXIT(db); 1528 mutex_exit(&db->db_mtx); 1529 dmu_buf_unlock_parent(db, dblt, tag); 1530 return (err); 1531 } 1532 1533 /* 1534 * This is our just-in-time copy function. It makes a copy of buffers that 1535 * have been modified in a previous transaction group before we access them in 1536 * the current active group. 1537 * 1538 * This function is used in three places: when we are dirtying a buffer for the 1539 * first time in a txg, when we are freeing a range in a dnode that includes 1540 * this buffer, and when we are accessing a buffer which was received compressed 1541 * and later referenced in a WRITE_BYREF record. 1542 * 1543 * Note that when we are called from dbuf_free_range() we do not put a hold on 1544 * the buffer, we just traverse the active dbuf list for the dnode. 1545 */ 1546 static void 1547 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1548 { 1549 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1550 1551 ASSERT(MUTEX_HELD(&db->db_mtx)); 1552 ASSERT(db->db.db_data != NULL); 1553 ASSERT(db->db_level == 0); 1554 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1555 1556 if (dr == NULL || 1557 (dr->dt.dl.dr_data != 1558 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1559 return; 1560 1561 /* 1562 * If the last dirty record for this dbuf has not yet synced 1563 * and its referencing the dbuf data, either: 1564 * reset the reference to point to a new copy, 1565 * or (if there a no active holders) 1566 * just null out the current db_data pointer. 1567 */ 1568 ASSERT3U(dr->dr_txg, >=, txg - 2); 1569 if (db->db_blkid == DMU_BONUS_BLKID) { 1570 dnode_t *dn = DB_DNODE(db); 1571 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1572 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1573 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1574 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen); 1575 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1576 arc_buf_t *buf = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf); 1577 dr->dt.dl.dr_data = buf; 1578 bcopy(db->db.db_data, buf->b_data, arc_buf_size(buf)); 1579 } else { 1580 db->db_buf = NULL; 1581 dbuf_clear_data(db); 1582 } 1583 } 1584 1585 int 1586 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1587 { 1588 int err = 0; 1589 boolean_t prefetch; 1590 dnode_t *dn; 1591 1592 /* 1593 * We don't have to hold the mutex to check db_state because it 1594 * can't be freed while we have a hold on the buffer. 1595 */ 1596 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1597 1598 if (db->db_state == DB_NOFILL) 1599 return (SET_ERROR(EIO)); 1600 1601 DB_DNODE_ENTER(db); 1602 dn = DB_DNODE(db); 1603 1604 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1605 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1606 DBUF_IS_CACHEABLE(db); 1607 1608 mutex_enter(&db->db_mtx); 1609 if (db->db_state == DB_CACHED) { 1610 spa_t *spa = dn->dn_objset->os_spa; 1611 1612 /* 1613 * Ensure that this block's dnode has been decrypted if 1614 * the caller has requested decrypted data. 1615 */ 1616 err = dbuf_read_verify_dnode_crypt(db, flags); 1617 1618 /* 1619 * If the arc buf is compressed or encrypted and the caller 1620 * requested uncompressed data, we need to untransform it 1621 * before returning. We also call arc_untransform() on any 1622 * unauthenticated blocks, which will verify their MAC if 1623 * the key is now available. 1624 */ 1625 if (err == 0 && db->db_buf != NULL && 1626 (flags & DB_RF_NO_DECRYPT) == 0 && 1627 (arc_is_encrypted(db->db_buf) || 1628 arc_is_unauthenticated(db->db_buf) || 1629 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1630 zbookmark_phys_t zb; 1631 1632 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1633 db->db.db_object, db->db_level, db->db_blkid); 1634 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1635 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1636 dbuf_set_data(db, db->db_buf); 1637 } 1638 mutex_exit(&db->db_mtx); 1639 if (err == 0 && prefetch) { 1640 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1641 B_FALSE, flags & DB_RF_HAVESTRUCT); 1642 } 1643 DB_DNODE_EXIT(db); 1644 DBUF_STAT_BUMP(hash_hits); 1645 } else if (db->db_state == DB_UNCACHED) { 1646 spa_t *spa = dn->dn_objset->os_spa; 1647 boolean_t need_wait = B_FALSE; 1648 1649 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1650 1651 if (zio == NULL && 1652 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1653 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1654 need_wait = B_TRUE; 1655 } 1656 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1657 /* 1658 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1659 * for us 1660 */ 1661 if (!err && prefetch) { 1662 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1663 db->db_state != DB_CACHED, 1664 flags & DB_RF_HAVESTRUCT); 1665 } 1666 1667 DB_DNODE_EXIT(db); 1668 DBUF_STAT_BUMP(hash_misses); 1669 1670 /* 1671 * If we created a zio_root we must execute it to avoid 1672 * leaking it, even if it isn't attached to any work due 1673 * to an error in dbuf_read_impl(). 1674 */ 1675 if (need_wait) { 1676 if (err == 0) 1677 err = zio_wait(zio); 1678 else 1679 VERIFY0(zio_wait(zio)); 1680 } 1681 } else { 1682 /* 1683 * Another reader came in while the dbuf was in flight 1684 * between UNCACHED and CACHED. Either a writer will finish 1685 * writing the buffer (sending the dbuf to CACHED) or the 1686 * first reader's request will reach the read_done callback 1687 * and send the dbuf to CACHED. Otherwise, a failure 1688 * occurred and the dbuf went to UNCACHED. 1689 */ 1690 mutex_exit(&db->db_mtx); 1691 if (prefetch) { 1692 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1693 B_TRUE, flags & DB_RF_HAVESTRUCT); 1694 } 1695 DB_DNODE_EXIT(db); 1696 DBUF_STAT_BUMP(hash_misses); 1697 1698 /* Skip the wait per the caller's request. */ 1699 if ((flags & DB_RF_NEVERWAIT) == 0) { 1700 mutex_enter(&db->db_mtx); 1701 while (db->db_state == DB_READ || 1702 db->db_state == DB_FILL) { 1703 ASSERT(db->db_state == DB_READ || 1704 (flags & DB_RF_HAVESTRUCT) == 0); 1705 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1706 db, zio_t *, zio); 1707 cv_wait(&db->db_changed, &db->db_mtx); 1708 } 1709 if (db->db_state == DB_UNCACHED) 1710 err = SET_ERROR(EIO); 1711 mutex_exit(&db->db_mtx); 1712 } 1713 } 1714 1715 return (err); 1716 } 1717 1718 static void 1719 dbuf_noread(dmu_buf_impl_t *db) 1720 { 1721 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1722 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1723 mutex_enter(&db->db_mtx); 1724 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1725 cv_wait(&db->db_changed, &db->db_mtx); 1726 if (db->db_state == DB_UNCACHED) { 1727 ASSERT(db->db_buf == NULL); 1728 ASSERT(db->db.db_data == NULL); 1729 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1730 db->db_state = DB_FILL; 1731 DTRACE_SET_STATE(db, "assigning filled buffer"); 1732 } else if (db->db_state == DB_NOFILL) { 1733 dbuf_clear_data(db); 1734 } else { 1735 ASSERT3U(db->db_state, ==, DB_CACHED); 1736 } 1737 mutex_exit(&db->db_mtx); 1738 } 1739 1740 void 1741 dbuf_unoverride(dbuf_dirty_record_t *dr) 1742 { 1743 dmu_buf_impl_t *db = dr->dr_dbuf; 1744 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1745 uint64_t txg = dr->dr_txg; 1746 1747 ASSERT(MUTEX_HELD(&db->db_mtx)); 1748 /* 1749 * This assert is valid because dmu_sync() expects to be called by 1750 * a zilog's get_data while holding a range lock. This call only 1751 * comes from dbuf_dirty() callers who must also hold a range lock. 1752 */ 1753 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1754 ASSERT(db->db_level == 0); 1755 1756 if (db->db_blkid == DMU_BONUS_BLKID || 1757 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1758 return; 1759 1760 ASSERT(db->db_data_pending != dr); 1761 1762 /* free this block */ 1763 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1764 zio_free(db->db_objset->os_spa, txg, bp); 1765 1766 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1767 dr->dt.dl.dr_nopwrite = B_FALSE; 1768 dr->dt.dl.dr_has_raw_params = B_FALSE; 1769 1770 /* 1771 * Release the already-written buffer, so we leave it in 1772 * a consistent dirty state. Note that all callers are 1773 * modifying the buffer, so they will immediately do 1774 * another (redundant) arc_release(). Therefore, leave 1775 * the buf thawed to save the effort of freezing & 1776 * immediately re-thawing it. 1777 */ 1778 arc_release(dr->dt.dl.dr_data, db); 1779 } 1780 1781 /* 1782 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1783 * data blocks in the free range, so that any future readers will find 1784 * empty blocks. 1785 */ 1786 void 1787 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1788 dmu_tx_t *tx) 1789 { 1790 dmu_buf_impl_t *db_search; 1791 dmu_buf_impl_t *db, *db_next; 1792 uint64_t txg = tx->tx_txg; 1793 avl_index_t where; 1794 dbuf_dirty_record_t *dr; 1795 1796 if (end_blkid > dn->dn_maxblkid && 1797 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1798 end_blkid = dn->dn_maxblkid; 1799 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid); 1800 1801 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1802 db_search->db_level = 0; 1803 db_search->db_blkid = start_blkid; 1804 db_search->db_state = DB_SEARCH; 1805 1806 mutex_enter(&dn->dn_dbufs_mtx); 1807 db = avl_find(&dn->dn_dbufs, db_search, &where); 1808 ASSERT3P(db, ==, NULL); 1809 1810 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1811 1812 for (; db != NULL; db = db_next) { 1813 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1814 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1815 1816 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1817 break; 1818 } 1819 ASSERT3U(db->db_blkid, >=, start_blkid); 1820 1821 /* found a level 0 buffer in the range */ 1822 mutex_enter(&db->db_mtx); 1823 if (dbuf_undirty(db, tx)) { 1824 /* mutex has been dropped and dbuf destroyed */ 1825 continue; 1826 } 1827 1828 if (db->db_state == DB_UNCACHED || 1829 db->db_state == DB_NOFILL || 1830 db->db_state == DB_EVICTING) { 1831 ASSERT(db->db.db_data == NULL); 1832 mutex_exit(&db->db_mtx); 1833 continue; 1834 } 1835 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1836 /* will be handled in dbuf_read_done or dbuf_rele */ 1837 db->db_freed_in_flight = TRUE; 1838 mutex_exit(&db->db_mtx); 1839 continue; 1840 } 1841 if (zfs_refcount_count(&db->db_holds) == 0) { 1842 ASSERT(db->db_buf); 1843 dbuf_destroy(db); 1844 continue; 1845 } 1846 /* The dbuf is referenced */ 1847 1848 dr = list_head(&db->db_dirty_records); 1849 if (dr != NULL) { 1850 if (dr->dr_txg == txg) { 1851 /* 1852 * This buffer is "in-use", re-adjust the file 1853 * size to reflect that this buffer may 1854 * contain new data when we sync. 1855 */ 1856 if (db->db_blkid != DMU_SPILL_BLKID && 1857 db->db_blkid > dn->dn_maxblkid) 1858 dn->dn_maxblkid = db->db_blkid; 1859 dbuf_unoverride(dr); 1860 } else { 1861 /* 1862 * This dbuf is not dirty in the open context. 1863 * Either uncache it (if its not referenced in 1864 * the open context) or reset its contents to 1865 * empty. 1866 */ 1867 dbuf_fix_old_data(db, txg); 1868 } 1869 } 1870 /* clear the contents if its cached */ 1871 if (db->db_state == DB_CACHED) { 1872 ASSERT(db->db.db_data != NULL); 1873 arc_release(db->db_buf, db); 1874 rw_enter(&db->db_rwlock, RW_WRITER); 1875 bzero(db->db.db_data, db->db.db_size); 1876 rw_exit(&db->db_rwlock); 1877 arc_buf_freeze(db->db_buf); 1878 } 1879 1880 mutex_exit(&db->db_mtx); 1881 } 1882 1883 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 1884 mutex_exit(&dn->dn_dbufs_mtx); 1885 } 1886 1887 void 1888 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 1889 { 1890 arc_buf_t *buf, *old_buf; 1891 dbuf_dirty_record_t *dr; 1892 int osize = db->db.db_size; 1893 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1894 dnode_t *dn; 1895 1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1897 1898 DB_DNODE_ENTER(db); 1899 dn = DB_DNODE(db); 1900 1901 /* 1902 * XXX we should be doing a dbuf_read, checking the return 1903 * value and returning that up to our callers 1904 */ 1905 dmu_buf_will_dirty(&db->db, tx); 1906 1907 /* create the data buffer for the new block */ 1908 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 1909 1910 /* copy old block data to the new block */ 1911 old_buf = db->db_buf; 1912 bcopy(old_buf->b_data, buf->b_data, MIN(osize, size)); 1913 /* zero the remainder */ 1914 if (size > osize) 1915 bzero((uint8_t *)buf->b_data + osize, size - osize); 1916 1917 mutex_enter(&db->db_mtx); 1918 dbuf_set_data(db, buf); 1919 arc_buf_destroy(old_buf, db); 1920 db->db.db_size = size; 1921 1922 dr = list_head(&db->db_dirty_records); 1923 /* dirty record added by dmu_buf_will_dirty() */ 1924 VERIFY(dr != NULL); 1925 if (db->db_level == 0) 1926 dr->dt.dl.dr_data = buf; 1927 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 1928 ASSERT3U(dr->dr_accounted, ==, osize); 1929 dr->dr_accounted = size; 1930 mutex_exit(&db->db_mtx); 1931 1932 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 1933 DB_DNODE_EXIT(db); 1934 } 1935 1936 void 1937 dbuf_release_bp(dmu_buf_impl_t *db) 1938 { 1939 objset_t *os __maybe_unused = db->db_objset; 1940 1941 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 1942 ASSERT(arc_released(os->os_phys_buf) || 1943 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 1944 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 1945 1946 (void) arc_release(db->db_buf, db); 1947 } 1948 1949 /* 1950 * We already have a dirty record for this TXG, and we are being 1951 * dirtied again. 1952 */ 1953 static void 1954 dbuf_redirty(dbuf_dirty_record_t *dr) 1955 { 1956 dmu_buf_impl_t *db = dr->dr_dbuf; 1957 1958 ASSERT(MUTEX_HELD(&db->db_mtx)); 1959 1960 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 1961 /* 1962 * If this buffer has already been written out, 1963 * we now need to reset its state. 1964 */ 1965 dbuf_unoverride(dr); 1966 if (db->db.db_object != DMU_META_DNODE_OBJECT && 1967 db->db_state != DB_NOFILL) { 1968 /* Already released on initial dirty, so just thaw. */ 1969 ASSERT(arc_released(db->db_buf)); 1970 arc_buf_thaw(db->db_buf); 1971 } 1972 } 1973 } 1974 1975 dbuf_dirty_record_t * 1976 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 1977 { 1978 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1979 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 1980 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 1981 ASSERT(dn->dn_maxblkid >= blkid); 1982 1983 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 1984 list_link_init(&dr->dr_dirty_node); 1985 list_link_init(&dr->dr_dbuf_node); 1986 dr->dr_dnode = dn; 1987 dr->dr_txg = tx->tx_txg; 1988 dr->dt.dll.dr_blkid = blkid; 1989 dr->dr_accounted = dn->dn_datablksz; 1990 1991 /* 1992 * There should not be any dbuf for the block that we're dirtying. 1993 * Otherwise the buffer contents could be inconsistent between the 1994 * dbuf and the lightweight dirty record. 1995 */ 1996 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)); 1997 1998 mutex_enter(&dn->dn_mtx); 1999 int txgoff = tx->tx_txg & TXG_MASK; 2000 if (dn->dn_free_ranges[txgoff] != NULL) { 2001 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2002 } 2003 2004 if (dn->dn_nlevels == 1) { 2005 ASSERT3U(blkid, <, dn->dn_nblkptr); 2006 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2007 mutex_exit(&dn->dn_mtx); 2008 rw_exit(&dn->dn_struct_rwlock); 2009 dnode_setdirty(dn, tx); 2010 } else { 2011 mutex_exit(&dn->dn_mtx); 2012 2013 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2014 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2015 1, blkid >> epbs, FTAG); 2016 rw_exit(&dn->dn_struct_rwlock); 2017 if (parent_db == NULL) { 2018 kmem_free(dr, sizeof (*dr)); 2019 return (NULL); 2020 } 2021 int err = dbuf_read(parent_db, NULL, 2022 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2023 if (err != 0) { 2024 dbuf_rele(parent_db, FTAG); 2025 kmem_free(dr, sizeof (*dr)); 2026 return (NULL); 2027 } 2028 2029 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2030 dbuf_rele(parent_db, FTAG); 2031 mutex_enter(&parent_dr->dt.di.dr_mtx); 2032 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2033 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2034 mutex_exit(&parent_dr->dt.di.dr_mtx); 2035 dr->dr_parent = parent_dr; 2036 } 2037 2038 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2039 2040 return (dr); 2041 } 2042 2043 dbuf_dirty_record_t * 2044 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2045 { 2046 dnode_t *dn; 2047 objset_t *os; 2048 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2049 int txgoff = tx->tx_txg & TXG_MASK; 2050 boolean_t drop_struct_rwlock = B_FALSE; 2051 2052 ASSERT(tx->tx_txg != 0); 2053 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2054 DMU_TX_DIRTY_BUF(tx, db); 2055 2056 DB_DNODE_ENTER(db); 2057 dn = DB_DNODE(db); 2058 /* 2059 * Shouldn't dirty a regular buffer in syncing context. Private 2060 * objects may be dirtied in syncing context, but only if they 2061 * were already pre-dirtied in open context. 2062 */ 2063 #ifdef ZFS_DEBUG 2064 if (dn->dn_objset->os_dsl_dataset != NULL) { 2065 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2066 RW_READER, FTAG); 2067 } 2068 ASSERT(!dmu_tx_is_syncing(tx) || 2069 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2070 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2071 dn->dn_objset->os_dsl_dataset == NULL); 2072 if (dn->dn_objset->os_dsl_dataset != NULL) 2073 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2074 #endif 2075 /* 2076 * We make this assert for private objects as well, but after we 2077 * check if we're already dirty. They are allowed to re-dirty 2078 * in syncing context. 2079 */ 2080 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2081 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2082 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2083 2084 mutex_enter(&db->db_mtx); 2085 /* 2086 * XXX make this true for indirects too? The problem is that 2087 * transactions created with dmu_tx_create_assigned() from 2088 * syncing context don't bother holding ahead. 2089 */ 2090 ASSERT(db->db_level != 0 || 2091 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2092 db->db_state == DB_NOFILL); 2093 2094 mutex_enter(&dn->dn_mtx); 2095 dnode_set_dirtyctx(dn, tx, db); 2096 if (tx->tx_txg > dn->dn_dirty_txg) 2097 dn->dn_dirty_txg = tx->tx_txg; 2098 mutex_exit(&dn->dn_mtx); 2099 2100 if (db->db_blkid == DMU_SPILL_BLKID) 2101 dn->dn_have_spill = B_TRUE; 2102 2103 /* 2104 * If this buffer is already dirty, we're done. 2105 */ 2106 dr_head = list_head(&db->db_dirty_records); 2107 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2108 db->db.db_object == DMU_META_DNODE_OBJECT); 2109 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2110 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2111 DB_DNODE_EXIT(db); 2112 2113 dbuf_redirty(dr_next); 2114 mutex_exit(&db->db_mtx); 2115 return (dr_next); 2116 } 2117 2118 /* 2119 * Only valid if not already dirty. 2120 */ 2121 ASSERT(dn->dn_object == 0 || 2122 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2123 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2124 2125 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2126 2127 /* 2128 * We should only be dirtying in syncing context if it's the 2129 * mos or we're initializing the os or it's a special object. 2130 * However, we are allowed to dirty in syncing context provided 2131 * we already dirtied it in open context. Hence we must make 2132 * this assertion only if we're not already dirty. 2133 */ 2134 os = dn->dn_objset; 2135 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2136 #ifdef ZFS_DEBUG 2137 if (dn->dn_objset->os_dsl_dataset != NULL) 2138 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2139 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2140 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2141 if (dn->dn_objset->os_dsl_dataset != NULL) 2142 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2143 #endif 2144 ASSERT(db->db.db_size != 0); 2145 2146 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2147 2148 if (db->db_blkid != DMU_BONUS_BLKID) { 2149 dmu_objset_willuse_space(os, db->db.db_size, tx); 2150 } 2151 2152 /* 2153 * If this buffer is dirty in an old transaction group we need 2154 * to make a copy of it so that the changes we make in this 2155 * transaction group won't leak out when we sync the older txg. 2156 */ 2157 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2158 list_link_init(&dr->dr_dirty_node); 2159 list_link_init(&dr->dr_dbuf_node); 2160 dr->dr_dnode = dn; 2161 if (db->db_level == 0) { 2162 void *data_old = db->db_buf; 2163 2164 if (db->db_state != DB_NOFILL) { 2165 if (db->db_blkid == DMU_BONUS_BLKID) { 2166 dbuf_fix_old_data(db, tx->tx_txg); 2167 data_old = db->db.db_data; 2168 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2169 /* 2170 * Release the data buffer from the cache so 2171 * that we can modify it without impacting 2172 * possible other users of this cached data 2173 * block. Note that indirect blocks and 2174 * private objects are not released until the 2175 * syncing state (since they are only modified 2176 * then). 2177 */ 2178 arc_release(db->db_buf, db); 2179 dbuf_fix_old_data(db, tx->tx_txg); 2180 data_old = db->db_buf; 2181 } 2182 ASSERT(data_old != NULL); 2183 } 2184 dr->dt.dl.dr_data = data_old; 2185 } else { 2186 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2187 list_create(&dr->dt.di.dr_children, 2188 sizeof (dbuf_dirty_record_t), 2189 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2190 } 2191 if (db->db_blkid != DMU_BONUS_BLKID) 2192 dr->dr_accounted = db->db.db_size; 2193 dr->dr_dbuf = db; 2194 dr->dr_txg = tx->tx_txg; 2195 list_insert_before(&db->db_dirty_records, dr_next, dr); 2196 2197 /* 2198 * We could have been freed_in_flight between the dbuf_noread 2199 * and dbuf_dirty. We win, as though the dbuf_noread() had 2200 * happened after the free. 2201 */ 2202 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2203 db->db_blkid != DMU_SPILL_BLKID) { 2204 mutex_enter(&dn->dn_mtx); 2205 if (dn->dn_free_ranges[txgoff] != NULL) { 2206 range_tree_clear(dn->dn_free_ranges[txgoff], 2207 db->db_blkid, 1); 2208 } 2209 mutex_exit(&dn->dn_mtx); 2210 db->db_freed_in_flight = FALSE; 2211 } 2212 2213 /* 2214 * This buffer is now part of this txg 2215 */ 2216 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2217 db->db_dirtycnt += 1; 2218 ASSERT3U(db->db_dirtycnt, <=, 3); 2219 2220 mutex_exit(&db->db_mtx); 2221 2222 if (db->db_blkid == DMU_BONUS_BLKID || 2223 db->db_blkid == DMU_SPILL_BLKID) { 2224 mutex_enter(&dn->dn_mtx); 2225 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2226 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2227 mutex_exit(&dn->dn_mtx); 2228 dnode_setdirty(dn, tx); 2229 DB_DNODE_EXIT(db); 2230 return (dr); 2231 } 2232 2233 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2234 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2235 drop_struct_rwlock = B_TRUE; 2236 } 2237 2238 /* 2239 * If we are overwriting a dedup BP, then unless it is snapshotted, 2240 * when we get to syncing context we will need to decrement its 2241 * refcount in the DDT. Prefetch the relevant DDT block so that 2242 * syncing context won't have to wait for the i/o. 2243 */ 2244 if (db->db_blkptr != NULL) { 2245 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2246 ddt_prefetch(os->os_spa, db->db_blkptr); 2247 dmu_buf_unlock_parent(db, dblt, FTAG); 2248 } 2249 2250 /* 2251 * We need to hold the dn_struct_rwlock to make this assertion, 2252 * because it protects dn_phys / dn_next_nlevels from changing. 2253 */ 2254 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2255 dn->dn_phys->dn_nlevels > db->db_level || 2256 dn->dn_next_nlevels[txgoff] > db->db_level || 2257 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2258 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2259 2260 2261 if (db->db_level == 0) { 2262 ASSERT(!db->db_objset->os_raw_receive || 2263 dn->dn_maxblkid >= db->db_blkid); 2264 dnode_new_blkid(dn, db->db_blkid, tx, 2265 drop_struct_rwlock, B_FALSE); 2266 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2267 } 2268 2269 if (db->db_level+1 < dn->dn_nlevels) { 2270 dmu_buf_impl_t *parent = db->db_parent; 2271 dbuf_dirty_record_t *di; 2272 int parent_held = FALSE; 2273 2274 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2275 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2276 parent = dbuf_hold_level(dn, db->db_level + 1, 2277 db->db_blkid >> epbs, FTAG); 2278 ASSERT(parent != NULL); 2279 parent_held = TRUE; 2280 } 2281 if (drop_struct_rwlock) 2282 rw_exit(&dn->dn_struct_rwlock); 2283 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2284 di = dbuf_dirty(parent, tx); 2285 if (parent_held) 2286 dbuf_rele(parent, FTAG); 2287 2288 mutex_enter(&db->db_mtx); 2289 /* 2290 * Since we've dropped the mutex, it's possible that 2291 * dbuf_undirty() might have changed this out from under us. 2292 */ 2293 if (list_head(&db->db_dirty_records) == dr || 2294 dn->dn_object == DMU_META_DNODE_OBJECT) { 2295 mutex_enter(&di->dt.di.dr_mtx); 2296 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2297 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2298 list_insert_tail(&di->dt.di.dr_children, dr); 2299 mutex_exit(&di->dt.di.dr_mtx); 2300 dr->dr_parent = di; 2301 } 2302 mutex_exit(&db->db_mtx); 2303 } else { 2304 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2305 ASSERT(db->db_blkid < dn->dn_nblkptr); 2306 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2307 mutex_enter(&dn->dn_mtx); 2308 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2309 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2310 mutex_exit(&dn->dn_mtx); 2311 if (drop_struct_rwlock) 2312 rw_exit(&dn->dn_struct_rwlock); 2313 } 2314 2315 dnode_setdirty(dn, tx); 2316 DB_DNODE_EXIT(db); 2317 return (dr); 2318 } 2319 2320 static void 2321 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2322 { 2323 dmu_buf_impl_t *db = dr->dr_dbuf; 2324 2325 if (dr->dt.dl.dr_data != db->db.db_data) { 2326 struct dnode *dn = dr->dr_dnode; 2327 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2328 2329 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2330 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2331 } 2332 db->db_data_pending = NULL; 2333 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2334 list_remove(&db->db_dirty_records, dr); 2335 if (dr->dr_dbuf->db_level != 0) { 2336 mutex_destroy(&dr->dt.di.dr_mtx); 2337 list_destroy(&dr->dt.di.dr_children); 2338 } 2339 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2340 ASSERT3U(db->db_dirtycnt, >, 0); 2341 db->db_dirtycnt -= 1; 2342 } 2343 2344 /* 2345 * Undirty a buffer in the transaction group referenced by the given 2346 * transaction. Return whether this evicted the dbuf. 2347 */ 2348 static boolean_t 2349 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2350 { 2351 uint64_t txg = tx->tx_txg; 2352 2353 ASSERT(txg != 0); 2354 2355 /* 2356 * Due to our use of dn_nlevels below, this can only be called 2357 * in open context, unless we are operating on the MOS. 2358 * From syncing context, dn_nlevels may be different from the 2359 * dn_nlevels used when dbuf was dirtied. 2360 */ 2361 ASSERT(db->db_objset == 2362 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2363 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2364 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2365 ASSERT0(db->db_level); 2366 ASSERT(MUTEX_HELD(&db->db_mtx)); 2367 2368 /* 2369 * If this buffer is not dirty, we're done. 2370 */ 2371 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2372 if (dr == NULL) 2373 return (B_FALSE); 2374 ASSERT(dr->dr_dbuf == db); 2375 2376 dnode_t *dn = dr->dr_dnode; 2377 2378 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2379 2380 ASSERT(db->db.db_size != 0); 2381 2382 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2383 dr->dr_accounted, txg); 2384 2385 list_remove(&db->db_dirty_records, dr); 2386 2387 /* 2388 * Note that there are three places in dbuf_dirty() 2389 * where this dirty record may be put on a list. 2390 * Make sure to do a list_remove corresponding to 2391 * every one of those list_insert calls. 2392 */ 2393 if (dr->dr_parent) { 2394 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2395 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2396 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2397 } else if (db->db_blkid == DMU_SPILL_BLKID || 2398 db->db_level + 1 == dn->dn_nlevels) { 2399 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2400 mutex_enter(&dn->dn_mtx); 2401 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2402 mutex_exit(&dn->dn_mtx); 2403 } 2404 2405 if (db->db_state != DB_NOFILL) { 2406 dbuf_unoverride(dr); 2407 2408 ASSERT(db->db_buf != NULL); 2409 ASSERT(dr->dt.dl.dr_data != NULL); 2410 if (dr->dt.dl.dr_data != db->db_buf) 2411 arc_buf_destroy(dr->dt.dl.dr_data, db); 2412 } 2413 2414 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2415 2416 ASSERT(db->db_dirtycnt > 0); 2417 db->db_dirtycnt -= 1; 2418 2419 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2420 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2421 dbuf_destroy(db); 2422 return (B_TRUE); 2423 } 2424 2425 return (B_FALSE); 2426 } 2427 2428 static void 2429 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2430 { 2431 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2432 2433 ASSERT(tx->tx_txg != 0); 2434 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2435 2436 /* 2437 * Quick check for dirtiness. For already dirty blocks, this 2438 * reduces runtime of this function by >90%, and overall performance 2439 * by 50% for some workloads (e.g. file deletion with indirect blocks 2440 * cached). 2441 */ 2442 mutex_enter(&db->db_mtx); 2443 2444 if (db->db_state == DB_CACHED) { 2445 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2446 /* 2447 * It's possible that it is already dirty but not cached, 2448 * because there are some calls to dbuf_dirty() that don't 2449 * go through dmu_buf_will_dirty(). 2450 */ 2451 if (dr != NULL) { 2452 /* This dbuf is already dirty and cached. */ 2453 dbuf_redirty(dr); 2454 mutex_exit(&db->db_mtx); 2455 return; 2456 } 2457 } 2458 mutex_exit(&db->db_mtx); 2459 2460 DB_DNODE_ENTER(db); 2461 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2462 flags |= DB_RF_HAVESTRUCT; 2463 DB_DNODE_EXIT(db); 2464 (void) dbuf_read(db, NULL, flags); 2465 (void) dbuf_dirty(db, tx); 2466 } 2467 2468 void 2469 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2470 { 2471 dmu_buf_will_dirty_impl(db_fake, 2472 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2473 } 2474 2475 boolean_t 2476 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2477 { 2478 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2479 dbuf_dirty_record_t *dr; 2480 2481 mutex_enter(&db->db_mtx); 2482 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2483 mutex_exit(&db->db_mtx); 2484 return (dr != NULL); 2485 } 2486 2487 void 2488 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2489 { 2490 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2491 2492 db->db_state = DB_NOFILL; 2493 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2494 dmu_buf_will_fill(db_fake, tx); 2495 } 2496 2497 void 2498 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2499 { 2500 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2501 2502 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2503 ASSERT(tx->tx_txg != 0); 2504 ASSERT(db->db_level == 0); 2505 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2506 2507 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2508 dmu_tx_private_ok(tx)); 2509 2510 dbuf_noread(db); 2511 (void) dbuf_dirty(db, tx); 2512 } 2513 2514 /* 2515 * This function is effectively the same as dmu_buf_will_dirty(), but 2516 * indicates the caller expects raw encrypted data in the db, and provides 2517 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2518 * blkptr_t when this dbuf is written. This is only used for blocks of 2519 * dnodes, during raw receive. 2520 */ 2521 void 2522 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2523 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2524 { 2525 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2526 dbuf_dirty_record_t *dr; 2527 2528 /* 2529 * dr_has_raw_params is only processed for blocks of dnodes 2530 * (see dbuf_sync_dnode_leaf_crypt()). 2531 */ 2532 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2533 ASSERT3U(db->db_level, ==, 0); 2534 ASSERT(db->db_objset->os_raw_receive); 2535 2536 dmu_buf_will_dirty_impl(db_fake, 2537 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2538 2539 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2540 2541 ASSERT3P(dr, !=, NULL); 2542 2543 dr->dt.dl.dr_has_raw_params = B_TRUE; 2544 dr->dt.dl.dr_byteorder = byteorder; 2545 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN); 2546 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN); 2547 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN); 2548 } 2549 2550 static void 2551 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2552 { 2553 struct dirty_leaf *dl; 2554 dbuf_dirty_record_t *dr; 2555 2556 dr = list_head(&db->db_dirty_records); 2557 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2558 dl = &dr->dt.dl; 2559 dl->dr_overridden_by = *bp; 2560 dl->dr_override_state = DR_OVERRIDDEN; 2561 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2562 } 2563 2564 /* ARGSUSED */ 2565 void 2566 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2567 { 2568 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2569 dbuf_states_t old_state; 2570 mutex_enter(&db->db_mtx); 2571 DBUF_VERIFY(db); 2572 2573 old_state = db->db_state; 2574 db->db_state = DB_CACHED; 2575 if (old_state == DB_FILL) { 2576 if (db->db_level == 0 && db->db_freed_in_flight) { 2577 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2578 /* we were freed while filling */ 2579 /* XXX dbuf_undirty? */ 2580 bzero(db->db.db_data, db->db.db_size); 2581 db->db_freed_in_flight = FALSE; 2582 DTRACE_SET_STATE(db, 2583 "fill done handling freed in flight"); 2584 } else { 2585 DTRACE_SET_STATE(db, "fill done"); 2586 } 2587 cv_broadcast(&db->db_changed); 2588 } 2589 mutex_exit(&db->db_mtx); 2590 } 2591 2592 void 2593 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2594 bp_embedded_type_t etype, enum zio_compress comp, 2595 int uncompressed_size, int compressed_size, int byteorder, 2596 dmu_tx_t *tx) 2597 { 2598 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2599 struct dirty_leaf *dl; 2600 dmu_object_type_t type; 2601 dbuf_dirty_record_t *dr; 2602 2603 if (etype == BP_EMBEDDED_TYPE_DATA) { 2604 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2605 SPA_FEATURE_EMBEDDED_DATA)); 2606 } 2607 2608 DB_DNODE_ENTER(db); 2609 type = DB_DNODE(db)->dn_type; 2610 DB_DNODE_EXIT(db); 2611 2612 ASSERT0(db->db_level); 2613 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2614 2615 dmu_buf_will_not_fill(dbuf, tx); 2616 2617 dr = list_head(&db->db_dirty_records); 2618 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2619 dl = &dr->dt.dl; 2620 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2621 data, comp, uncompressed_size, compressed_size); 2622 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2623 BP_SET_TYPE(&dl->dr_overridden_by, type); 2624 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2625 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2626 2627 dl->dr_override_state = DR_OVERRIDDEN; 2628 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2629 } 2630 2631 void 2632 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2633 { 2634 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2635 dmu_object_type_t type; 2636 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2637 SPA_FEATURE_REDACTED_DATASETS)); 2638 2639 DB_DNODE_ENTER(db); 2640 type = DB_DNODE(db)->dn_type; 2641 DB_DNODE_EXIT(db); 2642 2643 ASSERT0(db->db_level); 2644 dmu_buf_will_not_fill(dbuf, tx); 2645 2646 blkptr_t bp = { { { {0} } } }; 2647 BP_SET_TYPE(&bp, type); 2648 BP_SET_LEVEL(&bp, 0); 2649 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2650 BP_SET_REDACTED(&bp); 2651 BPE_SET_LSIZE(&bp, dbuf->db_size); 2652 2653 dbuf_override_impl(db, &bp, tx); 2654 } 2655 2656 /* 2657 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2658 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2659 */ 2660 void 2661 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2662 { 2663 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2664 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2665 ASSERT(db->db_level == 0); 2666 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2667 ASSERT(buf != NULL); 2668 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2669 ASSERT(tx->tx_txg != 0); 2670 2671 arc_return_buf(buf, db); 2672 ASSERT(arc_released(buf)); 2673 2674 mutex_enter(&db->db_mtx); 2675 2676 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2677 cv_wait(&db->db_changed, &db->db_mtx); 2678 2679 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2680 2681 if (db->db_state == DB_CACHED && 2682 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2683 /* 2684 * In practice, we will never have a case where we have an 2685 * encrypted arc buffer while additional holds exist on the 2686 * dbuf. We don't handle this here so we simply assert that 2687 * fact instead. 2688 */ 2689 ASSERT(!arc_is_encrypted(buf)); 2690 mutex_exit(&db->db_mtx); 2691 (void) dbuf_dirty(db, tx); 2692 bcopy(buf->b_data, db->db.db_data, db->db.db_size); 2693 arc_buf_destroy(buf, db); 2694 return; 2695 } 2696 2697 if (db->db_state == DB_CACHED) { 2698 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2699 2700 ASSERT(db->db_buf != NULL); 2701 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2702 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2703 2704 if (!arc_released(db->db_buf)) { 2705 ASSERT(dr->dt.dl.dr_override_state == 2706 DR_OVERRIDDEN); 2707 arc_release(db->db_buf, db); 2708 } 2709 dr->dt.dl.dr_data = buf; 2710 arc_buf_destroy(db->db_buf, db); 2711 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2712 arc_release(db->db_buf, db); 2713 arc_buf_destroy(db->db_buf, db); 2714 } 2715 db->db_buf = NULL; 2716 } 2717 ASSERT(db->db_buf == NULL); 2718 dbuf_set_data(db, buf); 2719 db->db_state = DB_FILL; 2720 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2721 mutex_exit(&db->db_mtx); 2722 (void) dbuf_dirty(db, tx); 2723 dmu_buf_fill_done(&db->db, tx); 2724 } 2725 2726 void 2727 dbuf_destroy(dmu_buf_impl_t *db) 2728 { 2729 dnode_t *dn; 2730 dmu_buf_impl_t *parent = db->db_parent; 2731 dmu_buf_impl_t *dndb; 2732 2733 ASSERT(MUTEX_HELD(&db->db_mtx)); 2734 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2735 2736 if (db->db_buf != NULL) { 2737 arc_buf_destroy(db->db_buf, db); 2738 db->db_buf = NULL; 2739 } 2740 2741 if (db->db_blkid == DMU_BONUS_BLKID) { 2742 int slots = DB_DNODE(db)->dn_num_slots; 2743 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2744 if (db->db.db_data != NULL) { 2745 kmem_free(db->db.db_data, bonuslen); 2746 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2747 db->db_state = DB_UNCACHED; 2748 DTRACE_SET_STATE(db, "buffer cleared"); 2749 } 2750 } 2751 2752 dbuf_clear_data(db); 2753 2754 if (multilist_link_active(&db->db_cache_link)) { 2755 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2756 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2757 2758 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2759 (void) zfs_refcount_remove_many( 2760 &dbuf_caches[db->db_caching_status].size, 2761 db->db.db_size, db); 2762 2763 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2764 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2765 } else { 2766 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2767 DBUF_STAT_BUMPDOWN(cache_count); 2768 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2769 db->db.db_size); 2770 } 2771 db->db_caching_status = DB_NO_CACHE; 2772 } 2773 2774 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2775 ASSERT(db->db_data_pending == NULL); 2776 ASSERT(list_is_empty(&db->db_dirty_records)); 2777 2778 db->db_state = DB_EVICTING; 2779 DTRACE_SET_STATE(db, "buffer eviction started"); 2780 db->db_blkptr = NULL; 2781 2782 /* 2783 * Now that db_state is DB_EVICTING, nobody else can find this via 2784 * the hash table. We can now drop db_mtx, which allows us to 2785 * acquire the dn_dbufs_mtx. 2786 */ 2787 mutex_exit(&db->db_mtx); 2788 2789 DB_DNODE_ENTER(db); 2790 dn = DB_DNODE(db); 2791 dndb = dn->dn_dbuf; 2792 if (db->db_blkid != DMU_BONUS_BLKID) { 2793 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2794 if (needlock) 2795 mutex_enter_nested(&dn->dn_dbufs_mtx, 2796 NESTED_SINGLE); 2797 avl_remove(&dn->dn_dbufs, db); 2798 membar_producer(); 2799 DB_DNODE_EXIT(db); 2800 if (needlock) 2801 mutex_exit(&dn->dn_dbufs_mtx); 2802 /* 2803 * Decrementing the dbuf count means that the hold corresponding 2804 * to the removed dbuf is no longer discounted in dnode_move(), 2805 * so the dnode cannot be moved until after we release the hold. 2806 * The membar_producer() ensures visibility of the decremented 2807 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2808 * release any lock. 2809 */ 2810 mutex_enter(&dn->dn_mtx); 2811 dnode_rele_and_unlock(dn, db, B_TRUE); 2812 db->db_dnode_handle = NULL; 2813 2814 dbuf_hash_remove(db); 2815 } else { 2816 DB_DNODE_EXIT(db); 2817 } 2818 2819 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2820 2821 db->db_parent = NULL; 2822 2823 ASSERT(db->db_buf == NULL); 2824 ASSERT(db->db.db_data == NULL); 2825 ASSERT(db->db_hash_next == NULL); 2826 ASSERT(db->db_blkptr == NULL); 2827 ASSERT(db->db_data_pending == NULL); 2828 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2829 ASSERT(!multilist_link_active(&db->db_cache_link)); 2830 2831 kmem_cache_free(dbuf_kmem_cache, db); 2832 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2833 2834 /* 2835 * If this dbuf is referenced from an indirect dbuf, 2836 * decrement the ref count on the indirect dbuf. 2837 */ 2838 if (parent && parent != dndb) { 2839 mutex_enter(&parent->db_mtx); 2840 dbuf_rele_and_unlock(parent, db, B_TRUE); 2841 } 2842 } 2843 2844 /* 2845 * Note: While bpp will always be updated if the function returns success, 2846 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2847 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2848 * object. 2849 */ 2850 __attribute__((always_inline)) 2851 static inline int 2852 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2853 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2854 { 2855 *parentp = NULL; 2856 *bpp = NULL; 2857 2858 ASSERT(blkid != DMU_BONUS_BLKID); 2859 2860 if (blkid == DMU_SPILL_BLKID) { 2861 mutex_enter(&dn->dn_mtx); 2862 if (dn->dn_have_spill && 2863 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2864 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2865 else 2866 *bpp = NULL; 2867 dbuf_add_ref(dn->dn_dbuf, NULL); 2868 *parentp = dn->dn_dbuf; 2869 mutex_exit(&dn->dn_mtx); 2870 return (0); 2871 } 2872 2873 int nlevels = 2874 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 2875 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2876 2877 ASSERT3U(level * epbs, <, 64); 2878 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2879 /* 2880 * This assertion shouldn't trip as long as the max indirect block size 2881 * is less than 1M. The reason for this is that up to that point, 2882 * the number of levels required to address an entire object with blocks 2883 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 2884 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 2885 * (i.e. we can address the entire object), objects will all use at most 2886 * N-1 levels and the assertion won't overflow. However, once epbs is 2887 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 2888 * enough to address an entire object, so objects will have 5 levels, 2889 * but then this assertion will overflow. 2890 * 2891 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 2892 * need to redo this logic to handle overflows. 2893 */ 2894 ASSERT(level >= nlevels || 2895 ((nlevels - level - 1) * epbs) + 2896 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 2897 if (level >= nlevels || 2898 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 2899 ((nlevels - level - 1) * epbs)) || 2900 (fail_sparse && 2901 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 2902 /* the buffer has no parent yet */ 2903 return (SET_ERROR(ENOENT)); 2904 } else if (level < nlevels-1) { 2905 /* this block is referenced from an indirect block */ 2906 int err; 2907 2908 err = dbuf_hold_impl(dn, level + 1, 2909 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 2910 2911 if (err) 2912 return (err); 2913 err = dbuf_read(*parentp, NULL, 2914 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2915 if (err) { 2916 dbuf_rele(*parentp, NULL); 2917 *parentp = NULL; 2918 return (err); 2919 } 2920 rw_enter(&(*parentp)->db_rwlock, RW_READER); 2921 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 2922 (blkid & ((1ULL << epbs) - 1)); 2923 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 2924 ASSERT(BP_IS_HOLE(*bpp)); 2925 rw_exit(&(*parentp)->db_rwlock); 2926 return (0); 2927 } else { 2928 /* the block is referenced from the dnode */ 2929 ASSERT3U(level, ==, nlevels-1); 2930 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 2931 blkid < dn->dn_phys->dn_nblkptr); 2932 if (dn->dn_dbuf) { 2933 dbuf_add_ref(dn->dn_dbuf, NULL); 2934 *parentp = dn->dn_dbuf; 2935 } 2936 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 2937 return (0); 2938 } 2939 } 2940 2941 static dmu_buf_impl_t * 2942 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 2943 dmu_buf_impl_t *parent, blkptr_t *blkptr) 2944 { 2945 objset_t *os = dn->dn_objset; 2946 dmu_buf_impl_t *db, *odb; 2947 2948 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2949 ASSERT(dn->dn_type != DMU_OT_NONE); 2950 2951 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 2952 2953 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 2954 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 2955 2956 db->db_objset = os; 2957 db->db.db_object = dn->dn_object; 2958 db->db_level = level; 2959 db->db_blkid = blkid; 2960 db->db_dirtycnt = 0; 2961 db->db_dnode_handle = dn->dn_handle; 2962 db->db_parent = parent; 2963 db->db_blkptr = blkptr; 2964 2965 db->db_user = NULL; 2966 db->db_user_immediate_evict = FALSE; 2967 db->db_freed_in_flight = FALSE; 2968 db->db_pending_evict = FALSE; 2969 2970 if (blkid == DMU_BONUS_BLKID) { 2971 ASSERT3P(parent, ==, dn->dn_dbuf); 2972 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 2973 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 2974 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 2975 db->db.db_offset = DMU_BONUS_BLKID; 2976 db->db_state = DB_UNCACHED; 2977 DTRACE_SET_STATE(db, "bonus buffer created"); 2978 db->db_caching_status = DB_NO_CACHE; 2979 /* the bonus dbuf is not placed in the hash table */ 2980 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2981 return (db); 2982 } else if (blkid == DMU_SPILL_BLKID) { 2983 db->db.db_size = (blkptr != NULL) ? 2984 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 2985 db->db.db_offset = 0; 2986 } else { 2987 int blocksize = 2988 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 2989 db->db.db_size = blocksize; 2990 db->db.db_offset = db->db_blkid * blocksize; 2991 } 2992 2993 /* 2994 * Hold the dn_dbufs_mtx while we get the new dbuf 2995 * in the hash table *and* added to the dbufs list. 2996 * This prevents a possible deadlock with someone 2997 * trying to look up this dbuf before it's added to the 2998 * dn_dbufs list. 2999 */ 3000 mutex_enter(&dn->dn_dbufs_mtx); 3001 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3002 if ((odb = dbuf_hash_insert(db)) != NULL) { 3003 /* someone else inserted it first */ 3004 kmem_cache_free(dbuf_kmem_cache, db); 3005 mutex_exit(&dn->dn_dbufs_mtx); 3006 DBUF_STAT_BUMP(hash_insert_race); 3007 return (odb); 3008 } 3009 avl_add(&dn->dn_dbufs, db); 3010 3011 db->db_state = DB_UNCACHED; 3012 DTRACE_SET_STATE(db, "regular buffer created"); 3013 db->db_caching_status = DB_NO_CACHE; 3014 mutex_exit(&dn->dn_dbufs_mtx); 3015 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3016 3017 if (parent && parent != dn->dn_dbuf) 3018 dbuf_add_ref(parent, db); 3019 3020 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3021 zfs_refcount_count(&dn->dn_holds) > 0); 3022 (void) zfs_refcount_add(&dn->dn_holds, db); 3023 3024 dprintf_dbuf(db, "db=%p\n", db); 3025 3026 return (db); 3027 } 3028 3029 /* 3030 * This function returns a block pointer and information about the object, 3031 * given a dnode and a block. This is a publicly accessible version of 3032 * dbuf_findbp that only returns some information, rather than the 3033 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3034 * should be locked as (at least) a reader. 3035 */ 3036 int 3037 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3038 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3039 { 3040 dmu_buf_impl_t *dbp = NULL; 3041 blkptr_t *bp2; 3042 int err = 0; 3043 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3044 3045 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3046 if (err == 0) { 3047 *bp = *bp2; 3048 if (dbp != NULL) 3049 dbuf_rele(dbp, NULL); 3050 if (datablkszsec != NULL) 3051 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3052 if (indblkshift != NULL) 3053 *indblkshift = dn->dn_phys->dn_indblkshift; 3054 } 3055 3056 return (err); 3057 } 3058 3059 typedef struct dbuf_prefetch_arg { 3060 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3061 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3062 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3063 int dpa_curlevel; /* The current level that we're reading */ 3064 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3065 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3066 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3067 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3068 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3069 void *dpa_arg; /* prefetch completion arg */ 3070 } dbuf_prefetch_arg_t; 3071 3072 static void 3073 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3074 { 3075 if (dpa->dpa_cb != NULL) 3076 dpa->dpa_cb(dpa->dpa_arg, io_done); 3077 kmem_free(dpa, sizeof (*dpa)); 3078 } 3079 3080 static void 3081 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3082 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3083 { 3084 dbuf_prefetch_arg_t *dpa = private; 3085 3086 dbuf_prefetch_fini(dpa, B_TRUE); 3087 if (abuf != NULL) 3088 arc_buf_destroy(abuf, private); 3089 } 3090 3091 /* 3092 * Actually issue the prefetch read for the block given. 3093 */ 3094 static void 3095 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3096 { 3097 ASSERT(!BP_IS_REDACTED(bp) || 3098 dsl_dataset_feature_is_active( 3099 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3100 SPA_FEATURE_REDACTED_DATASETS)); 3101 3102 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3103 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3104 3105 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3106 arc_flags_t aflags = 3107 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3108 ARC_FLAG_NO_BUF; 3109 3110 /* dnodes are always read as raw and then converted later */ 3111 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3112 dpa->dpa_curlevel == 0) 3113 zio_flags |= ZIO_FLAG_RAW; 3114 3115 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3116 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3117 ASSERT(dpa->dpa_zio != NULL); 3118 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3119 dbuf_issue_final_prefetch_done, dpa, 3120 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3121 } 3122 3123 /* 3124 * Called when an indirect block above our prefetch target is read in. This 3125 * will either read in the next indirect block down the tree or issue the actual 3126 * prefetch if the next block down is our target. 3127 */ 3128 static void 3129 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3130 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3131 { 3132 dbuf_prefetch_arg_t *dpa = private; 3133 3134 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3135 ASSERT3S(dpa->dpa_curlevel, >, 0); 3136 3137 if (abuf == NULL) { 3138 ASSERT(zio == NULL || zio->io_error != 0); 3139 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3140 } 3141 ASSERT(zio == NULL || zio->io_error == 0); 3142 3143 /* 3144 * The dpa_dnode is only valid if we are called with a NULL 3145 * zio. This indicates that the arc_read() returned without 3146 * first calling zio_read() to issue a physical read. Once 3147 * a physical read is made the dpa_dnode must be invalidated 3148 * as the locks guarding it may have been dropped. If the 3149 * dpa_dnode is still valid, then we want to add it to the dbuf 3150 * cache. To do so, we must hold the dbuf associated with the block 3151 * we just prefetched, read its contents so that we associate it 3152 * with an arc_buf_t, and then release it. 3153 */ 3154 if (zio != NULL) { 3155 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3156 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3157 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3158 } else { 3159 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3160 } 3161 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3162 3163 dpa->dpa_dnode = NULL; 3164 } else if (dpa->dpa_dnode != NULL) { 3165 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3166 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3167 dpa->dpa_zb.zb_level)); 3168 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3169 dpa->dpa_curlevel, curblkid, FTAG); 3170 if (db == NULL) { 3171 arc_buf_destroy(abuf, private); 3172 return (dbuf_prefetch_fini(dpa, B_TRUE)); 3173 } 3174 (void) dbuf_read(db, NULL, 3175 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3176 dbuf_rele(db, FTAG); 3177 } 3178 3179 dpa->dpa_curlevel--; 3180 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3181 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3182 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3183 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3184 3185 ASSERT(!BP_IS_REDACTED(bp) || 3186 dsl_dataset_feature_is_active( 3187 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3188 SPA_FEATURE_REDACTED_DATASETS)); 3189 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3190 dbuf_prefetch_fini(dpa, B_TRUE); 3191 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3192 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3193 dbuf_issue_final_prefetch(dpa, bp); 3194 } else { 3195 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3196 zbookmark_phys_t zb; 3197 3198 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3199 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3200 iter_aflags |= ARC_FLAG_L2CACHE; 3201 3202 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3203 3204 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3205 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3206 3207 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3208 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio, 3209 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3210 &iter_aflags, &zb); 3211 } 3212 3213 arc_buf_destroy(abuf, private); 3214 } 3215 3216 /* 3217 * Issue prefetch reads for the given block on the given level. If the indirect 3218 * blocks above that block are not in memory, we will read them in 3219 * asynchronously. As a result, this call never blocks waiting for a read to 3220 * complete. Note that the prefetch might fail if the dataset is encrypted and 3221 * the encryption key is unmapped before the IO completes. 3222 */ 3223 int 3224 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3225 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3226 void *arg) 3227 { 3228 blkptr_t bp; 3229 int epbs, nlevels, curlevel; 3230 uint64_t curblkid; 3231 3232 ASSERT(blkid != DMU_BONUS_BLKID); 3233 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3234 3235 if (blkid > dn->dn_maxblkid) 3236 goto no_issue; 3237 3238 if (level == 0 && dnode_block_freed(dn, blkid)) 3239 goto no_issue; 3240 3241 /* 3242 * This dnode hasn't been written to disk yet, so there's nothing to 3243 * prefetch. 3244 */ 3245 nlevels = dn->dn_phys->dn_nlevels; 3246 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3247 goto no_issue; 3248 3249 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3250 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3251 goto no_issue; 3252 3253 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3254 level, blkid); 3255 if (db != NULL) { 3256 mutex_exit(&db->db_mtx); 3257 /* 3258 * This dbuf already exists. It is either CACHED, or 3259 * (we assume) about to be read or filled. 3260 */ 3261 goto no_issue; 3262 } 3263 3264 /* 3265 * Find the closest ancestor (indirect block) of the target block 3266 * that is present in the cache. In this indirect block, we will 3267 * find the bp that is at curlevel, curblkid. 3268 */ 3269 curlevel = level; 3270 curblkid = blkid; 3271 while (curlevel < nlevels - 1) { 3272 int parent_level = curlevel + 1; 3273 uint64_t parent_blkid = curblkid >> epbs; 3274 dmu_buf_impl_t *db; 3275 3276 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3277 FALSE, TRUE, FTAG, &db) == 0) { 3278 blkptr_t *bpp = db->db_buf->b_data; 3279 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3280 dbuf_rele(db, FTAG); 3281 break; 3282 } 3283 3284 curlevel = parent_level; 3285 curblkid = parent_blkid; 3286 } 3287 3288 if (curlevel == nlevels - 1) { 3289 /* No cached indirect blocks found. */ 3290 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3291 bp = dn->dn_phys->dn_blkptr[curblkid]; 3292 } 3293 ASSERT(!BP_IS_REDACTED(&bp) || 3294 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3295 SPA_FEATURE_REDACTED_DATASETS)); 3296 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3297 goto no_issue; 3298 3299 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3300 3301 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3302 ZIO_FLAG_CANFAIL); 3303 3304 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3305 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3306 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3307 dn->dn_object, level, blkid); 3308 dpa->dpa_curlevel = curlevel; 3309 dpa->dpa_prio = prio; 3310 dpa->dpa_aflags = aflags; 3311 dpa->dpa_spa = dn->dn_objset->os_spa; 3312 dpa->dpa_dnode = dn; 3313 dpa->dpa_epbs = epbs; 3314 dpa->dpa_zio = pio; 3315 dpa->dpa_cb = cb; 3316 dpa->dpa_arg = arg; 3317 3318 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3319 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3320 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3321 3322 /* 3323 * If we have the indirect just above us, no need to do the asynchronous 3324 * prefetch chain; we'll just run the last step ourselves. If we're at 3325 * a higher level, though, we want to issue the prefetches for all the 3326 * indirect blocks asynchronously, so we can go on with whatever we were 3327 * doing. 3328 */ 3329 if (curlevel == level) { 3330 ASSERT3U(curblkid, ==, blkid); 3331 dbuf_issue_final_prefetch(dpa, &bp); 3332 } else { 3333 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3334 zbookmark_phys_t zb; 3335 3336 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3337 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level)) 3338 iter_aflags |= ARC_FLAG_L2CACHE; 3339 3340 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3341 dn->dn_object, curlevel, curblkid); 3342 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3343 &bp, dbuf_prefetch_indirect_done, dpa, prio, 3344 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3345 &iter_aflags, &zb); 3346 } 3347 /* 3348 * We use pio here instead of dpa_zio since it's possible that 3349 * dpa may have already been freed. 3350 */ 3351 zio_nowait(pio); 3352 return (1); 3353 no_issue: 3354 if (cb != NULL) 3355 cb(arg, B_FALSE); 3356 return (0); 3357 } 3358 3359 int 3360 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3361 arc_flags_t aflags) 3362 { 3363 3364 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3365 } 3366 3367 /* 3368 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3369 * the case of encrypted, compressed and uncompressed buffers by 3370 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3371 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3372 * 3373 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3374 */ 3375 noinline static void 3376 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3377 { 3378 dbuf_dirty_record_t *dr = db->db_data_pending; 3379 arc_buf_t *newdata, *data = dr->dt.dl.dr_data; 3380 3381 newdata = dbuf_alloc_arcbuf_from_arcbuf(db, data); 3382 dbuf_set_data(db, newdata); 3383 rw_enter(&db->db_rwlock, RW_WRITER); 3384 bcopy(data->b_data, db->db.db_data, arc_buf_size(data)); 3385 rw_exit(&db->db_rwlock); 3386 } 3387 3388 /* 3389 * Returns with db_holds incremented, and db_mtx not held. 3390 * Note: dn_struct_rwlock must be held. 3391 */ 3392 int 3393 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3394 boolean_t fail_sparse, boolean_t fail_uncached, 3395 void *tag, dmu_buf_impl_t **dbp) 3396 { 3397 dmu_buf_impl_t *db, *parent = NULL; 3398 3399 /* If the pool has been created, verify the tx_sync_lock is not held */ 3400 spa_t *spa = dn->dn_objset->os_spa; 3401 dsl_pool_t *dp = spa->spa_dsl_pool; 3402 if (dp != NULL) { 3403 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3404 } 3405 3406 ASSERT(blkid != DMU_BONUS_BLKID); 3407 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3408 ASSERT3U(dn->dn_nlevels, >, level); 3409 3410 *dbp = NULL; 3411 3412 /* dbuf_find() returns with db_mtx held */ 3413 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3414 3415 if (db == NULL) { 3416 blkptr_t *bp = NULL; 3417 int err; 3418 3419 if (fail_uncached) 3420 return (SET_ERROR(ENOENT)); 3421 3422 ASSERT3P(parent, ==, NULL); 3423 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3424 if (fail_sparse) { 3425 if (err == 0 && bp && BP_IS_HOLE(bp)) 3426 err = SET_ERROR(ENOENT); 3427 if (err) { 3428 if (parent) 3429 dbuf_rele(parent, NULL); 3430 return (err); 3431 } 3432 } 3433 if (err && err != ENOENT) 3434 return (err); 3435 db = dbuf_create(dn, level, blkid, parent, bp); 3436 } 3437 3438 if (fail_uncached && db->db_state != DB_CACHED) { 3439 mutex_exit(&db->db_mtx); 3440 return (SET_ERROR(ENOENT)); 3441 } 3442 3443 if (db->db_buf != NULL) { 3444 arc_buf_access(db->db_buf); 3445 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3446 } 3447 3448 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3449 3450 /* 3451 * If this buffer is currently syncing out, and we are 3452 * still referencing it from db_data, we need to make a copy 3453 * of it in case we decide we want to dirty it again in this txg. 3454 */ 3455 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3456 dn->dn_object != DMU_META_DNODE_OBJECT && 3457 db->db_state == DB_CACHED && db->db_data_pending) { 3458 dbuf_dirty_record_t *dr = db->db_data_pending; 3459 if (dr->dt.dl.dr_data == db->db_buf) 3460 dbuf_hold_copy(dn, db); 3461 } 3462 3463 if (multilist_link_active(&db->db_cache_link)) { 3464 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3465 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3466 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3467 3468 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3469 (void) zfs_refcount_remove_many( 3470 &dbuf_caches[db->db_caching_status].size, 3471 db->db.db_size, db); 3472 3473 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3474 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3475 } else { 3476 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3477 DBUF_STAT_BUMPDOWN(cache_count); 3478 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3479 db->db.db_size); 3480 } 3481 db->db_caching_status = DB_NO_CACHE; 3482 } 3483 (void) zfs_refcount_add(&db->db_holds, tag); 3484 DBUF_VERIFY(db); 3485 mutex_exit(&db->db_mtx); 3486 3487 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3488 if (parent) 3489 dbuf_rele(parent, NULL); 3490 3491 ASSERT3P(DB_DNODE(db), ==, dn); 3492 ASSERT3U(db->db_blkid, ==, blkid); 3493 ASSERT3U(db->db_level, ==, level); 3494 *dbp = db; 3495 3496 return (0); 3497 } 3498 3499 dmu_buf_impl_t * 3500 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag) 3501 { 3502 return (dbuf_hold_level(dn, 0, blkid, tag)); 3503 } 3504 3505 dmu_buf_impl_t * 3506 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag) 3507 { 3508 dmu_buf_impl_t *db; 3509 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3510 return (err ? NULL : db); 3511 } 3512 3513 void 3514 dbuf_create_bonus(dnode_t *dn) 3515 { 3516 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3517 3518 ASSERT(dn->dn_bonus == NULL); 3519 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3520 } 3521 3522 int 3523 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3524 { 3525 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3526 3527 if (db->db_blkid != DMU_SPILL_BLKID) 3528 return (SET_ERROR(ENOTSUP)); 3529 if (blksz == 0) 3530 blksz = SPA_MINBLOCKSIZE; 3531 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3532 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3533 3534 dbuf_new_size(db, blksz, tx); 3535 3536 return (0); 3537 } 3538 3539 void 3540 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3541 { 3542 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3543 } 3544 3545 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3546 void 3547 dbuf_add_ref(dmu_buf_impl_t *db, void *tag) 3548 { 3549 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3550 VERIFY3S(holds, >, 1); 3551 } 3552 3553 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3554 boolean_t 3555 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3556 void *tag) 3557 { 3558 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3559 dmu_buf_impl_t *found_db; 3560 boolean_t result = B_FALSE; 3561 3562 if (blkid == DMU_BONUS_BLKID) 3563 found_db = dbuf_find_bonus(os, obj); 3564 else 3565 found_db = dbuf_find(os, obj, 0, blkid); 3566 3567 if (found_db != NULL) { 3568 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3569 (void) zfs_refcount_add(&db->db_holds, tag); 3570 result = B_TRUE; 3571 } 3572 mutex_exit(&found_db->db_mtx); 3573 } 3574 return (result); 3575 } 3576 3577 /* 3578 * If you call dbuf_rele() you had better not be referencing the dnode handle 3579 * unless you have some other direct or indirect hold on the dnode. (An indirect 3580 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3581 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3582 * dnode's parent dbuf evicting its dnode handles. 3583 */ 3584 void 3585 dbuf_rele(dmu_buf_impl_t *db, void *tag) 3586 { 3587 mutex_enter(&db->db_mtx); 3588 dbuf_rele_and_unlock(db, tag, B_FALSE); 3589 } 3590 3591 void 3592 dmu_buf_rele(dmu_buf_t *db, void *tag) 3593 { 3594 dbuf_rele((dmu_buf_impl_t *)db, tag); 3595 } 3596 3597 /* 3598 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3599 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3600 * argument should be set if we are already in the dbuf-evicting code 3601 * path, in which case we don't want to recursively evict. This allows us to 3602 * avoid deeply nested stacks that would have a call flow similar to this: 3603 * 3604 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3605 * ^ | 3606 * | | 3607 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3608 * 3609 */ 3610 void 3611 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting) 3612 { 3613 int64_t holds; 3614 uint64_t size; 3615 3616 ASSERT(MUTEX_HELD(&db->db_mtx)); 3617 DBUF_VERIFY(db); 3618 3619 /* 3620 * Remove the reference to the dbuf before removing its hold on the 3621 * dnode so we can guarantee in dnode_move() that a referenced bonus 3622 * buffer has a corresponding dnode hold. 3623 */ 3624 holds = zfs_refcount_remove(&db->db_holds, tag); 3625 ASSERT(holds >= 0); 3626 3627 /* 3628 * We can't freeze indirects if there is a possibility that they 3629 * may be modified in the current syncing context. 3630 */ 3631 if (db->db_buf != NULL && 3632 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3633 arc_buf_freeze(db->db_buf); 3634 } 3635 3636 if (holds == db->db_dirtycnt && 3637 db->db_level == 0 && db->db_user_immediate_evict) 3638 dbuf_evict_user(db); 3639 3640 if (holds == 0) { 3641 if (db->db_blkid == DMU_BONUS_BLKID) { 3642 dnode_t *dn; 3643 boolean_t evict_dbuf = db->db_pending_evict; 3644 3645 /* 3646 * If the dnode moves here, we cannot cross this 3647 * barrier until the move completes. 3648 */ 3649 DB_DNODE_ENTER(db); 3650 3651 dn = DB_DNODE(db); 3652 atomic_dec_32(&dn->dn_dbufs_count); 3653 3654 /* 3655 * Decrementing the dbuf count means that the bonus 3656 * buffer's dnode hold is no longer discounted in 3657 * dnode_move(). The dnode cannot move until after 3658 * the dnode_rele() below. 3659 */ 3660 DB_DNODE_EXIT(db); 3661 3662 /* 3663 * Do not reference db after its lock is dropped. 3664 * Another thread may evict it. 3665 */ 3666 mutex_exit(&db->db_mtx); 3667 3668 if (evict_dbuf) 3669 dnode_evict_bonus(dn); 3670 3671 dnode_rele(dn, db); 3672 } else if (db->db_buf == NULL) { 3673 /* 3674 * This is a special case: we never associated this 3675 * dbuf with any data allocated from the ARC. 3676 */ 3677 ASSERT(db->db_state == DB_UNCACHED || 3678 db->db_state == DB_NOFILL); 3679 dbuf_destroy(db); 3680 } else if (arc_released(db->db_buf)) { 3681 /* 3682 * This dbuf has anonymous data associated with it. 3683 */ 3684 dbuf_destroy(db); 3685 } else { 3686 boolean_t do_arc_evict = B_FALSE; 3687 blkptr_t bp; 3688 spa_t *spa = dmu_objset_spa(db->db_objset); 3689 3690 if (!DBUF_IS_CACHEABLE(db) && 3691 db->db_blkptr != NULL && 3692 !BP_IS_HOLE(db->db_blkptr) && 3693 !BP_IS_EMBEDDED(db->db_blkptr)) { 3694 do_arc_evict = B_TRUE; 3695 bp = *db->db_blkptr; 3696 } 3697 3698 if (!DBUF_IS_CACHEABLE(db) || 3699 db->db_pending_evict) { 3700 dbuf_destroy(db); 3701 } else if (!multilist_link_active(&db->db_cache_link)) { 3702 ASSERT3U(db->db_caching_status, ==, 3703 DB_NO_CACHE); 3704 3705 dbuf_cached_state_t dcs = 3706 dbuf_include_in_metadata_cache(db) ? 3707 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3708 db->db_caching_status = dcs; 3709 3710 multilist_insert(&dbuf_caches[dcs].cache, db); 3711 size = zfs_refcount_add_many( 3712 &dbuf_caches[dcs].size, 3713 db->db.db_size, db); 3714 3715 if (dcs == DB_DBUF_METADATA_CACHE) { 3716 DBUF_STAT_BUMP(metadata_cache_count); 3717 DBUF_STAT_MAX( 3718 metadata_cache_size_bytes_max, 3719 size); 3720 } else { 3721 DBUF_STAT_BUMP( 3722 cache_levels[db->db_level]); 3723 DBUF_STAT_BUMP(cache_count); 3724 DBUF_STAT_INCR( 3725 cache_levels_bytes[db->db_level], 3726 db->db.db_size); 3727 DBUF_STAT_MAX(cache_size_bytes_max, 3728 size); 3729 } 3730 mutex_exit(&db->db_mtx); 3731 3732 if (dcs == DB_DBUF_CACHE && !evicting) 3733 dbuf_evict_notify(size); 3734 } 3735 3736 if (do_arc_evict) 3737 arc_freed(spa, &bp); 3738 } 3739 } else { 3740 mutex_exit(&db->db_mtx); 3741 } 3742 3743 } 3744 3745 #pragma weak dmu_buf_refcount = dbuf_refcount 3746 uint64_t 3747 dbuf_refcount(dmu_buf_impl_t *db) 3748 { 3749 return (zfs_refcount_count(&db->db_holds)); 3750 } 3751 3752 uint64_t 3753 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3754 { 3755 uint64_t holds; 3756 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3757 3758 mutex_enter(&db->db_mtx); 3759 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3760 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3761 mutex_exit(&db->db_mtx); 3762 3763 return (holds); 3764 } 3765 3766 void * 3767 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3768 dmu_buf_user_t *new_user) 3769 { 3770 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3771 3772 mutex_enter(&db->db_mtx); 3773 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3774 if (db->db_user == old_user) 3775 db->db_user = new_user; 3776 else 3777 old_user = db->db_user; 3778 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3779 mutex_exit(&db->db_mtx); 3780 3781 return (old_user); 3782 } 3783 3784 void * 3785 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3786 { 3787 return (dmu_buf_replace_user(db_fake, NULL, user)); 3788 } 3789 3790 void * 3791 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3792 { 3793 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3794 3795 db->db_user_immediate_evict = TRUE; 3796 return (dmu_buf_set_user(db_fake, user)); 3797 } 3798 3799 void * 3800 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3801 { 3802 return (dmu_buf_replace_user(db_fake, user, NULL)); 3803 } 3804 3805 void * 3806 dmu_buf_get_user(dmu_buf_t *db_fake) 3807 { 3808 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3809 3810 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3811 return (db->db_user); 3812 } 3813 3814 void 3815 dmu_buf_user_evict_wait() 3816 { 3817 taskq_wait(dbu_evict_taskq); 3818 } 3819 3820 blkptr_t * 3821 dmu_buf_get_blkptr(dmu_buf_t *db) 3822 { 3823 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3824 return (dbi->db_blkptr); 3825 } 3826 3827 objset_t * 3828 dmu_buf_get_objset(dmu_buf_t *db) 3829 { 3830 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3831 return (dbi->db_objset); 3832 } 3833 3834 dnode_t * 3835 dmu_buf_dnode_enter(dmu_buf_t *db) 3836 { 3837 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3838 DB_DNODE_ENTER(dbi); 3839 return (DB_DNODE(dbi)); 3840 } 3841 3842 void 3843 dmu_buf_dnode_exit(dmu_buf_t *db) 3844 { 3845 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3846 DB_DNODE_EXIT(dbi); 3847 } 3848 3849 static void 3850 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 3851 { 3852 /* ASSERT(dmu_tx_is_syncing(tx) */ 3853 ASSERT(MUTEX_HELD(&db->db_mtx)); 3854 3855 if (db->db_blkptr != NULL) 3856 return; 3857 3858 if (db->db_blkid == DMU_SPILL_BLKID) { 3859 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 3860 BP_ZERO(db->db_blkptr); 3861 return; 3862 } 3863 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 3864 /* 3865 * This buffer was allocated at a time when there was 3866 * no available blkptrs from the dnode, or it was 3867 * inappropriate to hook it in (i.e., nlevels mismatch). 3868 */ 3869 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 3870 ASSERT(db->db_parent == NULL); 3871 db->db_parent = dn->dn_dbuf; 3872 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 3873 DBUF_VERIFY(db); 3874 } else { 3875 dmu_buf_impl_t *parent = db->db_parent; 3876 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3877 3878 ASSERT(dn->dn_phys->dn_nlevels > 1); 3879 if (parent == NULL) { 3880 mutex_exit(&db->db_mtx); 3881 rw_enter(&dn->dn_struct_rwlock, RW_READER); 3882 parent = dbuf_hold_level(dn, db->db_level + 1, 3883 db->db_blkid >> epbs, db); 3884 rw_exit(&dn->dn_struct_rwlock); 3885 mutex_enter(&db->db_mtx); 3886 db->db_parent = parent; 3887 } 3888 db->db_blkptr = (blkptr_t *)parent->db.db_data + 3889 (db->db_blkid & ((1ULL << epbs) - 1)); 3890 DBUF_VERIFY(db); 3891 } 3892 } 3893 3894 static void 3895 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3896 { 3897 dmu_buf_impl_t *db = dr->dr_dbuf; 3898 void *data = dr->dt.dl.dr_data; 3899 3900 ASSERT0(db->db_level); 3901 ASSERT(MUTEX_HELD(&db->db_mtx)); 3902 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 3903 ASSERT(data != NULL); 3904 3905 dnode_t *dn = dr->dr_dnode; 3906 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 3907 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 3908 bcopy(data, DN_BONUS(dn->dn_phys), DN_MAX_BONUS_LEN(dn->dn_phys)); 3909 3910 dbuf_sync_leaf_verify_bonus_dnode(dr); 3911 3912 dbuf_undirty_bonus(dr); 3913 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 3914 } 3915 3916 /* 3917 * When syncing out a blocks of dnodes, adjust the block to deal with 3918 * encryption. Normally, we make sure the block is decrypted before writing 3919 * it. If we have crypt params, then we are writing a raw (encrypted) block, 3920 * from a raw receive. In this case, set the ARC buf's crypt params so 3921 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 3922 */ 3923 static void 3924 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 3925 { 3926 int err; 3927 dmu_buf_impl_t *db = dr->dr_dbuf; 3928 3929 ASSERT(MUTEX_HELD(&db->db_mtx)); 3930 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 3931 ASSERT3U(db->db_level, ==, 0); 3932 3933 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 3934 zbookmark_phys_t zb; 3935 3936 /* 3937 * Unfortunately, there is currently no mechanism for 3938 * syncing context to handle decryption errors. An error 3939 * here is only possible if an attacker maliciously 3940 * changed a dnode block and updated the associated 3941 * checksums going up the block tree. 3942 */ 3943 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 3944 db->db.db_object, db->db_level, db->db_blkid); 3945 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 3946 &zb, B_TRUE); 3947 if (err) 3948 panic("Invalid dnode block MAC"); 3949 } else if (dr->dt.dl.dr_has_raw_params) { 3950 (void) arc_release(dr->dt.dl.dr_data, db); 3951 arc_convert_to_raw(dr->dt.dl.dr_data, 3952 dmu_objset_id(db->db_objset), 3953 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 3954 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 3955 } 3956 } 3957 3958 /* 3959 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 3960 * is critical the we not allow the compiler to inline this function in to 3961 * dbuf_sync_list() thereby drastically bloating the stack usage. 3962 */ 3963 noinline static void 3964 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 3965 { 3966 dmu_buf_impl_t *db = dr->dr_dbuf; 3967 dnode_t *dn = dr->dr_dnode; 3968 3969 ASSERT(dmu_tx_is_syncing(tx)); 3970 3971 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 3972 3973 mutex_enter(&db->db_mtx); 3974 3975 ASSERT(db->db_level > 0); 3976 DBUF_VERIFY(db); 3977 3978 /* Read the block if it hasn't been read yet. */ 3979 if (db->db_buf == NULL) { 3980 mutex_exit(&db->db_mtx); 3981 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 3982 mutex_enter(&db->db_mtx); 3983 } 3984 ASSERT3U(db->db_state, ==, DB_CACHED); 3985 ASSERT(db->db_buf != NULL); 3986 3987 /* Indirect block size must match what the dnode thinks it is. */ 3988 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 3989 dbuf_check_blkptr(dn, db); 3990 3991 /* Provide the pending dirty record to child dbufs */ 3992 db->db_data_pending = dr; 3993 3994 mutex_exit(&db->db_mtx); 3995 3996 dbuf_write(dr, db->db_buf, tx); 3997 3998 zio_t *zio = dr->dr_zio; 3999 mutex_enter(&dr->dt.di.dr_mtx); 4000 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4001 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4002 mutex_exit(&dr->dt.di.dr_mtx); 4003 zio_nowait(zio); 4004 } 4005 4006 /* 4007 * Verify that the size of the data in our bonus buffer does not exceed 4008 * its recorded size. 4009 * 4010 * The purpose of this verification is to catch any cases in development 4011 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4012 * due to incorrect feature management, older pools expect to read more 4013 * data even though they didn't actually write it to begin with. 4014 * 4015 * For a example, this would catch an error in the feature logic where we 4016 * open an older pool and we expect to write the space map histogram of 4017 * a space map with size SPACE_MAP_SIZE_V0. 4018 */ 4019 static void 4020 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4021 { 4022 #ifdef ZFS_DEBUG 4023 dnode_t *dn = dr->dr_dnode; 4024 4025 /* 4026 * Encrypted bonus buffers can have data past their bonuslen. 4027 * Skip the verification of these blocks. 4028 */ 4029 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4030 return; 4031 4032 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4033 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4034 ASSERT3U(bonuslen, <=, maxbonuslen); 4035 4036 arc_buf_t *datap = dr->dt.dl.dr_data; 4037 char *datap_end = ((char *)datap) + bonuslen; 4038 char *datap_max = ((char *)datap) + maxbonuslen; 4039 4040 /* ensure that everything is zero after our data */ 4041 for (; datap_end < datap_max; datap_end++) 4042 ASSERT(*datap_end == 0); 4043 #endif 4044 } 4045 4046 static blkptr_t * 4047 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4048 { 4049 /* This must be a lightweight dirty record. */ 4050 ASSERT3P(dr->dr_dbuf, ==, NULL); 4051 dnode_t *dn = dr->dr_dnode; 4052 4053 if (dn->dn_phys->dn_nlevels == 1) { 4054 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4055 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4056 } else { 4057 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4058 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4059 VERIFY3U(parent_db->db_level, ==, 1); 4060 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4061 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4062 blkptr_t *bp = parent_db->db.db_data; 4063 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4064 } 4065 } 4066 4067 static void 4068 dbuf_lightweight_ready(zio_t *zio) 4069 { 4070 dbuf_dirty_record_t *dr = zio->io_private; 4071 blkptr_t *bp = zio->io_bp; 4072 4073 if (zio->io_error != 0) 4074 return; 4075 4076 dnode_t *dn = dr->dr_dnode; 4077 4078 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4079 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4080 int64_t delta = bp_get_dsize_sync(spa, bp) - 4081 bp_get_dsize_sync(spa, bp_orig); 4082 dnode_diduse_space(dn, delta); 4083 4084 uint64_t blkid = dr->dt.dll.dr_blkid; 4085 mutex_enter(&dn->dn_mtx); 4086 if (blkid > dn->dn_phys->dn_maxblkid) { 4087 ASSERT0(dn->dn_objset->os_raw_receive); 4088 dn->dn_phys->dn_maxblkid = blkid; 4089 } 4090 mutex_exit(&dn->dn_mtx); 4091 4092 if (!BP_IS_EMBEDDED(bp)) { 4093 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4094 BP_SET_FILL(bp, fill); 4095 } 4096 4097 dmu_buf_impl_t *parent_db; 4098 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4099 if (dr->dr_parent == NULL) { 4100 parent_db = dn->dn_dbuf; 4101 } else { 4102 parent_db = dr->dr_parent->dr_dbuf; 4103 } 4104 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4105 *bp_orig = *bp; 4106 rw_exit(&parent_db->db_rwlock); 4107 } 4108 4109 static void 4110 dbuf_lightweight_physdone(zio_t *zio) 4111 { 4112 dbuf_dirty_record_t *dr = zio->io_private; 4113 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4114 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4115 4116 /* 4117 * The callback will be called io_phys_children times. Retire one 4118 * portion of our dirty space each time we are called. Any rounding 4119 * error will be cleaned up by dbuf_lightweight_done(). 4120 */ 4121 int delta = dr->dr_accounted / zio->io_phys_children; 4122 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4123 } 4124 4125 static void 4126 dbuf_lightweight_done(zio_t *zio) 4127 { 4128 dbuf_dirty_record_t *dr = zio->io_private; 4129 4130 VERIFY0(zio->io_error); 4131 4132 objset_t *os = dr->dr_dnode->dn_objset; 4133 dmu_tx_t *tx = os->os_synctx; 4134 4135 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4136 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4137 } else { 4138 dsl_dataset_t *ds = os->os_dsl_dataset; 4139 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4140 dsl_dataset_block_born(ds, zio->io_bp, tx); 4141 } 4142 4143 /* 4144 * See comment in dbuf_write_done(). 4145 */ 4146 if (zio->io_phys_children == 0) { 4147 dsl_pool_undirty_space(dmu_objset_pool(os), 4148 dr->dr_accounted, zio->io_txg); 4149 } else { 4150 dsl_pool_undirty_space(dmu_objset_pool(os), 4151 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4152 } 4153 4154 abd_free(dr->dt.dll.dr_abd); 4155 kmem_free(dr, sizeof (*dr)); 4156 } 4157 4158 noinline static void 4159 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4160 { 4161 dnode_t *dn = dr->dr_dnode; 4162 zio_t *pio; 4163 if (dn->dn_phys->dn_nlevels == 1) { 4164 pio = dn->dn_zio; 4165 } else { 4166 pio = dr->dr_parent->dr_zio; 4167 } 4168 4169 zbookmark_phys_t zb = { 4170 .zb_objset = dmu_objset_id(dn->dn_objset), 4171 .zb_object = dn->dn_object, 4172 .zb_level = 0, 4173 .zb_blkid = dr->dt.dll.dr_blkid, 4174 }; 4175 4176 /* 4177 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4178 * will have the old BP in dbuf_lightweight_done(). 4179 */ 4180 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4181 4182 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4183 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4184 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4185 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4186 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4187 ZIO_PRIORITY_ASYNC_WRITE, 4188 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4189 4190 zio_nowait(dr->dr_zio); 4191 } 4192 4193 /* 4194 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4195 * critical the we not allow the compiler to inline this function in to 4196 * dbuf_sync_list() thereby drastically bloating the stack usage. 4197 */ 4198 noinline static void 4199 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4200 { 4201 arc_buf_t **datap = &dr->dt.dl.dr_data; 4202 dmu_buf_impl_t *db = dr->dr_dbuf; 4203 dnode_t *dn = dr->dr_dnode; 4204 objset_t *os; 4205 uint64_t txg = tx->tx_txg; 4206 4207 ASSERT(dmu_tx_is_syncing(tx)); 4208 4209 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4210 4211 mutex_enter(&db->db_mtx); 4212 /* 4213 * To be synced, we must be dirtied. But we 4214 * might have been freed after the dirty. 4215 */ 4216 if (db->db_state == DB_UNCACHED) { 4217 /* This buffer has been freed since it was dirtied */ 4218 ASSERT(db->db.db_data == NULL); 4219 } else if (db->db_state == DB_FILL) { 4220 /* This buffer was freed and is now being re-filled */ 4221 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4222 } else { 4223 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4224 } 4225 DBUF_VERIFY(db); 4226 4227 if (db->db_blkid == DMU_SPILL_BLKID) { 4228 mutex_enter(&dn->dn_mtx); 4229 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4230 /* 4231 * In the previous transaction group, the bonus buffer 4232 * was entirely used to store the attributes for the 4233 * dnode which overrode the dn_spill field. However, 4234 * when adding more attributes to the file a spill 4235 * block was required to hold the extra attributes. 4236 * 4237 * Make sure to clear the garbage left in the dn_spill 4238 * field from the previous attributes in the bonus 4239 * buffer. Otherwise, after writing out the spill 4240 * block to the new allocated dva, it will free 4241 * the old block pointed to by the invalid dn_spill. 4242 */ 4243 db->db_blkptr = NULL; 4244 } 4245 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4246 mutex_exit(&dn->dn_mtx); 4247 } 4248 4249 /* 4250 * If this is a bonus buffer, simply copy the bonus data into the 4251 * dnode. It will be written out when the dnode is synced (and it 4252 * will be synced, since it must have been dirty for dbuf_sync to 4253 * be called). 4254 */ 4255 if (db->db_blkid == DMU_BONUS_BLKID) { 4256 ASSERT(dr->dr_dbuf == db); 4257 dbuf_sync_bonus(dr, tx); 4258 return; 4259 } 4260 4261 os = dn->dn_objset; 4262 4263 /* 4264 * This function may have dropped the db_mtx lock allowing a dmu_sync 4265 * operation to sneak in. As a result, we need to ensure that we 4266 * don't check the dr_override_state until we have returned from 4267 * dbuf_check_blkptr. 4268 */ 4269 dbuf_check_blkptr(dn, db); 4270 4271 /* 4272 * If this buffer is in the middle of an immediate write, 4273 * wait for the synchronous IO to complete. 4274 */ 4275 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4276 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4277 cv_wait(&db->db_changed, &db->db_mtx); 4278 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4279 } 4280 4281 /* 4282 * If this is a dnode block, ensure it is appropriately encrypted 4283 * or decrypted, depending on what we are writing to it this txg. 4284 */ 4285 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4286 dbuf_prepare_encrypted_dnode_leaf(dr); 4287 4288 if (db->db_state != DB_NOFILL && 4289 dn->dn_object != DMU_META_DNODE_OBJECT && 4290 zfs_refcount_count(&db->db_holds) > 1 && 4291 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4292 *datap == db->db_buf) { 4293 /* 4294 * If this buffer is currently "in use" (i.e., there 4295 * are active holds and db_data still references it), 4296 * then make a copy before we start the write so that 4297 * any modifications from the open txg will not leak 4298 * into this write. 4299 * 4300 * NOTE: this copy does not need to be made for 4301 * objects only modified in the syncing context (e.g. 4302 * DNONE_DNODE blocks). 4303 */ 4304 *datap = dbuf_alloc_arcbuf_from_arcbuf(db, db->db_buf); 4305 bcopy(db->db.db_data, (*datap)->b_data, arc_buf_size(*datap)); 4306 } 4307 db->db_data_pending = dr; 4308 4309 mutex_exit(&db->db_mtx); 4310 4311 dbuf_write(dr, *datap, tx); 4312 4313 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4314 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4315 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4316 } else { 4317 zio_nowait(dr->dr_zio); 4318 } 4319 } 4320 4321 void 4322 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4323 { 4324 dbuf_dirty_record_t *dr; 4325 4326 while ((dr = list_head(list))) { 4327 if (dr->dr_zio != NULL) { 4328 /* 4329 * If we find an already initialized zio then we 4330 * are processing the meta-dnode, and we have finished. 4331 * The dbufs for all dnodes are put back on the list 4332 * during processing, so that we can zio_wait() 4333 * these IOs after initiating all child IOs. 4334 */ 4335 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4336 DMU_META_DNODE_OBJECT); 4337 break; 4338 } 4339 list_remove(list, dr); 4340 if (dr->dr_dbuf == NULL) { 4341 dbuf_sync_lightweight(dr, tx); 4342 } else { 4343 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4344 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4345 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4346 } 4347 if (dr->dr_dbuf->db_level > 0) 4348 dbuf_sync_indirect(dr, tx); 4349 else 4350 dbuf_sync_leaf(dr, tx); 4351 } 4352 } 4353 } 4354 4355 /* ARGSUSED */ 4356 static void 4357 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4358 { 4359 dmu_buf_impl_t *db = vdb; 4360 dnode_t *dn; 4361 blkptr_t *bp = zio->io_bp; 4362 blkptr_t *bp_orig = &zio->io_bp_orig; 4363 spa_t *spa = zio->io_spa; 4364 int64_t delta; 4365 uint64_t fill = 0; 4366 int i; 4367 4368 ASSERT3P(db->db_blkptr, !=, NULL); 4369 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4370 4371 DB_DNODE_ENTER(db); 4372 dn = DB_DNODE(db); 4373 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4374 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4375 zio->io_prev_space_delta = delta; 4376 4377 if (bp->blk_birth != 0) { 4378 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4379 BP_GET_TYPE(bp) == dn->dn_type) || 4380 (db->db_blkid == DMU_SPILL_BLKID && 4381 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4382 BP_IS_EMBEDDED(bp)); 4383 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4384 } 4385 4386 mutex_enter(&db->db_mtx); 4387 4388 #ifdef ZFS_DEBUG 4389 if (db->db_blkid == DMU_SPILL_BLKID) { 4390 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4391 ASSERT(!(BP_IS_HOLE(bp)) && 4392 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4393 } 4394 #endif 4395 4396 if (db->db_level == 0) { 4397 mutex_enter(&dn->dn_mtx); 4398 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4399 db->db_blkid != DMU_SPILL_BLKID) { 4400 ASSERT0(db->db_objset->os_raw_receive); 4401 dn->dn_phys->dn_maxblkid = db->db_blkid; 4402 } 4403 mutex_exit(&dn->dn_mtx); 4404 4405 if (dn->dn_type == DMU_OT_DNODE) { 4406 i = 0; 4407 while (i < db->db.db_size) { 4408 dnode_phys_t *dnp = 4409 (void *)(((char *)db->db.db_data) + i); 4410 4411 i += DNODE_MIN_SIZE; 4412 if (dnp->dn_type != DMU_OT_NONE) { 4413 fill++; 4414 i += dnp->dn_extra_slots * 4415 DNODE_MIN_SIZE; 4416 } 4417 } 4418 } else { 4419 if (BP_IS_HOLE(bp)) { 4420 fill = 0; 4421 } else { 4422 fill = 1; 4423 } 4424 } 4425 } else { 4426 blkptr_t *ibp = db->db.db_data; 4427 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4428 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4429 if (BP_IS_HOLE(ibp)) 4430 continue; 4431 fill += BP_GET_FILL(ibp); 4432 } 4433 } 4434 DB_DNODE_EXIT(db); 4435 4436 if (!BP_IS_EMBEDDED(bp)) 4437 BP_SET_FILL(bp, fill); 4438 4439 mutex_exit(&db->db_mtx); 4440 4441 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4442 *db->db_blkptr = *bp; 4443 dmu_buf_unlock_parent(db, dblt, FTAG); 4444 } 4445 4446 /* ARGSUSED */ 4447 /* 4448 * This function gets called just prior to running through the compression 4449 * stage of the zio pipeline. If we're an indirect block comprised of only 4450 * holes, then we want this indirect to be compressed away to a hole. In 4451 * order to do that we must zero out any information about the holes that 4452 * this indirect points to prior to before we try to compress it. 4453 */ 4454 static void 4455 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4456 { 4457 dmu_buf_impl_t *db = vdb; 4458 dnode_t *dn; 4459 blkptr_t *bp; 4460 unsigned int epbs, i; 4461 4462 ASSERT3U(db->db_level, >, 0); 4463 DB_DNODE_ENTER(db); 4464 dn = DB_DNODE(db); 4465 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4466 ASSERT3U(epbs, <, 31); 4467 4468 /* Determine if all our children are holes */ 4469 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4470 if (!BP_IS_HOLE(bp)) 4471 break; 4472 } 4473 4474 /* 4475 * If all the children are holes, then zero them all out so that 4476 * we may get compressed away. 4477 */ 4478 if (i == 1ULL << epbs) { 4479 /* 4480 * We only found holes. Grab the rwlock to prevent 4481 * anybody from reading the blocks we're about to 4482 * zero out. 4483 */ 4484 rw_enter(&db->db_rwlock, RW_WRITER); 4485 bzero(db->db.db_data, db->db.db_size); 4486 rw_exit(&db->db_rwlock); 4487 } 4488 DB_DNODE_EXIT(db); 4489 } 4490 4491 /* 4492 * The SPA will call this callback several times for each zio - once 4493 * for every physical child i/o (zio->io_phys_children times). This 4494 * allows the DMU to monitor the progress of each logical i/o. For example, 4495 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4496 * block. There may be a long delay before all copies/fragments are completed, 4497 * so this callback allows us to retire dirty space gradually, as the physical 4498 * i/os complete. 4499 */ 4500 /* ARGSUSED */ 4501 static void 4502 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4503 { 4504 dmu_buf_impl_t *db = arg; 4505 objset_t *os = db->db_objset; 4506 dsl_pool_t *dp = dmu_objset_pool(os); 4507 dbuf_dirty_record_t *dr; 4508 int delta = 0; 4509 4510 dr = db->db_data_pending; 4511 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4512 4513 /* 4514 * The callback will be called io_phys_children times. Retire one 4515 * portion of our dirty space each time we are called. Any rounding 4516 * error will be cleaned up by dbuf_write_done(). 4517 */ 4518 delta = dr->dr_accounted / zio->io_phys_children; 4519 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4520 } 4521 4522 /* ARGSUSED */ 4523 static void 4524 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4525 { 4526 dmu_buf_impl_t *db = vdb; 4527 blkptr_t *bp_orig = &zio->io_bp_orig; 4528 blkptr_t *bp = db->db_blkptr; 4529 objset_t *os = db->db_objset; 4530 dmu_tx_t *tx = os->os_synctx; 4531 4532 ASSERT0(zio->io_error); 4533 ASSERT(db->db_blkptr == bp); 4534 4535 /* 4536 * For nopwrites and rewrites we ensure that the bp matches our 4537 * original and bypass all the accounting. 4538 */ 4539 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4540 ASSERT(BP_EQUAL(bp, bp_orig)); 4541 } else { 4542 dsl_dataset_t *ds = os->os_dsl_dataset; 4543 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4544 dsl_dataset_block_born(ds, bp, tx); 4545 } 4546 4547 mutex_enter(&db->db_mtx); 4548 4549 DBUF_VERIFY(db); 4550 4551 dbuf_dirty_record_t *dr = db->db_data_pending; 4552 dnode_t *dn = dr->dr_dnode; 4553 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4554 ASSERT(dr->dr_dbuf == db); 4555 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4556 list_remove(&db->db_dirty_records, dr); 4557 4558 #ifdef ZFS_DEBUG 4559 if (db->db_blkid == DMU_SPILL_BLKID) { 4560 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4561 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4562 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4563 } 4564 #endif 4565 4566 if (db->db_level == 0) { 4567 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4568 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4569 if (db->db_state != DB_NOFILL) { 4570 if (dr->dt.dl.dr_data != db->db_buf) 4571 arc_buf_destroy(dr->dt.dl.dr_data, db); 4572 } 4573 } else { 4574 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4575 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4576 if (!BP_IS_HOLE(db->db_blkptr)) { 4577 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4578 SPA_BLKPTRSHIFT; 4579 ASSERT3U(db->db_blkid, <=, 4580 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4581 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4582 db->db.db_size); 4583 } 4584 mutex_destroy(&dr->dt.di.dr_mtx); 4585 list_destroy(&dr->dt.di.dr_children); 4586 } 4587 4588 cv_broadcast(&db->db_changed); 4589 ASSERT(db->db_dirtycnt > 0); 4590 db->db_dirtycnt -= 1; 4591 db->db_data_pending = NULL; 4592 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4593 4594 /* 4595 * If we didn't do a physical write in this ZIO and we 4596 * still ended up here, it means that the space of the 4597 * dbuf that we just released (and undirtied) above hasn't 4598 * been marked as undirtied in the pool's accounting. 4599 * 4600 * Thus, we undirty that space in the pool's view of the 4601 * world here. For physical writes this type of update 4602 * happens in dbuf_write_physdone(). 4603 * 4604 * If we did a physical write, cleanup any rounding errors 4605 * that came up due to writing multiple copies of a block 4606 * on disk [see dbuf_write_physdone()]. 4607 */ 4608 if (zio->io_phys_children == 0) { 4609 dsl_pool_undirty_space(dmu_objset_pool(os), 4610 dr->dr_accounted, zio->io_txg); 4611 } else { 4612 dsl_pool_undirty_space(dmu_objset_pool(os), 4613 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4614 } 4615 4616 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4617 } 4618 4619 static void 4620 dbuf_write_nofill_ready(zio_t *zio) 4621 { 4622 dbuf_write_ready(zio, NULL, zio->io_private); 4623 } 4624 4625 static void 4626 dbuf_write_nofill_done(zio_t *zio) 4627 { 4628 dbuf_write_done(zio, NULL, zio->io_private); 4629 } 4630 4631 static void 4632 dbuf_write_override_ready(zio_t *zio) 4633 { 4634 dbuf_dirty_record_t *dr = zio->io_private; 4635 dmu_buf_impl_t *db = dr->dr_dbuf; 4636 4637 dbuf_write_ready(zio, NULL, db); 4638 } 4639 4640 static void 4641 dbuf_write_override_done(zio_t *zio) 4642 { 4643 dbuf_dirty_record_t *dr = zio->io_private; 4644 dmu_buf_impl_t *db = dr->dr_dbuf; 4645 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4646 4647 mutex_enter(&db->db_mtx); 4648 if (!BP_EQUAL(zio->io_bp, obp)) { 4649 if (!BP_IS_HOLE(obp)) 4650 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4651 arc_release(dr->dt.dl.dr_data, db); 4652 } 4653 mutex_exit(&db->db_mtx); 4654 4655 dbuf_write_done(zio, NULL, db); 4656 4657 if (zio->io_abd != NULL) 4658 abd_free(zio->io_abd); 4659 } 4660 4661 typedef struct dbuf_remap_impl_callback_arg { 4662 objset_t *drica_os; 4663 uint64_t drica_blk_birth; 4664 dmu_tx_t *drica_tx; 4665 } dbuf_remap_impl_callback_arg_t; 4666 4667 static void 4668 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4669 void *arg) 4670 { 4671 dbuf_remap_impl_callback_arg_t *drica = arg; 4672 objset_t *os = drica->drica_os; 4673 spa_t *spa = dmu_objset_spa(os); 4674 dmu_tx_t *tx = drica->drica_tx; 4675 4676 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4677 4678 if (os == spa_meta_objset(spa)) { 4679 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4680 } else { 4681 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4682 size, drica->drica_blk_birth, tx); 4683 } 4684 } 4685 4686 static void 4687 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4688 { 4689 blkptr_t bp_copy = *bp; 4690 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4691 dbuf_remap_impl_callback_arg_t drica; 4692 4693 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4694 4695 drica.drica_os = dn->dn_objset; 4696 drica.drica_blk_birth = bp->blk_birth; 4697 drica.drica_tx = tx; 4698 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4699 &drica)) { 4700 /* 4701 * If the blkptr being remapped is tracked by a livelist, 4702 * then we need to make sure the livelist reflects the update. 4703 * First, cancel out the old blkptr by appending a 'FREE' 4704 * entry. Next, add an 'ALLOC' to track the new version. This 4705 * way we avoid trying to free an inaccurate blkptr at delete. 4706 * Note that embedded blkptrs are not tracked in livelists. 4707 */ 4708 if (dn->dn_objset != spa_meta_objset(spa)) { 4709 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4710 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4711 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4712 ASSERT(!BP_IS_EMBEDDED(bp)); 4713 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4714 ASSERT(spa_feature_is_enabled(spa, 4715 SPA_FEATURE_LIVELIST)); 4716 bplist_append(&ds->ds_dir->dd_pending_frees, 4717 bp); 4718 bplist_append(&ds->ds_dir->dd_pending_allocs, 4719 &bp_copy); 4720 } 4721 } 4722 4723 /* 4724 * The db_rwlock prevents dbuf_read_impl() from 4725 * dereferencing the BP while we are changing it. To 4726 * avoid lock contention, only grab it when we are actually 4727 * changing the BP. 4728 */ 4729 if (rw != NULL) 4730 rw_enter(rw, RW_WRITER); 4731 *bp = bp_copy; 4732 if (rw != NULL) 4733 rw_exit(rw); 4734 } 4735 } 4736 4737 /* 4738 * Remap any existing BP's to concrete vdevs, if possible. 4739 */ 4740 static void 4741 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4742 { 4743 spa_t *spa = dmu_objset_spa(db->db_objset); 4744 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4745 4746 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4747 return; 4748 4749 if (db->db_level > 0) { 4750 blkptr_t *bp = db->db.db_data; 4751 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4752 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4753 } 4754 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4755 dnode_phys_t *dnp = db->db.db_data; 4756 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4757 DMU_OT_DNODE); 4758 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4759 i += dnp[i].dn_extra_slots + 1) { 4760 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4761 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4762 &dn->dn_dbuf->db_rwlock); 4763 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4764 tx); 4765 } 4766 } 4767 } 4768 } 4769 4770 4771 /* Issue I/O to commit a dirty buffer to disk. */ 4772 static void 4773 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4774 { 4775 dmu_buf_impl_t *db = dr->dr_dbuf; 4776 dnode_t *dn = dr->dr_dnode; 4777 objset_t *os; 4778 dmu_buf_impl_t *parent = db->db_parent; 4779 uint64_t txg = tx->tx_txg; 4780 zbookmark_phys_t zb; 4781 zio_prop_t zp; 4782 zio_t *pio; /* parent I/O */ 4783 int wp_flag = 0; 4784 4785 ASSERT(dmu_tx_is_syncing(tx)); 4786 4787 os = dn->dn_objset; 4788 4789 if (db->db_state != DB_NOFILL) { 4790 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4791 /* 4792 * Private object buffers are released here rather 4793 * than in dbuf_dirty() since they are only modified 4794 * in the syncing context and we don't want the 4795 * overhead of making multiple copies of the data. 4796 */ 4797 if (BP_IS_HOLE(db->db_blkptr)) { 4798 arc_buf_thaw(data); 4799 } else { 4800 dbuf_release_bp(db); 4801 } 4802 dbuf_remap(dn, db, tx); 4803 } 4804 } 4805 4806 if (parent != dn->dn_dbuf) { 4807 /* Our parent is an indirect block. */ 4808 /* We have a dirty parent that has been scheduled for write. */ 4809 ASSERT(parent && parent->db_data_pending); 4810 /* Our parent's buffer is one level closer to the dnode. */ 4811 ASSERT(db->db_level == parent->db_level-1); 4812 /* 4813 * We're about to modify our parent's db_data by modifying 4814 * our block pointer, so the parent must be released. 4815 */ 4816 ASSERT(arc_released(parent->db_buf)); 4817 pio = parent->db_data_pending->dr_zio; 4818 } else { 4819 /* Our parent is the dnode itself. */ 4820 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 4821 db->db_blkid != DMU_SPILL_BLKID) || 4822 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 4823 if (db->db_blkid != DMU_SPILL_BLKID) 4824 ASSERT3P(db->db_blkptr, ==, 4825 &dn->dn_phys->dn_blkptr[db->db_blkid]); 4826 pio = dn->dn_zio; 4827 } 4828 4829 ASSERT(db->db_level == 0 || data == db->db_buf); 4830 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 4831 ASSERT(pio); 4832 4833 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 4834 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 4835 db->db.db_object, db->db_level, db->db_blkid); 4836 4837 if (db->db_blkid == DMU_SPILL_BLKID) 4838 wp_flag = WP_SPILL; 4839 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 4840 4841 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 4842 4843 /* 4844 * We copy the blkptr now (rather than when we instantiate the dirty 4845 * record), because its value can change between open context and 4846 * syncing context. We do not need to hold dn_struct_rwlock to read 4847 * db_blkptr because we are in syncing context. 4848 */ 4849 dr->dr_bp_copy = *db->db_blkptr; 4850 4851 if (db->db_level == 0 && 4852 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 4853 /* 4854 * The BP for this block has been provided by open context 4855 * (by dmu_sync() or dmu_buf_write_embedded()). 4856 */ 4857 abd_t *contents = (data != NULL) ? 4858 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 4859 4860 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 4861 contents, db->db.db_size, db->db.db_size, &zp, 4862 dbuf_write_override_ready, NULL, NULL, 4863 dbuf_write_override_done, 4864 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 4865 mutex_enter(&db->db_mtx); 4866 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 4867 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 4868 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 4869 mutex_exit(&db->db_mtx); 4870 } else if (db->db_state == DB_NOFILL) { 4871 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 4872 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 4873 dr->dr_zio = zio_write(pio, os->os_spa, txg, 4874 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 4875 dbuf_write_nofill_ready, NULL, NULL, 4876 dbuf_write_nofill_done, db, 4877 ZIO_PRIORITY_ASYNC_WRITE, 4878 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 4879 } else { 4880 ASSERT(arc_released(data)); 4881 4882 /* 4883 * For indirect blocks, we want to setup the children 4884 * ready callback so that we can properly handle an indirect 4885 * block that only contains holes. 4886 */ 4887 arc_write_done_func_t *children_ready_cb = NULL; 4888 if (db->db_level != 0) 4889 children_ready_cb = dbuf_write_children_ready; 4890 4891 dr->dr_zio = arc_write(pio, os->os_spa, txg, 4892 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db), 4893 &zp, dbuf_write_ready, 4894 children_ready_cb, dbuf_write_physdone, 4895 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 4896 ZIO_FLAG_MUSTSUCCEED, &zb); 4897 } 4898 } 4899 4900 EXPORT_SYMBOL(dbuf_find); 4901 EXPORT_SYMBOL(dbuf_is_metadata); 4902 EXPORT_SYMBOL(dbuf_destroy); 4903 EXPORT_SYMBOL(dbuf_loan_arcbuf); 4904 EXPORT_SYMBOL(dbuf_whichblock); 4905 EXPORT_SYMBOL(dbuf_read); 4906 EXPORT_SYMBOL(dbuf_unoverride); 4907 EXPORT_SYMBOL(dbuf_free_range); 4908 EXPORT_SYMBOL(dbuf_new_size); 4909 EXPORT_SYMBOL(dbuf_release_bp); 4910 EXPORT_SYMBOL(dbuf_dirty); 4911 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 4912 EXPORT_SYMBOL(dmu_buf_will_dirty); 4913 EXPORT_SYMBOL(dmu_buf_is_dirty); 4914 EXPORT_SYMBOL(dmu_buf_will_not_fill); 4915 EXPORT_SYMBOL(dmu_buf_will_fill); 4916 EXPORT_SYMBOL(dmu_buf_fill_done); 4917 EXPORT_SYMBOL(dmu_buf_rele); 4918 EXPORT_SYMBOL(dbuf_assign_arcbuf); 4919 EXPORT_SYMBOL(dbuf_prefetch); 4920 EXPORT_SYMBOL(dbuf_hold_impl); 4921 EXPORT_SYMBOL(dbuf_hold); 4922 EXPORT_SYMBOL(dbuf_hold_level); 4923 EXPORT_SYMBOL(dbuf_create_bonus); 4924 EXPORT_SYMBOL(dbuf_spill_set_blksz); 4925 EXPORT_SYMBOL(dbuf_rm_spill); 4926 EXPORT_SYMBOL(dbuf_add_ref); 4927 EXPORT_SYMBOL(dbuf_rele); 4928 EXPORT_SYMBOL(dbuf_rele_and_unlock); 4929 EXPORT_SYMBOL(dbuf_refcount); 4930 EXPORT_SYMBOL(dbuf_sync_list); 4931 EXPORT_SYMBOL(dmu_buf_set_user); 4932 EXPORT_SYMBOL(dmu_buf_set_user_ie); 4933 EXPORT_SYMBOL(dmu_buf_get_user); 4934 EXPORT_SYMBOL(dmu_buf_get_blkptr); 4935 4936 /* BEGIN CSTYLED */ 4937 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW, 4938 "Maximum size in bytes of the dbuf cache."); 4939 4940 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 4941 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted " 4942 "directly."); 4943 4944 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 4945 "Percentage below dbuf_cache_max_bytes when the evict thread stops " 4946 "evicting dbufs."); 4947 4948 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW, 4949 "Maximum size in bytes of the dbuf metadata cache."); 4950 4951 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW, 4952 "Set the size of the dbuf cache to a log2 fraction of arc size."); 4953 4954 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW, 4955 "Set the size of the dbuf metadata cache to a log2 fraction of arc " 4956 "size."); 4957 /* END CSTYLED */ 4958